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Tuning oxo formation energies using spectator ligands in the MIL-100 metal organic framework
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Metal organic frameworks (MOFs) are porous, 
crystalline materials composed of individual nodes 
containing organic and inorganic atoms that are 
connected by organic linkers [1].

How sensitive are the MTM 
reaction pathway energies to 

different spectator ligands and 
MIL-100 node metal 

compositions?
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The MIL-100 Fe MOF has proven to be a 
selective catalyst for the MTM conversion. [3]

Different reaction pathway energies for the 
catalyzed oxidation reaction were observed 

when varying the metal composition of MIL-100 
[4], suggesting an opportunity to tune both 

conversion and selectivity in MTM reactions. 

direct oxidation

steam reforming

Developing an efficient and 
economical way to convert methane 

to methanol (MTM) requires 
catalysts capable of selectively 

breaking H-CH3 bonds [2]. 

On the Palmetto Supercomputer, Density Functional Theory (DFT) implemented in 
the Gaussian16 software [7] computed the electronic energies for the N2O activation 
reaction intermediates in order to calculate the reaction thermodynamic and kinetics.
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Level of theory (UM06L/def2-TZVP) 
[5, 6] in Gaussian16
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N2O activation is influenced by H2O and CH3OH spectator ligands; however, the trends are 
different depending on the spectator ligand and MIL-100 metal doping.

N2O is not influenced by the presence of additional N2O spectator ligands. 
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Reaction Overview for Formation of Oxo Species

Spectating Ligands
These are molecules that are coordinated 

to the MOF, but indirectly participate in the 
reaction of interest

Active Site
This is the Fe atom that the 

reaction of interest takes 
place on

MIL-100 Fe 
node

On certain MIL-100 nodes, the MTM reaction pathway energies are highly sensitive 
to spectator ligands coordinated at secondary metal sites within the node. 

Present finding suggests that the presence of these spectator ligands (combined 
with different metal-doping) could be used to tune the MTM reaction mechanisms. 

Ongoing calculations into the full reaction pathways for MTM are necessary to 
determine the influence of spectator ligands throughout the reaction mechanism, 
in order to tune the chemical reactivity using spectator ligands and metal doping. 
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Binding Enthalpies (kJ/mol)

A B

FeFeFe -75.5 | -71.7 -69.7 | -62.1

AlFeFe -94.1 | -63.3 -79.3 | -61.5

AlAlFe -84.4 | -81.6 -77.7 | -73.4

CrFeFe -91.0 | -63.3 -94.6 | -59.4

CrCrFe -79.4 | -85.1 -89.8 | -85.6

Key: ΔH0→1 | ΔH1→2

Binding Enthalpies (kJ/mol)

A B

FeFeFe -79.3 | -76.8 -76.1 | -67.1

AlFeFe -99.0 | -65.6 -84.4 | -62.6

AlAlFe -89.9 | -76.9 -82.4 | 0-0.7

CrFeFe -89.0 | -70.7 -98.8 | -63.5

CrCrFe -86.9 | -85.1 -27.0 | -154

Key: ΔH0→1 | ΔH1→2

Binding Enthalpies (kJ/mol)

A B

FeFeFe -24.9 | -24.7 -21.5 | -20.4

AlFeFe -29.7 | -22.7 -19.8 | -19.3

AlAlFe -22.6 | -20.3 -19.6 | -17.1

CrFeFe -36.4 | -13.8 -35.2 | -18.3

CrCrFe -29.5 | -28.1 -31.6 | -30.0

Key: ΔH0→1 | ΔH1→2
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