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ABSTRACT

Cancer refers to a group of diseases containing more than 200 different
subtypes. Cancer is a heterogeneous disease by nature, meaning that there are
differences among tumors of the same type in different patients, and there are
differences among cancer cells within a single tumor of one patient. Since cancer
is not a single disease, nor does it have a single cause, it proves to be incredibly
hard to diagnose and treat. The ability to study cellular markers, cell and tissue
spatial arrangement, and gene function are all integral parts of cancer diagnostic
and treatment efforts.

Here, | first present a review of current techniques for quantitative tissue
imaging at cellular resolution. | broadly divide currentimaging techniques into three
categories: fluorescence-based, mass spectrometry-based, and sequencing-
based. In this work, | primarily concentrate on fluorescence-based methods, with
the focus being on our recently developed theory Multiplexing using Spectral
Imaging and Combinatorics (MuSIC). The basis for MuSIC is to create
combinations of fluorescent molecules (whether it be small molecule fluorophores
or fluorescent proteins) to create unique spectral signatures.

| then present a protocol for labeling antibodies with combinations of small
molecule fluorophores, which | refer to as MuSIC probes. | use fluorescent
oligonucleotides (oligos) to arrange the fluorophores at specified distances and
orientations from one another in order to produce complex fluorescence spectra

when the probe is excited. This labeling protocol is demonstrated using a 3-probe
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experimental setup, bound to Protein A beads, and analyzed via spectral flow
cytometry. When translating this method to staining human cells, our staining
intensity was not comparable to that of a conventional antibody labeling Kkit.
Therefore, next | present an improved method to label antibodies with MuSIC
probes with increased signal intensity. | re-arrange the oligo-fluorophore
arrangement of the MuSIC probe to emit an increased fluorescent signal. Then |
validate this approach by comparing the staining intensity of MuSIC probe-labeled
antibodies to a conventional antibody labeling kit using human peripheral blood
mononuclear cells.

Lastly, | present simulation theories for the multiplexing capabilities of
MuSIC probes for various biological and diagnostic applications. First, | present a
theory for high-throughput genetic interaction screening using MuSIC probes
generated from 18 currently available fluorescent proteins. Simulation studies
based on constraints of current spectral flow cytometry equipment suggest our
ability to perform genetic interaction screens at the human genome-scale. Finally,
| adapt this simulation protocol to generate MuSIC probes from 30 currently
available small-molecule fluorophores. Using the same constraints as before, |
predict that | can perform cell-type profiling of 200+ analytes.

| hope that the work presented here provides a foundation for the use of
combination probes for various biological and disease applications and ultimately

help to better diagnose and treat different types of cancer.
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CHAPTER ONE

INTRODUCTION

Diagnosing and Treating Cancer

Cancer is a genetic disease that is caused by changes to genes, causing
cells to grow uncontrollably!. There are more than 200 types of cancer?.
Additionally, cancer is a heterogeneous disease by nature, meaning that tumors
can differ between patients (inter-patient heterogeneity), between different
metastatic tumors from a single patient (inter-tumor heterogeneity), and between
individual cancer cells within a single tumor (intra-tumor heterogeneity)3.
Furthermore, cancer is a dynamic disease, causing it to become more
heterogenous as the disease progresses®. This inherent heterogeneity causes
significant challenges for diagnosis and treatment®. Consequently, cancer is the
second leading cause of death worldwide (8.97 million deaths annually)®. For this
reason, the ability to study cell types along with cell and tissue architecture (i.e.,
the spatial organization of cellular and extracellular components) at a single-cell
level is crucial to our understanding of the disease and ability to detect and treat
it”.
How Do We Visualize and Study Cells?

There are hundreds of different cell types containing thousands of cell
markers in the human body®. Researchers have found many ways to study cells

and cellular function. Fluorescence-based methods, including cellular imaging and



flow cytometry, involve staining the cell/tissue sample with fluorescently labeled
antibodies and analyzing by collecting emission light from the sample when excited
at various wavelengths®. Non-fluorescence-based methods include mass
cytometry and single-cell sequencing. In mass cytometry, cell/tissue samples are
stained with isotopically pure rare-earth metal-labeled antibodies, and the sample
is ablated with a laser or ion beam to collect the composition of the sample™®.
Single-cell RNA sequencing (sc-RNA seq) can analyze the entire transcriptome of
single cells in a population/tissue sample. Sc-RNA seq has been combined with
spatial transcriptomics to maintain spatial information of RNA analytes, typically
lost during sc-RNA seq analysis''. Both of these methods have been instrumental
in cellular studies; however, mass cytometry and sc-RNA seq are more expensive
compared to flow cytometry and require the destruction of the acquired sample,
preventing the use for follow-up studies'>'4-13_ For this reason, fluorescence-
based methods have become an attractive candidate for high throughput, cost-
effective, and non-destructive analysis of cell/tissue samples.

What Are the Challenges with Fluorescent Multiplexing?

Central to fluorescence imaging and flow cytometry are fluorescent dyes
conjugated to antibodies, which enable measurement of target analytes such as
cell surface or intracellular markers®. Each fluorophore has a distinct excitation and
emission spectra, corresponding to the range of wavelengths at which it absorbs
and emits light. So, when the fluorochrome is excited, detectors and filters can be

used to detect signals from the specific fluorophore. When designing fluorescent



antibody panels, it is critical to choose fluorophores with distinct excitation and
emission peaks from one another in order to minimize spectral overlap. Spectral
overlap occurs when fluorescence from more than one fluorochrome is detected,
making it difficult to distinguish individual fluorophores (Figure 1.1). For this
reason, the use of fluorescent antibodies for conventional filter-based flow
cytometry is typically limited to only 4-5 fluorescent dyes that can be used
simultaneously in a panel for cell staining, however up to ~10-15 have been
reported, as the dyes need to have distinct emission peaks from one another's-17.
One method that scientists have used to overcome this is using repeated rounds
of 4-color staining, imaging, and bleaching, in methods such as MxIF, CyCIF, and
4i. By using rounds of staining, up to 60 analytes can be visualized per sample.
However, repeated rounds of staining and bleaching become time-consuming and

can lead to sample degradation over time.

488nm 488nm
PE
PE
e Emission
Excitation
380 480 580 680 380 480 580 680
Wavelength (nm) Wavelength (nm)

Figure 1.1. Spectral Overlap Between Two Fluorophores



Benefits of Spectral Data Collection

Recent technological advancements have led to spectral imaging/flow
cytometry. Here, the entire emission spectrum of each fluorochrome is collected
using a series of detectors, generating an entire spectral profile for each

fluorophore, rather than only identifying the peak of emission (Figure 1.2)'8.
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Figure 1.2. Licensed from Bonilla et. al (2021). Full Spectrum Flow Cytometry
Diagram
Spectral unmixing refers to the mathematical algorithm that deconvolves

the multiple fluorophore signatures within a mixture of fluorophores. This allows



the spectral signatures from each fluorophore to be used to isolate the profiles of
each individual fluorophore, using spectral unmixing. This gives an advantage over
traditional fluorescence imaging and flow cytometry in that, so long as there are
distinct spectral signatures, fluorophores with similar peak emissions can be used
in the same panel. Using full spectrum flow cytometry, fluorescent antibody panels
using 40 parameters have been designed and demonstrated'®. However, further
development in this area is impeded by the number of commercially available dyes
compatible in a single panel.
Combination Fluorescent Probes

To increase the number of dyes compatible for panel design, we look
towards a phenomenon known as Forster resonance energy transfer (FRET).
FRET occurs when a higher energy fluorophore (the donor) transfers energy to a
lower energy fluorophore (the acceptor) when they are in close proximity, which
produces a unique emission spectra?’. The efficiency of FRET is directly related to
the orientation of and distance between the two fluorochromes. This concept is
central to our recently developed method Multiplexing using Spectral Imaging and
Combinatorics (MuSIC), in which stable combinations of fluorophores are used to
create MuSIC probes with unique spectral signatures using commercially available
dyes?'?2. If a fluorophore combination exhibits sufficient FRET, then
mathematically, its probe levels can be estimated along with that of the single
fluorophores that make up the combination. Picture a 3-probe experimental setup

(m=3). The emission spectra of the mixture of fluorophores (m) are arranged



vertically by emission wavelength per each excitation wavelength. Then, each
column in R is the emission spectra of each individual probe, arranged the same
way. When solving this matrix, the resulting output is f, each component's

individual probe levels (Figure 1.3)?".

A noo= R f
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g 1 430 [ [ p1430  pA- 430 T p~430 ]
lengths /‘21 Rlﬂ1 ]‘22/11 R3/11
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—] _'_L{a"_rezn_l._ __.-__8_1 ﬂzrslul____@_z.iqmul _____ I_Q_ ?.’q_vw_nl__ f
1505 | 1 o1 505 DAS0S DA 505 2
Excitation . . . . S
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Adapted from Holzapfel et. al (2018)
Figure 1.3 Licensed from Holzapfel et. al 2018. The Mathematical Basis for MuSIC
Dissertation Overview
This dissertation explores the use of combination fluorescent probes for a
variety of biological and diagnostic applications. Specifically, we explore the use

of combination (or MuSIC) probes for spectral imaging and spectral flow cytometry.



Potential applications for MuSIC probes include cell/tissue imaging, cell-type
profiling, and genetic and genetic interaction screenings.

In chapter two, we begin by reviewing cell and tissue imaging methods at a
cellular resolution. Tissue imaging can be broadly divided into three categories;
fluorescence-based, mass spectrometry-based, and sequencing-based.
Furthermore, we look into various methods available for data analysis.

Chapter three introduces a protocol for labeling antibodies with MuSIC
probes. Using an oligo-based approach, we show our ability to stably bind
combinations of fluorophores to antibodies and validate this using spin column
purifications and absorbance measurements. We then create a panel of three
probes and demonstrate our ability to unmix these probes using spectral flow
cytometry.

In chapter four, we build upon the labeling strategy presented in chapter
three to translate this method into staining human cells. Upon testing the labeling
strategy described in chapter three by staining human peripheral blood
mononuclear cells (PBMCs), we found a significantly lower fluorescent signal of
our probes than cells stained with conventionally-labeled fluorescent antibodies.
By changing the design of our probes and re-arranging the oligo-fluorophore
configuration, we demonstrate our ability to stain human PBMCs at a signal
intensity above that of the conventionally-labeled fluorescent antibodies.

In chapter five, we introduce a theory for high-throughput genetic interaction

screening. Using our simulation workflow, we generate lists of MuSIC probes that



we predict can be accurately demultiplexed in a mixture together based on binary
classification patterns. If these MuSIC probes can be paired with guide RNAs, we
predict we can perform genetic interaction screens at the genome level.

In chapter six, we build upon the simulation workflow presented in chapter
five and the labeling strategies presented in chapters two and three to propose a
method for determining lists of MuSIC probes using small molecule fluorophores
that can be accurately demultiplexed in a mixture for antibody labels. We predict
that using 30 currently available small molecule fluorophores, we can create
fluorescent antibody panels for over 200 markers using currently available spectral
equipment.

In chapter seven, we discuss the broad conclusions of this work and
propose future directions of the ideas presented in this dissertation. Experimental
testing of the simulation study presented in chapter six, using the labeling
techniques described in chapters three and four, will lead to the establishment of
a full panel of demultiplexable MuSIC probes for fluorescence-based biological and

disease diagnostics.



CHAPTER TWO
HIGHLY-MULTIPLEXED, QUANTITATIVE TISSUE IMAGING AT CELLULAR

RESOLUTION

Abstract

There is a contemporary push to map tissues and their disease states
quantitatively at single-cell and spatial resolution, but standard assays to do so,
such as immunohistochemistry, have been historically lowly multiplexed (2-4
measurements). This push has driven the development of several new multiplexed
techniques for quantitative tissue imaging, which we review here. Standard
multiplexed imaging is primarily limited by fluorophore spectral overlap.
Innovations increasing multiplexing capacity include iterative cycles of staining /
bleaching / imaging, imaging mass spectrometry with metal-conjugated antibodies,
leveraging fluorophore combinatorics, and coupling to sequencing-based
methods. Recent progress has increased image-based multiplexing roughly 10-
fold, and in some cases of nucleic acid analytes, to genome-scale. This has given
unprecedented biological and disease knowledge, but there is still substantial work
to achieve genome-scale across all types of analytes, as well as spatial scales
greater than ~millimeters. Concomitantly, challenges in data storage, retrieval and

analysis will need to be solved moving forward.



Introduction
Human tissues consist of complex networks of interacting cells 23 242526, The

architecture of a tissue, and to a large extent function, is defined by spatial
organization of its cellular and extracellular compartments 27 28 29, The architecture
of normal and diseased tissues influences the development of a disease as well
as receptiveness and resistance to therapy 3° 3'. The ability to characterize and
gain further understanding of tissue architecture through imaging has driven
progress in biology and pathology 32 33 34 35 Immunohistochemistry (IHC) is a
conventional tool used in clinical diagnostics and research laboratories to assess
the spatial distribution of typically two to four analytes in a single sample 36 37 38 39
4041 However, IHC has a variety of limitations, such as the requirement of a new
sample or serial section for each analyte set, which limits multiplexing, and non-
linear relationships between analyte abundance and staining intensity (when
fluorescence is not used), which limits quantification 42 43. Other methods exist
which are highly multiplexed and provide quantitative data, such as deep
sequencing, or even single-cell sequencing “4. However, they have the limitation
that spatial information in a tissue is often lost 4°. There is currently a large
technological gap for methods that are image-based but offer more quantitative
multiplexing at single-cell spatial resolution 2.

There are a variety of biological and disease applications for multiplexed
tissue imaging; one example is cancer #?. The NIH-funded Human Tumor Atlas
Network was established to, in part, complement the tremendous efforts of The

Cancer Genome Atlas with spatial information *. Tumor heterogeneity is multi-
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dimensional including variation in driver mutation profiles across space,
extracellular matrix structure, soluble factor and oxygen gradients, as well as
multiple important cell types such as immune infiltrates and tumor-associated
fibroblasts that interact with tumor cells to influence tumor microenvironment 47 48
49 50 51 82 Thijs inherent tumor heterogeneity makes diagnosis, prognosis, and
treatment a challenge because of its unknown impact on the tumor’s evolution and
drug sensitivity profile 47 53 54 55 More highly-multiplexed imaging tools and
techniques will facilitate characterizing and better understanding tumor
heterogeneity, helping to inform diagnosis, prognosis, and treatment.

In this review, we survey recent advances in image-based multiplexing
technologies capable of single-cell spatial resolution, with focus as well on their
quantitative features to some extent. Although major advances have been made
with radiological methods including PET, CT and MRI, we focus this review on
techniques with higher spatial resolution, and rather refer the reader to other
resources on such topics 56 57 %8, These technologies can generally be divided into
three categories: fluorescence-based, mass spectrometry-based, and very
recently sequencing-based, which we enumerate below and are summarized in
Table 2.1 and Figure 2.1. These advances in imaging techniques have enabled
the analysis of significantly more parameters in cells and tissues than what was
previously possible, enabling significant progress towards deeply characterizing
the tumor microenvironment and other tissue or spatial analyses—a new grand

challenge of biology for the 215t century post-genomic era.
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Table 2.1 Specifications of available highly multiplexed imaging methods.
Important aspects of each method are described, such as differences in degree
of multiplexing, assay duration, major equipment, and major reagents. TOF: time

of flight, FISH: fluorescence in situ hybridization, H&E: haemotoxylin and eosin.
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Mass
Spectrometry
Methods

Fluorescence
Imaging
\ Methods

Sequencing
Methods

Non-Spectral

Spectral

Rare-earth metals

w:%e.rm o) Slide-Seq (transcriptome)

MuSIC (9) MxIF (60)
Hyper-Spectral (7) 4i (40)
sFLIM (9) CyCIF (60)
CODEX (66)
Super-Resolution Barcoding (transcriptome)

Figure 2.1 Schematic of available highly multiplexed imaging methods. The
current highly multiplexed imaging techniques can be grouped into three general
categories: mass spectrometry based, fluorescence based, and sequencing
based. Rare earth metals attached to antibodies are depicted for mass
spectrometry. The fluorescence imaging methods can be further divided into
spectral and non-spectral subcategories. Fluorescence intensity data of two
fluorophores exhibiting FRET are depicted for spectral and the general procedure

for cycles of non-spectral fluorescence imaging are depicted for non-spectral
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fluorescence imaging. Sequencing data for a given tissue sample is shown for

sequencing methods. The methods are further described in the text. 124,
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Fluorescence-Based Methods

Central to fluorescence microscopy are fluorescent dyes attached to affinity
binders, such as antibodies or oligonucleotides, which then associate with a
targeted analyte, such as proteins, RNA or DNA, allowing visualization and
analysis %°. Fluorescence-based methods can be divided into filter-based and
spectral techniques. Filter-based fluorescence imaging uses optical films that allow
relatively broad wavelength ranges of light to excite fluorophores in samples and
the subsequent emission light to pass onto a detector, but multiplexing is limited
usually to about four colors by inevitable spectral overlap. Spectral overlap occurs
when fluorophore’s excitation and/or emission spectra share substantial
wavelength ranges, such that filters cannot efficiently separate them. Spectral
(also called hyper-spectral) imaging partially overcomes this issue of overlap
because much finer wavelength resolution for fluorescence emission is obtained
60 61 by using, for example, monochromators, prisms and/or diode arrays ©2.
Currently, filter-based methods are the predominant modality because of simplicity
and cost.

There are currently a wide variety of different reporter agents available for
these techniques. A few examples of these include small molecule, 83 64
85 fluorescent proteins, % 67 68 photo-switchable %° 70 71 quantum dots 72 73 74,
polymer dots 7® 76, and endogenous fluorescence 77 78 79,

Filter-based
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Filter-based fluorescence imaging is the most widely used method for
visualizing cells and tissues. There are a variety of established textbook protocols
(e.g. @ #), and the required equipment is generally cheaper and more readily
available than that for the methods that will be later described.

One way to achieve higher multiplexing is to simply perform repeated
rounds of staining and imaging, with bleaching of fluorophores between rounds.
Several recent techniques leverage this principle, including multiplexed
fluorescence microscopy (MxIF) &, iterative indirect immunofluorescence imaging
(4i) 83, cyclic immunofluorescence (CyclF) 8 8 and co-detection by indexing
(CODEX) 8. These methods are in principle compatible with formalin fixed paraffin
embedded (FFPE) tissue, a common format for preserving samples. They are
limited by sample degradation across and the duration of each cycle .

MxIF measures up to 60 analytes in a single FFPE tissue section using
fluorophore-conjugated primary antibodies 8. The MxIF procedure consists of
acquiring background autofluorescence, staining with four colors (one typically
DAPI for nucleus fiduciary in each round), acquiring immunofluorescence, dye
inactivation using alkaline oxidation chemistry, acquiring new background
autofluorescence, re-staining with new fluorescent dye-conjugated primary
antibodies, and acquiring new images 82. The cycle is repeated until all target
analytes are measured. This technique was used to examine colorectal cancer

specimens and allowed the mapping of cellular mechanistic target of rapamycin
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complex 1 (mTORCI) and MAPK signal transduction patterns in tissues &2, as well
as in other applications 87 s,

CyclF assembles up to 60-plex images of tissue sections via successive
rounds of four-channel imaging 8, similarly to MxIF. Cycles involve four steps:
immunostaining with fluorophore-conjugated primary antibodies, staining with a
DNA dye to mark nuclei and facilitate image registration across cycles, four-
channel imaging at low- and high-magnification, fluorophore bleaching (oxidation
in a high pH hydrogen peroxide solution in the presence of light) followed by a
wash step, and then subsequent rounds of staining &4, 8. CyclIF is partly limited by
the assay duration as each cycle takes roughly 24 hours to complete, but also by
sample degradation similar to MxIF 8 8. A major difference between CyclF and
MxIF is that MxIF requires more expensive reagents and equipment, but has a
shorter assay duration .

The 4i method can detect up to 40 analytes 8. So-called “indirect
immunofluorescence” uses an unconjugated primary antibody and a fluorophore-
conjugated secondary antibody, rather than a single primary antibody directly
conjugated to the fluorophore, resulting in compatibility with “off-the-shelf”
antibodies. This is the main distinctive feature of 4i. The 4i technique has been
used to create multiplexed protein maps in different phases of the cell cycle, in
response to cell crowding, inhibitors, and different growth conditions °'.

CODEX has visualized up to 66 DNA-conjugated antibodies in a single

image . The barcode information is encoded by an overhang sequence on the
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DNA duplex that is read off in cycles of two-color imaging. Thus, 66 antibodies
need 33 rounds of imaging. Overhang lengths on each antibody can be as small
as two (1 color code) or as large as feasible for the experiment time scale and
sample degradation of cycling. Two types of “walking” nucleotides (G and A) are
used to traverse the overhang, and then other two (U and T) are labeled with either
Cy3 or Cy5, respectively. First, a reaction mixture leaving out A is incubated on the
antibody-stained sample. Only overhangs with C as the first base in its sequence
are capable of incorporating a fluorescently labeled nucleotide, and then, CG
would get a Cy3 label, and CA would get a Cy5 label. Other overhangs with a CT
sequence do not yet receive a color. Next, a reaction mixture leaving out G is
incubated on the sample. Then, CTG would get a Cy3 label, and CTA would get a
Cy5 label. Other overhangs with a CTC sequence do not yet receive a color. This
strategy is repeated for multiple rounds of extension on the overhang to perform
the multiplexed imaging. Thus, the barcode is then the combination of the round in
which a signal was detected, plus whether the color was Cy3 or Cy5. CODEX was
used to determine that significant changes in expression levels in certain markers,
such as B220, CD79b, or CD27 are dependent on the tissue microenvironment in
which the cells reside 8. This drove the conclusion that cell populations that are
currently thought of as broadly expressing a certain marker are actually comprised
of multiple sub phenotypes that correlate with the indexed niche identity 2.

There are also non-spectral techniques that do not involve cycles of

imaging, but rather use super-resolution microscopy and combinatorial labeling °2.
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This method has many similarities to standard fluorescence in situ hybridization
(FISH) involving fluorophore-conjugated oligonucleotide probes complementary to
mRNA targets 9 9 9 However, because in super-resolution microscopy, which
drives beyond the diffraction limit, each mRNA molecule can be spatially resolved
in a single pixel (or voxel) and can hybridize to several different color probes, the
potential combination of fluorophores in each pixel (or voxel) can be used to
multiplex mRNA measurements. Simple counting of spots with matched
fluorophore combination barcodes is the quantitative readout. In proof-of-principle
studies, three color barcodes with seven fluorophores were used to profile
transcripts from 32 stress-responsive genes in single S. cerevisiae cells. Thus, a
transcript is defined by a combination of 3 colors from 7 choices. The results were
confirmed to match to that expected from more conventional readouts % °2.

In a recent follow-up, this approach was scaled transcriptome wide
(~35,000 transcripts / cell), in a technique called seqFISH+, which combines the
super-resolution notion with the repeated rounds of imaging principal from above
9. Here, the innovation was switching from transcripts having real color barcodes
to having “pseudo-color” barcodes. Now, each transcript is only labeled with a
single color fluorophore, but is assigned a pseudo-color (1 to 20) based on when
this fluorescence signal is observed over 20 sequential rounds of hybridization.
This has the added benefit of having only 1/20" of the transcripts in the cell
showing a signal in a particular image. Then, these 20 sequential rounds of

imaging are repeated 4 separate times in an “outer loop” of barcoding rounds. In
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barcoding rounds, the hybridization round where a fluorescence signal appears (1
to 20) can be different for each gene, giving rise to a possible number of
permutations on par with the genome.

Another non-spectral technique that does not involves cycles of imaging is
fluorescence lifetime imaging microscopy (FLIM). FLIM works by determining the
lifetime of the excited state in order to characterize the molecular species 8. This
is used to characterize the environment of the fluorophore %. Within FLIM there
are two distinct methods; the time-domain method and frequency-domain method
99100 Time-domain FLIM works by collecting the decay at each pixel and excitation
and intensity are plotted against time for each pixel. This is then fit to an
exponential curve to determine the fluorescence lifetime °° 1%, Frequency-domain
FLIM operates by taking measurements at different excitation frequencies and
determining the phase and amplitudes at the different frequencies. The data is
then fit to exponential models and analyzed '°°. These two complementary
methods have their own advantages and disadvantages. Time-domain FLIM has
a higher sensitivity for measurements with low fluorescence with a single-photon
timing technique, whereas frequency domain FLIM is generally faster and
electronics are simpler %° 102,

Sample quality becomes increasingly important with cycles of imaging and can
become a major limiting factors for these methods. The extent of sample
degradation can vary between tissue type and within a single tissue type 8°. For

CyCIF, it was found that half of the tissue samples tested could be routinely
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imaged up to 15 cycles with 20% loss of cells 8. Further testing of the effect on
different types of tissues in response to the number of cycles can be seen in

figure 4E from Lin et. al (2018) 8°.

Spectral

Spectral imaging acquires much finer emission wavelength information than
non-spectral imaging, which allows one to quantify mixtures of fluorophores with
potentially heavily overlapping spectra. Similar to filter-based techniques, spectral
imaging might also be performed using multiple rounds of labeling, although this
has not yet been described to our knowledge. However, it is currently less popular
than non-spectral imaging because the equipment is more expensive, and the
technique is less established and therefore more difficult.

Spectral imaging techniques are largely called hyper-spectral, and have
been used to image up to seven analytes simultaneously in tissues 103 61 104 105 106,
and even live cells %7, Analysis is broadly called linear unmixing, which applies the
principle of additivity of fluorescence emission spectra to cast a linear algebra
problem, which when solved gives the levels of the individual fluorophores in each
pixel. Multiple fluorophores from ultraviolet to infrared are used with (typically)
three (or more) excitation channels. Design of spectral imaging experiments is
more complex than filter-based, but there are metrics that can be used to help,
such as the Figure of Merit (FoM) 1%, The FoM indicates how well a given imaging

protocol performs for a set of fluorophores, relative to the case that these
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fluorophores are present singularly and that their fluorescence can be measured
noiselessly '%. Many modern and widely available confocal microscopes also have
an ability to perform emission spectral scans. Hyper-spectral fluorescence imaging
has a variety of medical applications, including disease diagnosis and image-
guided surgery '. Although not tissue imaging, also of note are recent flow
cytometers that can perform spectral imaging, such as Cytek Aurora '%.

Fluorescence multiplexing using spectral imaging and combinatorics
(MuSIC) builds on spectral imaging but uses single or covalent combinations of
existing fluorophores to significantly increase the number of multiplexed analytes
10, If a fluorophore covalent combination probe exhibits significant Forster
resonance energy transfer (FRET), then mathematically, adding this probe to the
linear unmixing problem is “well-posed” and its levels can be estimated along with
the single fluorophores that make up the combination. Multiplexing up to 9 such
MuSIC probes was demonstrated in solution-based assays over a restricted
excitation wavelength window (~1/4 of that available), and it has the potential to
scale to ~30 analytes '"°. MuSIC is compatible with the bleach-and-restain ideas
from above, so multiplexing is potentially multiplicative when combining the two
ideas. Moreover, because it has been shown to be compatible with fluorescent
proteins, it is in principle compatible live cells or tissues.

Another method for spectral imaging is spectrally resolved fluorescence
lifetime imaging microscopy (sFLIM). sFLIM is capable of multi-target fluorescence

imaging through confocal sample scanning with pulsed excitations at 485nm,
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532nm, and 640nm and time-correlated single-photon counting (TCSPC) on 32
spectrally separated detection channels '''. Similar to MuSIC, a pattern-matching
algorithm is used to determine the individual contribution from each fluorophore to
the overall multidimensional fluorescence signal. The algorithm is based on
reference patterns of fluorescence decay and spectral signatures from various cell
samples that are labeled with different fluorescent probes. First the sample is
excited by the three lasers (485nm, 532nm, and 640nm) then the fluorescent light
is split into 32 channels, where the spectral information is recorded. The spectral
information is then analyzed by TCSPC. sFLIM has been used to visualize nine

different target molecules simultaneously in mouse C2C12 cells ',
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Mass Spectrometry-Based Methods

In addition to fluorescence, there are also highly multiplexed mass
spectrometry methods for tissue imaging. Here, cells are typically stained with
metal-conjugated antibodies, whose levels then can be quantified with mass
spectrometry 2. It is easier to multiplex using mass spectrometry as compared to
fluorescence imaging because there is negligible spectral overlap. Signal-to-noise
is also improved because employed metals are essentially non-existent in tissues.
However, the specialized mass spectrometry equipment (and to some extent
reagents) that interfaces with imaging is significantly more expensive and not as
widely available.

Current mass spectrometry methods include imaging mass cytometry (IMC)
113 and multiplexed ion beam imaging (MIBI) "2, both of which multiplex using a
panel of primary antibodies conjugated with isotopically-pure, rare-earth elements
(e.g. lanthanides) ''3. Metals are conjugated to antibodies via a polymeric metal-
chelating linker that is covalently linked to antibodies, or with metal nanoparticles
14 In IMC, once a tissue sample has been stained with the metal-conjugated
antibodies, it is dried and then positioned in a laser ablation chamber '3, The tissue
is then ablated spot by spot and line by line, which sends material via a mixed
argon and helium stream to a CyTOF mass cytometer '3, This method is capable
of 32 simultaneous measurements "%, IMC has been used to assess the immune
microenvironment in breast cancer tissue, leading to the hypothesis that

trastuzumab-treated patients with high tumor-infiltrating lymphocyte levels have
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improved outcomes ''6. MIBI is similar to IMC, but uses an ion beam ablation
(rather than a laser), and thus has slightly different mass spectrometry
requirements 2 115 Biological specimens are immobilized on a conductive
substrate, stained with metal-conjugated antibodies, dried, and loaded under
vacuum for MIBI analysis ''2. This method has been used to image 40 analytes
simultaneously in breast tumor tissue sections, but is potentially capable of up to

100 112 117_
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Sequencing-Based Methods

So far, highly multiplexed sequencing methods that have transformed
genomics, transcriptomics, and epigenomics have not been highly compatible with
imaging. However, a recent technological advancement called Slide-seq has
enabled the transfer of RNA from tissue sections onto a surface packed with DNA-
barcoded beads at specified positions, allowing the spatial analysis of gene
expression in a tissue at ~10 um resolution '8, This method first involves packing
of the DNA-barcoded beads on to a rubber-coated glass coverslip, called the
“puck”. This is followed by oligonucleotide ligation and detection (SOLID)
sequencing to determine each bead’s distinct sequence and x-y location 8. A
tissue section is placed on the “puck” and mRNA from the tissue is captured by the
beads with minimal lateral x-y diffusion. After capture, the bead / tissue section
combination is homogenized and prepared for mRNA sequencing (via more
standard lllumina-based methods), which subsequently allows relating
transcriptomes to spatial locations. Using Slide-seq, it was determined that cell
proliferation occurs in the first few days after a traumatic brain injury and then
transitions to differentiation in the following weeks '8, The main costs associated
with this method seem to be related to the price of the pucks. As the price of these
“‘pucks” and the associated sequencing drop, there is potential to be able to apply
this method to entire organs or even entire organisms ''®. One could similarly
envision coupling other nucleic acid-based conjugate technologies to enable Slide-

seq on analytes other than mRNAs.
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Data Analysis

Multiplexed image data are powerful but also come with several data
handling, visualization, and analysis challenges, which are just beginning to be
explored. Some of these techniques include VviSNE , which is used for
dimensionality reduction ''°, multi-omics heterogeneity analysis (MOHA), which is
used for image processing and visualization 47, open microscopy environment
remote objects (OMERO) servers, which are used for data handling, and multiplex
image cytometry analysis (miCAT / histoCAT) , which is for data handling and
analysis '2° 12! viSNE is a technique that allows visualization of high-dimensional
single-cell data on a two-dimensional map and is based on the now widespread t-
distributed stochastic neighbor embedding (t-SNE) algorithm 19 22_|n this method,
each cell is represented as a point in high-dimensional analyte space, with each
dimension being measurement of one analyte ''°. An optimization algorithm
searches for a projection of the points from the high-dimensional space into two or
three dimensions to the extent that pairwise distances (e.g. Euclidian) between two
points (cells) are best conserved between the high- and low-dimensional space
119, Coupled with mass cytometry, ViSNE was used to compare leukemia diagnosis
and relapse samples "%, This method could also be applied to IMC or MIBI but
requires additional image analysis steps to obtain single-cell data.

The MOHA tool computes tissue heterogeneity metrics from multiplexed
image data by combining single-cell molecular summary measures with pre-

existing knowledge of biological pathways to assign states to cells in the tissue 4.
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This is followed by using positional cell information to compute spatial cell state
distributions, and importantly, correlations between neighboring cell types. It then
computes tissue heterogeneity and diversity measures of the cells from the
observed distributions of these molecular and spatially defined states 4. This
technique was used to identify statistically significant correlations between the
intratumoral AKT pathway state diversity and cancer stage and histological tumor
grade #'.

OMERO is a flexible software platform that provides a structured storage
format for a range of biological data, including images '?3. It is used to provide
storage access, processing and visualization without downloading entire datasets
123, OMERO has been used in a variety of applications, including CyclF .

miCAT and histoCAT are analyses platforms that are used for quantitative
and comprehensive visualization of cell phenotypes, cell interactions,
microenvironments, and tissue structures 2! 120, They are coupled with IMC to
investigate cellular phenotypes and microenvironments of human breast cancer,

allowing insight into the network structure of cell neighborhood interactions 2! 120,
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Conclusion

The methods described here have increased our ability to quantitatively
understand the interactions between different biological components in tissues and
the regulatory networks in single cells, but importantly, retaining information on
how it was arranged spatially. This has and will continue to transform our ability to
understand biology and disease. Although multiplexed tissue-imaging has come a
long way in the past decade, there remains much work to be done to go from the
currently possible dozens of measurements to the proteome scale, especially with
post-translational modifications. Very recent methods have begun to approach this
scale for the transcriptome. The possibility of combining methods described here
could multiplicatively increase the amount of quantitative information that can be
obtained. For example, CyclF might be combined with super-resolution imaging,
and/or with MuSIC-based approaches to increase the potential number of
simultaneous measurements. Moreover, it is not only multiplexing that needs to
improve further. Currently, covering more than ~millimeter length scales
comprehensively is extremely challenging other than by brute force with time and
money; innovation here is also needed to truly multiplex tissue imaging, where
important changes happen over centimeter (and greater) scales. Tissue clearing
techniques will likely play a large role here 5. We expect yet still much innovation
in these directions in the next several years towards the genome-scale, whole

tissue or even whole-body quantitative, single-cell imaging end goal.
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CHAPTER THREE
PROTOCOL FOR LABELING ANTIBODIES WITH COMPLEX

FLUORESCENCE SPECTRA

Abstract

Fluorescent antibodies are a workhorse of biomedical science, but
fluorescence multiplexing has been notoriously difficult due to spectral overlap
between fluorophores. We recently established proof-of-principal for fluorescence
Multiplexing using Spectral Imaging and Combinatorics (MuSIC), which uses
combinations of existing fluorophores to create unique spectral signatures for
increased multiplexing. However, a method for labeling antibodies with MuSIC
probes has not yet been developed. Here, we present a method for labeling
antibodies with MuSIC probes. We conjugate a DBCO-Peg5-NHS ester linker to
antibodies, a single stranded DNA “docking strand” to the linker, and finally,
hybridize two MuSIC-compatible, fluorescently-labeled oligos to the docking
strand. We validate the labeling protocol with spin-column purification and
absorbance measurements. We demonstrate the approach using (i) Cy3, (ii)
Tex615, and (iii) a Cy3-Tex615 combination as three different MuSIC probes
attached to three separate batches of antibodies. We created single, double, and
triple positive beads that are analogous to single cells by incubating MuSIC probe-

labeled antibodies with protein A beads. Spectral flow cytometry experiments
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demonstrate that each MuSIC probe can be uniquely distinguished, and the
fraction of beads in a mixture with different staining patterns are accurately
inferred. The approach is general and might be more broadly applied to cell type
profiling or tissue heterogeneity studies in clinical, biomedical, and drug discovery

research.
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Introduction

Ultraviolet-to-infrared fluorescence is a bedrock of experimental science,
particularly the biomedical sciences. However, multiplexing—the simultaneous
analysis of multiple fluorophores in a single sample, is severely limited by spectral
overlap'®-128 where excitation and/or emission spectra of fluorescent probes
share broad wavelength domains. Spectral overlap limits most standard
fluorescence assays to 2-4 readouts at a time. Yet, many applications would
benefit from increased fluorescence multiplexing capabilities; one example is
cancer. Tumor heterogeneity is multi-dimensional, including spatial variation in cell
type, driver mutation profiles, protein expression, and oxygen/metabolic
gradients'?®-134_ As a result, there are hundreds of markers that have an impact on
a tumor’s evolution, fitness, and drug sensitivity 5129135,

Current sequencing methods can reach high levels of multiplexing and have
been used in cancer diagnosis and prognosis'3®-138_ Yet, the now somewhat
standard biopsy- or homogenized tissue-based deep DNA or mRNA sequencing,
and now increasingly single-cell sequencing'3®-'4!  largely do not allow for spatial
resolution. However, some recent sequencing-based methods can provide spatial
in situ data'#?-'45, Sequential fluorescence in situ hybridization (seqFISH+) is
capable of transcriptome-wide imaging in single cells but has challenges in scaling
to large numbers of cells or large areas of tissue sections. Slide-seq, alternatively,
made mRNA sequencing compatible with tissue section imaging over large spatial

scales with ~10 um resolution’8. Although powerful advances, such sequencing
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methods cannot yet fully capture the heterogeneity of tissue samples, which
includes single and subcellular resolution and molecules other than mRNA (i.e.,
DNA, proteins, post-translational modifications, etc.). On the other hand, antibody-
based imaging can access multiple molecule types at single and subcellular
resolution while also spanning physiologically relevant length scales. Therefore,
increased antibody multiplexing capabilities remain highly complementary to these
sequencing-based methods.

There have been many recent advances for increased antibody-based
multiplexing with single cell and subcellular spatial resolution, most of which use
standard “filter-based” instrumentation that robustly allow imaging 2-4
fluorescence colors simultaneously. A widely adopted strategy is repeated rounds
of staining, imaging, and bleaching of fluorophores'4’=%9, By performing multiple
cycles of 2-4 color imaging, these methods drastically increase fluorescent
multiplexing capabilities (up to 60 analytes). Multiplexed fluorescence microscopy
(MxIF) was the first but requires proprietary and expensive equipment /
reagents'’. Cyclic Immunofluorescence (CyCIF) is similar in principle but uses
inexpensive reagents and standard equipment'4®%! Similar to MxIF and CyCIF,
Iterative indirect immunofluorescence imaging (4i) uses cycles of imaging but
leverages fluorophore-conjugated secondary antibodies rather than fluorophore-
conjugated primary antibodies as in the above techniques, allowing the use of “off-
the-shelf” primary antibodies’#. Another method that uses staining and bleaching

cycles is co-detection by indexing (CODEX)'®°, but it differs from the above
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methods as it uses DNA-conjugated antibodies and sequencing-like methods to
multiplex. While these cyclic methods have significantly expanded multiplexing
capability, a primary limitation is the number of rounds of imaging that are possible
before sample degradation begins to occur. Additionally, the length of time each
round takes to complete, multiplied by the number of rounds, can make these
methods excessively time-consuming.

Another way to achieve higher degrees of antibody multiplexing is by
labeling antibodies with isotopically pure rare earth metals, such as in imaging
mass cytometry (IMC) %2 and multiplexed ion beam imaging (MIBI) '%3. IMC and
MIBI can respectively image 32 and 40 analytes simultaneously from a tissue
sample. The use of mass spectrometry for quantification makes these techniques
easier to multiplex compared to ones that use fluorescence, as they are not limited
by spectral overlap. However, these methods use a laser or ion beam to ablate the
sample, destroying the sample and preventing further analysis or use, including
cyclic methods as above. Additionally, the specialized equipment and reagents
required for these techniques can be more expensive than standard fluorescence
microscopes and antibodies, making them not as widely available.

The fluorescence-based techniques that were previously described use
“filter-based” imaging that lumps emission wavelengths together and thus restricts
multiplexing to 2-4 channels, but some have instead used spectral imaging that
measures emission intensity with much finer wavelength resolution. Fluorescence

emission follows the principle of linear superposition, meaning that the emission
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spectra of a mixture of fluorophores can be cast as a sum of contributions from
individual probes using a matrix equation. Solving this matrix equation for the
levels of individual probes, given the spectra of the mixture and each isolated
probe, is called unmixing. These “hyperspectral’ techniques have been used to
image up to seven analytes simultaneously in tissue sections'?7:154-157  CLASI-
FISH (combinatorial labeling and spectral imaging - fluorescence in situ
hybridization), which builds upon traditional spectral imaging, classifies up to 15
microbe types using probe combinations'®®. One constraint of CLASI-FISH is that
probes must be spatially segregated for demultiplexing. Spectrally resolved
fluorescence lifetime imaging microscopy (sFLIM)'® combines spectral imaging
with fluorescence lifetime information and can multiplex nine antibodies
simultaneously.

We recently developed an approach called Multiplexing using Spectral
Imaging and Combinatorics (MuSIC), which leverages currently available
fluorophores along with the power of combinatorics to increase the number of
available probes for simultaneous staining?!. MuSIC probes are created using
Forster resonance energy transfer (FRET)-producing fluorophore combinations,
which results in a unique probe emission spectrum that is linearly independent
from that of the individual fluorophores that make up the combination, enabling
unmixing. Our previous work, based on simulation, suggested that MuSIC may
increase simultaneous fluorescence multiplexing capabilities ~4-5 fold?'. Proof-of-

principal experimental studies that focused on a small range of excitation
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wavelength space have shown that nine MuSIC probes can be accurately
unmixed, which should increase when the full range is used. Moreover, MuSIC is
compatible with cyclic imaging methods, which would allow more analytes to be
measured per cycle, increasing multiplexing capabilities even further. MuSIC
differs from CLASI-FISH in that it is not limited by spatial segregation.

Methods to conjugate MuSIC probes to antibodies have not yet been
developed. Our previous work showed that standard primary-amine-based
conjugation of two fluorophores to the same antibody does not produce a high
enough FRET efficiency to create robust MuSIC probes'®®. Here, we report a
fluorescent oligo-based labeling approach to conjugate MuSIC probes to
antibodies. A DBCO-Peg5-NHS ester molecule (the linker) is used to attach an
azide modified oligo (the docking strand) to the antibody. Fluorescent oligos
hybridized to the docking strand bring the fluorophores into FRET-compatible
distances. Mixtures of antibody-conjugated MuSIC probes using (i) Cy3, (ii)
Tex615, and (iii) a Cy3-Tex615 combination were analyzed and accurately
unmixed using spectral flow cytometry as a proof-of-principle. These oligo-based
MuSIC probes are compatible with the wide range of clinical, biomedical, and drug
discovery applications that currently use fluorescent antibodies and spectral

imaging.
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Results

Probe design and labeling process. A fundamental component of the
Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach is that
combinations of fluorophores exhibiting FRET create a unique emission spectrum
that is linearly independent from the individual fluorophores in the combination.
Thus, creating MuSIC probes on antibodies requires combinations of fluorophores
to be stably associated with antibodies with spatial proximity sufficient for FRET.
To achieve this, we started from a prior description of antibody-oligo labeling'®
(Figure 3.1a). First, a DBCO (dibenzocyclooctyne)-PEGS5-NHS ester molecule
(referred to as the linker) is attached to the antibody. The NHS ester group at the
end of the linker reacts with available NH2> groups on the surface of the antibody.
From here, a 55 bp DNA oligo with a 5’ azide modification (referred to as the
docking strand) is added to the complex. The azide reacts with the DBCO group
of the linker via copper-free click chemistry, creating an antibody-linker-docking
strand conjugate. The PEGS5 group is included in the linker to increase the water
solubility of the DBCO group and provide space between the antibody and the
docking strand'®'. Finally, 20 bp oligos with 5’ or 3’ fluorophore modifications
(referred to as the donor and acceptor strands, respectively) are added to the
antibody-linker-docking strand conjugate solution. When the donor and acceptor
strands hybridize to the docking strand, the two fluorophores are in close physical

proximity to enable FRET. The final product of these reactions should be an
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antibody labeled with a MuSIC probe. An in-depth view of the linker and oligo

complex is shown in Figure 3.1b.
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Figure 3.1: Labeling antibodies with oligo-based MuSIC probes. (A) Labeling
schematic for MuSIC probes. First, the linker is added to the antibody by reacting
the NHS ester on the linker with the NH2 group on the antibody. Then the docking
strand is added and reacts with the linker via copper-free click chemistry. Lastly,
the donor and acceptor strands are annealed to the docking strand to form the
oligo complex. The linker can attach to the antibody at multiple NH: sites, allowing
an increased degree of labeling. (B) Detailed versions of the linker and the oligo
complex.

Attaching the linker to the antibody. We developed the protocol around
labeling 50 ng of 19G, although it is scalable in either direction. The linker is added
to the antibody in 60 molar excess, as the linker will react with multiple free amine
sites on the surface of the antibody, and the extent of reaction is not certain, but it

is desired to maximize the degree of labeling. After incubation, unattached linker
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needs to be separated from the antibody-linker conjugate. To do this, we used
Amicon Ultra 100 kDa molecular weight cut-off (MWCO) filters (Figure 3.2a). The
antibody has a molecular weight of ~150 kDa and the linker has a molecular weight
of 0.7 kDa, so once the solution is spun and washed, any linker that does not attach
to the antibody will freely flow through the column (Figure 3.2b). In order to verify
that all unattached linker was removed, retentate absorbances were measured at
309 nm, where the linker strongly absorbs'® (Fig. 3.S1), for samples containing
the antibody alone, the linker alone, and then antibody and linker together. Results
show that the linker is predominantly in the retentate only when the antibody is
present (Figure 3.2c). The degree of labeling was estimated to be ~9+/- 0.57
molecules of linker/antibody based on absorbance measurements (see Methods
and Figure 3.S1). These results demonstrate that the antibody and linker can
stably associate and that unattached linker can be effectively removed from

solution.
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Figure 3.2: Adding linker to antibody. (A) Separating free linker using 100 kDa
molecular weight cut-off (MWCO) filters. The antibody and linker are incubated,
then the sample is added to the molecular weight cut-off filters. The filters are spun
to separate unattached linker and then go through a series of washes. Finally, the
retentate is recovered. (B) Expected separation of components after spin and wash
steps. (C) Retentate absorbances at 309nm. Results show an increased signal at

309nm when the linker is in the presence of the antibody.
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Attaching the docking strand to the antibody. We added the docking
strand to the antibody-linker retentate from the previous step in 6 molar excess to
the antibody to account for multiple labeling sites. After incubation, unattached
docking strand needs to be separated from the antibody-linker-docking strand
conjugate. Similar to above, we use Amicon Ultra 100 kDa MWCO filters (Figure
3.3a). Since the docking strand is only 17 kDa, it should freely flow through the
columns if it is not attached to the antibody-linker conjugate (Figure 3.3b). In order
to evaluate whether unattached docking strand is removed, retentate absorbances
were measured at 260 nm, as this is where the docking strand strongly absorbs.
Results show that the docking strand can be seen in the retentate when in the
presence of the antibody and the linker, as expected. However, a strong retentate
signal was also seen for the docking strand when in the presence of only the
antibody, without the linker (Figure 3.3c). The cause for the strong docking strand
signal in the retentate without the linker present is unknown, but before proceeding,
we wanted to understand whether the docking strand was stably bound to the
antibody without the linker present or whether it could be removed with further

washing via an orthogonal separation mechanism.
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Figure 3.3: Adding docking strand (DS) to antibody-linker. (A) Separating free DS
using 100 kDa MWCO centrifugal filters. The DS and antibody-linker conjugate are
incubated, then the sample is added to the molecular weight cut-off filters. (B)
Expected separation of components after spin and wash steps. (C) Retentate
absorbances at 260nm. Results show an increased signal at 260nm when the DS
is in the presence of the antibody-linker conjugate. An increased signal can also
be seen for the case of just the DS and antibody, which is accounted for in later

steps.
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The docking strand requires the linker to be stably associated with the
antibody. To determine whether the docking strand could stably bind to the
antibody without the linker, we used protein A dynabeads. The beads should
strongly and selectively bind to the antibody, and anything attached to the antibody
will also be bound to the beads. We generated samples with and without linker
containing antibody, docking strand, and a donor strand with the fluorophore Atto
488 (for measurement). The supernatant containing any non-stably attached
reagents can be removed by washing when the solution is placed on a magnet
(Figure 3.4a). Atto 488 fluorescence was measured to evaluate whether the
docking strand could stably associate with the antibody without the linker. The
bead-based nature of the experiment precluded reliable absorbance assays as
used previously; consequently, we are not able to estimate the degree of labeling
for the docking strand on the antibody. The fluorescence signal for samples without
the linker present was comparable to the signals of the controls where no
fluorophore was present, while when the linker was present, a significant
fluorescence signal was observed (Figure 3.4b). We conclude that the linker is
needed for the antibody to be stably associated with the docking strand, and

subsequently, fluorophore-labeled donor or acceptor strands.
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Figure 3.4: Separating free reagents using protein A beads. (A) The antibody-oligo
conjugate (red Y with a blue circle attached) is added to the protein A beads (brown
circle) and is incubated with rotation for 10 minutes. It is then placed on a magnet,
pulling the beads out of solution, and the supernatant containing free reagents
(unattached blue circles) is removed. The final product is collected containing the
antibody-oligo conjugate. (B) Maximum fluorescence intensity values when excited

at 450nm. Results show an increased fluorescence signal for the donor when the
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linker is added. Without the linker, the fluorescence signal for the donor is the same
intensity as the background fluorescence.

Obtaining a donor and acceptor pair that produces FRET when co-
hybridized to the docking strand. As mentioned above, MuSIC probes must
have donor and acceptor pairs that exhibit FRET, such that the combination probe
has a unique spectral signature. To test if a donor and acceptor pair exhibits FRET,
the emission spectra of solutions containing (i) just the donor, (ii) just the acceptor,
(iif) the donor and the acceptor, and (iv) the donor and acceptor co-hybridized to
the docking strand were analyzed using a plate reader (Figure 3.5a). We used 488
nm excitation, a common laser line in multiple assay types. The pair of Cy3 (donor)
and Tex615 (acceptor) showed a much larger, red-shifted emission peak when
excited at 488 nm and co-hybridized to the docking strand, as compared to the
case without docking strand, indicating strong FRET (Figure 3.5a). These results
show that this donor and acceptor pair would be a suitable MuSIC probe candidate,
i.e., a donor and acceptor strand hybridized to the antibody-linker-docking strand

conjugate.
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Figure 3.5: Donor and acceptor fluorophore pair, Cy3 and Tex615. (A)

Experimental setup for testing fluorophore combination. The tubes contain the
donor alone (blue circles), the acceptor alone (red circles), the donor and acceptor
free in solution together, and then the donor and acceptor bound to the docking
strand (black line). We expect only the sample with the DS shows significant FRET.

DS: docking strand. (B) Fluorescence emission spectra when excited at 488 nm.
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An increased acceptor emission peak is seen when the donor and acceptor are

annealed to the docking strand, indicating increased FRET.

Application to flow cytometry for event classification. While there are many
potential applications of MuSIC probe-labeled antibodies, we set out to obtain
proof-of-principle data using spectral flow cytometry. Namely, we wanted to
understand whether we could (i) robustly classify events as containing a particular
combination of MuSIC probes and (ii) estimate the proportion of events having a
particular probe staining pattern (Fig. 3.6a). This is analogous to cell type
classification assays such as peripheral blood mononuclear cell (PBMC)
analysis'®21%3. Three antibody batches with different probes were created: probe
1-donor Cy3 and acceptor Cy3; probe 2-donor Tex615 and acceptor Tex615; and
probe 3-donor Cy3 and acceptor Tex615. Because Cy3 and Tex615 produce
FRET when co-hybridized to the docking strand, probes with this combination of
fluorophores can be thought of as a different “color” from the probes with the
individual fluorophores of the combination. Once the antibodies with either MuSIC
probe 1, 2, or 3 are created, they are incubated with protein A dynabeads to be
analyzed using the flow cytometer. Each bead is similar to a single “cell.” One or
more antibody type (i.e., with probes 1, 2, or 3) can be conjugated to the same set
of beads. For example, incubating beads with two antibody types creates “double
positive beads (cells).” In the following set of experiments, we made single positive

beads (one antibody type conjugated to one bead set), double positive beads (two
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antibody types conjugated to one bead set), and triple positive beads (three
antibody types conjugated to one bead set) (Figure 3.6a). This is related to (i)
above. We also make mixtures of these different bead sets. This is related to (ii)
above. For analysis, we use simple quadrant gates on bivariate plots to classify
beads as negative, single positive, or double positive, and additionally, estimate
the proportion of beads that fall into each category (Figure 3.6b). Populations of
single positive beads are observed in R1 and R4, populations of double positive
beads are observed in R2, and the negative population of beads is observed in
R3. Triple positive bead classification is done by further gating on double positive
populations.

First, we made an equal 3-way mixture from single positive bead sets and
analyzed it by spectral flow cytometry. Unmixing results showed relatively equal
amounts of each bead type in the mixture, demonstrating that single positives
could be robustly classified (Figure 3.6¢, 6d first column). We also tested a single
positive mixture containing more probe 1 beads than probe 2 or 3 beads, and
unmixing results showed relatively similar compositions compared to the known
compositions (Figure 3.6d second column). We then investigated if various
mixtures of single, double, and triple positive beads could be accurately unmixed
(Figure 3.6d). Overall, results demonstrate robust classification of bead type, as
well as accurate estimation of the relative abundance of each bead type. (Figure

6d-compare actual to inferred heatmaps). We conclude that MuSIC probe-labeled
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antibodies as generated here can be used in spectral flow cytometry applications

for cell type classification and proportion estimation.
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Figure 3.6: Spectral flow cytometry setup and results. (A) Experimental setup for
the three-probe mixture ((1) Cy3 (red star), (2) Tex615 (blue triangle), and (3) Cy3-
Tex615 (green square)) using single positive, double positive, and triple positive
beads (brown circles). (B) Gating strategy for the populations of beads in the three-
probe mixture. (C) Unmixing populations of single-labeled beads in a three-way
equimolar mixture of probes Cy3, Tex615, and Cy3-Tex615 using spectral flow
cytometry. The plots show unmixing results of Tex615 compared to Cy3 (left), Cy3-
Tex615 compared to Cy3 (middle), and Tex615 compared to Cy3-Tex615 (right).
(D) Comparing actual amounts of each probe in the mixture (top panel) to the
inferred or calculated amounts of each probe in the mixture (bottom panel). The

composition of each mixture is shown below the bottom panel.
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Discussion

Here we established a method to conjugate two fluorophores to an antibody
in a way that enables FRET between them (if they are compatible). The use of
combinations of fluorophores that exhibit FRET creates unique emission spectral
signatures that can be used for multiplexing via the MuSIC approach. Antibodies
are labeled with combinations of fluorophores by combining a “linker” and DNA
oligos. The linker is used to covalently attach a “docking strand” oligo to the
antibody. Separate “donor” and “acceptor” strands then hybridize to the docking
strand. The donor and acceptor strand oligos place the fluorophores at a specified
distance from one another on the antibody. Absorbance data suggested a degree
of labeling of ~9+/- 0.57 linker/antibody molecules. We validated the approach
using three different MuSIC probes (Cy3, Tex615, and a Cy3-Tex615 combination)
attached to three separate mixtures of antibodies. MuSIC probe-labeled antibodies
attached to protein A beads served as surrogate single, double, and triple positive
cells for testing via spectral flow cytometry. Spectral flow cytometry experiments
demonstrated that each MuSIC probe can be uniquely differentiated by accurately
determining compositions of bead mixtures.

While the focus here was using MuSIC probe labeled antibodies with
spectral flow cytometry, they are also compatible in principle with spectral imaging.
Several methods that increase image multiplexing capabilities use a stain/strip
technique, which involves cycles of staining, imaging, and bleaching'47.149.151,164

These methods have improved multiplexing abilities by ~10 fold over standard
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single-round 4-color imaging. The use of MuSIC probes is in principle compatible
with the cyclic methods, which would expand the number of probes that can be
used per round of imaging using spectral scanning microscopes. Current cyclic
methods on average use 10 rounds of four-color imaging and our previous
simulation studies suggested that ~25 MuSIC probes might be accurately
unmixed?'. Therefore, the use of MuSIC probes may allow 10 rounds of 25 color
imaging, thus increasing multiplexing capabilities by roughly another six-fold.
However, spectral emission scanning microscopes are certainly not as pervasive
and filter-based microscopes currently. Angle-tuned emission filters for wavelength
scanning may help to make such technology more accessible’®®. Such
microscopes also commonly have white light lasers for tunable excitation
wavelengths and a potentially large number of channels, which would further
empower multiplexing capabilities via MuSIC approaches.

To further increase fluorescent multiplexing capabilities using the MuSIC
approach, additional combinations of fluorophores are needed. The FRET
efficiency of a fluorophore combination is dependent on the physical distance
between the two fluorophores based on the Faorster radius, which is dependent on
the spectral properties of the pair. Some fluorophore pairs may require different
distances between the two fluorophores in order to optimize FRET efficiency. This
distance between the fluorophores can be varied by using different length docking
strands which have varying numbers of spacer base pairs—the nucleotides in the

middle between the donor and acceptor strand binding sites. Thus, we expect
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future solutions will use different length docking strands for different fluorophore
combinations in the march towards a larger palate of antibody-compatible MuSIC
probes. Additionally, in this paper, we demonstrated unmixing of MuSIC probes
using a two-laser spectral flow cytometer (488nm and 638 nm). The number of
useful MuSIC probe combinations can be further increased by using a spectral
flow cytometer with five excitation lasers (355 nm, 405 nm, 488nm, 561 nm, and
638nm—Cytek Aurora). We are currently screening large sets of fluorescent oligos
for MuSIC-probe suitability for a 3-laser and 5-laser setup.

While MuSIC probes may be useful for multiple flow cytometry applications,
one of which in particular is immune profiling'%¢-68, Flow cytometry-based immune
profiling has limited multiplexing to roughly a dozen analytes (depending on the
capabilities of the instrument) as a result of spectral overlap'®16°, Mass cytometry
has been transformative for immune profiling'”®-'"2, but is slower than flow
cytometry and is destructive, so it prevents further use of the cells after analysis'®®.
The use of MuSIC probes for immune profiling via flow cytometry may allow for
increased multiplexing for deep immune profiling on par with mass cytometry while
also being fast (more than 10,000 cells/second rather than about 1,000 as with
mass cytometry'”®) and non-destructive. This could open up avenues of increased
throughput for monitoring immune responses across large patient cohorts, as well
as the isolation of rare cell types alone or in specified combinations that would

otherwise not be possible.
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We conclude that oligo-based approaches are a robust and modular way to
create MuSIC probe-labeled antibodies. Future work needs to expand the MuSIC
probe palette, as well as expand to larger antibody panels for flow cytometry or
other spectral fluorescence applications. This would enable broader applications
for advancing our understanding of microbial communities'”* such as gut and skin
microbiomes'’>17¢ cancer research and clinical diagnostics, host-pathogen
interactions, developmental biology, and many other areas of life science research
where more highly multiplexed single and sub-cellular resolution of antibody-target

readouts is informative.
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Methods
Adding the linker to the antibody

This and the below procedures were developed around labeling 50 ug of
IgG but are compatible with scaling up or down. In our case, normal Rabbit IgG
(ThermoFisher Cat: 31235) is combined with DBCO-Peg5-NHS Ester (linker; 10
mM in DMSO; Click Chemistry Tools Cat: 1378531-80-6) in 20 molar excess (50
ug of Rabbit IgG and 4.6 ug of linker). This is brought to a volume of 100ul with
PBS and allowed to incubate for 30 minutes at 25°C. After incubation, the solution
is added to an Amicon Ultra 0.5ml 100 kDa centrifugal filter (Fisher Scientific Cat:
UFC5100BK) and spun for 5 minutes at 14,000 x g. The filter is then placed into a
new tube, and PBS is added to the top of the filter in order to bring the total volume
back to 100 ul and is spun again for 5 minutes at 14,000 x g. This wash step is
repeated twice more (three total). Finally, the filter is flipped upside down and
placed in a clean tube and spun for 1 minute at 1000 x g to collect the retentate.
The retentate absorbance is measured at 309nm, where the linker strongly
absorbs, and 280nm, where the antibody strongly absorbs, using a NanoDrop
spectrophotometer (Thermo Scientific).
Adding the docking strand to the antibody-linker conjugate

The docking strand (Integrated DNA technologies-Table 3.1) is added to the
antibody-linker retentate from the previous step in 6 molar excess to the original
amount of antibody (2 nmoles of docking strand). The volume is brought up to 100

ul with PBS and incubated at 4°C overnight. The sample is then placed in an
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Amicon Ultra 0.5ml 100 kDa centrifugal filter and spun for 5 minutes at 14,000 x g.
Once this spin is completed, the filter is placed into a new tube, and PBS is added
to the top of the filter in order to bring the total volume back to 100 ul and is spun
again for 5 minutes at 14,000 x g. This wash step is repeated twice. Finally, the
filter is flipped upside down and placed in a clean tube and spun for 1 minute at
1000 x g to collect the retentate. The retentate absorbance is measured at 309nm
and 280nm as above, and also at 260nm, where the docking strand strongly
absorbs light, using a NanoDrop spectrophotometer (Thermo Scientific).

Table 3.1: Oligo Sequence

Component Sequence

Docking Strand 5 — Azide - GTG TAG TTC AGG TCA AGA CAT CGT GCG
ACC AGT CAG CAT GAGACT CATTGG TGC G -3
Donor Strand 3’- C AAG TCC AGT TCT GTA GCA C - Fluorophore- &’
Acceptor Strand 3’ - Fluorophore - CA GTC GTACTC TGA GTAAC -5’

Degree of Labeling
To generate calibration curves for concentrations of the antibody, linker, and
docking strand, absorbance measurements were taken using a NanoDrop
spectrophotometer (Thermo Scientific) for known concentrations of the antibody,
linker, and docking strand at 309, 280, and 260 nm. Five-point, 2-fold serial
dilutions were used to generate samples for the calibration curve. A least-squares
line of best fit (MATLAB) is generated to estimate absorbance extinction
coefficients based on Beer’s law (1) for each component at 309, 280, and 260nm.
(1)

A = ecL
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Here, A is the absorbance of the solution, ¢is the extinction coefficient, L is
the length of the path traveled by light (1 mm), and c is the concentration of the
solution. From here, a system of three simultaneous equations are solved in
Matlab using the function vpasolve to estimate molar concentrations of the
antibody (a), linker (1), and docking strand (DS) given absorbance measurements
at 260, 280, and 309 nm from a mixture (M).

(2)

Apm—300nm = C1 * E€-309nm T+ Ca * Ea—309nm T Cps * EDS—309nm

Apm—260nm = C1 * €1—260nm T Ca * €a—260nm T Cps * Eps—260nm

Apm—280nm = C1 * E—280nm Tt Ca * €a—280nm + Cps * Eps—280nm

The degree of labeling for the linker to antibody could be calculated from
the above-estimated concentrations. However, due to the nature of the spin
column-based separation, some unreacted linker will remain. This amount of
residual linker can be calculated based on mole balance, and we used this

calculation to correct the degree of labeling as follows, where n is the number of

(mmole)

washes, cpo is the initial concentration of the linker before washing, V: is the

volume of the retentate (ml) after washes, Vy is the wash volume (ml), and Vi is

the volume of the final retentate (ml).
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Co * V"
VWTL—l % Vrf

= Cresidual-linker

The concentration of the residual linker is subtracted from the calculated
linker concentration to determine the concentration of the linker that is attached to
the antibody in the retentate. The degree of labeling is then calculated as the ratio
of this adjusted linker concentration to that of the antibody concentration.

Adding the donor and acceptor strands to the antibody-linker-docking
strand conjugate

A 20 bp oligo with a 5’ fluorophore modification (donor strand) and a 20 bp
oligo with a 3’ fluorophore modification (acceptor strand) (each 100 uM in water,
Integrated DNA technologies) are added in equimolar amounts (2 nmoles each) to
the antibody-linker-docking strand retentate and brought up to 100 pul with PBS.
Sequences are shown in Table 1. This solution is allowed to incubate for 15
minutes at 25°C in the dark. When testing the necessity of the linker, the donor
strand with an Atto 488 modification was added to the antibody-linker-docking
strand retentate. To make the different probes, Probe 1 consists of equimolar
amounts of the donor strand with a Cy3 modification and the acceptor strand with
a Cy3 modification (each 2 nmoles), Probe 2 consists of equimolar amounts of the
donor strand with a Tex615 modification and the acceptor strand with a Tex615

modification (each 2 nmoles), and Probe 3 consists of equimolar amounts of the
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donor strand with a Cy3 modification and the acceptor strand with a Tex615
modification (each 2 nmoles).
Choosing donor and acceptor pairs

To test the donor and acceptor fluorophore pair of Cy3 and Tex615, four
samples are created: (1) donor strand with a 5 Cy3 modification and acceptor
strand with a 3’ Tex615 modification (each 100 uM in water) are added in
equimolar amounts (0.2 nmoles), (2) The donor, acceptor, and docking strands are
added in equimolar amounts (0.2 nmoles), (3) 0.2 nmoles of the donor strand, (4)
0.2 nmoles of the acceptor strand. All samples are brought to 50 ul with PBS. The
samples (oligos in solution) are loaded into a black 96 well plate (Fisher Scientific
Cat: 655900), and fluorescence emission spectra are assayed with a Synergy MX
microplate reader (Biotek). Parameters are set to a slit width of 9nm, a 10-second
shake prior to reading, taking readings from the top, and an excitation wavelength
of 488 nm. The emission start ranges are 50nm greater than the excitation
wavelength.
Incubating labeled antibodies with protein A dynabeads

The MuSIC-probe labeled antibodies from above were suspended in 200 pl
of 0.02% (2 wl/10ml) Tween 20 (Fisher Scientific Cat: 9005-64-5) in PBS and
added to 50 ul of protein A dynabeads (Fisher Scientific Cat: 10 001 D—33 ng of
initially added IgG; 100 ng batch makes three incubations). For making double
positive beads, both probes are simultaneously added to 50 ul of protein A

dynabeads. This solution is allowed to incubate for 10 minutes with rotation in the
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dark. After incubation, the solution is placed on a magnet, the supernatant is
removed, and the bead-antibody complex is resuspended in 200 ul PBS with
0.02% Tween-20 (Fisher Scientific Cat: BP337-100). The solution is then placed
back on the magnet, and the supernatant is again removed and is resuspended in
PBS.
Analyzing probe mixtures using Cytek Aurora flow cytometer

Mixtures of bead-conjugated probes are analyzed using a Cytek Aurora
spectral flow cytometer with 488nm and 638nm lasers. First, beads with single
probes are assayed as reference controls. The events to record is set to 5,000, the
stopping time is set to 10,000 sec, and the stopping volume is set to 3,000 ul. For
samples containing mixtures of bead types or double-positive beads, the events to
record are set to 15,000, the stopping time is set to 10,000 sec, and the stopping
volume is set to 3,000 ul. Once mixtures have been analyzed, the SpectroFlo
software (Cytek) is used to first gate single beads with forward and side scatter,
and then to unmix and report (i) the amount of each probe on every bead that was

analyzed and (ii) the fraction of each bead type in each mixture of bead types.
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CHAPTER FOUR
INCREASING FLUORESCENT SIGNAL OF OLIGO-BASED LABELS FOR

SPECTRAL FLOW CYTOMETRY

Abstract

Fluorescent antibodies are an important tool for biomedical research,
particularly for single-cell readouts. Full-spectrum flow cytometry has increased
fluorescent antibody-based multiplexing capabilities to ~40 simultaneous markers
but remains limited compared to single-cell RNA-sequencing which can identify
100s-10,000s of markers. However, single-cell RNA-sequencing is limited by
higher cost and sample destruction, leaving motivation for more multiplexing with
full spectrum flow cytometry. We recently proposed fluorescence Multiplexing
using Spectral Imaging and Combinatorics (MuSIC), which uses combinations of
existing fluorophores to create new spectrally unique MuSIC probes and
developed an associated oligo-based antibody labeling method. In this work, we
found that such MuSIC-probe labeled antibodies had significantly lower signal
intensity than conventionally-labeled antibodies in human cell experiments. We
then modified the position of fluorophore labels in the oligos to investigate whether
improved signal intensity could be obtained. Specifically, rather than using 3’ or 5’
fluorophore-labeled oligos (ext.), we tested oligos with internal (int.) fluorophore

modifications. Cell-free spectrophotometer measurements showed a ~6-fold
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signal intensity increase of the new int. oligo configuration compared to the
previous ext. oligo configuration. This approach was further validated by using CD8
antibodies labeled with ext. and int. MuSIC probes or conventional labeling to stain
human peripheral blood mononuclear cells (PBMCs). Spectral flow cytometry
experiments showed that int. MuSIC probe-labeled antibodies can be used to stain
PBMCs with an intensity that is equal to or greater than conventionally-labeled
antibodies while having no significant impact on the estimated proportion of CD8+
lymphocytes. The antibody labeling approach is general and can be broadly
applied to many biological and diagnostic applications, such as tissue imaging,

when fluorescence emission spectra detection is available.
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Introduction

Fluorescent antibodies are an integral tool for biological and diagnostic
applications'””. One application for fluorescent antibodies is flow cytometry'”. The
use of fluorescent antibodies with conventional flow cytometers is restricted to
typically 3-4 markers, but up to ~10-15 markers have been reported’>-'". This is
largely due to spectral overlap between fluorophores, limiting the number of
analytes that can be reliably detected. Regardless, flow cytometry remains a useful
platform as it is a cost-effective, high-throughput, and non-destructive method for
single-cell analysis'’®'7°. Recent advances have led to full-spectrum flow
cytometry (FSFC), which captures the entire fluorophore emission spectra,
creating a unique spectral fingerprint for each fluorophore'®'8. This allows
fluorophores with similar peak emissions to be used in the same panel, so long as
they have distinctive spectral signatures. FSFC has enabled the detection of up to
40 markers simultaneously?®, but further multiplexing capabilities are stunted by
the number of commercially available dyes that are compatible in a singular panel.
Moreover, FSFC is still far from meeting the multiplexing capabilities of methods
such as single-cell RNA sequencing, which has the ability to identify 100s-10,000s
of markers'8".182,

The 40-plex FSFC panel, previously mentioned, largely relies on single-dye
fluorescent antibodies, with relatively few tandem-dye fluorescent antibodies'®. We

recently developed Multiplexing using Spectral Imaging and Combinatorics
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(MuSIC), which uses combinations of currently available fluorophores to create
spectrally unique MuSIC probes?'. MuSIC probe-labeled antibodies may expand
the multiplexing capability for FSFC by providing new tandem probes. Previously,
we proposed an oligo-based method for covalently labeling antibodies with MuSIC
probes (Fig 4.1A) and validated this method using spin column purification and
absorbance measurements 8. However, this method had yet to be tested on
human cells.

In the current study, we first explored the application of this method on
human peripheral blood mononuclear cells (PBMC). However, in doing so, we
found that our previous method for labeling antibodies with MuSIC probes'® has
a significantly lower staining intensity, compared to a conventional antibody
labeling kit (Biotium Mix-n-Stain Antibody Labeling Kit). Consequently, we
hypothesized that a different oligo-fluorophore arrangement of the MuSIC probes,
using internal fluorophore modifications rather than external fluorophore
modifications, could increase the fluorescent signal intensity of MuSIC-probe
labeled antibodies. Results showed that the new method with internal fluorophore
modifications produced ~6-fold increase in fluorescent signal compared to the
previous method. We then again compared the internally modified MuSIC-probe
labeled antibodies to the conventionally labeled antibodies by staining PBMCs.
Results showed that the new internal labeling method has ~2.5-fold increase in
fluorescent signal over the conventionally labeled antibodies while having no

significant difference in the estimated % of CD8+ lymphocytes. This increased
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fluorescent signal suggests the potential of MuSIC-probe labeled antibodies to add
to the existing capabilities of FCFS, by providing new spectrally unique fluorescent
antibodies with competitive intensity. Such antibodies are not restricted to FSFC
but could be useful for other biomedical applications such as tissue heterogeneity

studies with immunofluorescence imaging when spectral detection is available.
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Methods

Measuring fluorescent oligo emission spectra

All oligos (Integrated DNA Technologies, Table 1) used here are

resuspended in ddH20 at 100 uM. In a black 96-well plate (Fisher Scientific Cat:

655900), 200 umols of the fluorescent oligo(s) is added to the well and the volume

is brought up to 50ul with PBS. The fluorescent emission spectra are gathered

using a Synergy MX microplate reader (Biotek) with parameters set to a slit width

of 9 nm, taking readings from the top, an excitation wavelength set to the maximum

excitation wavelength for that fluorophore, and an emission wavelength starting 30

nm after the excitation wavelength (Table 2) and emission collected at every nm.

Table 4.1: Oligo sequences for the Ext. and Int Oligo complexes (Integrated DNA

Technologies)

Component

Sequence

Docking Strand

5-azide-GTG TAG TTC AGG TCA AGA CAT CGT GCG

Ext. ACC AGT CAG CAT GAG ACT CATTGG TGC G-3'
Oligo 5" Donor Strand | 3'-C AAG TCC AGT TCT GTA GCA C-fluorophore-5'
Complex | 3’ Acceptor | 3'-fluorophore-CA GTC GTA CTC TGA GTA AC-5'
Strand
Azide Strand 3’ CGT TAT GAACCT GA 5’
Int. Int. Donor | 5 GCA ATA CTT GGA CTA GTC TAG GCG AAC GTT
Oligo Strand TAA GGC GAT TCT TGT T-fluorophore- A CAA CTC
Complex CGA AAT AGG CCG &
Ext. Acceptor | 3 CAG ATC CGC TTG CAA ATT CCG C — fluorophore-
Strand A GAG ACA AAT GTT GAG GCT TTATCC GGC &’
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Table 4.2: Fluorophore modifications for Donor and Acceptor Strands with their

corresponding excitation wavelength and emission start wavelength.

Fluorophore Modification | Excitation (hnm) | Emission (nm)
6-FAM (Fluorescein) 490 520
Atto 488 492 522
Atto 532 524 554
MAX (NHS Ester) 527 557
Cy3 534 564
Atto 550 545 575
Tamra (NHS Ester) 553 583
Atto 565 561 591
ROX (NHS Ester) 578 608
TEX 615 583 613
Atto 590 594 624
Atto 633 623 653
Atto 647 632 662
Cy5 638 668
Cy5.5 676 706

Labeling Antibodies

Antibodies are conjugated according to McCarthy et. al 202183, In short,
the antibody (CD8 clone RPA-T8; Biolegend Cat: 301002) is incubated with
DBCO-Peg5-NHS Ester (linker; 10mM in DMSO; Click Chemistry Tools Cat:
1378531-80-6) in 60 molar excess (10 ug of antibody and 2.8 ug of linker) for 30
minutes at room temperature. Post-incubation, the excess linker is removed with
Amicon Ultra 100 kDa molecular weight cut-off filters (Fisher Scientific Cat:
UFC5100BK). The antibody-linker retentate is collected. Two oligo complexes are

created using external (ext.) or internal (int.) fluorophore modifications.
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For externally-modified oligos, a 20 bp oligo with a 5 fluorophore
modification (5’ donor strand) and a 20 bp oligo with a 3’ fluorophore modification
(3’ acceptor strand) are co-hybridized to a 55 bp oligo with a 5’ azide modification
(docking strand) (Integrated DNA Technologies, Table 1) in a 1:1:1 ratio (0.4 nmol
of each oligo) to form the ext. oligo complex.

For internally-modified oligos, a 15bp oligo with a 3’ azide modification
(azide strand) and a 50 bp oligo with an internal fluorophore modification (int.
acceptor strand) are co-hybridized to a 65 bp oligo with an internal fluorophore
modification (int. donor strand) (Integrated DNA Technologies, Table X) ata 1:1:1
ratio to one another (0.4 nmol of each oligo) to form the int. oligo complex.

For each, oligo mixtures are incubated for five minutes at room temperature
in the dark to allow for complex formation. These complexes (0.4 nmol of each
oligo) are then added to the antibody-linker retentate at a 6-molar excess to the
original 10 ug of antibody. The volume is brought up to 100 ul with PBS and
incubated at 4°C overnight in the dark.

Conventionally labeled antibodies are labeled as per the manufacturer’s
instructions (Biotium, Cat: 92446). In short, CD8 antibodies are covalently labeled

with CF488A dyes using the Biotium mix-n-stain Kkit.

Preparing Peripheral Blood Mononuclear Cells

Normal Peripheral Blood Mononuclear Cells (PBMCs) (Precision for

Medicine; 10M cells/vial) are thawed and counted with a hemacytometer. Cells are
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washed twice with cold (4°C) stain buffer (.01 g/ml BSA in PBS) at 300 x g for 5
min. Post-wash, the cells are resuspended in cold stain buffer and divided into 100

ul aliquots containing 108 cells.

Staining PBMCs

In order to block non-specific Fc-mediated interaction,1 ug of normal Rabbit
IgG (ThermoFisher Cat: 31235) is added to the cell sample and incubated for 10
minutes at room temperature. Conventionally, ext., and int. labeled-antibodies are
made for staining using the protocols described above (10ug of antibody each);
(1) CD8 (clone RPA-T8; Biolegend Cat: 301002) labeled with Atto488 ext. MuSIC
probes, (2) CD8 (clone RPA-T8; Biolegend Cat: 301002) labeled with Atto488 int.
MuSIC probes, and (3) CD8 (clone RPA-T8; Biolegend Cat: 301002) labeled with
CF488A (Biotium Cat: 92446), Antibody concentration is adjusted to 0.25 ug/ul for
each sample. The labeled CD8 antibody is added to the cell sample at the
appropriate amount as per manufactures recommendations (2ug CD8 antibody /
108 cells) and allowed to incubate in the dark for 20 minutes on ice. Post-
incubation, cells are washed twice with 1ml of cold staining buffer at 300 x g for 5

min. The final cell pellet is resuspended in 0.5 ml of cold staining buffer.

Flow Cytometry

Stained PBMC samples are analyzed using a Cytek Aurora spectral flow

cytometer. First, unstained PBMCs are assayed with the events to record set to
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10,000. The SpectroFlo software (Cytek) is used to gate single cells (lymphocytes,
monocytes, and granulocytes) by forward and side scatter. We then further gate
specifically over the lymphocyte population, as typical based on light scattering
distributions'84. Using these same settings, the stained cell samples are assayed.
To compare fluorescence intensity between stained samples we calculate the
median intensity of the positively stained cells in the maximum emission channel
(B2) using the Spectroflo software. Positively stained cells are defined as cells with
a staining intensity above that of the unstained cell samples using a marker gate.
To compare the compositions of CD8+ cells, we compare the positively stained
population to the negative population of cells for each sample using the Spectroflo

software.
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Results

We previously developed a method for labeling antibodies with
combinations of fluorophores (i.e MuSIC probes)'®. In short, an oligo complex
containing fluorescent molecules is conjugated to the antibody via a DBCO-Peg5-
NHS ester (referred to as the linker) (Fig 4.1A). Here the oligo complex is
composed of a 20 bp oligo with a 5’ fluorophore modification (referred to as the 5’
donor strand) and a 20 bp oligo with a 3’ fluorophore modification (referred to as
the 3’ acceptor strand) that are co-hybridized to a 55bp oligo with a 5’ azide
modification (referred to as the docking strand) to form the externally labeled (ext.)
oligo complex (Fig 4.1B). We previously demonstrated our ability to covalently
label antibodies with MuSIC probes using this method and validated the labeling
protocol with spin-column purification and absorbance measurements®s.
Furthermore, we validated our approach by creating ext. oligo complexes with (i)
Cy3, (ii) Tex615, and (iii) a Cy3-Tex615 combination as three different MuSIC
probes attached to three separate batches of antibodies. We created batches of
stained beads, that are analogous to single cells, by incubating MuSIC-probe
labeled antibodies with protein A beads. Using FSFC, we showed that each MuSIC
probe can be uniquely distinguished in a mixture, and the fraction of beads in a

mixture with different staining patterns can be accurately inferred.
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Figure 4.1: Oligo-based MuSIC probe labeling of antibodies. (A) Graphic depicting
MuSIC probe labeling. By reacting the NHS ester of the linker with the NH2 group
of the antibody, the linker is attached. Subsequently, donor and acceptor strands
are annealed onto the docking strand to form the oligo complex. The azide on the
docking strand, in the oligo complex, is reacted with the free DBCO group on the
linker to covalently bind the oligo complex to the antibody. There are multiple NH2
sites on each antibody, allowing for the linker to attach at multiple sites, increasing

the degree of labeling. (B) A more detailed depiction of the linker-oligo complex.
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(C) Comparison of fluorescence intensity of PBMCs stained with CF488A
conventional labeling kit vs Atto488 Ext. MuSIC probes. The fold increase in
intensity over unstained cells is significantly greater for the conventional labeling
kit compared to the ext. MuSIC probe.

Since this method had only been validated using beads, we asked whether
this method would work when staining peripheral blood mononuclear cells
(PBMCs)? We created an ext. oligo complex using an Atto488 5’ donor strand and
an Atto488 3’ acceptor strand as the MuSIC probe and conjugated it to anti-CD8
antibodies. For comparison, we used a commercially available Biotium Mix-n-Stain
kit to conventionally label CD8 antibodies with CF488A dye, which is reported to
have comparable fluorescent properties (excitation peak, emission peak, and
brightness) to Atto488'8. PBMCs were stained with each antibody batch and
analyzed on a Cytek Aurora flow cytometer. Results showed that the median signal
intensity of cells stained with the ext. labeled MuSIC probe was ~1.6-fold (p-
value=0.0086) lower compared to cells stained with conventionally labeled
antibodies (Fig 4.1C).

We then asked how we can increase the signal intensity of MuSIC probes.
We reasoned that because the previously calculated degree of labeling'® was
within the standard range'®, that the lower fluorescence signal was not due to the
degree of labeling. We acknowledge that some degree of difference in signal
intensity may be due to differences in dye properties between Cf488A and Atto488,

although as mentioned above, the dyes are expected to have similar
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characteristics. We then decided to examine the fluorescence emission intensity
of Atto488 5’ donor strands and Atto488 3’ acceptor strands alone in solution and
when co-hybridized to the docking strand (Fig 4.2A). Results showed that the
hybridization of the 5’ donor and 3’ acceptor strands to the docking strand results
in a significant decrease in fluorescent signal, as compared to the strands on their

own (Fig 4.2A).
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Figure 4.2: Fluorescence signal change from Docking Strand. (A) Comparison of
fluorescence emission spectra, excited at 470nm, of the Atto488 5’ Donor and 3’
Acceptor strands hybridized to the Docking Strand and when alone in solution with
and without the Docking Strand. (B) Change in fluorescence intensity of 15
fluorescent oligos when hybridized to the Docking Strand.

We further wondered whether this was a fluorophore-specific phenomenon
or if it occurred for other fluorophores. Therefore, we examined the emission

intensity of fluorophore-conjugated 5’ donor strands and 3’ acceptor strands for 15
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different fluorophore-conjugated strands alone in solution and compared it to the
emission intensity when co-hybridized to the docking strand (Fig 4.2B). Results
show an observed decrease in signal for all but five of the fluorophore-conjugated
strands that were tested. Previous studies showed that there can be a significant
change in fluorescence when oligo-strands containing an end-fluorophore
modification are hybridized to strands containing an overhang'®, such as in our
ext. oligo complex.

These findings led us to hypothesize that a different orientation and
interaction with the aqueous phase of the fluorophores within the oligo complex
could give an increased fluorescent signal. To test this, we adjusted the
configuration of the ext. oligo complex (Fig 4.1B) to contain oligos with internally
(int) conjugated fluorophores. The resulting oligo complex consists of the 50 bp int.
acceptor strand and a 15 bp azide strand which both co-hybridize to the 65 bp int.
donor strand (Fig 4.3A). The purpose of a separate azide strand here is to reduce
the cost of oligo production, due to the increased difficulty of synthesizing an oligo
with two modifications. The new donor and acceptor strands both have an internal
fluorophore modification (int donor and int acceptor), rather than 5 and 3’ end
fluorophore modification, respectively. We then created int. and ext. oligo
complexes (both using Atto488 conjugated strands) and measured their
fluorescent emission spectra. We observed a ~6-fold fluorescent signal increase

of the int. oligo complex compared to the ext. oligo complex (Fig 3B).
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Figure 4.3: Comparison the Int. labeling method to the ext. labeling method and
conventional labeling kit. (A) Int. oligo complex containing the Int. Donor and
Acceptor strands and the Azide strand arranged to allow for increased
fluorescence emission and fine control of Forster resonance energy transfer
(FRET). (B) Comparison of relative fluorescent units of the Atto488 probe using
the Int. and Ext. oligo complexes to compare their intensity when excited at 470nm.
(C) Fold increase comparison of PBMCs stained with Atto488 Int. MuSIC probe-

labeled CD8 antibodies and the CF488A conventional labeled- CD8 antibodies
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over unstained PBMCs. (D) Percentage of CD8 + lymphocytes in PBMC for Int.
Music probe-labeled CD8 antibodies compared to CF488A conventional-labeled

CDS8 antibodies.

With this increase in signal intensity, we then asked how new int. MuSIC
probe-labeled antibodies would compare to conventionally labeled antibodies
when staining PBMCs for estimation of specific cell type abundances. Similar to
above, int. oligo complexes with Atto488 were conjugated to CD8 antibodies to
create int. MuSIC probe-labeled antibodies and CF488A was conjugated to CD8
antibodies using a Mix-n-stain kit to create the conventionally labeled antibodies.
PBMCs were stained with each antibody batch and analyzed on a Cytek Aurora
flow cytometer. Results showed that the signal intensity of cells stained with the
int. labeled MuSIC probe was ~2.5 fold (p-value=0.034) higher compared to cells
stained with conventionally labeled antibodies (Fig 3C). When comparing the % of
CD8+ lymphocytes detected, we found no significant difference between the int.
MuSIC probe-labeled antibodies and conventionally labeled antibodies (Fig 3D).
These results demonstrate that we were able to effectively improve the design of
MuSIC-probe labeled antibodies to increase the signal-to-noise ratio, with staining

behavior comparable to conventionally labeled antibodies.
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Discussion

Here, we established a method to conjugate two fluorophores to an antibody
and stain human cells with an increased signal intensity, compared to
conventionally labeled antibodies, and accurate detection of % of CD8+
lymphocytes. This method builds on our previously established labeling protocol
but introduces key modifications to the oligo-fluorophore arrangement of the
MuSIC probe. By re-arranging the oligo complex of the MuSIC probe to eliminate
the use of overhang sequences in the oligo complex, we observe a significant
increase in fluorescent signal. Using this new MuSIC probe design, we stained
human PBMCs and compared the signal intensity to that of conventionally labeled
fluorescent antibodies using a spectral flow cytometer and observed a statistically
significant increase in the resulting fluorescent signal without creating any
significant differences in the % of CD8+ lymphocytes.

In order to maximize the potential of this new increased intensity probe
design, the next step will be to select different combinations of fluorophores to
assemble a palette of spectrally unique antibody-conjugated MuSIC probes.
Approaches to do so can include stimulation studies for compatibility using a
workflow similar to that described in our previous work'3, and then testing the
highest-ranked fluorophore combinations experimentally. For these simulations,
the emission spectra of each possible MuSIC probe is generated, and using the
simulation workflow, lists of MuSIC probes that are likely to be deconvolvable in a

mixture are generated, given binary classification applications. Using these lists of
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potential good MuSIC probes, the probes would be prioritized for testing
experimentally by measuring the emission spectra of mixtures of MuSIC probes
and unmixing them to determine which MuSIC probes can be accurately
demultiplexed.

One major application of using MuSIC probe-labeled antibodies with FSFC
can be cell-type profiling, which is the process by which a complex mixture of cell
types, for example, from blood or tumors, are classified into the fractional
composition of its components (e.g., neutrophils, natural killer cells, various types
of T and B cells, etc.), based on classification of expression patterns (e.g., CD3
expressed or not)'®. While there are 40 dyes available, very few of them are
tandem dyes that can be used as uniquely identifiable markers, which limits the
number of individual analytes that can be classified simultaneously. However,
MuSIC probe-labeled antibodies could be used to expand the number of markers
that can be detected by creating new combination fluorophore probes from the
current dyes, to enhance current cell-type profiling efforts. FSFC has been
previously paired with cell-type profiling to investigate the correlation between
CD38 expression in macrophages and the predicted immune response to immune-
checkpoint blockade therapy for hepatocellular carcinoma'®. With a larger palette
of compatible fluorescent tags, cell-type profiling efforts could expand further to
look at an increased number of cell-type markers, for a more comprehensive view

of a patient’s immune response to various treatments.
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Additionally, MuSIC probe-labeled antibodies can be applied to a broad
range of biological and diagnostic applications that involve the detection of protein
expression. One of these applications can be for tissue imaging. If MuSIC probe-
labeled antibodies can be combined with spectral imaging, this could allow for
highly multiplexed, quantitative tissue imaging. Current immunostaining on
biopsies can only provide data for a small portion of the tumor and cannot properly
account for tumor heterogeneity _As such, increasing multiplexing capabilities
would improve diagnostic potential from biopsies by allowing for more tumor
markers to be analyzed, thus leading to an increased mapping of tumor
heterogeneity'®. This could impact early tumor detection, diagnosis, and
treatment.

Although here we focused on increasing the fluorescent signal of MuSIC
probes, by titrating the fluorescent oligos, we can decrease the fluorescent signal
of MuSIC probes to a desired level in a highly controllable manner. Tunable
fluorescence intensity is useful; for example, Pittman et al.'® used MuSIC probes
in static light scattering experiments, where the sensitive photodiode detectors are
easily saturated. They labeled BSA at varying concentrations of fluorescent oligos
between 0.03 - 0.10 uM that fluoresced below the saturation limit of the detectors
while still achieving desired fluorescent effects. Conventional labeling kits would
have been too powerful, and as most are single reaction use, using less than the
recommended amount of labeling reagent is not cost-effective and difficult to

control compared to MuSIC probes which offer the unique advantage of reduced,
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tailorable intensities. In their case, the tunability of the MuSIC probes enabled a
more flexible experimental design capable of separating simultaneous
fluorescence and light scattering signals. The tunability of MuSIC probe
fluorescent intensity could also be beneficial for cell staining, where some epitopes
may have such a high abundance that a reduced fluorescent signal is necessary.

In addition to tunability for probe fluorescent intensity, the new int. oligo
arrangement of MuSIC probes offers tunability of Forster Resonance Energy
Transfer (FRET) between fluorophore combinations on the donor and acceptor
strands. By adjusting the distance (bp) between the two fluorophores, we can
increase or decrease the FRET efficiency. By adjusting the FRET efficiency of
each combination, there is the potential to even further increase the number of
possible compatible MuSIC probes.

We conclude that by using an oligo-based approach with internally-labeled
fluorophores, we can increase the signal intensity of MuSIC-probe labeled
antibodies. MuSIC probe-labeled antibodies may find useful to increase
multiplexing capabilities of full spectrum flow cytometry, and also more broadly
where increased multiplexing at single-cell or sub-cellular resolution is needed,

including cell-type profiling, tissue studies, and immunofluorescence imaging.
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CHAPTER FIVE

A THEORY FOR HIGH-THROUGHPUT GENETIC INTERACTION SCREENING

Abstract

Systematic, genome-scale genetic screens have been instrumental for elucidating
genotype-phenotype relationships, but approaches for probing genetic interactions
have been limited to at most ~100 pre-selected gene combinations in mammalian
cells. Here, we introduce a theory for high-throughput genetic interaction screens.
The theory extends our recently developed Multiplexing using Spectral Imaging
and Combinatorics (MuSIC) approach to propose ~10° spectrally unique,
genetically-encoded MuSIC barcodes from 18 currently available fluorescent
proteins. Simulation studies based on constraints imposed by spectral flow
cytometry equipment suggest that genetic interaction screens at the human
genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs.
While experimental testing of this theory awaits, it offers transformative potential
for genetic perturbation technology and knowledge of genetic function. More
broadly, the availability of a genome-scale spectral barcode library for non-
destructive identification of single-cells could find more widespread applications

such as traditional genetic screening and high-dimensional lineage tracing.

85



Introduction

Understanding which genes play essential roles in a cellular or organismal
process is crucial to our understanding of biology'®'. This can be accomplished by
perturbing genes and observing the corresponding phenotype alterations'2. This
process, when applied in parallel to multiple genes one-at-a-time, is known as
genetic screening'93.194195-198 Historically, there have been several methods for
performing genetic screens, including Zinc finger nucleases (ZFNs) and
transcription activator-like effector nucleases (TALENs) which are engineered
nucleases that induce DNA DSBs at specific locations'®?2%°  RNAi which uses
double stranded RNAs (or a short hairpin (sh)RNA) to knock down the gene-of-
interest?®!, and CRISPR which induces DNA breaks or alters transcription at
specific sites in the genome?02.203 205,

While these gene perturbation technologies have revolutionized biomedical
science, most genome-scale screens (outside of organisms like S. cerevisag?®)
remain limited to one gene at a time?°’. However, often genes cooperate with one
another to influence phenotype. Such cooperation is called genetic interaction?°8-
211 Recent approaches have made progress towards larger scale genetic
interaction screening. For example, cloning two different CRISPR gRNAs into a
single plasmid enables interaction screening for ~100 pre-selected genes 209215~
217 Other approaches include dual recombinase-mediated cassette exchange to
create mosaic in vivo models harboring multiple desired cancer driver mutations?'8,

or using protein epitope combinatorial barcodes (pro-codes) with mass cytometry
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to perform high-dimensional CRISPR screens on 100s of selected genes in single
cells?’®. The sheer number of observations that must be made to cover human
gene interactions space almost necessitates a single-cell approach, like Perturb-
seq??%-222, However, genetic interaction screening approaches that scale past
~100 genes have yet to be described.

Here, we propose that our recently developed fluorescence multiplexing with
spectral imaging and combinatorics (MuSIC)?' approach may be compatible with
single cell genetic interaction screening that could scale to the full human genome.
MuSIC uses combinations of fluorophores (proteins or small molecules) to create
spectrally unique MuSIC probes. Here we introduce the concept of further
combining MuSIC probes into MuSIC barcodes for increased diversity and thus
multiplexing. Moreover, because these spectral barcodes are fluorescence-based,
they can be read non-destructively. Theory and simulations based on currently
available fluorescent proteins suggests that given a palette of 18 fluorescent
proteins, ~400,000 MuSIC barcodes could be generated, far surpassing human
genome-scale. Simulations suggest that given current spectral flow cytometry
equipment and experimental noise, human genome-scale genetic interaction
screens may be possible. More advanced instrument hardware such as more
excitation lasers and/or higher resolution emission spectra could increase such
capabilities. While experimental testing of this theory awaits, it offers
transformative potential for genetic perturbation technology and knowledge of

genetic function. More broadly, the availability of a genome-scale spectral library
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for non-destructive cell identification could find more widespread applications such

as traditional genetic screens and high-dimensional lineage tracing.
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Methods

Availability, Code Overview, and Simulation. All MATLAB code and raw data
used for simulations are open source  on Zenodo. DOI:
https://doi.org/10.5281/zenodo.7186939. The scripts
GenerateProbeData_ 31 HN.m, GenerateProbeData 31 LN.m,
GenerateProbeData 51 HN.m, and GenerateProbeData 51 LN.m are
used for generating the list of good probes for single probes, barcodes, and two
barcodes, for 3 lasers/high noise (HN), 3 lasers/low noise (LN), 5 lasers/high noise,
and 5 lasers/low noise respectively. The core of these scripts is done by the
functions RemoveProbes onebyone.m, RemoveBarcodes onebyone.m, and
RemoveTwoBarcodes onebyone.m, respectively. The README file contains
relevant information on the code for execution and reproducing the results. These
simulations were performed in MATLAB using 40 CPUs on the Palmetto

supercomputing cluster at Clemson University.

Data Sources. Emission spectra, excitation spectra, and brightness for
fluorescent proteins were gathered from fpbase.org (Supplementary Table 5.1
and references therein). Specifications for flow cytometer noise, excitation
channels, and emission binning were obtained from the Aurora and Northern

Lights flow cytometer user guides on cytekbio.com.
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Simulated FRET Efficiency and MuSIC Probe Selection. FRET efficiency

€ between two fluorophores is typically calculated as follows

(D

where r is the distance between the two fluorophores and Rp is the Forster
radius®?3. The Forster radius is the distance between fluorophores that gives a 50%
FRET efficiency??3. Thus, to estimate the FRET efficiency between any given pair
of fluorescent proteins, we must calculate Rp and r.

The Forster radius can be cast as follows?24

1
Ry = [ﬁ*KZ*QD*eA*]]Enm

(2)

where  is a constant (which also converts to nm), K? is an orientation factor
between the two fluorophores, Qp is the donor quantum yield, ea is the maximal
acceptor extinction coefficient (M""cm™"), and J is the spectral overlap integral. The
value of K2 is not usually known (nor easily measurable) but is assumed to be a
constant value of 2/3 for isotropic reorientation of the coupled fluorophores 225. This
value may not be 2/3 for fluorescent protein tandems but in practice, deviations

can be accounted for by the constant /%¢. J is calculated as follows
] = f Fp(A)E4 () A*dA

(3)
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where Fp is the normalized emission spectra of the donor and Eaxis the
normalized excitation spectra of the acceptor, which both are evaluated at
wavelength A. Here, the spectral data is normalized to have a maximum value of
1. We calculate the overlap integral using the function trapz in MATLAB (see
code) with bounds from A = 300 to 800 nm. The value for S is estimated to be
6.33*10° based on a known Férster radius of 6.1 nm for mTFP-Venus??’ (along
with known Qp, and ea, and J calculated as above).

The closest physical distance that chromophores of fluorescent proteins can
be is ~3 nm??8, Furthermore, most high FRET producing pairs have an Ry greater
than 5 nm?2°. Thus, we do not consider MuSIC probes that have Ry < 5 nm. Since
the distance between fluorescent proteins can usually be adjusted (by linker
length, for example), we set r = Rp in simulations, giving a FRET efficiency of 50%

for each MuSIC probe with more than one fluorescent protein.

Simulating Reference Emission Spectra for MuSIC probes. There are three
classes of MuSIC probes that require separate consideration for simulating their
emission spectra: those made of a (i) single fluorescent protein, (ii) two fluorescent
proteins, and (iii) three fluorescent proteins. The below equations are used to
generate columns of the reference matrix R (see below) for unmixing. Each
simulated spectra for a single excitation channel has a value every nm from 300
to 800 nm. The below model assumes that tandem fluorescent proteins have the

same properties as the monomers, that static quenching is not a dominant feature,
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and that fluorescent protein maturation is not a significant factor for the spectra.
We assume cross-talk is negligible, but for all intents and purposes, it would be
observed as effective FRET-related activity and therefore is expected to not have
additional functional consequences for simulation results. We also note here that
this model does not take into account detector quantum efficiency. Avalanche
Photodiode (APD) detectors (used in the Cytek instruments) generally have slightly
lower quantum efficiency in the lower wavelengths (UV/Blue), but so long as all
reference spectra and samples are measured with the same instrument, this would
not introduce any further bias and not affect the conclusions drawn here.

To simulate the emission intensity spectra / for a single fluorescent protein
MuSIC probe, given a particular excitation wavelength (4., ) and vector of emission
wavelengths from 300 to 800nm at every nm (4), the following equation is used
(adapted from Schwartz et. al)?3°

I(A) = E(Aex) * C x B x F(4)

(4)

Where E is the fraction of excited fluorophores and is a function of excitation
wavelength (explained below), C is the relative probe concentration (taken as 1 for
reference spectra assuming a null condition of equal expression levels between
probes), B is the brightness (product of maximal extinction coefficient and quantum
yield), and F is the normalized emission spectra vector of the fluorescent protein
(normalized as above). E(4.) is given by the fluorescent protein’s normalized

excitation spectra at the designated excitation wavelength.
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For MuSIC probes with two fluorescent proteins, called 1 and 2 ordered from
blue to red, the emission intensity spectra /(1) has three contributing components:
acceptor emission due to FRET (/2,1), donor emission (/1), and acceptor emission
due to direct excitation (/2). The overall emission intensity spectra / is the sum of
the three components

[=L,+1+1,

(5)
Each of these terms depends on the FRET efficiency. We assume that FRET

efficiency is reduced due to any direct acceptor (2) excitation, since excited
acceptors would not be able to undergo FRET. This adjusted FRET efficiency, €44,
is calculated as follows

€aaj = € * (1 = E2(Aex))

(6)

where E;is the fraction of excited fluorophores for fluorescent protein 2 and the
term (1-E2) denotes the fraction of fluorescent protein 2 molecules that have not
been directly excited.
Fluorescent protein 2 emission due to FRET from fluorescent protein 1 is then
calculated by
L1 (A) = By (Aex) * £qqj * C * By + Fy(A)

(7)

This emission intensity is proportional to emission properties of fluorescent

protein 2 (emission spectra and brightness), the fraction of excited molecules for
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fluorescent protein 1, and the adjusted FRET efficiency between the two
fluorescent proteins.

Fluorescent protein 1 emission is calculated by

[,(A) = E1(Aex) * (1 = €qqj) * C * By * F; ()
(8)

This emission is calculated similarly to that above for a single fluorescent
protein; however, it is corrected to only take into account the fraction of excited
molecules that are not undergoing FRET (1 — g44;).

Fluorescent protein 2 emission due to direct excitation is calculated by
I,(A) = E;(A,,) * (1 - eadj) % C * By, * F,(4)
(9)
We opt here to be conservative and reduce the amount of fluorescence from direct
excitation of fluorescent protein 2 by the FRET taking place.

For MuSIC probes with three fluorescent proteins, called 1, 2, and 3 ordered
from blue to red, the emission intensity depends on six different components.
Three are due to direct excitation: emission intensity of fluorescent protein 1 (/4),
emission intensity of fluorescent protein 2 (/2), and emission intensity of fluorescent
protein 3 (/3). The other three are due to FRET: FRET sensitized emission intensity
of fluorescent protein 2 due to FRET with fluorescent protein 1 (/21), FRET
sensitized emission intensity of fluorescent protein 3 due to FRET with fluorescent
protein 2 that ultimately came from FRET with fluorescent protein 1 (/3,1), and FRET

sensitized emission intensity of fluorescent protein 3 due to FRET with fluorescent
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protein 2 (/32). The overall intensity is calculated as the sum of the six intensities.
We assume negligible direct FRET from fluorescent protein 1 to 3.
I = 11 + 12 + 13 + 12'1 + 13’1 + 13’2

(10)

The adjusted FRET efficiencies between fluorescent proteins, €. and uqp2,
are calculated as above
€aaj, = €1* (1 = E2(Aex))
(11)
€aaj, = €2 * (1 = Es(Aex))

(12)

The emission intensity of fluorescent protein 1 due to direct excitation is

calculated by
Li(A) = Ey(Aex) * (1 — €q4j1) * C * By x F1(4)
(13)

This emission is calculated similarly to that above and is corrected to only
consider the fraction of excited fluorescent protein 1 molecules that are not
undergoing FRET with fluorescent protein 2.

The emission intensity of fluorescent protein 2 due to direct excitation is
calculated by

L(4) = Ex(Aex) * (1 — €aaj, = €aaj,) * € * By * F,(4)

(14)
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This emission is corrected to only consider the fraction of excited fluorescent
protein 2 molecules that are not undergoing FRET with either fluorescent proteins
1or3.

The emission intensity of fluorescent protein 3 due to direct excitation is
calculated by

I3(2) = E3(Aex) * (1 = €aaj, — €aajy * €aaj,) * C * By * F5(2)

(15)

This emission intensity only considers the fraction of fluorescent protein 3
molecules that are not involved in FRET with either fluorescent protein 2 or FRET
from the first fluorescent protein through the second.

The emission intensity of fluorescent protein 2 due to FRET from fluorescent
protein 1 is calculated by

L1 (A) = By (ex) * Eaajy * € * By * Fy(2)
(16)

The emission intensity of fluorescent protein 3 due to FRET from fluorescent

protein 1 through fluorescent protein 2 is calculated by
I31(A) = E;(Aex) * €qaj, * €aaj, * C * Bz * F3(4)
(17)

Finally, the emission intensity of fluorescent protein 3 due to FRET from

fluorescent protein 2 is calculated as follows
I32(A) = Ez(Aex) * €qaj, * C * By * F3(4)

(18)
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Calculating the Observed Spectra Using Cytek Binning. The emission spectra
of the MuSIC probes are simulated at every nm as described above. To best
replicate the emission spectra generated from the Cytek Northern Lights and the
Cytek Aurora flow cytometers, we condensed the simulated emission spectra
based on the emission channels for each instrument, referred to as binning. Each
emission channel represents spectral data condensed over a range of
wavelengths, so to convert the simulated emission spectra (which is at every nm)
we averaged the simulated emission spectra / for each probe over the wavelength
ranges of each instrument’s emission channels. Each binned emission point is
calculated as follows

B Xilii

n;

fi
(19)
Where f; is the binned emission point over the wavelength range for channel

J, nis the number of wavelengths in channel j, and / is calculated as above.

Noise Model. Noise is assumed to be normally distributed and simulated
using the MATLAB function randn. The standard deviation for the normal
distribution is estimated based on data from the Cytek Northern Lights flow
cytometer, given by the manufacturer, which is estimated at 50 relative fluorescent
units (RFUs) for an intensity of 10° RFUs. In the above simulations, the
fluorescence emission spectra have an average maximum of ~10 RFUs. The

standard deviation of 50 is thus decreased by a factor of 10* to adjust for the
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simulated emission spectra, giving a standard deviation of 0.005 for noise. This
value is used as the value for “low” noise. The standard deviation is set to 0.05 for

“high” noise (10-fold higher than the low noise).

Unmixing. The fluorescence emission spectra of a mixture of fluorophores
can be cast as a sum of the emission spectra of the individual fluorophores as

follows.

U=R-c
(20)

Where u is an n-by-1 vector of observed fluorescence emission intensity at n
emission wavelength/excitation channel combinations, R is an n-by-m reference
matrix that is generated from the simulated emission spectra of m individual probes
with multiple excitation channels as described above, and ¢ is an m-by-1 vector
containing the relative probe concentrations.

Solving this equation gives an estimate of the relative probe concentrations,
c. This is done using the MATLAB function 1sglin. The lower bound for elements

of ¢ is set to zero, and the upper bound is left empty.

Generating a Simulated Experimental Data Set. Simulated data are

generated by first specifying the relative probe concentrations for different mixtures

of MuSIC probes. This is referred to as the actual mixture composition vector, ca.
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For single probe mixtures, one probe concentration is set to 1 and all others are
zero. For barcode mixtures, two probe concentrations are set to 1, and all others
are zero. For two barcode mixtures, four probe concentrations are set to 1, and all
others are zero. For the case of variable probe expression levels, probe
concentrations are set to a random number between 0.5-1.5 (rand). For two
barcode mixtures, the probes are divided into two batches, and two probes are
chosen from the first batch while two are chosen from the second (see Results).
Equation 20 with ca and R is used to calculate u., the simulated emission spectra
of the mixture. Experimental noise is then added to the simulated emission spectra
at either low or high levels, as described above, giving un, the simulated observed
spectra. Finally, Equation 20 is used to solve for ¢ (i.e., unmixing), giving the

predicted mixture composition, €.

Binary Classification. Binary classification is performed on the predicted
mixture composition vector by converting the relative level for each probe to a one
or zero based on a threshold for each probe. The threshold for each probe is
determined as that which gives the maximum Matthews Correlation Coefficient

value for each probe respectively based on simulation data (see below).

Confusion Matrix and Matthews Correlation Coefficient (MCC). Evaluating

binary classification performance requires the calculation of a confusion matrix,

which serves as a centralized table that tracks the number of true and false positive
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and negative classifications. The confusion matrix allows for the calculation of a
multitude of performance metrics and is calculated using the MATLAB function
confusionmat.m. Out of these different metrics, the Matthew’s Correlation
Coefficient (MCC), or phi coefficient, was chosen to quantify the performance of
probes in the simulations. The MCC was chosen because it is appropriate when
the classes are highly imbalanced??!, such as what we have here when there are
many more true negatives than true positives. Other metrics, such as the F1 score
or Accuracy, are problematic for situations where there might be significantly more
true negatives than false positives.

Given a classification threshold to evaluate, a confusion matrix is generated
for each probe using the actual mixture compositions and the binary predicted
probe concentrations for each probe. These confusion matrices are used to
generate an individual MCC score for each probe, given the threshold. The
threshold is then varied to determine the optimum threshold to maximize MCC for
a particular probe.

A confusion matrix is generated for the entire group of probes using a matrix
of all concatenated actual mixture composition vectors and a matrix of all
concatenated predicted mixture composition vectors. This confusion matrix is used
to generate the overall MCC score which represents the performance for the entire

group of probes.
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Results

This paper explores a theory for creating a large library of genetically-
encoded, fluorescence spectral barcodes for potential application to genetic
interaction screening. It is based on our recently published Multiplexing using
Spectral Imaging and Combinatorics (MuSIC) approach?’, which creates unique
spectral signatures from stably-linked combinations of individual fluorophores. The
individual fluorophores or combinations are called MuSIC probes. In this work, we
consider expanding the number of fluorophores used by fusing 2 or 3 individual
fluorophores that would give rise to unique spectral properties. The spectral
signatures of combination probes are linearly independent (i.e., unique) from the
individual fluorophore spectra comprising the combination so long as sufficient
Forster resonance energy transfer (FRET) occurs. This linear independence
property allows for the estimation of individual MuSIC probe levels when they are
together in a mixture, a process often called “unmixing”.

We selected 18 fluorescent proteins (see Methods and Table 5.S1) that span
the ultraviolet to infrared spectrum and first wanted to determine how many MuSIC
probes could be generated. The quality of unmixing depends on the FRET
efficiency, which is directly related to the Forster radius and the physical distance
between chromophores of the fluorescent proteins (see Methods). The distance
between fluorescent proteins can usually be adjusted by altering the length and
nature of the peptide fusion linker; thus, the answer to this question depends on

the Forster radius chosen as acceptable (Fig 5.1A-B). Since high FRET producing
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pairs usually have a Forster radius greater than 5 nm?2°, we only consider MuSIC
probes that have an estimated Forster radius greater than 5 nm. At this cutoff, 910
MuSIC probes can be generated (Table 5.S2), but this is far from genome-scale.
We should also note here that in principle the same fluorescent proteins in a probe
could be engineered to be a different distance apart and thus a different FRET
efficiency, which would increase the number of probes. However, for the purposes
of this work, we only consider one FRET efficiency (~50%) per probe.

Can we develop another layer of combinatorics to generate further diversity?
Consider the concept of a MuSIC barcode that is a combination of MuSIC probes.
As an example, let us start with two fluorescent proteins, mAmetrine and
mOrange2. From these two fluorescent proteins we can create three MuSIC
probes: a single fluorescent protein probe of mAmetrine, the combination probe of
mAmetrine and mOrange2, and another single fluorescent protein probe of
mOrange2. A MuSIC barcode is then every 2-way combination of the probes.
Thus, from these probes we can create three MuSIC barcodes (Fig 5.1C-D). The
MuSIC barcode spectra are clearly unique from one another. The number of
barcodes that can be generated given a particular number of probes is given by
combinatorics (see Methods); 910 probes gives 413,595 barcodes (Fig 5.1B, E).

This barcode diversity far exceeds the number of genes in the human genome
(Fig 5.1E). If each MuSIC barcode could be paired to a guide RNA (gRNA), and if
resolvable in practice, one could perform genome-scale genetic screening that is

non-destructive in single cells. Specifically, then if a certain MuSIC barcode is
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detected in a particular cell (via a fluorescence emission spectra measurement),
that would indicate the gRNA that was present, and therefore the target gene that

was likely modulated in that cell.
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Figure 5.1: Theory and scope of MuSIC Barcodes for genetic and genetic

interaction screening. (A) Forster Radius (Ro) cut off for probe selection. From the

103



total list of possible MuSIC probes (987), only probes with an Ro value greater than
5nm (910) are selected as potentially good probes. (B) Potential number of MuSIC
probes and barcodes. Given 18 fluorescent proteins, 910 MuSIC probes can be
created (with an Ro>5nm), and given 910 MuSIC probes, 413,595 MuSIC barcodes
could be created. (C) Example emission spectra of MuSIC probes and barcodes
when excited at 405, 488, and 635nm. Given the fluorescent proteins mAmetrine
and mOrange2, three MuSIC probes can be created that are spectrally unique.
Given these three MuSIC probes, three MuSIC barcodes can be created. (D)
Schematic showing the creation of MuSIC probes and barcodes from single
fluorescent proteins. (E) Genetic and genetic interaction screening capabilities
given the number of MuSIC probes that can be created.

MuSIC barcodes may also enable large-scale genetic interaction screening
(Fig 5.1E). Consider that a gRNA is paired to a MuSIC barcode as above, but
instead there are two MuSIC barcodes in a cell corresponding to two specific
gRNAs. This means four MuSIC probes would be present in the cell. To avoid
mapping ambiguity from probes to barcodes to gRNA, the MuSIC probe library
would have to be split in half before linking gRNA with MuSIC barcodes, which
makes the predicted scale of genetic interaction screening lower than that of
genetic screens. With 910 MuSIC probes, 103,285 gRNA could be studied for
genetic interactions, which approaches human genome-scale genetic interaction

screening at ~3x redundancy.
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While the above suggests MuSIC barcodes may enable novel genetic
screening technology, how well might it work in practice? Of the 910 potential
probes, how many can reliably be identified from expected mixtures? To constrain
the answer to this question, we developed a simulation workflow. Rapid
measurement of fluorescence emission spectra in single cells has recently become
possible with Cytek flow cytometers. For this reason, we have based the simulation
studies described in this paper off the Cytek Northern Lights Flow Cytometer (3
lasers; 405, 488, and 635nm) and the Cytek Aurora Flow Cytometer (5 lasers; 356,
405, 488, 561, and 635nm) (Fig 5.2A). The spectral emission bin structure for each
instrument and its signal-to-noise ratio is known and we incorporate such
information into our simulated measurements (Fig 5.2A—see also Methods). For
genetic screens, it can be useful to reserve one excitation channel to measure an
observed phenotype. Therefore, we also investigated a setup for 2 lasers
(Northern Lights, dedicating the 635nm laser to a phenotype) and 4 lasers (Aurora,
dedicating 635nm laser to phenotype) (Fig 5.2B).

We implemented the following simulation strategy to eliminate “poorly”
performing probes from consideration (Fig 5.3A). A “poorly” performing probe is
one that leads to at least one misclassification event in simulations. At the core of
the algorithm is a simulated MuSIC probe mixture. This is a vector that represents
which probe or probe(s) are present in the ground truth, which we call the actual
mixture composition. Using the actual mixture composition vector and the

calculated reference matrix (see Methods—spectra of individual probes), we can
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calculate the emission spectra of the mixture. We add low or high noise (see
Methods—based on Cytek flow cytometer specs) to the emission spectra of the
mixture, generating the simulated observed spectra. After noise is added, we
perform linear unmixing, which generates the predicted mixture composition. To
compare the predicted mixture composition to the actual mixture composition, we
first perform binary classification (see Methods). To quantify performance, we
calculate the Matthews correlation coefficient, which is suitable for cases such as
this where there are many more true negatives than true positives. If overall
classification is not perfect (MCC < 1), then we identify which probe has the worst
MCC, and remove it. The simulation is repeated until overall classification is perfect
(Fig 5.3B), at which point we obtain the final list of good probes (Table 5.S2). This

process is performed in triplicate.

A
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Figure 5.2: Simulation setup. (A) Simulating emission spectra. Process of
condensing the original emission spectra at every nm according to the emission
binning and noise of the simulated instrument. (B) Cases for the simulation
experiment setup based on Cytek flow cytometers.

We use three sequential sets of simulations to determine a list of “good”
MuSIC probes that can be used (1) on their own, (2) for MuSIC barcodes (genetic
screening), and (3) for two MuSIC barcodes (genetic interaction screening) (Table
5.52). The final list that is obtained in Simulation 1 is used for Simulation 2, and
likewise 2 for 3 (Fig 5.3C). For example, only probes that are good for use on their
own are considered for MuSIC barcodes. The list of “good” MuSIC probes from
Simulation 2 sets constraints on genetic screening for single gene effects and the
list of good MuSIC probes from Simulation 3 sets constraints on genetic interaction
screening.

The results of this process are summarized in Table 5.1. The final number of
good MuSIC probes that can be unmixed with perfect classification for MuSIC
barcodes and sets of two MuSIC barcodes are listed for each of the experimental
setups (summarized in Fig 5.2B). We found reasonable overlap between which
probes were labeled as good between replicate runs (Fig 5.S1), although the
overall number of probes seems to be a more reproducible and larger factor (Table
5.1). Given these results, the number of gRNA that can be used for genetic and
genetic interaction screening are calculated from Fig 5.1E. In general, more lasers

and lower noise allows for more probes and barcodes, as expected. For genetic
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screens, each scenario investigated suggested potential for genome-scale
operation. For genetic interaction screens, 4 and 5 laser setups with low noise
predicted operation at genome-scale. Even 2 and 3 laser setups with high noise
predicted operation with 1000s of gRNA in genetic interaction screens, an order of
magnitude above current methods. If we consider typical ranges of cell-to-cell
variability in probe expression levels, then we can still generate gRNA on the same
scale (Table 5.S3). If we only consider MuSIC probes with one or two fluorescent
proteins, as opposed to three, we can still achieve multiple hundred gRNA for
genetic interaction screens (Table 5.S4). Overall, these results suggest MuSIC
barcoding theory represents a promising approach to transforming genetic
perturbation technology.

Table 5.1: Simulated number of gRNA that could be used for genetic and genetic
interaction screens. Results for the number of good probes for barcodes and pairs
of barcodes are shown for each experimental setup. Given the number of good

probes, the number of potential gRNA for genetic and genetic interaction screens

1] #erGedeone o gRNA

5 high 666+15 294+7 221893+10020 10694+510
5 low 894+3 708+12 399477+2596 623972046
Cytek Aurora
4 high 580+9 252+10 167983+4916 7860+654
4

low 879+2 590+11 385885+1755 43294+1535
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is listed. Results for the Cytek Northern Lights flow cytometer are highlighted in

blue and results for the Aurora flow cytometer are highlighted in yellow.
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Figure 5.3: Workflow for probe removal. (A) Obtaining the list of good probes
based on classification metrics. First, the emission spectra of a mixture of probes
is simulated given a set of probes. Next, noise is added to the emission spectra
and the spectra is unmixed (using the reference matrix) to predict the mixture
composition of probes. Binary classification is performed and finally, the predicted
mixture composition is compared to the actual mixture composition. This process
is repeated for each probe and the worst performing probe is removed until the
overall classification is perfect. (B) Graphical representation of probe removal
results. Individual probes are removed until the overall MCC value (confusion
matrices shown on the right-hand side) is perfect (i.e equal to 1). (C) Workflow of
sequential trimming of lists of good MuSIC probes. The final list of good MuSIC
probes for single MuSIC probes (simulation 1) is used as the starting list for
simulation 2. Then the final list of good MuSIC probes for barcodes (simulation 2)

is used as the starting list for simulation 3.
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Discussion

Here we propose an approach for single-cell, non-destructive, and potentially
genome-scale genetic and genetic interaction screens. This work builds on our
recently developed theory for Multiplexing using Spectral Imaging and
Combinatorics (MuSIC). MuSIC probes are stably linked combinations of
fluorophores with unique spectral signatures that can be deconvolved when in a
mixture with other MuSIC probes. The novel concept introduced in this work is that
of a MuSIC barcode, a combination of MuSIC probes. Given currently available
fluorescent proteins, we estimate that ~10° unique MuSIC barcodes can be
created from combinations of MuSIC probes. We devised a simulation workflow to
generate lists of MuSIC probes that are likely to be deconvolvable in a mixture,
given binary classification applications. These results show the potential for
genetic screens at the human genome-scale and genetic interaction screens for at
least 1000s of genes. In some cases (i.e. 4 or 5 lasers and low noise), results show
the potential to perform genetic interaction screens at a human genome-scale.

What could be learned with non-destructive, single-cell genetic screens?
When analyses are done on a single-cell level, each cell is analyzed
independently, and as a result, multiple measurements can be done in parallel,
increasing throughput?32-234. To accomplish this, CRISPR screenings have been
paired with single-cell RNA sequencing using methods like Perturb-Seq®®,
CRISP-seq?*%, or CROP-seq?®"2%. While single-cell sequencing has the ability to

pair transcriptome responses to a nucleic acid barcode that indicates the genetic
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perturbation, it is as yet prohibitively expensive for covering interaction
space?3%240, Moreover, sequencing is a destructive technology so one cannot
subsequently study perturbed cells-of-interest. The use of MuSIC barcodes could
expand on the capabilities of these methods by allowing for high throughput
genetic screening in a non-destructive manner. A non-destructive application in
single live cells could allow sorting of rare cell types for subsequent follow-up
studies. This could lead to co-isolating rare cell types thought to cooperate with
each other for a disease phenotype.

What could be explored with high-dimensional non-destructive genetic
interaction screens? One application is synthetic lethal interactions, which is
defined as a genetic interaction that results in cell death, but disruption of the
individual genes does not. Synthetic lethality has previously led to the discovery
that poly(ADP-ribose) polymerase (PARP) inhibitors effectively kill BRCA1- and
BRCA2 mutant tumor cells in breast cancer®*'. The proposed method may allow
for genetic interaction screening at a near genome-scale, which could lead to the
discovery of new synthetic lethal interactions in a high-throughput manner that is
not currently possible. By discovering and exploiting synthetic lethal interactions in
cancer cells, combinations of drugs can be used to treat cancer more effectively
and at lower drug concentrations and thus lower toxicity?42.

Although simulations suggest a large potential for the approach when
applied to genetic screening, there are multiple technical hurdles to its

implementation. How can one clone thousands of unique MuSIC barcodes
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specifically paired with matched gRNA? If one uses lentiviruses to deliver the
constructs, how does one avoid template switching between genetically similar
fluorescent proteins or barcodes, corrupting the connection between the barcode
and gRNA?43? The constructs may be large as well, so how does one achieve high
enough titer to perform genetic interaction screening? Although flow cytometry is
fast, can one assay enough cells to adequately explore gene interaction space?
These are just some of the major issues that will arise, yet the potential
applications, if these issues can be overcome, could be highly impactful.

Although we focused here on genetic screening as an application, genome-
scale spectral barcode libraries could have other uses, such as high-dimensional
cell lineage tracing. Current fluorescence-based lineage tracking is limited from
spectral overlap and the number of unique probes. Techniques such as Brainbow
work to fill this gap by using random ratios of different fluorophores to label cells?#4,
but are still limited to ~10s of deconvolvable colors?*®. This has been partially
overcome through the use of DNA barcodes in each cell but requires destructive
DNA sequencing to be deconvovled?#®. Music barcodes could be used to bridge
this gap by expanding the available palette of color codes for fluorescence-based
lineage tracing to potentially thousands of deconvolvable colors.

In conclusion, despite impending technical hurdles, the simulation studies
presented here show the potential for MuSIC barcodes to enable high-dimensional
genetic interaction screens at the human genome-scale. Its single-cell resolution

compatibility and non-destructive features could also enable multiple new
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applications for established genetic screening, or for cell lineage tracking. The
capabilities of this approach can further be increased by increasing the number of

excitation lasers and/or the spectral wavelength resolution.
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Supplementary Figure and Table Legends

Figure S1: Comparison of lists of good probes between trials. The similarities
and differences between the final lists of good probes for each trial are shown for

each of the experimental setups.

Table S1: Fluorescent protein data. The maximum excitation and emission
wavelength, brightness, extinction coefficient, and quantum yield for each
fluorescent protein is found in the Attributes tab. Excitation and emission spectra
for each fluorescent protein are found in the Excitation Spectra and Emission
Spectra tabs, respectively. Sources for the raw data are found in the Sources

tab.

Table S2: Probe lists. The lists of good probes for single probes, barcodes, and

two barcodes are listed for each experimental setup in replicate.

Table S3: Simulated number of gRNA that could be used for genetic and genetic
interaction screens with variable probe expression levels. We allowed probe
expression levels to vary between 0.5 and 1.5 (relative) to capture single cell-to-
cell variability. Results for the number of good probes that can be used to form

barcodes and pairs of barcodes are shown for each experimental setup (the flow
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cytometer used), the number of lasers used, and the noise level (either low or
high). Given the number of good probes, the number of potential gRNA for

genetic and genetic interaction screens is listed.

Table S4: Simulated number of gRNA that could be used for genetic and genetic
interaction screens when only considering one and two-way fluorescent protein
probes. Probes containing three fluorescent proteins were not considered here.
Results for the number of good probes that can be used to form barcodes and
pairs of barcodes are shown for each experimental setup (the flow cytometer
used), the number of lasers used, and the noise level (either low or high). Given
the number of good probes, the number of potential gRNA for genetic and

genetic interaction screens is listed.
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CHAPTER SIX
SIMULATION STUDIES FOR COMBINATIONS OF SMALL MOLECULE

FLUOROPHORES

Abstract

Cells are the functional building blocks of multicellular organisms, where
each cell type plays a different role in the body. Consequently, characterizing the
various types and functions of each cell is a powerful tool for disease diagnosis
and treatment. Recent advances in full spectrum flow cytometry (FSFC) have led
to the increased multiplexing capability of 40 analytes simultaneously, rivaling the
multiplexing ability of mass cytometry. We previously developed a theory for
screening combinations of fluorescent proteins to create spectrally unique
fluorescent probes. Here, we adjust this simulation workflow to simulate
combinations of small molecule fluorophores rather than fluorescent proteins.
Based on the constraints of 30 currently available small molecules and currently
available spectral flow cytometry equipment, simulation studies suggest that cell-
type profiling can be performed simultaneously at a level of 200+ analytes. This
work, combined with our recently developed method for labeling antibodies with
combinations of small molecule fluorophores, suggests our ability to label
antibodies with combinations of small molecule fluorophores for flow cytometry

based-highly multiplexed cell-type profiling.
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Introduction

The human body is composed of multiple organ systems, each comprising
numerous different cell types, which play an essential regulatory role in maintaining
the body’s homeostasis?6. There is a drive to increase our understanding of each
cell type of the human body to ultimately help provide better diagnoses, monitoring,
and treatment of disease. For this reason, the Human Cell Atlas Project was
created to generate molecular profiles of single cells across the different human
organs and systems?¥’. However, creating single-cell cartography of human
tissues is a current grand challenge; initial efforts suggest hundreds to thousands
of functionally distinct cell types exist?*®. One relevant development working
towards this goal is cell type profiling, which is the process by which a complex
mixture of cell types, for example, from blood or tumors, are classified into the
fractional composition of its components (e.g., neutrophils, natural killer cells,
various types of T and B cells, etc.), based on classification of expression patterns
(e.g., CD3 expressed or not)'8.

A traditional method of cell-type profiling used for immune profiling is flow
cytometry, which uses the maximum emission wavelength of fluorescently-labeled
antibodies to measure the expression of protein components of a cell. The use of
fluorescent antibodies with conventional flow cytometers is restricted to ~10-15
markers due to spectral overlap between fluorophores, severely limiting the
number of cell types that can be distinguished'®'”. However, flow cytometry

remains a valuable platform for cell-type profiling as it is a cost-effective, high-
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throughput, and non-destructive method with single-cell analysis'’8. Another
method for cell-type profiling is mass cytometry. Here cell samples are labeled with
isotopically pure rare earth metals and analyzed by mass spectrometry on a single-
cell level. Metal-labeled antibodies circumvent the issue of spectral overlap
allowing analysis of ~40+ analytes'3. While mass cytometry has been
revolutionary to the field of cell-type profiling, compared to flow cytometry, it is
more expensive and acquires cells at a significantly lower rate (~300/400
events/second compared to thousands of events/second)'78249, Additionally, this
method destroys the sample during acquisition, preventing the use of follow-up
studies.

Another approach, single-cell RNA sequencing, is a state-of-the-art technique
for cell-type profiling with unmatched multiplexing'®'. Thus far, no other method
approaches the ability to identify 100s (or even 1000s) of cell types, as recent
single-cell RNA sequencing studies suggest'®'.'82. However, similar to mass
cytometry, this method does not allow for the non-destructive analysis of samples.
Further, it also requires substantial instrumentation, reagent cost, and personnel
expertise, hindering adoption efforts outside of a high resource availability
environment?%°,

More recent developments have led to full-spectrum flow cytometry (FSFC),
which captures the entire fluorophore emission using multiple excitation lasers and
emission channels, creating a unique spectral fingerprint for each fluorophore'®°.

This has enabled the simultaneous detection of 40 markers simultaneously'®, a
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significant improvement relative to the traditional flow cytometry. However, FSFC
is far from meeting the multiplexing capabilities of single-cell RNA sequencing.
Therefore, a flow cytometry-based method that allows for an increased number of
simultaneously detectable markers would be instrumental in current cell-type
profiling efforts.

As such, we propose that by incorporating our recently developed method,
Multiplexing using Spectral Imaging and Combinatorics (MuSIC)?' with FSFC, we
can expand the current multiplexing capabilities that FSFC can provide for cell-
type profiling. MuSIC uses combinations of fluorophores to create spectrally
unique MuSIC probes. In this study, we adapt our previously developed method?>"’
for screening combinations of MuSIC probes created from fluorescent proteins to
screen combinations of MuSIC probes created from small molecule fluorophores.
This work, combined with our recently developed method to covalently label
antibodies with small molecule fluorophore-MuSIC probes'®, suggests that we
can perform cell-type profiling of up to 265 markers simultaneously with currently

available equipment.
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Methods

Availability, Code Overview, and Simulation. All MATLAB code and raw data
used for simulations are open-source on Zenodo. DOI: 10.5281/zenodo.7186939
The scripts GenerateIDT 5probes 31 HN.m and
GenerateIDT 5probes 51 HN.m are used for generating the list of good
probes for groups of 5 probes for 3 lasers/high noise (HN) and 5 lasers/high noise,
respectively. The core of these scripts is done by the function
RemoveIDTprobes onebyone.m, which is adapted from the function
RemoveTwoBarcodes onebyone.m (McCarthy et al.) to simulate mixtures of 5
MuSIC probes rather than 4. The README file contains relevant information on
the code for execution and reproducing the results. These simulations were
performed in MATLAB using 40 CPUs on the Palmetto supercomputing cluster at

Clemson University.

Data Sources. Emission spectra, excitation spectra, and brightness for
fluorescent proteins were gathered from idtdna.com (Supplementary Table 1 and
references therein). Specifications for flow cytometer noise, excitation channels,
and emission binning were obtained from the Aurora and Northern Lights flow

cytometer user guides on cytekbio.com.
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Results
This paper adapts a previously established theory for creating a library of
fluorescent protein-MuSIC probes for genetic screening to create a library of small
molecule-fluorophore MuSIC probes for cell-type profiling. We selected 30 small-
molecule fluorophores (Fig 6.1A) currently available as oligo modifications at
Integrated DNA Technologies to determine how many MuSIC probes could be
created. Here we only consider MuSIC probes made from one- and two-way
combinations of fluorophores, as this theory is based on the fluorophore-oligo
labeling protocol described in Chapters 3-4. As previously described in Chapter 5,
the ability to unmix probes depends on the FRET efficiency of the combination of
fluorophores, which is directly related to the Forster radius and the physical
distance between chromophores of the fluorophores. The distance between
fluorophores in the MuSIC probe is adjustable by altering the number of base pairs
between the fluorophores in the oligo complex (see Chapter 4); thus, the answer
to this question depends on the Forster radius chosen as acceptable (Fig 6.1B).
Since the minimum distance that fluorophores can be placed from one another is
5 bp, we only consider MuSIC probes that have an estimated Forster radius, Ro,
greater than 17 angstroms (or 5 bp). At this cutoff, 372 MuSIC probes can be
generated.
We then asked how many MuSIC probes should be present in a mixture to
determine the multiplexing capabilities of MuSIC probes for cell-type profiling. Our

previous work (Chapter 5) simulates mixtures of one, two, and four MuSIC probes
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and removes poorly-performing probes based on classification parameters;
however, for this study, we had to determine the number of MuSIC probes that can
be co-expressed on a cell at one time. We chose to look at normal human PBMCs,
as they are cells commonly used for immune profiling (a popular form of cell-type
profiling), and we determined that up to 5 markers in a typical immune profiling
panel could be present in a single cell type. Based on this, we adjusted our
simulation workflow to simulate mixtures of 5 MuSIC probes. Unmixing,
classification, and probe removal was performed as previously discussed (Chapter
5). Using the noise specifications and laser configurations of the 3-laser Cytek
Northern lights and the 5-laser Cytek Aurora flow cytometers, we determined that
191 and 265 MuSIC deconvolvable probes could be used for cell-type profiling,
respectively (Fig 6.1C). While replicates of the simulations still need to be
performed, these preliminary results suggest the capability of MuSIC probes for
cell-type profiling at a scale that is not currently possible with currently used

methods.
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Figure 6.1 Simulating small-molecule fluorophore probes. (A) List of small
molecule fluorophores used in simulations with their corresponding brightness and
excitation and emission maximum wavelength. (B) Forster Radius (RO) cutoff for
probe selection. Only probes with an RO greater than 5bp are selected. (C) The
potential number of MuSIC probes that can be used in a panel for cell type profiling,

given currently available flow cytometers.
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Discussion

Here we propose an approach for spectral flow cytometry-based, highly
multiplexed cell-type profiling. This work builds on our previously developed
simulation workflow for screening lists of spectrally unique MuSIC probes, given
current technology. The novel concept introduced here is adapting the previous
simulation studies to create combinations of small molecule fluorophores instead
of fluorescent proteins and generate lists of MuSIC probes that can be used for
cell-type profiling rather than genetic interaction screening. Here we simulate
mixtures of 5 different small-molecule MuSIC probes (as this is likely the maximum
number of immune profiling markers that can be simultaneously present in a single
cell) and test whether they are likely to be deconvolvable in a mixture based on
binary classification applications. Using the results generated in this study, we can
create panels of spectrally unique MuSIC probes based on current flow cytometry
equipment constraints. These results show the potential for cell-type profiling of up
to 265 cellular markers simultaneously using a Cytek Aurora flow cytometer.

How might one execute cell-type profiling of 265 markers? In order to perform
highly multiplexed immune profiling, we can leverage our previously developed
method to covalently label antibodies with combinations of small molecule
fluorophores (MuSIC probes). In short, an oligo complex is created using
complimentary oligos with internal fluorescent modifications to place combinations
of small molecule fluorophores at specified distances and orientations from one

another. Using a DBCO-Peg5- NHS Ester (linker), we can covalently bind the oligo
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complex to an antibody. Using the panels generated here, we can covalently label
antibodies with MuSIC probes and test these results experimentally by unmixing

probes using a spectral flow cytometer.
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CHAPTER SEVEN
CONCLUSION
Conclusions

This dissertation broadly covers the various applications of combination
fluorescent probes for biological and diagnostic applications. This work was
inspired by the need to study cells and tissues quantitatively at a single-cell level
for cancer research, diagnostics, and treatment. Current state-of-the-art
fluorescent labeling techniques still lack the multiplexing capability to measure
greater than forty analytes in a single cell, primarily due to spectral overlap
between fluorophores. We propose here that combinations of fluorophores can be
used to create new spectrally unique probes for fluorescent imaging and flow
cytometry, thus increasing the multiplexing capabilities of these techniques. With
increased multiplexing capabilities, a complete visualization of cellular markers,
spatial organization, and gene function could be achieved, leading to improved
cancer diagnostics and treatment.

In chapter 2, we review current tissue imaging techniques and describe the
advantages and disadvantages of each approach. We discuss fluorescent-based,
mass spectrometry-based, and sequencing-based methods. Within fluorescent-
based methods, we further categorize methods by filter-based or spectral. Within
the spectral methods, we introduce our previously developed method of
Multiplexing using Spectral Imaging and Combinatorics (MuSIC), which the rest of

the dissertation is built on.
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In chapters 3 and 4, we present a technique to covalently label antibodies
with combinations of small molecule fluorophores (referred to as MuSIC probes).
In chapter three, we offer the initial antibody labeling protocol and validate it using
spin column purification and absorbance measurements. In chapter 4, we improve
this method to achieve an increased fluorescent signal of the MuSIC probe-labeled
antibodies. We found that by changing the orientation of the fluorophores within
the oligo complex, we can improve the fluorescent signal by ~6-fold over the
previous method. The new labeling method is compared to a conventional antibody
labeling kit for signal intensity by staining human cells to further test the new
labeling method. Results showed an increased signal intensity of MuSIC-probe
stained cells compared to cells stained with the conventional labeling kit. This
shows our ability to label antibodies with combination probes with adequate
staining intensity compared to conventional methods.

In chapters 5 and 6, we introduce a simulation workflow to generate lists of
MuSIC probes that, in theory, can be demultiplexed in a mixture. In chapter 5, we
use a set of 18n currently available fluorescent proteins and generate MuSIC
probes based on acceptable one-, two-, and three-way combinations of fluorescent
proteins. We then introduce the concept of a MuSIC barcode (two MuSIC probes),
which in theory, can be used to perform genetic screens, providing that MuSIC
barcodes can be paired to guide RNA. We further predict the capabilities for
genetic interaction screenings by using pairs of barcodes (four MuSIC probes) and

find that we have the potential to perform genetic interaction screens at the human
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genome scale. In Chapter 6, we adapt this simulation workflow to use a set of 30
small molecule fluorophores and make MuSIC probes based on acceptable one-
and two-way combinations. Here we simulate the capabilities of MuSIC probes for
cell-type profiling and find that we have the potential to perform cell-type profiling
of 200+ analytes.
Future Work

Future work involves the experimental testing of the lists of MuSIC probes
generated in chapters 5 and 6. Using the procedure demonstrated in chapters 3
and 4, antibodies can be labeled with the lists of MuSIC probes generated in
chapter 6. Antibodies should be selected based on cell-type markers for the
chosen cell line (here, we used human PBMCs). From here, cells stained with
MuSIC probes will be analyzed using a spectral flow cytometer and compared to
a commercially available panel. To start, groups of 40 MuSIC probes should be
tested and compared against the state-of-the-art forty-color commercially available
panel® for signal intensity and % cells stained. Unmixing will be performed to
determine which MuSIC probes can be accurately demultiplexed in a mixture. This
method will be repeated until all 265 probes have been tested. Finally, the full list
of the remaining MuSIC probes will be tested using an antibody panel compatible
with the chosen cell line to test the unmixing capabilities of the complete list.

The lists of MuSIC probes generated in chapter 5 should be used as a basis

for the experimental testing of fluorescent-protein MuSIC probes for genetic and
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genetic interaction screening. However, a method to pair the MuSIC barcodes to
guide RNA must first be established, which will require future experimental design.

Although the methods discussed in this dissertation focus on cancer, in
theory, they are general and can be applied to any genetic disease. The ability to
characterize and visualize cellular components at a single-cell resolution is

instrumental in the design of biological and diagnostic applications.
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