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ABSTRACT 
 

Cancer refers to a group of diseases containing more than 200 different 

subtypes.  Cancer is a heterogeneous disease by nature, meaning that there are 

differences among tumors of the same type in different patients, and there are 

differences among cancer cells within a single tumor of one patient. Since cancer 

is not a single disease, nor does it have a single cause, it proves to be incredibly 

hard to diagnose and treat. The ability to study cellular markers, cell and tissue 

spatial arrangement, and gene function are all integral parts of cancer diagnostic 

and treatment efforts.  

Here, I first present a review of current techniques for quantitative tissue 

imaging at cellular resolution. I broadly divide current imaging techniques into three 

categories: fluorescence-based, mass spectrometry-based, and sequencing-

based. In this work, I primarily concentrate on fluorescence-based methods, with 

the focus being on our recently developed theory Multiplexing using Spectral 

Imaging and Combinatorics (MuSIC). The basis for MuSIC is to create 

combinations of fluorescent molecules (whether it be small molecule fluorophores 

or fluorescent proteins) to create unique spectral signatures.  

I then present a protocol for labeling antibodies with combinations of small 

molecule fluorophores, which I refer to as MuSIC probes. I use fluorescent 

oligonucleotides (oligos) to arrange the fluorophores at specified distances and 

orientations from one another in order to produce complex fluorescence spectra 

when the probe is excited.  This labeling protocol is demonstrated using a 3-probe 
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experimental setup, bound to Protein A beads, and analyzed via spectral flow 

cytometry. When translating this method to staining human cells, our staining 

intensity was not comparable to that of a conventional antibody labeling kit. 

Therefore, next I present an improved method to label antibodies with MuSIC 

probes with increased signal intensity. I re-arrange the oligo-fluorophore 

arrangement of the MuSIC probe to emit an increased fluorescent signal. Then I 

validate this approach by comparing the staining intensity of MuSIC probe-labeled 

antibodies to a conventional antibody labeling kit using human peripheral blood 

mononuclear cells.  

Lastly, I present simulation theories for the multiplexing capabilities of 

MuSIC probes for various biological and diagnostic applications. First, I present a 

theory for high-throughput genetic interaction screening using MuSIC probes 

generated from 18 currently available fluorescent proteins. Simulation studies 

based on constraints of current spectral flow cytometry equipment suggest our 

ability to perform genetic interaction screens at the human genome-scale. Finally, 

I adapt this simulation protocol to generate MuSIC probes from 30 currently 

available small-molecule fluorophores. Using the same constraints as before, I 

predict that I can perform cell-type profiling of 200+ analytes.  

I hope that the work presented here provides a foundation for the use of 

combination probes for various biological and disease applications and ultimately 

help to better diagnose and treat different types of cancer.  
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CHAPTER ONE 

INTRODUCTION 

 

Diagnosing and Treating Cancer 

Cancer is a genetic disease that is caused by changes to genes, causing 

cells to grow uncontrollably1. There are more than 200 types of cancer2. 

Additionally, cancer is a heterogeneous disease by nature, meaning that tumors 

can differ between patients (inter-patient heterogeneity), between different 

metastatic tumors from a single patient (inter-tumor heterogeneity), and between 

individual cancer cells within a single tumor (intra-tumor heterogeneity)3. 

Furthermore, cancer is a dynamic disease, causing it to become more 

heterogenous as the disease progresses4. This inherent heterogeneity causes 

significant challenges for diagnosis and treatment5. Consequently, cancer is the 

second leading cause of death worldwide (8.97 million deaths annually)6. For this 

reason, the ability to study cell types along with cell and tissue architecture (i.e., 

the spatial organization of cellular and extracellular components) at a single-cell 

level is crucial to our understanding of the disease and ability to detect and treat 

it7.  

How Do We Visualize and Study Cells? 

There are hundreds of different cell types containing thousands of cell 

markers in the human body8. Researchers have found many ways to study cells 

and cellular function. Fluorescence-based methods, including cellular imaging and 
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flow cytometry, involve staining the cell/tissue sample with fluorescently labeled 

antibodies and analyzing by collecting emission light from the sample when excited 

at various wavelengths9. Non-fluorescence-based methods include mass 

cytometry and single-cell sequencing. In mass cytometry, cell/tissue samples are 

stained with isotopically pure rare-earth metal-labeled antibodies, and the sample 

is ablated with a laser or ion beam to collect the composition of the sample10. 

Single-cell RNA sequencing (sc-RNA seq) can analyze the entire transcriptome of 

single cells in a population/tissue sample. Sc-RNA seq has been combined with 

spatial transcriptomics to maintain spatial information of RNA analytes, typically 

lost during sc-RNA seq analysis11. Both of these methods have been instrumental 

in cellular studies; however, mass cytometry and sc-RNA seq are more expensive 

compared to flow cytometry and require the destruction of the acquired sample, 

preventing the use for follow-up studies12–141–13. For this reason, fluorescence-

based methods have become an attractive candidate for high throughput, cost-

effective, and non-destructive analysis of cell/tissue samples.  

What Are the Challenges with Fluorescent Multiplexing? 

Central to fluorescence imaging and flow cytometry are fluorescent dyes 

conjugated to antibodies, which enable measurement of target analytes such as 

cell surface or intracellular markers9. Each fluorophore has a distinct excitation and 

emission spectra, corresponding to the range of wavelengths at which it absorbs 

and emits light. So, when the fluorochrome is excited, detectors and filters can be 

used to detect signals from the specific fluorophore. When designing fluorescent 
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antibody panels, it is critical to choose fluorophores with distinct excitation and 

emission peaks from one another in order to minimize spectral overlap. Spectral 

overlap occurs when fluorescence from more than one fluorochrome is detected, 

making it difficult to distinguish individual fluorophores (Figure 1.1).  For this 

reason, the use of fluorescent antibodies for conventional filter-based flow 

cytometry is typically limited to only 4-5 fluorescent dyes that can be used 

simultaneously in a panel for cell staining, however up to ~10-15 have been 

reported, as the dyes need to have distinct emission peaks from one another15–17. 

One method that scientists have used to overcome this is using repeated rounds 

of 4-color staining, imaging, and bleaching, in methods such as MxIF, CyCIF, and 

4i. By using rounds of staining, up to 60 analytes can be visualized per sample. 

However, repeated rounds of staining and bleaching become time-consuming and 

can lead to sample degradation over time.  

 

Figure 1.1. Spectral Overlap Between Two Fluorophores 
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Benefits of Spectral Data Collection 

Recent technological advancements have led to spectral imaging/flow 

cytometry. Here, the entire emission spectrum of each fluorochrome is collected 

using a series of detectors, generating an entire spectral profile for each 

fluorophore, rather than only identifying the peak of emission (Figure 1.2)18. 

  

Figure 1.2. Licensed from Bonilla et. al (2021). Full Spectrum Flow Cytometry 

Diagram 

Spectral unmixing refers to the mathematical algorithm that deconvolves 

the multiple fluorophore signatures within a mixture of fluorophores. This allows 
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the spectral signatures from each fluorophore to be used to isolate the profiles of 

each individual fluorophore, using spectral unmixing. This gives an advantage over 

traditional fluorescence imaging and flow cytometry in that, so long as there are 

distinct spectral signatures, fluorophores with similar peak emissions can be used 

in the same panel. Using full spectrum flow cytometry, fluorescent antibody panels 

using 40 parameters have been designed and demonstrated19. However, further 

development in this area is impeded by the number of commercially available dyes 

compatible in a single panel.  

Combination Fluorescent Probes  

To increase the number of dyes compatible for panel design, we look 

towards a phenomenon known as Förster resonance energy transfer (FRET). 

FRET occurs when a higher energy fluorophore (the donor) transfers energy to a 

lower energy fluorophore (the acceptor) when they are in close proximity, which 

produces a unique emission spectra20. The efficiency of FRET is directly related to 

the orientation of and distance between the two fluorochromes. This concept is 

central to our recently developed method Multiplexing using Spectral Imaging and 

Combinatorics (MuSIC), in which stable combinations of fluorophores are used to 

create MuSIC probes with unique spectral signatures using commercially available 

dyes21,22. If a fluorophore combination exhibits sufficient FRET, then 

mathematically, its probe levels can be estimated along with that of the single 

fluorophores that make up the combination. Picture a 3-probe experimental setup 

(m=3). The emission spectra of the mixture of fluorophores (m) are arranged 
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vertically by emission wavelength per each excitation wavelength. Then, each 

column in R is the emission spectra of each individual probe, arranged the same 

way. When solving this matrix, the resulting output is f, each component's 

individual probe levels (Figure 1.3)21.   

 

Adapted from Holzapfel et. al (2018) 

Figure 1.3 Licensed from Holzapfel et. al 2018. The Mathematical Basis for MuSIC  

Dissertation Overview 

This dissertation explores the use of combination fluorescent probes for a 

variety of biological and diagnostic applications. Specifically, we explore the use 

of combination (or MuSIC) probes for spectral imaging and spectral flow cytometry. 
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Potential applications for MuSIC probes include cell/tissue imaging, cell-type 

profiling, and genetic and genetic interaction screenings.  

In chapter two, we begin by reviewing cell and tissue imaging methods at a 

cellular resolution. Tissue imaging can be broadly divided into three categories; 

fluorescence-based, mass spectrometry-based, and sequencing-based. 

Furthermore, we look into various methods available for data analysis.  

Chapter three introduces a protocol for labeling antibodies with MuSIC 

probes. Using an oligo-based approach, we show our ability to stably bind 

combinations of fluorophores to antibodies and validate this using spin column 

purifications and absorbance measurements. We then create a panel of three 

probes and demonstrate our ability to unmix these probes using spectral flow 

cytometry.  

In chapter four, we build upon the labeling strategy presented in chapter 

three to translate this method into staining human cells. Upon testing the labeling 

strategy described in chapter three by staining human peripheral blood 

mononuclear cells (PBMCs), we found a significantly lower fluorescent signal of 

our probes than cells stained with conventionally-labeled fluorescent antibodies. 

By changing the design of our probes and re-arranging the oligo-fluorophore 

configuration, we demonstrate our ability to stain human PBMCs at a signal 

intensity above that of the conventionally-labeled fluorescent antibodies.  

In chapter five, we introduce a theory for high-throughput genetic interaction 

screening. Using our simulation workflow, we generate lists of MuSIC probes that 
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we predict can be accurately demultiplexed in a mixture together based on binary 

classification patterns. If these MuSIC probes can be paired with guide RNAs, we 

predict we can perform genetic interaction screens at the genome level.  

In chapter six, we build upon the simulation workflow presented in chapter 

five and the labeling strategies presented in chapters two and three to propose a 

method for determining lists of MuSIC probes using small molecule fluorophores 

that can be accurately demultiplexed in a mixture for antibody labels. We predict 

that using 30 currently available small molecule fluorophores, we can create 

fluorescent antibody panels for over 200 markers using currently available spectral 

equipment.  

In chapter seven, we discuss the broad conclusions of this work and 

propose future directions of the ideas presented in this dissertation. Experimental 

testing of the simulation study presented in chapter six, using the labeling 

techniques described in chapters three and four, will lead to the establishment of 

a full panel of demultiplexable MuSIC probes for fluorescence-based biological and 

disease diagnostics. 
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CHAPTER TWO 

HIGHLY-MULTIPLEXED, QUANTITATIVE TISSUE IMAGING AT CELLULAR 

RESOLUTION 

 

Abstract 

There is a contemporary push to map tissues and their disease states 

quantitatively at single-cell and spatial resolution, but standard assays to do so, 

such as immunohistochemistry, have been historically lowly multiplexed (2-4 

measurements). This push has driven the development of several new multiplexed 

techniques for quantitative tissue imaging, which we review here. Standard 

multiplexed imaging is primarily limited by fluorophore spectral overlap. 

Innovations increasing multiplexing capacity include iterative cycles of staining / 

bleaching / imaging, imaging mass spectrometry with metal-conjugated antibodies, 

leveraging fluorophore combinatorics, and coupling to sequencing-based 

methods. Recent progress has increased image-based multiplexing roughly 10-

fold, and in some cases of nucleic acid analytes, to genome-scale. This has given 

unprecedented biological and disease knowledge, but there is still substantial work 

to achieve genome-scale across all types of analytes, as well as spatial scales 

greater than ~millimeters. Concomitantly, challenges in data storage, retrieval and 

analysis will need to be solved moving forward.  
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Introduction 
Human tissues consist of complex networks of interacting cells 23  24 25 26. The 

architecture of a tissue, and to a large extent function, is defined by spatial 

organization of its cellular and extracellular compartments 27 28 29. The architecture 

of normal and diseased tissues influences the development of a disease as well 

as receptiveness and resistance to therapy 30 31. The ability to characterize and 

gain further understanding of tissue architecture through imaging has driven 

progress in biology and pathology 32 33 34 35. Immunohistochemistry (IHC) is a 

conventional tool used in clinical diagnostics and research laboratories to assess 

the spatial distribution of typically two to four analytes in a single sample 36 37 38 39 

40 41 . However, IHC has a variety of limitations, such as the requirement of a new 

sample or serial section for each analyte set, which limits multiplexing, and non-

linear relationships between analyte abundance and staining intensity (when 

fluorescence is not used), which limits quantification 42 43. Other methods exist 

which are highly multiplexed and provide quantitative data, such as deep 

sequencing, or even single-cell sequencing 44. However, they have the limitation 

that spatial information in a tissue is often lost 45.  There is currently a large 

technological gap for methods that are image-based but offer more quantitative 

multiplexing at single-cell spatial resolution 42.   

There are a variety of biological and disease applications for multiplexed 

tissue imaging; one example is cancer 42. The NIH-funded Human Tumor Atlas 

Network was established to, in part, complement the tremendous efforts of The 

Cancer Genome Atlas with spatial information 46. Tumor heterogeneity is multi-
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dimensional including variation in driver mutation profiles across space, 

extracellular matrix structure, soluble factor and oxygen gradients, as well as 

multiple important cell types such as immune infiltrates and tumor-associated 

fibroblasts that interact with tumor cells to influence tumor microenvironment 47 48 

49 50 51 52. This inherent tumor heterogeneity makes diagnosis, prognosis, and 

treatment a challenge because of its unknown impact on the tumor’s evolution and 

drug sensitivity profile 47 53 54 55. More highly-multiplexed imaging tools and 

techniques will facilitate characterizing and better understanding tumor 

heterogeneity, helping to inform diagnosis, prognosis, and treatment.     

In this review, we survey recent advances in image-based multiplexing 

technologies capable of single-cell spatial resolution, with focus as well on their 

quantitative features to some extent. Although major advances have been made 

with radiological methods including PET, CT and MRI, we focus this review on 

techniques with higher spatial resolution, and rather refer the reader to other 

resources on such topics 56 57 58. These technologies can generally be divided into 

three categories: fluorescence-based, mass spectrometry-based, and very 

recently sequencing-based, which we enumerate below and are summarized in 

Table 2.1 and Figure 2.1. These advances in imaging techniques have enabled 

the analysis of significantly more parameters in cells and tissues than what was 

previously possible, enabling significant progress towards deeply characterizing 

the tumor microenvironment and other tissue or spatial analyses—a new grand 

challenge of biology for the 21st century post-genomic era.    
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Table 2.1 Specifications of available highly multiplexed imaging methods. 

Important aspects of each method are described, such as differences in degree 

of multiplexing, assay duration, major equipment, and major reagents. TOF: time 

of flight, FISH: fluorescence in situ hybridization, H&E: haemotoxylin and eosin. 
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Figure 2.1 Schematic of available highly multiplexed imaging methods. The 

current highly multiplexed imaging techniques can be grouped into three general 

categories: mass spectrometry based, fluorescence based, and sequencing 

based. Rare earth metals attached to antibodies are depicted for mass 

spectrometry. The fluorescence imaging methods can be further divided into 

spectral and non-spectral subcategories. Fluorescence intensity data of two 

fluorophores exhibiting FRET are depicted for spectral and the general procedure 

for cycles of non-spectral fluorescence imaging are depicted for non-spectral 
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fluorescence imaging.  Sequencing data for a given tissue sample is shown for 

sequencing methods. The methods are further described in the text. 124. 
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Fluorescence-Based Methods 

Central to fluorescence microscopy are fluorescent dyes attached to affinity 

binders, such as antibodies or oligonucleotides, which then associate with a 

targeted analyte, such as proteins, RNA or DNA, allowing visualization and 

analysis 59.  Fluorescence-based methods can be divided into filter-based and 

spectral techniques. Filter-based fluorescence imaging uses optical films that allow 

relatively broad wavelength ranges of light to excite fluorophores in samples and 

the subsequent emission light to pass onto a detector, but multiplexing is limited 

usually to about four colors by inevitable spectral overlap. Spectral overlap occurs 

when fluorophore’s excitation and/or emission spectra share substantial 

wavelength ranges, such that filters cannot efficiently separate them. Spectral 

(also called hyper-spectral) imaging partially overcomes this issue of overlap 

because much finer wavelength resolution for fluorescence emission is obtained 

60 61, by using, for example, monochromators, prisms and/or diode arrays 62. 

Currently, filter-based methods are the predominant modality because of simplicity 

and cost.  

There are currently a wide variety of different reporter agents available for 

these techniques. A few examples of these include small molecule, 63 64 

65,fluorescent proteins, 66 67 68, photo-switchable 69 70 71, quantum dots 72 73 74, 

polymer dots 75 76, and endogenous fluorescence 77 78 79.  

Filter-based 
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Filter-based fluorescence imaging is the most widely used method for 

visualizing cells and tissues. There are a variety of established textbook protocols 

(e.g. 80 81), and the required equipment is generally cheaper and more readily 

available than that for the methods that will be later described.  

One way to achieve higher multiplexing is to simply perform repeated 

rounds of staining and imaging, with bleaching of fluorophores between rounds. 

Several recent techniques leverage this principle, including multiplexed 

fluorescence microscopy (MxIF) 82, iterative indirect immunofluorescence imaging 

(4i) 83, cyclic immunofluorescence (CycIF) 84 85 and co-detection by indexing 

(CODEX) 86. These methods are in principle compatible with formalin fixed paraffin 

embedded (FFPE) tissue, a common format for preserving samples. They are 

limited by sample degradation across and the duration of each cycle .  

MxIF measures up to 60 analytes in a single FFPE tissue section using 

fluorophore-conjugated primary antibodies 87. The MxIF procedure consists of 

acquiring background autofluorescence, staining with four colors (one typically 

DAPI for nucleus fiduciary in each round), acquiring immunofluorescence, dye 

inactivation using alkaline oxidation chemistry, acquiring new background 

autofluorescence, re-staining with new fluorescent dye-conjugated primary 

antibodies, and acquiring new images 82. The cycle is repeated until all target 

analytes are measured. This technique was used to examine colorectal cancer 

specimens and allowed the mapping of cellular mechanistic target of rapamycin 



 

 18 

complex 1 (mTORCI) and MAPK signal transduction patterns in tissues 82, as well 

as in other applications 87 88.  

CycIF assembles up to 60-plex images of tissue sections via successive 

rounds of four-channel imaging 89, similarly to MxIF. Cycles involve four steps: 

immunostaining with fluorophore-conjugated primary antibodies, staining with a 

DNA dye to mark nuclei and facilitate image registration across cycles, four-

channel imaging at low- and high-magnification, fluorophore bleaching (oxidation 

in a high pH hydrogen peroxide solution in the presence of light) followed by a 

wash step, and then subsequent rounds of staining 84, 85. CycIF is partly limited by 

the assay duration as each cycle takes roughly 24 hours to complete, but also by 

sample degradation similar to MxIF 89 84. A major difference between CycIF and 

MxIF is that MxIF requires more expensive reagents and equipment, but has a 

shorter assay duration 90.  

The 4i method can detect up to 40 analytes 83. So-called “indirect 

immunofluorescence” uses an unconjugated primary antibody and a fluorophore-

conjugated secondary antibody, rather than a single primary antibody directly 

conjugated to the fluorophore, resulting in compatibility with “off-the-shelf” 

antibodies. This is the main distinctive feature of 4i. The 4i technique has been 

used to create multiplexed protein maps in different phases of the cell cycle, in 

response to cell crowding, inhibitors, and different growth conditions 91.  

CODEX has visualized up to 66 DNA-conjugated antibodies in a single 

image 86. The barcode information is encoded by an overhang sequence on the 
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DNA duplex that is read off in cycles of two-color imaging. Thus, 66 antibodies 

need 33 rounds of imaging. Overhang lengths on each antibody can be as small 

as two (1 color code) or as large as feasible for the experiment time scale and 

sample degradation of cycling. Two types of “walking” nucleotides (G and A) are 

used to traverse the overhang, and then other two (U and T) are labeled with either 

Cy3 or Cy5, respectively. First, a reaction mixture leaving out A is incubated on the 

antibody-stained sample. Only overhangs with C as the first base in its sequence 

are capable of incorporating a fluorescently labeled nucleotide, and then, CG 

would get a Cy3 label, and CA would get a Cy5 label. Other overhangs with a CT 

sequence do not yet receive a color. Next, a reaction mixture leaving out G is 

incubated on the sample. Then, CTG would get a Cy3 label, and CTA would get a 

Cy5 label. Other overhangs with a CTC sequence do not yet receive a color. This 

strategy is repeated for multiple rounds of extension on the overhang to perform 

the multiplexed imaging. Thus, the barcode is then the combination of the round in 

which a signal was detected, plus whether the color was Cy3 or Cy5. CODEX was 

used to determine that significant changes in expression levels in certain markers, 

such as B220, CD79b, or CD27 are dependent on the tissue microenvironment in 

which the cells reside 86. This drove the conclusion that cell populations that are 

currently thought of as broadly expressing a certain marker are actually comprised 

of multiple sub phenotypes that correlate with the indexed niche identity 86.  

There are also non-spectral techniques that do not involve cycles of 

imaging, but rather use super-resolution microscopy and combinatorial labeling 92. 
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This method has many similarities to standard fluorescence in situ hybridization 

(FISH) involving fluorophore-conjugated oligonucleotide probes complementary to 

mRNA targets 93 94 95. However, because in super-resolution microscopy, which 

drives beyond the diffraction limit, each mRNA molecule can be spatially resolved 

in a single pixel (or voxel) and can hybridize to several different color probes, the 

potential combination of fluorophores in each pixel (or voxel) can be used to 

multiplex mRNA measurements. Simple counting of spots with matched 

fluorophore combination barcodes is the quantitative readout. In proof-of-principle 

studies, three color barcodes with seven fluorophores were used to profile 

transcripts from 32 stress-responsive genes in single S. cerevisiae cells. Thus, a 

transcript is defined by a combination of 3 colors from 7 choices. The results were 

confirmed to match to that expected from more conventional readouts 96 92.  

In a recent follow-up, this approach was scaled transcriptome wide 

(~35,000 transcripts / cell), in a technique called seqFISH+, which combines the 

super-resolution notion with the repeated rounds of imaging principal from above 

97. Here, the innovation was switching from transcripts having real color barcodes 

to having “pseudo-color” barcodes. Now, each transcript is only labeled with a 

single color fluorophore, but is assigned a pseudo-color (1 to 20) based on when 

this fluorescence signal is observed over 20 sequential rounds of hybridization. 

This has the added benefit of having only 1/20th of the transcripts in the cell 

showing a signal in a particular image. Then, these 20 sequential rounds of 

imaging are repeated 4 separate times in an “outer loop” of barcoding rounds. In 
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barcoding rounds, the hybridization round where a fluorescence signal appears (1 

to 20) can be different for each gene, giving rise to a possible number of 

permutations on par with the genome.  

Another non-spectral technique that does not involves cycles of imaging is 

fluorescence lifetime imaging microscopy (FLIM). FLIM works by determining the 

lifetime of the excited state in order to characterize the molecular species 98. This 

is used to characterize the environment of the fluorophore 98. Within FLIM there 

are two distinct methods; the time-domain method and frequency-domain method 

99 100. Time-domain FLIM works by collecting the decay at each pixel and excitation 

and intensity are plotted against time for each pixel. This is then fit to an 

exponential curve to determine the fluorescence lifetime 100 101. Frequency-domain 

FLIM operates by taking measurements at different excitation frequencies and 

determining the phase and amplitudes at the different frequencies. The data is 

then fit to exponential models and analyzed 102. These two complementary 

methods have their own advantages and disadvantages. Time-domain FLIM has 

a higher sensitivity for measurements with low fluorescence with a single-photon 

timing technique, whereas frequency domain FLIM is generally faster and 

electronics are simpler 99 102.  

Sample quality becomes increasingly important with cycles of imaging and can 

become a major limiting factors for these methods. The extent of sample 

degradation can vary between tissue type and within a single tissue type 85. For 

CyCIF, it was found that half of the tissue samples tested could be routinely 
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imaged up to 15 cycles with 20% loss of cells 85.  Further testing of the effect on 

different types of tissues in response to the number of cycles can be seen in 

figure 4E from Lin et. al (2018)  85.  

 

Spectral  

Spectral imaging acquires much finer emission wavelength information than 

non-spectral imaging, which allows one to quantify mixtures of fluorophores with 

potentially heavily overlapping spectra. Similar to filter-based techniques, spectral 

imaging might also be performed using multiple rounds of labeling, although this 

has not yet been described to our knowledge. However, it is currently less popular 

than non-spectral imaging because the equipment is more expensive, and the 

technique is less established and therefore more difficult.  

Spectral imaging techniques are largely called hyper-spectral, and have 

been used to image up to seven analytes simultaneously in tissues 103 61 104 105 106, 

and even live cells 107. Analysis is broadly called linear unmixing, which applies the 

principle of additivity of fluorescence emission spectra to cast a linear algebra 

problem, which when solved gives the levels of the individual fluorophores in each 

pixel. Multiple fluorophores from ultraviolet to infrared are used with (typically) 

three (or more) excitation channels. Design of spectral imaging experiments is 

more complex than filter-based, but there are metrics that can be used to help, 

such as the Figure of Merit (FoM) 108. The FoM indicates how well a given imaging 

protocol performs for a set of fluorophores, relative to the case that these 
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fluorophores are present singularly and that their fluorescence can be measured 

noiselessly 108. Many modern and widely available confocal microscopes also have 

an ability to perform emission spectral scans. Hyper-spectral fluorescence imaging 

has a variety of medical applications, including disease diagnosis and image-

guided surgery 61. Although not tissue imaging, also of note are recent flow 

cytometers that can perform spectral imaging, such as Cytek Aurora 109.  

Fluorescence multiplexing using spectral imaging and combinatorics 

(MuSIC) builds on spectral imaging but uses single or covalent combinations of 

existing fluorophores to significantly increase the number of multiplexed analytes 

110. If a fluorophore covalent combination probe exhibits significant Förster 

resonance energy transfer (FRET), then mathematically, adding this probe to the 

linear unmixing problem is “well-posed” and its levels can be estimated along with 

the single fluorophores that make up the combination. Multiplexing up to 9 such 

MuSIC probes was demonstrated in solution-based assays over a restricted 

excitation wavelength window (~1/4 of that available), and it has the potential to 

scale to ~30 analytes 110. MuSIC is compatible with the bleach-and-restain ideas 

from above, so multiplexing is potentially multiplicative when combining the two 

ideas. Moreover, because it has been shown to be compatible with fluorescent 

proteins, it is in principle compatible live cells or tissues.    

Another method for spectral imaging is spectrally resolved fluorescence 

lifetime imaging microscopy (sFLIM). sFLIM is capable of multi-target fluorescence 

imaging  through confocal sample scanning with pulsed excitations at 485nm, 
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532nm, and 640nm and time-correlated single-photon counting (TCSPC) on 32 

spectrally separated detection channels 111. Similar to MuSIC, a pattern-matching 

algorithm is used to determine the individual contribution from each fluorophore to 

the overall multidimensional fluorescence signal. The algorithm is based on 

reference patterns of fluorescence decay and spectral signatures from various cell 

samples that are labeled with different fluorescent probes. First the sample is 

excited by the three lasers (485nm, 532nm, and 640nm) then the fluorescent light 

is split into 32 channels, where the spectral information is recorded. The spectral 

information is then analyzed by TCSPC. sFLIM has been used to visualize nine 

different target molecules simultaneously in mouse C2C12 cells 111.  

  



 

 25 

Mass Spectrometry-Based Methods 

In addition to fluorescence, there are also highly multiplexed mass 

spectrometry methods for tissue imaging. Here, cells are typically stained with 

metal-conjugated antibodies, whose levels then can be quantified with mass 

spectrometry 112. It is easier to multiplex using mass spectrometry as compared to 

fluorescence imaging because there is negligible spectral overlap. Signal-to-noise 

is also improved because employed metals are essentially non-existent in tissues. 

However, the specialized mass spectrometry equipment (and to some extent 

reagents) that interfaces with imaging is significantly more expensive and not as 

widely available.  

Current mass spectrometry methods include imaging mass cytometry (IMC) 

113 and multiplexed ion beam imaging (MIBI) 112, both of which multiplex using a 

panel of primary antibodies conjugated with isotopically-pure, rare-earth elements 

(e.g. lanthanides)  113. Metals are conjugated to antibodies via a polymeric metal-

chelating linker that is covalently linked to antibodies, or with metal nanoparticles 

114. In IMC, once a tissue sample has been stained with the metal-conjugated 

antibodies, it is dried and then positioned in a laser ablation chamber 113. The tissue 

is then ablated spot by spot and line by line, which sends material via a mixed 

argon and helium stream to a CyTOF mass cytometer 113. This method is capable 

of 32 simultaneous measurements 115. IMC has been used to assess the immune 

microenvironment in breast cancer tissue, leading to the hypothesis that 

trastuzumab-treated patients with high tumor-infiltrating lymphocyte levels have 
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improved outcomes 116. MIBI is similar to IMC, but uses an ion beam ablation 

(rather than a laser), and thus has slightly different mass spectrometry 

requirements 112 115. Biological specimens are immobilized on a conductive 

substrate, stained with metal-conjugated antibodies, dried, and loaded under 

vacuum for MIBI analysis 112. This method has been used to image 40 analytes 

simultaneously in breast tumor tissue sections, but is potentially capable of up to 

100 112 117.  
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Sequencing-Based Methods 

 So far, highly multiplexed sequencing methods that have transformed 

genomics, transcriptomics, and epigenomics have not been highly compatible with 

imaging. However, a recent technological advancement called Slide-seq has 

enabled the transfer of RNA from tissue sections onto a surface packed with DNA-

barcoded beads at specified positions, allowing the spatial analysis of gene 

expression in a tissue at ~10 um resolution 118. This method first involves packing 

of the DNA-barcoded beads on to a rubber-coated glass coverslip, called the 

“puck”. This is followed by oligonucleotide ligation and detection (SOLiD) 

sequencing to determine each bead’s distinct sequence and x-y location 118. A 

tissue section is placed on the “puck” and mRNA from the tissue is captured by the 

beads with minimal lateral x-y diffusion. After capture, the bead / tissue section 

combination is homogenized and prepared for mRNA sequencing (via more 

standard Illumina-based methods), which subsequently allows relating 

transcriptomes to spatial locations. Using Slide-seq, it was determined that cell 

proliferation occurs in the first few days after a traumatic brain injury and then 

transitions to differentiation in the following weeks 118. The main costs associated 

with this method seem to be related to the price of the pucks. As the price of these 

“pucks” and the associated sequencing drop, there is potential to be able to apply 

this method to entire organs or even entire organisms 118. One could similarly 

envision coupling other nucleic acid-based conjugate technologies to enable Slide-

seq on analytes other than mRNAs.    
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Data Analysis 

Multiplexed image data are powerful but also come with several data 

handling, visualization, and analysis challenges, which are just beginning to be 

explored. Some of these techniques include viSNE , which is used for 

dimensionality reduction 119, multi-omics heterogeneity analysis (MOHA), which is 

used for image processing and visualization 47, open microscopy environment 

remote objects (OMERO) servers, which are used for data handling, and multiplex 

image cytometry analysis (miCAT / histoCAT) , which is for data handling and 

analysis 120 121. viSNE is a technique that allows visualization of high-dimensional 

single-cell data on a two-dimensional map and is based on the now widespread t-

distributed stochastic neighbor embedding (t-SNE) algorithm 119 122. In this method, 

each cell is represented as a point in high-dimensional analyte space, with each 

dimension being measurement of one analyte 119. An optimization algorithm 

searches for a projection of the points from the high-dimensional space into two or 

three dimensions to the extent that pairwise distances (e.g. Euclidian) between two 

points (cells) are best conserved between the high- and low-dimensional space 

119. Coupled with mass cytometry, viSNE was used to compare leukemia diagnosis 

and relapse samples 119. This method could also be applied to IMC or MIBI but 

requires additional image analysis steps to obtain single-cell data.  

The MOHA tool computes tissue heterogeneity metrics from multiplexed 

image data by combining single-cell molecular summary measures with pre-

existing knowledge of biological pathways to assign states to cells in the tissue 47. 
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This is followed by using positional cell information to compute spatial cell state 

distributions, and importantly, correlations between neighboring cell types. It then 

computes tissue heterogeneity and diversity measures of the cells from the 

observed distributions of these molecular and spatially defined states 47. This 

technique was used to identify statistically significant correlations between the 

intratumoral AKT pathway state diversity and cancer stage and histological tumor 

grade 47.  

OMERO is a flexible software platform that provides a structured storage 

format for a range of biological data, including images 123. It is used to provide 

storage access, processing and visualization without downloading entire datasets 

123. OMERO has been used in a variety of applications, including CycIF 85.  

miCAT and histoCAT are analyses platforms that are used for quantitative 

and comprehensive visualization of cell phenotypes, cell interactions, 

microenvironments, and tissue structures 121 120. They are coupled with IMC to 

investigate cellular phenotypes and microenvironments of human breast cancer, 

allowing insight into the network structure of cell neighborhood interactions 121 120.  
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Conclusion 

The methods described here have increased our ability to quantitatively 

understand the interactions between different biological components in tissues and 

the regulatory networks in single cells, but importantly, retaining information on 

how it was arranged spatially. This has and will continue to transform our ability to 

understand biology and disease. Although multiplexed tissue-imaging has come a 

long way in the past decade, there remains much work to be done to go from the 

currently possible dozens of measurements to the proteome scale, especially with 

post-translational modifications. Very recent methods have begun to approach this 

scale for the transcriptome. The possibility of combining methods described here 

could multiplicatively increase the amount of quantitative information that can be 

obtained. For example, CycIF might be combined with super-resolution imaging, 

and/or with MuSIC-based approaches to increase the potential number of 

simultaneous measurements. Moreover, it is not only multiplexing that needs to 

improve further. Currently, covering more than ~millimeter length scales 

comprehensively is extremely challenging other than by brute force with time and 

money; innovation here is also needed to truly multiplex tissue imaging, where 

important changes happen over centimeter (and greater) scales. Tissue clearing 

techniques will likely play a large role here 25. We expect yet still much innovation 

in these directions in the next several years towards the genome-scale, whole 

tissue or even whole-body quantitative, single-cell imaging end goal.   
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CHAPTER THREE 

PROTOCOL FOR LABELING ANTIBODIES WITH COMPLEX 

FLUORESCENCE SPECTRA 

 

Abstract 

Fluorescent antibodies are a workhorse of biomedical science, but 

fluorescence multiplexing has been notoriously difficult due to spectral overlap 

between fluorophores. We recently established proof-of-principal for fluorescence 

Multiplexing using Spectral Imaging and Combinatorics (MuSIC), which uses 

combinations of existing fluorophores to create unique spectral signatures for 

increased multiplexing. However, a method for labeling antibodies with MuSIC 

probes has not yet been developed. Here, we present a method for labeling 

antibodies with MuSIC probes. We conjugate a DBCO-Peg5-NHS ester linker to 

antibodies, a single stranded DNA “docking strand” to the linker, and finally, 

hybridize two MuSIC-compatible, fluorescently-labeled oligos to the docking 

strand. We validate the labeling protocol with spin-column purification and 

absorbance measurements. We demonstrate the approach using (i) Cy3, (ii) 

Tex615, and (iii) a Cy3-Tex615 combination as three different MuSIC probes 

attached to three separate batches of antibodies. We created single, double, and 

triple positive beads that are analogous to single cells by incubating MuSIC probe-

labeled antibodies with protein A beads. Spectral flow cytometry experiments 
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demonstrate that each MuSIC probe can be uniquely distinguished, and the 

fraction of beads in a mixture with different staining patterns are accurately 

inferred. The approach is general and might be more broadly applied to cell type 

profiling or tissue heterogeneity studies in clinical, biomedical, and drug discovery 

research.  



 

 34 

Introduction 

Ultraviolet-to-infrared fluorescence is a bedrock of experimental science, 

particularly the biomedical sciences. However, multiplexing—the simultaneous 

analysis of multiple fluorophores in a single sample, is severely limited by spectral 

overlap125–128, where excitation and/or emission spectra of fluorescent probes 

share broad wavelength domains. Spectral overlap limits most standard 

fluorescence assays to 2-4 readouts at a time. Yet, many applications would 

benefit from increased fluorescence multiplexing capabilities; one example is 

cancer. Tumor heterogeneity is multi-dimensional, including spatial variation in cell 

type, driver mutation profiles, protein expression, and oxygen/metabolic 

gradients129–134. As a result, there are hundreds of markers that have an impact on 

a tumor’s evolution, fitness, and drug sensitivity 5,129,135.  

Current sequencing methods can reach high levels of multiplexing and have 

been used in cancer diagnosis and prognosis136–138. Yet, the now somewhat 

standard biopsy- or homogenized tissue-based deep DNA or mRNA sequencing, 

and now increasingly single-cell sequencing139–141, largely do not allow for spatial 

resolution. However, some recent sequencing-based methods can provide spatial 

in situ data142–145. Sequential fluorescence in situ hybridization (seqFISH+) is 

capable of transcriptome-wide imaging in single cells but has challenges in scaling 

to large numbers of cells or large areas of tissue sections. Slide-seq, alternatively, 

made mRNA sequencing compatible with tissue section imaging over large spatial 

scales with ~10 um resolution146. Although powerful advances, such sequencing 
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methods cannot yet fully capture the heterogeneity of tissue samples, which 

includes single and subcellular resolution and molecules other than mRNA (i.e., 

DNA, proteins, post-translational modifications, etc.). On the other hand, antibody-

based imaging can access multiple molecule types at single and subcellular 

resolution while also spanning physiologically relevant length scales. Therefore, 

increased antibody multiplexing capabilities remain highly complementary to these 

sequencing-based methods.    

There have been many recent advances for increased antibody-based 

multiplexing with single cell and subcellular spatial resolution, most of which use 

standard “filter-based” instrumentation that robustly allow imaging 2-4 

fluorescence colors simultaneously. A widely adopted strategy is repeated rounds 

of staining, imaging, and bleaching of fluorophores147–150. By performing multiple 

cycles of 2-4 color imaging, these methods drastically increase fluorescent 

multiplexing capabilities (up to 60 analytes). Multiplexed fluorescence microscopy 

(MxIF) was the first but requires proprietary and expensive equipment / 

reagents147. Cyclic Immunofluorescence (CyCIF) is similar in principle but uses 

inexpensive reagents and standard equipment149,151. Similar to MxIF and CyCIF, 

Iterative indirect immunofluorescence imaging (4i) uses cycles of imaging but 

leverages fluorophore-conjugated secondary antibodies rather than fluorophore-

conjugated primary antibodies as in the above techniques, allowing the use of “off-

the-shelf” primary antibodies148. Another method that uses staining and bleaching 

cycles is co-detection by indexing (CODEX)150, but it differs from the above 
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methods as it uses DNA-conjugated antibodies and sequencing-like methods to 

multiplex. While these cyclic methods have significantly expanded multiplexing 

capability, a primary limitation is the number of rounds of imaging that are possible 

before sample degradation begins to occur. Additionally, the length of time each 

round takes to complete, multiplied by the number of rounds, can make these 

methods excessively time-consuming.  

Another way to achieve higher degrees of antibody multiplexing is by 

labeling antibodies with isotopically pure rare earth metals, such as in imaging 

mass cytometry (IMC) 152 and multiplexed ion beam imaging (MIBI) 153. IMC and 

MIBI can respectively image 32 and 40 analytes simultaneously from a tissue 

sample. The use of mass spectrometry for quantification makes these techniques 

easier to multiplex compared to ones that use fluorescence, as they are not limited 

by spectral overlap. However, these methods use a laser or ion beam to ablate the 

sample, destroying the sample and preventing further analysis or use, including 

cyclic methods as above. Additionally, the specialized equipment and reagents 

required for these techniques can be more expensive than standard fluorescence 

microscopes and antibodies, making them not as widely available.  

The fluorescence-based techniques that were previously described use 

“filter-based” imaging that lumps emission wavelengths together and thus restricts 

multiplexing to 2-4 channels, but some have instead used spectral imaging that 

measures emission intensity with much finer wavelength resolution. Fluorescence 

emission follows the principle of linear superposition, meaning that the emission 
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spectra of a mixture of fluorophores can be cast as a sum of contributions from 

individual probes using a matrix equation. Solving this matrix equation for the 

levels of individual probes, given the spectra of the mixture and each isolated 

probe, is called unmixing. These “hyperspectral” techniques have been used to 

image up to seven analytes simultaneously in tissue sections127,154–157. CLASI-

FISH (combinatorial labeling and spectral imaging - fluorescence in situ 

hybridization), which builds upon traditional spectral imaging, classifies up to 15 

microbe types using probe combinations158. One constraint of CLASI-FISH is that 

probes must be spatially segregated for demultiplexing. Spectrally resolved 

fluorescence lifetime imaging microscopy (sFLIM)159 combines spectral imaging 

with fluorescence lifetime information and can multiplex nine antibodies 

simultaneously.  

We recently developed an approach called Multiplexing using Spectral 

Imaging and Combinatorics (MuSIC), which leverages currently available 

fluorophores along with the power of combinatorics to increase the number of 

available probes for simultaneous staining21.  MuSIC probes are created using 

Förster resonance energy transfer (FRET)-producing fluorophore combinations, 

which results in a unique probe emission spectrum that is linearly independent 

from that of the individual fluorophores that make up the combination, enabling 

unmixing. Our previous work, based on simulation, suggested that MuSIC may 

increase simultaneous fluorescence multiplexing capabilities ~4-5 fold21. Proof-of-

principal experimental studies that focused on a small range of excitation 
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wavelength space have shown that nine MuSIC probes can be accurately 

unmixed, which should increase when the full range is used. Moreover, MuSIC is 

compatible with cyclic imaging methods, which would allow more analytes to be 

measured per cycle, increasing multiplexing capabilities even further. MuSIC 

differs from CLASI-FISH in that it is not limited by spatial segregation. 

 Methods to conjugate MuSIC probes to antibodies have not yet been 

developed. Our previous work showed that standard primary-amine-based 

conjugation of two fluorophores to the same antibody does not produce a high 

enough FRET efficiency to create robust MuSIC probes160. Here, we report a 

fluorescent oligo-based labeling approach to conjugate MuSIC probes to 

antibodies. A DBCO-Peg5-NHS ester molecule (the linker) is used to attach an 

azide modified oligo (the docking strand) to the antibody. Fluorescent oligos 

hybridized to the docking strand bring the fluorophores into FRET-compatible 

distances. Mixtures of antibody-conjugated MuSIC probes using (i) Cy3, (ii) 

Tex615, and (iii) a Cy3-Tex615 combination were analyzed and accurately 

unmixed using spectral flow cytometry as a proof-of-principle. These oligo-based 

MuSIC probes are compatible with the wide range of clinical, biomedical, and drug 

discovery applications that currently use fluorescent antibodies and spectral 

imaging.   
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Results  

Probe design and labeling process. A fundamental component of the 

Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach is that 

combinations of fluorophores exhibiting FRET create a unique emission spectrum 

that is linearly independent from the individual fluorophores in the combination. 

Thus, creating MuSIC probes on antibodies requires combinations of fluorophores 

to be stably associated with antibodies with spatial proximity sufficient for FRET. 

To achieve this, we started from a prior description of antibody-oligo labeling161 

(Figure 3.1a). First, a DBCO (dibenzocyclooctyne)-PEG5-NHS ester molecule 

(referred to as the linker) is attached to the antibody. The NHS ester group at the 

end of the linker reacts with available NH2 groups on the surface of the antibody. 

From here, a 55 bp DNA oligo with a 5’ azide modification (referred to as the 

docking strand) is added to the complex. The azide reacts with the DBCO group 

of the linker via copper-free click chemistry, creating an antibody-linker-docking 

strand conjugate. The PEG5 group is included in the linker to increase the water 

solubility of the DBCO group and provide space between the antibody and the 

docking strand161. Finally, 20 bp oligos with 5’ or 3’ fluorophore modifications 

(referred to as the donor and acceptor strands, respectively) are added to the 

antibody-linker-docking strand conjugate solution. When the donor and acceptor 

strands hybridize to the docking strand, the two fluorophores are in close physical 

proximity to enable FRET. The final product of these reactions should be an 
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antibody labeled with a MuSIC probe. An in-depth view of the linker and oligo 

complex is shown in Figure 3.1b.  

 

Figure 3.1: Labeling antibodies with oligo-based MuSIC probes. (A) Labeling 

schematic for MuSIC probes. First, the linker is added to the antibody by reacting 

the NHS ester on the linker with the NH2 group on the antibody. Then the docking 

strand is added and reacts with the linker via copper-free click chemistry. Lastly, 

the donor and acceptor strands are annealed to the docking strand to form the 

oligo complex. The linker can attach to the antibody at multiple NH2 sites, allowing 

an increased degree of labeling. (B) Detailed versions of the linker and the oligo 

complex. 

Attaching the linker to the antibody. We developed the protocol around 

labeling 50 µg of IgG, although it is scalable in either direction. The linker is added 

to the antibody in 60 molar excess, as the linker will react with multiple free amine 

sites on the surface of the antibody, and the extent of reaction is not certain, but it 

is desired to maximize the degree of labeling. After incubation, unattached linker 

Figure 1: Labeling antibodies with oligo-based MuSIC probes. (A) 
Labeling schematic for MuSIC probes. First, the linker is added to the 
antibody by reacting the NHS ester on the linker with the NH2 group on 
the antibody. Then the docking strand is added and reacts with the linker 
via copper-free click chemistry. Lastly, the donor and acceptor strands 
are annealed to the docking strand to form the oligo complex. The linker 
can attach to the antibody at multiple NH2 sites, allowing an increased 
degree of labeling. (B) Detailed versions of the linker and the oligo 
complex
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needs to be separated from the antibody-linker conjugate. To do this, we used 

Amicon Ultra 100 kDa molecular weight cut-off (MWCO) filters (Figure 3.2a). The 

antibody has a molecular weight of ~150 kDa and the linker has a molecular weight 

of 0.7 kDa, so once the solution is spun and washed, any linker that does not attach 

to the antibody will freely flow through the column (Figure 3.2b). In order to verify 

that all unattached linker was removed, retentate absorbances were measured at 

309 nm, where the linker strongly absorbs161 (Fig. 3.S1), for samples containing 

the antibody alone, the linker alone, and then antibody and linker together. Results 

show that the linker is predominantly in the retentate only when the antibody is 

present (Figure 3.2c). The degree of labeling was estimated to be ~9+/- 0.57 

molecules of linker/antibody based on absorbance measurements (see Methods 

and Figure 3.S1). These results demonstrate that the antibody and linker can 

stably associate and that unattached linker can be effectively removed from 

solution. 
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Figure 3.2: Adding linker to antibody. (A) Separating free linker using 100 kDa 

molecular weight cut-off (MWCO) filters. The antibody and linker are incubated, 

then the sample is added to the molecular weight cut-off filters. The filters are spun 

to separate unattached linker and then go through a series of washes. Finally, the 

retentate is recovered. (B) Expected separation of components after spin and wash 

steps. (C) Retentate absorbances at 309nm. Results show an increased signal at 

309nm when the linker is in the presence of the antibody. 

 

 

Figure 2: Adding linker to antibody. (A) Separating free linker using 100 

kDa molecular weight cut-off (MWCO) filters. The antibody and linker 

are incubated, then the sample is added to the molecular weight cut-off 

filters. The filters are spun to separate unattached linker and then go 

through a series of washes. Finally, the retentate is recovered. (B) 

Expected separation of components after spin and wash steps. (C) 

Retentate absorbances at 309nm. Results show an increased signal at 

309nm when the linker is in the presence of the antibody.

C
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Attaching the docking strand to the antibody. We added the docking 

strand to the antibody-linker retentate from the previous step in 6 molar excess to 

the antibody to account for multiple labeling sites. After incubation, unattached 

docking strand needs to be separated from the antibody-linker-docking strand 

conjugate. Similar to above, we use Amicon Ultra 100 kDa MWCO filters (Figure 

3.3a). Since the docking strand is only 17 kDa, it should freely flow through the 

columns if it is not attached to the antibody-linker conjugate (Figure 3.3b). In order 

to evaluate whether unattached docking strand is removed, retentate absorbances 

were measured at 260 nm, as this is where the docking strand strongly absorbs. 

Results show that the docking strand can be seen in the retentate when in the 

presence of the antibody and the linker, as expected. However, a strong retentate 

signal was also seen for the docking strand when in the presence of only the 

antibody, without the linker (Figure 3.3c). The cause for the strong docking strand 

signal in the retentate without the linker present is unknown, but before proceeding, 

we wanted to understand whether the docking strand was stably bound to the 

antibody without the linker present or whether it could be removed with further 

washing via an orthogonal separation mechanism. 
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Figure 3.3: Adding docking strand (DS) to antibody-linker. (A) Separating free DS 

using 100 kDa MWCO centrifugal filters. The DS and antibody-linker conjugate are 

incubated, then the sample is added to the molecular weight cut-off filters. (B) 

Expected separation of components after spin and wash steps. (C) Retentate 

absorbances at 260nm. Results show an increased signal at 260nm when the DS 

is in the presence of the antibody-linker conjugate. An increased signal can also 

be seen for the case of just the DS and antibody, which is accounted for in later 

steps. 

 

C

Figure 3: Adding docking strand (DS) to antibody-linker. (A) Separating 
free DS using 100 kDa MWCO centrifugal filters. The DS and antibody-
linker conjugate are incubated, then the sample is added to the 
molecular weight cut-off filters. (B) Expected separation of components 
after spin and wash steps. (C) Retentate absorbances at 260nm. 
Results show an increased signal at 260nm when the DS is in the 
presence of the antibody-linker conjugate. An increased signal can also 
be seen for the case of just the DS and antibody, which is accounted for 
in later steps.
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The docking strand requires the linker to be stably associated with the 

antibody. To determine whether the docking strand could stably bind to the 

antibody without the linker, we used protein A dynabeads. The beads should 

strongly and selectively bind to the antibody, and anything attached to the antibody 

will also be bound to the beads. We generated samples with and without linker 

containing antibody, docking strand, and a donor strand with the fluorophore Atto 

488 (for measurement). The supernatant containing any non-stably attached 

reagents can be removed by washing when the solution is placed on a magnet 

(Figure 3.4a). Atto 488 fluorescence was measured to evaluate whether the 

docking strand could stably associate with the antibody without the linker. The 

bead-based nature of the experiment precluded reliable absorbance assays as 

used previously; consequently, we are not able to estimate the degree of labeling 

for the docking strand on the antibody. The fluorescence signal for samples without 

the linker present was comparable to the signals of the controls where no 

fluorophore was present, while when the linker was present, a significant 

fluorescence signal was observed (Figure 3.4b). We conclude that the linker is 

needed for the antibody to be stably associated with the docking strand, and 

subsequently, fluorophore-labeled donor or acceptor strands. 
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Figure 3.4: Separating free reagents using protein A beads. (A) The antibody-oligo 

conjugate (red Y with a blue circle attached) is added to the protein A beads (brown 

circle) and is incubated with rotation for 10 minutes. It is then placed on a magnet, 

pulling the beads out of solution, and the supernatant containing free reagents 

(unattached blue circles) is removed. The final product is collected containing the 

antibody-oligo conjugate. (B) Maximum fluorescence intensity values when excited 

at 450nm. Results show an increased fluorescence signal for the donor when the 

Figure 4 : Separating free reagents using protein A beads. (A) The 
antibody-oligo conjugate (red Y with a blue circle attached) is added to 
the protein A beads (brown circle) and is incubated with rotation for 10 
minutes. It is then placed on a magnet, pulling the beads out of 
solution, and the supernatant containing free reagents (unattached blue 
circles) is removed. The final product is collected containing the 
antibody-oligo conjugate. (B) Maximum fluorescence intensity values 
when excited at 450nm. Results show an increased fluorescence signal 
for the donor when the linker is added. Without the linker, the 
fluorescence signal for the donor is the same intensity as the 
background fluorescence. 

B



 

 47 

linker is added. Without the linker, the fluorescence signal for the donor is the same 

intensity as the background fluorescence. 

Obtaining a donor and acceptor pair that produces FRET when co-

hybridized to the docking strand. As mentioned above, MuSIC probes must 

have donor and acceptor pairs that exhibit FRET, such that the combination probe 

has a unique spectral signature. To test if a donor and acceptor pair exhibits FRET, 

the emission spectra of solutions containing (i) just the donor, (ii) just the acceptor, 

(iii) the donor and the acceptor, and (iv) the donor and acceptor co-hybridized to 

the docking strand were analyzed using a plate reader (Figure 3.5a). We used 488 

nm excitation, a common laser line in multiple assay types. The pair of Cy3 (donor) 

and Tex615 (acceptor) showed a much larger, red-shifted emission peak when 

excited at 488 nm and co-hybridized to the docking strand, as compared to the 

case without docking strand, indicating strong FRET (Figure 3.5a). These results 

show that this donor and acceptor pair would be a suitable MuSIC probe candidate, 

i.e., a donor and acceptor strand hybridized to the antibody-linker-docking strand 

conjugate.  
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Figure 3.5: Donor and acceptor fluorophore pair, Cy3 and Tex615. (A) 

Experimental setup for testing fluorophore combination. The tubes contain the 

donor alone (blue circles), the acceptor alone (red circles), the donor and acceptor 

free in solution together, and then the donor and acceptor bound to the docking 

strand (black line). We expect only the sample with the DS shows significant FRET. 

DS:  docking strand. (B) Fluorescence emission spectra when excited at 488 nm. 

B

Figure 5: Donor and acceptor fluorophore pair, Cy3 and Tex615. (A) 
Experimental setup for testing fluorophore combination. The tubes 
contain the donor alone (blue circles), the acceptor alone (red circles), 
the donor and acceptor free in solution together, and then the donor and 
acceptor bound to the docking strand (black line). We expect only the 
sample with the DS shows significant FRET. DS:  docking strand. (B) 
Fluorescence emission spectra when excited at 488 nm. An increased 
acceptor emission peak is seen when the donor and acceptor are 
annealed to the docking strand, indicating increased FRET. 
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An increased acceptor emission peak is seen when the donor and acceptor are 

annealed to the docking strand, indicating increased FRET.  

  

Application to flow cytometry for event classification. While there are many 

potential applications of MuSIC probe-labeled antibodies, we set out to obtain 

proof-of-principle data using spectral flow cytometry. Namely, we wanted to 

understand whether we could (i) robustly classify events as containing a particular 

combination of MuSIC probes and (ii) estimate the proportion of events having a 

particular probe staining pattern (Fig. 3.6a). This is analogous to cell type 

classification assays such as peripheral blood mononuclear cell (PBMC) 

analysis162,163. Three antibody batches with different probes were created: probe 

1-donor Cy3 and acceptor Cy3; probe 2-donor Tex615 and acceptor Tex615; and 

probe 3-donor Cy3 and acceptor Tex615. Because Cy3 and Tex615 produce 

FRET when co-hybridized to the docking strand, probes with this combination of 

fluorophores can be thought of as a different “color” from the probes with the 

individual fluorophores of the combination. Once the antibodies with either MuSIC 

probe 1, 2, or 3 are created, they are incubated with protein A dynabeads to be 

analyzed using the flow cytometer. Each bead is similar to a single “cell.” One or 

more antibody type (i.e., with probes 1, 2, or 3) can be conjugated to the same set 

of beads. For example, incubating beads with two antibody types creates “double 

positive beads (cells).” In the following set of experiments, we made single positive 

beads (one antibody type conjugated to one bead set), double positive beads (two 
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antibody types conjugated to one bead set), and triple positive beads (three 

antibody types conjugated to one bead set) (Figure 3.6a). This is related to (i) 

above. We also make mixtures of these different bead sets. This is related to (ii) 

above.  For analysis, we use simple quadrant gates on bivariate plots to classify 

beads as negative, single positive, or double positive, and additionally, estimate 

the proportion of beads that fall into each category (Figure 3.6b). Populations of 

single positive beads are observed in R1 and R4, populations of double positive 

beads are observed in R2, and the negative population of beads is observed in 

R3. Triple positive bead classification is done by further gating on double positive 

populations. 

First, we made an equal 3-way mixture from single positive bead sets and 

analyzed it by spectral flow cytometry. Unmixing results showed relatively equal 

amounts of each bead type in the mixture, demonstrating that single positives 

could be robustly classified (Figure 3.6c, 6d first column). We also tested a single 

positive mixture containing more probe 1 beads than probe 2 or 3 beads, and 

unmixing results showed relatively similar compositions compared to the known 

compositions (Figure 3.6d second column). We then investigated if various 

mixtures of single, double, and triple positive beads could be accurately unmixed 

(Figure 3.6d). Overall, results demonstrate robust classification of bead type, as 

well as accurate estimation of the relative abundance of each bead type. (Figure 

6d-compare actual to inferred heatmaps). We conclude that MuSIC probe-labeled 
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antibodies as generated here can be used in spectral flow cytometry applications 

for cell type classification and proportion estimation.  
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Figure 3.6: Spectral flow cytometry setup and results. (A) Experimental setup for 

the three-probe mixture ((1) Cy3 (red star), (2) Tex615 (blue triangle), and (3) Cy3-

Tex615 (green square)) using single positive, double positive, and triple positive 

beads (brown circles). (B) Gating strategy for the populations of beads in the three-

probe mixture. (C) Unmixing populations of single-labeled beads in a three-way 

equimolar mixture of probes Cy3, Tex615, and Cy3-Tex615 using spectral flow 

cytometry. The plots show unmixing results of Tex615 compared to Cy3 (left), Cy3-

Tex615 compared to Cy3 (middle), and Tex615 compared to Cy3-Tex615 (right). 

(D) Comparing actual amounts of each probe in the mixture (top panel) to the 

inferred or calculated amounts of each probe in the mixture (bottom panel). The 

composition of each mixture is shown below the bottom panel. 
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Discussion 

Here we established a method to conjugate two fluorophores to an antibody 

in a way that enables FRET between them (if they are compatible). The use of 

combinations of fluorophores that exhibit FRET creates unique emission spectral 

signatures that can be used for multiplexing via the MuSIC approach. Antibodies 

are labeled with combinations of fluorophores by combining a “linker” and DNA 

oligos. The linker is used to covalently attach a “docking strand” oligo to the 

antibody. Separate “donor” and “acceptor” strands then hybridize to the docking 

strand. The donor and acceptor strand oligos place the fluorophores at a specified 

distance from one another on the antibody. Absorbance data suggested a degree 

of labeling of ~9+/- 0.57 linker/antibody molecules. We validated the approach 

using three different MuSIC probes (Cy3, Tex615, and a Cy3-Tex615 combination) 

attached to three separate mixtures of antibodies. MuSIC probe-labeled antibodies 

attached to protein A beads served as surrogate single, double, and triple positive 

cells for testing via spectral flow cytometry. Spectral flow cytometry experiments 

demonstrated that each MuSIC probe can be uniquely differentiated by accurately 

determining compositions of bead mixtures.  

While the focus here was using MuSIC probe labeled antibodies with 

spectral flow cytometry, they are also compatible in principle with spectral imaging. 

Several methods that increase image multiplexing capabilities use a stain/strip 

technique, which involves cycles of staining, imaging, and bleaching147,149,151,164. 

These methods have improved multiplexing abilities by ~10 fold over standard 
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single-round 4-color imaging. The use of MuSIC probes is in principle compatible 

with the cyclic methods, which would expand the number of probes that can be 

used per round of imaging using spectral scanning microscopes. Current cyclic 

methods on average use 10 rounds of four-color imaging and our previous 

simulation studies suggested that ~25 MuSIC probes might be accurately 

unmixed21. Therefore, the use of MuSIC probes may allow 10 rounds of 25 color 

imaging, thus increasing multiplexing capabilities by roughly another six-fold. 

However, spectral emission scanning microscopes are certainly not as pervasive 

and filter-based microscopes currently. Angle-tuned emission filters for wavelength 

scanning may help to make such technology more accessible165. Such 

microscopes also commonly have white light lasers for tunable excitation 

wavelengths and a potentially large number of channels, which would further 

empower multiplexing capabilities via MuSIC approaches.    

To further increase fluorescent multiplexing capabilities using the MuSIC 

approach, additional combinations of fluorophores are needed. The FRET 

efficiency of a fluorophore combination is dependent on the physical distance 

between the two fluorophores based on the Förster radius, which is dependent on 

the spectral properties of the pair. Some fluorophore pairs may require different 

distances between the two fluorophores in order to optimize FRET efficiency. This 

distance between the fluorophores can be varied by using different length docking 

strands which have varying numbers of spacer base pairs—the nucleotides in the 

middle between the donor and acceptor strand binding sites. Thus, we expect 
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future solutions will use different length docking strands for different fluorophore 

combinations in the march towards a larger palate of antibody-compatible MuSIC 

probes. Additionally, in this paper, we demonstrated unmixing of MuSIC probes 

using a two-laser spectral flow cytometer (488nm and 638 nm). The number of 

useful MuSIC probe combinations can be further increased by using a spectral 

flow cytometer with five excitation lasers (355 nm, 405 nm, 488nm, 561 nm, and 

638nm—Cytek Aurora). We are currently screening large sets of fluorescent oligos 

for MuSIC-probe suitability for a 3-laser and 5-laser setup.  

While MuSIC probes may be useful for multiple flow cytometry applications, 

one of which in particular is immune profiling166–168. Flow cytometry-based immune 

profiling has limited multiplexing to roughly a dozen analytes (depending on the 

capabilities of the instrument) as a result of spectral overlap10,169. Mass cytometry 

has been transformative for immune profiling170–172, but is slower than flow 

cytometry and is destructive, so it prevents further use of the cells after analysis169. 

The use of MuSIC probes for immune profiling via flow cytometry may allow for 

increased multiplexing for deep immune profiling on par with mass cytometry while 

also being fast (more than 10,000 cells/second rather than about 1,000 as with 

mass cytometry173) and non-destructive. This could open up avenues of increased 

throughput for monitoring immune responses across large patient cohorts, as well 

as the isolation of rare cell types alone or in specified combinations that would 

otherwise not be possible.  
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We conclude that oligo-based approaches are a robust and modular way to 

create MuSIC probe-labeled antibodies.  Future work needs to expand the MuSIC 

probe palette, as well as expand to larger antibody panels for flow cytometry or 

other spectral fluorescence applications. This would enable broader applications 

for advancing our understanding of microbial communities174 such as gut and skin 

microbiomes175,176, cancer research and clinical diagnostics, host-pathogen 

interactions, developmental biology, and many other areas of life science research 

where more highly multiplexed single and sub-cellular resolution of antibody-target 

readouts is informative. 
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Methods 

Adding the linker to the antibody 

This and the below procedures were developed around labeling 50 µg of 

IgG but are compatible with scaling up or down. In our case, normal Rabbit IgG 

(ThermoFisher Cat: 31235) is combined with DBCO-Peg5-NHS Ester (linker; 10 

mM in DMSO; Click Chemistry Tools Cat: 1378531-80-6) in 20 molar excess (50 

µg of Rabbit IgG and 4.6 µg of linker). This is brought to a volume of 100µl with 

PBS and allowed to incubate for 30 minutes at 25°C. After incubation, the solution 

is added to an Amicon Ultra 0.5ml 100 kDa centrifugal filter (Fisher Scientific Cat: 

UFC5100BK) and spun for 5 minutes at 14,000 x g. The filter is then placed into a 

new tube, and PBS is added to the top of the filter in order to bring the total volume 

back to 100 µl and is spun again for 5 minutes at 14,000 x g. This wash step is 

repeated twice more (three total). Finally, the filter is flipped upside down and 

placed in a clean tube and spun for 1 minute at 1000 x g to collect the retentate. 

The retentate absorbance is measured at 309nm, where the linker strongly 

absorbs, and 280nm, where the antibody strongly absorbs, using a NanoDrop 

spectrophotometer (Thermo Scientific). 

Adding the docking strand to the antibody-linker conjugate  

The docking strand (Integrated DNA technologies-Table 3.1) is added to the 

antibody-linker retentate from the previous step in 6 molar excess to the original 

amount of antibody (2 nmoles of docking strand). The volume is brought up to 100 

µl with PBS and incubated at 4°C overnight. The sample is then placed in an 



 

 58 

Amicon Ultra 0.5ml 100 kDa centrifugal filter and spun for 5 minutes at 14,000 x g. 

Once this spin is completed, the filter is placed into a new tube, and PBS is added 

to the top of the filter in order to bring the total volume back to 100 µl and is spun 

again for 5 minutes at 14,000 x g. This wash step is repeated twice. Finally, the 

filter is flipped upside down and placed in a clean tube and spun for 1 minute at 

1000 x g to collect the retentate. The retentate absorbance is measured at 309nm 

and 280nm as above, and also at 260nm, where the docking strand strongly 

absorbs light, using a NanoDrop spectrophotometer (Thermo Scientific). 

Table 3.1: Oligo Sequence 

Component Sequence  
Docking Strand 5’ – Azide - GTG TAG TTC AGG TCA AGA CAT CGT GCG 

ACC AGT CAG CAT GAG ACT CAT TGG TGC G -3’ 
Donor Strand 3’- C AAG TCC AGT TCT GTA GCA C - Fluorophore- 5’ 
Acceptor Strand 3’ - Fluorophore - CA GTC GTA CTC TGA GTA AC – 5’ 

 

Degree of Labeling  

To generate calibration curves for concentrations of the antibody, linker, and 

docking strand, absorbance measurements were taken using a NanoDrop 

spectrophotometer (Thermo Scientific) for known concentrations of the antibody, 

linker, and docking strand at 309, 280, and 260 nm. Five-point, 2-fold serial 

dilutions were used to generate samples for the calibration curve.  A least-squares 

line of best fit (MATLAB) is generated to estimate absorbance extinction 

coefficients based on Beer’s law (1) for each component at 309, 280, and 260nm.  

(1) 

𝐴 = 𝜀𝑐𝐿 
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Here, A is the absorbance of the solution, e is the extinction coefficient, L is 

the length of the path traveled by light (1 mm), and c is the concentration of the 

solution. From here, a system of three simultaneous equations are solved in 

Matlab using the function vpasolve to estimate molar concentrations of the 

antibody (a), linker (l), and docking strand (DS) given absorbance measurements 

at 260, 280, and 309 nm from a mixture (M). 

(2) 

𝐴!"#$%&' = 𝑐( ∗ 	𝜀("#$%&' + 𝑐) ∗ 𝜀)"#$%&' + 𝑐*+ ∗ 𝜀*+"#$%&' 

(3) 

𝐴!",-$&' = 𝑐( ∗ 	𝜀(",-$&' + 𝑐) ∗ 𝜀)",-$&' + 𝑐*+ ∗ 𝜀*+",-$&'	 

(4) 

𝐴!",.$&' = 𝑐( ∗ 	𝜀(",.$&' + 𝑐) ∗ 𝜀)",.$&' + 𝑐*+ ∗ 𝜀*+",.$&' 

 

The degree of labeling for the linker to antibody could be calculated from 

the above-estimated concentrations. However, due to the nature of the spin 

column-based separation, some unreacted linker will remain. This amount of 

residual linker can be calculated based on mole balance, and we used this 

calculation to correct the degree of labeling as follows, where n is the number of 

washes, cl0 is the initial concentration of the linker (''/(0
'(

) before washing, Vr is the 

volume of the retentate (𝑚𝑙)	after washes, Vw is the wash volume (𝑚𝑙), and Vrf is 

the volume of the final retentate (𝑚𝑙). 



 

 60 

𝑐($ ∗ 𝑉1&

𝑉2&"3 ∗ 𝑉14
=	𝑐105678)("(6&901 

 

 The concentration of the residual linker is subtracted from the calculated 

linker concentration to determine the concentration of the linker that is attached to 

the antibody in the retentate. The degree of labeling is then calculated as the ratio 

of this adjusted linker concentration to that of the antibody concentration.  

Adding the donor and acceptor strands to the antibody-linker-docking 

strand conjugate  

A 20 bp oligo with a 5’ fluorophore modification (donor strand) and a 20 bp 

oligo with a 3’ fluorophore modification (acceptor strand) (each 100 µM in water, 

Integrated DNA technologies) are added in equimolar amounts (2 nmoles each) to 

the antibody-linker-docking strand retentate and brought up to 100 µl with PBS. 

Sequences are shown in Table 1. This solution is allowed to incubate for 15 

minutes at 25°C in the dark. When testing the necessity of the linker, the donor 

strand with an Atto 488 modification was added to the antibody-linker-docking 

strand retentate. To make the different probes, Probe 1 consists of equimolar 

amounts of the donor strand with a Cy3 modification and the acceptor strand with 

a Cy3 modification (each 2 nmoles), Probe 2 consists of equimolar amounts of the 

donor strand with a Tex615 modification and the acceptor strand with a Tex615 

modification (each 2 nmoles), and Probe 3 consists of equimolar amounts of the 
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donor strand with a Cy3 modification and the acceptor strand with a Tex615 

modification (each 2 nmoles). 

Choosing donor and acceptor pairs 

To test the donor and acceptor fluorophore pair of Cy3 and Tex615, four 

samples are created: (1) donor strand with a 5’ Cy3 modification and acceptor 

strand with a 3’ Tex615 modification (each 100 µM in water) are added in 

equimolar amounts (0.2 nmoles), (2) The donor, acceptor, and docking strands are 

added in equimolar amounts (0.2 nmoles), (3) 0.2 nmoles of the donor strand, (4) 

0.2 nmoles of the acceptor strand. All samples are brought to 50 µl with PBS. The 

samples (oligos in solution) are loaded into a black 96 well plate (Fisher Scientific 

Cat: 655900), and fluorescence emission spectra are assayed with a Synergy MX 

microplate reader (Biotek). Parameters are set to a slit width of 9nm, a 10-second 

shake prior to reading, taking readings from the top, and an excitation wavelength 

of 488 nm. The emission start ranges are 50nm greater than the excitation 

wavelength.  

Incubating labeled antibodies with protein A dynabeads  

The MuSIC-probe labeled antibodies from above were suspended in 200 µl 

of 0.02% (2 µl/10ml) Tween 20 (Fisher Scientific Cat: 9005-64-5) in PBS and 

added to 50 µl of protein A dynabeads (Fisher Scientific Cat: 10 001 D—33 µg of 

initially added IgG; 100 µg batch makes three incubations). For making double 

positive beads, both probes are simultaneously added to 50 µl of protein A 

dynabeads. This solution is allowed to incubate for 10 minutes with rotation in the 



 

 62 

dark. After incubation, the solution is placed on a magnet, the supernatant is 

removed, and the bead-antibody complex is resuspended in 200 µl PBS with 

0.02% Tween-20 (Fisher Scientific Cat: BP337-100). The solution is then placed 

back on the magnet, and the supernatant is again removed and is resuspended in 

PBS.     

Analyzing probe mixtures using Cytek Aurora flow cytometer  

Mixtures of bead-conjugated probes are analyzed using a Cytek Aurora 

spectral flow cytometer with 488nm and 638nm lasers. First, beads with single 

probes are assayed as reference controls. The events to record is set to 5,000, the 

stopping time is set to 10,000 sec, and the stopping volume is set to 3,000 µl. For 

samples containing mixtures of bead types or double-positive beads, the events to 

record are set to 15,000, the stopping time is set to 10,000 sec, and the stopping 

volume is set to 3,000 µl.  Once mixtures have been analyzed, the SpectroFlo 

software (Cytek) is used to first gate single beads with forward and side scatter, 

and then to unmix and report (i) the amount of each probe on every bead that was 

analyzed and (ii) the fraction of each bead type in each mixture of bead types.  
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CHAPTER FOUR 

INCREASING FLUORESCENT SIGNAL OF OLIGO-BASED LABELS FOR 

SPECTRAL FLOW CYTOMETRY 

 

Abstract 

Fluorescent antibodies are an important tool for biomedical research, 

particularly for single-cell readouts. Full-spectrum flow cytometry has increased 

fluorescent antibody-based multiplexing capabilities to ~40 simultaneous markers 

but remains limited compared to single-cell RNA-sequencing which can identify 

100s-10,000s of markers. However, single-cell RNA-sequencing is limited by 

higher cost and sample destruction, leaving motivation for more multiplexing with 

full spectrum flow cytometry. We recently proposed fluorescence Multiplexing 

using Spectral Imaging and Combinatorics (MuSIC), which uses combinations of 

existing fluorophores to create new spectrally unique MuSIC probes and 

developed an associated oligo-based antibody labeling method. In this work, we 

found that such MuSIC-probe labeled antibodies had significantly lower signal 

intensity than conventionally-labeled antibodies in human cell experiments. We 

then modified the position of fluorophore labels in the oligos to investigate whether 

improved signal intensity could be obtained. Specifically, rather than using 3’ or 5’ 

fluorophore-labeled oligos (ext.), we tested oligos with internal (int.) fluorophore 

modifications.  Cell-free spectrophotometer measurements showed a ~6-fold 
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signal intensity increase of the new int. oligo configuration compared to the 

previous ext. oligo configuration. This approach was further validated by using CD8 

antibodies labeled with ext. and int. MuSIC probes or conventional labeling to stain 

human peripheral blood mononuclear cells (PBMCs). Spectral flow cytometry 

experiments showed that int. MuSIC probe-labeled antibodies can be used to stain 

PBMCs with an intensity that is equal to or greater than conventionally-labeled 

antibodies while having no significant impact on the estimated proportion of CD8+ 

lymphocytes.  The antibody labeling approach is general and can be broadly 

applied to many biological and diagnostic applications, such as tissue imaging, 

when fluorescence emission spectra detection is available.    
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Introduction 

Fluorescent antibodies are an integral tool for biological and diagnostic 

applications177. One application for fluorescent antibodies is flow cytometry17. The 

use of fluorescent antibodies with conventional flow cytometers is restricted to 

typically 3-4 markers, but up to ~10-15 markers have been reported15–17. This is 

largely due to spectral overlap between fluorophores, limiting the number of 

analytes that can be reliably detected. Regardless, flow cytometry remains a useful 

platform as it is a cost-effective, high-throughput, and non-destructive method for 

single-cell analysis178,179. Recent advances have led to full-spectrum flow 

cytometry (FSFC), which captures the entire fluorophore emission spectra, 

creating a unique spectral fingerprint for each fluorophore18,180. This allows 

fluorophores with similar peak emissions to be used in the same panel, so long as 

they have distinctive spectral signatures. FSFC has enabled the detection of up to 

40 markers simultaneously19, but further multiplexing capabilities are stunted by 

the number of commercially available dyes that are compatible in a singular panel. 

Moreover, FSFC is still far from meeting the multiplexing capabilities of methods 

such as single-cell RNA sequencing, which has the ability to identify 100s-10,000s 

of markers181,182.  

The 40-plex FSFC panel, previously mentioned, largely relies on single-dye 

fluorescent antibodies, with relatively few tandem-dye fluorescent antibodies19. We 

recently developed Multiplexing using Spectral Imaging and Combinatorics 
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(MuSIC), which uses combinations of currently available fluorophores to create 

spectrally unique MuSIC probes21. MuSIC probe-labeled antibodies may expand 

the multiplexing capability for FSFC by providing new tandem probes. Previously, 

we proposed an oligo-based method for covalently labeling antibodies with MuSIC 

probes (Fig 4.1A) and validated this method using spin column purification and 

absorbance measurements 183. However, this method had yet to be tested on 

human cells. 

In the current study, we first explored the application of this method on 

human peripheral blood mononuclear cells (PBMC). However, in doing so, we 

found that our previous method for labeling antibodies with MuSIC probes183 has 

a significantly lower staining intensity, compared to a conventional antibody 

labeling kit (Biotium Mix-n-Stain Antibody Labeling Kit).  Consequently, we 

hypothesized that a different oligo-fluorophore arrangement of the MuSIC probes, 

using internal fluorophore modifications rather than external fluorophore 

modifications, could increase the fluorescent signal intensity of MuSIC-probe 

labeled antibodies. Results showed that the new method with internal fluorophore 

modifications produced ~6-fold increase in fluorescent signal compared to the 

previous method. We then again compared the internally modified MuSIC-probe 

labeled antibodies to the conventionally labeled antibodies by staining PBMCs. 

Results showed that the new internal labeling method has ~2.5-fold increase in 

fluorescent signal over the conventionally labeled antibodies while having no 

significant difference in the estimated % of CD8+ lymphocytes. This increased 
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fluorescent signal suggests the potential of MuSIC-probe labeled antibodies to add 

to the existing capabilities of FCFS, by providing new spectrally unique fluorescent 

antibodies with competitive intensity. Such antibodies are not restricted to FSFC 

but could be useful for other biomedical applications such as tissue heterogeneity 

studies with immunofluorescence imaging when spectral detection is available. 
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Methods 

Measuring fluorescent oligo emission spectra 

All oligos (Integrated DNA Technologies, Table 1) used here are 

resuspended in ddH20 at 100 µM. In a black 96-well plate (Fisher Scientific Cat: 

655900), 200 µmols of the fluorescent oligo(s) is added to the well and the volume 

is brought up to 50µl with PBS. The fluorescent emission spectra are gathered 

using a Synergy MX microplate reader (Biotek) with parameters set to a slit width 

of 9 nm, taking readings from the top, an excitation wavelength set to the maximum 

excitation wavelength for that fluorophore, and an emission wavelength starting 30 

nm after the excitation wavelength (Table 2) and emission collected at every nm.  

Table 4.1: Oligo sequences for the Ext. and Int Oligo complexes (Integrated DNA 

Technologies) 

 Component Sequence 
 
Ext. 
Oligo 
Complex 

Docking Strand 5′-azide-GTG TAG TTC AGG TCA AGA CAT CGT GCG 
ACC AGT CAG CAT GAG ACT CAT TGG TGC G-3′ 

5’ Donor Strand 3′-C AAG TCC AGT TCT GTA GCA C-fluorophore-5′ 
3’ Acceptor 
Strand 

3′-fluorophore-CA GTC GTA CTC TGA GTA AC-5′ 

 
Int. 
Oligo 
Complex 

Azide Strand 3’ CGT TAT GAA CCT GA 5’ 
Int. Donor 
Strand 

5’ GCA ATA CTT GGA CTA GTC TAG GCG AAC GTT 
TAA GGC GAT TCT TGT T-fluorophore- A CAA CTC 
CGA AAT AGG CCG 3’ 

Ext. Acceptor 
Strand 

3’ CAG ATC CGC TTG CAA ATT CCG C – fluorophore- 
A GAG ACA AAT GTT GAG GCT TTA TCC GGC 5’ 
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Table 4.2: Fluorophore modifications for Donor and Acceptor Strands with their 

corresponding excitation wavelength and emission start wavelength.  

Fluorophore Modification Excitation (nm) Emission (nm) 
6-FAM (Fluorescein)  490 520 
Atto 488  492 522 
Atto 532  524 554 
MAX (NHS Ester)  527 557 
Cy3 534 564 
Atto 550  545 575 
Tamra (NHS Ester)  553 583 
Atto 565  561 591 
ROX (NHS Ester)  578 608 
TEX 615  583 613 
Atto 590  594 624 
Atto 633 623 653 
Atto 647  632 662 
Cy5  638 668 
Cy5.5  676 706 

 

Labeling Antibodies 

Antibodies are conjugated according to McCarthy et. al 2021183. In short, 

the antibody (CD8 clone RPA-T8; Biolegend Cat: 301002) is incubated with 

DBCO-Peg5-NHS Ester (linker; 10mM in DMSO; Click Chemistry Tools Cat: 

1378531-80-6) in 60 molar excess (10 µg of antibody and 2.8 µg of linker) for 30 

minutes at room temperature. Post-incubation, the excess linker is removed with 

Amicon Ultra 100 kDa molecular weight cut-off filters (Fisher Scientific Cat: 

UFC5100BK). The antibody-linker retentate is collected. Two oligo complexes are 

created using external (ext.) or internal (int.) fluorophore modifications. 
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For externally-modified oligos, a 20 bp oligo with a 5’ fluorophore 

modification (5’ donor strand) and a 20 bp oligo with a 3’ fluorophore modification 

(3’ acceptor strand) are co-hybridized to a 55 bp oligo with a 5’ azide modification 

(docking strand) (Integrated DNA Technologies, Table 1) in a 1:1:1 ratio (0.4 nmol 

of each oligo) to form the ext. oligo complex.  

For internally-modified oligos, a 15bp oligo with a 3’ azide modification 

(azide strand) and a 50 bp oligo with an internal fluorophore modification (int. 

acceptor strand) are co-hybridized to a 65 bp oligo with an internal fluorophore 

modification (int. donor strand) (Integrated DNA Technologies, Table X) at a 1:1:1 

ratio to one another (0.4 nmol of each oligo) to form the int. oligo complex.  

For each, oligo mixtures are incubated for five minutes at room temperature 

in the dark to allow for complex formation. These complexes (0.4 nmol of each 

oligo) are then added to the antibody-linker retentate at a 6-molar excess to the 

original 10 ug of antibody. The volume is brought up to 100 µl with PBS and 

incubated at 4°C overnight in the dark.  

Conventionally labeled antibodies are labeled as per the manufacturer’s 

instructions (Biotium, Cat: 92446). In short, CD8 antibodies are covalently labeled 

with CF488A dyes using the Biotium mix-n-stain kit.  

 

Preparing Peripheral Blood Mononuclear Cells  

Normal Peripheral Blood Mononuclear Cells (PBMCs) (Precision for 

Medicine; 10M cells/vial) are thawed and counted with a hemacytometer. Cells are 
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washed twice with cold (4oC) stain buffer (.01 g/ml BSA in PBS) at 300 x g for 5 

min. Post-wash, the cells are resuspended in cold stain buffer and divided into 100 

µl aliquots containing 106 cells.  

 

Staining PBMCs 

In order to block non-specific Fc-mediated interaction,1 µg of normal Rabbit 

IgG (ThermoFisher Cat: 31235) is added to the cell sample and incubated for 10 

minutes at room temperature. Conventionally, ext., and int. labeled-antibodies are 

made for staining using the protocols described above (10µg of antibody each); 

(1) CD8 (clone RPA-T8; Biolegend Cat: 301002) labeled with Atto488 ext. MuSIC 

probes, (2) CD8 (clone RPA-T8; Biolegend Cat: 301002) labeled with Atto488 int. 

MuSIC probes, and (3) CD8 (clone RPA-T8; Biolegend Cat: 301002) labeled with 

CF488A (Biotium Cat: 92446), Antibody concentration is adjusted to 0.25 ug/ul for 

each sample. The labeled CD8 antibody is added to the cell sample at the 

appropriate amount as per manufactures recommendations (2µg CD8 antibody / 

106 cells) and allowed to incubate in the dark for 20 minutes on ice. Post-

incubation, cells are washed twice with 1ml of cold staining buffer at 300 x g for 5 

min. The final cell pellet is resuspended in 0.5 ml of cold staining buffer. 

 

Flow Cytometry 

Stained PBMC samples are analyzed using a Cytek Aurora spectral flow 

cytometer. First, unstained PBMCs are assayed with the events to record set to 
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10,000. The SpectroFlo software (Cytek) is used to gate single cells (lymphocytes, 

monocytes, and granulocytes) by forward and side scatter. We then further gate 

specifically over the lymphocyte population, as typical based on light scattering 

distributions184. Using these same settings, the stained cell samples are assayed. 

To compare fluorescence intensity between stained samples we calculate the 

median intensity of the positively stained cells in the maximum emission channel 

(B2) using the Spectroflo software. Positively stained cells are defined as cells with 

a staining intensity above that of the unstained cell samples using a marker gate. 

To compare the compositions of CD8+ cells, we compare the positively stained 

population to the negative population of cells for each sample using the Spectroflo 

software.    
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Results 

We previously developed a method for labeling antibodies with 

combinations of fluorophores (i.e MuSIC probes)183. In short, an oligo complex 

containing fluorescent molecules is conjugated to the antibody via a DBCO-Peg5-

NHS ester (referred to as the linker) (Fig 4.1A). Here the oligo complex is 

composed of a 20 bp oligo with a 5’ fluorophore modification (referred to as the 5’ 

donor strand) and a 20 bp oligo with a 3’ fluorophore modification (referred to as 

the 3’ acceptor strand) that are co-hybridized to a 55bp oligo with a 5’ azide 

modification (referred to as the docking strand) to form the externally labeled (ext.) 

oligo complex (Fig 4.1B). We previously demonstrated our ability to covalently 

label antibodies with MuSIC probes using this method and validated the labeling 

protocol with spin-column purification and absorbance measurements183. 

Furthermore, we validated our approach by creating ext. oligo complexes with (i) 

Cy3, (ii) Tex615, and (iii) a Cy3-Tex615 combination as three different MuSIC 

probes attached to three separate batches of antibodies. We created batches of 

stained beads, that are analogous to single cells, by incubating MuSIC-probe 

labeled antibodies with protein A beads. Using FSFC, we showed that each MuSIC 

probe can be uniquely distinguished in a mixture, and the fraction of beads in a 

mixture with different staining patterns can be accurately inferred.  
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Figure 4.1: Oligo-based MuSIC probe labeling of antibodies. (A) Graphic depicting 

MuSIC probe labeling. By reacting the NHS ester of the linker with the NH2 group 

of the antibody, the linker is attached. Subsequently, donor and acceptor strands 

are annealed onto the docking strand to form the oligo complex. The azide on the 

docking strand, in the oligo complex, is reacted with the free DBCO group on the 

linker to covalently bind the oligo complex to the antibody. There are multiple NH2 

sites on each antibody, allowing for the linker to attach at multiple sites, increasing 

the degree of labeling. (B) A more detailed depiction of the linker-oligo complex. 

Figure 1: Ext. Oligo Complex Labeling Approach

C

B

A



 

 76 

(C) Comparison of fluorescence intensity of PBMCs stained with CF488A 

conventional labeling kit vs Atto488 Ext. MuSIC probes. The fold increase in 

intensity over unstained cells is significantly greater for the conventional labeling 

kit compared to the ext. MuSIC probe. 

Since this method had only been validated using beads, we asked whether 

this method would work when staining peripheral blood mononuclear cells 

(PBMCs)? We created an ext. oligo complex using an Atto488 5’ donor strand and 

an Atto488 3’ acceptor strand as the MuSIC probe and conjugated it to anti-CD8 

antibodies. For comparison, we used a commercially available Biotium Mix-n-Stain 

kit to conventionally label CD8 antibodies with CF488A dye, which is reported to 

have comparable fluorescent properties (excitation peak, emission peak, and 

brightness) to Atto488185. PBMCs were stained with each antibody batch and 

analyzed on a Cytek Aurora flow cytometer. Results showed that the median signal 

intensity of cells stained with the ext. labeled MuSIC probe was ~1.6-fold (p-

value=0.0086) lower compared to cells stained with conventionally labeled 

antibodies (Fig 4.1C).  

We then asked how we can increase the signal intensity of MuSIC probes. 

We reasoned that because the previously calculated degree of labeling183 was 

within the standard range186, that the lower fluorescence signal was not due to the 

degree of labeling. We acknowledge that some degree of difference in signal 

intensity may be due to differences in dye properties between Cf488A and Atto488, 

although as mentioned above, the dyes are expected to have similar 
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characteristics. We then decided to examine the fluorescence emission intensity 

of Atto488 5’ donor strands and Atto488 3’ acceptor strands alone in solution and 

when co-hybridized to the docking strand (Fig 4.2A). Results showed that the 

hybridization of the 5’ donor and 3’ acceptor strands to the docking strand results 

in a significant decrease in fluorescent signal, as compared to the strands on their 

own (Fig 4.2A).  

 

Figure 4.2: Fluorescence signal change from Docking Strand. (A) Comparison of 

fluorescence emission spectra, excited at 470nm, of the Atto488 5’ Donor and 3’ 

Acceptor strands hybridized to the Docking Strand and when alone in solution with 

and without the Docking Strand. (B) Change in fluorescence intensity of 15 

fluorescent oligos when hybridized to the Docking Strand. 

We further wondered whether this was a fluorophore-specific phenomenon 

or if it occurred for other fluorophores. Therefore, we examined the emission 

intensity of fluorophore-conjugated 5’ donor strands and 3’ acceptor strands for 15 

Figure 2: Docking Strand-Induced Fluorescent Signal Fold Change
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different fluorophore-conjugated strands alone in solution and compared it to the 

emission intensity when co-hybridized to the docking strand (Fig 4.2B). Results 

show an observed decrease in signal for all but five of the fluorophore-conjugated 

strands that were tested. Previous studies showed that there can be a significant 

change in fluorescence when oligo-strands containing an end-fluorophore 

modification are hybridized to strands containing an overhang187, such as in our 

ext. oligo complex.   

These findings led us to hypothesize that a different orientation and 

interaction with the aqueous phase of the fluorophores within the oligo complex 

could give an increased fluorescent signal. To test this, we adjusted the 

configuration of the ext. oligo complex (Fig 4.1B) to contain oligos with internally 

(int) conjugated fluorophores. The resulting oligo complex consists of the 50 bp int. 

acceptor strand and a 15 bp azide strand which both co-hybridize to the 65 bp int. 

donor strand (Fig 4.3A). The purpose of a separate azide strand here is to reduce 

the cost of oligo production, due to the increased difficulty of synthesizing an oligo 

with two modifications. The new donor and acceptor strands both have an internal 

fluorophore modification (int donor and int acceptor), rather than 5’ and 3’ end 

fluorophore modification, respectively. We then created int. and ext. oligo 

complexes (both using Atto488 conjugated strands) and measured their 

fluorescent emission spectra. We observed a ~6-fold fluorescent signal increase 

of the int. oligo complex compared to the ext. oligo complex (Fig 3B).  
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Figure 4.3: Comparison the Int. labeling method to the ext. labeling method and 

conventional labeling kit. (A) Int. oligo complex containing the Int. Donor and 

Acceptor strands and the Azide strand arranged to allow for increased 

fluorescence emission and fine control of Förster resonance energy transfer 

(FRET). (B) Comparison of relative fluorescent units of the Atto488 probe using 

the Int. and Ext. oligo complexes to compare their intensity when excited at 470nm. 

(C) Fold increase comparison of PBMCs stained with Atto488 Int. MuSIC probe-

labeled CD8 antibodies and the CF488A conventional labeled- CD8 antibodies 

Figure 3: Int. Oligo Complex Labeling Approach

A B

C D
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over unstained PBMCs. (D) Percentage of CD8 + lymphocytes in PBMC for Int. 

Music probe-labeled CD8 antibodies compared to CF488A conventional-labeled 

CD8 antibodies. 

 

With this increase in signal intensity, we then asked how new int. MuSIC 

probe-labeled antibodies would compare to conventionally labeled antibodies 

when staining PBMCs for estimation of specific cell type abundances. Similar to 

above, int. oligo complexes with Atto488 were conjugated to CD8 antibodies to 

create int. MuSIC probe-labeled antibodies and CF488A was conjugated to CD8 

antibodies using a Mix-n-stain kit to create the conventionally labeled antibodies. 

PBMCs were stained with each antibody batch and analyzed on a Cytek Aurora 

flow cytometer. Results showed that the signal intensity of cells stained with the 

int. labeled MuSIC probe was ~2.5 fold (p-value=0.034) higher compared to cells 

stained with conventionally labeled antibodies (Fig 3C). When comparing the % of 

CD8+ lymphocytes detected, we found no significant difference between the int. 

MuSIC probe-labeled antibodies and conventionally labeled antibodies (Fig 3D). 

These results demonstrate that we were able to effectively improve the design of 

MuSIC-probe labeled antibodies to increase the signal-to-noise ratio, with staining 

behavior comparable to conventionally labeled antibodies.  
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Discussion 

Here, we established a method to conjugate two fluorophores to an antibody 

and stain human cells with an increased signal intensity, compared to 

conventionally labeled antibodies, and accurate detection of % of CD8+ 

lymphocytes. This method builds on our previously established labeling protocol 

but introduces key modifications to the oligo-fluorophore arrangement of the 

MuSIC probe. By re-arranging the oligo complex of the MuSIC probe to eliminate 

the use of overhang sequences in the oligo complex, we observe a significant 

increase in fluorescent signal. Using this new MuSIC probe design, we stained 

human PBMCs and compared the signal intensity to that of conventionally labeled 

fluorescent antibodies using a spectral flow cytometer and observed a statistically 

significant increase in the resulting fluorescent signal without creating any 

significant differences in the % of CD8+ lymphocytes. 

In order to maximize the potential of this new increased intensity probe 

design, the next step will be to select different combinations of fluorophores to 

assemble a palette of spectrally unique antibody-conjugated MuSIC probes. 

Approaches to do so can include stimulation studies for compatibility using a 

workflow similar to that described in our previous work13, and then testing the 

highest-ranked fluorophore combinations experimentally.  For these simulations, 

the emission spectra of each possible MuSIC probe is generated, and using the 

simulation workflow, lists of MuSIC probes that are likely to be deconvolvable in a 

mixture are generated, given binary classification applications. Using these lists of 
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potential good MuSIC probes, the probes would be prioritized for testing 

experimentally by measuring the emission spectra of mixtures of MuSIC probes 

and unmixing them to determine which MuSIC probes can be accurately 

demultiplexed.  

One major application of using MuSIC probe-labeled antibodies with FSFC 

can be cell-type profiling, which is the process by which a complex mixture of cell 

types, for example, from blood or tumors, are classified into the fractional 

composition of its components (e.g., neutrophils, natural killer cells, various types 

of T and B cells, etc.), based on classification of expression patterns (e.g., CD3 

expressed or not)188. While there are 40 dyes available, very few of them are 

tandem dyes that can be used as uniquely identifiable markers, which limits the 

number of individual analytes that can be classified simultaneously. However, 

MuSIC probe-labeled antibodies could be used to expand the number of markers 

that can be detected by creating new combination fluorophore probes from the 

current dyes, to enhance current cell-type profiling efforts.  FSFC has been 

previously paired with cell-type profiling to investigate the correlation between 

CD38 expression in macrophages and the predicted immune response to immune-

checkpoint blockade therapy for hepatocellular carcinoma189. With a larger palette 

of compatible fluorescent tags, cell-type profiling efforts could expand further to 

look at an increased number of cell-type markers, for a more comprehensive view 

of a patient’s immune response to various treatments. 
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Additionally, MuSIC probe-labeled antibodies can be applied to a broad 

range of biological and diagnostic applications that involve the detection of protein 

expression. One of these applications can be for tissue imaging. If MuSIC probe-

labeled antibodies can be combined with spectral imaging, this could allow for 

highly multiplexed, quantitative tissue imaging. Current immunostaining on 

biopsies can only provide data for a small portion of the tumor and cannot properly 

account for tumor heterogeneity  As such, increasing multiplexing capabilities 

would improve diagnostic potential from biopsies by allowing for more tumor 

markers to be analyzed, thus leading to an increased mapping of tumor 

heterogeneity190. This could impact early tumor detection, diagnosis, and 

treatment.  

Although here we focused on increasing the fluorescent signal of MuSIC 

probes, by titrating the fluorescent oligos, we can decrease the fluorescent signal 

of MuSIC probes to a desired level in a highly controllable manner. Tunable 

fluorescence intensity is useful; for example, Pittman et al.15 used MuSIC probes 

in static light scattering experiments, where the sensitive photodiode detectors are 

easily saturated. They labeled BSA at varying concentrations of fluorescent oligos 

between 0.03 - 0.10 µM that fluoresced below the saturation limit of the detectors 

while still achieving desired fluorescent effects. Conventional labeling kits would 

have been too powerful, and as most are single reaction use, using less than the 

recommended amount of labeling reagent is not cost-effective and difficult to 

control compared to MuSIC probes which offer the unique advantage of reduced, 



 

 84 

tailorable intensities. In their case, the tunability of the MuSIC probes enabled a 

more flexible experimental design capable of separating simultaneous 

fluorescence and light scattering signals. The tunability of MuSIC probe 

fluorescent intensity could also be beneficial for cell staining, where some epitopes 

may have such a high abundance that a reduced fluorescent signal is necessary.   

In addition to tunability for probe fluorescent intensity, the new int. oligo 

arrangement of MuSIC probes offers tunability of Förster Resonance Energy 

Transfer (FRET) between fluorophore combinations on the donor and acceptor 

strands. By adjusting the distance (bp) between the two fluorophores, we can 

increase or decrease the FRET efficiency.  By adjusting the FRET efficiency of 

each combination, there is the potential to even further increase the number of 

possible compatible MuSIC probes.   

We conclude that by using an oligo-based approach with internally-labeled 

fluorophores, we can increase the signal intensity of MuSIC-probe labeled 

antibodies. MuSIC probe-labeled antibodies may find useful to increase 

multiplexing capabilities of full spectrum flow cytometry, and also more broadly 

where increased multiplexing at single-cell or sub-cellular resolution is needed, 

including cell-type profiling, tissue studies, and immunofluorescence imaging. 
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CHAPTER FIVE 

A THEORY FOR HIGH-THROUGHPUT GENETIC INTERACTION SCREENING 

 

Abstract 

Systematic, genome-scale genetic screens have been instrumental for elucidating 

genotype-phenotype relationships, but approaches for probing genetic interactions 

have been limited to at most ~100 pre-selected gene combinations in mammalian 

cells. Here, we introduce a theory for high-throughput genetic interaction screens. 

The theory extends our recently developed Multiplexing using Spectral Imaging 

and Combinatorics (MuSIC) approach to propose ~105 spectrally unique, 

genetically-encoded MuSIC barcodes from 18 currently available fluorescent 

proteins. Simulation studies based on constraints imposed by spectral flow 

cytometry equipment suggest that genetic interaction screens at the human 

genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs. 

While experimental testing of this theory awaits, it offers transformative potential 

for genetic perturbation technology and knowledge of genetic function. More 

broadly, the availability of a genome-scale spectral barcode library for non-

destructive identification of single-cells could find more widespread applications 

such as traditional genetic screening and high-dimensional lineage tracing.         
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Introduction 

Understanding which genes play essential roles in a cellular or organismal 

process is crucial to our understanding of biology191. This can be accomplished by 

perturbing genes and observing the corresponding phenotype alterations192.  This 

process, when applied in parallel to multiple genes one-at-a-time, is known as 

genetic screening193,194195–198. Historically, there have been several methods for 

performing genetic screens, including Zinc finger nucleases (ZFNs) and 

transcription activator-like effector nucleases (TALENs) which are engineered 

nucleases that induce DNA DSBs at specific locations199,200,  RNAi which uses 

double stranded RNAs (or a short hairpin (sh)RNA) to knock down the gene-of-

interest201, and CRISPR which induces DNA breaks or alters transcription at 

specific sites in the genome202,203 205.  

While these gene perturbation technologies have revolutionized biomedical 

science, most genome-scale screens (outside of organisms like S. cerevisae206) 

remain limited to one gene at a time207. However, often genes cooperate with one 

another to influence phenotype. Such cooperation is called genetic interaction208–

211. Recent approaches have made progress towards larger scale genetic 

interaction screening. For example, cloning two different CRISPR gRNAs into a 

single plasmid enables interaction screening for ~100 pre-selected genes 209,215–

217. Other approaches include dual recombinase-mediated cassette exchange to 

create mosaic in vivo models harboring multiple desired cancer driver mutations218, 

or using protein epitope combinatorial barcodes (pro-codes) with mass cytometry 
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to perform high-dimensional CRISPR screens on 100s of selected genes in single 

cells219. The sheer number of observations that must be made to cover human 

gene interactions space almost necessitates a single-cell approach, like Perturb-

seq220–222. However, genetic interaction screening approaches that scale past 

~100 genes have yet to be described.  

Here, we propose that our recently developed fluorescence multiplexing with 

spectral imaging and combinatorics (MuSIC)21 approach may be compatible with 

single cell genetic interaction screening that could scale to the full human genome. 

MuSIC uses combinations of fluorophores (proteins or small molecules) to create 

spectrally unique MuSIC probes. Here we introduce the concept of further 

combining MuSIC probes into MuSIC barcodes for increased diversity and thus 

multiplexing. Moreover, because these spectral barcodes are fluorescence-based, 

they can be read non-destructively. Theory and simulations based on currently 

available fluorescent proteins suggests that given a palette of 18 fluorescent 

proteins, ~400,000 MuSIC barcodes could be generated, far surpassing human 

genome-scale. Simulations suggest that given current spectral flow cytometry 

equipment and experimental noise, human genome-scale genetic interaction 

screens may be possible. More advanced instrument hardware such as more 

excitation lasers and/or higher resolution emission spectra could increase such 

capabilities. While experimental testing of this theory awaits, it offers 

transformative potential for genetic perturbation technology and knowledge of 

genetic function. More broadly, the availability of a genome-scale spectral library 
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for non-destructive cell identification could find more widespread applications such 

as traditional genetic screens and high-dimensional lineage tracing.    

 

  



 

 89 

Methods 

Availability, Code Overview, and Simulation. All MATLAB code and raw data 

used for simulations are open source on Zenodo. DOI: 

https://doi.org/10.5281/zenodo.7186939. The scripts 

GenerateProbeData_3l_HN.m, GenerateProbeData_3l_LN.m, 

GenerateProbeData_5l_HN.m, and GenerateProbeData_5l_LN.m are 

used for generating the list of good probes for single probes, barcodes, and two 

barcodes, for 3 lasers/high noise (HN), 3 lasers/low noise (LN), 5 lasers/high noise, 

and 5 lasers/low noise respectively. The core of these scripts is done by the 

functions RemoveProbes_onebyone.m, RemoveBarcodes_onebyone.m, and 

RemoveTwoBarcodes_onebyone.m, respectively. The README file contains 

relevant information on the code for execution and reproducing the results. These 

simulations were performed in MATLAB using 40 CPUs on the Palmetto 

supercomputing cluster at Clemson University.  

 

Data Sources. Emission spectra, excitation spectra, and brightness for 

fluorescent proteins were gathered from fpbase.org (Supplementary Table 5.1 

and references therein). Specifications for flow cytometer noise, excitation 

channels, and emission binning were obtained from the Aurora and Northern 

Lights flow cytometer user guides on cytekbio.com. 
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Simulated FRET Efficiency and MuSIC Probe Selection. FRET efficiency 

𝜀	between two fluorophores is typically calculated as follows 

𝜀 =
1

1 + / 𝑟𝑅$
2
- 

( 1) 

where r is the distance between the two fluorophores and R0 is the Förster 

radius223. The Förster radius is the distance between fluorophores that gives a 50% 

FRET efficiency223. Thus, to estimate the FRET efficiency between any given pair 

of fluorescent proteins, we must calculate R0 and r.  

The Förster radius can be cast as follows224 

𝑅$ = [𝛽 ∗ Κ, ∗ 𝑄* ∗ 𝑒: ∗ 𝐽]
3
-	𝑛𝑚 

( 2) 

where 𝛽 is a constant (which also converts to nm), Κ, is an orientation factor 

between the two fluorophores, QD is the donor quantum yield, eA is the maximal 

acceptor extinction coefficient (M-1*cm-1), and J is the spectral overlap integral. The 

value of Κ, is not usually known (nor easily measurable) but is assumed to be a 

constant value of 2/3 for isotropic reorientation of the coupled fluorophores 225. This 

value may not be 2/3 for fluorescent protein tandems but in practice, deviations 

can be accounted for by the constant b226. J is calculated as follows 

𝐽 = ;𝐹*(𝜆)𝐸:(𝜆)	𝜆;𝑑𝜆 

( 3) 
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where FD is the normalized emission spectra of the donor and EA	is the 

normalized excitation spectra of the acceptor, which both are evaluated at 

wavelength	 𝜆. Here, the spectral data is normalized to have a maximum value of 

1. We calculate the overlap integral using the function trapz in MATLAB (see 

code) with bounds from 𝜆 = 300 to 800 nm. The value for 𝛽 is estimated to be 

6.33*10-6 based on a known Förster radius of 6.1 nm for mTFP-Venus227 (along 

with known QD, and eA, and J calculated as above). 

The closest physical distance that chromophores of fluorescent proteins can 

be is ~3 nm228. Furthermore, most high FRET producing pairs have an R0 greater 

than 5 nm229. Thus, we do not consider MuSIC probes that have R0 < 5 nm. Since 

the distance between fluorescent proteins can usually be adjusted (by linker 

length, for example), we set r = R0 in simulations, giving a FRET efficiency of 50% 

for each MuSIC probe with more than one fluorescent protein.  

 

Simulating Reference Emission Spectra for MuSIC probes. There are three 

classes of MuSIC probes that require separate consideration for simulating their 

emission spectra:  those made of a (i) single fluorescent protein, (ii) two fluorescent 

proteins, and (iii) three fluorescent proteins. The below equations are used to 

generate columns of the reference matrix R (see below) for unmixing. Each 

simulated spectra for a single excitation channel has a value every nm from 300 

to 800 nm. The below model assumes that tandem fluorescent proteins have the 

same properties as the monomers, that static quenching is not a dominant feature, 
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and that fluorescent protein maturation is not a significant factor for the spectra. 

We assume cross-talk is negligible, but for all intents and purposes, it would be 

observed as effective FRET-related activity and therefore is expected to not have 

additional functional consequences for simulation results. We also note here that 

this model does not take into account detector quantum efficiency. Avalanche 

Photodiode (APD) detectors (used in the Cytek instruments) generally have slightly 

lower quantum efficiency in the lower wavelengths (UV/Blue), but so long as all 

reference spectra and samples are measured with the same instrument, this would 

not introduce any further bias and not affect the conclusions drawn here.  

To simulate the emission intensity spectra I for a single fluorescent protein 

MuSIC probe, given a particular excitation wavelength (𝜆0<) and vector of emission 

wavelengths from 300 to 800nm at every nm (𝝀), the following equation is used 

(adapted from Schwartz et. al)230 

𝐼(𝝀) = 𝐸(𝜆0<) ∗ 𝐶 ∗ 𝐵 ∗ 𝐹(𝝀) 

( 4) 

Where E is the fraction of excited fluorophores and is a function of excitation 

wavelength (explained below), C is the relative probe concentration (taken as 1 for 

reference spectra assuming a null condition of equal expression levels between 

probes), B is the brightness (product of maximal extinction coefficient and quantum 

yield), and F is the normalized emission spectra vector of the fluorescent protein 

(normalized as above). E(lex) is given by the fluorescent protein’s normalized 

excitation spectra at the designated excitation wavelength.   
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 For MuSIC probes with two fluorescent proteins, called 1 and 2 ordered from 

blue to red, the emission intensity spectra I(𝝀) has three contributing components:  

acceptor emission due to FRET (I2,1), donor emission (I1), and acceptor emission 

due to direct excitation (I2). The overall emission intensity spectra I is the sum of 

the three components  

𝐼 = 𝐼,,3 + 𝐼3 + 𝐼, 

( 5) 

Each of these terms depends on the FRET efficiency. We assume that FRET 

efficiency is reduced due to any direct acceptor (2) excitation, since excited 

acceptors would not be able to undergo FRET. This adjusted FRET efficiency, 𝜀)7>, 

is calculated as follows 

𝜀)7> = 𝜀 ∗ D1 − 𝐸,(𝜆0<)F 

( 6) 

where E2 is the fraction of excited fluorophores for fluorescent protein 2 and the 

term (1-E2) denotes the fraction of fluorescent protein 2 molecules that have not 

been directly excited.  

Fluorescent protein 2 emission due to FRET from fluorescent protein 1 is then 

calculated by 

𝐼,,3(𝝀) = 𝐸3(𝜆0<) ∗ 𝜀)7> ∗ 𝐶 ∗ 𝐵, ∗ 𝐹,(𝝀) 

( 7) 

This emission intensity is proportional to emission properties of fluorescent 

protein 2 (emission spectra and brightness), the fraction of excited molecules for 
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fluorescent protein 1, and the adjusted FRET efficiency between the two 

fluorescent proteins.  

Fluorescent protein 1 emission is calculated by  

𝐼3(𝝀) = 𝐸3(𝜆0<) 	∗ (1 − 𝜀)7>) ∗ 𝐶 ∗ 𝐵3 ∗ 𝐹3(𝝀) 

( 8) 

This emission is calculated similarly to that above for a single fluorescent 

protein; however, it is corrected to only take into account the fraction of excited 

molecules that are not undergoing FRET (1 − 𝜀)7>).  

Fluorescent protein 2 emission due to direct excitation is calculated by  

𝐼,(𝝀) = 𝐸,(𝜆0<) ∗ D1 − 𝜀)7>F ∗ 𝐶 ∗ 𝐵, ∗ 𝐹,(𝝀) 

( 9) 

We opt here to be conservative and reduce the amount of fluorescence from direct 

excitation of fluorescent protein 2 by the FRET taking place. 

For MuSIC probes with three fluorescent proteins, called 1, 2, and 3 ordered 

from blue to red, the emission intensity depends on six different components. 

Three are due to direct excitation: emission intensity of fluorescent protein 1 (I1), 

emission intensity of fluorescent protein 2 (I2), and emission intensity of fluorescent 

protein 3 (I3). The other three are due to FRET: FRET sensitized emission intensity 

of fluorescent protein 2 due to FRET with fluorescent protein 1 (I2,1), FRET 

sensitized emission intensity of fluorescent protein 3 due to FRET with fluorescent 

protein 2 that ultimately came from FRET with fluorescent protein 1 (I3,1), and FRET 

sensitized emission intensity of fluorescent protein 3 due to FRET with fluorescent 
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protein 2 (I3,2). The overall intensity is calculated as the sum of the six intensities. 

We assume negligible direct FRET from fluorescent protein 1 to 3.  

𝐼 = 𝐼3 + 𝐼, + 𝐼# + 𝐼,,3 + 𝐼#,3 + 𝐼#,, 

( 10) 

The adjusted FRET efficiencies between fluorescent proteins, 𝜀adj1   and 𝜀adj2, 

are calculated as above 

𝜀)7>! = 𝜀3 ∗ D1 − 𝐸,(𝜆0<)F 

( 11) 

𝜀)7>" = 𝜀, ∗ D1 − 𝐸#(𝜆0<)F 

( 12) 

The emission intensity of fluorescent protein 1 due to direct excitation is 

calculated by 

𝐼3(𝝀) = 𝐸3(𝜆0<) 	∗ (1 − 𝜀)7>3) ∗ 𝐶 ∗ 𝐵3 ∗ 𝐹3(𝝀) 

( 13) 

This emission is calculated similarly to that above and is corrected to only 

consider the fraction of excited fluorescent protein 1 molecules that are not 

undergoing FRET with fluorescent protein 2.  

The emission intensity of fluorescent protein 2 due to direct excitation is 

calculated by 

𝐼,(𝝀) = 𝐸,(𝜆0<) 	∗ (1 − 𝜀)7>! − 𝜀)7>") ∗ 𝐶 ∗ 𝐵, ∗ 𝐹,(𝝀) 

( 14) 
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This emission is corrected to only consider the fraction of excited fluorescent 

protein 2 molecules that are not undergoing FRET with either fluorescent proteins 

1 or 3.   

The emission intensity of fluorescent protein 3 due to direct excitation is 

calculated by 

𝐼#(𝝀) = 𝐸#(𝜆0<) ∗ D1 − 𝜀)7>" − 𝜀)7>! ∗ 𝜀)7>"F ∗ 𝐶 ∗ 𝐵# ∗ 𝐹#(𝝀) 

( 15) 

This emission intensity only considers the fraction of fluorescent protein 3 

molecules that are not involved in FRET with either fluorescent protein 2 or FRET 

from the first fluorescent protein through the second. 

The emission intensity of fluorescent protein 2 due to FRET from fluorescent 

protein 1 is calculated by 

𝐼,,3(𝝀) = 𝐸3(𝜆0<) ∗ 𝜀)7>! ∗ 𝐶 ∗ 𝐵, ∗ 𝐹,(𝝀) 

( 16) 

The emission intensity of fluorescent protein 3 due to FRET from fluorescent 

protein 1 through fluorescent protein 2 is calculated by 

𝐼#,3(𝝀) = 𝐸3(𝜆0<) ∗ 𝜀)7>! ∗ 𝜀)7>" ∗ 𝐶 ∗ 𝐵# ∗ 𝐹#(𝝀) 

( 17) 

Finally, the emission intensity of fluorescent protein 3 due to FRET from 

fluorescent protein 2 is calculated as follows 

𝐼#,,(𝝀) = 𝐸,(𝜆0<) ∗ 𝜀)7>" ∗ 𝐶 ∗ 𝐵# ∗ 𝐹#(𝝀) 

( 18) 
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Calculating the Observed Spectra Using Cytek Binning. The emission spectra 

of the MuSIC probes are simulated at every nm as described above.  To best 

replicate the emission spectra generated from the Cytek Northern Lights and the 

Cytek Aurora flow cytometers, we condensed the simulated emission spectra 

based on the emission channels for each instrument, referred to as binning. Each 

emission channel represents spectral data condensed over a range of 

wavelengths, so to convert the simulated emission spectra (which is at every nm) 

we averaged the simulated emission spectra I for each probe over the wavelength 

ranges of each instrument’s emission channels. Each binned emission point is 

calculated as follows 

𝑓> =
∑ 𝐼>66 	
𝑛>

 

( 19) 

Where fj is the binned emission point over the wavelength range for channel 

j, n is the number of wavelengths in channel j, and I is calculated as above.  

 

Noise Model. Noise is assumed to be normally distributed and simulated 

using the MATLAB function randn. The standard deviation for the normal 

distribution is estimated based on data from the Cytek Northern Lights flow 

cytometer, given by the manufacturer, which is estimated at 50 relative fluorescent 

units (RFUs) for an intensity of 105 RFUs. In the above simulations, the 

fluorescence emission spectra have an average maximum of ~10 RFUs. The 

standard deviation of 50 is thus decreased by a factor of 104 to adjust for the 
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simulated emission spectra, giving a standard deviation of 0.005 for noise. This 

value is used as the value for “low” noise. The standard deviation is set to 0.05 for 

“high” noise (10-fold higher than the low noise).  

 

Unmixing. The fluorescence emission spectra of a mixture of fluorophores 

can be cast as a sum of the emission spectra of the individual fluorophores as 

follows.  

 

𝝁 = 𝑹 · 𝒄 

( 20) 

Where µ is an n-by-1 vector of observed fluorescence emission intensity at n 

emission wavelength/excitation channel combinations, R is an n-by-m reference 

matrix that is generated from the simulated emission spectra of m individual probes 

with multiple excitation channels as described above, and c is an m-by-1 vector 

containing the relative probe concentrations.  

Solving this equation gives an estimate of the relative probe concentrations, 

c. This is done using the MATLAB function lsqlin. The lower bound for elements 

of c is set to zero, and the upper bound is left empty.  

 

Generating a Simulated Experimental Data Set. Simulated data are 

generated by first specifying the relative probe concentrations for different mixtures 

of MuSIC probes. This is referred to as the actual mixture composition vector, ca. 
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For single probe mixtures, one probe concentration is set to 1 and all others are 

zero. For barcode mixtures, two probe concentrations are set to 1, and all others 

are zero. For two barcode mixtures, four probe concentrations are set to 1, and all 

others are zero. For the case of variable probe expression levels, probe 

concentrations are set to a random number between 0.5-1.5 (rand). For two 

barcode mixtures, the probes are divided into two batches, and two probes are 

chosen from the first batch while two are chosen from the second (see Results). 

Equation 20 with ca and R is used to calculate µa, the simulated emission spectra 

of the mixture. Experimental noise is then added to the simulated emission spectra 

at either low or high levels, as described above, giving µn, the simulated observed 

spectra.  Finally, Equation 20 is used to solve for c (i.e., unmixing), giving the 

predicted mixture composition, 𝐜̂. 

 

Binary Classification. Binary classification is performed on the predicted 

mixture composition vector by converting the relative level for each probe to a one 

or zero based on a threshold for each probe. The threshold for each probe is 

determined as that which gives the maximum Matthews Correlation Coefficient 

value for each probe respectively based on simulation data (see below).   

 

Confusion Matrix and Matthews Correlation Coefficient (MCC). Evaluating 

binary classification performance requires the calculation of a confusion matrix, 

which serves as a centralized table that tracks the number of true and false positive 
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and negative classifications. The confusion matrix allows for the calculation of a 

multitude of performance metrics and is calculated using the MATLAB function 

confusionmat.m. Out of these different metrics, the Matthew’s Correlation 

Coefficient (MCC), or phi coefficient, was chosen to quantify the performance of 

probes in the simulations. The MCC was chosen because it is appropriate when 

the classes are highly imbalanced231, such as what we have here when there are 

many more true negatives than true positives. Other metrics, such as the F1 score 

or Accuracy, are problematic for situations where there might be significantly more 

true negatives than false positives. 

Given a classification threshold to evaluate, a confusion matrix is generated 

for each probe using the actual mixture compositions and the binary predicted 

probe concentrations for each probe. These confusion matrices are used to 

generate an individual MCC score for each probe, given the threshold. The 

threshold is then varied to determine the optimum threshold to maximize MCC for 

a particular probe.  

A confusion matrix is generated for the entire group of probes using a matrix 

of all concatenated actual mixture composition vectors and a matrix of all 

concatenated predicted mixture composition vectors. This confusion matrix is used 

to generate the overall MCC score which represents the performance for the entire 

group of probes.  
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Results 

This paper explores a theory for creating a large library of genetically-

encoded, fluorescence spectral barcodes for potential application to genetic 

interaction screening. It is based on our recently published Multiplexing using 

Spectral Imaging and Combinatorics (MuSIC) approach21, which creates unique 

spectral signatures from stably-linked combinations of individual fluorophores. The 

individual fluorophores or combinations are called MuSIC probes. In this work, we 

consider expanding the number of fluorophores used by fusing 2 or 3 individual 

fluorophores that would give rise to unique spectral properties. The spectral 

signatures of combination probes are linearly independent (i.e., unique) from the 

individual fluorophore spectra comprising the combination so long as sufficient 

Förster resonance energy transfer (FRET) occurs. This linear independence 

property allows for the estimation of individual MuSIC probe levels when they are 

together in a mixture, a process often called “unmixing”.  

We selected 18 fluorescent proteins (see Methods and Table 5.S1) that span 

the ultraviolet to infrared spectrum and first wanted to determine how many MuSIC 

probes could be generated. The quality of unmixing depends on the FRET 

efficiency, which is directly related to the Förster radius and the physical distance 

between chromophores of the fluorescent proteins (see Methods). The distance 

between fluorescent proteins can usually be adjusted by altering the length and 

nature of the peptide fusion linker; thus, the answer to this question depends on 

the Förster radius chosen as acceptable (Fig 5.1A-B). Since high FRET producing 
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pairs usually have a Förster radius greater than 5 nm229, we only consider MuSIC 

probes that have an estimated Förster radius greater than 5 nm. At this cutoff, 910 

MuSIC probes can be generated (Table 5.S2), but this is far from genome-scale. 

We should also note here that in principle the same fluorescent proteins in a probe 

could be engineered to be a different distance apart and thus a different FRET 

efficiency, which would increase the number of probes. However, for the purposes 

of this work, we only consider one FRET efficiency (~50%) per probe.  

Can we develop another layer of combinatorics to generate further diversity? 

Consider the concept of a MuSIC barcode that is a combination of MuSIC probes. 

As an example, let us start with two fluorescent proteins, mAmetrine and 

mOrange2. From these two fluorescent proteins we can create three MuSIC 

probes: a single fluorescent protein probe of mAmetrine, the combination probe of 

mAmetrine and mOrange2, and another single fluorescent protein probe of 

mOrange2. A MuSIC barcode is then every 2-way combination of the probes. 

Thus, from these probes we can create three MuSIC barcodes (Fig 5.1C-D). The 

MuSIC barcode spectra are clearly unique from one another. The number of 

barcodes that can be generated given a particular number of probes is given by 

combinatorics (see Methods); 910 probes gives 413,595 barcodes (Fig 5.1B, E).    

This barcode diversity far exceeds the number of genes in the human genome 

(Fig 5.1E). If each MuSIC barcode could be paired to a guide RNA (gRNA), and if 

resolvable in practice, one could perform genome-scale genetic screening that is 

non-destructive in single cells. Specifically, then if a certain MuSIC barcode is 
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detected in a particular cell (via a fluorescence emission spectra measurement), 

that would indicate the gRNA that was present, and therefore the target gene that 

was likely modulated in that cell.  

 

Figure 5.1: Theory and scope of MuSIC Barcodes for genetic and genetic 

interaction screening. (A) Forster Radius (R0) cut off for probe selection. From the 
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total list of possible MuSIC probes (987), only probes with an R0 value greater than 

5nm (910) are selected as potentially good probes. (B) Potential number of MuSIC 

probes and barcodes. Given 18 fluorescent proteins, 910 MuSIC probes can be 

created (with an R0>5nm), and given 910 MuSIC probes, 413,595 MuSIC barcodes 

could be created. (C) Example emission spectra of MuSIC probes and barcodes 

when excited at 405, 488, and 635nm. Given the fluorescent proteins mAmetrine 

and mOrange2, three MuSIC probes can be created that are spectrally unique. 

Given these three MuSIC probes, three MuSIC barcodes can be created. (D) 

Schematic showing the creation of MuSIC probes and barcodes from single 

fluorescent proteins. (E) Genetic and genetic interaction screening capabilities 

given the number of MuSIC probes that can be created.  

MuSIC barcodes may also enable large-scale genetic interaction screening 

(Fig 5.1E). Consider that a gRNA is paired to a MuSIC barcode as above, but 

instead there are two MuSIC barcodes in a cell corresponding to two specific 

gRNAs. This means four MuSIC probes would be present in the cell. To avoid 

mapping ambiguity from probes to barcodes to gRNA, the MuSIC probe library 

would have to be split in half before linking gRNA with MuSIC barcodes, which 

makes the predicted scale of genetic interaction screening lower than that of 

genetic screens. With 910 MuSIC probes, 103,285 gRNA could be studied for 

genetic interactions, which approaches human genome-scale genetic interaction 

screening at ~3x redundancy.   
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While the above suggests MuSIC barcodes may enable novel genetic 

screening technology, how well might it work in practice? Of the 910 potential 

probes, how many can reliably be identified from expected mixtures? To constrain 

the answer to this question, we developed a simulation workflow. Rapid 

measurement of fluorescence emission spectra in single cells has recently become 

possible with Cytek flow cytometers. For this reason, we have based the simulation 

studies described in this paper off the Cytek Northern Lights Flow Cytometer (3 

lasers; 405, 488, and 635nm) and the Cytek Aurora Flow Cytometer (5 lasers; 356, 

405, 488, 561, and 635nm) (Fig 5.2A). The spectral emission bin structure for each 

instrument and its signal-to-noise ratio is known and we incorporate such 

information into our simulated measurements (Fig 5.2A—see also Methods). For 

genetic screens, it can be useful to reserve one excitation channel to measure an 

observed phenotype. Therefore, we also investigated a setup for 2 lasers 

(Northern Lights, dedicating the 635nm laser to a phenotype) and 4 lasers (Aurora, 

dedicating 635nm laser to phenotype) (Fig 5.2B).  

We implemented the following simulation strategy to eliminate “poorly” 

performing probes from consideration (Fig 5.3A). A “poorly” performing probe is 

one that leads to at least one misclassification event in simulations. At the core of 

the algorithm is a simulated MuSIC probe mixture. This is a vector that represents 

which probe or probe(s) are present in the ground truth, which we call the actual 

mixture composition. Using the actual mixture composition vector and the 

calculated reference matrix (see Methods—spectra of individual probes), we can 
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calculate the emission spectra of the mixture. We add low or high noise (see 

Methods—based on Cytek flow cytometer specs) to the emission spectra of the 

mixture, generating the simulated observed spectra. After noise is added, we 

perform linear unmixing, which generates the predicted mixture composition. To 

compare the predicted mixture composition to the actual mixture composition, we 

first perform binary classification (see Methods). To quantify performance, we 

calculate the Matthews correlation coefficient, which is suitable for cases such as 

this where there are many more true negatives than true positives. If overall 

classification is not perfect (MCC < 1), then we identify which probe has the worst 

MCC, and remove it. The simulation is repeated until overall classification is perfect 

(Fig 5.3B), at which point we obtain the final list of good probes (Table 5.S2). This 

process is performed in triplicate. 

B Simulation Stratification
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Figure 5.2: Simulation setup. (A) Simulating emission spectra. Process of 

condensing the original emission spectra at every nm according to the emission 

binning and noise of the simulated instrument. (B) Cases for the simulation 

experiment setup based on Cytek flow cytometers. 

We use three sequential sets of simulations to determine a list of “good” 

MuSIC probes that can be used (1) on their own, (2) for MuSIC barcodes (genetic 

screening), and (3) for two MuSIC barcodes (genetic interaction screening) (Table 

5.S2). The final list that is obtained in Simulation 1 is used for Simulation 2, and 

likewise 2 for 3 (Fig 5.3C). For example, only probes that are good for use on their 

own are considered for MuSIC barcodes. The list of “good” MuSIC probes from 

Simulation 2 sets constraints on genetic screening for single gene effects and the 

list of good MuSIC probes from Simulation 3 sets constraints on genetic interaction 

screening.  

The results of this process are summarized in Table 5.1. The final number of 

good MuSIC probes that can be unmixed with perfect classification for MuSIC 

barcodes and sets of two MuSIC barcodes are listed for each of the experimental 

setups (summarized in Fig 5.2B). We found reasonable overlap between which 

probes were labeled as good between replicate runs (Fig 5.S1), although the 

overall number of probes seems to be a more reproducible and larger factor (Table 

5.1). Given these results, the number of gRNA that can be used for genetic and 

genetic interaction screening are calculated from Fig 5.1E. In general, more lasers 

and lower noise allows for more probes and barcodes, as expected. For genetic 
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screens, each scenario investigated suggested potential for genome-scale 

operation. For genetic interaction screens, 4 and 5 laser setups with low noise 

predicted operation at genome-scale. Even 2 and 3 laser setups with high noise 

predicted operation with 1000s of gRNA in genetic interaction screens, an order of 

magnitude above current methods. If we consider typical ranges of cell-to-cell 

variability in probe expression levels, then we can still generate gRNA on the same 

scale (Table 5.S3). If we only consider MuSIC probes with one or two fluorescent 

proteins, as opposed to three, we can still achieve multiple hundred gRNA for 

genetic interaction screens (Table 5.S4). Overall, these results suggest MuSIC 

barcoding theory represents a promising approach to transforming genetic 

perturbation technology.  

Table 5.1: Simulated number of gRNA that could be used for genetic and genetic 

interaction screens. Results for the number of good probes for barcodes and pairs 

of barcodes are shown for each experimental setup. Given the number of good 

probes, the number of potential gRNA for genetic and genetic interaction screens 

# of Good Probes # of gRNA

Experimental
Setup

# 
Laser Noise One

Barcode
Two 

Barcodes Genetic Screen Genetic Interaction 
Screen

Cytek Northern 
Lights

3 high 337±3 113±5 56737±1001 1565±146

3 low 634±5 230±11 200897±3149 6544±610

2 high 292±8 92±5 42458±2445 1024±101

2 low 550±25 175±12 151970±14008 3805±528

Cytek Aurora

5 high 666±15 294±7 221893±10020 10694±510

5 low 894±3 708±12 399477±2596 62397±2046

4 high 580±9 252±10 167983±4916 7860±654

4 low 879±2 590±11 385885±1755 43294±1535

Table 1, McCarthy et al.
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is listed. Results for the Cytek Northern Lights flow cytometer are highlighted in 

blue and results for the Aurora flow cytometer are highlighted in yellow.  

  

 

Figure 3, McCarthy et al.
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Figure 5.3: Workflow for probe removal. (A) Obtaining the list of good probes 

based on classification metrics. First, the emission spectra of a mixture of probes 

is simulated given a set of probes. Next, noise is added to the emission spectra 

and the spectra is unmixed (using the reference matrix) to predict the mixture 

composition of probes. Binary classification is performed and finally, the predicted 

mixture composition is compared to the actual mixture composition. This process 

is repeated for each probe and the worst performing probe is removed until the 

overall classification is perfect. (B) Graphical representation of probe removal 

results. Individual probes are removed until the overall MCC value (confusion 

matrices shown on the right-hand side) is perfect (i.e equal to 1). (C) Workflow of 

sequential trimming of lists of good MuSIC probes. The final list of good MuSIC 

probes for single MuSIC probes (simulation 1) is used as the starting list for 

simulation 2. Then the final list of good MuSIC probes for barcodes (simulation 2) 

is used as the starting list for simulation 3.  
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Discussion 

Here we propose an approach for single-cell, non-destructive, and potentially 

genome-scale genetic and genetic interaction screens. This work builds on our 

recently developed theory for Multiplexing using Spectral Imaging and 

Combinatorics (MuSIC). MuSIC probes are stably linked combinations of 

fluorophores with unique spectral signatures that can be deconvolved when in a 

mixture with other MuSIC probes. The novel concept introduced in this work is that 

of a MuSIC barcode, a combination of MuSIC probes. Given currently available 

fluorescent proteins, we estimate that ~105 unique MuSIC barcodes can be 

created from combinations of MuSIC probes. We devised a simulation workflow to 

generate lists of MuSIC probes that are likely to be deconvolvable in a mixture, 

given binary classification applications. These results show the potential for 

genetic screens at the human genome-scale and genetic interaction screens for at 

least 1000s of genes. In some cases (i.e. 4 or 5 lasers and low noise), results show 

the potential to perform genetic interaction screens at a human genome-scale.  

What could be learned with non-destructive, single-cell genetic screens? 

When analyses are done on a single-cell level, each cell is analyzed 

independently, and as a result, multiple measurements can be done in parallel, 

increasing throughput232–234. To accomplish this, CRISPR screenings have been 

paired with single-cell RNA sequencing using methods like Perturb-Seq235, 

CRISP-seq236, or CROP-seq237,238. While single-cell sequencing has the ability to 

pair transcriptome responses to a nucleic acid barcode that indicates the genetic 
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perturbation, it is as yet prohibitively expensive for covering interaction 

space239,240. Moreover, sequencing is a destructive technology so one cannot 

subsequently study perturbed cells-of-interest. The use of MuSIC barcodes could 

expand on the capabilities of these methods by allowing for high throughput 

genetic screening in a non-destructive manner. A non-destructive application in 

single live cells could allow sorting of rare cell types for subsequent follow-up 

studies. This could lead to co-isolating rare cell types thought to cooperate with 

each other for a disease phenotype. 

What could be explored with high-dimensional non-destructive genetic 

interaction screens? One application is synthetic lethal interactions, which is 

defined as a genetic interaction that results in cell death, but disruption of the 

individual genes does not. Synthetic lethality has previously led to the discovery 

that poly(ADP-ribose) polymerase (PARP) inhibitors effectively kill BRCA1- and 

BRCA2 mutant tumor cells in breast cancer241. The proposed method may allow 

for genetic interaction screening at a near genome-scale, which could lead to the 

discovery of new synthetic lethal interactions in a high-throughput manner that is 

not currently possible. By discovering and exploiting synthetic lethal interactions in 

cancer cells, combinations of drugs can be used to treat cancer more effectively 

and at lower drug concentrations and thus lower toxicity242. 

 Although simulations suggest a large potential for the approach when 

applied to genetic screening, there are multiple technical hurdles to its 

implementation. How can one clone thousands of unique MuSIC barcodes 
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specifically paired with matched gRNA? If one uses lentiviruses to deliver the 

constructs, how does one avoid template switching between genetically similar 

fluorescent proteins or barcodes, corrupting the connection between the barcode 

and gRNA243? The constructs may be large as well, so how does one achieve high 

enough titer to perform genetic interaction screening? Although flow cytometry is 

fast, can one assay enough cells to adequately explore gene interaction space? 

These are just some of the major issues that will arise, yet the potential 

applications, if these issues can be overcome, could be highly impactful.  

Although we focused here on genetic screening as an application, genome-

scale spectral barcode libraries could have other uses, such as high-dimensional 

cell lineage tracing. Current fluorescence-based lineage tracking is limited from 

spectral overlap and the number of unique probes. Techniques such as Brainbow 

work to fill this gap by using random ratios of different fluorophores to label cells244, 

but are still limited to  ~10s of deconvolvable colors245. This has been partially 

overcome through the use of DNA barcodes in each cell but requires destructive 

DNA sequencing to be deconvovled245. Music barcodes could be used to bridge 

this gap by expanding the available palette of color codes for fluorescence-based 

lineage tracing to potentially thousands of deconvolvable colors.   

In conclusion, despite impending technical hurdles, the simulation studies 

presented here show the potential for MuSIC barcodes to enable high-dimensional 

genetic interaction screens at the human genome-scale. Its single-cell resolution 

compatibility and non-destructive features could also enable multiple new 
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applications for established genetic screening, or for cell lineage tracking. The 

capabilities of this approach can further be increased by increasing the number of 

excitation lasers and/or the spectral wavelength resolution. 
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Supplementary Figure and Table Legends 

 

Figure S1: Comparison of lists of good probes between trials. The similarities 

and differences between the final lists of good probes for each trial are shown for 

each of the experimental setups.  

 

Table S1: Fluorescent protein data. The maximum excitation and emission 

wavelength, brightness, extinction coefficient, and quantum yield for each 

fluorescent protein is found in the Attributes tab. Excitation and emission spectra 

for each fluorescent protein are found in the Excitation Spectra and Emission 

Spectra tabs, respectively. Sources for the raw data are found in the Sources 

tab. 

 

Table S2: Probe lists. The lists of good probes for single probes, barcodes, and 

two barcodes are listed for each experimental setup in replicate.  

  

Table S3: Simulated number of gRNA that could be used for genetic and genetic 

interaction screens with variable probe expression levels. We allowed probe 

expression levels to vary between 0.5 and 1.5 (relative) to capture single cell-to-

cell variability. Results for the number of good probes that can be used to form 

barcodes and pairs of barcodes are shown for each experimental setup (the flow 
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cytometer used), the number of lasers used, and the noise level (either low or 

high). Given the number of good probes, the number of potential gRNA for 

genetic and genetic interaction screens is listed. 

 

Table S4: Simulated number of gRNA that could be used for genetic and genetic 

interaction screens when only considering one and two-way fluorescent protein 

probes. Probes containing three fluorescent proteins were not considered here. 

Results for the number of good probes that can be used to form barcodes and 

pairs of barcodes are shown for each experimental setup (the flow cytometer 

used), the number of lasers used, and the noise level (either low or high). Given 

the number of good probes, the number of potential gRNA for genetic and 

genetic interaction screens is listed. 
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CHAPTER SIX  

SIMULATION STUDIES FOR COMBINATIONS OF SMALL MOLECULE 

FLUOROPHORES 

 

Abstract 

Cells are the functional building blocks of multicellular organisms, where 

each cell type plays a different role in the body. Consequently, characterizing the 

various types and functions of each cell is a powerful tool for disease diagnosis 

and treatment. Recent advances in full spectrum flow cytometry (FSFC) have led 

to the increased multiplexing capability of 40 analytes simultaneously, rivaling the 

multiplexing ability of mass cytometry. We previously developed a theory for 

screening combinations of fluorescent proteins to create spectrally unique 

fluorescent probes. Here, we adjust this simulation workflow to simulate 

combinations of small molecule fluorophores rather than fluorescent proteins. 

Based on the constraints of 30 currently available small molecules and currently 

available spectral flow cytometry equipment, simulation studies suggest that cell-

type profiling can be performed simultaneously at a level of 200+ analytes. This 

work, combined with our recently developed method for labeling antibodies with 

combinations of small molecule fluorophores, suggests our ability to label 

antibodies with combinations of small molecule fluorophores for flow cytometry 

based-highly multiplexed cell-type profiling.   
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Introduction 

The human body is composed of multiple organ systems, each comprising 

numerous different cell types, which play an essential regulatory role in maintaining 

the body’s homeostasis246. There is a drive to increase our understanding of each 

cell type of the human body to ultimately help provide better diagnoses, monitoring, 

and treatment of disease. For this reason, the Human Cell Atlas Project was 

created to generate molecular profiles of single cells across the different human 

organs and systems247. However, creating single-cell cartography of human 

tissues is a current grand challenge; initial efforts suggest hundreds to thousands 

of functionally distinct cell types exist248. One relevant development working 

towards this goal is cell type profiling, which is the process by which a complex 

mixture of cell types, for example, from blood or tumors, are classified into the 

fractional composition of its components (e.g., neutrophils, natural killer cells, 

various types of T and B cells, etc.), based on classification of expression patterns 

(e.g., CD3 expressed or not)188.  

A traditional method of cell-type profiling used for immune profiling is flow 

cytometry, which uses the maximum emission wavelength of fluorescently-labeled 

antibodies to measure the expression of protein components of a cell. The use of 

fluorescent antibodies with conventional flow cytometers is restricted to ~10-15 

markers due to spectral overlap between fluorophores, severely limiting the 

number of cell types that can be distinguished16,17. However, flow cytometry 

remains a valuable platform for cell-type profiling as it is a cost-effective, high-
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throughput, and non-destructive method with single-cell analysis178. Another 

method for cell-type profiling is mass cytometry. Here cell samples are labeled with 

isotopically pure rare earth metals and analyzed by mass spectrometry on a single-

cell level. Metal-labeled antibodies circumvent the issue of spectral overlap 

allowing analysis of ~40+ analytes173. While mass cytometry has been 

revolutionary to the field of cell-type profiling, compared to flow cytometry, it is 

more expensive and acquires cells at a significantly lower rate (~300/400 

events/second compared to thousands of events/second)178,249. Additionally, this 

method destroys the sample during acquisition, preventing the use of follow-up 

studies.  

Another approach, single-cell RNA sequencing, is a state-of-the-art technique 

for cell-type profiling with unmatched multiplexing181. Thus far, no other method 

approaches the ability to identify 100s (or even 1000s) of cell types, as recent 

single-cell RNA sequencing studies suggest181,182. However, similar to mass 

cytometry, this method does not allow for the non-destructive analysis of samples. 

Further, it also requires substantial instrumentation, reagent cost, and personnel 

expertise, hindering adoption efforts outside of a high resource availability 

environment250. 

More recent developments have led to full-spectrum flow cytometry (FSFC), 

which captures the entire fluorophore emission using multiple excitation lasers and 

emission channels, creating a unique spectral fingerprint for each fluorophore180. 

This has enabled the simultaneous detection of 40 markers simultaneously19, a 
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significant improvement relative to the traditional flow cytometry. However, FSFC 

is far from meeting the multiplexing capabilities of single-cell RNA sequencing. 

Therefore, a flow cytometry-based method that allows for an increased number of 

simultaneously detectable markers would be instrumental in current cell-type 

profiling efforts. 

As such, we propose that by incorporating our recently developed method, 

Multiplexing using Spectral Imaging and Combinatorics (MuSIC)21 with FSFC, we 

can expand the current multiplexing capabilities that FSFC can provide for cell-

type profiling. MuSIC uses combinations of fluorophores to create spectrally 

unique MuSIC probes. In this study, we adapt our previously developed method251 

for screening combinations of MuSIC probes created from fluorescent proteins to 

screen combinations of MuSIC probes created from small molecule fluorophores. 

This work, combined with our recently developed method to covalently label 

antibodies with small molecule fluorophore-MuSIC probes183, suggests that we 

can perform cell-type profiling of up to 265 markers simultaneously with currently 

available equipment.  
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Methods 

Availability, Code Overview, and Simulation. All MATLAB code and raw data 

used for simulations are open-source on Zenodo. DOI: 10.5281/zenodo.7186939 

The scripts GenerateIDT_5probes_3l_HN.m and 

GenerateIDT_5probes_5l_HN.m are used for generating the list of good 

probes for groups of 5 probes for 3 lasers/high noise (HN) and 5 lasers/high noise, 

respectively. The core of these scripts is done by the function 

RemoveIDTprobes_onebyone.m, which is adapted from the function 

RemoveTwoBarcodes_onebyone.m (McCarthy et al.) to simulate mixtures of 5 

MuSIC probes rather than 4. The README file contains relevant information on 

the code for execution and reproducing the results. These simulations were 

performed in MATLAB using 40 CPUs on the Palmetto supercomputing cluster at 

Clemson University.  

  

Data Sources. Emission spectra, excitation spectra, and brightness for 

fluorescent proteins were gathered from idtdna.com (Supplementary Table 1 and 

references therein). Specifications for flow cytometer noise, excitation channels, 

and emission binning were obtained from the Aurora and Northern Lights flow 

cytometer user guides on cytekbio.com. 
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Results 

 This paper adapts a previously established theory for creating a library of 

fluorescent protein-MuSIC probes for genetic screening to create a library of small 

molecule-fluorophore MuSIC probes for cell-type profiling. We selected 30 small-

molecule fluorophores (Fig 6.1A) currently available as oligo modifications at 

Integrated DNA Technologies to determine how many MuSIC probes could be 

created. Here we only consider MuSIC probes made from one- and two-way 

combinations of fluorophores, as this theory is based on the fluorophore-oligo 

labeling protocol described in Chapters 3-4. As previously described in Chapter 5, 

the ability to unmix probes depends on the FRET efficiency of the combination of 

fluorophores, which is directly related to the Förster radius and the physical 

distance between chromophores of the fluorophores. The distance between 

fluorophores in the MuSIC probe is adjustable by altering the number of base pairs 

between the fluorophores in the oligo complex (see Chapter 4); thus, the answer 

to this question depends on the Förster radius chosen as acceptable (Fig 6.1B). 

Since the minimum distance that fluorophores can be placed from one another is 

5 bp, we only consider MuSIC probes that have an estimated Förster radius, R0, 

greater than 17 angstroms (or 5 bp). At this cutoff, 372 MuSIC probes can be 

generated. 

We then asked how many MuSIC probes should be present in a mixture to 

determine the multiplexing capabilities of MuSIC probes for cell-type profiling. Our 

previous work (Chapter 5) simulates mixtures of one, two, and four MuSIC probes 
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and removes poorly-performing probes based on classification parameters; 

however, for this study, we had to determine the number of MuSIC probes that can 

be co-expressed on a cell at one time. We chose to look at normal human PBMCs, 

as they are cells commonly used for immune profiling (a popular form of cell-type 

profiling), and we determined that up to 5 markers in a typical immune profiling 

panel could be present in a single cell type. Based on this, we adjusted our 

simulation workflow to simulate mixtures of 5 MuSIC probes. Unmixing, 

classification, and probe removal was performed as previously discussed (Chapter 

5). Using the noise specifications and laser configurations of the 3-laser Cytek 

Northern lights and the 5-laser Cytek Aurora flow cytometers, we determined that 

191 and 265 MuSIC deconvolvable probes could be used for cell-type profiling, 

respectively (Fig 6.1C). While replicates of the simulations still need to be 

performed, these preliminary results suggest the capability of MuSIC probes for 

cell-type profiling at a scale that is not currently possible with currently used 

methods.    
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Figure 6.1 Simulating small-molecule fluorophore probes. (A) List of small 

molecule fluorophores used in simulations with their corresponding brightness and 

excitation and emission maximum wavelength. (B)  Forster Radius (R0) cutoff for 

probe selection. Only probes with an R0 greater than 5bp are selected. (C) The 

potential number of MuSIC probes that can be used in a panel for cell type profiling, 

given currently available flow cytometers. 

  

A B 
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Discussion 

Here we propose an approach for spectral flow cytometry-based, highly 

multiplexed cell-type profiling. This work builds on our previously developed 

simulation workflow for screening lists of spectrally unique MuSIC probes, given 

current technology. The novel concept introduced here is adapting the previous 

simulation studies to create combinations of small molecule fluorophores instead 

of fluorescent proteins and generate lists of MuSIC probes that can be used for 

cell-type profiling rather than genetic interaction screening. Here we simulate 

mixtures of 5 different small-molecule MuSIC probes (as this is likely the maximum 

number of immune profiling markers that can be simultaneously present in a single 

cell) and test whether they are likely to be deconvolvable in a mixture based on 

binary classification applications.  Using the results generated in this study, we can 

create panels of spectrally unique MuSIC probes based on current flow cytometry 

equipment constraints. These results show the potential for cell-type profiling of up 

to 265 cellular markers simultaneously using a Cytek Aurora flow cytometer.  

How might one execute cell-type profiling of 265 markers? In order to perform 

highly multiplexed immune profiling, we can leverage our previously developed 

method to covalently label antibodies with combinations of small molecule 

fluorophores (MuSIC probes).  In short, an oligo complex is created using 

complimentary oligos with internal fluorescent modifications to place combinations 

of small molecule fluorophores at specified distances and orientations from one 

another. Using a DBCO-Peg5- NHS Ester (linker), we can covalently bind the oligo 
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complex to an antibody. Using the panels generated here, we can covalently label 

antibodies with MuSIC probes and test these results experimentally by unmixing 

probes using a spectral flow cytometer.  
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CHAPTER SEVEN 

CONCLUSION 

Conclusions 

This dissertation broadly covers the various applications of combination 

fluorescent probes for biological and diagnostic applications. This work was 

inspired by the need to study cells and tissues quantitatively at a single-cell level 

for cancer research, diagnostics, and treatment. Current state-of-the-art 

fluorescent labeling techniques still lack the multiplexing capability to measure 

greater than forty analytes in a single cell, primarily due to spectral overlap 

between fluorophores. We propose here that combinations of fluorophores can be 

used to create new spectrally unique probes for fluorescent imaging and flow 

cytometry, thus increasing the multiplexing capabilities of these techniques. With 

increased multiplexing capabilities, a complete visualization of cellular markers, 

spatial organization, and gene function could be achieved, leading to improved 

cancer diagnostics and treatment.  

In chapter 2, we review current tissue imaging techniques and describe the 

advantages and disadvantages of each approach. We discuss fluorescent-based, 

mass spectrometry-based, and sequencing-based methods. Within fluorescent-

based methods, we further categorize methods by filter-based or spectral. Within 

the spectral methods, we introduce our previously developed method of 

Multiplexing using Spectral Imaging and Combinatorics (MuSIC), which the rest of 

the dissertation is built on.  
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In chapters 3 and 4, we present a technique to covalently label antibodies 

with combinations of small molecule fluorophores (referred to as MuSIC probes). 

In chapter three, we offer the initial antibody labeling protocol and validate it using 

spin column purification and absorbance measurements. In chapter 4, we improve 

this method to achieve an increased fluorescent signal of the MuSIC probe-labeled 

antibodies. We found that by changing the orientation of the fluorophores within 

the oligo complex, we can improve the fluorescent signal by ~6-fold over the 

previous method. The new labeling method is compared to a conventional antibody 

labeling kit for signal intensity by staining human cells to further test the new 

labeling method. Results showed an increased signal intensity of MuSIC-probe 

stained cells compared to cells stained with the conventional labeling kit. This 

shows our ability to label antibodies with combination probes with adequate 

staining intensity compared to conventional methods.  

In chapters 5 and 6, we introduce a simulation workflow to generate lists of 

MuSIC probes that, in theory, can be demultiplexed in a mixture. In chapter 5, we 

use a set of 18n currently available fluorescent proteins and generate MuSIC 

probes based on acceptable one-, two-, and three-way combinations of fluorescent 

proteins. We then introduce the concept of a MuSIC barcode (two MuSIC probes), 

which in theory, can be used to perform genetic screens, providing that MuSIC 

barcodes can be paired to guide RNA. We further predict the capabilities for 

genetic interaction screenings by using pairs of barcodes (four MuSIC probes) and 

find that we have the potential to perform genetic interaction screens at the human 
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genome scale. In Chapter 6, we adapt this simulation workflow to use a set of 30 

small molecule fluorophores and make MuSIC probes based on acceptable one- 

and two-way combinations. Here we simulate the capabilities of MuSIC probes for 

cell-type profiling and find that we have the potential to perform cell-type profiling 

of 200+ analytes.  

Future Work  

Future work involves the experimental testing of the lists of MuSIC probes 

generated in chapters 5 and 6. Using the procedure demonstrated in chapters 3 

and 4, antibodies can be labeled with the lists of MuSIC probes generated in 

chapter 6. Antibodies should be selected based on cell-type markers for the 

chosen cell line (here, we used human PBMCs). From here, cells stained with 

MuSIC probes will be analyzed using a spectral flow cytometer and compared to 

a commercially available panel. To start, groups of 40 MuSIC probes should be 

tested and compared against the state-of-the-art forty-color commercially available 

panel19 for signal intensity and % cells stained. Unmixing will be performed to 

determine which MuSIC probes can be accurately demultiplexed in a mixture. This 

method will be repeated until all 265 probes have been tested. Finally, the full list 

of the remaining MuSIC probes will be tested using an antibody panel compatible 

with the chosen cell line to test the unmixing capabilities of the complete list.  

The lists of MuSIC probes generated in chapter 5 should be used as a basis 

for the experimental testing of fluorescent-protein MuSIC probes for genetic and 
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genetic interaction screening. However, a method to pair the MuSIC barcodes to 

guide RNA must first be established, which will require future experimental design.  

Although the methods discussed in this dissertation focus on cancer, in 

theory, they are general and can be applied to any genetic disease. The ability to 

characterize and visualize cellular components at a single-cell resolution is 

instrumental in the design of biological and diagnostic applications.  
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