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ABSTRACT 
 
 

Compound and cascading hydroclimatic extreme events have garnered much attention in 

recent studies. The combined effects of interconnected extremes can cause widespread 

damage, with a higher potential impact than individual extremes. Both anthropogenic 

warming and natural climate variability affect these extremes, which is why detecting 

past extreme events, understanding the underlying mechanisms, and assessing their future 

impacts can aid in mitigation efforts to reduce their overall impact. However, thus far, 

identifying such events is oversimplified and the propagation of their impact as cascades 

from the physical to human systems remains partly explored.   

The overreaching goal of this thesis is to develop robust methodologies to 

quantify the compound and cascading extreme events, such as drought and heatwaves, 

extreme precipitation and atmospheric rivers, extreme heat and humidity, and flash 

droughts in the past and future climate. A suite of advanced statistical methods, system 

dynamics, and causality approaches are implemented to achieve the research goal. This 

thesis consists of ten chapters, and the objective of each chapter are summarized as 

follows. 

(1) Chapter 1 provides a brief introduction and examples of various compound 

and cascading hydroclimatic extremes.  

(2) Chapter 2 provides a perspective of drought indices and highlights the 

challenges in the context of climate change.  

(3) The objective of chapter 3- chapter 5 is to quantify the compound drought 

and heatwave characteristics (frequency, duration, and severity) and 
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investigate their association with natural climate variability, anthropogenic 

warming, land-climate feedback, and background aridity across the globe.  

(4) Chapter 6 is dedicated to quantifying the future changes in potential impact 

of heat-stress (combination of extreme heat and humidity) on the human 

population.  

(5) The cascading influence of meteorological forcing on the moisture advection 

processes associated with extreme precipitation related to atmospheric rivers 

is discussed in chapter 7.  

(6) The objective of chapter 8 is to investigate and quantify the compound and 

cascading influence of different spatial drivers, such as precipitation, 

temperature, surface-energy portioning, soil moisture-temperature coupling 

strength, and vapor pressure deficit on the evolution and intensification of 

global flash droughts. 

(7) Chapter 9 proposes a methodology to quantify the compound and cascading 

effects in a dry-hot event network using a system dynamics approach. Finally, 

the conclusion and recommendations are provided in chapter 10. 
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CHAPTER ONE 

INTRODUCTION TO COMPOUND AND CASCADING HYDROCLIMATIC 

EXTREME EVENTS 

 

1. Definition of Compound and Cascading Events  

The impact of extreme events is often challenging and compounding in nature.  

This is because, most of the time, the variables/drivers are mutually dependent and 

interact among themselves at different spatio-temporal resolutions in random order 

resulting in a series of natural hazards [1–5]. The combination of such multiple drivers 

and/or hazards contributes substantially to the societal and environmental risk and is 

generally defined as a compound and cascading extreme event [2]. A few meaningful 

definitions of compound events are available in previous literature. Some of the key 

definitions are provided below. 

IPCC-SREX [6] defines compound events as “(1) two or more extreme events 

occurring simultaneously or successively, (2) combinations of extreme events with 

underlying conditions that amplify the impact of the events, or (3) combinations of events 

that are not themselves extremes but lead to an extreme event or impact when combined”. 

Leonard et al., 2014 [2] proposed a more general definition which is, “a compound event 

is an extreme impact that depends on multiple statistically dependent variables or 

events”. This definition was proposed with the intention of eliminating ambiguity 

supposedly arising from the categorization in the SREX definition of compound events. 

Their definition focuses on the extremeness of the impact rather than the impact of 
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individual variables or events, the multiple variables on which the impact depends and 

the underlying factors or dependence that influence the severity of the impact [2]. For 

example, the severity of the 2010 Russian summer heatwave was exceptionally high [7] 

due to the pre-existing dry conditions during the first seven months of the year [8]. The 

combination of extreme dry and hot conditions contributed to widespread wildfires [9] 

with major societal and environmental consequences such as mortality [10], loss of crop, 

and massive air pollution in big cities like Moscow [11], thereby adding to the impact of 

heat wave [12]. In this case, the overall impact from the combination of drought, 

heatwave, and wildfire represents the compound extreme. 

Another way of visualizing the compound extremes came from the idea of 

looking at the interaction relationships between the multiple hazards coming under 

various hazard groups (such as the geophysical, hydrological, near surface, atmospheric, 

biophysical, and space hazards) [13]. Keeping in mind the end user needs, Gill and 

Malamund, 2014 [13] synthesized and presented interactions between 21 natural hazards 

drawn from these hazard groups and identified 90 hazard interactions. Interactions 

involving a primary hazard triggering or increasing the likelihood of secondary hazards 

were considered in the study. Their study shows that a primary hazard trigger as well as 

increase the probability of a secondary hazard in 70% of the situation, can only trigger 

(but not increase the probability of) a secondary hazard in 17% of the situation, and can 

increase the probability of (but not trigger) a secondary hazard in 13% of the situation. 

Furthermore, it is observed that these interactions even have the potential to cause 

multiple hazard events. 
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Figure 1 Schematic diagram to represent risk from interconnected extreme events. This 

figure is reproduced from Zscheischler, et. al., 2018 [14]. 

 

To summarize, compound extreme definitions emphasize the interaction between 

multiple variables or hazards that increase the severity of their final impact. In some 

cases, even if one or more of the individual drivers or hazards are extreme, the combined 

effects may not be extreme. Therefore, the resulting event is not considered as a 

compound event. Relevant examples would be extreme precipitation in a coastal region 

accompanied by low ocean levels or extreme precipitation over a region with extreme 

shallow groundwater levels. In both cases, low-level flooding is expected and therefore, 

not considered as compound extremes. Similarly, there can be cases when the impact 
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from the multiple drivers or hazards may be extreme, although they are individually not 

extremes. In addition, the compound events can be represented as a combination of the 

Hazard types [13], such as climatic/hydrology events such as the flood, 

geophysical/technical events such as tsunami causing failure in a nuclear plant. Even 

climatic and non-climatic drivers interact with each other leading to hazards that affect 

the societal and environmental risk. The schematic illustrates this concept in Figure 1. 

2. Example of Compound and Cascading Hydroclimatic Extremes 

Specific examples of compound extremes are provided in the following section.   

2.1. Compound and Cascading Drought and Heatwave 

Simultaneous and sequential heatwave and drought episodes are among the most 

common compound, and cascading events studied extensively in many regions across the 

globe [15–18]. The compound and cascading effect of the extreme dry and hot conditions  

have been detrimental with consequences such as high mortality [10,19], loss of crop 

yield [20–24], and health hazards [25]. High precipitation variability induces a deficit in 

the soil moisture that gradually propagates into soil moisture drought. Due to the lack of 

moisture, cooling due to evaporation ceases to occur, which raises the sensible heat flux 

of the soil surface, thereby increasing the surface air temperature. This affects the surface 

energy portioning. The increase in the surface air temperature further increases the 

atmospheric demand for moisture, intensifying the drought (cascading effect). These 

land-atmospheric feedback processes are dominated by the surface energy budget and 

governed by a mutually reinforcing cycle often known as the soil-temperature coupling. 

They are very common in water-scarce or transitional regions [26].  
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Figure 2 Schematic diagram explaining the cascading effect of ENSO, PDO, and NAO 

on moisture inhibition and surface energy partitioning associated with compound drought 

and heatwaves. 

 

Furthermore, these land-atmospheric feedback processes are enhanced mainly by 

the large-scale dynamics of the atmosphere such as the transient anticyclones [27]. A 

schematic diagram is presented in Figure 2 to illustrate the cascading effect of large-scale 

perturbations, such as El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation 

(PDO), and North Atlantic Oscillation (NAO) on moisture inhibition and surface energy 

partitioning associated with compound drought and heatwaves. Anticyclones are 

responsible for drastically decreasing the weather variability at a synoptic timescale. The 

lack of atmospheric moisture/humidity in these regimes is one of the main drivers 

responsible for the onset of meteorological drought. For example, anticyclonic weather 
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regime dominated over central Europe during the spring and summer of 2003, resulting in 

continued reduction of soil moisture content and elevated surface temperature driven by 

soil-temperature coupling [28,29].  

Recent studies suggest a significant increase in simultaneous drought and heat 

wave events in regions such as western and southern US, northeastern China, western 

Europe, central Europe, Africa, southeastern Asia, southern India, northern South 

America, and eastern Australia [15,17,30–32]. Strong statistically significant relationship 

has been found between natural cycles like El Nino-Southern Oscillation (ENSO) and 

compound dry and hot extremes in various regions across the globe [27,33]. More 

interestingly, increased anthropogenic activities have also been cited as one of the key 

catalysts in the onset of hot and dry spells across the globe [17]. 

 

2.2. Compound Heat Extreme and Humidity  

It is well established that the impacts from rise in temperature extremes are 

compounded with an increased atmospheric water vapor (or relative humidity) which 

slows down heat dissipation from human body, thereby leading to heat stress (HS) [34–

36]. The extreme heat increases the body core temperature to dangerous levels and the 

added effect of increased humidity ceases evaporative cooling from the skin. Heat stress 

has led to massive human morbidity and mortality in recent years throughout the world 

[34,37,38]. Recently, many studies have reported the adverse effect of heat stress on 

public health and labor efficiency in the United States [39–41], much of which is 

attributed to the increased environmental exposure to such phenomena as an effect of 
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climate change [34,42–44]. Furthermore, extreme heat events in the Contiguous US 

(CONUS) have in recent decades been characterized by an earlier occurence and 

increased severity, frequency, and areal extent. These trends appear connected to 

anthropogenic warming [45–48].  

The HS is expected to become more severe due to an increase in frequency, 

duration, severity, and spatiotemporal extent of extreme warmth and moisture, which is 

an important, nonlinear, and often-neglected component. For example, severe heat stress 

(HS) events in the Midwest and the Gulf of Mexico coastal plains during the summers 

of 2019 and 2020, as well as many others during the 2010-19 decade, are representative 

of the types of extreme hot and humid events expected to become more common in the 

contiguous United States (CONUS) in future.  

The US National Weather Service (NWS; https://www.weather.gov/) 

approximates apparent temperature (“feels-like” temperature) that translates the humidity 

effect with a metric, referred as heat index (HI). The HI successfully communicates risk 

associated with extreme heat stress events and as such, have been extensively used in 

previous studies [34,42]. In addition to that, most studies have communicated exposure to 

dangerous heat stress based on the operational definition of excessive heat warning 

recommended by the NWS, as characterized by HI value exceeding 105°F (or 40.6°C) 

[34,49] persisting for 2 hours or more (https://www.weather.gov/bgm/heat). The 

operational definition of heat warnings as recommended by NOAA’s National Weather 

Service is illustrated in Figure 3. 
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Figure 3 NOAA’s Heat Index values corresponding to relative humidity and temperature 

illustrating the heat warnings. This figure is downloaded from NOAA’s National weather 

services (https://www.weather.gov/phi/heat). 

 

2.3. Compound precipitation and wind associated with Atmospheric Rivers  

The concurrent occurrence of wind and precipitation extremes driven by 

atmospheric rivers (ARs) have significant societal impacts. The past few decades have 

witnessed a rapid intensification of extreme precipitation (EP) events triggered by 

atmospheric rivers (ARs) leading to massive flooding across the globe [50–55], including 

in the US [56–61]. ARs are long narrow corridors of strong poleward water vapor 

transport across the mid-latitudes [62–64]. They form a considerable part of the warm 

conveyor belt of extratropical cyclones and are often characterized by strong low-level 

winds and intense storm activities.  
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Figure 4 AR making landfall during UTC 1200, 3rd May 2010 in the southeastern US; 

IVT intensity (shading), and IVT vectors (arrows) are calculated using the ERA5 dataset. 

 

Many global [65] and regional studies [57,58,66,67] have investigated various 

crucial aspects of landfalling ARs, including their climatology, contribution to snowpacks 

and other water resources [68], as drought busters [69] and flood producing drivers [70] 

across many parts of the globe. Numerous studies have adopted sophisticated algorithms 

and image processing tools to examine ARs and their associated precipitation [71–73]. 

The most robust metric used in the detection of ARs is the Integrated vapor transport 

(IVT) which is calculated in a Eulerian framework by performing a mass-weighted 

vertical integration within the pressure levels ranging from 1000 to 300 hPa as follows: 



 

 10 

2 2300 300

1000 1000

1 1 (1),IVT qudp qvdp
g g

   
= +   

   
    

where g is the acceleration due to gravity (= 9.81 m s−2), q is specific humidity 

(kg kg-1), u is zonal wind (m/s), v is meridional wind (m/s), and dp is the pressure 

difference (Pa) between adjacent pressure levels. Figure 4 shows an example of AR 

making landfall in the southeastern US.   

2.5. Flash Drought Caused by Compound Changes in Temperature and 

Precipitation 

Drought is usually insidious that builds up gradually and persists for several 

months or years, producing a complex web of impacts that affects various sectors of the 

society [74,75]. The droughts are often investigated at more extended periods (e.g., 

multiyear period); however, more often than not droughts are accompanied by heatwaves 

that are characterized by unusually high temperatures sustaining over a few days to 

weeks [76]. Among the drought events, certian drought events are characterized by a 

sudden onset and rapid intensification within a few weeks, leaving the stakeholders with 

a limited amount of time to react and cope with the significant economic impacts. Such 

rapid intensification of drought is triggered by a complex interaction between elevated 

atmospheric demand, limited soil moisture, and high evaporation rates (ET) that often 

lead to the onset of rapidly intensifying moisture stress, a phenomenon termed as "flash 

drought" [77–80].   

With the rise in global warming, the number of exceptional drought events has 

increased, which is likely to significantly impact socio-economic sectors, such as 
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agriculture, ecosystems, and energy production. Flash drought events are often difficult to 

predict, often resulting in devastating socio-economic impacts [81–84]. While studies 

based on regional observations have linked the onset and propagation of flash drought 

events to natural climate variability [85,86], future analysis has attributed possible 

amplification of such events to anthropogenic activities  [87].  

An abnormal decrease in precipitation, especially in a humid and sub-humid 

region, may lead to the rapid intensification of moisture stress leading to the onset of 

flash drought events [78,79,86]. Moreover, the unusual increase in temperature 

accelerates the terrestrial hydrological cycle that exacerbates atmospheric demand for 

evaporation. This favors the transition of a region from an energy-limited to a water-

stressed regime, conditions favorable for the onset of flash droughts [88,89]. 

2.6. Wildfires under pre-existing hot and dry conditions: 

The wildfire risk results from the combined effects of high precipitation 

variability leading to dry conditions, extreme temperatures, and below normal humidity. 

This type of compound events is very common in Mediterranean Europe [90], western 

US [91–94], and Australia [95,96]. During summer, these regions are generally 

characterized by transient anticyclones with clear sky, that enhances insolation and 

adiabatic warming of the surface air. These anticyclones are mostly slow moving or 

stationary (also known as atmospheric blocking) thereby allowing the heat wave to build 

gradually for a longer period of time [97] contributing to wildfire. The prolonged 2010 

Russian heat wave is one such example that led to wildfire followed by massive air 
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pollution in the city of Moscow [11]. The compound impact of this heat wave, wildfire, 

and air pollution took more than 2000 lives [11,12]. 

2.7. Landslide due to precipitation after wildfire  

High severity fires coupled with subsequent rainfall events has posed a major 

threat of landslides in the past [98]. Post-wildfire induced changes in the hydrological and 

physical properties of soil contributes to soil-hydraulics and composition [99]. The 

changes in the soil properties can modulate the watershed response, and sedimentation 

dynamics in the downstream region causing major losses such as mortality. Furthermore, 

due to fire suppression practices carried out in many regions, natural fire regimes have 

become more susceptible to fire of even greater intensity and coverage [100].  

Post-fire ash and debris generated by wildfires gets deposited over the affected 

area or flown by wind in the surrounding regions. The deposited ash and debris 

contribute to the instability in the soil that makes it susceptible to landslides due to 

rainfall. Several post-wildfire landslides have occurred due to high as well as low rain-

storms across many parts of the globe [101–103]. The 2003, 2007 and 2009 wildfire in 

the southern interiors of British Columbia triggered series of landslides in the region 

[101].  

2.8. Marine Heat waves, acidification, and deoxygenation 

Marine heat waves (MHWs) have shown profound ecological impacts by 

modulating the structure and dynamics of the ecosystem [104,105]. MHWs are generally 

caused by a combination of atmospheric and oceanographic processes [106]. MHWs can 

be defined as state of sustained (for days to months) and extremely high seas surface 
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temperatures (SSTs) over a coherent area [107]. A number of MHW has been reported 

since the beginning of the 21st century period including the 2003 northwestern 

Mediterranean [108], 2010-2011 west Australian [109], the northeast Pacific between 

2013-2015 along the southern coast of California [110], and the 2016 high latitude MHW 

off the coast of Alaska [111].    

The effect of MHWs coupled with the acidification and deoxygenation has been 

reported by model and observation-based studies [112]. Evidence suggests that the 

MHWs interact with the biogeochemical cycle affecting the biological processes, 

functioning and adaptation capabilities of the marine ecosystem [113]. Such impacts 

range from entire regime shift and composition of species resulting in harmful algal 

blooms, mass stranding mammals and mortalities of particular species [114]. For 

example, the 2011 western Australian MHW caused a massive geographical shift of the 

temperate reef ecosystem coupled with a reduction in the habitat of seaweeds and 

migration of tropical fish communities [115]. In addition, the Great Barrier Reef was 

reported to experience a massive (over 90%) coral bleaching event due to the 2016 

MHWs triggered by global warming and 2015/2016 El Nino event [116,117]. 

2.9. High-Ozone Concentration Associated with Concurrent Heatwave and 

Stagnation  

A recent study using the Weather Research and Forecasting model coupled with 

Chemistry (WRF-Chem) was conducted to examine the present and future changes in 

ozone concentration as an impact of compound extreme weather events in the US [118]. 

The study revealed striking enhancement of higher ozone concentration due to the effect 
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of simultaneous heat wave and stationary circulation system characterized by low wind 

speed [118]. It is also suggested that during the future, it is most likely that the effect of 

compound events will lead to 10 to 13% increase in ozone concentration, compared to the 

present, with the most vulnerable nations being the US, Europe, and China where 

compound events are likely to intensify [118].  

2.10. Concurrent daytime and nighttime heat wave 

Climate change has resulted in an increased number of extreme diurnal heat 

events which is not only limited to the daytime hours but also observed during the night. 

Previous studies suggest a statistically significant rise in daily nighttime temperatures 

accompanied by a shift in the probability distribution of both daytime and nighttime 

temperatures during the last few decades [119–121]. Consequently, in a given time 

period, it is likely that a greater number of daytime extreme heat events overlap with the 

nighttime heat events over the calendar days. Those calendar days comprise of the 

concurrent daytime and nighttime heat wave events [119].  

The compound impact of the daytime and nighttime heat events is alarming. It can 

be demonstrated in the context of human physiological limitations. The human body 

requires a break from the prolonged elevated daytime temperatures during the nighttime. 

However, if the night-time temperatures exceed the advisory danger limits, it prevents the 

body to acclimatize the body core temperature, thereby, exacerbating the pre-existing 

health disorders.           
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2.11. Flooding due to the Convolution of Tropical Cyclone, Precipitation, Storm 

Surge 

Tropical cyclones [122,123] are one of the costliest natural hazards in the 

US[124–126], India and Bangladesh [127–129], UK [130,131], and Australia [132]. 

Flooding caused by the combination of wind and surge in tropical cyclones has a 

profound impact including substantial infrastructural damage, loss of property and lives 

[122,123,133]. In addition, tropical cyclone induced storm surge when accompanied with 

heavy precipitation at the same time can result in devastating floods in the coastal regions 

that habitats a major portion of the population [134].   

2.12. Air pollution from combined drought and air chemistry 

Climate change has the potential to increase the frequency and duration of 

drought across many parts of the world. Therefore, it is necessary to understand the 

impact of drought at a larger scale that includes interaction with other components of 

abnormalities in the atmospheric composition. For example, drought conditions have 

been known to have a major impact on the airborne fine dust pollution and public health 

risks [135–140]. Drought also influences the soil and vegetation health by hindering the 

movement of dusts [141], and reactive gases (such as the biogenic volatile organic 

compounds, or BVOCs, and NOx) from the surface into the upper atmosphere [142] as 

well as enhancing the dry deposition of gases and aerosols [143]. These modulations 

finally alters the chemical balance and the atmospheric lifetime of pollutants [140].  

The compound effects of drought and atmospheric composition is further 

amplified by the increasing wildfire and anthropogenic activities [93]. However, Wang et 
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al., 2017 [140] reported that the increase in air pollution linked to drought is primarily 

driven by natural processes and has no significant influence from the anthropogenic 

emissions in the US. Observations from the study suggest that the rise in ground level 

ozone and PM2.5 concentration during the period 1990-2014 is primarily attributed to the 

combined effect of drought and air chemistry.  

 

3. Concluding Remarks 

Compound and cascading hydroclimatic extremes have severe to extreme socio-

economic impact across the physical and human system, which is why quantification of 

these extremes are extremely important. This dissertation is focused on investigating, 

exploring, assessing, and devising nuanced techniques and their implementation in the 

realm of quantification of hydroclimatic extremes and their impacts. Specifically, four 

types of compound and cascading hydroclimatic extremes are studied in this thesis, (1) 

compound and cascading drought and heatwave, (2) combined heat and humidity (also 

known as heat stress), (3) extreme precipitation associated with ARs, and (4) flash 

droughts.  
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CHAPTER TWO 

 
A PERSPECTIVE OF DROUGHT INDICES UNDER CLIMATE CHANGE 

 
 

1. Overview of Drought Indices 

Drought is an extreme climatic event that is insidious in nature because it 

develops slowly and often sneaks up on one [1]. As it gradually increases in intensity and 

duration, it can have major consequences, making it one of the costliest natural hazards 

[1]. Moreover, drought has multiple ecohydrological and socioeconomic impacts [2] 

including increased risk of wildfire [3], water scarcity [4], loss of crops [5] and livestock 

[6], increased food prices [7], migration [8], and indirect health effects [9]. The physical 

processes involved in drought are highly non-linear and involve feedbacks, and its impact 

propagates through multiple levels unequally that often cannot be quantified objectively 

[10]. Consequently, it is difficult to have a universal definition for drought [10].  

However, drought definitions can be broadly categorized as either conceptual or 

operational [11]. Conceptual definition outlines the basic drought concepts with a general 

description of the physical processes involved, such as shortage of precipitation 

(meteorological drought), shortage of soil moisture (agricultural drought), shortage of 

water in lakes and streams (hydrological drought), and shortage of water for use by 

society related to water management [1, 12]. None of these are necessarily correct or 

wrong, and thus, all need to be recognized. On the other hand, operational definition 

focuses at identifying the onset, duration, and termination of drought episodes including 

their severity [1, 12]. Operational definitions aim at providing precise drought-related 
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information to support an effective early warning system [12]. Apart from the above 

definitions, a legal definition of drought is also available [13]. In addition to the effect of 

drought being context dependent, drought definitions such as that of operational drought 

[4] and socioeconomic drought [1, 11] are also in existence. Generalized definition of 

drought can be developed only through the aggregation of process-specific instantaneous 

droughts [10]. But this definition assumes that these processes are in equilibrium with the 

long-term climate, thereby overlooking the distinction between drought and water 

scarcity [10, 14]. Thus, numerous and diverse disciplines adopt different drought 

definitions depending on the stakeholder’s need as well as hydroclimatic variables 

included [1, 12].  

Consistency among these drought definitions is a key to remove any ambiguity in 

framing drought policies and making decisions. The corresponding decision support tools 

rely on indicators and indices that are widely used to quantify the physical characteristics 

of drought (intensity, duration, and severity) [15]. Drought indicators and drought indices 

are formulated to track the hydrological cycles and are used interchangeably in drought-

monitoring community [16]. Drought indicators are used in a broader sense that 

aggregate parameters such as precipitation, temperature, streamflow, groundwater levels, 

reservoir levels, snowpacks, soil moisture levels, and drought indices [16]. On the other 

hand, drought indices are single numeric values estimated from various hydroclimatic 

variables that influence drought and, therefore, it has a significant advantage over mere 

raw data in quantifying drought characteristics [16]. 
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Drought assessment studies have made considerable progress so far in developing 

several drought indices applicable to various types of drought [1], such as Standardized 

Precipitation Index (SPI) for meteorological drought [17], Standardized Runoff Index 

(SRI) for hydrological drought [11, 18], and soil moisture percentiles for agricultural 

drought [1, 19] However, the development and choice of drought indices should be 

specific to the primitive as well as newly emerging real-world problems and, therefore, it 

depends on several factors [1]. The following section provides an overview of some of 

the critical factors associated with formulation of drought indices: 

 

1. Types of drought:  The interconnection between various types of drought that occur 

simultaneously or sequentially makes it difficult to distinguish between one drought type 

from the other [20]. For example, the propagation of meteorological drought (which is 

caused mainly by precipitation deficit) to agricultural (caused by soil moisture deficit) 

and hydrological (deficit in water storage or streamflow) drought is non-linear in nature 

[21, 22]. In addition, the impact of meteorological drought shifts prominently towards 

soil moisture (agricultural drought) that further propagates to cause water storage deficits 

(hydrological drought) for even longer durations (Fig. 1) [23]. This complicates the 

formulation of drought indices with a view of quantifying a specific type of drought 

independent of the others. 

 

2. Drought characteristic: Drought events have multiple and interrelated characteristics 

such as severity, duration, peak intensity, and recurrence interval [24, 25]. Each of these 
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characteristics may have a considerable influence on the impacts of drought. 

Consequently, monitoring natural and socioeconomic drought needs a joint assessment of 

individual drought characteristics as well as identifying the most dominant drought event 

specific to the impact being studied [21]. Moreover, in arid regions that naturally receive 

scanty or no rainfall, thereby always at the verge for water shortage, drought 

characteristics estimated in relative terms and absolute terms will be significantly 

different. In other words, the climatology of a specific region can influence drought 

characteristics significantly, especially if drought is measured in terms of anomalies. 

 

3. Climate change: Impact of drought under a global warming scenario is more likely to 

aggravate in the future [26, 27]. Of course, droughts have always occurred, and the 

variability in sea surface temperature anomalies can cause global droughts [28, 29]. In 

addition, a change in regional climate such as slow-moving anticyclones that alters the 

climatology of a region by hindering the progress of synoptic weather systems can be 

responsible for enhancing the land-atmosphere feedback processes [30,31]. Due to the 

lack of available moisture in these regimes, the land-atmosphere feedback processes 

exacerbate the situation by increasing atmospheric temperatures and thus increasing the 

atmospheric demand for moisture, thereby leading to increased drying and heating of 

land surface at the same time, the impact of which is often alarming (such as wildfire 

risk) [3]. Figure 1 shows the connection between those processes that affects the 

propagation of drought under climate change.  
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Thus, underpinning the mechanisms behind such processes is relevant to 

formulate reliable drought indices that should incorporate all such participating 

processes, including the various human contributions that influence the drought 

characteristics and socioeconomic conditions [21]. In addition, the non-stationarity [32] 

in future climate may lead to large uncertainties in quantifying droughts [33]. Therefore, 

drought indices need to be robust and revised by including the nonstationary climate 

information. 

 

4. The distinction between water scarcity and drought: Water scarcity and drought have 

separate implications [14]. Unsustainable use of water resources can lead to water 

scarcity and, therefore, can be controlled, while drought is a natural hazard, and its 

impacts can only be mitigated by adapting to the climate variability with prior measures 

[14]. In arid or semi-arid regions, dry conditions quickly lead to water scarcity, and this 

example emphasizes that the background climatology is also a factor. Hence, in water-

scarce or arid regions, where drought and water scarcity usually occur simultaneously, 

drought situations are more severe and further aggravate water scarcity [12, 14]. 

Consequently, in such regions, the choice of a suitable indicator that makes a clear 

distinction between drought and water scarcity is necessary in making effective water 

management decisions [14]. 

 

5. Multivariate aspects of drought: Drought is influenced by multiple hydroclimatic 

variables such as precipitation, runoff, potential evapotranspiration (PET), and soil 
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moisture [1]. Thus, a single drought indicator may be insufficient to quantify drought 

and, therefore, such assessment requires drought indicators that blend more than one 

drought index or drought affecting variables [2].  

The overall objective of this chapter is to provide a perspective on drought indices 

under climate change scenarios. The section “Relevance of Drought Indices in Climate 

 

Fig. 1 Schematic diagram showing the drought propagation under climate change. (Note: 

this figure was revised with respect to original drought propagation concept proposed by 

Wilhite [12]) 
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Change” presents the relevance of drought indices in climate change assessment, 

followed by a discussion on application and limitations of existing drought indices in the 

section “Application and Limitations of Existing Drought Indices”. The section 

“Challenges Associated With Drought Indices in Climate Change Studies” provides an 

overview of challenges associated with drought indices for climate change studies, and 

summary and conclusion are provided in the section “Summary and Conclusions”. 

 

2. Relevance of Drought Indices in Climate Change 

A number of drought indices have been developed to quantify a drought [1]. Most of the 

drought indices use either only precipitation or in combination with other meteorological 

variables. Also, numerous studies have investigated the effect of climate change on 

drying of global terrestrial surfaces. However, most of the studies on dryness fail to 

consider the background aridity [34–36] and thereby fail to incorporate the changes in 

available energy, air humidity, and wind speed [34]. Failure to account for such variables 

in formulating drought indices may lead to a spurious increase in drought under warming 

climate [34]. Therefore, instead of only considering contemporaneous anomalies to 

derive drought indices, it is important to also consider the factors that govern the 

background state [34]. On the other hand, it is evident that climate change-induced 

warming has accelerated hydrological processes, firstly, by increasing the energy 

available for evapotranspiration (ET) and, secondly, by increasing temperatures and thus 

the water holding capacity of the atmosphere [37]. Consequently, it results in more 
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intense, widespread, and persistent extreme climatic events like droughts. Therefore, 

temperature is likely to be an important variable for deriving appropriate drought indices 

under global warming. The following section provides an overview on the importance of 

temperature and anthropogenic forcings for drought assessment, followed by an example 

highlighting the role of drought under global warming. 

Reconstructions [38] and instrumental observations [39] demonstrate that the 

Earth’s surface temperature has increased substantially over the past century, and by the 

end of the twenty-first century (2081–2100), it is expected to exceed the desirable limits 

of 1.5 and 2 °C above the pre-industrial level (1850–1900) [40]. Consequently, the 

intensity of precipitation has increased substantially, because as regulated by the 

Clausius-Clapeyron (C-C) relationship, there is an increase in atmospheric moisture 

holding capacity of approximately 7% per °C rise in temperature [41]. However, the 

surface energy available increases at a much slower rate and this governs the total 

precipitation amount through the availability of moisture [42]. Hence, there is also a 

considerable increase in longer dry periods [43]. Except for tropical hurricanes 

(characterized with large water vapor content), the troposphere is able to radiate away the 

energy released by condensed precipitation, and the distribution of relative humidity 

mostly remains relatively constant in both lower and higher latitudes under climate 

change [42]. Under such conditions, changes in mean precipitation depend on the water 

availability over both ocean and land surfaces [43]. However, land areas away from the 

oceans lack the adequate moisture supply to meet the evaporative demand of the 

atmosphere, leading to continental drying, high temperatures, and lower relative 
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humidity, as found in the model projections [35, 44]. Moreover, as the ocean surface 

tends to warm at a slower rate than the land and the atmosphere [35, 44], there is a 

considerable delay in the recharge process of the atmospheric moisture to finally reach 

the saturation level (necessary for precipitation), thereby resulting in longer dry periods 

over land [45]. Longer dry spells have direct influence in initiating long-term and severe 

droughts [46]. 

The extra heat due to global warming has accelerated the drying process in the 

recent past [27, 47], which is likely to cause more severe, persistent, and widespread 

droughts in the future with respect to the current climate [48, 49]. Furthermore, increases 

in severity of drought in future climates could be largely caused by the mean state change 

in the warming world. Previous studies have investigated the mean state aridity change 

due to global warming in terms of an aridity index defined by the ratio of annual 

precipitation to annual PET [34, 36, 50], and it is also shown that terrestrial climate 

would become drier as the Earth warms [34, 35], which leads to the expansion of the 

world drylands [36]. Furthermore, the anticyclonic regimes commonly present in setting 

up a drought are characterized by weather patterns that steer precipitating weather 

systems elsewhere and create a stable atmosphere that shuts down local convection. 

Hence, once the weather conditions are favorable for drought, climate change exacerbates 

the problem by adding small amounts of heat that accumulate over time, increasing 

temperatures and ET (drying) [26, 30]. Furthermore, due to limited moisture availability 

over land, such climate regimes experience a considerable rise in sensible heat fluxes 

(due to the absence of cooling by evaporation) during limited supply of latent energy 
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fluxes (due to soil moisture depletion), thereby further raising the land surface 

temperature [37, 51]. This coupling effect between soil moisture and temperature is 

commonly referred as soil-temperature coupling [31, 37] and can be a potential stressor 

for wildfire risk [52]. Observational studies confirm relationships between surface 

moisture deficit (leading to preceding drought conditions) and hot extremes in regional 

[53] as well as global [54] scales. Moreover, it is observed that higher correlation 

between warmer and dry conditions can increase the likelihood of concurrent heat and 

drought events [55]. Therefore, owing to the increasing exposure of heat events [56, 57], 

the compound effect of heat wave and drought will more likely have severe impacts in 

the future. Thus, temperature that directly controls evaporation and ET should be 

considered as an important contributor to drought events under the global warming 

scenarios [58]. Existing and popular indices used in drought studies under climate change 

incorporate the atmospheric demand (Standardized Precipitation Evapotranspiration 

Index (SPEI)) [59] and temperature effect with a crude approximation of potential 

evapotranspiration (Palmer Drought Severity Index (PDSI)) [60]. 

Interestingly, drought events during the last few decades, as well as projected in 

the future, are less likely to be comparable to the medieval droughts due to induced 

warming from greenhouse gas emissions, land cover, and land use changes from 

anthropogenic contributions [27, 49, 61, 62]. One such evidence of anthropogenic 

influence is the warming of the Indian Ocean that, coupled with the increase in sea 

surface temperature anomalies, caused the unprecedented Sahelian drought during the 

late twentieth century [63, 64]. Also, observed records indicate increased severity and 
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frequency of droughts over California during the past two decades related to 

anthropogenic warming [65, 66]. It is reported that early runoff due to early melting of 

snowpack in the region has affected the moisture content from the top-soil layer, thereby 

exacerbating hydrological drought during the summer [65]. Furthermore, anthropogenic 

contribution to recent and projected increase in drying trends in Syria has been reported 

by Kelley et al. [67]. The increasing and long-term drying trend has been attributed to the 

changes in precipitation driven by the increase in mean sea level pressure together with 

the long-term increase in warming over the Eastern 

Mediterranean Region for which no natural cause is apparent [67]. This is well supported 

by the positive response of the long-term drying to the increase in greenhouse gas 

emission-based on the model simulations that correlates well with the twentieth-century-

observed precipitation trends in the Mediterranean Region [67, 68]. The combined effect 

of climate 

change on increased drying and land use changes has aggravated the drought impact in 

the region [69], causing migration of as many as 1.5 million people from rural to urban 

areas that contributed to the onset of Syrian civil war [67, 70].  

Thus, drought quantification cannot be fully understood only based on the natural 

variability of climate as anthropogenic influence also plays a significant role in triggering 

as well as propagating drought events [1, 71]. Consequently, efforts have been made 

based on the existing climate models to detect anthropogenic contributions and attribute 

its influence on various climate extremes, including drought [71, 72]. In addition, the 

increase in population density further aggravates the human component influencing 



 

 50 

drought [1]. For example, due to increased land use in overpopulated regions, runoff has 

increased substantially, thereby leaving little water to percolate into the soil [73]. 

Together with an increase in water demand for domestic [74], agricultural, and energy 

[75] sectors in highly populated regions, drought can pose a significant potential threat in 

the future. Therefore, a realistic assessment of drought also needs to incorporate such 

effects arising from the increase in anthropogenic influences.  

From the above discussion, it can be inferred that variable associated with 

temperature (e.g., PET) play an important role in triggering droughts (dry spells); 

therefore, it must be considered in deriving drought indices for climate change 

assessment. In addition, the uncertainty associated with projected temperature is 

comparatively less with respect to precipitation based on the global climate model 

(GCM) outputs. In addition to temperature, other variables, such as precipitation, 

infiltration loss, and runoff, also significantly contribute to the occurrence of drought 

[26]. Drought indices and indicators should assimilate all these factors to quantify 

drought characteristics in the context of non-stationary climate [26]. 

 

3. Example of the Association Between Drought Indices and Land Surface Warming 

In this section, we investigate the association between global warming and droughts. The 

self-calibrated PDSI (PDSI_sc) [60, 76] was selected for our analysis, as it is based on 

the physical water-balance and it incorporates the effects of precipitation, temperature, 

PET, and runoff. The PET is best estimated based on the Penman-Monteith (PM) method 

[77, 78] instead of the simple Thornthwaite (TH) method [79] that leads to 
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overestimation of drying in energy-limited areas [26]. The PDSI_sc can successfully 

capture long-term changes in drought with response to global warming, and it has been 

used in previous studies related to large-scale drying trends [26, 48, 80]. 

Therefore, we analyze the long-term temporal changes in drought using PDSI_sc 

as a measure of dryness to investigate whether overland droughts (drying) go hand-in-

hand with rise in land surface air temperature (LSAT) by using the historical period (Fig. 

2). Because a steady and sharp rise in global tropospheric temperature has been 

experienced since the mid-1970s [63, 81], this analysis is focused from 1975 onwards. 

Our analysis is based on continental averages; however, it is important to note that land-

atmosphere feedback processes, which have major influence on drought, can be more 

accurately explained at finer scales. 

We obtained a global gridded monthly observed PDSI_sc dataset [76, 82] (1850–

2014) available at 2.5° resolution. Observed monthly LSAT was obtained from the 

updated CRUTEM4 dataset (1850–2017) at 0.5° resolution, as developed by the UK 

Meteorological Office Hadley Centre and the Climatic Research Unit at the University of 

East Anglia [83]. The gridded LSAT and PDSI_sc data are spatially averaged over the six 

continents. Finally, anomalies in continental mean annual LSAT are estimated for the 

period 1975–2014 with respect to the reference period 1961–1990.  

The relationship between drying and rise in LSAT is well accounted by the 

negative correlation magnitude observed for all the six continents, with relatively 

stronger correlation for South America (− 0.68), Africa (− 0.48), and Australia (− 0.48) 

(Fig. 2). Furthermore, the results from Fig. 2 clearly indicate that drought indices, such as 
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PDSI_sc, possess the required skill to capture the severe drying patterns due to increased 

loss of soil moisture by overland evaporation. However, there are limitations to the 

assessment of drought characteristics based on drought indices, as discussed in the 

following section. 

4. Application and Limitations of Existing Drought Indices 

Drought indices have evolved considerably through recent decades, keeping up 

with the evolution of drought itself under the changing climate. This section provides an 

overview of commonly used drought indices along with their limitations and skill to 

adapt to the climate change. 

1. Palmer Drought Severity Index: PDSI was originally developed by Palmer [60] 

and is based on the primitive soil water balance that considers precipitation, runoff, and 

evaporative demand for a specific region. Nevertheless, the calibration period has a 

strong influence on the PDSI values, and it can be a limitation for its use in areas other 

than used for the calibration [84]. Guttman [84] showed that PDSI, being an 

autoregressive process, inherits a long-term memory owing to the temporal effect of the 

soil and atmospheric moisture conditions. Further scope of improvement in PDSI remains 

in the context of other shortcomings such as (i) fixed temporal scale and inherent 

autoregressive characteristic of PDSI over water-stressed regions [85], (ii) an inherent 

timescale that makes PDSI unsuitable for hydrological droughts [1], (iii) assumptions that 

any form of precipitation as rain leads to ambiguity in the application of PDSI in winter 

months and at high elevations [1]. For example, Sheffield et al. [86] found a marked 

difference in drought characteristics based on model-simulated and PDSI datasets over 
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the snow-dominated regions, which is attributed to the inadequate representation of 

winter processes in the calculation of PDSI; (iv) PDSI also inherits a negative bias in 

runoff estimations by assuming that runoff occurs only after all the soil layers are 

saturated [1], and (v) PDSI suffers from a considerable time lag in identifying developing 

and diminishing droughts [87]. 

 

Fig. 2 (LEFT) Anomaly in spatially averaged yearly observed LSAT for the period, 

1975-2014 with respect to the period, 1961-1990 (bar plot with positive (red) and 

negative (steelblue) anomaly) and spatially averaged annual PDSI_sc (line; orange) for 

the period 1975-2014, and (RIGHT) scatterplot (violet) and regression line (blue) of 

annually averaged PDSI_sc and LSAT Anomaly for (a) Africa, (b) Asia, (c) Australia, (d) 
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Europe, (e) North America, and (f) South America. It is to be noted here that monthly 

PDSI_sc values are annually averaged and then correlation coefficients are estimated 

against anomaly based on yearly observed LSAT. 

 

Moreover, Palmer [60] used an empirical approach and averaged the climatic 

characteristics and duration factors in the estimation of PDSI over very few regions, 

which limits the comparison of PDSI values among diverse climatological regions [88]. 

Overall, it can be said that PDSI is a relative measure of drought and the methods 

adopted to calibrate it are based on the previous climate scenario which is no longer valid 

in the context of the continuously changing climate [26,48]. To overcome this spatial 

inconsistency in PDSI, Wells et. al. [76] proposed PDSI_sc that self-calibrates (sc) the 

index at any location automatically by replacing the empirical climate characteristics and 

duration factors with dynamically derived values based on the historical climate data of 

that region. 

Further improvement in PDSI has been made by replacing the TH [79] method 

with the PM [77, 78] method in the calculation of PET. PET based on the TH method 

[79] neglects climate variables such as solar and longwave radiations, humidity, and wind 

speed which affect the rate of moisture loss from the upper soil layers [26]. This leads to 

overestimation of drying in energy-limited areas [26]. The PM method [77, 78] can 

overcome these limitations for the estimation of PET. As a result, the self-calibrated 

PDSI based on the PM method (scPDSIpm) can be more appropriate to estimate large-

scale changes in droughts (mainly agricultural droughts) in the context of global warming 
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[27]. More recently, few other challenges have emerged, associated with the estimation 

of PET, as discussed in the section “Sparse Availability of Precipitation Data”. However, 

it is also important to note that PDSI actually tries to incorporate ET along with runoff, 

soil recharge, and moisture using precipitation, temperature, and available soil water data 

[60]. Despite several criticisms, PDSI gives a complete picture of the water cycle and 

remains as one of the most comprehensive drought indices [89]. Overall, PDSI_sc is a 

readily available standardized drought index and it can successfully capture long-term 

relative drying patterns in response to global warming [27, 48, 80, 82, 90]. 

2. Standardized Precipitation Index: The SPI [17] is one of the most popular 

indices used mainly to quantify meteorological drought. The SPI is based on a 

probabilistic approach, its estimation only requires precipitation data, and it is relatively 

easy to calculate. Nevertheless, exclusion of temperature, PET, wind speed, and soil 

moisture data as an input variable is a major limitation for generating reliable drought 

information under the warming climate [1, 59, 91]. 

3. Reconnaissance Drought Index (RDI) and Standardized Precipitation 

Evapotranspiration Index: (i) The RDI [92] is an improvement over the SPI, and it 

includes PET as one of the key variables. However, PET assesses the atmospheric 

demand for water but does not necessarily relate to ET because it needs to also assess the 

water availability. The RDI was used for drought monitoring and climate change impact 

assessment on water resources [93]. The RDI for a given time-period is estimated as a 

ratio between accumulated precipitation and PET [92]. However, the RDI lacks the 

ability to capture the variability of drought effectively with respect to change in 
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temperature [59]. Application of RDI may not be suitable when PET is equal to zero [59]. 

(ii) The SPEI [59] provides a relatively flexible approach that captures the combined 

effect of precipitation and PET [59]. Moreover, the SPEI performs adequately by 

considering equal sensitivity to precipitation and ETref [94]. However, the SPEI may have 

few limitations in the case of comparing drought events between different climatic 

regions. For example, in semi-arid regions, the SPEI may be more sensitive towards the 

ETref, while in humid regions, it shows more sensitivity to precipitation [94]. Moreover, 

unlike the PDSI, the SPEI is not based on the water budget framework and fails to 

incorporate the soil moisture component for identifying agricultural droughts [59]. 

4. Multivariate Drought Index (MDI): MDIs are combinations of multiple 

hydroclimatic variables or drought indicators [95] that provide an alternative way to 

capture multiple aspects of drought conditions for efficient drought monitoring and early 

warning [96, 97]. Some of them can be listed as follows: 

(a) Objective Blend of Drought Indicators (OBDI): Svoboda et al. [98] proposed 

OBDI based on the linear-weighted average of multiple drought indices. 

(b) Aggregated Drought Index (ADI): The ADI [99] is constructed separately for 

each month using drought-affecting variables such as precipitation, streamflow, PET, 

reservoir storage, soil moisture, and snow water content. Principal component analysis is 

used to find the dominant hydrological signals corresponding to each drought type 

(meteorological, hydrological, and agricultural) [99]. However, PCA has limitations such 

as assumption of linearity in data transformation and dimensional reduction in the 

direction based on maximum variance. 
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(c) Joint Drought Index (JDI): The JDI [100] considers joint probabilities of 

precipitation and streamflow using multivariate probability distribution (e.g., copula) 

(d) Multivariate Standardized Drought Index (MSDI): The MSDI [101] is 

introduced as a joint distribution of precipitation and soil moisture using a copula. 

Nevertheless, a copula has limitations such as lack of its ability to model high-

dimensional dependence structure. 

(e) Rajsekhar et al. [2] proposed the Multivariate Drought Index that uses kernel 

entropy component analysis (KECA) and incorporates variables such as precipitation, 

runoff, PET, and soil moisture. This index allows the user to extract higher information 

related to drought characteristics based on higher magnitude of entropy value [2]. 

However, soil moisture data are subjected to large uncertainties, and this reduces the 

confidence in the application of these indices. 

5. Relative Drought Indices: Drought indices such as relative SPI (rSPI) and 

relative PDSI (rPDSI) are developed with an aim to provide an improvement in drought 

assessment under the non-stationary climate by providing an alternative way to compare 

drought between two or more time periods as well as between two or more stations. The 

former is achieved when drought indices are calibrated using aggregated observational 

data from all the stations based on a given reference period and then applied to future 

climate. This method can be applied to estimate the spatial shift of drought due to climate 

change [102]. On the other hand, the latter method is based on observational data from a 

given station, thereby allowing the user to capture the temporal changes of drought in the 

future with respect to the present climate [102]. However, the indices derived using the 
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second methodology may have shortcomings such as lack of comparability between 

different climate regions [102]. 

 

5. Challenges Associated with Drought Indices in Climate Change Studies 

Although drought indices are useful to study climate change impact assessment, 

the following section discusses major challenges and limitations for such studies.  

(a) Disagreement Among Drought Indices  

The global mean temperature indirectly reflects the evaporative demand of the 

atmosphere in the absence of adequate moisture. Therefore, we estimated and compared 

the sensitivity of the abovementioned drought indices (SPI, SPEI, and PDSI_sc) with 

respect to rise in global mean temperature. The drought indices based on a shorter 

temporal window of 1 month were selected and derived for the entire globe: (i) SPI-1 was 

generated using precipitation dataset provided by the Global Precipitation Climatology 

Centre (GPCC) [103] (http://gpcc.dwd.de/) at 0.5° resolution, (ii) SPEI-1 data is 

downloaded at 0.5° resolution from Global SPEI dataset (available at 

http://spei.csic.es/database.html). This SPEI dataset is based on monthly precipitation and 

PET data available at the Climate Research Unit of the University of East Anglia that 

uses CRU TS version 3.23 dataset [104] 

(https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html). The PETis estimated using 

the Penman-Monteith method [77, 78], and (iii) we use the same monthly dataset for 

PDSI_sc [76, 82] as in the previous analysis for Fig. 2. 
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The global gridded datasets of SPI-1, SPEI-1, and PDSI_sc are spatially averaged 

to generate time series at monthly scale. We analyze the sensitivity of mean annual 

drought indices at continental scale with respect to the change in the corresponding 

observed annual mean LSAT for the period 1901–2013 (Fig. 3). The LSAT is averaged at 

annual scale for estimating the anomalies so that any seasonal influence in the analysis is 

avoided. To perform the sensitivity analysis, we organized the magnitude of drought 

indices in temperature increments corresponding to temperature anomalies nearest to 

every 0.25 °C change in global mean temperature ranging from − 0.5 to 0.75 °C. 
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Fig. 3 Sensitivity of drought indices with change in LSAT for the six continents. a Africa. 

b Asia. c Australia. d Europe. e North America. f South America. Box plot showing 

median, interquartile range (IQR), outliers, and overall range excluding the outliers for 

the annual mean of continental averaged drought indices, SPI-1 (red); SPEI-1(green); and 

monthly PDSI_sc (blue) for every 0.25 °C change in LSAT during the period 1901–2013. 

To estimate the statistics related to box plot, values of drought indices are accumulated in 

bins corresponding to temperature anomalies nearest to every 0.25 °C change in global 

mean temperature ranging from − 0.5 to 0.75 °C 

 

Figure 3 shows the box plots corresponding to an incremental change in 

temperature. We selected a shorter temporal scale that allows the drought indices to 

capture the influence of the warming on the loss of soil moisture leading to drying more 

effectively [1]. It can be noted that as compared to PDSI_sc, SPI-1 and SPEI-1 show a 

little change with rise in overland warming (Fig. 3). This may not be surprising as the SPI 

does not incorporate temperature or related variables as an input. On the other hand, the 

SPEI lacks the ability to produce comparable results between different climate regimes 

subjected to long-term drying [94]. Furthermore, the SPEI does not include the soil 

moisture information and, therefore, does not respond to the soil moisture drought 

adequately during the historic period [59]. 

However, PDSI_sc captures a consistent increase in drying with the rise in 

temperature (Fig. 3). This may be due to its ability to capture long-term droughts by 

incorporating soil moisture deficit or surplus from the previous months [105]. Thus, 
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while one drought index responds to the long-term drying with rise in temperature 

effectively, the other two indices seem to behave differently. This can be a major 

limitation among drought indices to adequately detect climate change impacts on drought 

characteristics under various climate regimes and temporal scale. Thus, apart from the 

disparity in defining drought objectively [10], drought indices can arrive at different 

results that leads to ambiguity in the decision or policy-making process related to impact 

assessment under climate change. 

(b) Sparse Availability of Precipitation Data 

It has been shown that sparse and poor quality of precipitation data [106] generate 

large uncertainties in quantifying spatiotemporal drought assessment under climate 

change [26, 27, 80, 107]. For example, Sheffield et al. [80] underestimated long-term 

drying based on PDSI_sc using NCEP/NCAR reanalysis data from four different 

precipitation datasets (CRUTS 3.10, DaiP, GPCC V4, and WilP). Out of these four 

products, CRUTS 3.10 has a poor spatial coverage since 1990 [107]. In other words, 

datasets based on poor gauge coverage can produce substantial uncertainty when gaps are 

filled with data from different sources (e.g., neighboring grid points) based on some 

climatology statistics [107]. Therefore, the compound effect of uncertainties in estimating 

topographical variables [108], coarse resolution of climate model outputs [109], and poor 

quality of precipitation dataset can generate large uncertainties in the calculation of 

drought indices. 

Moreover, hydrological drought prediction requires high quality data to improve 

initial hydrological conditions based on which future droughts are estimated. Data 
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assimilation (DA) that merges observation (in situ or remotely sensed) with model output 

overcomes such limitation on data availability, and it improves the accuracy of drought 

prediction by providing accurate initial conditions [110]. Various Land Data Assimilation 

Systems (LDASs) have been developed so far, some of them are discussed as applicable 

to drought-related studies: the North America Land Data Assimilation System (NLDAS) 

[111], Global Land Data Assimilation System (GLDAS) [112], and Coupled Land and 

Vegetation Data Assimilation System (CLVDAS) [113] that can improve drought 

assessment under climate change. The land surface models (LSMs) provide improved 

parameterizations for seasonal and diurnal simulations of water fluxes, energy fluxes, and 

state variables that are essential for monitoring agricultural and hydrological droughts at 

hourly and daily timescales [114]. In addition, LSMs such as NLDAS-2 provide soil 

moisture for various depths and surface and sub-surface runoff data that enhance the 

accuracy to estimate agricultural and hydrological drought over North America, 

respectively. For example, top 2-m soil moisture anomaly can be indicative of 

agricultural drought, whereas the total runoff can indicate hydrological drought [114]. 

However, land surface models are still undergoing improvement in the applied physics to 

the horizontal and vertical distribution of soil hydraulic properties, incorporation of sink 

holes, and representation of the spatiotemporal distribution of precipitation [115].  

(c) Estimation of PET 

PET refers to the atmospheric evaporative demand and is extensively used in 

drought studies as a direct measure of relative dryness [48, 107] or as an input variable in 

the estimation of PDSI [60], RDI [92], and SPEI [59]. However, the selection of model 
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used to estimate PET is crucial in the reliable assessment of drying under the changing 

climate. For instance, the temperature-based model derived based on historical records to 

estimate PET is unlikely to reproduce reliable PET during the late twenty-first century. In 

other words, under the warming climate scenario, purely temperature-based models (TH 

method [79]) are likely to overestimate drying in the future climate [116]. Thus, climate 

variables such as radiation, wind speed, vapor pressure deficit, and humidity need to be 

considered. Consequently, the PM method that takes into account all of these climate 

variables is found to be more robust in the estimation of PET compared to other existing 

methods and has been extensively used in the context of studying the temporal and spatial 

variability of drought in the twenty-first century [48, 117]. However, large uncertainties 

can be seen due to the lack of reliable forcing data to calculate scPDSIpm [27, 107]. For 

example, changing cloud cover that controls the incoming solar radiation and wind speed 

variations that effect the rate of ET are more region specific [107, 118]. Along with 

spatiotemporal inhomogeneity of forcing data, these variables can trigger uncertainties in 

the global-scale assessment of drought under climate change [26, 27]. There are 

conflicting views if estimated drying under climate change will be significantly different, 

depending on whether precipitation or PET is used as the drought variable [119]. In 

addition to that, under high CO2 conditions, plants actually become more efficient and 

the resulting water savings that plants experience keeps higher amounts of water on land 

on average—i.e., the conventional drought indices might not account for this, leading to 

an overestimation of drought severity [120]. Furthermore, Milly and Dunne [121] 

reported discrepancies in the estimation of the change in PET that leads to bias in 
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continental drying trends. It is primarily attributed to the fact that stomatal conductance is 

not included as an input while estimating PET, and also due to the parameterization of 

sensible heat flux in terms of the gradient of potential temperature rather than 

temperature [121]. To avoid such discrepancies, an alternative method to estimate PET 

using the energy-based approach is proposed [121]. The proposed method assumes that 

long-term latent heat flux of PET is equal to the net radiation absorbed at the land surface 

[121]. However, the robustness of this approach requires more investigation and 

validation. 

(d) Downscaling of Meteorological Variables 

Temperature and precipitation are the primary meteorological variables of the 

hydrological processes [1] with higher uncertainty associated with precipitation in terms 

of its spatiotemporal distribution. Therefore, there is a need to develop robust 

downscaling methods to generate rainfall information at finer resolution to minimize the 

associated uncertainties [109, 122]. Consequently, drought indices derived from 

precipitation require effective downscaling techniques that can resolve discrepancies 

arising from scale issues [123], thereby helping the stakeholders to improve decision 

making [1]. However, drought assessments using GCM outputs are limited owing to 

considerable high bias associated with the precipitation estimates [124, 125], in addition 

to substantial intrinsic uncertainties originating from the inter-model variability [126–

128]. This can be partly overcome by adopting simultaneous bias correction and spatial 

downscaling approaches [129]. In addition, GCMs do not exhibit a high degree of 

predictability especially over the extra-tropics owing to the limited physical 
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understanding of the ocean-atmosphere interactions in those regions [130]. This sets a 

major limitation to specify initial conditions for meteorological drought prediction [131]. 

Moreover, downscaling techniques face multiple challenges [132]. For example, 

(i) when a change factor method [122, 133] is applied to the coarser GCM outputs, it fails 

to include the local climate features, while transferring the relative change in signals 

directly to the scaled historical dataset. This limits the capability of this method to 

represent the change in climate, including time of occurrence and periodicity of events 

(such as drought) [132]. (ii) Although statistical downscaling methods are simpler than 

dynamical downscaling methods in terms of methodology and computational resources, it 

has considerable limitations. For example, statistical downscaling is done for each 

variable at individual grid points, thereby incorporating bias when applied to several 

variables or to several locations within one region [134]. In addition, the assumption of 

stationarity in the present climate will also be valid under the future climate scenarios, 

which implies overconfidence on the GCM’s ability to simulate the future climate 

variables (especially rainfall) [132]. Whereas (iii) a dynamical downscaling method 

clearly ignores the upscaled information from the local scale (sub-grid cells of GCMs) to 

the coarser grid cells and considers only one-way mode of transferring information (i.e., 

from the GCM to the nested RCM). Thus, the large-scale climate characteristics 

influenced by the local climate patterns may not be captured in the downscaled product 

[135].  

Another challenge in downscaling methods arises from the lack of adequate 

hydrometric data in different parts of the world, especially developing countries [136]. 
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However, with the advancement in DA techniques and land surface models, it is now 

possible to generate hydrological fluxes at finer resolutions [137]. For example, LDAS 

(https://ldas.gsfc.nasa.gov/) incorporates the high-resolution vegetation and soil 

coverages, and provides merged data products at 0.25° resolution and 0.125° resolution 

for global and regional (across central North America) analyses, respectively. Within this 

framework, the GLDAS [112] provides high-quality global land surface fields 

(implementing snow cover, water equivalent, soil moisture, surface temperature, and leaf 

area index) at 1° and 0.25° resolution from 1979 onwards that support several present and 

future climate predictions for various types of water resources applications. 

(e) Choice of Baseline Period 

The choice of baseline period plays an important role when comparing future 

drought under climate change with respect to historical drought as the reference period 

[27, 80, 90, 107, 138]. It is well known that by considering a longer (entire) period as the 

base period, the drought indices can be better calibrated and the future drought events can 

be compared with appropriate historical droughts [60, 90, 107]. However, the improper 

choice of base period with respect to which drought events are evaluated can produce 

considerable bias in the drought assessment under climate change. For example, Sheffield 

et al. [80] and Dai [48] used two different baseline (historical) periods (1950–2008 and 

1950–1979, respectively) to quantify changes in drought under global warming. The 

average drought characteristics (e.g., duration, severity) were different based on two 

different baseline periods, which further led to difference in interpretation when future 

droughts (under climate change) were compared to historical drought characteristics. In 
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ideal scenarios, it is important to choose a baseline climatology that captures historical 

major drought events, for example, in this case, the inclusion of the Dust Bowl: the dry 

1930s (1930–1931, 1934, 1936, and 1939–1940) [29] in the baseline period is likely to 

yield a different set of results [26]. In addition, the selection of 1950–2008 as the baseline 

period may include the effects of recent anthropogenic climate change that may be 

responsible to mask the climate change signals in the results of the analysis [26].  

Similarly, the choice of different baseline periods can generate discrepancies in 

summarizing the results related to the same drought episode. For example, William et al. 

[71] and Luo et al. [138] investigated the causes behind the recent multiyear California 

drought (2012–2014). William et al. [71] reported that the anthropogenic warming trends 

account for 8–27% of the anomaly in 2012–2014 drought. On the other hand, Luo et al. 

[138] suggest that this multiyear drought most likely resulted from natural variability of 

climate and dominated by precipitation rather than temperature. The difference in results 

may be due to the usage of different drought indices, as well as the selection of different 

baseline periods: 1931–1990 [71] and 1979–2015 [138]. Thus, the baseline period should 

be appropriately chosen with caution by considering the drought aspect being studied. 

 

(f) Non-stationary Climate and Choice of Probability Distribution 

The appropriate selection of probability distribution plays an important role in 

deriving robust drought indices under climate change, especially considering stationary 

(historical) vs. nonstationary (future scenarios) patterns of climate variables. For 

example, calculation of SPI [17] is based on either a gamma distribution [17] or Pearson 
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type III distribution [139], whereas calculation of SPEI is based on a log-log distribution 

[59]. These distributions perform considerably well in fitting the time series of the 

hydroclimatic variables over a wide range of climatic region [140]. However, the 

selection of a single suitable probability distribution is challenging [141]. Vicente-

Serrano et al. [141], while investigating best probability distributions to calculate the 

Standardized Streamflow Index (SSI), reported that most commonly used probability 

distributions (log-normal, Pearson type III, log-logistic, general extreme value, 

generalized Pareto, and Webull) for flow frequency analysis provided good fits to 

streamflow data. However, none of the six probability distributions were able to 

adequately fit the streamflow series based on L-moment diagram. Therefore, the selection 

of distribution in developing a drought index is crucial and, if not done with caution, can 

generate large uncertainties. 

Furthermore, it is well known that stationarity that implicates physical constancy 

of mechanisms involved in the hydrologic processes is no longer applicable due to the 

substantial anthropogenic changes in the present climate [32, 142]. Thus, drought 

characteristics will be different between stationary and non-stationary climate. Therefore, 

non-stationary statistics that are deterministic functions of time should be implemented in 

reliable assessment of hydrologic processes in the changing climate [32]. For example, 

the selection of probability distributions for precipitation is often challenged by 

significant zero values (mostly in dry climates), highly left skewed distributions, as well 

as limited data lengths [1]. Also, due to the non-stationary nature of climate variables 

under future climate scenarios, the probability distribution parameters of precipitation 
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will change over time. Therefore, it is important to consider non-stationarity by changing 

the probability distribution parameters over different timescales to improve drought 

assessment under climate change. Considering the strong association between 

precipitation and soil moisture, a similar assumption will also hold for soil moisture. 

(g). Defining the Role of Anthropogenic Influence 

Apart from the natural variability of climate, human activities have a significant control 

on drought initiation, propagation, and societal impacts [1, 66, 67, 69, 70, 74, 143]. 

Consequently, drought risk management is directed towards either adaptation to the 

natural causes of drought or mitigation of human-induced drought [143]. Identifying the 

anthropogenic causes of drought is crucial to assign proper weight to improve water 

management policies [74, 143]. However, the coupling of human components in 

hydrological models is in a preliminary stage for appropriately characterizing droughts 

under climate change. It is necessary to identify the associated challenges in 

distinguishing between natural and human influences due to the interplay between 

climate, soil, and vegetation dynamics [144, 145]. 

Detection and attribution (D&A) techniques [146], developed so far, use the 

combination of observation and GCMs in a virtual forcing scenario. This may allow the 

models to calculate drought characteristics in the absence of human influences [65, 71, 

138]; however, the GCMs are vulnerable to uncertainties arising from boundary 

conditions, variability in the Earth system, parameter estimation, and model structure 

[147]. Furthermore, lack of observations for verification, and dependence on the model 

selection and the applied methodology, makes the existing D&A techniques less reliable 
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in risk assessment of drought under the anthropogenic influence [148]. Therefore, 

quantifying uncertainties by estimating confidence intervals for risk ratios [148], and 

multimodel averaging rather than relying on individual model results [149], is necessary 

to avoid overconfidence in drought risk assessment based on drought indices. Moreover, 

uncertainties depend on the sample size of data and the severity of drought being studied; 

therefore, extra caution is needed while applying D&A methods [147].  

Human-made infrastructures, such as dams and reservoirs, can also greatly affect 

the propagation of soil moisture and hydrological drought [74, 150]. Drought indices 

should capture such changes in drought propagation along with other human interactions 

such as dynamic changes associated with land use, irrigation efficiency, and rapid 

increase of population. However, such dynamics of human interactions is still in a 

preliminary stage in existing large-scale hydrologic modeling framework, and scientific 

advances are needed to overcome the aforementioned challenges. 

 

8. Summary and Conclusions 

A comprehensive discussion on the role of drought indices for climate change 

assessment is provided in this article. Existing drought indices were reviewed and 

compared based on their skill and limitations to capture drought characteristics in a non-

stationary climate. Major shortcomings related to the formulation of drought indices 

under the changing climate, including the lack of robust approaches to separate the 

human component from the natural variability of climate, choice of baseline period, use 

of non-stationary climate information, and lack of observed data for validation, were 
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discussed. Significant progress is being made in drought research, and there is a scope to 

improve formulation of efficient drought indices with the hope of better drought 

preparedness by filling the gaps arising due to such shortcomings. The following 

conclusions can be drawn from this study: 

1. The performance of drought indices, such as PDSI_sc, SPI, and SPEI, showed 

different degrees of sensitivity against the same level of observed warming at continental 

scale. Therefore, the formulation of drought indices without considering the factors that 

govern the background state may lead to drought artifacts under a warming climate. 

2. Estimation of PET based on the energy budget framework can be a better 

physically based approach compared to only temperature-based equations. Also, 

uncertainties due to the spatial inhomogeneity in forcing data need to be considered to 

estimate PET for drought assessment under climate change [26, 27]. 

3. Major advancement in hydrologic modeling for drought assessment has been 

made with the development of LDAS. Land surface models have been successful in 

maintaining water and energy balance at macro-scale levels, thereby accurately capturing 

the components of hydrological fluxes in the top 1–2 m of the land surface at hourly and 

daily timescale, as well as at finer resolution [18]. These models have considerably 

improved the near real-time assessment of drought by providing modeled soil moisture, 

soil water equivalent, and runoff estimates at diurnal timesteps [18]. However, 

shortcomings need to be addressed in the existing LSMs by reducing uncertainties in 

hydrological fluxes by integrating in situ measurements and remotely sensed products 

[114, 115]. 
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4. The choice of appropriate methodologies to develop drought indices for climate 

change assessment should consider projected climate variables with less uncertainty. This 

can be achieved by climate models simulating the best estimates of PET [107, 118, 121], 

and atmospheric demand or soil moisture [119, 151]. Specially, drought projections based 

on soil moisture-derived indices should be treated with extra caution owing to the lack of 

suitable observations for verification [33, 119]. Besides, there remains great uncertainty 

in what the future climate will be [152]; therefore, multimodel assessment is 

recommended against assessment using individual models [149]. 

5. Apart from the natural variability of climate, increase in severe and persistent 

droughts due to anthropogenic influence is reported in the last few decades [48]. 

Separating the natural causes from the human-induced factors is most likely to make 

drought assessment more realistic, thereby helping policy makers to simplify the 

complexities related to the water management decisions [153]. This can be achieved by 

objectively defining the role of human activity in drought assessment using drought 

indices. 

6. Drought indices are widely used in multiple purposes by different stakeholders 

[154]. However, the actual usefulness and proper implementation of drought 

indicators/indices rely on how easily they can be interpreted by the stakeholders and 

serve the end user’s needs [1]. On the other hand, climate change affects a wider range of 

interconnected sectors [155], thereby further increasing the inherent complexity of 

quantifying socioeconomic droughts [1]. 



 

 73 

7. Climate model outputs as well as observed data are often available at coarser 

resolution, and it may limit our understanding on the hydrologic processes at finer scale 

[109]. Consequently, improved downscaling approaches should be developed to 

transform the information from coarser resolution to finer grid cells, thereby improving 

the assessment of drought impacts more realistically [1, 122]. For a good overview of 

different downscaling approaches for climate change assessment, see Maraun et al. [109]. 

Along with proper bias correction techniques, downscaling can provide quality data 

inputs for reliable drought assessment studies [156, 157]. Furthermore, an optimized 

model selection approach can be useful to select models with minimum uncertainty 

which should be adopted while downscaling drought indices based on climate models to 

capture their future variability [158]. 

8. The non-stationarity associated with climate change is likely to alter the 

parameters of the probability distributions of input variables in the formulation of drought 

indices. Therefore, adopting appropriate methods to capture nonstationary information 

for characterizing drought under climate change will likely generate reliable information 

for risk assessment and infrastructural management under the changing climate. 

Moreover, spatial drought risk can be investigated by integrating multiple drought 

characteristics (e.g., severity-duration-frequency (SDF)) [159, 160] that allows the user to 

compare historical major droughts with future scenarios under climate change [161]. 
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CHAPTER THREE 

COMPOUND DROUGHT AND HEATWAVES AT A GLOBAL 

SCALE: ROLE OF NATURAL CLIMATE VARIABILITY 

 

1. Introduction 

Recent decades have witnessed a notable increase in the concurrence of severe 

drought and heatwave events in many regions across the globe [1–6]. Such a 

spatiotemporal coexistence of these extremes is commonly known as a “compound 

events” [7], which has major implications for social-ecological systems such, as a 

reduction in crop yields [8–12], an increase in wildfires [13] enhanced tree mortality [14], 

and an exacerbation of human health hazards [15].  

The occurrence of compound drought and heatwave (hereafter CDHW) events 

may be triggered by a variety of mechanisms ranging from local land-atmospheric 

feedback loops [16,17] to persistent large-scale ocean-atmosphere circulations anomalies 

(Hao et al., 2018; Seneviratne et al., 2012). The geographical regions under the influence 

of such extremes are characterized by prolonged clear skies and a lack of moisture in the 

lower atmosphere. The deficit in moisture results in the cessation of evaporative cooling, 

thereby limiting the latent heat fluxes over the land surface [20]. Subsequently, any 

further increase in diabatic heating in the region goes directly into increasing sensible 

heat fluxes and hence exacerbating pre-existing hot and dry conditions [21]. These 

anomalies in surface energy budget are often associated with atmospheric blocking  and 

persistent lower-level divergent wind anomalies, which inhibit moisture convergence and 

lead to prolonged drier surface conditions, provides ample time for a heatwave to develop 
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and intensify over the region [22]. Many large-scale climate variabilities, including  the 

El Niño Southern Oscillation (ENSO) [23], Pacific Decadal Oscillation (PDO) [24], and 

North Atlantic Oscillation (NAO) [25], are known to have a role in the formation of such 

high-pressure regimes or stationary blocking zones. Therefore, local-scale climate 

variability alone may not be able to effectively explain the occurrence of such events 

[26]. 

It is shown that large-scale climate oscillations, such as ENSO, play a significant 

role in the summertime occurrences of compound dry and hot events in tropical regions, 

particularly over Northern South America, Central and Southern Africa, Southeastern 

Asia, and Australia (Hao et al., 2018). In addition, a few regional studies have 

investigated the relationship between compound dry and hot events and the ocean-

atmosphere circulation anomalies [27] with an aim to develop statistical models for 

improvement in the predictability of such events [28–30]. However, the calculation of 

drought (or dryness) index in these previous studies is either based on the monthly 

precipitation anomalies or on the Standardized Precipitation Index (SPI) (McKee et al., 

1993). It is well established that drought quantification using only precipitation while 

ignoring the impact of temperature may lead to an underestimation of drying [32,33]. 

Therefore, the use of only precipitation-based indices has the potential to induce 

considerable methodological uncertainties, which may lead to unreliable estimates of 

CDHW characteristics. Furthermore, understanding the soil water properties during a 

hydrological cycle is relevant to the current physical understanding (of feedback 

processes) of the occurrence of CDHW events over a region (Hao et al., 2018; Mishra & 
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Singh, 2010). Therefore, the use of energy budget methods, which consider soil water as 

a variable in addition to precipitation and temperature in the identification of CDHW 

events can be more meaningful in the analysis of such compound occurrences. In 

addition, drought and heatwave events are interconnected due to the role of temperature 

as a common factor in triggering such events.  While one of the earlier studies 

incorporates soil moisture anomalies in the estimation of drying (Hao et al., 2018), it 

makes use of monthly temperature anomalies in the estimation of CDHW characteristics, 

potentially compromising the valuable sub-monthly information needed to accurately 

identify the characteristics of heatwave events. The evaluation of CDHW at a monthly 

time scale may provide unreliable results as the heatwave events evolve over a period of 

days to a week. Therefore, in this study, we utilize an integrated temporal framework by 

incorporating droughts at a weekly time scale, and the heatwaves at a daily timescale to 

investigate the occurrence of CDHW events on a global scale.  

While a plethora of drought indices are available in the scientific literature, the 

self-calibrated Palmer Drought Severity Index (sc_PDSI) [35] incorporates most of the 

hydroclimatic variables that exert critical controls on the drought characteristics [33,34]. 

Given the deficiencies in the earlier studies, we make use of daily observations and an 

empirical methodology to estimate the frequency of CDHW events for the entire globe. 

Therefore,  our methodology utilizes the weekly self-calibrated Palmer Drought Severity 

Index (scPDSI) [35] for drought, and daily-scale heatwave events.  

Our study focuses on each season (DJF, MAM, JJA, and SON) and on the 26 

climate regions of the globe (as shown in Figure S1), which are defined in the AR5-
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SREX (IPCC SREX 2012). Overall, this study aims at providing a mechanistic 

understanding of the association between the seasonal occurrences of CDHW events and 

the major modes of climate variability (ENSO, NAO, and PDO) across these climate 

regions. Here, we quantify such associations based on a grid-based Poisson Generalized 

Linear Model (GLM), popularly used to model count data in climate science [37–39]. To 

achieve this objective, we (a) first select the large-scale climate indices as potential 

drivers for each climate region that influence the regional temperature and precipitation 

variability during each season by applying a non-parametric partial correlation technique; 

then (b) later use them as the explanatory variables to form candidate models that are 

subsequently applied to derive the grid-based GLM focusing on each season, separately; 

and (c) finally focus on the mechanistic understanding behind such associations by 

performing a composite analysis based on the relevant atmospheric and surface energy 

variables. It is important to note that reanalysis datasets are often used to provide 

mechanistic evidence supporting variations in the observations (precipitation and 

temperature). However, daily to weekly scale variations, such as CHDW events, in 

reanalysis may not align perfectly with the corresponding variations in the observations, 

which may result in inconsistencies when observed variations are explained in terms of 

anomalies in the reanalysis-based variables.  Therefore, in our analyses, we make use of 

precipitation and temperature both from reanalysis and observations to highlight the 

inconsistencies that may arise due to this issue.   

The paper is structured as follows. In Section. 2.1, we describe the datasets used 

in the study. Section 2.2 describes the methodology applied in the computation of CDHW 
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events. The initial selection of potential drivers influencing the temporal variability of 

precipitation and temperature and final best model selection based on Poisson GLM are 

explained in Section 2.3. Section 3 provides results and discussion, followed by 

conclusion in Section 4.   

2. Methods 

2.1. Datasets 

For this study, we select 1982 to 2016 as the analysis period. A daily observed 

precipitation dataset is obtained from the Global Precipitation Climatology Center 

(GPCC; https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-

daily_v2018_doi_download.html ) at 1° horizontal grid spacing [40,41]. We select GPCC 

precipitation because it is fairly consistent in capturing precipitation patterns across 

different parts of the globe [42].  

Available water content (AWC) is retrieved from the global database of texture 

derived AWC (Webb et al., 2000), available at 1° horizontal grid spacing. When 

integrated with the World Soil Data File (Zobler, 1986), the resulting dataset captures the 

soil properties relevant for determining the water storage in the individual soil horizons 

and for explaining the soil-atmosphere coupling in the lower atmosphere. 

The daily observed maximum and minimum temperature (Tmax, and Tmin) data 

are obtained from the Climate Prediction Center (CPC). The CPC global temperature data 

is provided by the National Oceanic and Atmospheric Administration (NOAA) Earth 

System Research Laboratory's Physical Sciences Division (PSD) 

(https://www.esrl.noaa.gov/psd/) at 0.5° horizontal grid spacing.   
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Monthly values of ENSO (Nino3.4), NAO, and PDO indices are retrieved from 

the NOAA Climate Prediction Centre (NOAA CPC; http://www.cpc.ncep.noaa.gov/ ).  

For the analysis of land-atmospheric dynamics, upper level (200 mb) zonal and 

meridional wind field, surface latent heat flux (SHF), and surface sensible heat flux 

(SHF) are obtained from the European Centre for Medium-Range Weather Forecasts 

Reanalysis 5 (ERA5;  https://cds.climate.copernicus.eu/cdsapp#!/home). Additionally, 

we also make use of daily precipitation, Tmax and Tmin data from the ERA5 to 

investigate data related inconsistencies. We apply the Synergraphic Mapping System 

(SYMAP), described in Maurer et al., 2002, to regrid all dataset at 1° GPCC precipitation 

grid.  

2.2. Frequency of CDHW Events  

We define a CDHW event as a heatwave event occurring within the period of an 

extreme drought event. In this study, at each grid point, a heatwave event corresponds to 

three or more consecutive days with daily Tmax above a threshold [46,47]. We calculate 

unique threshold for each grid point as the 90th percentile of daily Tmax using the 

extended summer seasons (May to October in the Northern Hemisphere, and November 

to April in the Southern Hemisphere) of the study period. Drought conditions are based 

on the weekly sc_PDSI following Wells et al., (2004), which considers weekly total 

precipitation, weekly mean temperature (average of Tmax, and Tmin), and AWC in the 

energy-budget framework. A week is considered under extreme drought if the sc_PDSI 

for that week falls within the bottom ten percent of the sc_PDSI values (= extreme 

drought threshold) during the study period. 
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Figure 1. (a) Time series of weekly sc_PDSI and daily Tmax based on the GPCC and 

CPC dataset for the whole period of analysis, 1982 to 2016, for a single grid cell 

(longitude= -100.5 , and latitude = 29.5 (in degrees)), and (b) CDHW events (enclosed 

within the shaded boxes) for the same grid cell  during JJA in the year 2012 (shaded 

region in (a)). The right y-axis represents the sc_PDSI values and the left y-axis 

represents the Tmax. 

 

A CDHW event occurs when daily Tmax during an extreme drought event 

exceeds the 90th percentile threshold for three or more consecutive days. The time-series 
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of CDHW events thus obtained are stratified based on four different seasons (DJF, 

MAM, JJA, and SON).  Following the CHDW identifictaion criteria, Figure 1a depicts 

the time-series of the daily Tmax and weekly sc_PDSI for the whole period of the study 

at a single grid point, and Figure 1b illustrates three instances when a CDHW event takes 

place in 2012 JJA at the same location. The yearly total number of participating days 

(frequency) in the CDHW events during a season is considered as the yearly CDHW 

frequency (CDHWF) for that season. The spatial distribution of the yearly frequency of 

extreme drought, heatwave, and the CDHW events observed during all four seasons are 

illustrated in Figure S2, Figure S3 and Figure S4, respectively. For these and subsequent 

calculations, we perform separate analyses based on precipitation and temperature from 

the observations (GPCC and CPCC) and the reanalysis (ERA5). The yearly total number 

of participating days (frequency) in CDHW events during a season is considered as the 

yearly CDHW frequency for that season. The spatial distribution of the yearly frequency 

of extreme drought, heatwave, and CDHW events observed during all four seasons are 

illustrated in Figure S2, Figure S3 and Figure S4, respectively. 

2.3. Association between the large-scale climate variability and the occurrence of 

CDHW events 

As previously described, we select three major large-scale natural climate forcing 

(ENSO, PDO, and NAO) for this study. ENSO  — an oscillation of the ocean-atmosphere 

system in the tropical Pacific — is one of the most important modes of variability 

impacting global precipitation and temperature on interannual timescales [23,48,49]. We 

use the Nino3.4 index to define ENSO. Similarly, NAO is a dominant mode of climate 
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variability over the Northern Hemisphere that ranges from intra-seasonal to multi-decadal 

time scales, and exerts influence on the variations in air temperature and precipitation 

across Europe, the Mediterranean Basin, and parts of North America and Asia especially 

during winter [25]. Likewise, PDO is an annual pattern of monthly sea surface 

temperature variability in the North Pacific region [24], which is known to have a major 

influence on precipitation variability over North America and Asia. 

 

Figure 2 Flow diagram explaining the multi-stage exploration of model selection 

performed for a specific climate region. “NA” indicates none of the drivers are selected 

for the region or for any grid cell within the region. 
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Using a grid-based Poisson GLM, we quantify the association between these large 

scale modes of natural climate variability on the inter-annual variability of CDHW events 

for each season. We quantify such associations in two stages. First, a preliminary 

selection of the potential large-scale drivers is made based on the regional climate 

characteristics (represented as regional drivers (RDs), section 2.3.1.). Second, the 

selected RDs are used as guidelines to identify final predictors for developing the Poisson 

GLM (section 2.3.2.). The entire methodology employed in the selection of RDs and 

finally the GLMs for a specific climate region is shown as a flow diagram in Figure 2. A 

similar technique undertaking the preliminary selection of possible drivers has been 

employed in a previous study related to the association between climate variability and 

regional heatwave event characteristics [50].  

2.3.1. Preliminary selection of potential large-scale drivers 

The large-scale climate drivers are selected based on their potential influence on 

the seasonal precipitation and temperature variability over different geographical regions 

by using following steps: 

 (a) First, using non-parametric spearman’s rank correlation, we identify possible 

RDs that influence interannual precipitation and temperature variability at a seasonal 

time-scale. Monthly precipitation, temperature, and three large-scale climate indices 

(Nino3.4, PDO, and NAO) are seasonally averaged over the 1982 to 2016 period. 

Subsequently, correlations between the yearly values of the indices and the 

meteorological variables are estimated for each season at each grid point. In order to 
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account for the inter-dependence of different climate modes [50,51], we employ partial 

correlation technique (equation 8) to isolate the influence of individual forcing,  

  
2 2(1 )(1 )

xy xz yz
xyz

xz yz

r r r
r

r r
−

=
− −

                        (8) 

where rxyz is the relative correlation between x (precipitation or temperature), and y 

(ENSO or NAO or PDO) with the effect of z, either of the other indices are removed.  

(b) Second, for each climate region, we estimate the percentage of grids where 

correlations are statistically significant at 95% confidence level, irrespective of the sign 

of rxyz. If the percentage of grids with significant correlation exceeds 10% of the climate 

region for either of the two variables, the corresponding RDs are selected as potential 

forcing factors influencing CDHW events in that region (as discussed in result, Section 

3.1.).  

2.3.2. Poisson Generalized Linear Model (GLM) 

The selected RDs for a climate region are used as initial predictors in the Poisson 

GLM with CDHW events as a predictand. The Poisson GLM is a special form of the 

generalized linear model [52] that is very useful for modeling count data. A general 

approach is to assume that a random variable tN  follows a non-homogenous Poisson 

distribution with time-varying rate t , ( )t tN Pois = , if tN takes on the values n = 

0,1,2,.., with probability  
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Here,  tN  represents the frequency of CDHW events (in days) at each grid during 

any given season for year t and t  is the expected value of Poisson distribution that can 

be modeled as a function of predictors under the GLM framework as following [53]: 

0
1

log( ) ( ),
k

t i i
i

x t  
=

= +          

 (10) 

( )ix t  represents selected large-scale drivers, k is the number of predictors, and i  

represents the coefficients for the respective predictors. In order to account for areal 

variations at different latitudes, we modify Eq. (10) as following:  

0
1

log( ) ( ) log(cos ).
k

t i i
i

x t   
=

= + +        

 (11) 

where    is the latitude and logcos  serves as an offset term with coefficient 1.  

We obtain coefficients for the respective predictors in Eq. (11) by maximizing the 

log-likelihood function for the Poisson GLM defined as, 

1
log log( !),

T

t t t t
t

L N N 
=

= − −         

 (12) 

The maximized log-likelihood (L) provides an indirect measure of how well the 

model fits the data. However, a positive bias in the estimates of L amplifies as the number 

of predictors increase, resulting in overfitting of the model. Such a situation can be 

avoided by using Akaike Information Criteria (AIC) that accounts for these biases and 
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removes redundant predictors to prevent overfitting. The initial predictors are subjected 

to a stepwise regression approach based on the AIC estimated as, 

2 2lnAIC p L= −         

 (13) 

where p is the number of parameters in the model.  

The Poisson GLM that has the smallest AIC value is considered as the best model 

for that location. However, the AIC score does not provide any evidence about the 

absolute quality of the model. Therefore, the chosen predictors of the best AIC model are 

further tested for statistical significance based on the Wald test. Only predictors, 

significant at 95% confidence level, are included in the final Poisson GLM to compute 

the regression coefficients at each grid location.  

In order to determine the significance of relationship between the estimated 

regression coefficients i  and the random variable tN , we test the null hypothesis that 

0i =  is true based on the test statistic Z. In other words, we assume that the expectation 

of the fitted regression coefficient ̂  is 0. Upon standardizing the regression coefficient 

of individual predictors, we obtain the test statistic Z, which follows a normal distribution 

as following [54]: 
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The test statistic Z allows test against a two-sided alternative hypothesis that 

0i   at a significance level of 0.05 =  in which the critical value is the upper / 2  

percentage point of the standard normal distribution, /2z . The regression coefficient is 

considered to be statistically significant if /2| |Z z , thereby, rejecting the null hypothesis 

that 0i = .     

3. Results and Discussion 

3.1. Potential regional drivers at seasonal scale  

The spatial maps of seasonal partial correlations, corresponding to ENSO, PDO, 

and NAO, are shown in Figures S5 to S7 for the observed precipitation and temperature 

and in Figures S12 to S14 for the reanalysis precipitation and temperature. These 

correlations become the basis of our predictor selection in the Poisson GLM model. 

Correspondingly, the percent of total grid points within each region where the 

correlations are statistically significant is shown as bar plots in Figures S8 to S11 for 

observations, and in Figure S15 to S18 for reanalysis. The use of 10% of the total grid 

points within a region as a minimum criterion for the selection of RDs as predictor leads 

to a total seven combinations (Figure 2). The geographical distribution of these 7 RDs is 

shown in Figure 3.  

If we consider similarities between the left column (observations) and the right 

column (reanalysis) RDs,  then precipitation and temperature variations are influenced by 

PDO and NAO (RD6) over Northern Europe and Asia (Figure 3a-3b) in DJF, Eastern 

Asia and Sahara and Central America in JJA, and Eastern America, Canada and Northern  
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Figure 3 Regional Map showing combinations of potential regional drivers (RD1 to 

RD7; filled circles) for the 26 AR5-Climate regions based on the GPCC and CPC (left 

panel), and the ERA5 (right panel). The list of large-scale climate variabilities 

corresponding to each of the selected combinations of regional drivers (RD1 to RD7) is 

provided in Figure 2. 
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Europe in SON. Similarly, ENSO exhibits a substantial footprint in the monsoon regions, 

including Southern South America, Northern Australia and South Africa in DJF, and 

most of South America, South Asia and Northern Australia  in SON, consistent with the 

earlier finding [55]. PDO (RD2) also exhibits influence over many regions of Asia in 

SON while all of them (ENSO, PDO, NAO; RD7) seem to have an influence over South 

Asia, Southeast Asia, Northern Australia and Western Asia, which is consistent with 

previous findings [56–58]. The interaction of PDO with NAO, and ENSO in influencing 

the precipitation and temperature variability has been reported in the previous studies 

[59,60].  

The existence of several differences between the left and right columns in Figure 

3 highlight the fact that the identification of regional drivers of precipitation and 

temperature variability depends on the source of data. For instance, RDs based on 

observations show the influence of PDO, and NAO (RD6) over  Canada and 

Mediterranean in DJF (Figure 3a) while use of ERA5 reanalysis replaces PDO with 

ENSO (RD5) over Canada and only shows the influence of NAO (RD3) over 

Mediterranean . Similarly, unlike observations, reanalysis doesn’t exhibit influence of 

PDO over Western and Southern Africa in SON, and over Northern Asia in MAM. 

Inconsistencies also exists in many other regions and seasons (Figure 3).   

 The best AIC models that are also statistically significant at the 5% significance 

level, which are obtained by fitting the RDs (Figure 3) as explanatory variables in the 

Poisson GLM, are presented geographically in Figure 4. It should be noted that the final 

models over a region can be identical to the RDs, a subset of RDs or none, which is  
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Figure 4 Spatial map of the best models (M1 to M7; filled circles) explaining the inter‐

annual variability of CDHW events from 1982 to 2016 based on the GPCC and CPC (left 

panel) , and the ERA5 (right panel), which are identified by the Poisson GLM. The list of 

large-scale natural climate forcing corresponding to each of the selected models (M1 to 

M7) is provided in Figure 2. The bold boundaries indicate regions exhibiting the 

influence of a single large-scale driver, which is also consistent in both datasets.  
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explained in Figure 2. For instance, Northern Asia that has RD5 (ENSO and NAO) as the 

selected combination of regional drivers (Figure 3e, 3f) in JJA shows M1 (ENSO), M3 

(NAO), and M5 (ENSO, NAO) as the best fitted models (Figure 4e, 4f) after the 

application of the AIC and Wald tests. Similarly, Eastern Asia that has RD2 (PDO) as the 

selected regional driver (Figure 3 g, h) in SON has no best fitted model (Figure 4g, 4h) 

after the application of the AIC and Wald tests. Moreover, as previously noted, choice of 

data source also influences the RDs and hence the final best fitted models (Figure 4, left 

column versus right column). We identify such regions and hereafter highlight them with 

a bold boundary.   

3.2. Relationship between CDHW events and large-scale climate variability 

The formulation of Poisson GLM indicates that the estimated coefficients can be 

interpreted as a direct measure of sensitivities [37–39]. In addition, the logarithmic 

function applied in the Poisson GLM is useful to determine the relative importance of 

every selected large-scale driver, such that  1 unit increase in the regression coefficient (

i ) can lead to a exp( 1)i +  times impact on the predictand. Thus,  the higher 

magnitude of the regression coefficient corresponds to the higher relative impact of the 

associated driver. Positive (negative) values of the regression coefficients imply that the 

warm (cold) phase of the associated large-scale drivers has a positive (negative) 

association with the CDHW events. In this section, we discuss the impacts of warm and 

cold phases of the associated large-scale drivers across different climate regions of the 

globe.  
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3.2.1 El-Nino Southern Oscillation (ENSO) 

Figure 5 shows grid points with statistically significant Poisson GLM regression 

coefficients corresponding to ENSO and CDHW events. Given the dependence of RDs 

and resulting final models on the choice of data, we only focus on those regions where 

the results are consistent between observations (left column) and reanalysis (right 

column). A significant positive influence of the warm phase of ENSO (El Niño) exists in 

the Southern Hemisphere during the austral summer months (DJF; Figure 5a) over the 

Amazon, Southern Africa and Northern Australia, and during SON over the Southern 

Australia. Some of these associations are consistent with earlier studies (Hao et. al., 2018; 

Hirons & Klingaman, 2015; Min et al., 2013). The negative 

phase of ENSO (La Niña) exhibits a significant positive influence over parts of Asia in 

JJA and over the parts of Central America and Western Africa in MAM. Central Europe 

also exhibits positive influence of El Niño in JJA. However, ENSO is not the only driver 

over these regions during JJA. Unfortunately, several regions exhibit inconsistences 

between the observations and reanalysis, including Southeast Asia during all the four 

seasons; Alaska, Eastern and Western Africa, and parts of Southern South America in 

MAM; Canada, and West Asia in JJA, and East Africa in SON.  
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Figure 5 The statistically significant Poisson GLM regression coefficients for ENSO 

(Nino3.4) based on the GPCC and CPC dataset (left column), and the ERA5 (right 

column), explaining the interannual variability of CDHW events during (a, b) DJF, (c, d) 

MAM, (e, f) JJA, and (g, h) SON. The bold boundaries indicate regions exhibiting the 

influence of a single large-scale driver, which is also consistent in both datasets.   
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3.2.2 Pacific Decadal Oscillation (PDO) 

The Poisson GLM regression coefficients for PDO explaining the interannual 

variability of CDHW events during all four seasons is presented in Figure 6. With the 

exception of JJA, all other seasons exhibit inconsistency in the influence of PDO. In JJA, 

negative phase of PDO is the sole driver over Western North America (highlighted by 

bold boundary in Figure 6) and is one of the drivers over central North America, Sahara, 

Mediterranean, East Asia and Tibet. The role of PDO in modulating the CDHW events 

over the eastern part of Asia has been previously reported [63].  Previous studies also 

suggest that the anomalies over the northeastern and tropical Pacific have a significant 

impact on the occurrence of CDHW events in the conterminous US [64–67].  

3.2.3 North Atlantic Oscillation (NAO)  

Figure 7 presents the significant Poisson GLM regression coefficients for NAO during 

the four seasons. The strength of regression coefficients is relatively weak in the case of 

NAO. However, unlike ENSO and PDO, the results are generally independent of the data 

source. Both datasets show NAO as the sole significant influencer over Northern Europe 

and Eastern North America (highlighted by bold boundaries in Figure 7) in JJA.  Apart 

from that, in combination with other modes, role of NAO is seen in JJA over most of 

Asia, Europe, Northern Africa and Eastern North America. Similarly, negative phase of 

NAO exhibits more influence over Northern Asia and West Africa while influence of the 

positive phase of NAO is limited to Northern Europe and parts of Central Asia. Many 

earlier studies support the influence of NAO on the occurrence of CDHW events over 

Europe [68] Asia [69] and North America [70,71].  
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Figure 6 Same as in Figure 5 but for PDO.  
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Figure 7 Same as in Figure 5 but for NAO. 

 

 
3.3. Atmospheric anomalies associated with warm and cold phases 

In order to understand atmospheric anomalies associated with the large-scale 

climate drivers that lead to their regional associations with CHDW events, shown in 
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Figures 5 to 7, we analyze seasonal anomalies in upper-level (200 mb) velocity potential 

and divergent winds during warm and cold phases of  ENSO, PDO, and NAO. Dry and 

hot conditions are generally associated with lower level divergence (or upper level 

convergence) anomalies in the atmosphere [72,73].  The seasonal analyses of divergent 

winds illustrate the variations in the Walker and Hadley circulation across seasons 

(Figure S19). In DJF, upper-level divergent wind centers are in the Southern Hemisphere 

over the western Pacific, the eastern Indian Ocean and the Amazon, which correspond to 

lower-level monsoonal flow over these regions. In JJA, divergent winds centers shift to 

the Northern Hemisphere over the Asian and North American monsoon regions. 

Anomalies in divergent winds can occur due to sea surface temperature anomalies in 

various oceanic basins [74], which act as a remote connection between natural modes of 

climate variability and climates over many terrestrial regions.   

It should be noted that those regions where more than one large-scale driver 

influences the occurrence of CDHW events (Figure 3; RD4 to RD7), atmospheric 

anomalies based on the warm and cold phases of a single driver may not be able to 

provide a mechanistic explanation of overlying dynamic causes. Therefore, our 

explanation of atmospheric anomalies is mostly limited to those regions where a single 

driver is shown to have an influence (M1 to M3; bold boundaries Figure 4 to 7) in the 

observations and reanalysis.  
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Figure 8 El Nino (left panel) and La Nina (right panel) based anomalies in divergent 

winds vectors (m/s) and velocity potential (color shading, unit:m2/s, scaled by 106) 

contours at 200 mb with respect to the climatology during (a-b) DJF, (c-d) MAM, and (e-

f) SON. 

 

Figure 8 illustrates seasonal anomaly in the velocity potential and upper-level 

divergent winds for the El Niño (left panel) and La Niña (right panel) in DJF, MAM, and 

SON. The robust positive association between El Niño and the CDHW events during DJF 
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(Figure 5a, 5b) is explained by the anomalous upper-level convergence over Amazon, 

Southern Africa, and Australia (Figure 8a). Similarly, upper-level anomalous 

convergence is present over Australian continent in SON during El Niño, consistent with 

the positive association of El Niño and the CDHW events during that season (Figure 5g, 

5h)). Given that upper-level convergence is an indicator of lower-level divergence or 

clear weather conditions, these anomalies favor reduction of moist flow particularly 

during the austral summer over these regions. Circulation anomalies in JJA during El 

Niño (La Niña) are also consistent with its association with the JJA CDHW events over 

Central Europe (Central Asia and parts of Northern Asia) (Figure S20). However, ENSO 

is not the only driver over these regions.  

 Similarly, Figure 9 depicts the upper-level circulation anomalies during the warm 

and cold phases of PDO and NAO in JJA. Western North America is the only region 

where PDO is the sole driver associated with the occurrence of CDHW events in JJA 

(Figure 4). The sign of regression coefficient suggests that it is the cold phase of PDO 

that exhibits positive correlation with CDHW (Figure 6e, 6f). This association is 

consistent with anomalies in upper-level divergent winds in JJA during the cold phase of 

PDO, which exhibit anomalous upper-level convergence centered over the eastern 

Pacific. Moreover, the anomalies in upper-level divergent winds over Central America 

explain the positive association of the CDHW (Figure 6b) events with the cold phase of 

PDO in MAM (Figure S21). However, this association is not present in the case of 

observations based CHDW events (Figure 6).  
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As previously noted, magnitudes of regression coefficients are substantially 

weaker for NAO compared to ENSO and PDO (Figure 5-7), which suggest relatively 

weak influence of NAO in the occurrence of CDHW events. During JJA, when NAO 

influence is spatially more visible (Figure 7e, 7f), upper-level circulation anomalies are 

relatively small (Figure 9c, 9d), which are consistent with weak magnitudes of regression 

coefficients.  

 

Figure 9 Same as in Figure 8 but based on warm (left panel) and cold (right panel) phase 

of (a, b) PDO, and (c, d) NAO During the JJA season. 

 

 It is also important to highlight that regions where a single large-scale driver only 

exists in the observations-based analysis, reanalysis-based circulations anomalies do not 

support such associations (Figures S21, S22). For instance, in SON, only in the analyses 
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based on the observed precipitation and temperature, PDO appears as the single large-

scale driver (Figure 3g, 3h) over Western and Southern Africa and positive phase of PDO 

exhibits association with CDHW events (Figure 4g, 4h). However, anomalies in the 

reanalysis-based upper-level circulations over Africa exhibit anomalous divergence, 

which correspond to lower-level convergence or conditions opposite to the ones needed 

for CDHW events (Figure S21). Likewise, parts of North America and Northern Europe 

in JJA exhibit NAO as the sole driver in the analyses based on the GPCC and CPC 

datasets, but ERA5-based circulation anomalies do not support such association of NAO 

with the occurrence of CDHW events over these regions. These inconsistencies suggest 

that use of reanalysis to explain anomalies in the observations, particularly those related 

with fine temporal variations, may not be a robust strategy. 

 

3.4. Surface energy budget anomalies associated with the warm and cold phases 

The role of land-atmospheric feedbacks in modulating the characteristics of 

CDHW events is well recognized over many regions of the globe [4,17,75,76,76]. Under 

dry and warm conditions, the positive land-atmospheric feedback processes, which are 

also referred to as soil moisture-temperature coupling, are one of the local-scale 

controlling factors governing surface energy budget. Characterized by the cessation of 

cooling from evaporation under dry conditions, such positive feedback loops lead to a 

decrease in the latent heat fluxes (LHF) and an increase in the sensible heat fluxes (SHF). 

It is well established that natural climate forcing influence terrestrial water availability, 

soil moisture deficits and evaporation rates through their controls on precipitation 
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generating mechanisms [77–79]. These variations in the terrestrial water cycle directly 

impact the land-surface energy feedbacks   and hence influence the occurrence of CDHW 

events [80].  

We investigate the influence of ENSO, PDO, and NAO on these land-surface and 

atmosphere feedbacks by analyzing seasonal anomalies in the SHF and LHF during the 

warm and cold phases of ENSO, PDO, and NAO with respect to their seasonal 

climatology (Figure S23). We use a two-sample Student’s t-test at a 5% significance level 

to test the significance of anomalies [81]. For any given season, a positive (negative) 

anomaly in the SHF and a corresponding negative (positive) anomaly in the LHF 

characterizes a positive land-surface and atmospheric feedback. Thus, the results from the 

composite analysis are discussed hereafter based on the positive feedback loops with an 

aim to provide a localized mechanistic explanation behind the association between the 

large-scale climate forcing and the occurrence of CDHW events, as shown earlier in 

Figures 5, 6, and 7. As noted earlier, the design of these analyses limits their use only to 

those cases where a single natural climate forcing is consistently identified as the regional 

driver in observations and reanalysis. 

A significant simultaneous increase in the SHF and decrease in LHF is witnessed 

over the parts of the Southern Hemisphere in DJF where El Niño exhibits a positive 

association with the occurrence of CDHW events (Figures 10a, S24) and where upper-

level circulation anomalies favor dry conditions on the surface (Figure 8a), such as over 

Southern Africa and western parts of Northern Australia. Similarly, a significant increase 

in the SHF and decrease in the LHF is present over major parts of Australia in SON 
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(Figures 10e, S24) that exhibit a positive association between El Niño and CDHW, and 

upper-level circulation anomalies that favor drying.  

In case of the cold phase of PDO, a delayed effect of the positive land-atmospheric 

feedbacks can be noticed over the Western North America during the JJA season (Figure 

10d). Given that JJA is the dry season over the Western North America, the surface 

drying  in JJA may be in part influenced by the significant positive high SHF and 

negative LHF anomalies in the preceding season (MAM; Figures 11b, 11d, S25), which 

is consistent with its positive association with the CDHW events (Figure 6f). However, 

results are not very clear in the case of NAO over Eastern North America and Northern 

Europe in JJA, where it is the only large-scale driver in both datasets. This 

inconclusiveness in the case of NAO is because both phases of NAO appear to have 

association with CDHW events over these regions in JJA, which is also relatively weak 

(Figure 7e, 7f).   
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Figure 10 El Nino (left panel) La Nina (right panel) based anomalies in sensible heat flux 

with respect to the climatology during (a, b) DJF, (c, d) MAM, and (e, f) SON. Stippling 

represents statistically significant at 95% confidence level. All units are in W/m2. The 

sign convention implemented for the fluxes is positive upwards.  
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Figure 11 Same as in Figure 11 but based on the warm (left panel) and cold (right panel) 

phase of PDO. All units are in W/m2. The sign convention implemented for the fluxes is 

positive upwards.  

 

Overall, the anomalies in circulation patterns and surface energy fluxes can 

explain influence of ENSO, NAO, and PDO in the occurrence of CDHW events when 

any one of them is the only driver in both datasets (indicated by bold boundaries in 
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Figure 5-7). Exceptions in the case of NAO exist, which are understandable given its 

relatively weak, mixed and spatially sparse relationship with CDHW events (Figure 7). 

Furthermore, as it is in the case of circulation anomalies, reanalysis-based surface energy 

fluxes variations are inconsistent when association of ENSO, NAO, and PDO with the 

CDHW events is only limited to the observations-based analyses (Figure S27).   

  

4. Summary and Conclusions  

Using weekly sc_PDSI and daily Tmax, we estimate the yearly frequency of 

CDHW events for four seasons from 1982 to 2016 period over the 26 AR5 climate 

regions of the globe. Moreover, an association between three major large-scale climate 

forcing (ENSO, PDO, and NAO), and the yearly occurrences of CDHW events is 

investigated based on the regression coefficients estimated using Poisson GLM for each 

season. Furthermore, we examine the robustness of such associations by using 

precipitation and temperature from two sources (observations and reanalysis).  

Based on the estimates of Poisson regression coefficients, we find that the warm 

phase of ENSO has a relatively more dominant and robust footprint, specifically over the 

Southern Hemisphere. ENSO alone has a significant influence on the yearly occurrences 

of CDHW events over Northern Australia in DJF and SON, over Southern Africa, 

Southern parts of South America in DJF, and over Amazon in SON. These regions 

exhibit consistent associations of CHDW events with ENSO in the observation and 

reanalysis, which are supported by the anomalies in the reanalysis-based circulations and 

surface energy fluxes during the respective seasons. Similarly, the cold phase of PDO 
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exhibits positive influence over Western North America in JJA, which is associated with 

anomalous upper-level convergence and strong surface drying in JJA and preceding 

season. Our results indicate a weak influence of NAO in the occurrence of the CHDW 

events.  

In this study, we have provided a preliminary mechanistic understanding 

regarding the association between the major modes of natural climate variability and the 

occurrence of CDHW events across the globe. However, there are a number of caveats in 

our methods and analyses that require improvements in future studies. For instance, the 

frequency of CDHW events depends on the choice of indices for heatwave and drought 

identification. The identification of heatwaves, in particular, can vary if a different 

percentile threshold or consecutive days criteria is used. Therefore, further research is 

needed for more robust definition of compound drought and heatwave events. Similarly, 

this study only focuses on three modes of natural climate variability and potentially 

ignores other large-scale forcing such as SST anomalies in the Indian Ocean (Indian 

Ocean Dipole), Tropical North Atlantic and Equatorial Atlantic (Atlantic Niño) that can 

independently impact the occurrences of CDHW events or their co-occurrence with 

ENSO, PDO and NAO can potentially enhance or dampen their impact [82,83].  

Moreover, our analysis also highlights that weekly to sub-monthly scale anomalies in 

temperature and precipitation, which in some cases give rise to CHDW events, may not 

be always aligned between the observations and reanalysis across the globe. Therefore, 

caution must be exercised in the mechanistic explanation of observed anomalies in the 

precipitation and temperature on the basis of anomalies in the reanalysis-based 



 

 126 

circulations and surface energy budget. Nonetheless, our analysis provides a new insight 

into the mechanistic understanding towards concurrent extremes and should help foster 

research efforts in this area, especially in improving the seasonal predictability of such 

extremes.    
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CHAPTER FOUR 
 

COMPOUND DROUGHT AND HEATWAVE IN A 
WARMING WORLD 

1. Introduction 

Compound drought and heatwave (CDHW) events have garnered much attention 

in recent decades [1–5]. These CDHW events often impact socio-ecological systems[3], 

which includes wildfires [4,6], massive heat-related deaths [7,8], and loss of crop yield 

[9,10]. Many regions around the world experienced CDHW events during the summer 

months of 2003, 2010, 2015, and 2018 in Europe and western Russia [1,6,11,12]; 2012-

2014 in the USA [13–15]; 2013 in Australia [16,17]; 2006, 2009–2010, and 2014 in 

Southwestern and Northern China [18–21].  

The evolution of drought and heatwaves are controlled by a variety of land 

surface fluxes  [22], and their spatial patterns are heterogeneous due to the regional 

differences in precipitation, temperature anomalies, and other hydrological changes [22–

26]. Besides, these land surface fluxes are influenced by the background aridity, 

anthropogenic factors, and large-scale changes in climate patterns [3,27–30].  

Numerous studies have investigated CDHW events [3] based on different 

combinations, such as monthly precipitation and temperature anomalies ( Hao et al., 

(2018a); Standardized Precipitation Index and temperature anomalies [32,33]; 

precipitation deficit and potential evapotranspiration [34]; and temperature anomalies and 

precipitation deficit [35]. Nevertheless, the CDHW event estimation framework applied 

in these studies can be further improved in the context of the timescale as well as the type 

of indicators used to quantify drought and HWs [3,36,37].  
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While many studies investigated compound extremes, this study further 

complements previous studies in three different ways. Firstly, we applied a framework to 

estimate the frequency, duration, and severity of CDHW events by integrating weekly 

drought and daily HW information, which was neglected in earlier studies. This 

framework can overcome the limitations arising from the difference in the temporal 

evolution of heatwaves (i.e., daily to weekly scale) and droughts (i.e., weekly to monthly 

scale)[3]. Secondly, the spatial asymmetry of the temporal evolution of CDHW events is 

investigated for the first time on a global scale. Thirdly, although background aridity 

plays a vital role in the development of drought and heatwaves, its potential influence on 

the evolution of CDHW events in different climate regimes (arid, transitional, and humid) 

remains largely unexplored.  

The overall objective of this study is to quantify the spatiotemporal changes in the 

CDHW events at a global scale based on the following research questions: (a) how does 

the recent increase in temperature influence the CDHW events, (b) Is there a significant 

increase in the proportion of HW days coinciding with the extreme drought conditions?; 

(c) to identify the regions that show a greater increase in the characteristics of CDHW 

events, and examine if there is spatial asymmetry associated with such growth at the 

global and hemispherical scale?;  (d) whether the background aridity controls the increase 

in CDHW characteristics at regional to the continental scale; and (e) whether these results 

are consistent across different datasets. This paper is structured as follows. Section 2 

describes the data and methodology used in the study. Section 3 provides results and 

discussion, followed by the summary and conclusions in Section 4.  
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2. Methods 

2.1. Data 

We use daily precipitation (P) dataset obtained from the Global Precipitation 

Climatology Center (GPCC) (http://gpcc.dwd.de/), available at 1° spatial resolution for 

the period 1983-2016. GPCC precipitation dataset is relatively consistent across the globe 

[38], therefore, it is expected to provide spatially robust estimates of CDHW 

characteristics. Available water content (AWC) is obtained from a soil texture–based 

global water-holding-capacity map produced by Webb et al., 2000, and extracted at 1° 

spatial resolution. Daily maximum and minimum 2 m air temperature (Tmax, and Tmin) 

dataset is retrieved from the Climate Prediction Center (CPC) 

(https://www.esrl.noaa.gov/psd/; available at 0.25° spatial resolution) for the period, 

1983-2016. Humid, transitional, and arid regions are identified based on the potential 

evaporation (Ep) data obtained from the European Centre for Medium‐Range Weather 

Forecasts Reanalysis 5 (ERA5; https://cds.climate.copernicus.eu/cdsapp#!/home; 

available at 0.25° spatial resolution) at hourly time-steps for the same period. The 

datasets from the ERA5 potentially supersede other reanalysis products by its high spatial 

and temporal resolution. Additionally, we also use daily precipitation, Tmax and Tmin 

data from the ERA5 and Tmax and Tmin data from Berkeley Earth Surface Temperature 

Project (BE; http://berkeleyearth.org/data-new/) to investigate data related 

inconsistencies. All datasets are regridded at 1° spatial resolution by applying the bilinear 

interpolation scheme to make it consistent with the GPCC Precipitation dataset.  
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2.2. Estimation of CDHW Event Characteristics 

The summer CDHW events are calculated by integrating heatwave and drought 

information. In this study, the drought events are derived based on the weekly self-

calibrated Palmer Drought Severity Index (sc_PDSI), and HW events are derived based 

on the abnormally high-temperature anomalies observed for three or more consecutive 

days. Besides, considering possible epidemiological significance [40], two successive 

HW events are considered independent if separated by a minimum of four days, 

otherwise clustered into a single event. The sc_PDSI is calculated based on the 

methodology proposed by Wells et al., 2004. This procedure includes weekly total 

precipitation, weekly mean temperature (average of Tmax, and Tmin), and available 

water capacity (AWC) in the energy‐budget framework as inputs for deriving sc_PDSI. 

This methodology employs the potential evapotranspiration estimated using 

Thornthwaite's method [42]. In our analysis, the sc_PDSI is derived utilizing the climate 

characteristics calibrated based on the whole period, 1983-2016. 

The CDHW events are estimated based on the time periods when a HW coincides with 

the extreme drought weeks [3].  An extreme drought week is identified when the scPDSI 

magnitude falls below the 10th percentile of the weekly values during the study period 

[3]. The daily temperature anomalies are calculated for each location, separately, based 

on the corresponding 90th percentile of daily maximum temperature observed in the 

extended summer seasons (May-October in the northern hemisphere, and November-

April in the southern hemisphere) from 1983 to 2016. The concept of identifying HW 

event is analogous to previous studies conducted for different parts of the Globe [43–46].  
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In this study, CDHW events are characterized by three metrics: (a) CDHW 

frequency (CDHWf), defined as the average number of annual CDHW events during the 

study period; (b) CDHW days (CDHWd), defined as the total number of event days 

observed for a given year; and (c) CDHW severity (CDHWs), which is calculated based 

on the cumulative sum of the daily severity values obtained over the consecutive days of 

the CDHW events. The daily severity is estimated as the product of the daily 

standardized values of maximum temperatures and the scPDSI value observed in the 

coinciding extreme drought week. A description of the methodology used in the 

estimation of CDHWs is provided in A.1. of the Supplementary.   

3. Results 

3.1. Changes in the CDHW events 

We investigate the annual changes in proportion of CDHW events and global land 

area witnessing these events during the study period, 1983-2016. The proportion of 

CDHW events for a specific year is calculated based on the ratio (% change) between the 

total number of CDHW and HW events occurring at any given location. Hereafter, this 

ratio (%) is referred to as CDHWr. The CDHWr estimation allows us to investigate 

interannual changes in the proportion of HW events that coincide with the extreme 

drought weeks observed during the period 1983-2016.  

Based on this concept, the time series of CDHWr are constructed for each grid location 

and subsequently averaged over the globe. The interannual trends in the global CDHWr 

are estimated and compared between the whole period (1983-2016), past period (1983-

1999), and the recent warmer period (2000-2016) to investigate the potential contribution 
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of recent warming. The criteria for selecting the past and recent warmer period is 

discussed in A.2. of the Supplementary. This criterion is evaluated based on the summer 

mean of daily Tmax anomalies in the CPC, BE, and ERA5 datasets, as illustrated in Fig 

S1. It can be observed that the period from 2001 to 2016 was considerably warmer than 

the preceding period, 1983-2000. Notably, the temporal pattern exhibited by the 

magnitude of these anomalies shows a close agreement among all the three datasets (Fig 

S1). Such consistencies among the three (potentially) different temperature data sources 

can minimize the possibility of uncertainties in the analysis. 

In this study, the trends are determined by employing the Sens’s slope estimator, 

and the statistical significance of the trends is tested based on the MK test [47,48] at 95% 

confidence level (see A.3 of the Supplementary Information). Similarly, we also examine 

the interannual changes in the percentage of global land area (estimated as the percentage 

of land area within the grid cells weighted by the cosine of their latitudes) that witnessed 

a CDHW event during these three periods. Even across different quality-controlled 

datasets, trends can often vary substantially, even if year to year variability is congruent 

and especially for variables with larger uncertainties like precipitation. Specifically, PDSI 

estimates of drought trends depend critically on the precipitation datasets being used 

(Mukherjee et al., 2018; Trenberth et al., 2014). To investigate data related 

inconsistencies, these changes are analyzed based on three different combinations of 

datasets: (1) precipitation from GPCC and temperature from CPC (GPCC-CPC), (2) 

precipitation from GPCC and temperature provided by Berkeley Earth Surface 
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Temperature Project (GPCC-BE), and (3) precipitation and temperature both from ERA5. 

These changes are illustrated in Fig1.  

Figure 1. (a-c) Linear and scatter plots show the annual timeseries of globally averaged 

CDHWr (%) based on (a) GPCC-CPC dataset, (b) GPCC-BE dataset, (c) ERA5 dataset, 

and (d-f) bar-plots illustrate the percentage of global land area) affected by the CDHW 

events each year during the whole study period, 1983-2016 (%) based on (d) GPCC-CPC 
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dataset, (e) GPCC-BE dataset, (f) ERA5 dataset. Linear annual trends in CDHWr and in 

the global land area are estimated based on the Sen’s slope estimator, and statistical 

significance in trends are determined based on the MK test for the whole study period 

(1983-2016), past period (1983-1999), and recent warm period (2000-2016). The 

numbers in the bracket indicate the estimated slope, and the asterisks denote statistically 

significant trends (at 95% confidence level).  

 

The global averages of CDHWr depict a significant (at 95% confidence interval) 

increasing trend during the whole period, 1983-2016, and in the recent warmer period, 

2000-2016 across all three datasets (Fig 1(a-c)). The magnitude of the estimated slope 

suggests a 0.54-0.55% increase in CDHWr per year during the recent warmer period in all 

three datasets, a rate of increment almost double of that (0.29% per year) observed during 

the whole period in the GPCC-CPC dataset. The relative cooler past period, 1983-1999, 

on the other hand, shows a decreasing trend in the CDHWr values in the GPCC-CPC 

dataset and a negligibly low rate of increase in the GPCC-BE and ERA5 dataset. These 

results indicate a consistent and significant influence of warming on the recent increases 

in the drought-related HW events across the globe. The percentage of land area that 

witnessed a CDHW event (shown in bar plots) has also increased simultaneously in the 

recent warmer period in all three datasets (Fig 1(d-f)). Both CDHWr magnitude and 

spatial extent of CDHW events are found to be the maximum during the year 2012 across 

all three datasets. Almost 28% of the total HW events occurred during extreme drought 

weeks in the year 2012 (Fig 1(a-c)), affecting 27-29% of the global land area (Fig 1(d-f)).  
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3.2. Spatiotemporal changes in CDHW event characteristics 

3.2.1. Global and Hemispherical Changes 

The spatiotemporal patterns of the CDHW characteristics are quantified based on 

three metrics, such as the CDHWf, CDHWd, and CDHWs for the recent warmer period, 

2000-2016 with respect to the relatively past period, 1983-1999. The spatial maps for the 

CDHWf, CDHWd, and CDHWs for the two periods are presented in Figure S2, Figure S3, 

and Figure S4, respectively, corresponding to the three combinations of datasets chosen 

for the study. The corresponding changes between the two time periods are quantified by 

subtracting the magnitude of CDHW characteristics between recent and past periods 

(Figure 2).  

In most of the regions, a relatively higher frequency (CDHWf) of CDHW events 

(1 to 3 events per year) are observed during the recent period (Figure 2(a-c)). These 

increases are consistent in all three datasets (GPCC-CPC, GPCC-BE, and ERA5) over the 

United States, the Amazon basin, central and northern Europe, west and central Asia, and 

most parts of Australia. Similarly, these regions witness a relative increase in the 

magnitude of two other CDHW metrics, CDHWd, and CDHWs during the recent period.  

The CDHW events in these locations are characterized by 2-10 days/year increase in 

CDHWd (Figure 2f) and 6-30 per event/per year increase in CDHWs (Figure 2i) during 

the recent period (2000-2016). Interestingly, the results corresponding to the GPCC-BE 

and ERA5 datasets show more consistent spatial patterns that differ in the GPCC-CPC 

dataset over Western South America, North of Northern America, India, China, and most 

of Africa.  
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Figure 2. Spatial map showing the changes in (a-c) CDHWf between two time periods 

(recent, 2000-2016 minus past, 1983-1999) based on (a) GPCC-CPC dataset, (b) GPCC-

BE dataset, (c) ERA5 dataset, (d-f) same as in (a-c) but for the CDHWd (days/year), and 
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(g-i) same as in (a-c) but for the CDHWs (per event/year). The numbers illustrated in (a-i) 

represent the percentage of area affected by an increase in the corresponding CDHW 

metrics for the NH (red), globe (blue), and SH (black). 

 

Our result suggests that 58-73%, 60-75%, and 56-65% of land area in the NH 

show an increase in CDHWf, CDHWd, and CDHWs, respectively, whereas 51-74%, 54-

76%, and 49-65% of the land area witnessed such increase over the SH. These results 

indicate the presence of a spatial asymmetry, with a higher percentage of area in the NH 

being affected by the more extended duration and more severe CDHW events as 

compared to the SH during the recent period as a result of warming. Importantly, these 

results are robust across the three different combinations of datasets employed in the 

analysis. 

3.2.2. Latitudinal Variations  

The latitudinal variations of CDHW metrics are examined to further investigate 

their spatially asymmetric behavior due to warming at the global scale (Figure 3, and S5). 

In this study, the latitudinal variations (represented by the heatmaps) are captured at 1º 

intervals between -54.5ºN and 65.5ºN. Figure S5 depicts these variations for CDHWf, 

CDHWd, and CDHWs during individual years within the whole study period based on 

each of the three different combinations of datasets. The latitudinal variation of the 

CDHW metrics are also compared among the recent and past period based on their 

corresponding 17-year averages and associated interannual trends (illustrated by the line 

plots in Fig 3. The latitudes with statistically significant (at 95% confidence level) trends 
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are indicated by the “square” symbols. The magnitude of the trends and significant 

directions (increasing/decreasing) are estimated based on the Sens’s slope estimator and 

the MK test [47,48], respectively (see A.3 in the Supplementary Information). This 

analysis can reveal the temporal shifts and rate of change of CDHW metrics across the 

latitudes as an impact of warming.  

The heatmaps show considerable spatial asymmetry for each of the CDHW 

metrics across the latitudes that seem to be characterized by a skewed temporal pattern in 

response to the warming climate (Fig S5) in all three datasets. This asymmetric behavior 

is prominent across the mid-latitude regions (tropical and extratropical regions) of both 

hemispheres, with relatively more consistent patterns observed in the northern (southern) 

hemisphere in the GPCC-CPC (GPCC-BE) and ERA5 dataset. Peak magnitudes of 

CDHWf, CDHWd, and CDHWs in the past period are only limited to a short time period 

(1987 to 1989) clustered over the extratropical region (between -30ºN to -54.5ºN) of the 

SH. However, such momentary amplifications can be attributed to sudden increases in 

hot and dry events across South America influenced by natural climate variability [50]. 

On the other hand, the CDHW metrics have amplified considerably during the (relatively 

warmer) recent period, 2000-2016, in both hemispheres.  

In all three datasets, the CDHW metrics are observed to vary substantially between NH 

and SH, and the maximum difference is observed during 2012 (Fig S5).  During this year, 

the peak magnitudes of CDHWf (1-2 events), CDHWd (7-12 days), and CDHWs (20-25 

per event) were observed mostly across the mid-latitude regions (21.5º N-65.5ºN) located 

in the NH. This particular latitude range encompasses the extratropical regions of Europe, 
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Asia, and North America.  These specific regions witnessed unprecedented heat events 

accompanied by persistent droughts mostly triggered by anthropogenic warming 

[8,14,15]. The magnitude of the 2012 European heatwave is found even to exceed that of 

the 2003 summer heatwave events considered to be one of the most deadly event in the 

continent [8]. On the other hand, the higher amplification in the SH is clustered over the 

years 2013-2016 across the latitudes -4.5ºN to -45.5ºN. The amplified signals of the 2013 

CDHWs emerging over the SH can be associated with the unprecedented Australian 

summer heat (considered as the “angry summer”) attributed to anthropogenic warming 

[17]. 

The latitudinal variation of the average CDHW metrics during the past and the 

recent period provides a more detailed narrative on the association between the spatially 

asymmetric amplification and the warming climate (Fig 3). The amplification in the 

recent warmer period is found to be higher over the NH as compared to the SH in all 

three datasets. More importantly, the broad range in which the minimum and maximum 

magnitude of the CDHW metrics vary across the latitudes has increased substantially in 

the recent period in both NH and SH. On the other hand, in all three datasets, this range is 

found to be relatively smaller and consistent in the past period, which amplifies 

uniformly across the tropical and extratropical regions. This indicates a higher spatial 

asymmetry in the recent warmer period relative to the cooler past period in the respective 

hemispheres. However, the amplifications noted across the equatorial region are 

overwhelming in the GPCC-BE, and ERA5 dataset that substantially differs from that 
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observed in the GPCC-CPC dataset. This highlights the potential uncertainties associated 

with the use of different temperature dataset in the region.  

 

Figure 3 (a-c) Line plots showing the latitudinal variation in the past period (1983-1999; 

in black) average and recent warm period (2000-2016; in red) average of CDHWf 

(events/year) based on (a)  GPCC-CPC dataset, (b) GPCC-BE dataset, (c) ERA5 dataset, 

(d-f) interannual trends in CDHW characteristics for the past (in black) and recent warm 
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period (in red) based on the three individual datasets, (g-l) same as in (a-f) but for 

CDHWd (days/year), and (m-r) same as in (a-f) but for the CDHWs (per event/year). The 

square symbols mark the latitudes showing statistically significant trends in the 

interannual variation of the CDHW metrics. 

 

We further investigated the rate of increase in the spatial variation of CDHW 

characteristics based on the past and recent periods (Fig3). Although a stable behavior 

can be observed in the past period, more dynamics in terms of latitudinal symmetry is 

distinctly visible during the recent period. During the past period, a greater number of 

latitudes located in the NH witnessed significantly higher positive interannual trends; 

however, the pattern reversed diametrically during the recent warmer period as the 

considerably higher trends are observed over a continuous stretch of the SH, particularly 

between -1ºN and -30ºN latitudes across all the three datasets.  Overall, these results 

indicate major spatiotemporal asymmetry and heterogeneity associated with the rate of 

change in CDHW characteristics. However, both the mean magnitudes and trends 

associated with the recent warmer period are significantly higher in the ERA5 dataset as 

compared to both GPCC-CPC, and GPCC-BE datasets. This may be linked to the 

uncertainties associated with the use of different datasets that emerge in the reanalysis-

based estimates of CDHW metrics under warmer conditions. 
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3.3. Effect of background Aridity at Continental Scale 

We investigated the possible role of aridity on the asymmetric (heterogeneous) 

behavior of CDHW metrics.  The background aridity has a potential influence on the 

evaporation and land-atmospheric interactions [3,27,51,52], that directly controls the 

drought and heatwaves.  The influence on evaporation is primarily defined based on the 

concept of water-limited and energy-limited regimes [53,54]. Water-limited evaporation 

is dominant in the arid regimes, and it is mainly controlled by the variation in soil 

moisture. On the other hand, the energy-limited evaporation is common in humid regimes 

and regulated by the availability of surface energy. To investigate the potential influence 

of such type of control (water-limited and energy-limited) over the spatiotemporal 

changes in the CDHW events in a warming climate, we examine the CDHW metrics in 

the arid, transitional, and humid regimes located in six different continents across the 

globe.  

In this study, the global arid, transitional, and humid regimes are identified based 

on the aridity index (AI) [55]. The AI is calculated based on the ratio between the 

climatological annual-average potential evaporation and precipitation (Ep/P), which 

represents the dryness/desertification characteristic over a region [56,57]. The global map 

of the arid (AI > 2.25), transitional (0.9 < AI ≤ 2.25), and humid (AI ≤ 0.9) regimes 

derived based on the climatological period of 1983-2016 [58] is shown in Figure 4(a). To 

examine if the warming climate has a significant influence on the spatiotemporal changes 

in the CDHW events over these regimes, we investigate the statistically significant 

change in the spatial distribution and shift in the median value of the CDHW metrics. To  
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Figure 4 (a) Spatial map showing the arid, transitional, and humid regions identified 

based on the Aridity Index for the climatological period, 1983-2016, (b-d) Probability 

density of Past, 1983-1999 period (black), and recent warm, 2000-2016 period mean 

CDHWs (per event per year) for the arid, transitional, and humid regions of the Globe 

based on (b) GPCC-CPC, (c) GPCC-BE, and (d) ERA5 datasets. 
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investigate if these changes are dependent on the choice of data sources, the analysis is 

performed based on the three different combinations of datasets separately. Firstly, the 

17-year mean magnitudes of the CDHW metrics (CDHWf, CDHWd, and CDHWs) are 

calculated for the past (1983-1999) and recent (2000-2016) periods, separately. Finally, 

the spatiotemporal changes between the past and relatively warmer recent periods are 

investigated by comparing the probability density function of mean CDHW metrics 

(CDHWf, CDHWd, and CDHWs) for three different AI regimes. The probability density 

functions are generated by using appropriate non-parametric kernel density estimators.  

Figure 4 (b-d), Fig S6 (b-g), Fig S7 (b-h), Fig S8(b-h) present the probability density 

functions for the CDHWs, CDHWf, and CDHWd obtained for each of the three different 

regimes based on the globe and six continents.  

The statistically significant change in the spatial distribution and shift in the 

median value of CDHW metrics are investigated for the recent period relative to the past 

period by using the two-sample Kolmogorov-Smirnov test, and Wilcoxon rank-sum test 

(see A.4. in the Supplementary), respectively. In all three datasets, the spatial pattern of 

the mean CDHW metrics across the globe exhibit a significant (at 95% confidence level) 

positive shift in the median and the overall distribution during the recent period in all 

three regimes (arid, transitional, and humid), however a relatively more prominent 

positive shift in the median can be observed across the arid regimes (Figure 4(b-d)).  

Furthermore, a consistent increase in the CDHW metrics in the recent period is 

notable for the arid and transitional regimes of North America, Europe, Australia, and 

arid regimes of Asia (Fig S6, S7, and S8). However, considerable spatially heterogeneity 
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among the climate regimes as well as across the continents can be noted across the 

datasets for the two time periods. The inter-continental heterogeneities are notable among 

Africa and South America relative to the rest of the continents in the GPCC-CPC 

datasets. Even changes in CDHW metrics in the GPCC-CPC dataset across the humid 

regimes of Europe, North America, and Asia are diametrically opposite to those in the 

ERA5, and GPCC-BE datasets. Such notable inconsistencies across the humid regions 

may arise due to the uncertainties in temperature, specifically between the GPCC-CPC 

and GPCC-BE datasets. This can be explained by the higher sensitivity of evaporation in 

energy-limited conditions to changes in temperature [36,52]. As such, more significant 

variability in the results is noted across the humid equatorial regions such as in South 

America and Africa.    

Overall, our results are independent of the choice of datasets across significant 

regions and indicate an increasing influence (control) of aridity on CDHW events during 

the recent period (2000-2016) compared to the past (1982-1999). However, the potential 

influence of arid, transitional, and humid regions on CDHW characteristics varies 

between the continents in a warming climate. Such inter-regime and inter-continental 

heterogeneities may arise due to the non-uniformity in land surface fluxes (hydrological 

changes) over the water-limited and energy-limited regions under global warming [25]. 

Besides, an increase in the spatiotemporal changes in the magnitude and variability of 

seasonal precipitation and evaporation [59] can amplify the CDHW event characteristics 

in the recent warmer period. Furthermore, these heterogeneous impacts can also be 

attributed to the spatiotemporal variation in soil moisture and wind speed under a 
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changing climate that plays a significant role in modulating the land-atmospheric 

interactions leading to increases in frequency, duration, and severity of CDHW events 

[51,52,60].  

4. Discussion and Concluding Remarks 

The impact of compound drought and heatwave events results in more significant 

socio-economic damage compared to individual events. This study investigated 

compound drought and heatwave characteristics, such as frequency, duration, severity, 

and spatial extent based on a relatively warmer recent (2000-2016) and a past period 

(1983-1999). The analysis is performed using three different combinations of observed 

and reanalysis-based datasets to examine if the results are independent of the choice of 

data source. In all three datasets, a significant increase in drought-related heat waves and 

the corresponding spatial extent is noted in the (warmer) recent period. Besides, 

frequency, duration, and severity of CDHW events have increased substantially during 

the recent period. Our results highlight the regional amplifications of drought and 

heatwave characteristics, which are often attributed to anthropogenic climate change 

[14,15,61–63]. The asymmetric influence of warming was also revealed by the latitudinal 

variations in CDHW event metrics and the associated temporal skewness in such 

variations with the NH witnessing more amplification in the recent (2000-2016) warmer 

climate. The positive influence of warming on the CDHW event metrics are more 

prominent in arid regions of the globe, and most importantly, the arid regions located in 

the continents of Asia, Europe, Australia, and North America. However, the CDHW 

characteristics over the arid regions located in Africa did not witness notable changes, 
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which may be due to relatively greater (10-20%) amount of precipitation in the recent 

decade (2000-2009) as compared to the past decade (1990-1999) across some stations 

located in the arid regimes within the continent [64]. A significant shift in CDHW 

metrics over global arid lands highlights the potential influence of background aridity and 

the dominant role of incoming energy and soil moisture variations in modulating the 

evaporation and intensification of CDHW events in a warmer climate [52].  Data-related 

inconsistencies in the results are mainly noted across the humid regions, especially in the 

equatorial belt. 

The broad implication of our study is relevant to stakeholders associated with 

water resources (Mukherjee et al., 2020), agriculture [10,35], and health science-related 

disciplines.  The results from this study are particularly useful for CDHW impact 

assessment on health risk, crop loss, and energy demands that are often neglected by the 

decision-makers and stakeholders. Besides, adequate measures can be implemented by 

developing suitable forecasting tools to provide early warnings related to CDHW events.  

The quantification of the local to regional scale CDHW events are seldom 

challenging due to uncertainty associated with available data [3,49], and differences in 

the evolution of drought and heatwaves at different spatial scales and temporal 

resolutions [3]. For example, monthly temperature anomalies compromise the daily 

variation of HW events; on the other hand, the precipitation-based drought indicators 

potentially ignore the influence of temperature on droughts under warming scenarios. 

Furthermore, spatiotemporal changes and heterogeneity in the CDHW event 

characteristics are often associated with large scale teleconnections [3,65], variations in 
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soil moisture [60], magnitude and variability of seasonal precipitation and evaporation 

[59], as well as anthropogenic warming [5,66,67]. Therefore, integrating relative 

contributions from these influencing factors in a more comprehensive manner can 

advance our understanding of the evolution of compound events.  
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CHAPTER FIVE 
 

RELATIVE CONTRIBUTION OF ANTHROPOGENIC WARMING 
AND NATURAL CLIMATE VARIABILITY TO CHANGES IN 

COMPOUND DROUGHT AND HEATWAVE 
 
 
 
1. Introduction 

Concurrent Heat wave and drought (CHWD) events have had multiple societal 

and eco-hydrological impacts including loss of crop yield [1,2], increased wildfires and 

tree mortality [3], and health hazards[4]. It is well known that CHWD events are typically 

triggered by the land-atmosphere feedback processes and modulated by the surface 

energy budget. Climate change triggered by rise in anthropogenic activities has already 

accelerated such processes leading to increased frequency of CHWD events across many 

parts of the globe [5–8]. Other major factors that play a crucial role behind triggering 

such processes are the large-scale natural variabilities. For example, the interannual and 

interdecadal variations of natural climate are found to be instrumental in influencing the 

overland atmospheric circulation mainly by triggering a shift from the synoptic weather 

systems towards the anticyclonic regimes[9]. In addition, observational evidence suggest 

a poleward expansion of these regimes in the northern as well as the southern hemisphere 

[9]. These anticyclones are accompanied with clear skies or lack of moisture in the lower 

atmosphere thereby facilitating drought conditions. The lack of moisture leads to the 

limited availability of latent energy and the sensible heat flux increases, thereby causing 

the surface air temperature to rise above the normal conditions for a prolonged duration 

(also known as HW)[10] resulting in CHWD events. In addition to that, the rise in 
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surface air temperature initiates a feedback loop with the soil moisture by increasing the 

atmospheric demand (leading to increased evapotranspiration), therefore, end up further 

intensifying the existing drought condition. This feedback process is very common in the 

anticyclonic weather regimes and is generally referred as the soil-temperature coupling 

[11–13].  

Relevant to the understanding of the physical processes that leads to the co-

occurrence of drought and HW, drought quantification using only precipitation may lead 

to underestimation of drying[14], that finally multiplies the uncertainties in the estimation 

of CHWD characteristics. Hence, soil moisture, and surface temperature anomalies 

should also be incorporated in CDHW estimation using the energy budget framework. 

Palmer Drought Severity Index (PDSI)[15] is a comprehensive drought index that 

incorporates hydroclimatic variables relevant to the estimation of drought under the 

changing climate[16]. However, most of the previous studies do not consider the effect of 

soil moisture and temperature while estimating CHWD[7,17,18]. Furthermore, the large 

scale teleconnection patterns are more instrumental in the formation of anticyclonic 

regimes rather than the local climate variability[9]. These large-scale patterns should be 

identified, and a comprehensive analysis that incorporates both the effect of such 

patterns, as well as the role of anthropogenic global warming (ANT) should be 

implemented in the investigation of the evolution of CHWD events in the past 

observations. Previous studies on CHWD characteristics do not consider such effects 

[5,19]. 
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For the first time, we present a global, and comprehensive analysis on the CHWD 

events, by integrating the hydroclimatic variables such as, precipitation, soil water, and 

temperature. Our primary aim will be to identify the attributable climate forcings that has 

had a significant role in the number of CHWD events in specific climate regions across 

the globe during the observed period, 1982-2016. Furthermore, we find the relationships 

that these forcings had with the odds of occurrence of CHWD in those climate regions in 

the past, and finally predict the increase in the odds of such events in the 1.5°C and 2°C 

warming limits with respect to the current level of warming.  

 

2. Materials and Methods 

2.1. Data  

Daily global maximum, and minimum 2 m air temperature (Tmax, and Tmin) 

dataset provided by Climate Prediction Center (CPC) (from CPC Global Temperature 

data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web 

site at https://www.esrl.noaa.gov/psd/ ) was obtained at 0.5° spatial resolution for the 

period 1979-2017. We downloaded daily global precipitation (Pr) dataset from the Global 

Precipitation Climatology Center (GPCC), available at 1° spatial resolution for the 

temporal period 1982-2016 [20]. All these dataset were regridded and extracted at 2.5° 

spatial resolution. Available water content (AWC) was obtained from the global database 

of texture derived AWC by [21], and extracted at 2.5° spatial resolution to make it 

consistent with the other climate variables (Tmax, Tmin, and Pr). For the estimation of 

global mean temeprature change, global gridded monthly temperature anomaly data 
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provided by HadCRUT4[22] was obtained (from 

https://crudata.uea.ac.uk/cru/data/temperature/). However, these anomalies are estimated 

with respect to the absolute temperature for the base period, 1961-1990[23], hence, do 

not actually represent the rise in surface temperature due to anthropogenic activites. 

Therefore, we re-calculated the anomalies over the globe using the same data, but using 

the climatological period as the pre-industrial era (1861-1890), and then obtained the 

global mean temperature change (represented as “ANT” in this study). Furthermore, for 

estimating the warming level in the current world, global averaged monthly temperature 

data from 35-General Circulation models participating under the Coupled Model 

Intercomparison Project Phase-5 (CMIP5-GCM; Table S1) based on the Representative 

Concentration Pathways 8.5 (RCP8.5) were obtained (from 

https://climexp.knmi.nl/CMIP5/Tglobal/index.cgi?email=someone@somewhere) for the 

period 2008-2028. We chose the RCP8.5 scenario as it is found to match most closely 

with the observed emission scenario [24] as compared to the other RCPs (RCP2.6, 

RCP4.5, and RCP6). 

In addition to that, 6 global large scale indices were used in the study as listed in 

Table S2. Southern Oscillation Index (SOI) and Dipole Mode Index (DMI/IOD) are the 

two ENSO index used in the study. The SOI is available from the Bureau of Meteorology 

(http://www.bom.gov.au/climate/current/soihtm1.shtml ), and IOD was obtained from the 

NOAA Climate Prediction Centre (NOAA CPC; http://www.cpc.ncep.noaa.gov/ ). The 

monthly values of Southern Annular Mode (SAM), Arctic Oscillation (AO), North 
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Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO) were also retrieved 

form NOAA CPC. 

2.2. Estimation of Compound Drought and Heatwave (CHWD) events: 

It is well known that, drought estimation at a weekly time scale can help to retain 

the memory of soil temperature and moisture inherited within a short time scale. This is 

not only relevant for capturing the diurnal feedback loop but also produces a considerable 

sample size required in the statistical analysis of rare events such as the co-occurrence of 

HW and drought events over the observational record. In this study, we define a CHWD 

event as a HW event that occurred during the drought weeks over a given location and 

time period.  

A threshold-based approach was used to obtain the CHWD events for the period 

1982-2016. For each grid point location, the 10th percentile of weekly PDSI_sc  

(wPDSI_sc) for the reference period, 1981-2010 were obtained as a threshold, and any 

wPDSI_sc value below that threshold was estimated as a drought week for the period, 

1982-2016. Finally, CHWD events were selected such that the daily Tmax value 

exceeded the TX90pct [25–28] value for 3 or more consecutive days during these drought 

weeks.  The TX90pct was estimated as the calender day 90th percentile of daily Tmax 

over each 31-day window during the 30 years climatological period, 1981-2010[29].  

2.3. Measurement of degree of Susceptibility of HW (DSHW) towards drought: 

To get a measure of the degree to which it is more likely that HW and drought 

will co-occur in a particular grid point location than not, we estimated the DSHW based 

on observational record. The DSHW was estimated based on conditional formulation of 
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CHWD events followed by a statistical test for significance. First, probability (pe, and pc) 

of occurrence of two mutually exclusive extreme events, HW events with, and without an 

already existent drought (that influences the background state of the climate) were 

estimated based on the observational record across the globe. Finally, statistically 

significant (at 5% significance level) pe/pc ratio greater than 1 were obtained using the 

two-proportion z-test over 1000 realizations of the current sample. The pe/pc ratio 

showing a significantly greater value than 1 was obtained for each grid point locations 

and defined as the DSHW in this study. The detailed formulation of DSHW is provided 

in Appendix C in the supplemental information. 

2.4. Measurement of Odds of occurrence of CHWD events 

Previous studies have confirmed the link between the odds of occurrence of 

extreme events and other climate variables using logistic regression model[30,31]. In this 

study we looked at the relationship between the odds of occurrence of CHWD events in 

any month with the interannual variability of large-scale climate indices and changes in 

the global mean temperature during the period, 1982-2016.  

2.4.1. Logistic Regression model 

We applied a multiple-predictor based Firth logistic regression model that is a 

special form of Generalized linear model [32] to estimate the penalized regression 

coefficients corresponding to natural variability of the climate, and ANT. The Firth’s 

model applies penalized likelihood estimation rather than performing the conventional 

maximum likelihood estimation to obtain the penalized regression coefficients. The 
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penalization allows for convergence of the likelihood to finite estimates in conditions of 

separation and also with sparse data and therefore, may alleviate overfitting [33].  

In our analysis, we used the following logistic regression model: 
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(1)                                                            where, 
1




 
 
− 

 is the odds of having more than 

two CHWD events per year; X1, X1, …., Xn are the large scale climate indices used in the 

model and XANT is the change in global mean temperature with respect to the pre-

industrial period, 1861-1900;  , 1 , 2 , …., n , and ANT  are the corresponding 

penalized regression coefficients (or scaling factors). Once the model was fitted for the 

observational distribution the penalized regression coefficients were obtained that we 

refer as the scaling factors in this study. 

2.4.2. Estimating Odd ratio for 1.5ºC, and 2ºC global warming 

In addition to that, we tried to answer the science question- “How much more 

likely it will be to have a CHWD day (in a month) at 1.5ºC, and 2ºC global warming 

limits than it is at the current level of anthropogenic warming?”. Analyzing the 

independent effect of the rise in ANT over the odds of occurrence of more than two 

CHWD events should be a reasonable motivation towards this objective. This was 

performed by changing the anthropogenic component to the different warming levels 

(Current, 1.5ºC, and 2ºC), keeping the natural component as constant in the regression 

model. We estimated the current level of warming based on the average of monthly 
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temperature anomalies (estimated with respect to the pre-industrial period, 1861-1890) 

for the current world. We define the current world as a 21-year window with the year-

2018 at the center (2008-2028) and estimated the monthly anomalies using data from 35 

CMIP5-GCMs (Table S1) based on RCP8.5 scenario. Finally, the ratio of odds (or odd 

ratio (OR)) of monthly occurrence CHWD day for the future warming limits (1.5 C, and 

2 C) to that for the current warming level was estimated as, 

1 1 2 2
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where, T is the selected warming limit of 1.5ºC, and 2ºC, and XCurrent refers to the current 

warming level with respect to the pre-industrial period.  

3. Results 

3.1. Annual increase in the number of CHWD events  

We show that, the number of CHWD events has increased annually during the 

21st century (Post-2000) compared to that observed during the last two decades of the 20th 

century (Pre-2000) (Figure 1a). Figure S1a, S1b and Figure 1(a) show the spatial 

distribution of the average number of events during the Pre-2000 and Post-2000 period, 

and the corresponding changes in the same between the two periods, respectively. Figure 

1(b) show the nonparametric probability density for the average number of CHWD 

events during the Pre-, and Post-2000 period for the globe. We also performed the 

Kolmogorov-Smirnov, and the Wilcoxon rank sum test to show that there is a statistically 

significant (at 5% significance level) difference between the distributions and medians of  
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Figure 1 (a) Difference between the average number of CHWD events during the Pre-

2000 period (1983-1999) and Post-2000 period (2000-2016) (d) Ks density plot for 

average number of CHWD events during the two periods for the globe, (c) spatial 

distribution of the ratio of the probabilities where probability of heat wave day 

conditioned on drought (pe) is significantly (at 5% significance level) greater than 

probability of heat wave day conditioned on drought (pe), and (d) percentage area of each 

climate region showing significantly (at 95% confidence level) greater probability of heat 

wave day conditioned on drought (pe) than that conditioned on no drought (pc). 

 

the CHWD events, respectively, between these two periods. Our analysis suggests an 

overall annual range of 1-5 number of events during the Post-2000 period (Figure S1b) 
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with major portions included in most of the climate regions showing an increase of 1-3 

number of events per year (Figure 1a). Those regions include the Southern parts of WNA 

and CAN, Eastern NAU, eastern and south eastern SAF, North-eastern SAS, eastern 

ENA, Northern MED, central NEU, and almost all over WAS, CEU and NEB. In 

addition to that, regions such as the Southern EAS, Eastern ALA, Western CGI, and 

central AMZ show an increase of as high as 5 annual events during the Post-2000 period. 

However, we do not consider the climate regions, CGI, ALA in our further analysis due 

to poor quality of available data over these regions. 

3.2. Degree of Susceptibility of HW (DSHW) towards drought: 

We focus on finding the locations where it is significantly more likely to have 

HW and drought co-occur in a particular day than not based on the observational record. 

(Figure S2) We find that majority of grid cells show higher DSHW towards a persistent 

drought week (pe/pc > 1; Figure 1c). However, the percentage of total area showing such 

DSHW vary across the different climate regions (Figure 1d). For instance, the climate 

regions, CAN, CEU, EAS, WNA, WAS, NEB, ENA, NAU, SAS, MED, CAS, ALA, 

NEU, SAF, and SAU show that more than 2/3rd of the area show statistically significant 

degree of susceptibility of HW under an ongoing drought condition with majority of the 

portion showing pe/pc ratio as high as more than 5 (Figure 1c). On the other hand, 

climate regions such as the SEA, WAF, EAF, CAM, NAS, TIB, and CGI show that just 

more than half of the area show statistically significant pe/pc ratio greater than 1. In 

addition to that, climate regions such as SAH, WSA, SSA, and AMZ show less than even 

half of the total area with pe/pc ratio significantly greater than 1. Therefore, out of the 26 
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climate regions considered in this study, only 10 climate regions show a significant 

DSHW over more than 2/3rd of the total area (Figure 1d). Interestingly, all of these 

regions also show an increase in the number of CHWD events during the Post-2000 

period as seen in Figure 1a. Consequently, we do the rest of the analysis based on these 

10 climate regions. 

3.2.1. Possible Drivers (Natural and Anthropogenic) 

Previous studies suggest possible link between the large-scale global circulation 

patterns or oceanic variabilities and anticyclonic regimes in both the Northern and 

Southern Hemisphere [9,34–36]. Therefore, understanding and exploring such 

relationship is key to identify the attributable factors behind the occurrence of rare events 

such as the CHWD events for the climate regions that show significant DSHW towards 

drought over more than 2/3rd of the total area. More precisely, we explore any possible 

link between the monthly total number of CHWD (MT-CHWD) days and the interannual 

variability in the natural climate[35] as well as the influence of rise in ANT on such 

extremes during observational record.   

We selected six (Table S2) large-scale oscillation indices that have major 

influence on the global climate variability in an interannual or decadal time scale. To 

represent the interannual variability, monthly anomalies of these large-scale climate 

patterns and global mean temperature were smoothed by applying a 12-month running 

mean filter. Since, different region has different areal extant, area weighted MT-CHWD 

days were estimated for all of the 10 climate regions. Figure 2a show only the statistically 

significant (at 5% significance level) Spearman’s partial correlation between the region-



 

 186 

wise area weighted MT-CHWD days and the interannual variability of the large-scale 

climate indices and ANT for the period, 1982-2016 for the 10 climate regions.  

The results suggest that ANT has a strong influence on the observed MT-CHWD 

days over all of the 10 climate regions during the period 1982-2016 (Figure 2a). This 

agrees with previous studies that have suggested an increasing global warming footprint 

and its substantial impact over the increase in heat wave [37], drought [38], and CHWD 

events [39] at regional scale.  

Figure 2 (a) Correlogram showing the significant (at 5% significance level) partial 

correlation between the number of monthly CHWD days and the interannual variability 

of large-scale climate indices during the period 1982-2016 based on non-parametric 

Spearman’s rho. (b) Chord diagram showing the large-scale indices chosen based on the 

mechanistic explanation.  

 



 

 187 

In addition to that, the interannual natural variability (represented by the six large 

scale climate indices) also show a significant but weak correlation with the occurrences 

of CHWD events during the observed period.  

 (a) El-Nino Southern Oscillation (ENSO) Index: 

Out of the two ENSO indices used in the partial correlation analysis (SOI, and IOD), 

interannual variability of SOI show statistically significant positive correlation with the 

area weighted MT-CHWD days for the regions CNA (0.3), EAS (0.273), ENA (0.27), 

MED (0.13), WAS (0.29) and WNA (0.15), and negative correlation for the NAU (-0.2) 

(Figure 2a). It is well known that in the interannual scale, ENSO act as a dominant mode 

and can trigger significant changes in the weather patterns leading to temperature 

anomalies and shift in tropical as well as extra-tropical rainfall regimes [40]. In addition 

to that, strong influence of SOI in the expansion of global anticyclonic regimes has also 

been reported in previous studies suggesting a poleward expansion of the Hadley cell 

during November-April [9].  

IOD show significant positive correlation for the climate regions such as CEU 

(0.17), CNA (0.1), EAS (0.23), MED (0.24), SAS (0.14), and WAS (0.32) (Figure 2a). 

The role of IOD has been suggested in the formation of anticyclonic circulation over the 

Eastern Asia leading to unusual summer temperature in the year 1961, and 1994 [41]. 

The IOD-induced divergent flow and diabetic heating originating from the Bay of Bengal 

around India excites the Rossby wave train propagation during summer towards the EAS 

climate region [42]. Impact of IOD is also linked to the circulation changes over the 

Europe and North America [41,43], and negative rainfall anomaly over the WAS climate 
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region [44]. A significant warming trend and a 10-20% reduction in rainfall is reported 

over the Indian subcontinent (included in the SAS climate region) over the period 1901-

2012 due to rapid warming of the Indian Ocean (positive IOD phase) [45].  

(b) North Atlantic Oscillation (NAO)  

Strong influence of NAO over European heat wave and drought is evidenced 

through observational studies that suggest excitation of stationary wave train propagation 

facilitating anticyclonic weather regimes over the region [46]. Moreover, NAO can be 

associated with the North Atlantic Jet variability that has strong influence over 

temperature and precipitation variability over the US and Europe [31,47]. This is also 

evident in our correlation analysis that show statistically significant Spearman’s 

correlation coefficient over MED (-0.16) (Figure 2a). Besides MED, three more climate 

regions (EAS (-0.33), NEB (-0.16), and WAS (-0.28)) also show a significant correlation 

with the MT-CHWD days (Figure 2a). Except for NEB, where the Atlantic Multidecadal 

Oscillation (AMO) is the major driver [48], the NAO show marked influence over 

rainfall and temperature variations over the other climate regions, WAS [49], and EAS 

[50]. It is to be noted that due to the short span of the temporal period 1982-2016, we did 

not include the AMO in our analysis. 

(c) Pacific Decadal Oscillation (PDO)  

PDO show relatively strong negative correlation for the climate regions, CNA (-0.38), 

ENA (-0.31), and WNA (-0.11) (Figure 2a). This agrees with the previous studies that 

report a significant influence of anomalies over the north-eastern and tropical Pacific 

(PDO) on drought and heat wave events in the conterminous US [51–53]. Moreover, we 
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find negative correlation with the interannual variability of PDO (Figure 2a) and the 

number of MT-CHWD days over the EAS (-0.33), and WAS (-0.33) (Figure 2a) climate 

regions which is also evidenced through previous observational studies [54]. However, 

significant correlations between variability in PDO and climate regions such as NAU 

(0.11), CEU (-0.11), and MED (-0.24) indicate a possible indirect influence on the 

CHWD events over these regions. Therefore, we exclude such influences in the further 

analysis of CHWD events over these regions. 

(d) Arctic Oscillation (AO) and Southern Annular mode (SAM) 

SAM show positive correlation for the climate regions in the northern hemisphere 

such as, CEU (0.11), EAS (0.2), ENA (0.12), MED (0.22), SAS (0.19), WAS (0.4), and 

WNA (0.1) (Figure 2a). On the other hand, significant correlation is found for climate 

regions, NAU (-0.14), and NEB (0.34) in the southern hemisphere (Figure 2a). It is 

evidenced that positive SAM has a strong influence on the frequency and poleward 

expansion of anticyclones in the southern hemisphere [9,55,56] with intensification of 

Rossby wave in the eastern Australia. However, except for EAS [57], there is no such 

evidence of SAM index in the northern hemisphere therefore the impact of SAM is not 

considered in the further analysis of CHWD events over the climate regions, CEU, ENA, 

MED, SAS, WAS, and WNA. On the other hand, AO that has significant influence over 

the increased frequency and expansion of anticyclones in the northern hemisphere [9] 

also show significantly weak correlation for climate regions, CEU (0.14), CNA (0.17), 

NEB (0.19), and WAS (0.1). In our further analysis, we exclude the effect of AO over the 

climate regions such as WAS, and NEB. 
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Finally, based on the physical evidence provided in this section, a chord diagram 

is presented (Figure 2b) to show the selected large-scale climate indices along with the 

ANT that has a significant impact on the occurrence of CHWD events for these 10 

climate regions.  

3.3. Scaling factors associated with the Odds of having CHWD-day  

The selected large-scale meteorological perturbations, and ANT (Figure 2b) were 

used as independent variables to fit the FLM (refer Method section) for the 10 climate 

regions. Our aim is to find the possible relationship between the odds of having atleast 

one CHWD-day in a month and the combined effect of large-scale climate perturbations 

and ANT based on the observational record. The odds of having atleast one CHWD-day 

in a month indicate the minimum possible risk associated with the increasing anomaly in 

these global climate patterns and ANT. 

Therefore, monthly binary outcomes (0 and 1) of occurrence, and non-occurrence 

of CHWD day was used as the dependent variable into the FLM. To account for the 

anthropogenic component into the FLM, changes in the monthly global mean temperature 

with respect to the pre-industrial period, 1861-1890 was also added as one of the 

independent variables. It is to be noted that all the independent monthly variables (natural 

and ANT) were first smoothed by applying a 12-month running mean and then regressed 

against the monthly time series of the binary variable. This was done in order to preserve 

the information in the FLM as obtained from the partial correlation analysis. Finally, the 

scaling factors and their 5-95% confidence intervals (CI) obtained after fitting the FLM 

for each of the climate regions are shown in Figure 3. These scaling factors and their 5-
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95% CI suggest the multiplicative increase ( > 1) or decrease ( < 1) in the monthly 

odds of a CHWD day for per unit increase in the large-scale climate indices, and ANT. In 

addition to that, we consider a signal from these large-scale climate variables and ANT to 

have been detected when the 5-95% CI do not cross zero and consider only the detected 

signals in our further discussion.  

Figure 3 Scaling factors (coefficient of regression) and their corresponding 5-95% CI 

indicating the sensitivity of odds of occurrence of monthly CHWD days against the inter 

annual variability of large-scale climate variables and ANT obtained from the FLM for 

the 10 climate regions. The red color indicates the scaling factors for the ANT, and the 

blue color indicate the same for the large-scale climate indices. The green circles with a 

blue cross indicate the scaling factors that are not statistically significant (at 5% 

significant level). 

 

The results (scaling factor, 5% to 95% CI) from the sensitivity analysis suggest 

that the rise in ANT has had a statistically significant positive impact on the odds of 
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occurrence of CHWD days for all of the 10 climate regions, CEU (4.1, 2.9 to 5.2), CAN 

(3.8, 2.7 to 4.9),  EAS (5.6, 4.1 to 7.3),  ENA (2.9, 2 to 3.9), MED (4.2, 3 to 5.6), NAU 

(3.7, 2.7 to 4.9), NEB (2.2, 1.3 to 2.3), SAS (4.2, 3 to 5.4), WAS (3.2, 2 to 4.4), WNA 

(3.3, 2.2 to 4.5) (Figure3). These findings agree with previous studies that report a 

substantial increase in dry and hot spells in various regions across the globe due to rise in 

global warming [5–8,39]. However, depending on the climate regions, the large-scale 

climate oscillations show either positive or negative signals against the odds of 

occurrence of CHWD day. For instance, increase in SOI show a statistically significant 

positive relationship (scaling factor, 5% to 95% CI) for the climate regions, ENA (0.29, 

0.05 to 0.53), MED (0.29, 0.07 to 0.53), WAS (0.51, 0.11 to 0.62), and WNA (0.36, 0.11 

to 0.62), while a negative relationship for NAU (-0.25, -0.44 to -0.07). Similarly, 

significant effect of SAM can be seen for the climate regions, EAS (-0.6, -1.08 to -0.14), 

NAU (-0.87, -1.26 to -0.5), and NEB (0.47, 0.14 to 0.82). Increase in positive AO show a 

significantly increasing relationship with the odds of CHWD day for the climate regions, 

CEU (0.79, 0.29 to 1.3), CAN (0.72, 0.18 to 1.2), and increase in positive PDO showed a 

statistically significant decreasing relationship for the climate regions, CAN (-0.51, -0.88 

to -0.14), and ENA (-0.379, -0.69 to -0.07). On the other hand, NAO and IOD showed 

significantly decreasing, and increasing relationship with the odds of CHWD day for the 

climate regions, EAS (-0.92, -1.8 to -0.05), and WAS (2.96, 1.53 to 4.45), respectively. 

However, for the climate region, SAS no statistically significant signal is found from the 

natural variability of the climate.   
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From the results it is clear that occurrence of CHWD is strongly attributable to the 

ANT (Figure 3), while natural variability has a very weak or no significant (in case of 

SAS) influence over the odds of CHWD events for the 10 climate regions. Furthermore, 

the overall relationship of the large-scale indices and ANT with the odds of occurrence of 

CHWD day (Figure 3) are found to be consistent with that obtained from the correlation 

analysis with the MT-CHWD events (Figure 2a) over the same climate regions. Thus, the 

mechanistic explanations provided based on the correlation analysis, also holds true for 

the sensitivity analysis (Figure 3) provided in this section. 

 

3.4. Effect of 1.5C and 2C rise in Global Warming 

Form the sensitivity analysis, it is clear that based on the observational record the 

monthly odds of occurrence of CHWD day can be attributed to the rise in ANT in almost 

all of the climate regions. In addition to that, the magnitude of the scaling factors for all 

the climate regions indicate a substantial increase in the odds is very likely with per unit 

rise in the ANT forcing in the future climate. Given the continuous rise in warming, it is 

very likely that the rise in global warming will exceed the 1.5C and 2C warming limits 

by the mid-21st century[58], thereby indicating a possibility of higher odds in the future 

compared to the present climate scenario. In order to see the likely level of increase, we 

estimated the ORs for these climate regions as the ratio of monthly odds of occurrence of 

CHWD day in the 1.5C, and 2C warming limits to that in the current warming level.  

Figure 4 present the two-dimensional CI plot showing the OR and the corresponding 5-

95% CI for the 10 climate regions that show significant DSHW towards drought based on 
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the observational record (Figure 1d).  We find OR (5 to 95% CI) as high as 3.5 (2.5 to 

5.2), 2.6 (1.98 to 3.5), 2.5 (1.9 to 3.4), 2.5 (1.9 to 3.2), 2.4 (1.8 to 3), 2.3 (1.8 to 3), 2.1 

(1.6 to 2.8), 2 (1.6 to 2.7), 1.9 (1.6 to 2.4), 1.7 (1.3 to 2) for climate regions, EAS, MED, 

SAS, CEU, CAN, NAU, WNA,WAS, ENA, and NEB, respectively (Figure 4). These 

results suggest that, more than 1.7-fold increase in the odds of CHWD day is very likely 

under the 1.5C warming world than it is in the current world in all of the 10 climate 

regions, with 3.5-fold increase in climate region, EAS.  

On the other hand, under the 2 C warming limit, the climate regions, EAS, MED, 

SAS, CEU, CNA, NAU, WNA, WAS, ENA, and NEB, is most likely to show ORs of 

60.8 (20.4 to 209.18), 22.1 (9.1 to 58), 20.9 (9 to 51.3), 19.5 (8.7 to 45.9), 16.1 (7.4 to 

37.2), 15.7 (7.2 to 35.5), 11.36 (5 to 27.4), 10.26 (4.5 to 24.7), 8.6 (4.4 to 17.5), and 5.2 

(2.6 to 10.7), respectively (Figure 4). Therefore, climate regions such as, MED, and SAS 

show about 20-fold increase; CEU, CNA, and NAU show more than 15-fold increase; 

WNA, and WAS show more than 10-fold increase, and ENA, and NEB show 5 to 8-fold 

increase in the 2C warming world. More alarmingly, climate region, EAS show that the 

odds of having CHWD day in a month will increase by about 60-fold under the 2C 

warming world. Therefore, limiting to 1.5 C warming can mitigate more than 17-fold 

increase in case of climate region, EAS, 5 to 8-fold increase for climate regions, WNA, 

NAU, CAN, CEU, SAS, and MED, and 3 to 4-fold increase for climate regions, NEB, 

ENA, WAS compared to the 2C warming limit. These results suggest pursuing active 

efforts to keep the warming levels well below the 2 C limit [59]. 
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Figure 4 Ratio of odds (OR) for 1.5C and 2C warming limits with respect to the current  

level of warming. 

 

4. Discussion and Conclusion 

The precipitation and temperature variability affected by the large-scale climate 

perturbations often leads to the formation of anticyclonic weather regimes. Under such 

circumstances, the net radiation received during the daytime becomes the primary 

component in the surface energy budget that heats up the land surface [11]. The heating 

process has been accelerated and further intensified by the increased emission of heat 

trapping gases due to anthropogenic activities [60] leading to increased probability of co-

occurrence of HW, and drought events. In this study, observational evidence has been 

provided that suggest a substantial increase in the number of CHWD events per year (1-5 
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events per year) across various parts of the globe in the beginning of 21st century (2000-

2016).  

Furthermore, the HW events were found to be unequally susceptible to the 

existing drought conditions in the different global climate regions. For example, out of all 

the climate regions, 10 regions showed a significant DSHW to the existing drought 

conditions over more than 2/3rd of their corresponding total area. Monthly total number of 

CHWD days showed significant positive and negative correlation with the interannual 

variability of few large-scale climate patterns in some of these climate regions, while 

anthropogenic warming showed significant positive correlation over all the climate 

regions during the observational period, 1982-2016. Keeping in mind the various 

shortcomings of the correlation coefficients, such as the susceptibility to outliers and 

errors arising from linearization, we selected the potential large-scale climate indices 

based on the mechanistic explanations to avoid any statistical artifact in the results. 

Furthermore, we performed an attribution study on the odds of occurrence of 

these CHWD days in a month during the same period over the 10 climate regions. We 

found a significantly positive, and multiplicative effect on the odds from the 

anthropogenic global warming over all of the 10 climate regions. Finally, odd ratios were 

estimated for these climate regions that were found to be in the range of 1.7 to 3.5, and as 

high as 5 to 60 at 1.5C, and 2C warming levels, respectively, with respect to the current 

world. Moreover, these odd ratios suggest about 17-fold reduction in the odds in case of 

climate region, EAS, 5 to 8-fold reduction for climate regions, WNA, NAU, CAN, CEU, 
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SAS, and MED, and 3 to 4-fold reduction for climate regions, NEB, ENA, WAS in the 

1.5C rise in global warming limit, compared to the 2C global warming limit.  

Our findings suggested that among all the climate regions, EAS is the most 

affected region due to the rise in anthropogenic warming. This study a preliminary 

understanding on the combined effects of natural variability of climate and anthropogenic 

warming on the CHWD events in the observed period. However, the future period may 

see changes in the large-scale perturbations that may compensate for the increasing 

anthropogenic warming. Hence, the projected results in the two future warming limits are 

likely to be over-estimated and therefore, the anomaly in large-scale climate patterns also 

need to be incorporated in analysis on the CHWD events in the future period. It is also 

well known that the anticyclonic weather regimes are accompanied with slow-moving jet 

or stationary blocking zones (caused by the relatively high-pressure ridges) that amplifies 

the intensity and duration of CHWD events[61], therefore, should also be investigated. In 

addition to that, a detailed study is necessary that looks into the multiple components of 

human influences, such as the land-use practices [62], increased effect of dust aerosol 

[63] that may have a strong influence in the co-occurrence of HW and drought at a global 

scale.  

5. References 
 
1. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, et al. Europe-wide 

reduction in primary productivity caused by the heat and drought in 2003. Nature 

[Internet]. 2005 [cited 2018 Oct 28];437:529–33. Available from: 

https://www.nature.com/articles/nature03972 



 

 198 

2. Zampieri M, Ceglar A, Dentener F, Toreti A. Wheat yield loss attributable to heat 

waves, drought and water excess at the global, national and subnational scales. 

Environ Res Lett [Internet]. 2017 [cited 2018 Oct 28];12:064008. Available from: 

http://stacks.iop.org/1748-9326/12/i=6/a=064008 

3. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et 

al. A global overview of drought and heat-induced tree mortality reveals emerging 

climate change risks for forests. Forest Ecology and Management [Internet]. 2010 

[cited 2018 Oct 28];259:660–84. Available from: 

http://www.sciencedirect.com/science/article/pii/S037811270900615X 

4. Poumadère M, Mays C, Le Mer S, Blong R. The 2003 heat wave in France: dangerous 

climate change here and now. Risk Anal. 2005;25:1483–94.  

5. Zhang Y, You Q, Mao G, Chen C, Ye Z. Short-term concurrent drought and heatwave 

frequency with 1.5 and 2.0 °C global warming in humid subtropical basins: a case 

study in the Gan River Basin, China. Clim Dyn [Internet]. 2018 [cited 2018 Oct 

29]; Available from: https://doi.org/10.1007/s00382-018-4398-6 

6. Sun Z, Ouyang Z, Zhao J, Li S, Zhang X, Ren W. Recent rebound in observational 

large-pan evaporation driven by heat wave and droughts by the Lower Yellow 

River. Journal of Hydrology [Internet]. 2018 [cited 2018 Oct 28];565:237–47. 

Available from: 

http://www.sciencedirect.com/science/article/pii/S0022169418306115 



 

 199 

7. Mazdiyasni O, AghaKouchak A. Substantial increase in concurrent droughts and 

heatwaves in the United States. PNAS [Internet]. 2015 [cited 2018 Oct 

28];112:11484–9. Available from: http://www.pnas.org/content/112/37/11484 

8. Sun Q, Miao C, AghaKouchak A, Duan Q. Unraveling anthropogenic influence on the 

changing risk of heat waves in China. Geophysical Research Letters [Internet]. 

2017 [cited 2018 Oct 28];44:5078–85. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073531 

9. Pepler A, Dowdy A, Hope P. A global climatology of surface anticyclones, their 

variability, associated drivers and long-term trends. Clim Dyn [Internet]. 2018 

[cited 2018 Oct 29]; Available from: https://doi.org/10.1007/s00382-018-4451-5 

10. Stéfanon M, Drobinski P, D’Andrea F, Lebeaupin-Brossier C, Bastin S. Soil 

moisture-temperature feedbacks at meso-scale during summer heat waves over 

Western Europe. Clim Dyn [Internet]. 2014 [cited 2018 Oct 28];42:1309–24. 

Available from: https://doi.org/10.1007/s00382-013-1794-9 

11. Betts AK, Ball JH, Beljaars ACM, Miller MJ, Viterbo PA. The land surface-

atmosphere interaction: A review based on observational and global modeling 

perspectives. Journal of Geophysical Research: Atmospheres [Internet]. 1996 

[cited 2018 Oct 29];101:7209–25. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/95JD02135 

12. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, et al. 

Investigating soil moisture–climate interactions in a changing climate: A review. 



 

 200 

Earth-Science Reviews [Internet]. 2010 [cited 2018 Oct 28];99:125–61. Available 

from: http://www.sciencedirect.com/science/article/pii/S0012825210000139 

13. Whan K, Zscheischler J, Orth R, Shongwe M, Rahimi M, Asare EO, et al. Impact of 

soil moisture on extreme maximum temperatures in Europe. Weather and Climate 

Extremes [Internet]. 2015 [cited 2018 Oct 28];9:57–67. Available from: 

http://www.sciencedirect.com/science/article/pii/S2212094715000201 

14. Dai A, Zhao T. Uncertainties in historical changes and future projections of drought. 

Part I: estimates of historical drought changes. Climatic Change [Internet]. 2017 

[cited 2018 Oct 28];144:519–33. Available from: https://doi.org/10.1007/s10584-

016-1705-2 

15. Wells N, Goddard S, Hayes MJ. A Self-Calibrating Palmer Drought Severity Index. J 

Climate [Internet]. 2004 [cited 2018 Oct 28];17:2335–51. Available from: 

https://journals.ametsoc.org/doi/abs/10.1175/1520-

0442(2004)017%3C2335:ASPDSI%3E2.0.CO;2 

16. Mukherjee S, Mishra A, Trenberth KE. Climate Change and Drought: a Perspective 

on Drought Indices. Curr Clim Change Rep [Internet]. 2018 [cited 2018 Oct 

28];4:145–63. Available from: https://doi.org/10.1007/s40641-018-0098-x 

17. Hao Z, AghaKouchak A, Phillips TJ. Changes in concurrent monthly precipitation 

and temperature extremes. Environ Res Lett [Internet]. 2013 [cited 2018 Oct 

28];8:034014. Available from: http://stacks.iop.org/1748-9326/8/i=3/a=034014 

18. Sharma S, Mujumdar P. Increasing frequency and spatial extent of concurrent 

meteorological droughts and heatwaves in India. Scientific Reports [Internet]. 



 

 201 

2017 [cited 2018 Oct 29];7:15582. Available from: 

https://www.nature.com/articles/s41598-017-15896-3 

19. Vautard R, Yiou P, D’Andrea F, Noblet N de, Viovy N, Cassou C, et al. Summertime 

European heat and drought waves induced by wintertime Mediterranean rainfall 

deficit. Geophysical Research Letters [Internet]. 2007 [cited 2018 Oct 29];34. 

Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006GL028001 

20. Schamm K, Ziese M, Raykova K, Becker A, Finger P, Meyer-Christoffer A, et al. 

GPCC full data daily version 1.0 at 1.0: Daily land-surface precipitation from 

rain-gauges built on GTS-based and historic data. DOI; 2015.  

21. Webb R, Rosenzweig CE, Levine ER. Global Soil Texture and Derived Water-

Holding Capacities (Webb et al.). ORNL DAAC [Internet]. 2000 [cited 2018 Oct 

30]; Available from: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=548 

22. Morice CP, Kennedy JJ, Rayner NA, Jones PD. Quantifying uncertainties in global 

and regional temperature change using an ensemble of observational estimates: 

The HadCRUT4 data set. Journal of Geophysical Research: Atmospheres 

[Internet]. 2012 [cited 2018 Oct 29];117. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD017187 

23. New M, Hulme M, Jones P. Representing Twentieth-Century Space–Time Climate 

Variability. Part I: Development of a 1961–90 Mean Monthly Terrestrial 

Climatology. J Climate [Internet]. 1999 [cited 2018 Oct 28];12:829–56. Available 



 

 202 

from: https://journals.ametsoc.org/doi/full/10.1175/1520-

0442(1999)012%3C0829:RTCSTC%3E2.0.CO;2 

24. Sanford T, Frumhoff PC, Luers A, Gulledge J. The climate policy narrative for a 

dangerously warming world. Nature Climate Change [Internet]. 2014 [cited 2018 

Oct 29];4:164–6. Available from: https://www.nature.com/articles/nclimate2148 

25. Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in 

the 21st century. Science (New York, NY). American Association for the 

Advancement of Science; 2004;305:994–7.  

26. Perkins SE, Alexander L V., Nairn JR. Increasing frequency, intensity and duration of 

observed global heatwaves and warm spells. Geophysical Research Letters. 

Wiley-Blackwell; 2012;39.  

27. Fischer EM, Knutti R. Anthropogenic contribution to global occurrence of heavy-

precipitation and high-temperature extremes. Nature Climate Change. Nature 

Publishing Group; 2015;5:560–4.  

28. Unkašević M, Tošić I. Trends in temperature indices over Serbia: Relationships to 

large-scale circulation patterns. International Journal of Climatology. Wiley-

Blackwell; 2013;33:3152–61.  

29. Fischer EM, Schär C. Consistent geographical patterns of changes in high-impact 

European heatwaves. Nature Geoscience. Nature Publishing Group; 2010;3:398–

403.  

30. Zhai P, Zhang X, Wan H, Pan X. Trends in Total Precipitation and Frequency of 

Daily Precipitation Extremes over China. J Climate [Internet]. 2005 [cited 2018 



 

 203 

Oct 29];18:1096–108. Available from: 

https://journals.ametsoc.org/doi/full/10.1175/JCLI-3318.1 

31. Mahlstein I, Martius O, Chevalier C, Ginsbourger D. Changes in the odds of extreme 

events in the Atlantic basin depending on the position of the extratropical jet. 

Geophysical Research Letters [Internet]. 2012 [cited 2018 Oct 29];39. Available 

from: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL053993 

32. Lindsey JK. Applying Generalized Linear Models. Springer Science & Business 

Media; 2000.  

33. Albert A, Anderson JA. On the Existence of Maximum Likelihood Estimates in 

Logistic Regression Models. Biometrika [Internet]. 1984 [cited 2018 Oct 

29];71:1–10. Available from: https://www.jstor.org/stable/2336390 

34. Wang B, Zhang Q. Pacific–East Asian Teleconnection. Part II: How the Philippine 

Sea Anomalous Anticyclone is Established during El Niño Development. J 

Climate [Internet]. 2002 [cited 2018 Oct 29];15:3252–65. Available from: 

https://journals.ametsoc.org/doi/abs/10.1175/1520-

0442(2002)015%3C3252:PEATPI%3E2.0.CO;2 

35. Song F, Zhou T. Interannual Variability of East Asian Summer Monsoon Simulated 

by CMIP3 and CMIP5 AGCMs: Skill Dependence on Indian Ocean–Western 

Pacific Anticyclone Teleconnection. J Climate [Internet]. 2013 [cited 2018 Oct 

29];27:1679–97. Available from: 

https://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-13-00248.1 



 

 204 

36. García-Serrano J, Cassou C, Douville H, Giannini A, Doblas-Reyes FJ. Revisiting the 

ENSO Teleconnection to the Tropical North Atlantic. J Climate [Internet]. 2017 

[cited 2018 Oct 29];30:6945–57. Available from: 

https://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-16-0641.1 

37. Deng K, Yang S, Ting M, Lin A, Wang Z. An Intensified Mode of Variability 

Modulating the Summer Heat Waves in Eastern Europe and Northern China. 

Geophysical Research Letters [Internet]. [cited 2018 Oct 29];0. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079836 

38. Wang L, Yuan X, Xie Z, Wu P, Li Y. Increasing flash droughts over China during the 

recent global warming hiatus. Scientific Reports [Internet]. 2016 [cited 2018 Oct 

29];6:30571. Available from: https://www.nature.com/articles/srep30571 

39. AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A. Global warming and 

changes in risk of concurrent climate extremes: Insights from the 2014 California 

drought. Geophysical Research Letters [Internet]. 2014 [cited 2018 Oct 

28];41:8847–52. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014GL062308 

40. Wang C, Deser C, Yu J-Y, DiNezio P, Clement A. El Niño and Southern Oscillation 

(ENSO): A Review. In: Glynn PW, Manzello DP, Enochs IC, editors. Coral Reefs 

of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment 

[Internet]. Dordrecht: Springer Netherlands; 2017 [cited 2018 Oct 29]. p. 85–106. 

Available from: https://doi.org/10.1007/978-94-017-7499-4_4 



 

 205 

41. Saji NH, Yamagata T. Possible impacts of Indian Ocean Dipole mode events on 

global climate. Climate Research [Internet]. 2003 [cited 2018 Oct 29];25:151–69. 

Available from: https://www.int-res.com/abstracts/cr/v25/n2/p151-169/ 

42. Qiu Y, Cai W, Guo X, Ng B. The asymmetric influence of the positive and negative 

IOD events on China’s rainfall. Scientific Reports [Internet]. 2014 [cited 2018 

Oct 29];4:4943. Available from: https://www.nature.com/articles/srep04943 

43. Guan Z, Yamagata T. The unusual summer of 1994 in East Asia: IOD 

teleconnections. Geophysical Research Letters [Internet]. 2003 [cited 2018 Oct 

29];30. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002GL016831 

44. Barlow M, Cullen H, Lyon B. Drought in Central and Southwest Asia: La Niña, the 

Warm Pool, and Indian Ocean Precipitation. J Climate [Internet]. 2002 [cited 

2018 Oct 29];15:697–700. Available from: 

https://journals.ametsoc.org/doi/abs/10.1175/1520-

0442(2002)015%3C0697:DICASA%3E2.0.CO;2 

45. Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN. Drying of 

Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea 

thermal gradient. Nature Communications [Internet]. 2015 [cited 2018 Oct 

29];6:7423. Available from: https://www.nature.com/articles/ncomms8423 

46. Cassou C, Terray L, Phillips AS. Tropical Atlantic Influence on European Heat 

Waves. J Climate [Internet]. 2005 [cited 2018 Oct 29];18:2805–11. Available 

from: https://journals.ametsoc.org/doi/10.1175/JCLI3506.1 



 

 206 

47. Trouet V, Babst F, Meko M. Recent enhanced high-summer North Atlantic Jet 

variability emerges from three-century context. Nature Communications 

[Internet]. 2018 [cited 2018 Oct 29];9:180. Available from: 

https://www.nature.com/articles/s41467-017-02699-3 

48. Knight JR, Folland CK, Scaife AA. Climate impacts of the Atlantic Multidecadal 

Oscillation. Geophysical Research Letters [Internet]. 2006 [cited 2018 Oct 29];33. 

Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006GL026242 

49. Filippi L, Palazzi E, von Hardenberg J, Provenzale A. Multidecadal Variations in the 

Relationship between the NAO and Winter Precipitation in the Hindu Kush–

Karakoram. J Climate [Internet]. 2014 [cited 2018 Oct 29];27:7890–902. 

Available from: https://journals.ametsoc.org/doi/10.1175/JCLI-D-14-00286.1 

50. Bollasina MA, Messori G. On the link between the subseasonal evolution of the 

North Atlantic Oscillation and East Asian climate. Clim Dyn [Internet]. 2018 

[cited 2018 Oct 29];51:3537–57. Available from: https://doi.org/10.1007/s00382-

018-4095-5 

51. McCabe GJ, Palecki MA, Betancourt JL. Pacific and Atlantic Ocean influences on 

multidecadal drought frequency in the United States. PNAS [Internet]. 2004 [cited 

2018 Oct 29];101:4136–41. Available from: 

http://www.pnas.org/content/101/12/4136 

52. Peterson TC, Heim RR, Hirsch R, Kaiser DP, Brooks H, Diffenbaugh NS, et al. 

Monitoring and Understanding Changes in Heat Waves, Cold Waves, Floods, and 



 

 207 

Droughts in the United States: State of Knowledge. Bull Amer Meteor Soc 

[Internet]. 2013 [cited 2018 Oct 29];94:821–34. Available from: 

https://journals.ametsoc.org/doi/10.1175/BAMS-D-12-00066.1 

53. Dulière V, Zhang Y, Salathé EP. Changes in Twentieth-Century Extreme 

Temperature and Precipitation over the Western United States Based on 

Observations and Regional Climate Model Simulations. J Climate [Internet]. 2013 

[cited 2018 Oct 29];26:8556–75. Available from: 

https://journals.ametsoc.org/doi/10.1175/JCLI-D-12-00818.1 

54. Yu E, King MP, Sobolowski S, Otterå OH, Gao Y. Asian droughts in the last 

millennium: a search for robust impacts of Pacific Ocean surface temperature 

variabilities. Clim Dyn [Internet]. 2018 [cited 2018 Oct 29];50:4671–89. 

Available from: https://doi.org/10.1007/s00382-017-3897-1 

55. Gillett NP, Kell TD, Jones PD. Regional climate impacts of the Southern Annular 

Mode. Geophysical Research Letters [Internet]. 2006 [cited 2018 Oct 29];33. 

Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006GL027721 

56. Marshall AG, Hudson D, Wheeler MC, Alves O, Hendon HH, Pook MJ, et al. Intra-

seasonal drivers of extreme heat over Australia in observations and POAMA-2. 

Clim Dyn [Internet]. 2014 [cited 2018 Oct 29];43:1915–37. Available from: 

https://doi.org/10.1007/s00382-013-2016-1 

57. Wu Z, Dou J, Lin H. Potential influence of the November–December Southern 

Hemisphere annular mode on the East Asian winter precipitation: a new 



 

 208 

mechanism. Clim Dyn [Internet]. 2015 [cited 2018 Oct 29];44:1215–26. 

Available from: https://doi.org/10.1007/s00382-014-2241-2 

58. Raftery AE, Zimmer A, Frierson DMW, Startz R, Liu P. Less than 2 °C warming by 

2100 unlikely. Nature Climate Change [Internet]. 2017 [cited 2018 Oct 

29];7:637–41. Available from: https://www.nature.com/articles/nclimate3352 

59. Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, et al. Paris 

Agreement climate proposals need a boost to keep warming well below 2 °C. 

Nature [Internet]. 2016 [cited 2018 Oct 29];534:631–9. Available from: 

https://www.nature.com/articles/nature18307 

60. Samset BH. How cleaner air changes the climate. Science [Internet]. 2018 [cited 2018 

Oct 29];360:148–50. Available from: 

http://science.sciencemag.org/content/360/6385/148 

61. Dong L, Mitra C, Greer S, Burt E, Dong L, Mitra C, et al. The Dynamical Linkage of 

Atmospheric Blocking to Drought, Heatwave and Urban Heat Island in 

Southeastern US: A Multi-Scale Case Study. Atmosphere [Internet]. 2018 [cited 

2018 Oct 28];9:33. Available from: https://www.mdpi.com/2073-4433/9/1/33 

62. Findell KL, Berg A, Gentine P, Krasting JP, Lintner BR, Malyshev S, et al. The 

impact of anthropogenic land use and land cover change on regional climate 

extremes. Nature Communications [Internet]. 2017 [cited 2018 Oct 29];8:989. 

Available from: https://www.nature.com/articles/s41467-017-01038-w 

63. Huang JP, Liu JJ, Chen B, Nasiri SL. Detection of anthropogenic dust using 

CALIPSO lidar measurements. Atmospheric Chemistry and Physics [Internet]. 



 

 209 

2015 [cited 2018 Oct 29];15:11653–65. Available from: https://www.atmos-

chem-phys.net/15/11653/2015/acp-15-11653-2015.html 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 210 

CHAPTER SIX 

QUANTIFYING HEAT-STRESS IMPACT DUE TO ANTHROPOGENIC WARMING 

 

1. Introduction  

Climate change has increased extreme events (e.g., drought, heatwave, and heat 

stress) in a warming world [1–3]. Heat stress has led to massive human morbidity and 

mortality in recent years [2]. The impact of high temperatures is often compounded by 

high atmospheric relative humidity, which slows heat dissipation from the human body, 

thereby adding to heat stress (HS) [4]. Numerous recent studies have reported the adverse 

effect of heat stress on public health and labor efficiency in the United States [6], much 

of which has been exacerbated by human-caused climate change [2]. Severe recent HS 

events in the West and the Southeast in summer 2020 are representative of the types of 

conditions expected to become more common in the CONUS in future [8,9].  

Extreme heat events in the CONUS in recent decades have trended toward earlier 

springtime occurrence and increased severity, frequency, and areal extent [10]. These 

trends appear connected to anthropogenic warming [11–13]. Critically, increasing global 

temperatures bring with them increasing moisture, leading to projections of heat stress 

that are both larger and higher-confidence than those for temperature alone [14,15]. The 

impact of climate change on atmospheric dynamics such as mid-latitude planetary-wave 

behavior may lead to more persistent weather extremes including extreme heat events, 

although this is a topic of active research [16–18]. 
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The US National Weather Service (NWS) characterizes HS using a “feels-like” 

apparent temperature that combines the effect of heat and humidity, called the heat index 

(HI) [19]. Throughout the study, HS is used as a qualitative term which describes the 

effect of extreme heat on the human body, whereas the HI is applied as a metric to 

quantify the HS. While ultimately an arbitrary definition, the HI usefully communicates 

risk associated with extreme HS events [2,20]. Many prior studies have employed NWS’s 

operational definition of excessive heat exposure as corresponding to HI in excess of 

105°F (or 40.6°C) [2,21] persisting for 2 hours or more 

(https://www.weather.gov/bgm/heat). Many consecutive days of heat exposure lead to an 

increase in mortality risk even in a heat acclimated population [22,23]. In the light of 

such evidence, in the current study, we extend the definition of HI by examining 

durations ranging from a day to a week.  

Climate change risk assessment has various interpretations; however, its 

framework remains consistent at the component levels of vulnerability, such as PI and 

adaptive capacity [24–28]. As such, the assessment of HS-related vulnerability can be 

usefully assessed with a risk-centered assessment framework applied at any one of these 

component levels (or a combination of them) [14,25,27]. Drawing upon this concept, in 

this study, we perform a climate change risk assessment on the extreme heat events in the 

CONUS by focusing on the potential impact (PI) of the summer (JJA) annual most severe 

HS in the present and several future climate scenarios.  

The potential importance of changes in variance and higher-order moments of the 

temperature distribution, particularly given its interactions with humidity, motivate the 
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use of nonstationary frequency analysis in empirically assessing HS. Generalized extreme 

value (GEV) approaches have gained increasing popularity in this context [14,29]. 

Common approaches to quantify risk of exposure are based on counting the number of 

people exposed to certain heat events under stationarity assumptions [2,30–33]. This type 

of risk assessment potentially ignores the effects of non-stationarity as expressed in the 

form of statistical distributions for the relevant climate variables with time-dependent 

heavy tailedness.  

Furthermore, daily fluctuations in HS severity, for values in the extreme and 

impactful range, often impose a considerable health burden with implications on heat-

related mortality [2,14,27,34]. Even heat at moderate levels accompanied by large within-

season variability is known to cause illness and death, and more broadly is challenging 

for heat acclimation and long-term adaptability [35,36]. Recent increases in HS have 

coincided with the locations of greatest socio-economic vulnerability across many parts 

of the US [35]. To gain a fuller sense of how HS impacts may change, we use measures 

of HS extremeness and temporal variability to represent severity as well as possible 

acclimation [2,35].  

We apply these characteristics of HS to CMIP5 climate projections, in 

combination with projected changes in population exposure under the shared 

socioeconomic pathways [SSPs], to create a composite indicator quantifying the PI of HS 

(Cardona et al., 2012; Estoque et al., 2020). While various aspects of the risk from 

extreme heat events are often and productively investigated independently [31,33,37,38], 

we argue that from a net-impacts point of view the PI of extreme heat events is best 



 

 213 

informed through a metric that integrates HS characteristics and the total population 

potentially impacted (“population exposure”) [24,28].  

Building on previous work [2,25,30,31,33], we here compare PI for multiple 

scenarios and time periods at a grid-cell level across CONUS, allowing us to determine 

the changes in risk for specified levels of severity, and for short-duration variations which 

pose a major acclimation and adaptation challenge. Furthermore, we are able to robustly 

characterize the interaction between the climate-change and population-change effects 

[31,39] in each CONUS region. With its national scope and multi-part heat-stress 

representation, our study’s decomposition of the relative importance of climate and 

population changes has important implications for identifying targeted strategies for 

limiting total health risks in each region (O’Neill et al., 2017). 

2. Data and Methods 

2.1. Climate data and Calculation of daily Heat Index 

In this study, HS is quantified based on the U.S. National Weather Service 

recommended  heat index (HI) 

(https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml). The HI was calculated 

based on the algorithm discussed in Anderson et al., 2013 using daily maximum air 

temperature (Tmax) and daily mean relative humidity (RH) data.  A brief decription of the 

algorithm is provided in the A.1 of the Supplementary Information. For the historical 

analysis (observed period, 1979-2019), the Tmax was obtained directly from the Climate 

Prediction Center (CPC) (available at ftp://ftp.cdc.noaa.gov/Datasets/cpc_global_temp/), 

whereas RH was evaluated using daily Tmax data from CPC and daily-mean dew point 
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temperature (Td). The daily Td was derived from the 3-hourly Td, retrieved from the high-

resolution European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5). 

The RH was estimated by using the Magnus approximation as [40],  
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          (2) 

where, Tmax and Td  are in °C. 

Analysis based on the model simulations was performed using outputs from 9 

global climate models (GCMs; as listed in Table S1) participating in the CMIP5 

experiment (available from the Earth System Grid Federation, https://esgf-

node.llnl.gov/search/cmip5/). Following common practice, we use a single realization 

(r1i1p1) of each constituent model [41] . The r1i1p1 stands for a single realization or 

ensemble member that is named based on the initial conditions out of the control 

simulation. Changes in heat-stress impact were investigated using bias-corrected model 

output for the RCP4.5 and RCP8.5 scenarios. To perform the bias correction, model-

calculated HI for the historical period (1979-2005) was adjusted to match that calculated 

from reanalysis (CPC and ERA5) over the same period. These corrections were then 

applied to projected HI under RCP4.5 and RCP8.5 from 2006 to 2100.A brief description 

of the bias correction technique [42] applied in this study is provided in A.2. of the 

supplementary information. The daily Tmax data was directly retrieved from the CMIP5 

archive, whereas RH was derived from specific humidity ( q ) and surface pressure ( sP ) 

as [2],  
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where   = ratio of gas constants for water vapor and dry air (=0.622), 0se  = saturation 

vapor pressure at 0T  (Pa), /L R = 5,423 K (latent heat of vaporization divided by the gas 

constant for water vapor), 0T =273.15 K and maxT is the maximum air temperature in K. 

To maintain spatial consistency across the observations and the GCM simulations, all 

datasets were regridded and extracted at 2° spatial resolution within the CONUS region. 

Initially, the CMIP5 HI was evaluated for the entire period, 1979-2100, which was 

subsequently bias-corrected [42] based on the corresponding historical model runs. 

2.2. Population Estimates 

We retrieved observed population estimates from the GPWv4 data at a 1‐km 

resolution [43]. GPWv4 data is only available for 2000 to 2020 at a five-year interval. 

Therefore, we used the population of the year 2015 to represent the current CONUS 

population. Gridded total population estimates for the future period are retrieved from the 

Shared Socioeconomic Pathways (SSPs) [44] at 1/8th degree resolution (available from 

https://sedac.ciesin.columbia.edu/). We obtain this dataset corresponding to the SSP2 and 

SSP5 scenarios available for each decade between 2000 and 2100. The SSP2 and SSP5 

scenarios were selected because they reflect the moderate and highest socio-economic 

challenges that extreme heat may pose for mitigation and adaptation. Present and future 

population estimates are both aggregated to a common 2° grid resolution to match the 
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resolution of the climate dataset. Annual population estimates at each grid point were 

obtained by linear interpolation in time. 

2.3. Non-stationary GEV Framework to estimate High-end HS Severity  

Estimation of return values quantifies the risk associated with a given climate 

extreme [29]. In this study, we define the High-end HS severity as the magnitude of the 

40-year return value of the HI (hereafter referred to as 40YHI), with an annual 

probability of exceedance of only 0.25. In our analysis, the 40YHI was estimated for 

every grid cell, separately, based on a non-stationary GEV framework [45]. The 40YHI is 

estimated for the 1d-, 3d-, and 7d-HS events, individually, by using a non-stationary 

GEV framework. This framework is applied to the annual values of summer extreme HS 

severity corresponding to the five different 40-year climate scenarios, present, RCP4.5 

(near-, and far-future period), and RCP8.5 (near-, and far-future period), separately. 

2.3.1. Inclusion of Non-stationarity in GEV modeling 

We employed the Block Maxima (BM) method to restrict attention to the yearly 

maxima of summer HI (AM-HI) over a given time period. This method is generally 

applied to study the upper tail characteristics of climate extremes [45]. Our analysis is 

based on three time periods: historical (1980-2019), near-future (2020-2059), and far-

future (2060-2099). For each time period-scenario combination, the BM method was 

applied to generate 40-year samples of AM-HI at each grid point location of the CONUS. 

The GEV is a three-parameter distribution comprising of the location (µ), scale (σ), and 

shape (ξ) parameter, and the theoretical cumulative distribution function can be written as 

[45] 
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The non-stationary climate information in the GEV distribution (equation 4) can be 

incorporated by revising the model parameters to capture the shift in the mean and 

change in variability within the distribution, without influencing its form. This was 

achieved by considering linear and non-linear time trends as covariate in the µ parameter, 

and a linear time trend in the σ parameter of the GEV model. In our analysis, ξ parameter 

was kept constant, as it can be unrealistic to vary the ξ parameter as a smooth function of 

time [45]. Furthermore, it is assumed that by varying the scale of the distribution, it is 

possible to deal with situations when the tail changes modestly relative to the mean of the 

distribution [46], as has been previously applied to investigate the non-stationary 

frequency analysis of extreme events [47,48].  

The time-varying GEV model adopted in the study can be denoted as 

,| , ~ ( , )t t t t tx GEV     and the cumulative distribution function can be generalized as, 
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The location parameters, t in equation (5) can be stationary or can vary linearly or 

quadratically with time, t (in years) as, 
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while the scale parameter, t can be stationary or can have a log-linear time (in years) 

dependence given as  

0

0 1

(7)
exp( )t t



 


= 

+
 

It should be noted that the scale parameter   is modeled with an exponential 

function in order to ensure that it only considers positive values. Thus, based on all 

possible combinations of the regression models in equation (6), and equation (7), along 

with the assumption of a constant shape parameter, a total of five candidate GEV models 

(Model-1, Model-2, Model-3, Model-4, and Model-5) were identified (as illustrated in 

Table S2). Among the five candidates, the best-fit GEV models are selected at each grid 

location based on the Bayesian Information Criteria (BIC) and Likelihood Ratio Test 

(LRT). The model parameters associated with the best GEV models are subsequently 

used to calculate the 40-year return values of annual extreme summer HS events. 

Procedures used in the non-stationary frequency analysis are discussed in Appendix 

section A.1 and A.2 in the Supplementary Information. These procedures include 

selection (based on BIC) and test for significance (LRT) of the GEV-models; estimation 

of the GEV-parameters; and calculation of return values and exceedance probabilities.   

2.4. Estimation of Potential Impact of summer extreme HS 

Our methodology for the estimation of PI of summer extreme HS builds on the 

IPCC’s conceptual framework of impacts, adaptations, and vulnerability assessment 

under climate change [24,26,28]. More specifically, we applied an indicator-based 

assessment technique to determine a composite indicator [25] for PI of HS. This 
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indicator-based assessment technique is implemented in previous related studies 

(Inostroza et al., 2016; Wolf & McGregor, 2013; W. Zhang et al., 2019). Moreover, the 

most severe extreme heat events cause a disproportionate fraction of the societal impacts, 

motivating a special focus on them here [52]. Here, the PI was estimated for the CONUS 

grid points by combining the indicator of population exposure with that of HS 

characteristics (40YHI and decadal trends in the spread of the warm tail), for five 

different climate scenarios and three different HS durations (1, 3, and 7 days). The 

composite indicator of PI was estimated by aggregation of these indicators. The 

underlying formulations are described in three main steps, as follows:  

Step 1 Defining indicator variables  

Exposure is an essential component in vulnerability and is defined as the degree 

of contact between a person and one or more stressors [24]. In this study, we calculated 

population exposure for each duration category (short (1-day), medium (3-day), and long 

(7-day)) of HS events based on the mean of total population estimates — for each of the 

five climate scenarios, separately.  

HS characteristics were selected based on relevance to heat acclimatization and heat-

related health adaptations [2,35]. These criteria led to our usage of (1) 40YHI, and (2) 

decadal trends in warm tail spread (WTS; Spangler & Wellenius, 2020). The 40YHI 

represents extreme HS severity which is primarily important in the context of 

accumulated heat burdens [2] that are challenging for heat acclimatization and 

adaptability. Using a non-stationary framework aids in assessing the health risk from 

extreme heat events whose statistics change substantially with mean warming (Batibeniz 
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et al., 2020; Bryan Jones et al., 2015; Mishra et al., 2017). The decadal trends in WTS 

refers to the trends in intra-seasonal (here, summer (JJA)) range between the maximum 

and median of the daily HI during each of the 40-year climate scenario-time period 

combinations. Recent observed WTS trends are greatest in areas of the US with large 

socioeconomic vulnerability, underscoring the importance of comprehensively 

understanding future changes [35].  

Step 2: Defining a decision matrix: 

A decision matrix was formed based on the three selected indicator variables for 

each grid location of the CONUS and each climate scenario. The general form of the 

decision matrix for any duration (here, 1-day, 3-day, and 7-day) event can be given as 

follows:  
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where xsij is the value of the jth indicator variable corresponding to sth scenario at the ith 

grid location of the CONUS. In this study, there are n = 3 indicator variables; S = 5 

climate scenarios; and m = 210 (resolution 2x2) total grid locations in the CONUS.  

Step 3: Estimating Composite Indicator for PI 

The composite indicator is estimated by a type of combining of indicators known 

as geometric aggregation of normalized variables based on the decision matrix. Relative 

to averaging, geometric aggregation helps ensure that risk is not underestimated, 

especially for the high-end scenarios. Using equal weights (=1/3) assigned to each of the 

indicators of the decision matrix, we finally estimate the composite indicator for a grid 

location, i and climate scenario, s as, 

. 40 1/3
1 2 3 (8)pop YHS WTS

si si si siPI r r r =     

 where rsij represent the data values of the jth indicator variable normalized to a common 0 

to 1 value range using the min-max normalization method [25].  

2.5. Estimating Changes in Risk and Relative Effect of Indicators 

To quantify the changes in PI of extreme HS, we calculate the risk ratio (RR) for 

the composite indicator of PI, given as, 

(1)future

present

PI
RR

PI
=  . 

where PIfuture and PIpresent compare future and present climate scenarios such that any 

possible future increase is denoted by a RR > 1.  

We use the RR concept to investigate the changes in PI of heat stress (i.e., heat-stress 

exposure) due to population change; climate change; and their interaction. Because 
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exposure is function of both climate stressor and population, it would also be interesting 

to look at their relative impacts when allowing one of the indicators to change while 

keeping the other fixed [31]. Here, the effect of climate change (population change) is 

investigated by fixing the population (climate change scenario) at 2015 levels (to the 

present climate) while allowing the magnitude of 40YHI, trends in WTS, and the 

population counts to change under the five different climate change scenario-time period 

combinations. This allows us to examine the contribution of climate change in a 

framework that integrates the influence of non-linearity in each effect. 

 

3. Results 

3.1. Historical Analysis and Future Projections of extreme HS severity 

For this study, we use the daily-maximum HI (see Methods) to estimate the 

annual maximum magnitude of summer extreme HS severity for short, medium and long 

duration events. The severity for medium and longer duration events is calculated as a 3- 

and 7-day rolling average of the daily values (referred to hereafter as 3d-HS and 7d-HS). 

Several recent studies have emphasized these temporal aspects of heat extremes [53–55].  

The gridded values of AM-HI (or extreme annual HS severity) for CONUS are derived 

for the historical period using a reanalysis dataset (see Methods). Future extreme HS 

severity projections are based on the model-ensemble average from 9 CMIP5 global-

climate models (GCMs; Table S1) [see Methods]. Model-computed HI values are 

additionally bias-corrected [42], as described above. 
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Figure 1: Historical and CMIP5-model projections of extreme heat stress. (a-c) spatial 

average of historical observations and CMIP5 modeled projections (period, 2020-2100; 

shading represents the interquartile range of inter-model variability) of AM-HI 

representing the extreme HS severity for RCP8.5 (solid brown line) and RCP4.5 (solid 

red line) and corresponding Tmax (blue and light blue) for (a) 1d-HS, (b) 3d-HS, and (c) 



 

 224 

7d-HS, (d-l) spatial maps showing the temporal mean of AM-HI for the CONUS for (d) 

present (1980-2019), (e) near-future (2020-2059), and (f) far-future (2060-2099) periods 

corresponding to 1d-HS for the RCP8.5 emission scenario; (g-i) same as in (d-f) but for 

3d-HS events; (j-l) same as in (g-i) but for 7d-HS events.  

 

Like other heat-stress metrics, HI exhibits a nonlinear sensitivity towards changes 

in temperature and absolute humidity, governed by the rapid decrease in physiological 

latent heat cooling capacity with a rise in vapor pressure [2,56]. As such, increases in 

temperature for a fixed relative humidity result in even larger increases in the HI. Fig. 

1(a-c) demonstrates this relationship for annual extreme HS severity and corresponding 

maximum air temperature (Tmax) over 1979-2100. Beyond mid-century, the CONUS-

mean 1d-HS (7d-HS) severity from climate-model projections based on RCP8.5 depict a 

steady increase resulting in HI values up to 3.6°C (2.5°C), and up to 6°C (4.6°C) warmer 

than the measured air temperature. The projected increases in HS severity in excess of 

40.6°C (indicated as HS40.6, Fig 1(a-c)) give cause for alarm due to the high mortality 

rates associated with conditions this severe (Matthews et al., 2017; Wehner et al., 2016). 

The maps in Fig 1(d-l), depicting the mean of AM-HI for the present (1980-2019) 

and RCP8.5 emission scenarios (for near-future, and far-future period), provide a more 

detailed illustration of the increases. In comparison to the present climate, AM-HI 

exceeding 40.6°C are not only expected to intensify further over the Gulf of Mexico and 

Southeast Atlantic coastal regions, but also to spread over the entire East, Midwest, and 

Great Plains under the RCP8.5 emission scenario. Such spatial patterns of increase are in 
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close agreement with historical analyses and with climate-model projections of increases 

in maximum temperature (Fig S1) based on RCP8.5 (Hogan et al., 2019; Raymond et al., 

2017). These spatial patterns additionally demonstrate that the relatively slower recent 

rates of increases in extreme temperatures observed in the Midwest and South partially 

disappear when the variable of interest is instead heat stress. Note that the process of 

averaging multiple models smooths out spatial structures, such that the future projections 

appear much smoother than the present.  

A significant increasing trend in the annual HS severity is also noteworthy over 

much of the western, south-eastern, and north-eastern CONUS during the recent past. In 

the future climate scenarios, however, such trends occur over the whole CONUS and 

indeed the globe [2]. The HS severity corresponding to the moderate (RCP4.5) emission 

scenario depicts a steady increase until the end of the near-future period, and thereafter 

remains stable throughout the far-future period (Fig 1(a-c), Fig S2, S3). 

3.2. Projected Extreme Summer HS Characteristics 

We investigate the extreme summer HS characteristics, such as 40YHI and trends 

in WTS in the five different climate scenario time period combinations. The GEV 

parameters and, model selection assocaited with the estimation of 40YHI are illustrated 

in (Table S2; Fig S4, Fig S5). The geographical distribution of the 40YHI magnitudes is 

illustrated in Fig S6. Similar to the spatial patterns exhibited by the mean annual 1d-, 3d-, 

and 7d-HS severity (Fig 1, and Fig S2), the corresponding 40YHI values show a 

projected amplification in severity over the Gulf of Mexico and Southeast Atlantic 

coastal plains, Appalachians, Midwest, and Great Plains regions. To further examine how 
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much of this spatial pattern is due to regional differences in warming versus local 

differences in humidity, we also estimated the 40-year return levels for the annual 

maximum temperature (40YTx) for the five scenario-time period combinations.  In 

contrast to the Southeast, which is generally humid, the spatial pattern of the 40YHI 

matches closely to that of the 40YTx in the western CONUS, where the impact of 

humidity is negligible (Fig S7).  

We next examine the changes in the WTS (see Methods) by investigating the 

spatial patterns of its decadal trends (Fig S8a-o). These trends show a relatively higher 

rate of increase in WTS across the Great Lakes in the RCP8.5 (far-future) scenario, 

apparent even for individual models (Fig S9, S10). These changes indicate a greater 

potential for ‘heat waves’ as opposed to general summer warming, and suggest particular 

challenges for heat acclimation and adaptation in this region [2,35]. On the other hand, 

decrease in the trends in WTS are likely in the far-future (relative to the near-future) in 

the RCP4.5 scenario. Such decreases may be connected to the representation of radiative 

forcings in the RCP4.5 scenario that increases until the mid-21st century and becomes 

stable thereafter [58].  

3.3. Changes in Population Exposure 

To examine changes in population exposure, we used mean population estimates 

for the near- and far-future periods under two socioeconomic pathways (SSP2, and SSP5; 

see methods for data sources). These scenarios were selected based on the interaction of 

the moderate (RCP4.5) and high (RCP8.5) levels of greenhouse gas emissions with the 

moderate (SSP2) and the most unconstrained (SSP5) socio-economic pathways. The 
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changes are investigated based on the baseline fixed to the 2015 CONUS (Present) 

population. The gridded mean population estimates for all selected climate scenarios are 

presented in Fig S11. 

We investigate the changes in the likely exposed population counts to each of the 

indicators for HS characteristics (40YHI, and WTS) in the future climate scenarios. The 

distribution of the 40YHI and the CONUS population estimates is illustrated by contour 

plots in Fig 2(a-c) for the present and for the four future RCP-SSP time period 

combinations that we consider. These conotur plots are indicated by the data ellipses (or 

envelopes) that outlines the total CONUS population exposed to the different 40YHI 

thresholds. A considerably larger population is likely to be exposed to more severe 

40YHI in future decades, particularly under the RCP8.5-SSP5 scenario (Fig 2a-c).  

The other HS indicator we use, the trends in WTS, also shows considerable 

increases in total population exposed to more variable summer extremes (Fig 2d-f). These 

simultaneous increases in HS characteristics and population exposure indicate a likely 

amplification in the PI of HS events over the CONUS in the RCP8.5-SSP5 scenario due 

to significant implications on heat acclimation and health adaptability [2,35].  
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Figure 2: Changes in Population Exposure and Extreme Summer HS Characteristics (a-c) 

Data ellipses (or envelops) representing the probability density function evaluated from 

the bivariate distribution of 40YHI and population estimates for the CONUS in the five 

climate scenarios, (d-f) probability density for spatial distribution of decadal trends in 

WTS of daily summer HS severity (summer annual maximum minus median) and bar 
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plots indicating the total population exposure to specific trend magnitudes.  Style of (a-c) 

is inspired by [59]. Note that the ellipses are approximations intended to show inter-

scenario comparisons, rather than precisely calculated population counts. 

 

3.4. Future Changes in Risk of Potential Impact of High-End Summer HS  

Future changes in risk of PI are investigated based on the RR. Maps showing the 

RR for the 1d-HS (3d-HS, and 7d-HS) events are presented in Fig 3(a-l), (Fig S12) which 

are further summarized by boxplots in Fig 3(m-o) based on the census regions (Fig 3(q)) 

within the CONUS. These indicate more than 3x likely increase in risk of PI due to the 

total effect of climate and population changes in the northern Midwest, coastal Pacific 

Northwest, central California, and northern Utah under the RCP8.5-SSP5 emission 

scenario, and a 2.5x increase in the Southeast Piedmont, northern Texas, and portions of 

the Southwest. The climate change effect is greatest in central California, coastal Pacific 

Northwest, and the Great Lakes and commensurate with the considerable increase in 

40YHI and decadal trends in WTS (Fig S6-S8). The population-only effects contribute 

substantially to the other regions mentioned.  Overall, the effect of population dynamics 

(Fig S11), and trends in WTS (Fig S8-S10) is also reflected in the changes in the risk of 

PI of HS over the CONUS in the four RCP-SSP combinations (Fig 3 and Fig S12). 
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Figure 3 Future Changes in Risk of Potential Impact of High-End Summer HS (a-l) 

Spatial distribution of RR showing the changes in risk of PI of HS in the RCP4.5-SSP2 

and RCP8.5-SSP5 scenario in the near-future and far-future period due to the effect of (a-

d) total effect from the interaction between climate change and population, (e-h) climate 

change only, (i-l) population only for 1d-HS events, and (m-o) boxplots showing the 

spatial distribution of these changes for the census regions (Mid-west, Northeast, South, 

and West of CONUS shown in (p)) based on these effects (indicated in a-l) for the 1d-

,3d-, and 7d-HS events.  

 

The box and whisker plots in Fig 3(m-o) provide a more vivid comparison 

between the RRs in the four future RCP-SSP combinations based on the regions of the 

CONUS and also highlight the contribution from the total and individual effect of climate 

and population changes.  The likely increases in RR are greatest in the RCP8.5-SSP5 far-

future scenario for 1d- and 3d-HS events, with a relatively greater contribution from 

climate change only (population change only) in the Midwest and West (South). 

Interestingly, in the Northeast, a greater amplification in RR from climate change alone is 

noted for the longer duration (3d-HS, and 7d-HS) events, perhaps reflective of model 

support for slower-moving Rossby waves in this region, a projection which is highly 

uncertain [17]. On the other hand, for the 7d-HS events, the climate and population 

changes exhibit a fairly equal contribution in the south and west of CONUS.  

There are important caveats that should be kept in mind concerning our results. 

Recent-generation climate models such as those used in the CMIP5 multi-model 
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simulations appear unable to faithfully capture some atmospheric mechanisms such as 

planetary wave resonance, that are implicated in the observed increase in both the 

magnitude and persistence of key recent extreme heat events (Hogan et al., 2019; Mann 

et al., 2017b, 2018b). Such limitations may lead to a systematic underestimate of 

increases in extreme events. 

 

4. Summary and Conclusion 

Our findings indicate a substantial increase in the risk of PI from both short and 

long duration extreme HS in several parts of the CONUS. The possible increases noted 

over the Pacific Northwest, central California, and a major portion of Mid-west will most 

likely be dominated by global-mean warming. On the contrary, the risk of PI is likely to 

increase by more than two times due to population growth alone in the Northeast, 

Southeastern Piedmont, coastal Pacific Northwest, and parts of Texas, Utah, and 

California.  

Being based on severity and temporal variability relative to local climate, as well 

as changing population patterns, the integrated indicator for PI that we derive applies 

equally well across the CONUS, adding a new element to a growing literature on 

extreme-heat exposure [2,25,30,31,33]. The flexible of the GEV approach allows it to be 

applied across a range of event types and durations. The resultant projected changes in 

distribution positions and shapes that we find aid in quantifying increases in risks from 

extreme heat exposure according to best-available knowledge of the controlling factors of 

acclimation and adaptability. While our current analysis focuses entirely on the potential 
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impact of HS, additional determinants of vulnerability such as population density by age 

group, underlying health conditions, and socioeconomic status are crucial [24,25,28] and 

would help to translate these findings into tangible adaptation and mitigation agendas. 

5. References 
 
1. Konapala G, Mishra AK, Wada Y, Mann ME. Climate change will affect global water 

availability through compounding changes in seasonal precipitation and 

evaporation. Nature Communications [Internet]. Nature Publishing Group; 2020 

[cited 2021 Feb 21];11:3044. Available from: 

https://www.nature.com/articles/s41467-020-16757-w 

2. Matthews TKR, Wilby RL, Murphy C. Communicating the deadly consequences of 

global warming for human heat stress. Proc Natl Acad Sci USA [Internet]. 2017 

[cited 2020 Jan 22];114:3861–6. Available from: 

http://www.pnas.org/lookup/doi/10.1073/pnas.1617526114 

3. Mukherjee S, Mishra AK. Increase in Compound Drought and Heatwaves in a 

Warming World. Geophysical Research Letters [Internet]. 2021 [cited 2021 Feb 

21];48:e2020GL090617. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL090617 

4. Buzan JR, Huber M. Moist Heat Stress on a Hotter Earth. Annual Review of Earth and 

Planetary Sciences [Internet]. 2020 [cited 2020 Aug 6];48:623–55. Available 

from: https://doi.org/10.1146/annurev-earth-053018-060100 

5. Choudhary E, Vaidyanathan A. Heat Stress Illness Hospitalizations — Environmental 

Public Health Tracking Program, 20 States, 2001–2010. Morbidity and Mortality 



 

 234 

Weekly Report: Surveillance Summaries [Internet]. Centers for Disease Control 

& Prevention (CDC); 2014 [cited 2020 Apr 9];63:1–10. Available from: 

https://www.jstor.org/stable/24806265 

6. Fechter-Leggett ED, Vaidyanathan A, Choudhary E. Heat Stress Illness Emergency 

Department Visits in National Environmental Public Health Tracking States, 

2005–2010. J Community Health [Internet]. 2016 [cited 2020 Apr 9];41:57–69. 

Available from: https://doi.org/10.1007/s10900-015-0064-7 

7. Acharya P, Boggess B, Zhang K. Assessing Heat Stress and Health among 

Construction Workers in a Changing Climate: A Review. International Journal of 

Environmental Research and Public Health [Internet]. Multidisciplinary Digital 

Publishing Institute; 2018 [cited 2020 Apr 9];15:247. Available from: 

https://www.mdpi.com/1660-4601/15/2/247 

8. Rastogi D, Lehner F, Ashfaq M. Revisiting Recent U.S. Heat Waves in a Warmer and 

More Humid Climate. Geophysical Research Letters [Internet]. 2020 [cited 2020 

Aug 6];47:e2019GL086736. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL086736 

9. Wu J, Zhou Y, Gao Y, Fu JS, Johnson BA, Huang C, et al. Estimation and Uncertainty 

Analysis of Impacts of Future Heat Waves on Mortality in the Eastern United 

States. Environ Health Perspect [Internet]. 2014 [cited 2020 Aug 6];122:10–6. 

Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888568/ 



 

 235 

10. Smith TT, Zaitchik BF, Gohlke JM. Heat waves in the United States: definitions, 

patterns and trends. Clim Change [Internet]. 2013 [cited 2020 Aug 6];118:811–

25. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711804/ 

11. Keellings D, Moradkhani H. Spatiotemporal Evolution of Heat Wave Severity and 

Coverage Across the United States. Geophysical Research Letters [Internet]. 2020 

[cited 2020 Oct 29];47:e2020GL087097. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL087097 

12. Knutson TR, Ploshay JJ. Detection of anthropogenic influence on a summertime heat 

stress index. Climatic Change [Internet]. 2016 [cited 2020 Aug 6];138:25–39. 

Available from: https://doi.org/10.1007/s10584-016-1708-z 

13. Wang J, Chen Y, Tett SFB, Yan Z, Zhai P, Feng J, et al. Anthropogenically-driven 

increases in the risks of summertime compound hot extremes. Nature 

Communications [Internet]. Nature Publishing Group; 2020 [cited 2020 Aug 

22];11:528. Available from: https://www.nature.com/articles/s41467-019-14233-8 

14. Raymond C, Matthews T, Horton RM. The emergence of heat and humidity too 

severe for human tolerance. Science Advances [Internet]. American Association 

for the Advancement of Science; 2020 [cited 2020 Aug 6];6:eaaw1838. Available 

from: https://advances.sciencemag.org/content/6/19/eaaw1838 

15. Fischer EM, Knutti R. Robust projections of combined humidity and temperature 

extremes. Nature Climate Change [Internet]. Nature Publishing Group; 2013 

[cited 2020 Aug 6];3:126–30. Available from: 

https://www.nature.com/articles/nclimate1682 



 

 236 

16. Mann ME, Rahmstorf S, Kornhuber K, Steinman BA, Miller SK, Coumou D. 

Influence of Anthropogenic Climate Change on Planetary Wave Resonance and 

Extreme Weather Events. Scientific Reports [Internet]. Nature Publishing Group; 

2017 [cited 2020 Jun 10];7:45242. Available from: 

https://www.nature.com/articles/srep45242 

17. Mann ME, Rahmstorf S, Kornhuber K, Steinman BA, Miller SK, Petri S, et al. 

Projected changes in persistent extreme summer weather events: The role of 

quasi-resonant amplification. Science Advances [Internet]. American Association 

for the Advancement of Science; 2018 [cited 2020 Jun 10];4:eaat3272. Available 

from: https://advances.sciencemag.org/content/4/10/eaat3272 

18. Coumou D, Kornhuber K, Lehmann J, Petoukhov V. Weakened Flow, Persistent 

Circulation, and Prolonged Weather Extremes in Boreal Summer. Climate 

Extremes [Internet]. American Geophysical Union (AGU); 2017 [cited 2020 Aug 

6]. p. 61–73. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/9781119068020.ch4 

19. Anderson G. Brooke, Bell Michelle L., Peng Roger D. Methods to Calculate the Heat 

Index as an Exposure Metric in Environmental Health Research. Environmental 

Health Perspectives [Internet]. 2013 [cited 2020 Mar 4];121:1111–9. Available 

from: https://ehp.niehs.nih.gov/doi/full/10.1289/ehp.1206273 

20. Basu R. High ambient temperature and mortality: a review of epidemiologic studies 

from 2001 to 2008. Environmental Health [Internet]. 2009 [cited 2020 Apr 

9];8:40. Available from: https://doi.org/10.1186/1476-069X-8-40 



 

 237 

21. McGeehin M A, Mirabelli M. The potential impacts of climate variability and change 

on temperature-related morbidity and mortality in the United States. 

Environmental Health Perspectives [Internet]. Environmental Health 

Perspectives; 2001 [cited 2020 Jun 12];109:185–9. Available from: 

https://ehp.niehs.nih.gov/doi/abs/10.1289/ehp.109-1240665 

22. Yin Q, Wang J. The association between consecutive days’ heat wave and 

cardiovascular disease mortality in Beijing, China. BMC Public Health [Internet]. 

2017 [cited 2020 Aug 6];17:223. Available from: https://doi.org/10.1186/s12889-

017-4129-7 

23. Yip FY, Flanders WD, Wolkin A, Engelthaler D, Humble W, Neri A, et al. The 

impact of excess heat events in Maricopa County, Arizona: 2000–2005. Int J 

Biometeorol [Internet]. 2008 [cited 2020 Aug 6];52:765–72. Available from: 

https://doi.org/10.1007/s00484-008-0169-0 

24. Cardona O-D, van Aalst MK, Birkmann J, Fordham M, McGregor G, Perez R, et al. 

Determinants of Risk: Exposure and Vulnerability. In: Field CB, Barros V, 

Stocker TF, Dahe Q, editors. Managing the Risks of Extreme Events and 

Disasters to Advance Climate Change Adaptation [Internet]. Cambridge: 

Cambridge University Press; 2012 [cited 2020 Mar 6]. p. 65–108. Available from: 

https://www.cambridge.org/core/product/identifier/CBO9781139177245A021/typ

e/book_part 

25. Estoque RC, Ooba M, Seposo XT, Togawa T, Hijioka Y, Takahashi K, et al. Heat 

health risk assessment in Philippine cities using remotely sensed data and social-



 

 238 

ecological indicators. Nat Commun [Internet]. Nature Publishing Group; 2020 

[cited 2020 Apr 27];11:1–12. Available from: 

https://www.nature.com/articles/s41467-020-15218-8 

26. Field CB. Climate change 2014–Impacts, adaptation and vulnerability: Regional 

aspects. Cambridge University Press; 2014.  

27. Im E-S, Pal JS, Eltahir EAB. Deadly heat waves projected in the densely populated 

agricultural regions of South Asia. Science Advances [Internet]. American 

Association for the Advancement of Science; 2017 [cited 2020 Sep 

6];3:e1603322. Available from: 

https://advances.sciencemag.org/content/3/8/e1603322 

28. O’Neill BC, Oppenheimer M, Warren R, Hallegatte S, Kopp RE, Pörtner HO, et al. 

IPCC reasons for concern regarding climate change risks. Nature Climate Change 

[Internet]. Nature Publishing Group; 2017 [cited 2020 Aug 7];7:28–37. Available 

from: https://www.nature.com/articles/nclimate3179/ 

29. Ouarda TBMJ, Charron C. Nonstationary Temperature-Duration-Frequency curves. 

Scientific Reports [Internet]. 2018 [cited 2019 Apr 13];8:15493. Available from: 

https://www.nature.com/articles/s41598-018-33974-y 

30. Batibeniz F, Ashfaq M, Diffenbaugh NS, Key K, Evans KJ, Turuncoglu UU, et al. 

Doubling of U.S. Population Exposure to Climate Extremes by 2050. Earth’s 

Future [Internet]. 2020 [cited 2020 Nov 1];8:e2019EF001421. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019EF001421 



 

 239 

31. Jones B, O’Neill BC, McDaniel L, McGinnis S, Mearns LO, Tebaldi C. Future 

population exposure to US heat extremes. Nature Clim Change [Internet]. 2015 

[cited 2020 Feb 3];5:652–5. Available from: 

https://www.nature.com/articles/nclimate2631 

32. Mazdiyasni O, AghaKouchak A, Davis SJ, Madadgar S, Mehran A, Ragno E, et al. 

Increasing probability of mortality during Indian heat waves. Science Advances 

[Internet]. American Association for the Advancement of Science; 2017 [cited 

2020 Nov 1];3:e1700066. Available from: 

https://advances.sciencemag.org/content/3/6/e1700066 

33. Mishra V, Mukherjee S, Kumar R, Stone DA. Heat wave exposure in India in current, 

1.5\hspace0.167em°C, and 2.0\hspace0.167em°C worlds. Environ Res Lett 

[Internet]. IOP Publishing; 2017 [cited 2020 Mar 8];12:124012. Available from: 

https://doi.org/10.1088%2F1748-9326%2Faa9388 

34. Ahmadalipour A, Moradkhani H, Kumar M. Mortality risk from heat stress expected 

to hit poorest nations the hardest. Climatic Change [Internet]. 2019 [cited 2020 

Nov 1];152:569–79. Available from: https://doi.org/10.1007/s10584-018-2348-2 

35. Spangler KR, Wellenius GA. Spatial patterns of recent US summertime heat trends: 

Implications for heat sensitivity and health adaptations. Environ Res Commun 

[Internet]. IOP Publishing; 2020 [cited 2020 Aug 7];2:035002. Available from: 

https://iopscience.iop.org/article/10.1088/2515-7620/ab7abb/meta 

36. Zanobetti A, O’Neill MS, Gronlund CJ, Schwartz JD. Summer temperature 

variability and long-term survival among elderly people with chronic disease. 



 

 240 

Proc Natl Acad Sci U S A [Internet]. 2012 [cited 2020 Aug 14];109:6608–13. 

Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340087/ 

37. Russo S, Sillmann J, Sippel S, Barcikowska MJ, Ghisetti C, Smid M, et al. Half a 

degree and rapid socioeconomic development matter for heatwave risk. Nat 

Commun [Internet]. Nature Publishing Group; 2019 [cited 2020 Apr 8];10:1–9. 

Available from: https://www.nature.com/articles/s41467-018-08070-4 

38. Fischer EM, Schär C. Consistent geographical patterns of changes in high-impact 

European heatwaves. Nature Geosci [Internet]. Nature Publishing Group; 2010 

[cited 2020 Apr 27];3:398–403. Available from: 

https://www.nature.com/articles/ngeo866 

39. Raymond C, Mankin JS. Assessing present and future coastal moderation of extreme 

heat in the Eastern United States. Environ Res Lett [Internet]. IOP Publishing; 

2019 [cited 2020 Aug 7];14:114002. Available from: 

https://doi.org/10.1088%2F1748-9326%2Fab495d 

40. Alduchov OA, Eskridge RE. Improved Magnus Form Approximation of Saturation 

Vapor Pressure. J Appl Meteor [Internet]. American Meteorological Society; 

1996 [cited 2020 Mar 6];35:601–9. Available from: 

https://journals.ametsoc.org/doi/abs/10.1175/1520-

0450%281996%29035%3C0601%3AIMFAOS%3E2.0.CO%3B2 

41. Taylor KE, Balaji V, Hankin S, Juckes M, Lawrence B, Pascoe S. CMIP5 data 

reference syntax (DRS) and controlled vocabularies. PCMDI: San Francisco Bay 

Area, CA, USA. 2011;  



 

 241 

42. Wang L, Chen W. Equiratio cumulative distribution function matching as an 

improvement to the equidistant approach in bias correction of precipitation. 

Atmospheric Science Letters [Internet]. 2014 [cited 2020 Jul 1];15:1–6. Available 

from: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/asl2.454 

43. Center For International Earth Science Information Network-CIESIN-Columbia 

University. Gridded Population of the World, Version 4 (GPWv4): 

Administrative Unit Center Points with Population Estimates, Revision 11 

[Internet]. Palisades, NY: NASA Socioeconomic Data and Applications Center 

(SEDAC); 2018 [cited 2020 Jun 14]. Available from: 

https://sedac.ciesin.columbia.edu/data/set/gpw-v4-admin-unit-center-points-

population-estimates-rev11 

44. Jones B, O’Neill BC, Gao J. Global One-Eighth Degree Population Base Year and 

Projection Grids for the Shared Socioeconomic Pathways (SSPs), Revision 01 

[Internet]. Palisades, NY: NASA Socioeconomic Data and Applications Center 

(SEDAC); 2020 [cited 2020 Jun 14]. Available from: 

https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-8th-pop-base-year-

projection-ssp-2000-2100-rev01 

45. Coles S. Extremes of Non-stationary Sequences. In: Coles S, editor. An Introduction 

to Statistical Modeling of Extreme Values [Internet]. London: Springer London; 

2001 [cited 2019 Feb 11]. p. 105–23. Available from: https://doi.org/10.1007/978-

1-4471-3675-0_6 



 

 242 

46. Zhang X, Zwiers FW, Li G. Monte Carlo Experiments on the Detection of Trends in 

Extreme Values. J Climate [Internet]. 2004 [cited 2019 Feb 12];17:1945–52. 

Available from: https://journals.ametsoc.org/doi/10.1175/1520-

0442%282004%29017%3C1945%3AMCEOTD%3E2.0.CO%3B2 

47. Agilan V, Umamahesh NV. Modelling nonlinear trend for developing non-stationary 

rainfall intensity–duration–frequency curve. International Journal of Climatology 

[Internet]. 2017 [cited 2019 Feb 11];37:1265–81. Available from: 

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.4774 

48. Risser MD, Wehner MF. Attributable Human-Induced Changes in the Likelihood and 

Magnitude of the Observed Extreme Precipitation during Hurricane Harvey. 

Geophysical Research Letters [Internet]. 2017 [cited 2019 Feb 11];44:12,457-

12,464. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075888 

49. Zhang W, Zheng C, Chen F. Mapping heat-related health risks of elderly citizens in 

mountainous area: A case study of Chongqing, China. Science of The Total 

Environment [Internet]. 2019 [cited 2020 Aug 12];663:852–66. Available from: 

http://www.sciencedirect.com/science/article/pii/S0048969719302864 

50. Wolf T, McGregor G. The development of a heat wave vulnerability index for 

London, United Kingdom. Weather and Climate Extremes [Internet]. 2013 [cited 

2020 Aug 12];1:59–68. Available from: 

http://www.sciencedirect.com/science/article/pii/S2212094713000054 



 

 243 

51. Inostroza L, Palme M, Barrera F de la. A Heat Vulnerability Index: Spatial Patterns 

of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile. PLOS 

ONE [Internet]. Public Library of Science; 2016 [cited 2020 Aug 

12];11:e0162464. Available from: 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162464 

52. Petkova EP, Gasparrini A, Kinney PL. Heat and mortality in New York City since the 

beginning of the 20th century. Epidemiology [Internet]. 2014 [cited 2020 Aug 

7];25:554–60. Available from: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096340/ 

53. Ouarda TBMJ, Charron C. Nonstationary Temperature-Duration-Frequency curves. 

Sci Rep [Internet]. Nature Publishing Group; 2018 [cited 2020 Apr 24];8:1–8. 

Available from: https://www.nature.com/articles/s41598-018-33974-y 

54. Baldwin JW, Dessy JB, Vecchi GA, Oppenheimer M. Temporally Compound Heat 

Wave Events and Global Warming: An Emerging Hazard. Earth’s Future 

[Internet]. 2019 [cited 2020 Aug 8];7:411–27. Available from: 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018EF000989 

55. Anderson GB, Bell ML. Heat waves in the United States: mortality risk during heat 

waves and effect modification by heat wave characteristics in 43 U.S. 

communities. Environ Health Perspect. 2011;119:210–8.  

56. Meehl GA, Arblaster JM, Branstator G. Mechanisms Contributing to the Warming 

Hole and the Consequent U.S. East–West Differential of Heat Extremes. J 

Climate [Internet]. American Meteorological Society; 2012 [cited 2020 Aug 



 

 244 

7];25:6394–408. Available from: 

https://journals.ametsoc.org/jcli/article/25/18/6394/32922/Mechanisms-

Contributing-to-the-Warming-Hole-and 

57. Hogan E, Nicholas RE, Keller K, Eilts S, Sriver RL. Representation of U.S. Warm 

Temperature Extremes in Global Climate Model Ensembles. J Climate [Internet]. 

American Meteorological Society; 2019 [cited 2020 Aug 7];32:2591–603. 

Available from: 

https://journals.ametsoc.org/jcli/article/32/9/2591/344115/Representation-of-U-S-

Warm-Temperature-Extremes-in 

58. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, et al. RCP4.5: a 

pathway for stabilization of radiative forcing by 2100. Climatic Change [Internet]. 

2011 [cited 2021 Feb 20];109:77. Available from: https://doi.org/10.1007/s10584-

011-0151-4 

59. Zscheischler J, Westra S, Hurk BJJM van den, Seneviratne SI, Ward PJ, Pitman A, et 

al. Future climate risk from compound events. Nature Climate Change [Internet]. 

2018 [cited 2019 Jul 17];8:469. Available from: 

https://www.nature.com/articles/s41558-018-0156-3 

60. Mann ME, Rahmstorf S, Kornhuber K, Steinman BA, Miller SK, Petri S, et al. 

Projected changes in persistent extreme summer weather events: The role of 

quasi-resonant amplification. Science Advances [Internet]. 2018 [cited 2019 Jul 

28];4:eaat3272. Available from: 

https://advances.sciencemag.org/content/4/10/eaat3272 



 

 245 

61. Mann ME, Rahmstorf S, Kornhuber K, Steinman BA, Miller SK, Coumou D. 

Influence of Anthropogenic Climate Change on Planetary Wave Resonance and 

Extreme Weather Events. Scientific Reports [Internet]. 2017 [cited 2019 Jul 

28];7:45242. Available from: https://www.nature.com/articles/srep45242 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 246 

CHAPTER SEVEN 

INVESTIGATING THE CASCADING IMPACT OF METEOROLOGICAL 

FORCINGS ON EXTREME PRECIPITATION DRIVEN BY ATMOISPHERIC 

RIVERS 

1. Introduction 

Recently, extreme precipitation events leading to massive floods have intensified 

in intensity, duration, and frequency in different parts of the world [1–4]. Much of this 

intensification is attributed to the acceleration of the hydrologic cycle caused by climate 

change [4–7], a considerable proportion of which is associated with large-scale 

atmospheric features, such as atmospheric rivers (ARs) [8]. Extreme precipitation and 

flooding associated with ARs have been reported in various parts of the globe [9–14], 

including the US [15–20].  

ARs are long, narrow corridors of strong poleward water vapor transport across 

the mid-latitudes [21–23]. They can be associated with the warm conveyor belt of 

extratropical cyclones and are often characterized by strong low-level winds. They are 

responsible for approximately 90% of all pole-ward atmospheric water vapor transport 

across the mid‐latitudes [23,24].  

ARs have a varied range of societal and eco-hydrological impacts, which range 

from beneficial to devastating. For example, ARs are one of the major contributors to the 

snowpack and freshwater resources in the arid portions of the southwestern US and 

responsible for 20–50% of the region’s rainfall accumulation [25]. ARs have been 

associated with 30% to 60% of the annual variability of total runoff, thereby impacting 
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the seasonal availability of water resources in the west coast of the US [26]. Landfalling 

AR storms are also recognized as potential drought busters in the Pacific Northwest by 

overcoming nearly 60-70% of all persistent droughts in the region [27].  

ARs are even known for causing megafloods, often dubbed as “ARkstorms”. 

These events impact thousands of square miles of urban and agricultural land across the 

US, disrupting millions of lives and causing massive economic damages [28]. So far, 

more than 99% of all reported flood damages in the western US have been attributed to 

severe landfalling AR storms [29]. However, the impact of ARs is not limited to the west 

coast of the US. In the southeastern US, the major historical 1000-year flood event that 

occurred on May 1-2, 2010, has been attributed to ARs  [18], which affected significant 

parts of Tennessee, Kentucky, and Mississippi. This specific series of ARs resulted in 

sustained precipitation (for 48 hours) as high as 344.7 mm over Nashville, Tennessee, 

leading to flash flooding that resulted in 26 fatalities and caused $2–$3 billion of property 

damages [18]. 

Recognizing the potential socio-economic damages (e.g., agriculture and 

devastating flood damages) caused by the ARs in the SEUS, there has been a growing 

concern on the AR activities along the coastal southeast US (SEUS) [30]. Many studies 

highlighted the possible association between major flood events in the central and 

southeastern US with strong water vapor transport into the SEUS from multiple moisture 

sources, such as the Caribbean Sea, the Gulf of Mexico, and the Atlantic Ocean  

[18,24,31–34]. An enhanced source of moisture originating in the Caribbean and the Gulf 

of Mexico can trigger large-scale flood events in the mid-western US during May-July 
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[31]. The study detected a narrow fetch of moisture steering along the coast of Central 

America, extending from the Yucatan Peninsula and moving all the way upwards to the 

western Gulf of Mexico, where it connects with the Great Plains low-level jet (GPLLJ), a 

phenomena dubbed “Maya Express” [32]. Further, [33] highlighted that much of the 

annual maxima floods from 1105 basins across the central US and reported that in 42.5% 

of the basins, more than half of the flood events are associated with ARs interacting with 

the SEUS. The major flooding event in the Ohio River Valley (May 1–2, 2010) was 

triggered by the ARs that originated from the eastern tropical Pacific and the Caribbean 

Sea (Moore et al., 2011)  These studies highlighted the significant role of ARs in causing 

major flood events. 

 More recently, global [24] and regional studies [16,17,35,36] have provided 

crucial information on the climatological and synoptic aspects of ARs affecting the 

SEUS. More than 10% of AR landfalls along the Gulf of Mexico and Gulf stream 

contributed to more than 30% of the annual precipitation over most parts of the 

southeastern US [24]. During the period, 1980-2010, nearly 41% of the heavy 

precipitation events (> 100 mm/day), and 52% of the spatially widespread heavy 

precipitation events (affecting 7000 km2 area) in the southeastern US were associated 

with ARs [17]. Focusing on persistent AR events with a duration of at least 48 hours, 

Debbage et al., 2017 reported that total ~40 persistent AR events per year occurred along 

the SEUS coastline locations between 1979 and 2014. The study also highlights the 

potential role of Great Plains Jet (GPJ) and Caribbean Low-Level Jet (CLLJ) on the 

SEUS ARs, which happens to interact with the western Gulf of Mexico. Miller et al., 
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2017 investigated the synoptic patterns associated with minor-major flood events in the 

Pigeon River basin located downstream of the southern Appalachian Mountains over 5 

years period. The synoptic patterns were found to reveal the role of a highly amplified 

slow-moving positively tilted trough formation that favored the AR-EP events over the 

region.  Rabinowitz et al., (2019) selected 15 AR events between 2000 and 2015 across 

the Mississippi river valley and categorized their associated synoptic patterns as 

progressive troughs.  

Multiple studies have highlighted the potential role of persistent atmospheric 

anomalies and structure of moisture transport for a better understanding of the behavior 

of AR-EP events [18,23,31,36,37]. More specifically, based on the available moisture 

sources and transport mechanism, it is possible to generate information related to the 

atmospheric conditions that are particularly moist and unstable at the same time. These 

synoptic conditions progressively intensify with time, triggering a sequence of favorable 

conditions for moisture transport and advection until they finally lead to the occurrence 

of heavy precipitation events. In such a context, “cascading effects” have been 

increasingly used to understand the sequence of interconnected processes that ultimately 

lead to extreme precipitation events. The cascading effects can be examined based on the 

evolution of meteorological features and moisture influx associated with the days before 

the AR-EP events. While previous studies explored the role of ARs in driving EP events 

over the SEUS, the potential influence of atmospheric anomalies on such processes was 

partly explored [16,17]. Furthermore, investigating the influence of atmospheric 
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anomalies only for coastal interactions [16] limits our understanding of such processes 

driving EP events across the SEUS region. 

This study begins with determining the variation of EP events with respect to AR 

events. In the next step, the synoptic feature’s space-time evolution is investigated to 

understand its cascading effect on the moisture transport that influences the 100 most 

severe AR-EP events during the cold and warm season separately. More specifically, the 

primary objective of this study is to address the following questions:  

(1) How are the AR events and AR-EP events distributed spatially and across 

different seasons in eight SEUS states (Florida, Alabama, Mississippi, Louisiana, 

Georgia, North Carolina, South Carolina, and Texas)?  

(2) Is there a cascading effect of the synoptic-scale meteorological forcing on the 

moisture availability and mode of advection associated with observed major AR-EP 

events in the region between 1979 and 2019?   

The rest of the manuscript is organized as follows: Section 2 focuses on the data 

and methodology applied in the study; the results and relevant discussions are provided in 

Section 3; and finally, the summary of major findings and concluding remarks are 

provided in Section 4. 
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2. Data and Methodology 

2.1. Data 

AR events are identified within the region bounded by latitudes 15°N to 45°N and 

longitudes -110°W to -55°W (hereafter referred to as the AR-detection region). Detection 

of ARs is performed by using specific humidity and zonal and meridional wind fields for 

20 pressure levels (between 1,000 and 300 hPa inclusive), retrieved at 6-hourly time-steps 

for the period 1979-2019 from the high‐resolution European Centre for Medium-Range 

Weather Forecasts Reanalysis 5 (ERA5) (0.25°x 0.25° grid resolution). The hurricane 

track data from 1979 to 2019 is obtained from the Atlantic Hurricane database 

(HURDAT2) to segregate the ARs from the Tropical Cyclones (TCs). The HURDAT2 is 

available at 6-hourly intervals provided by the National Hurricane Center (available at 

https://www.nhc.noaa.gov/data/#tcr). Mean sea level pressure (MSLP) and 850 mbar 

geopotential height (Z850) are selected to study the synoptic patterns and their cascading 

effect on the moisture transport mechanisms. As such, 6-hourly Z850, TCWV, and MSLP 

data were obtained from the ERA-5 at the native spatial resolution for the 1979-2019 

period. While MSLP and Z850 are extensively used to define the large scale 

meteorological patterns that have a primary influence on extreme precipitation events 

[38], TCWV is an essential component to assess the moisture availability associated with 

AR-EPs [39,40].  

The impact of ARs on the precipitation and EP events are studied for the SEUS 

region that includes the eight coastal states, namely, Alabama (AL), Georgia (GA), 

Louisiana (LA), Mississippi (MS), North Carolina (NC), South Carolina (SC), Texas 
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(TX), and Florida (FL). The EP events are derived based on the daily observed 

precipitation dataset (1979-2019) obtained from the Climate Prediction Center (CPC) 

(https://www.esrl.noaa.gov/psd/), available at 0.5° horizontal grid resolution. The daily 

precipitation dataset provided by NOAA’s CPC is produced from Global Unified Gauge‐

Based Analysis (from over 30,000 stations) with a daily time step [41]. The CPC data has 

been validated against historical records and measurements at nearby stations, concurrent 

radar/satellite observations, and numerical model forecasts. To maintain consistency in 

spatial resolution across all datasets used in the study, we apply the Synergraphic 

Mapping System (SYMAP) (Maurer et al., 2002) to regrid the reanalysis dataset at the 

0.5° CPC precipitation grid resolution. Reanalysis data available at 0.5°x0.5° is 

reasonable to capture the ARs and their potential influence on the EP events [8], and 

multiple studies investigated regional AR behavior at the same or coarser resolution 

[11,12,16,17,24,33]. 

2.2. AR-Detection Methodology 

ARs are derived based on an AR-detection algorithm [24], that incorporates the 

characteristics of vertically integrated vapor transport (IVT) within the lower troposphere 

at 6-hourly time-steps. The IVT measures the integrated moisture flux based on specific 

humidity and zonal and meridional wind characteristics. Considering the dual drivers of 

AR behavior (Integrated water vapor and wind), the IVT magnitude (or intensity) is 

increasingly used to diagnose ARs across various parts of the globe [14,24,36,43,44]. The 

IVT intensity is calculated in a Eulerian framework by performing a mass-weighted 

vertical integration within the pressure levels ranging from 1000 to 300 hPa as follows: 
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where g is the acceleration due to gravity (= 9.81 m s−2), q is specific humidity (kg kg-1), 

u is zonal wind (m/s), v is meridional wind (m/s), and dp is the pressure difference (Pa) 

between adjacent pressure levels. The algorithm has been applied in many recent studies 

related to ARs [14,16,45,46]. The reader is referred to Guan and Waliser (2015) for a 

detailed discussion on the AR-detection algorithm, the underlying motivation, sensitivity 

analysis, and its application. A brief discussion on the AR-detection procedure is 

summarized in Appendix D1 of the Supplementary Material.  

It is important to note that, at any time-step, one or more AR landfalls may be 

detected provided all the requirements (see Appendix D1 of the Supplementary Material) 

are fulfilled. The algorithm detected a total of 14992 landfalling ARs in the AR-detection 

region, which is 25.03% of the total 59900 six-hourly time-steps during the study period, 

1979-2019.  

2.3. AR Event and AR-EP Event Identification 

The impact of the ARs on the EP events is investigated for the grid cells 

(0.5°x0.5°) located within the eight SEUS states. Tropical cyclones are seldom identified 

as a common source of heavy rainfall in the southeastern United States [17,47]. To assess 

the contribution from ARs alone, we have removed the effect of Tropical cyclones (TC) 

from the analysis of AR-EP events. This is achieved by removing the AR days that 

coincide with the TC dates. Out of the detected landfalling ARs, we found 12645 ARs 

occurring over at least one grid cell over the 1979-2019 period within or on the SEUS 
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region boundary. AR duration is an important variable that controls precipitation 

magnitudes [48].  An AR event is identified based on the duration of ARs that occurred 

for three or more time steps (18 hours or more)[11,48], and these AR events can generate 

extreme precipitation events [11,48,49]. A similar methodology was used to examine the 

association between AR and extreme precipitation storms for the US’s west coast 

(Lamjiri et al., 2017 and Ralph et al., 2019) and Europe [11]. The AR-events are 

identified based on all the 12645 ARs. Two ARs were considered independent (distinct) 

events if they were separated by more than 1 day.   

Extreme precipitation events are determined by applying the peak-over-threshold 

method [2,51] for the SEUS grid locations. The daily extreme precipitation events are 

first identified based on the 95th (EP95p) and 99th (EP99p) percentile threshold, separately. 

These percentiles are calculated for all non-zero daily precipitation totals observed during 

the whole time-period, 1979-2019. Finally, an AR-EP event is defined as the extreme 

precipitation event observed during or one day after an AR-event. This concept of AR 

events facilitates the association with the daily precipitation data and have been 

extensively used in previous studies (e.g., Guan et al., 2010; Huning et al., 2019; Lavers 

& Villarini, 2013a, 2013b; Neiman, Ralph, Wick, Kuo, et al., 2008). It should be noted 

that throughout the manuscript, the AR-EP events evaluated based on the 95th (99th) 

percentile threshold are referred to as AR-EP95p (AR-EP99p).   

2.4. Composite Analysis 

An event-centered composite analysis is performed to examine the evolution of 

the synoptic meteorological features and moisture availability and advection. So far, 
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event-centered composite analysis has been extensively used in numerous studies to 

explore the relevant synoptic-scale meteorological features associated with a specific 

meteorological event [38].  

The event-centered composite analysis is performed based on the top 100 severe 

AR-EP99p events, selected separately for the extended warm (May-October) and cold 

(November-April) seasons. Firstly, the AR-EP99p time-series for individual grids (across 

the SEUS region) for a given season (warm and cold) are selected to form a matrix, with 

the dates and the corresponding AR-EP magnitude representing the columns of the 

matrix. The daily AR-EP magnitudes are then arranged in a decreasing order to identify 

the top 100 AR-EP events with unique dates for the composite analysis. The selected 

event days are used to obtain the seasonal anomalies in composites of meteorological 

variables at zero-day, 2-day, and 5-day lag periods. This approach is useful for exploring 

the sequence of interconnected processes (cascading effect) driving the top 100 severe 

AR-EP events.  

More specifically, seasonal anomalies in the daily mean composites of the 

meteorological variables (MSLP, Z850, and TCWV) are calculated at every grid location 

by subtracting the mean of daily values coinciding with the time of occurrence of the 

selected top 100 AR-EP events from the long-term mean for the 1979-2019 period. 

Furthermore, a two-sample Kolmogorov-Smirnov Test (KS-Test) is performed to 

determine the statistical significance (at 95% confidence level) of the anomalies at every 

grid location. To determine the moisture advection into the region, we calculate the 

composite mean of the daily IVT field during which the top 100 AR-EP events are 



 

 256 

observed for every grid location. Finally, to assess their temporal evolution over time, 

each of these composite and composite anomalies is further calculated for 5 days and 2 

days prior to the occurrence of these top 100 AR-EP events. A similar approach has been 

adopted by [54] to investigate the temporal evolution of atmospheric conditions 

associated with AR-influenced EP along the Dutch coast.  

 

3. Results and Discussion 

3.1. Spatial distribution of EP and AR events in SEUS  

EP events generally affect a varied range of areas (smaller to larger) across the 

SEUS throughout the year [55]. To understand the spatial patterns associated with EP and 

AR events in the SEUS, we constructed spatial maps showing the number of EP95p, EP99p, 

and only AR (after removing the TCs) events. Figure 1(a, c, and e) depicts the spatial 

distribution of the annual event counts for the EP95p, EP99p, and AR, respectively, for the 

1979-2019 period. The corresponding results are further summarized as boxplots based 

on the eight SEUS states shown in Figure 1 (b, d, and f).  

Figure 1(a-d) shows that except for Texas, all other states are affected by 11-16 

(2-5) EP95p (EP99p) events per year. A homogenous spatial pattern is noted for the EP95p 

event counts across most parts of the SEUS region, eastward of Texas. The EP99p event 

counts, however, vary considerably across the SEUS, with a higher number of events 

clustered in the eastern Gulf coastal plains and the western part of the Florida peninsula. 

This is also indicated by the boxplots in Figure 1(d) that show a comparatively greater (3-
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5) number of EP99p events per year observed over Georgia, Florida, Alabama, and South 

Carolina. 

Figure 1(e-f) shows that the rate of AR activities is found to be relatively higher along the 

Atlantic coastal plain of the SEUS. More than 12 AR events are observed per year over 

the southeastern Appalachian range extending southwards along the Atlantic coastal plain 

up to the southern tip of the Florida peninsula. This spatial distribution is mirrored by the 

boxplots depicted for the eight SEUS states, as shown in Figure 4(f). A relatively greater 

(12-15) number of AR events per year affects the easternmost states, including larger 

portions of South Carolina, Florida, North Carolina, and Georgia. Furthermore, the 

spatial distribution of AR event counts closely matches the spatial pattern exhibited by 

the EP95p events, especially along the eastern coast of NC, SC, Georgia, and Florida 

located along the east side of the Appalachian range.  

Interestingly, the regions showing a higher frequency of AR events are found to 

be located along the trajectory of the Sub-tropical Low-level Jet streams (SLLJ) 

attributed to the Atlantic warm pool [56]. The SLLJ represents a persistent air mass 

influx into the subtropics and possibly supplies a significant share of moisture into the 

region combined with ARs that typically act along the CLLJ or westerlies in the region. 

This favors the influx of moisture into this region resulting in most AR activities along 

the coast of Atlantic coastal plains.  
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Figure 1 (a-b) Total EP95p event counts per year, (c-d) Total EP99p event counts per 

year, (e-f) AR-event counts per year for the period, 1979-2019 (after removing the TCs). 

 

3.2. AR-EP Characteristics in SEUS 

ARs have been typically associated with EP events across different parts of the 

globe [17,18,30,57–61]. The pronounced temporal and location-dependent behavior 

exhibited by the number of AR event occurrences (as seen earlier) is likely to be reflected 

in the EP occurrences driven by the ARs, which is the focus of this analysis. As such, 

using daily observations of precipitation accumulation from CPC, the AR-EP events are 
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identified at every grid point based on a peak-over-threshold approach, as discussed in 

section 2.4. Figure S1 shows the geographical distribution of 95th and 99th percentile 

thresholds based on which the peak-over-threshold methodology is applied to the daily 

precipitation totals.   

 

Figure 2 (a-b) Spatial map showing the total number of (a) AR-EP95p and (b) AR-EP99p 

events observed per year during the 1979-2019 period over the SEUS region, (c-d) 
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boxplots showing the spatial distribution of (c) AR-EP95p and (d) AR-EP99p event counts 

per year for the period 1979-2019 for the eight states of the SEUS region, and (e-f) 

spatial map showing the total precipitation magnitude (mm) and the IVT vectors for the 

ARs identified during the 3rd and 4th May 2010. The intensity of the IVT is represented 

by the length of the IVT vectors. 

 

In this section, we explore mainly two characteristics of AR-EP events, the spatial 

distribution of the frequency (per year) of the AR-EP events and the seasonal variation of 

the frequency and the average magnitude of these events across the SEUS region. The 

annual frequency of AR-EP events is examined at each grid point to identify any 

location-dependent behavior revealed by the observed AR-EP events during the selected 

period. Figure 2(a-d) shows the spatial distribution of the annual frequency of AR-EP95 

and AR-EP99 events for the SEUS region and eight states for the 1979-2019 period. In 

addition to that, we also examine the precipitation characteristics (spatial distribution and 

magnitude) across the SEUS region for selected ARs observed during 3rd and 4th May 

2010 due to their association with large scale flooding [17], as shown in Figure 2(e-f). 

The seasonal variations of the total AR-EP event count and average magnitudes for the 

1979-2019 period are depicted by heatmaps as shown in Figure 3. The seasonal variations 

are supposed to reveal any temporal dependence exhibited by AR-driven EP events and 

their severity in the SEUS and including states.  

As shown in Figure 2(a-b), the spatial patterns depicted by the annual frequency 

of AR-EP events are also in close agreement with that obtained for the EP and AR-events 
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(Figure 1). About 3-5 AR-EP99p and at least 1-2 AR-EP99p events per year are found to 

occur in the eastern part of the SEUS region, with the greatest number of events 

occurring primarily in the sub-tropical region along the northwestern coast of the Florida 

peninsula and south of Georgia. The higher rate of AR-EP events in these regions is also 

reminiscent of the fact that about 90% of the total water vapor flux is attributed to ARs 

located within the sub-tropics [23,62]. These results are further reflected by the boxplots 

that show the greatest number of AR-EP events occurred in Florida and Georgia (Fig 2(c-

d)). These results are concordant with the spatial pattern exhibited by the EP99p event 

counts for these regions (Figure 1(d)).  

Figure 2(e-f) shows the spatial pattern and severity of the AR-EP events that 

cause extreme socio-economic damages in the past. We selected two consecutive ARs 

observed on 3rd and 4th May 2010. It can be noted that these ARs are associated with a 

daily precipitation total of more than 100 mm, observed across the junction between the 

Gulf and Atlantic coastal plain of the SEUS (Figure 2(f)). Previous studies have reported 

these ARs were associated with major historic flooding in the SEUS [17,18]. 

To explore the temporal dynamics of the AR-EP event characteristics, we 

examine the seasonal variation of the total event counts and average precipitation 

magnitude for the SEUS region and the eight including states for the 1979-2019 period. 

The seasonal variation of total AR-EP event counts and average precipitation magnitude 

are examined based on the seasons defined by a 3-month overlapping windows for all 12 

months. The 3-month overlap allows for scaling the seasons to represent uniform 90-day 

seasons. Based on this criterion, we obtained the regional averages of seasonal counts of 
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AR-EP95p and AR-EP99p events and the corresponding average precipitation magnitudes 

as illustrated by the heatmaps in Figure 3(a-b) and Figure 3(c-d), respectively. 

 

Figure 3. The heat maps (a) show the total number and (b) average magnitude of AR-

EP95 events for the overlapping seasons during the period 1979-2019, (c, and d) same as 

in (a, and b) but for AR-EP99 events. 
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A marked cold season dependence is noticeable in the total AR-EP event 

occurrences. A greater number of events is noted over Georgia, Florida, Alabama, and 

South Carolina during the October-November-December (OND), November-December-

January (NDJ), December-January-February (DJF), January-February-March (JFM), 

February-March-April (FMA), and March-April-May (MAM) season (Figure 3(a, and 

c)). These regions show a total of more than 50 AR-EP95p and 12-15 AR-EP99p events in 

each overlapping season between November and April during the 41-year period (1979-

2019). Only a few AR-EP events (less than 5-10 events) are found to occur during the 

extended warm season months (April-May-June (AMJ) to September-October-November 

(SON)) over the entire SEUS region. These findings are in close agreement with previous 

studies that suggest the possible contribution of ARs to more frequent rainfall events in 

the SEUS with a greater influence observed predominantly during the cold season 

[16,17].  

 

The anomalously high AR-EP counts, markedly noticeable during the months of 

the extended cold season (November-April), is generally attributed to the large-scale 

moisture availability and synoptically driven strong transport mechanisms acting 

simultaneously during the winter/transition months in the region [17,18]. In addition to 

that, a considerable decrease in the AR-EP event count is notable from spring to summer 

seasons for most of the regions. As reported by previous studies, this is due to the spring 

to summer decrease in the large scale and persistent mesoscale convective systems in the 
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west of the Appalachian Mountains, as well as due to the smaller number of ARs 

interacting with the CSE-US region during the warm season [16,63,64]. 

In contrast, the average precipitation magnitude of the AR-EP95p and AR-EP99p 

events is found to be more than 55-90 mm/day in Louisiana and Mississippi in July-

August-September (JAS) and August-September-October (ASO) seasons. The cold 

season AR-EP95p and AR-EP99p events, on the other hand, are found to be characterized 

by only 35-60 mm daily total precipitation in the SEUS region. These results indicate that 

the AR-EP events in the SEUS region are more severe during the warm season than those 

observed in the cold season. The association between ARs and more severe EP events in 

the warm season could be related to higher atmospheric instability and moisture 

availability [55].   

Overall, this seasonal-count cycle seems to be equivalent to the annual IVT cycle, 

reported for the West Coast of the US (Mahoney et al., 2016). The largest vapor transport 

occurring during the winter and markedly decreasing during the summer can be attributed 

to the weak transient baroclinic instability during the warm season [17]. This is also in 

agreement with the previous findings that associate ARs with the winter planetary wave 

number 4-5, a wavenumber typically associated with the synoptic-scale Extratropical 

Cyclones in the Northern Hemisphere [23]. Besides, the Extratropical Cyclones that are 

most prevalent during the winter, are climatologically associated with more number of 

ARs from October to March. [17].  
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3.3. Cascading effect of Synoptic Patterns on Moisture Availability and Transport  

This section explores the synoptic-scale evolution of atmospheric patterns, 

moisture availability, and transport mechanisms associated with AR-EP events during the 

extended warm (May to October) and extended cold (November to April) season. 

Composites of Z850, MSLP, IVT, and TCWV (refer to Section 2.4 for methodology) are 

generated 2 and 5 days prior and during the day of the top 100 severe AR-EP events 

observed during each season. It is expected that such spatiotemporal evolution can help to 

explore the sequence of events, thereby revealing any cascading effect (if present) of 

these synoptic-scale meteorological patterns on the moisture availability and transport 

associated with the top 100 severe AR-EP events. Moreover, the extended warm and cold 

season months (considered in the composite analysis) are chosen objectively to meet the 

criteria of maximum seasonal dependence of AR-EP event occurrence and severity in the 

SEUS region (Figure 3). While such seasonal dependence of the severity of the AR-EP 

events is noted in the May-October months of the extended warm season for Louisiana 

and Mississippi, for most of the other states a greater number of AR-EP events are 

observed during the extended cold season months (November-April) (Figure 3).  

The spatial distribution of the maximum daily precipitation totals during the 

selected top 100 AR-EP event days is illustrated in Figure 4. Interestingly, for the top 100 

severe cold (warm) season, AR-EP events are found to exceed a severity of 150 (200) 

mm/day in the SEUS region, mostly clustered over the eastern Gulf coastal plains 

(western Gulf and Atlantic coastal plains). The most severe cold season AR-EP events 

affected Mississippi, Georgia, and Alabama, whereas Louisiana and Mississippi 
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experienced the most severe warm-season AR-EP events (Figure 4 (b, and d). These 

results are in close agreement with the spatiotemporal characteristics of the AR-EP events 

during the warm and cold seasons depicted earlier in Figure 3. We use the top 100 severe 

AR-EP event days observed for the warm and cold seasons in the subsequent composite 

analysis. 

 

Figure 4 (a) Spatial map and (b) box plots showing the geographical distribution of 

maximum AR-EP magnitude for the top 100 severe AR-EP days during the extended 

cold (Nov-April) season for the 1979-2019 period, and (c), and (d) same as in (a), and 

(b), respectively, but for the extended warm (May-Oct) season. 
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Firstly, we examine the spatiotemporal evolution of synoptic-scale meteorological 

patterns relevant to the occurrence of the top 100 severe AR-EP event days by using daily 

composite anomaly maps of Z850 and MSLP for the warm and cold seasons. Finally, we 

investigate if the sequence of spatiotemporal behavior exhibited by such atmospheric 

patterns shows a cascading effect on the spatiotemporal evolution of moisture advection 

and source identification associated with the top 100 AR-EP events in the region. For 

that, daily mean composite maps of the IVT field and daily mean composite anomaly 

map of TCWV are constructed for both seasons. The obtained results are discussed in the 

following sub-sections.  

(a) Synoptic-Scale Meteorological Patterns 

Figure 5 (a-c) and Figure 5 (d-f) depict the spatiotemporal evolution of anomalies 

in composites of MSLP (shading) and Z850 (contour) for the cold and warm season, 

respectively, 5-days (indicated by “-5days”) and 2-days (indicated by “-2 days”) prior, 

and on the day (indicated by “0 days”) the events are observed. It can be noticed that the 

composite anomalies indicate a synoptic-scale meteorological pattern that exhibits a 

marked cascading behavior over the region during 5 to 0 days from the time of 

occurrence of the warm and cold season AR-EP events.  

The Z850 anomaly contours for the cold season AR-EP suggest several trough 

and ridge (shown by positive anomalies) formation from 5 and 2 days before the AR-EP 

event occurrences. The trough formation (shown by negative anomalies) occurs along the 

south of the Rockies to the Great Plains region, while the ridge formation occurs along 
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the east of the Appalachian along the Atlantic coastal plains. Much of the Central Plains 

and the Gulf Coastal plains are found to correspond to the transition region from the 

trough to the ridge, which is more pronounced on the day of the events (0-days; Figure 

5(c)). Such transitions are typically characterized as a zone of enhanced geostrophic 

winds (winds associated with the middle latitudes aloft in the troposphere), making the 

region more vulnerable to ARs [18,65].  

MSLP anomalies suggest an eastward extension of the Bermuda high stretching 

southwards as the day progresses from 2-days before the day, the events are observed. 

This phenomenon is typical of the North Atlantic region and is mainly observed during 

the winter months. The extension of Bermuda High acts as a block that prevents the 

frontal systems from curving out to the Atlantic Ocean, which instead steers into the Gulf 

of Mexico. This also allows the SLLJ streams to dip further south into the SEUS region, 

sometimes bringing wintry storms with it, thus marking the importance of the confluence 

of SLLJ and ARs in relation to the AR-EP events in SEUS region. The region is 

characterized by a weak pressure gradient 5 days before the occurrence of the events. 

This pressure gradient, however, becomes stronger 2 days before the onset of the 

observed events. Interestingly, on the days of the events (0 days), the low-pressure 

anomaly can be seen to intensify and shift southeast, covering the locations where the EP 

events are mainly observed (defined by the rectangular bounded region in Figure 5). In 

addition to that, the cold season synoptic patterns depict a strong pressure dipole with a 

strong low-pressure center sandwiched between the extended Bermuda High and 
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abnormal high pressure existing over the western US. This low-pressure system in the 

region is likely to favor the advection of moisture from the southerly winds. 

 

Figure 5 Spatial map showing spatiotemporal evolution of (a-c) anomalies in composites 

of MSLP (shading; units hPa), and Z850 (contours; units: m) for cold (NDJFMA) season 

average centered on (a) 5 days before, and (b) 2 days before, and (c) on the day the top 
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100 severe AR-EP events are observed during the cold season; the location of the local 

maxima (minima) in Z850 anomaly are marked by the letter, “H” (”L”), (d-f) same as in 

(a-c) but for warm (MJJASO) season; striplings mark the grid points for which the 

anomalies in MSLP are found to be statistically significant (at 95% confidence level) 

based on the two-sample KS-test. The region corresponding to the top 100 severe AR-EP 

events is defined by the rectangle (black). 

 

 Similarly, the Z850 anomaly contours for the warm season AR-EP depict an 

intense low-pressure center, particularly over much of the SEUS. More importantly, the 

low-pressure center can be seen to intensify over the western Gulf-coastal plains and 

stretch slightly eastwards between 5 and 2 days before the events. This low-pressure 

center remains stationary over the region and intensifies until the day of the events, 

covering much of the Gulf coastal plain. This particular structure is indicative of cut-off 

lows that are often characterized by the presence of a height cap limiting the vertical 

movement of an air parcel, which, when moist, increases the chances of heavy rainfall 

[66], a phenomenon reported by [18] in connection with the severe flooding across the 

Ohio river basin on May 1-2, 2010. In addition to that, the MSLP pattern exhibits an 

intense low-pressure anomaly in the Gulf coastal plains, persistent from 2-days before the 

day of the events. This type of persistent low-pressure structure is indicative of slowly 

varying background circulations that favor deep moist convection leading to more severe 

warm-season EPs (Figure 3-4) in the region [55,67].  
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(b) Moisture Availability and Transport: 

To examine the cascading effect of the synoptic-scale meteorological patterns on 

the moisture availability and transport mechanism associated with such AR-EP events, 

we calculated the composite mean of the IVT field and anomalies in the composite mean 

of TCWV for the same event days for the cold and warm season. The composite maps for 

assessing the moisture availability and transport are presented in Figure 6.  

For both cold and warm season, intense IVT field over the strong low-pressure 

region in the Gulf Coastal Plains (where the AR-EP events are observed as depicted 

previously in Figure 4) can be observed to develop 2 days before the event occurrences, 

which amplifies substantially (IVT intensity > 400 kg/m/s) on the days when these events 

are observed. A dominant role of CLLJ and strong westerlies associated with the SLLJ is 

also notable from the IVT field for the cold season ARs. The CLLJ can be seen to cross 

the Yucatan Peninsula that phases with the strong SLLJ steering along the west coast of 

the Gulf of Mexico, bringing moisture to the region, particularly over the lower 

Mississippi river basin. For both seasons, the IVT field indicates that the ARs show a 

tendency to curve out to the center of the extended Bermuda-Azores High towards the 

eastern coast of Europe. This also explains the relatively higher number of AR landfalls 

along the Atlantic coastal plains, as indicated by the spatial distribution of AR events in 

Figure 1(e). Such moisture advection process conforms with the evolution of synoptic 

meteorological patterns exhibited by the MSLP composite anomalies presented in Figure 

5 (a-c). Along the east coast of the Gulf of Mexico, the CLLJ alone can be seen to 

dominate the advection of moisture into the region, with the Caribbean Sea and the  
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Figure 6 Spatial map showing composites of IVT field based on (a) 5 days before, (b) 2 

days before, and (c) on the day the top 100 AR-EP events are observed during the cold 

(Nov-April) season, (d-f) same as in (a-c) but for composite anomalies in TCWV, (g- i) 

same as in (a-c) but for warm (May-Oct) season, and (j-l) same as in (d-f) but for the 
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warm season. The anomalies are estimated based on the cold or warm season average, 

and the striplings indicate the grid points where statistically significant (95% confidence 

level) anomalies are obtained. The region corresponding to the top 100 severe AR-EP 

events is defined by the rectangle (black). 

 

Atlantic Ocean being the primary sources of moisture. Moreover, the temporal evolution 

of the availability of moisture (represented by the significantly positive anomalies in 

TCWV) can be seen to mimic that of the IVT magnitude over the region of interest and 

the surrounding area of the Southeast coastal plains.  

For the warm season, the IVT field associated with the ARs is relatively weaker 

but spread across a wider area, including both the Gulf and the Atlantic coastal plains 

(Figure 6(i)). The advection of moisture into the region can be primarily associated with 

the CLLJ bringing plumes of moisture from the Caribbean Sea and the Atlantic Ocean. 

On the other hand, the role of CLLJ coupled with the Pacific jet aloft is notable in the 

moisture transport to the Gulf coastal plains. The CLLJ merges with the strong westerlies 

associated with the Pacific jet aloft, and steers along the east coast of the Gulf of Mexico, 

transporting moisture to the lower Mississippi basin where it connects with the GPLLJ. 

This phenomenon, dubbed the “Maya Express”, has been previously reported in 

connection with the warm season flooding in the Midwest US [31,32] and closely 

matches with the moisture advection mechanisms reported in [16]. This is also indicative 

of a higher moisture flux distributed throughout the lower tropospheric column that 

highly increases the chance of very heavy rainfall if sufficient convective available 
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potential energy (CAPE) is present [36]. The transport of moisture to these regions are 

dominated by two distinct branches of LLJ propagation that can be seen to become 

stronger during 2-0 days from the event occurrences, thereby, confirming a cascading 

effect of the synoptic patterns on the moisture transportation by ARs into the region 

(Figure 5(d-f)).  

Furthermore, the southeastern coastal plains are shown to exhibit an intense 

stationary low-pressure system associated with the warm season AR-EPs (Figure 5(d-f)). 

The persistent low-pressure structure favors deep moist convection leading to more 

severe warm-season AR-EPs in the region [55,67]. This is further reinforced by the 

relatively greater moisture availability associated with the warm-season AR-EPs as 

indicated by the significantly (13-16 mm) higher positive anomalies of TCWV on the 

days of the events (Figure 6(i)). The linkages between the spatial evolution of the 

moisture advection mechanisms and AR-related precipitation events are in close 

agreement with previous studies that identify the Gulf of Mexico as the primary source of 

moisture. This highlights the role of CLLJ and the Pacific jet aloft in the advection of 

moisture into the region [16,18,31–33,36].  

Overall, the evolution of the source of moisture and its advection associated with 

the warm and cold season AR-EP events suggest the presence of a cascading effect from 

the synoptic-scale meteorological patterns (exhibited by the evolution of MSLP and Z850 

composite anomalies in Figure 5). Our results produce new information related to the 

sequential development of available moisture and advection processes associated with 

ARs that finally lead to the most severe EP events in the SEUS region. The cold season 
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AR-EPs are more frequent and driven by relatively stronger dynamical systems indicated 

by greater IVT intensity. On the other hand, the warm season AR-EPs are more severe 

and caused by higher atmospheric instability and more moist conditions characterized by 

stationary low-pressure structures and higher TCWV anomalies. 

 

4. Synthesis and Conclusion 

We investigated the cascading impact of synoptic-scale atmospheric patterns on 

the advection mechanisms linked to the Atmospheric River-related Extreme Precipitation 

Events in the Coastal South-East US (SEUS). Spatiotemporal variation of the AR-EP 

event suggests a strong seasonal dependence across most states in the SEUS region. 

While a greater number of AR-EP events are observed during the cold season, the events 

are found to be more severe in the warm season. The spatiotemporal evolution of relevant 

synoptic features suggested a strong cascading effect on the key mechanisms (moisture 

availability and mode of advection) that drive the occurrence of AR-EP events during the 

warm and cold seasons in the SEUS region. The following conclusions can be drawn 

from this study.  

(a)  Overall, 14992 landfalling ARs were detected (after removing the TCs) from 

1979 to 2019. Compared to the warm seasons, a relatively greater number of AR-

activities were observed during the cold seasons. The maximum (12-15) number of AR 

events per year was reported for the SEUS region's easternmost states. These regions 

experience 11-16 EP95p, and 3-5 EP99p events per year.  
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(b) The higher number of AR-EP events were observed along the northwestern 

coast of the Florida peninsula and south of Georgia. In addition to that, about 3-5 AR-

EP99p and at least 1-2 AR-EP99p events per year are found to occur in the entire eastern 

part of the SEUS region. Seasonal counts of AR-EP event occurrences and average 

precipitation magnitudes showed a pronounced seasonal dependence. Fifty AR-EP95p and 

twelve AR-EP99p events were observed over Georgia, Florida, Alabama, and South 

Carolina during the OND, NDJ, DJF, JFM, FMA, and MAM seasons. Only a few AR-EP 

events (less than 5-10 events) are found to occur during the extended warm season 

months (AMJ to SON) over the entire SEUS region. On the other hand, the average 

precipitation magnitude of the AR-EP95p and AR-EP99p events is found to be relatively 

greater (55-90 mm/day) in the warm seasons.  

(c) The evolution of Z850 anomalies associated with the cold season AR-EP 

events suggested several troughs and ridge formations across much of the Central Plains 

and the Gulf Coastal plains. These regions are characterized by a zone of enhanced 

geostrophic winds indicating highly anomalous weather conditions. On the other hand, 

the warm season anomalies indicated a gradual strengthening of a persistent low-pressure 

system (2 days before the event timings) resembling that of cut-off lows in the region 

(covering much of the Gulf coastal plains) that might trigger enhancement of heavy 

rainfall events in the presence of ARs. The spatiotemporal evolution of the composite 

anomalies in MSLP, associated with the cold season top 100 AR-EP events, exhibited 

strengthening of a pressure dipole with an eastward extension of the Bermuda high- and a 

high-pressure center over the western US.  
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(f) The moisture transport depicted by the composites of the IVT field associated 

with both the cold and warm season AR-EP events are found to mimic the spatiotemporal 

evolution of the MSLP and Z850 composites for the respective seasons. During the cold 

(warm) season, IVT intensity gradually strengthens 2 days (5-days, 2-days) prior to the 

events and steer over the SEUS region, finally moving up to the Atlantic Ocean. 

However, compared to the cold season, the warm season AR-EPs are associated with 

relatively weaker IVT strength. In addition to that, relatively moister conditions were 

found to be associated with the warm season AR-EPs, which is indicated by significantly 

higher TCWV anomalies over the affected region. The marked increase in moisture 

availability is attributed to the slowly varying background circulations that favor deep 

moist convection leading to more severe warm-season EPs in the region [55,67]. Such 

spatiotemporal evolution confirmed the cascading effect of synoptic patterns on the 

moisture availability and mode of advection associated with AR-EP events in the SEUS 

region.  

The results from this study are expected to provide adequate understanding and 

background that will help predict future AR-EP events in the SEUS region. The seasonal 

AR characteristics presented here may be extended further to assess the seasonal water 

cycle influenced by ARs in the region, which can significantly aid in the advanced 

planning and management of water resources related to ARs. The synoptic 

meteorological characteristics discussed in this study can be used as important priors to 

design early warning and management systems related to AR-driven floods in the SEUS. 

Future research will aim to address the uncertainties associated with the detection of ARs 
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in the region [68,69], the impact of other modes of climate variabilities, or if global 

warming plays a significant role in modulating the statistical behavior or time of 

emergence of ARs in the SEUS. The possible impact of monsoon ridges on the 

precipitation variability and its coupling with the large scale climate variabilities [70], or 

the combined impact of occurrence, intensity, and duration of ARs [71] can be examined. 

There is also a need to explore the interplay between the ARs and other physical 

mechanisms such as CAPE [36] and the presence of cut-off lows [60] in a more direct 

fashion that could bridge specific knowledge gaps.  
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CHAPTER VIII 

INVESTIGATING CLIMATE CONTROLS OF GLOBAL FLASH DROUGHTS 

 

1. Introduction  

Drought is a creeping phenomenon that slowly evolves over time and gradually 

spreads over large geographical areas resulting in significant environmental and socio-

economic impacts  [1,2]. However, a substantial number of drought events are 

characterized by rapid intensification over a short period, sustaining over a few days to 

weeks. This rapid intensification is triggered by a complex interaction between sharply 

elevated atmospheric demand, limited soil moisture, and abruptly higher than usual 

temperatures, a phenomenon termed "flash drought" [3–6].  Flash drought events are 

generally unforeseen and difficult to predict, which is why they end up causing 

devastating socio-economic impacts [7–10]. The co-evolution of highly anomalous 

meteorological (e.g., precipitation and temperature) conditions relative to the 

climatological mean and the background state (e.g., aridity) of the region serve as key 

precursors for the onset and propagation of flash droughts [5,11–13]. Besides, the abrupt 

transition from an energy-limited to a water-stressed state [14] can create favorable 

conditions for the onset of these events.  

Recent flash drought-related studies have investigated how the onset and 

propagation of these events are associated with natural climate variability [13,15] or 

anthropogenic warming [16]. In addition to that, few regional studies have also reported 

increased flash drought occurrences and intensification across the humid and transitional 
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(sub-humid, and semi-arid) evaporation regimes [4,10,17–20]. Importantly, these studies 

either rely on the evaporative stress ratio (ESR) [5,21] or the soil moisture estimates 

[15,16] as the key variable to quantify flash droughts. Each of these indicators has its 

limitations and advantages [22,23]. While the evaporative stress ratio directly 

incorporates the near-surface state variables, the soil moisture-based indicators are more 

relevant for monitoring the direct impact on vegetation [5,12,22,24]. In the light of such 

diversification and the need for robust assessment, it is essential to investigate global 

flash drought characteristics based on these two unique indicators simultaneously.  

Furthermore, climate anomalies and surface energy fluxes significantly control 

the hydrological cycle and global water-availability [25–29]. Nevertheless, so far, the 

response of global flash droughts to such controls remains unclear. Moreover, previous 

studies focused on a subset of flash drought characteristics over confined locations. As 

such, very limited information about the effect of different climatic conditions on the 

evolution of flash drought characteristics is so far available. This provides a unique 

opportunity to investigate the development of global flash drought characteristics (e.g., 

frequency and intensification) in different climate regions (e.g., arid, semi-arid, sub-

humid, humid) in response to the climate controls and land-climate interactions, neither 

of which is explicitly nor sufficiently reported in the literature.  

The above discussion highlights the limitations in flash drought research 

regarding the robustness of flash drought indices, climate controls, and the lack of 

quantitative assessments for the rapid intensification of these events. Overall, we aim to 
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answer the following questions to further enhance the scientific understanding of the 

climate vs. flash drought dynamics globally.  

1. What are the global hotspots of most frequent flash droughts that are consistent across 

two diverse indicators applied simultaneously?  

2. What is the effect of surface energy partitioning on the evolution of FD characteristics 

(frequency and intensity) and how ESR and root-zone soil moisture (RZSM) vary across 

different evaporation regimes (arid, semi-arid, sub-humid, and humid)?  

3. How do the climate controls that trigger FD evolution, vary globally?  

4. What are the most dominant climate precursors associated with Flash drought intensity 

and how does the intensity change in response to these climate anomalies in different 

evaporation regimes of the globe?   

The results are compared based on two commonly used flash drought indices 

derived separately from the pentad mean evaporative stress ratio (ESR;[18]), and the 

root-zone soil moisture (RZSM; [16]) using data from the Global Land and Evaporation 

Amsterdam Model (GLEAM; [30]), European Centre for Medium-Range Weather 

Forecasts Reanalysis 5 (ERA5), and Modern-Era Retrospective Analysis for Research 

and Applications, Version 2 (MERRA2). The simultaneous implementation of two 

diverse indicators is expected to highlight consistency in results and demonstrate robust 

associations between flash drought characteristics and climatic conditions. This study 

performed a quantitative analysis to explore the potential linkages between climate 

controls, surface energy partitioning, and soil moisture-temperature coupling with the 

onset, evolution, and speed (i.e., intensity) of flash drought events globally. Our findings 
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suggest varying and contrasting climate controls on the development of flash drought 

characteristics. This can be attributed to varying response of rapidly intensifying 

atmospheric moisture demand and soil moisture depletion rates to the transition between 

energy-limited and water-limited conditions. 

 

2. Methodology 

2.1. Flash Drought Identification 

Flash droughts are characterized by the rapid intensification of drought conditions 

over a short period. In this study, flash drought events are identified based on two 

different methodologies, (1) based on ESR (FDESR) proposed by [18] and (2) based on 

RZSM (FDRZSM) proposed by [22] as discussed below. 

 

(1) FDESR Detection Methodology  

This methodology relies upon the concept of evaporative stress ratio (ESR), 

which is calculated based on the ratio between actual evaporation (AE) and potential 

evaporation (PE) as,  

AEESR
PE

=                               (1) 

where ESR ranges from zero to approximately one, such that ESR approaching zero 

indicates a very high atmospheric demand for evaporation that is hardly met by the 

available soil moisture, thus, implying the presence of very high evaporative stress on the 

environment and vice versa. Daily  ESR was calculated for the period 1980 to 2018 using 

global gridded daily AE and PE dataset obtained from the three different data sources, 



 

 297 

third version of the Global Land and Evaporation Amsterdam Model (GLEAM v3.3a; 

[30]) available at https://www.gleam.eu/, European Centre for Medium-Range Weather 

Forecasts Reanalysis 5 (ERA5), and Modern-Era Retrospective Analysis for Research 

and Applications, Version 2 (MERRA2). The GLEAM v3.3a dataset spans between 1980 

and 2018 and is available daily for every 0.25º x 0.25º pixels globally. This daily 

evaporation dataset, provided by GLEAM, is generated based on the Priestley and Taylor 

(PT) evaporation model. The GLEAM uses various satellite-sensor products to provide 

relatively more accurate land surface evaporation estimates compared to other satellite- 

and model-based evaporation models [31,32]. On the other hand, the ERA5 (MERRA2) 

datasets are available at 0.25º x 0.25º (0.5° × 0.625°) pixels. To maintain consistency, all 

datasets were regridded to a common 0.5x0.5º grid resolution using a bilinear 

interpolation scheme. Note that the daily PE data is not available directly from 

MERRA2. Therefore, PE based on MERRA2 data was calculated separately using the 

Priestley and Taylor (PT) evaporation model (see A3. of Supplementary) to maintain 

consistency with the PE data provided by GLEAM. 

The standardized ESR (SESR) values are used to identify flash droughts at the 

pentad scale. Mean pentad values of ESR were calculated and then standardized for each 

grid point as [18], 

ijp

ijp ijp
ijp

ESR

ESR ESR
SESR



−
=                            (2) 

where ijpSESR  (hereafter referred to as SESR) is the z score of the ESR at a specific grid 

point (i, j) for a specific pentad p, ijpESR  is the mean ESR at a particular grid point (i, j) 
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for a specific pentad p for all years available in the gridded dataset (here, from 1980 to 

2018), and 
ijpESR  is the standard deviation.  

Subsequently, the temporal change in SESR was calculated and standardized as, 

( )
ijp

ijp ijp
ijp

SESR

SESR SESR
SESR



 −
 =            (3) 

where ( )ijp zSESR  (hereafter referred to as SESR ) is the z score of the change in SESR 

at a specific grid point (i, j) for a particular pentad p for all years available in the gridded 

dataset, and 
ijpSESR   is the standard deviation. The SESR and SESR  magnitudes are 

finally applied to identify the flash drought events following a set of criteria and estimate 

the intensity of those events worldwide. A detailed explanation of the applied flash 

drought identification criteria and calculation of flash drought intensity is provided in 

Appendix F.1., and F.2., respectively, of the supplementary. 

The standardized values can easily compare the evaporative stress between 

regions as well as evaporation regimes. Besides, SESR can be useful for robust 

comparison over multiple years and during the growing season for agricultural 

applications. It is further necessary to note that flash droughts can be identified in 

different ways [5,16]. The ESR based analysis has a key advantage as it directly 

incorporates the near-surface state variables (e.g., air temperature, wind speed, vapor 

pressure deficit, latent and sensible heat fluxes, soil moisture, precipitation, and 

shortwave radiation), which are crucial for capturing the onset, intensification, and end of 

flash drought [5,18].  
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(2) FDRZSM Detection Methodology  

The FDRZSM events are derived based on existing methodology [16] that combines 

the criteria of rapid decline in RZSM and dry persistency. In this methodology, the 

detection of FDRZSM is employed based on the following three criteria[16]: 

(i) The pentad mean RZSM decreases from above 40th percentile to 20th percentile, with 

an average decline rate of not more than 5% in RZSM percentiles for each pentad.  

(ii) The FD is considered to have terminated if the declined RZSM rises up to 20th 

percentile again. These two criteria determine the onset and termination stages of a flash 

drought event. 

(iii) The drought should last for at least 4 pentads (20 days), a slight modification of the 

existing methodology[16] (3 pentads) to match with the FD persistency criteria applied 

for the detection of FDESR events.  

The key advantage of this methodology lies in its ability to capture rapid changes 

in drying with direct relevance to vegetation health and high sensitivity towards the 

termination of drought events from rain. However, the existing methodology does not 

provide a metric for calculating the FD intensity. To calculate the FDRZSM intensity, we 

applied a new criterion with slight modification to the existing methodology:  

(iv) The mean change in RZSM percentiles during the entire duration of the flash drought 

must be less than 25th percentile of the climatological changes in RZSM for that grid 

point and time of year. The FDRZSM intensity is then calculated as the mean change in 

RZSM percentiles during the entire FD duration.  
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This methodology of calculating the FDRZSM intensity is analogous to that used 

for calculating the FDESR intensity (see A2 of Supplementary). Therefore, a unique 

classification scheme could be applied for both metrics, as illustrated in Table S1. To 

assess data-related inconsistencies, the FDRZSM detection methodology[16] is applied to 

RZSM data obtained from three different datasets, GLEAM, ERA5, and MERRA2, 

separately. 

 

2.2. Estimation of Aridity Index 

We used the classification adopted by UNEP & Thomas, 1992, which uses the 

aridity index (AI) to classify the globe into different evaporation regimes: hyper-arid, 

arid, semi-arid, sub-humid and humid regimes [34,35]. The ranges of aridity values [34] 

for these five climatic regimes are illustrated in Table S1. The AI was estimated as a ratio 

between the annual mean precipitation and PE for 1980-2018. The mean annual 

precipitation was calculated using daily total precipitation from the ERA5, whereas the 

annual mean PE was calculated using the daily PE obtained from the GLEAM v3.3a. 

These regimes are classified based on the Aridity Index (AI) (Methods), which is derived 

based on the ratio between climatological mean annual precipitation and potential 

evaporation across the globe. The AI classification used in the study is demonstrated in 

Table S2, and the locations of the regimes are illustrated in the spatial map shown in Fig 

S2(c).  
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2.3. Estimation of Vapor Pressure Deficit 

Two reanalysis datasets, ERA5 and MERRA2 were used separately to calculate 

the vapor pressure deficit (VPD) for the globe. The VPD estimation based on different 

variables is given as[36], 
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=                                               (4) 

where, AVP is the actual vapor pressure and Td is the dew point temperature (ºC),  
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a
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T
T
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where, SVP is the saturation vapor pressure (kPa), and Ta is the daily mean 2m air 

temperature (ºC), and fw is given as,  

                                              4 61 7 10 3.46 10w surff P− −= +  +                                  (6) 

where, Psurf is the surface pressure in (hPa). 

Finally, VPD is calculated as, 

                                                        VPD AVP SVP= −                                            (7) 

  

2.4. Estimation of Soil Moisture-Temperature Coupling Strength 

To assess the role of land-atmosphere feedback loops on flash drought onset and 

intensity, we calculated the strength of soil moisture-temperature coupling during the 

event days using the π diagnostic proposed by [37] To assess the role of land-atmospheric 

feedback on flash drought onset and intensity we estimate the strength of soil moisture‐

temperature coupling by using the diagnostic π proposed by [37]. The diagnostic π is 

calculated as follows:  
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                                                                 pi e T =                                                                   

(8) 

                                                    ( ) ( )n ne R AE R PE   = −  − −                                          

(9) 

where Rn, AE, PE, and λ are the surface net radiation, actual evaporation, potential 

evaporation, and latent heat of vaporization, respectively. AE, PE, and Rn are obtained 

from ERA5, and MERRA2 dataset. Note that Rn data is not available directly from the 

MERRA2 dataset, and therefore, calculated separately as the sum of shortwave net 

radiation and longwave net radiation[38] data obtained from MERRA2. T is the daily 

temperature anomaly derived by using gridded daily maximum temperature data obtained 

from the ERA5, and MERRA2, separately. The primes in Equations (4) and (5) represent 

the z-score for each variable expressed as the number of standard deviations relative to 

the climatological mean. This framework captures the effect of soil moisture deficits 

(denoted by e) on the energy balance. When soil moisture is not a limiting factor (as in 

the case of humid regions), the actual evaporation equals the potential evaporation, and e 

takes up a value equal to zero. In general, the values of pi range from 0 to 1; as such, a 

higher value indicates a stronger positive coupling between soil-moisture and 

temperature. This framework is applied in the previous study to investigate the response 

of land atmospheric feedback on heatwaves and drought [39,40]. 
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2.5. Determining the Variable Importance using Random Forest Algorithm 

Random Forest (RF) is a powerful Machine Learning algorithm that works on 

ensemble learning method for classification and regression trees[41]. RF models have 

been extensively used for drought monitoring and forecasting studies[42–46], and have 

similar performance as some of the best-supervised learning algorithms. We used the RF 

model to evaluate the order of variable importance due to the high accuracy of the 

algorithm and because it avoids overfitting and efficiently deals with multicollinearity.  

The order of variable importance in a RF model is determined based on the 

percentage increase in mean squared error (%IncMSE) of prediction corresponding to 

each predictor variable. The %IncMSE is considered as the most robust and informative 

measure for feature selection in a RF model. The %IncMSE in error of prediction is 

estimated with out-of-bag-cross validation as a result of a given variable being randomly 

shuffled. Therefore, the higher the %IncMSE, the higher is the importance of the 

predictor variable. The number of independent trees (in our case 500) are selected based 

on trace plots (not shown) of the %MSE.  In our analysis, the RF model is employed for 

each evaporation regime, separately, with the yearly mean FD intensity as the decision 

variable, and corresponding lagged (0, 1, 2 pentads) yearly mean of standardized 

anomalies of Pr, Tmax, VPD, and pi as the predictors.    

 

2.6. Estimating Sensitivity of FD Intensity to Climate Variables 

Sensitivity of FD intensity was determined based on a multivariate regression 

model employed for each evaporation regime, separately. The same dependent variable 



 

 304 

(FD intensity in percentiles) and lagged (by 0, 1, and 2 pentads) predictor variables, used 

in the RF model, are used in the regression model given as, 

2 2 2 2

0 0 0 0
Pr maxLn Ln Ln Ln Ln Ln Ln Ln

n n n n
Intensity T VPD pi c   

= = = =

   = + + + +                               

(10) 

where, Pr , max , ,T VPD pi    are the yearly mean of pentad standardized anomalies 

calculated for n = 0, 1, and 2 pentad lags (denoted as L0, L1, and L2 in Eq 10); 

, , , and     are the regression coefficients, which define the sensitivity of yearly 

mean of FD intensity to changes in each predictor variable, and c is the intercept term. 

Note that the regression model is employed for each evaporation regime, separately. The 

regression model's yearly predictor and dependent variables are first calculated for 

independent grid locations and then selected from across all grid cells within a given 

evaporation regime. To handle multicollinearity issues, a penalized regression technique, 

least absolute shrinkage and selection operator (LASSO) regression[47], was applied. 

LASSO uses the sum of the absolute values that is called taxicab or Manhattan 

distance[47,48] and deals with multicollinearity among the predictors by shrinking some 

coefficients and setting others to 0.  

3. Results  

3.1. Hotspots of FD Frequency and Effect of Surface Energy Partitioning  

We investigated global hotspots of FD frequency and influence of available 

surface energy partitioning on the FD events and their intensities (Fig1). Two distinct 

types of flash drought events were analyzed in this study based on existing 



 

 305 

methodologies[16,18]. While one method uses pentad mean ESR (referred to as 

FDESR)[18], the other uses pentad mean RZSM (referred to as FDRZSM)[16] to detect FD 

events. A detailed explanation of the FD detection procedure is provided in the Methods 

section. FD intensity was calculated and subsequently classified into moderate to 

exceptional category[18] (Table S1) as discussed in Methods and Appendix F.2 

(Supplementary file). The flash drought events that exhibit moderate to exceptional 

intensity, capable of causing significant socio-economic losses, are considered in the 

analysis. The influence of surface energy partitioning was investigated based on the 

aridity index (AI) calculated using the mean annual Pr and PET derived from the ERA5 

and GLEAM datasets, respectively (see Methods).  

 

3.1.1. Hotspots of FD frequency 

Hotspots of FD frequency were determined by calculating the percentage of years 

that experienced at least one flash drought event in the 1980-2018 period. Any location 

with more than 40-50% of years witnessing an event in both indicators (FDESR, and 

FDRZSM) is considered a hotspot of FD frequency. The FD frequency hotspots were 

analyzed and compared between multiple data sources, GLEAM (Fig 1(a, b)), ERA5, and 

MERRA2 (Fig S1), to improve the robustness of the analysis. Using the GLEAM data 

sets, both FDESR, and FDRZSM show consistent hotspot locations of high flash drought 

frequency across many global regions (Fig 1(a-b)). For example, more than 40-50% of 

flash drought years are apparent in many parts of Asia, including peninsular India, Tibet, 

and China, west and east Africa, central and central North America, the Mediterranean, 
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and east-central parts of the Amazon basin and Brazil (Fig 1(a-b)). The higher flash 

drought frequency, particularly in the Great Lakes Region, western North America, and 

Southeastern China, matches well with the regional patterns reported in previous studies 

[13,18,21,49]. However, the FDESR, and FDRZSM frequency hotspots vary substantially in 

the ERA5 and MERRA2 datasets, mainly across the mid-latitude regions (Fig S1). Such 

uncertainties can result from disparities in land-surface models and data assimilation 

techniques applied in the MERRA2 and ERA5[50–52] datasets.  

  

3.1.2. Effect of Surface Energy Partitioning 

The association between the number of flash drought occurrences and intensity 

with the surface energy partitioning is examined for different evaporation regimes. The 

FD events derived from the GLEAM dataset are used in this analysis, as they show 

similar spatial patterns between FDESR and FDRZSM frequency (Fig 1(a-b)).  The effect of 

surface energy portioning on the number of FD occurrences is examined based on 

contour plots (Fig 1(c-d)) showing the total number of FDESR, and FDRZSM events binned 

as a function of the climatological mean of annual Pr (Fig S2(a)) and PET (Fig S2(b)) for 

the 1980–2018 period across the globe (0.5ºx0.5º pixels). These contour plots provide a 

meaningful association between them. Both the FD metrics (FDESR and FDRZSM) indicate 

a relatively higher number of events for regions with climatological daily precipitation of 

less than 1 mm and PET more than 0.5-3 mm (Fig 1(c-d), and Fig S2(a-b)). About 2000-

5000 FDESR, and FDRZSM events occurred in those regions implying strong influence of 

available surface energy partitioning on rapid changes in RZSM and evaporative stress.  
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Naturally, precipitation variability[29] and atmospheric evaporative demand play 

an important role in the evolution of drought intensity[53–55]. However, these 

associations are usually complex due to the varying control of surface energy partitioning 

on terrestrial evaporation across the different evaporation regimes (arid, semi-arid, sub-

humid, and humid; Fig S2(c))[55]. While evaporation in water-limited regimes (arid and 

semi-arid) is more sensitive to precipitation and soil moisture changes, a more prominent 

effect associated with changes in temperature (or incoming surface radiation) is found for 

energy-limited regimes (humid and sub-humid). Furthermore, investigating how RZSM, 

and ESR covary in the two FD definitions across these regimes is necessary to establish a 

more robust understanding of the association between surface energy partitioning and FD 

intensity. We investigate these associations by dividing the global regions into four 

different evaporation regimes, arid, semi-arid, sub-humid, and humid, and then examine 

the FD intensities across these regimes. For a given regime, we calculated the bivariate 

density between FDRZSM (FDESR) intensity and mean of pentad-to-pentad changes in 

SESR (% change in RZSM percentiles) for each FD event, detected within the regime, 

using the GLEAM dataset. The bivariate densities are illustrated by shaded contours in 

Fig 1(e-f).  A higher density represented by the shaded contours indicates a greater 

number of flash drought occurrences within an intensity range (y-axis) conditioned on 

relative change in RZSM or SESR (represented in the x-axis).   
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Figure 1 Hotspots of FD Frequency and Effect of Available Surface Energy Partitioning 

(a-b) spatial map showing the percent of FDESR, and FDRZSM years between 1980 and 

2018 in the GLEAM dataset, (c-d) contour plots showing the total number of (c) FDESR 

and (d) FDRZSM events binned as a function of the climatological mean of yearly average 

precipitation (in mm/day/year) and PET (in mm/day/year) for the global 0.5x0.5º pixels, 

(e) contour plots showing the bivariate probability densities of  FD intensity and (%) 
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change in RZSM (δRZSM (%)) calculated specific to all FDESR events between 1980 and 

2018 over the arid, semi-arid, sub-humid, and humid regions, and (f) same as in (e) but 

for FD intensity and change in SESR calculated specific to all FDRZSM events. 

 

FDESR intensity shows the strongest coupling with relatively higher RZSM 

depletion rates in the arid regions (Fig 1e). The contour of the strongest coupling shifts 

gradually from arid to humid conditions, where a relatively slower rate of RZSM 

depletion is coupled with the FDESR intensity. A very similar dependence structure is 

noted between FDRZSM event intensity and changes in SESR as they shift from dry to wet 

regimes (Fig 1f). However, almost no change in SESR (δSESR) is noticed for humid 

regions corresponding to the FDRZSM events, suggesting a de-coupling between the 

atmospheric evaporative stress and RZSM anomalies within the FD duration. This de-

coupling behavior can result from asynchronous changes in RZSM and atmospheric 

demand in humid regions. Such out-of-phase associations are linked to higher initial 

RZSM conditions and  extended memory of soil-moisture in wet conditions[56].  

 

3.3. Climate Controls Associated with Onset and Evolution of Flash droughts  

Droughts are primarily triggered by climatic perturbations such as abnormal 

precipitation and temperature variations[28,29,57], atmospheric evaporative demand[54], 

and positive land-atmospheric feedback loops[37,39,58]. These climate fluctuations are a 

sub-set of anticyclonic conditions that inhibit low-level moisture convergences[59] at 

different spatial and temporal scales. The climate anomalies often have a cascading effect 
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on the rapid intensification of evaporative stress and soil moisture depletion leading to 

more favorable conditions for the onset and propagation of flash droughts. We investigate 

these associations in the context of onset and evolution of each FD event for every 

0.5⁰x0.5⁰ grid cell.  

We selected pentad mean of daily total precipitation (Pr), maximum 2m air 

temperature (Tmax), vapour pressure deficit (VPD), and soil-temperature coupling 

strength (pi)[14,37] up to four lagged pentads, and three pentads after the FD onset. The 

standardized anomalies of each of these variables are derived with respect to their 

climatological pentad mean (for the 1980-2018 period). The procedures followed for 

calculating VPD and pi are discussed in Methods. These climate variables are obtained 

from two different reanalysis datasets, ERA5 and MERRA2, to improve the robustness of 

the results. The total counts of FDESR, and FDRZSM events are calculated at each pixel 

(0.5⁰x0.5⁰) and subsequently binned as a function of the standardized anomalies of each 

variable corresponding to the selected pentads as illustrated by 2D-contour plots in Fig 2 

and Fig S3. Spatial maps in Fig S4-S7 illustrate the spatial distribution of mean of these 

standardized anomalies corresponding to the selected pentads.  

The 2D-contour plots suggest a distinct types of association between the climate 

anomalies and FD onset and propagation in the two definitions. For example, the 2D-

contour plots in Fig 2(a-d) and Fig S3(a-d) suggest that for the majority of FDESR events, 

the climate anomalies and ESR anomalies intensify at the same time as the FD evolves. 

The magnitude of the anomalies corresponding to the maximum number of (about 5000) 

FDESR events is observed to increase (or decrease in case of Pr) continuously from one 
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pentad before the FD onset and reaches the peak (lowest) magnitude after 3 pentads from 

the FD onset. In contrast, the climate anomalies corresponding to the majority of the 

FDRZSM events increase (or decrease in case of Pr) continuously two pentads before the 

FD onset, and reaches the peak (lowest) magnitude after 1 pentad of the FD onset, and 

thereafter decreases (increases for Pr) again (Fig 2(e-h), and Fig S3(e-h)). This behavior 

is consistent in all the selected climate variables, Pr, Tmax, VPD, and pi, in ERA5 and 

MERRA2 datasets, which is also reflected in the spatial maps shown in Fig S4-S5, and 

Fig S6-S7 for FDESR and FDRZSM, respectively.  

 

Figure 2 Climate controls associated with onset and evolution of flash droughts (a) 

contour plots illustrating the total number of FDESR events binned as a function of 
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standardized Pr anomalies (y-axis) for 1st, 2nd, 3rd, and 4th pentad before (denoted by -4 to 

-1 in the x-axis) and 1st, 2nd, and 3rd pentad after (denoted by 1 to 3 in the x-axis) the 

onset of FD events (denoted by 0 in the x-axis), (b-h) same as in (a) but for standardized 

anomalies of (b) Tmax, (c) VPD, and (d) pi, (e-h) same as in (a-d) but for the 

standardized anomalies corresponding to the FDRZSM events. Spatial maps in (a-d) and (e-

h) illustrate the mean of standardized anomalies of the climate variables for the 3rd and 

1st pentad after the onset of the FDESR and FDRZSM events.  

Overall, these results suggest that while the onset and evolution of FDESR show 

simultaneous development with changes in climate anomalies, a delayed or cascading 

effect of such climate anomalies is noted on the onset and evolution of FDRZSM. Our 

results are in close agreement with regional studies that suggest a similar sptio-temporal 

pattern of climatic forcings specific to FD onset and evolution[3,7]. This disparate 

behavior underscores the effect of soil-moisture memory [56]. Past studies have 

highlighted the role of soil-moisture memory as a key variable that controls the land-

atmospheric feedbacks contributing to the state and temporal variation in 

droughts[56,60,61]. For most regions, soil moisture tends to have a more extended 

memory which causes a delayed response of RZSM anomalies to climatic changes.  

 

3.4. Relative Importance of Climate Controls on Flash Drought Intensity  

The possible mechanisms responsible for the intensification of drought can be 

complex and potentially dependent on the background aridity and type of evaporation 

(energy or water-limited) regime[62–64]. Furthermore, transient evaporation regimes 
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(sub-humid and semi-arid) have distinct surface energy partitioning that affects soil 

evaporation in the energy-limited and water-limited regions with varying complexity[65]. 

Therefore, the most dominating driver of FD intensity is likely to vary significantly over 

the different evaporation regimes. Consequently, it is important to identify the key 

climatic precursors that contribute significantly to the variation of FD intensity  in a given 

climate regime. In addition to that, the influence of these precursors often show a 

dynamic behavior varying from one state to another.  

We used a machine learning-based random forest (RF) algorithm[42–46] to 

quantify the climate controls of FDESR (FDRZSM) intensity in different climate regions (see 

Methods). The gridded FD intensities within each evaporation regime are selected in the 

RF model development. The annual time series of mean FD intensity is derived for all the 

individual grids, and then pooled together from all the grids within a given evaporation 

regime to be used as the RF model's predictand.  The climate-controlled variables, such 

as standardized anomalies of Pr, Tmax, VPD, and pi for zero, 1, and 2 pentad lags 

(hereafter referred to as L0, L1, and L2) specific to each FD event onsets are used as 

predictors in the RF model. The importance of climate variables is determined based on 

the percentage increase in mean squared error (%IncMSE) of prediction of the RF model 

corresponding to each predictor variable (see Methods). A higher magnitude of 

%IncMSE indicates relatively higher importance of the predictor variable. The %IncMSE 

for all predictor variables is calculated using both ESR and MERRA2 datasets 

corresponding to the FDESR and FDRZSM intensity, as illustrated in Fig 3.  
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A dominant influence of Pr(L1) anomalies based on both ERA5 and MERRA2 on 

the interannual variation of FDESR intensity is noted in the humid regimes (Fig 3(a-b)). In 

contrast, pi(L1) show the most dominant control over interannual variation of FDESR 

intensity for the sub-humid regimes, which is also consistent in both ERA5 and 

MERRA2 dataset. This can be explained by the higher transferability of soil temperature 

memory into atmospheric persistence in transitional regimes, which significantly affects 

drying rates [66].  
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Figure 3 Relative importance of climate controls on flash drought intensity (a-d) bar-plots 

showing the order of relative importance of climate variables influencing the inter-annual 

variation of (a-b) FDESR, and (c-d) FDRZSM intensity for the different evaporation regimes. 

Note that both FDESR and FDRZSM are calculated base on the GLEAM dataset, whereas 

the climate anomalies are calculated based on the (a, and c) ERA5 and (b, and d) 

MERRA2 datasets. 

 

For FDRZSM, the interannual variation of the FD intensity is dominated by 

Tmax(L1) changes in both arid and semi-arid regions based on ERA5 and MERRA2 

datasets. On the other hand, Tmax(L0) shows the most dominant control over the humid 

regimes, consistent across the two datasets. However, some disparities arising from using 

different data sources can be noted in the case of FDESR in the arid and semi-arid regimes 

and FDRZSM in the sub-humid regimes. For example, based on ERA5, the most dominant 

control on interannual variation of FDESR intensity in arid, and semi-arid regions are 

exhibited by Pr(L2) and Pr(L1), respectively. On the other hand, based on the MERRA2 

dataset, VPD(L2) and pi(L1) have the strongest influence in these regimes. Similarly, 

based on the ERA5 dataset, Pr(L0) has the strongest control in sub-humid regime, 

whereas, based on MERRA2, Tmax(L0) shows the most dominant control on interannual 

variation of FDRZSM intensity.  
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3.5. Sensitivity of Flash Drought Intensity to Climate Variables 

The sensitivity of FD intensity is evaluated by comparing the relative changes of 

FDESR and FDRZSM intensity with respect to the changes in the climate variables (Pr, 

Tmax, VPD, and pi).  We applied a penalized regression approach based on the Least 

Absolute Shrinkage, and Selection Operator (LASSO) technique57 to both the data sets 

(ERA5 and MERRA2). The same dependent and lagged predictors implemented in the 

RF algorithm are employed in the LASSO regression model for the different evaporation 

regimes (see Eq. 10 in Methods). The LASSO algorithm efficiently handles 

multicollinearity issues in lagged variables by shrinking some coefficients and setting 

others to zero [47,48]. Once the regression coefficients are evaluated for a given regime, 

changes in FD intensity are calculated relative to changes in the standardized anomalies 

of the climate variables (see Methods). These changes are represented by linear plots, as 

shown in Fig 4 and Fig S8. 
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Figure 4 Sensitivity of flash drought intensity to climate variables (a-d) line plots 

showing the sensitivity of FDESR and (e-h) FDRZSM intensity to changes in standardized 

anomalies of climate variables based on ERA5 dataset and calculated for 0, 1, and 2 

pentad lags (denoted as L0, L1, and L2) for the different evaporation regimes.  
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FDESR and FDRZSM intensity in most regimes show a higher sensitivity to changes 

in Pr and Tmax, which supports the relatively greater dominance of these two climatic 

forcings suggested in the previous analyses (Fig 3). More interestingly, a contrasting 

response of FDESR and FDRZSM intensity to changes in the Pr(L0), Pr(L1), and Pr(L2) is 

notable between the arid and humid regions in both ERA5 (Fig 4(a, d)) and MERRA2 

(Fig S8(a, d)) datasets. With the decrease in precipitation, the FDESR and FDRZSM events 

are found to speed up more (i.e., FD intensity increases) in the humid regions. In contrast, 

the FD intensity is found to decrease in the arid regions. A similar response of FDESR and 

FDRZSM intensity to changes in Tmax(L1), Tmax(L0), and pi(L0) is observed in both 

datasets. The sensitivity of FDRZSM intensity to changes in pi(L0), Tmax(L1), and 

Tmax(L0) are found to increase continuously with the transition from arid to humid 

regions, as indicated by the positive increase in the slope of the lines in Fig 4 and Fig S8. 

On the other hand, FDESR intensity response to pi(L0) changes is diametrically opposite 

for the arid and humid regimes. Such contrasting climate controls are strongly linked to 

the difference in the variation of ecosystem functions, such as water-use-efficiency, that 

are primarily governed by distinct surface energy partitioning in the arid (water-limited) 

and humid (energy-limited) ecosystems [67,68].   

 

4. Discussion and Conclusion 

Our analyses provide evidence that climate variables, such as precipitation, 

temperature, vapor pressure deficit, and soil-moisture temperature coupling have varying 

and contrasting control over flash drought onset, evolution, and intensity. The varying 
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nature of climate control appears to be plausibly connected to the surface energy 

partitioning that defines the background state of climate aridity[37], which is found to be 

consistent across different data sources. 

We found asynchronous changes in RZSM and evaporative stress during the FD 

durations, primarily driven by the difference in initial RZSM conditions and more 

extended memory of soil moisture in wetter regimes[56,60,61]. While the effect of 

climate variables on rapid intensification of evaporative stress occurs simultaneously, a 

cascading (time-delayed) climatic impact on the RZSM depletion is observed during the 

evolution of FDs.  

Using a quantitative assessment framework, we conclude that precipitation and 

temperature anomalies have dominant and contrasting control over FD intensity across 

the arid and humid regimes. This assessment further reinforces the trade-off between 

water availability and energy supply as a limiting factor for evaporation across different 

ecosystems. Nevertheless, the role of (precipitation) temperature is more dominant in 

regulating (increase in evaporative stress) RZSM depletion rates within the FD duration. 

Land-atmospheric feedback strength is found to have relatively more influence on FD 

intensity in the sub-humid regions.  

Overall, the results will strengthen our perspective on flash droughts by 

improving our understanding of the underlying physical processes and essential 

predictors across different ecosystems. The findings can be further extended to explore 

the potential influence of coupled changes in magnitude and seasonality of climate 

variables[69] and develop suitable forecasting tools to provide early warnings [12] across 
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the flash drought hotspots. By comparing two different flash drought definitions and 

using multiple datasets, the results from the study are expected to provide a broad and 

robust understanding of flash drought mechanisms and drivers globally. This is 

particularly important to highlight the advantages and limitations of the available flash 

drought definitions used by researchers and stakeholders [4,5,11,18,70]. The new 

information gained in this study can be further extended to investigate the causal linkages 

of soil moisture memory length, vegetation fluxes, and water use efficiency with FD 

characteristics across different ecosystems. 
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CHAPTER IX 

A CASCADE MODEL TO QUANTIFY COMPOUND AND CASCADING EFFECTS 

IN A DRY-HOT EVENT NETWORK 

 

1. Introduction 

Compound dry and hot events have received much attention in recent years due to 

their increasing impacts on agriculture, ecosystem, health, and energy [1–8]. For 

example, the 2012 summer in the central U.S., one of the unprecedented dry and hot year, 

caused huge economic losses of about $30 billion [9]. The compound dry and hot 

extremes that affected Europe and Russia during the summer of 2003 and 2010 are 

among the most hazardous compound events[10,11] that led to massive socio-economic 

impacts, including around 40,000 deaths[12], 25% loss of annual crop-yield[13], and 

extensive forest fires[4,14,15]. In order to reduce the associated potential impacts, it is 

important to understand the dependencies among dry-hot events using network and 

dynamic system tools, that can aid in accurate prediction and early-warning systems. 

Dry-hot event is generally characterized by precipitation deficit that translate into 

soil-moisture depletion and positive temperature anomaly across a wide range of spatial 

and temporal scales. Like any other interconnected hazards[16], the physical processes 

that cause dry-hot events are interrelated[2], and therefore, have a cascading influence on 

each other. Although, some retrospective[17] and empirical approaches[2,18,19] have 

been applied to understand how these events will propagate as cascades across the 

ecosystem, the extent, scope, and temporal scale of their causal interactions are not yet 
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well understood. Furthermore, so far most studies do not account for the effect of other 

dependent variables while measuring the associations between inter-connected events, 

which may lead to spurious relationships and endogeneity[20]. 

We use this unique opportunity to assess the casual interaction between dry-hot 

events across the globe using a probabilistic framework motivated by a system dynamics 

approach[21–25]. We design two independent cross-scale (temporal) interaction 

networks[21,24] of compound and cascading dry-hot events based on daily root-zone-

soil-moisture (RZSM) and maximum 2m air temperature (Tmax) anomalies for each 

location across the globe. The daily dry and hot events are considered as nodes of the 

network. These nodes are cross-linked at intervals of time lags ranging from zero to a 

week to investigate the non-linear dynamic causal effect of drying on heating and vice-

versa. The compound and cascading effects are then quantified for each temporal 

network as (marginal) casual measures of association between exposure (dry or hot 

event) and outcome (dry or hot event) conditioned on a set of confounders 

(meteorological anomalies). This methodology is implemented by applying a 

standardized logistic regression approach[26] centered on the concept of counterfactual 

probabilities (see Methods), one of the cornerstones in the modern theory of causal 

inference[22,23,26,27]. The main advantage of this methodology lies in its ability to 

robustly estimate the marginal measures of associations, by isolating the main effect of 

exposure on the outcome variable, accounting for all other dependent variables as 

confounders[26]. Figure 1 illustrates the directed acyclic graphs representing the dynamic 
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system, the adopted cross-scale temporal interaction network for the dry-hot events, and 

the selected exposure, outcome, and confounder variables.  

In this study, using daily RZSM data from GLEAM, and daily meteorological 

variables derived from the European Centre for Medium‐Range Weather Forecasts 

Reanalysis 5 (ERA5), we aim to answer the following questions. 

(i) What are the hotspots of compound and cascading dry-hot and hot-dry events across 

the globe? 

(ii)  How does the meteorological variables (or confounders) influence compound and 

cascading effects of drying on heating, and heating on drying in the hot-dry and dry-hot 

event network, respectively? 

(iii) What is the role of background aridity in influencing these compound and cascading 

effects in the dry-hot and hot-dry event network?  

The results from the study highlight the global hotspots where the compound and 

cascading effects of drying on heating and vice versa, is alarmingly higher, and 

characterize their scale of interaction which is likely to aid in risk reduction from crop-

yield losses, wildfires, and water scarcity across the globe. The underlying mechanisms 

are also investigated through exploring the potential influence of meteorological 

anomalies and the role of surface energy partitioning on the causal linkages between 

terrestrial drying and heating. Our findings suggest more prominent causal effect of 

drying on heating as compared to that of heating on drying, which is relatively more 

amplified in the transitional regimes. Overall, the study provides meaningful priors for 

further research on the role of soil-moisture memory as a key contributor in determining 
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the nature and scale of interaction between dry and hot events across different 

ecosystems.   

 

Figure 1 Compound and cascade model framework: (a) directed acyclic graph 

representing the dynamical system, and  XY event network depicting the exposure and 

outcome variables (denoted by the binary sequency, XtYt+T) and the association with the 
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confounder, Z, (c) timeseries depicting association between global mean daily 

climatology of soil moisture (SM), maximum 2m air temperature (Tmax), and the 

confounder variables, total precipitation (Pr), total potential evaporation (PE), total actual 

evaporation (E), vapor pressure deficit (VPD), and surface net radiation (Rn) for 1980-

2018 period.  

 

2. Methodology 

2.1. Data 

In this study, global gridded daily root-zone soil moisture (RZSM), actual 

evaporation (E), and potential evaporation (PET) is obtained for the period, 1980-

2018 from the third version of the Global Land and Evaporation Amsterdam Model 

(GLEAM v3.3a; [28]) available at https://www.gleam.eu/.  Daily total precipitation (Pr), 

maximum 2m air temperature (Tmax), vapor pressure deficit (VPD), and surface net 

radiation (Rn) are derived from the European Centre for Medium‐Range Weather 

Forecasts Reanalysis 5 (ERA5;https://cds.climate.copernicus.eu/cdsapp#!/home). Vapor 

pressure deficit (VPD) is calculated using daily dew point temperature, daily mean 2m 

air-temperature, and daily surface pressure obtained from the ERA5 data archives. The 

GLEAM v3.3a combines various satellite-sensor products and ERA5 net radiation, and 

air temperature to provide relatively more accurate land surface estimates compared to 

other satellite- and model-based evaporation models [29,30]. While the GLEAM v3.3a 

dataset is available directly at daily timescale for every 0.25º x 0.25º pixels worldwide, 

ERA5 provides data at the same spatial resolution but for hourly timesteps. 



 

 340 

2.2. Determining Compound and Cascading Dry and Hot Event Network 

Dry events are identified using daily soil moisture by applying a threshold-based 

approach. A dry event is identified when the daily soil moisture falls below the daily 

climatological (1980-2018 period) threshold of 30th percentile (U.S. Dry Monitor 

(USDM)[31]). Soil moisture below the 30th percentile threshold is considered to have 

harmful effect on crop yield (USDM[31]). Hot events are defined as events during which 

the daily Tmax exceeds its daily climatological 80th percentile threshold for the 1980-

2018 period[32,33]. Both dry and hot events were identified for the 1980-2018 period 

and the respective daily climatological thresholds were calculated using the whole 41-

year time series.  

Compound events are referred to as multiple events occurring simultaneously at 

the same time and location[1,2,34–36]. In this study, compound dry and hot events are 

defined by the co-occurrence of dry and hot event days at the same location. Cascading 

events are generally referred to the sequential occurrence of events in a dynamical system 

with 1-day[2] or multiple time intervals between the occurrences[18,19,37,38]. Here, a 

dry-hot (hot-dry) cascade is defined as the sequential occurrence of a dry (hot) day 

followed by a hot (dry) day at pre-defined temporal intervals of 1 to 7 days. These time-

intervals are selected for a window of up to 7 days because of the potential increases in 

difficulty to cope with the socio-ecological impacts of such events as the time window 

shrinks to a sub-weekly scale[19]. Finally, compound and cascading dry and hot event 

network are constructed based on the cross-scale interaction[21,24] between 
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simultaneous and sequential (or lagged) dry and hot event days for the 1980-2018 period, 

as illustrated in Fig 1(a-b).  

2.3. Model-based Estimation of Compound and Cascading Effects 

The focus of the study is to explore the compound and cascading effect (CCE) of 

drying on heating and vice-versa, embedded in the dry-hot and hot-dry event networks. 

For a given network (dry-hot or hot-dry), the CCE determined based on the causal 

interaction between drying and heating. In this study, the CCE are quantified based on a 

metric called attributable fraction (AF)[39]. The AF is a population-specific measure of 

the proportion of preventable outcomes, e.g., hot (dry) day occurrences, had all days in 

the time-period been unexposed to dry (hot) event. It is a robust technique popularly used 

in modern epidemiology and public health and can be implemented to measure exposure-

outcome relationship by taking into account necessary confounding measures [40,41]. 

In the following sections, we provide a discussion on the design of the dry-hot 

(hot-dry) compound and cascading model and how it is implemented within a logistic 

regression framework to measure the causal interactions (or AF) between drying and 

heating.  

(i) Model Framework  

In a dynamical system, causal interactions can take place through direct or 

indirect propagation of information within a network that consists of the exposure, 

outcome and confounders[22]. In most dynamical systems, the confounders have causal 

association with both the outcome and the exposure variable. If confounding (or 

independent) effects are not accounted for, it may lead to spurious relationships and 
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endogeneity[20]. Consequently, to obtain a robust measure of the effect of exposure 

variable on the outcome, it is important to isolate the main effect of the exposure variable 

on the outcome variable by accounting for all other variables as confounders[26].  

The pathway of information propagation in a dynamical system can be 

demonstrated by using directed acyclic graphs (DAGs). DAGs present a graphical 

representation of the problem of confounding[22]. Let Z denote a set of confounders that 

control both the outcome and the exposure variable. DAG can describe the confounding 

by Z of the causal relationship between the exposure variable, X and outcome variable, 

Y, as shown in Fig 1(a). In case of both dry-hot and hot-dry event network, five 

confounding variables (z ⊆ Z) are used, such as VPD, Pr, daily surface net radiation, 

actual evaporation, and potential evaporation, that are known to have significant control 

on both dry (X) and hot (Y) events[42]. Same set of confounders (Z) are used in case of 

analyzing the causal interaction in a hot (X) and dry (Y) cascade.  

(ii) Estimation of AF based on Logistics Regression  

We first identify the dry and hot day occurrences based on the definition of 

compound and cascading event discussed above. The occurrences and non-occurrences of 

dry, and hot days are subsequently transformed into binary (0/1) time-series, such that, an 

occurrence is denoted by 1 and non-occurrence denoted by 0. AF was then calculated by 

fitting a logistic regression model to the binary exposure, X and the binary outcome, Y 

with model adjustments specifically made to include the confounders (Z) as covariates. 

The logit regression is implemented for the selected time-intervals (T = 0, 1, 2, 3, 4, 5, 6, 

and 7) separately, such that T = 0 refers to the compound and T > 0 refers to the cascade 
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model framework. Hereafter in this study, this framework is referred to as XtYt+T, 

denoting the casual effect of X at time-step, t on Y at time-step, t+T, being measured for 

X and Z lagged by T days.  This framework is illustrated in Figure 1b. 

For binary outcomes and exposure, AF can be defined as in Eq (1)[39],                      

𝐴𝐹 = 1 −
𝑃(𝑌0 = 1)

𝑃(𝑌 = 1)
,                                                              (1)   

where the 𝑃(𝑌0 = 1) is the counterfactual probability of outcome if the exposure X is 

eliminated (i.e., X set to 0), and 𝑃(𝑌 = 1) is the factual probability of outcome in the 

population. The AF thus measures the proportion of outcome events (e.g., hot days) that 

would be prevented if the exposure events (e.g., dry days) were eliminated from the 

population. Unlike the linear, and log-linear models, logistic regression is a standard 

choice for estimating AF due to its ability to yield probabilities between 0 and 1. The 

logistic regression model is defined as, 

      log𝑖𝑡{𝑃𝑟(𝑌 = 1|𝑋, 𝑍)} = 𝑔(𝑋, 𝑍; 𝛽)                                      (2) 

Here g(.) is an additive function of the variables X and Z and could be specified as 𝛽0 +

𝛽1𝑋 + 𝛽2𝑍, where 𝛽 is the parameter vector of the logit model. A regression 

standardization[27] is then implemented to the fitted model, XtYt+T to estimate marginal 

measures of association (see A.1. in Supplementary Information). This method uses the 

logistic regression model to predict the risk ratios of the outcome (Y), for unexposed 

(X=0) at every pre-defined level of the measured confounders. Finally, these predictions 

are averaged over the sampling distribution of Z to produce a standardized risk, for 

unexposed. Thus, if Z is sufficient for cofounding control, then, 
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                                               𝑃(𝑌0 = 1) = 𝐸[𝑃(𝑌 = 1|𝑋 = 0, 𝑍)],                                           

(3) 

where 𝑃(𝑌|𝑋, 𝑍) is the conditional distribution of Y, given X and Z.  

Once, 𝑃(𝑌0 = 1) is estimated following equation 3, 𝑃(𝑌 = 1) is calculated directly from 

the observational data and implemented in equation 1 to calculate AF. It is important to 

note that AF is estimated for each model framework (XYT) separately and denoted by 

AFT. 

 

3. Results 

3.1. Hotspots of Compound and Cascading Dry-Hot and Hot-Dry Events  

The compound and cascading effect (CCE) of dry (hot) on hot (dry) event 

occurrence is quantified based on the magnitude of attributable fraction (AF)[39]. A data 

driven compound and cascade model framework is implemented using daily dry-hot and 

hot-dry event networks for the 1980-2018 period considering multiple time-lags, T = 0, 1, 

2 3, 4, 5, 6, and 7 and confounders. AF is calculated for the global grid cells based on the 

dry-hot (and hot-dry) event networks by applying a regression standardization 

technique[27] for each of these time-lags, T (hereafter referred to as AFT), separately. 

The regression standardization is helpful for obtaining robust marginal measures of 

association between the exposure and outcome variable by accounting for all other 

variables as confounders. Thus, AFT (%) for a dry-hot (hot-dry) event network represents 

the standardized risk of having a hot (dry) event caused by a dry (hot) event that occurred 

T days ago. In other words, AFT determines the strength of the CCE of drying on heating 
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and vice versa. The cascade model framework, implementation, and association with 

selected confounders (meteorological anomalies) are presented in Fig 1.  

Figure 2 Hotspots of Compound and Cascading Effect in Dry-Hot and Hot-Dry Event 

Network shown by spatial map of (a) maximum AF, (b) corresponding lags for the dry-

hot cascade network, and (c-d) same as in (a-b) but for the hot-dry cascade network 

calculated for the period, 1980-2018. Note that only regions with a positive AF are shown 

in these spatial maps. 

 

The AFT magnitudes are classified into four different categories, from moderate 

(0-5%) to exceptional (>15%), as illustrated in Table S1. As such, AFT in the exceptional 

category indicates that more than 15% of the hot events are caused by dry events that 

occurred at a lag of T days during the 1980-2018 period. The time lags suggests that the 
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causal effects in a network can vary from being compounding (simultaneous; lag = 0 

days) to cascading (lags > 0 days) in nature. To illustrate the hotspots of CCE of drying 

on heating (or heating on drying), we calculated the maximum AFT for the dry-hot (hot-

dry) event network across each (0.5ºx0.5º) pixel of the globe. We define a given pixel as 

a hotspot if the corresponding value of maximum AF falls within the extreme (10-15%) 

to exceptional category range. Figure 2a, and 2c demonstrate the spatial distribution of 

the maximum AFT values and the hotspots of CCE for the dry-hot, and hot-dry event 

network over the globe. The corresponding number of lags for which the AF is found to 

be maximum is noted for each and every pixel, which is presented in Fig 2(b, and d). The 

estimates, lower and upper bounds (at 95% confidence level) of AF (%) for each of the 

lag timings (T = 0, 1, 2, 3, 4, 5, 6, and 7 days) are presented in Fig S1-S6.  

Fig 2a suggests that extreme to exceptionally (AF > 10%) strong CCE of dry 

event on hot event occurrence is prominent in major part of North and South American 

continent, central and southern Africa, southern Europe, southern Asia, and northern and 

eastern Australia. Fig 2b show that the time lag, for which the maximum CCE of dry 

event on hot event occurrences are observed, vary substantially across the globe. In North 

America, the magnitude of AF is found to be particularly higher across the southern and 

central US over the Great Plains and north-central parts of western US. The AF over 

majority of the western US is greatest for 0-day lag indicating that a compounding effect 

of dry day on hot day occurrence is more dominant in the region. On the contrary, the AF 

magnitude over the Great Plains show an increase for greater time lags (4 to 7 days) 

indicating the dominance of cascading (sequential) effect of dry day on hot day 



 

 347 

occurrence in this region. Similar cascading (compounding) effect of dry day on hot day 

occurrence is dominant in the hotspot regions located in South America, Central Africa, 

peninsular India, and northern and eastern Australia (southern Europe, and central Asia).  

The hotspots of CCE for the hot-dry event network is however limited to very few 

regions, such as in northeastern part of South America, some parts of western US, 

southern Europe, central Africa, and northern parts of India and middle east (Fig 2c). 

Most of the globe exhibit moderate to severe (0-10%) CCE of hot event on the 

occurrence of dry event. The hotspot in northeastern South America, central Africa, and 

northern India indicate that hot events have a cascading effect (lag = 1 to 7 days) on the 

occurrence of dry days in the region (Fig 2d). On the other hand, both extreme-

exceptional compound (lag = 0 days) and cascading (lag = 1 day) effects are notable in 

the hotspot regions of southern Europe, western US, and middle east.  

Nevertheless, the higher effect of dry events on hot events may be associated with 

the longer SM memory[43,44]. The longer memory of SM is also one of the primary 

reasons for SM depletion (dry event) being more resilient to changes in hydroclimatic 

anomalies (confounders; see Methods), leading to weaker CCE of hot events on dry 

events[45–47].  

 

3.3. Influence of Confounders 

The effect of confounders on the CCE of dry-hot and hot-dry event network is 

investigated based on odd ratios. Odd ratio is calculated by fitting a logistic regression 

between outcome and exposure with the confounders as covariates. The logit model was 
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embedded within the compound and cascade model framework (see Methods). Odd ratio 

is given as exp(ꞵ), where ꞵ is the regression coefficient of the logit model, such that 

exp(ꞵ) > 1 (exp(ꞵ) < 1) indicates a multiplicative increase (decrease) in the daily odds of 

an outcome for a given exposure and per unit increase in the confounders (here, 

standardized anomalies of Pr, ESR, VPD, and Rn), measured for specific time lags. For 

example, an odd ratio of 1.2 for lag, T = 0 days in a dry-hot event network implies that 

for per unit increase in the confounder variable, the odds of occurrence of a hot event are 

likely to increase by 1.2 times given a dry event has occurred on the same day. Such 

associations suggest a simultaneous or compounding effect of confounders. Similarly, the 

odd ratios for lag, T > 0 days is an indicator of a cascading (lagged) influence of the 

confounders on the occurrence of a hot day given a dry day is witnessed T days before. 

Fig S9, S10, S11 and 3a-h (Fig 3i-p, S12, S13, and S14) illustrate the spatial distribution 

of statistically significant (at 95% confidence level) odd ratio corresponding to ESR, Rn, 

Pr, and VPD for the dry-hot (hot-dry) cascade, respectively.  

Among the selected confounders, VPD show the greatest positive effect on the 

odds of occurrence of a hot event conditioned on a dry event, which is indicated by the 

statistically significant odd ratios greater than 1 consistently across the whole globe (Fig 

3(a-h)). The effect of VPD is strongest for a lag of 0 days, and its influence weakens for 

increasing number of lags. These results suggest that simultaneous increases in VPD is 

more likely to increase the odds of compounding effect of dry event on hot event 

occurrences as compared to triggering a sequential dry and hot event cascade. On 

contrary, a considerable amount of spatial heterogeneity is noted for the odds ratio  
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Figure 3 Influence of Confounders (a-h) Spatial distribution of statistically significant (at 

5% significance level) odd ratios (exp(β)) corresponding to standardized anomalies of 

VPD calculated by fitting the logistic regression model for the dry-hot event network for 

a lag of (a) 0 days, (b) 1 day, (c) 2 days, (d) 3 days, (e) 4 days, (f) 5 days, (g) 6 days, and 
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(h) 7 days, and (i-p) same as in (a-h) but corresponding to standardized anomalies of ESR 

for the hot-dry event network. 

 

corresponding to ESR, Pr, and Rn. For example, simultaneous increases in evaporative 

stress (indicated by decrease in ESR) have the strongest positive influence on the odds of 

compounding effect of dry event on hot event (T = 0 days) in major part of South 

America, southern Africa, and eastern Europe (Fig S9). On the other hand, for southeast 

Asia, Australia, and southern North America, evaporative stress anomalies show the 

strongest positive (lagged) association with the odds of witnessing a hot event given a dry 

event has occurred 7 days, 3-4 days, and 4 days before, respectively (Fig S9). A 

simultaneous increase in Rn and the odds of occurrence of a hot event in the same day as 

a dry event can be noted in Northern Russia, Japan, northwest of China, and central 

Africa (Fig S10). Pr anomalies show a strong lagged (T = 1 day) association in central 

and southeast Asia including majority of China, central Europe, northwest of North 

America, some part of central Africa, and South America (Fig S11).  

Evaporative stress has the strongest positive influence on the odds of CCE of a 

hot event on a dry event which is consistent across the globe. This is indicated by the 

spatial map of odd ratios less than 1 in Fig 3(i-p), that suggest a decrease in the odds of 

CCE of hot event on dry event occurrence for per unit increase in ESR (or increase in 

evaporative stress). The compounding effect (lag, T = 0) of ESR is found to be more 

dominant as compared to its cascading effect (for lag, T > 0). For example, the 

compounding effect of ESR is strongest in central US, and Australia, and its effect can be 
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noted to decrease for increasing number of lags across the whole globe. On the other 

hand, the influence of Rn, Pr, and VPD on the CCE of hot event on dry event is spatially 

sparse with very little changes across the different lags (T = 0 to 7 days) as shown in Fig 

S12-S14. These results suggest that the influence of the daily changes in some climate 

forcings have a spatially disproportionate influence on the dry-hot and hot-dry event 

cascade across the terrestrial surface. Such spatial heterogeneity may arise from variation 

in surface energy partitioning which is mainly controlled by background aridity of a 

region[1].  

 

3.4. Role of Background Aridity 

The background aridity of a region play a critical role in controlling the water use 

effciency[48], sensitivity of evaporation to changes in temperature and 

precipitation[1,49], and causal interactions between precipitation, evaporation and soil-

moisture[50]. We investigate the control of background aridity on the CCE in dry-hot and 

hot-dry event network separately to understand the implication of surface energy 

partitioning for each of these cascades.  

Background aridity is quantified based on aridity index (AI)[51] which is 

calculated as a ratio between annual climatological mean precipitation and annual 

climatological mean potential evaporation for the 1980-2018 period.  The global regions 

are then subdivided into hyper-arid, arid, semi-arid, sub-humid and humid regimes 

following an AI based classification system proposed by United Nations Environment 

Program[51]. The five climate regimes and the corresponding range of AI is illustrated in 
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Fig 4a. We considered the AI range (0.05-1) starting from the arid to humid regimes and 

divided the globe into 96 sub-regimes at intervals of 0.01. The corresponding pixels 

within the sub-regions were extracted, and the magnitude of AF (%) was averaged over 

those pixels for different time lags to investigate the role of background aridity on the 

CCEs in the dry and hot event network.  

Figure 4 Role of Background Aridity (a) Spatial map showing the classification of global 

evaporation regimes based on aridity index (AI) calculated as a ratio of mean annual 

precipitation and potential evaporation for 1980-2018 period, (b) Mean AF (%) binned as 
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a function of AI and time-lags (0 to 7 days) for the dry-hot event network, and (c) same 

as in (b) but for the hot-dry event network.   

 

Figure 4b-c displays the variation of AF (represented by shading) from arid to 

humid regimes for different time lags (represented in the y-axis) corresponding to the 

dry-hot and hot-dry event network. A very distinct control of background aridity on CCE 

is noted for the dry-hot and hot-dry event network. The CCE corresponding to the dry-hot 

event network is found to be relatively stronger (mean AF > 8%) in semi-arid part of the 

globe (with AI ranging between 0.25 and 0.4) and relatively weaker effect (mean AF < 

4%) is noted for the arid (for AI < 0.20) and humid regimes (for AI > 0.8). On contrary, 

the CCE corresponding to hot-dry network is found to be relatively stronger (mean AF > 

4%) for sub-regions falling in the transition zone from sub-humid to humid regime 

(denoted by AI between 0.63 and 0.8). These results underscore non-linear control of 

surface energy portioning on causal interaction between drying and heating of the 

terrestrial surface, which is notably stronger in the transitional (semi-arid, and sub-

humid) regimes, generally characterized by stronger land-atmosphere coupling [52–54].  

 

4. Discussion and Conclusion 

Compound and cascading dry and hot events have significant impact on 

ecosystem functioning[1,2,34,37]. Understanding the causal interactions between these 

events all over the globe, therefore becomes extremely important and requires new 

methods to account for the measures and scale of such interactions. Here using a 
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standardized logistic regression approach[26], for the first time, we defined a cross-scale 

interaction-based compound and cascade model framework for measuring the casual 

effects in global drying and heating in dry-hot and hot-dry event networks. Two distinct 

event networks, dry-hot and hot-dry, are constructed using daily root-zone soil-moisture 

and maximum air temperature anomalies by embedding time lags ranging from 0 to 7 

days. The compound and cascading effects of drying and heating are subsequently 

analyzed in these event networks based on attributable fraction[26], that measures the 

causal effects in exposure-outcome (dry-hot or hot-dry) relationship conditioned on 

multiple confounders (meteorological anomalies).   

The results from the study reveal crucial aspects of the causal interactions 

between dry and hot events, including their global hotspots, meteorological drivers, and 

effect of background aridity. A relatively stronger compounding and cascading (causal) 

effect of drying on heating is noted (as compared to that of heating on drying) across the 

globe which may be linked to the persistency of soil moisture memory[43,50,55]. 

Extreme to exceptionally strong CCE (indicated by AF > 10%) of drying on heating was 

found in major part of western and Great Plains of North America, and tropical South 

America, central and southern Africa, southern Europe, southern Asia, and northern and 

eastern Australia. The time lags of such associations exhibited substantial spatial 

heterogeneity suggesting the varying nature of interactions between drying and heating 

from one place to another, from being compounding (simultaneous; lag = 0 days) to 

cascading (lags > 0 days). Vapor pressure deficit is found to have the strongest positive 

effect on the CCE of drying on heating for different time lags uniformly across the globe 
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with a more dominant influence on the compounding effect relative to cascading effect. 

The influence of precipitation, evaporative stress and surface net radiation is found to be 

spatially sparse. On the other hand, evaporative stress exhibits the most dominant positive 

influence on the CCE of heating on drying across the globe, whereas a considerable 

spatial heterogeneity in the influence of precipitation, vapor pressure deficit and surface 

net radiation is noted for different time lags. Background aridity seems to have a non-

linear association with both CCE of drying on heating and heating on drying, with a 

relatively stronger interaction between dry and hot events noted for the transitional 

regimes.   

Soil moisture drying has significant implication on heating [56] that propagates as 

cascades across the physical and human systems affecting agriculture and human-

health[8,57]. Our study has a broader implication in bridging the gap between disaster 

risk reduction and climate change adaptation[16,35–37] with potential to provide a more 

nuanced framework for assessing interconnected and cascading risks. The results from 

the study can be usefully transformed to assess the changes in risk of exposure to 

interconnected hazards[58–60] and forecasting skill[50,61]. Our findings can be further 

channelized to provide more in-depth understanding on the association of dry and hot 

cascades with length of soil-moisture memory[43,50,55], anticyclonic circulations and 

blocking[62,63], land-atmosphere coupling[52–54], regional moisture transport[34,64], 

vegetation fluxes[65], water use efficiency[48,66,67], compound changes in climate 

variability[68], and large-scale teleconnections[34].     
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CHAPTER X 

CONCLUSION AND RECOMMENDATION 

 

There is widespread evidence of intensification in hydroclimatic extremes due to 

acceleration of hydrological cycle caused by natural and anthropogenic changes in 

climate. In future, climate change impacts will emerge in various ways at the same time 

or propagate as cascades across the physical-human systems. Furthermore, non-

stationarity in climate will most likely have a non-linear and complex effect on the 

statistical behavior or distribution of hydroclimatic extremes. Therefore, more nuanced 

techniques are required to quantify these simultaneous or cascading impacts occurring 

concurrently and in different combinations of extremes. This thesis specifically focused 

on the detection, investigation of underlying mechanisms, and impact assessment of four 

different compound and cascading hydroclimatic extremes, (i) compound drought and 

heatwaves, (ii) combined heat extremes and humidity, (iii) meteorological forcing 

associated with extreme precipitation events caused by atmospheric rivers, and (iv) flash 

droughts. These hydroclimatic extremes are analyzed across different spatiotemporal 

scale using concept of system dynamics and causality, robust statistical methods, and 

multiple datasets. The specific research objectives that this thesis focused on are: 

 (a) Highlighting the major challenges associated with the application of different 

drought indices in climate change studies. 

 (b) Robust detection of compound drought and heatwaves, and quantifying their 

frequency, duration, and severity on a global scale. 



 

 367 

 (c) Investigate and quantify the association of compound drought and heatwave 

occurrences with large scale climate variability, moisture convergence/divergence, and 

land surface energy fluxes across different parts of the globe. 

 (d) Quantifying the influence of anthropogenic warming on changes in compound 

drought and heatwave characteristics across the globe and their association with the 

background aridity of the global regions. 

 (e) Unraveling and quantifying the relative contribution of natural climate 

variability and anthropogenic warming on the occurrence of compound drought and 

heatwaves. 

 (f) Evaluating the possible changes on combined and potential impact of heat 

extremes and humidity on human population under the non-stationary climate scenarios 

in future. 

 (g) Cascading influence of meteorological forcing on the progression of moisture 

fluxes leading to extreme precipitation events associated with atmospheric rivers. 

 (h) Investigating the climate controls on global flash droughts across the different 

evaporation regimes. 

 (i) Proposing a cascade model framework to quantify the compound and 

cascading effects in a dry and hot event network. 

 

Based on the above objectives, the following conclusion are drawn from the study. 

(a) Accurate formulation of robust drought indices is important to investigate 

drought characteristics under the warming climate. Because different drought indices 
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show different degrees of sensitivity to the same level of continental warming, robustness 

of drought indices against change in temperature and other variables should be 

prioritized. A formulation of drought indices without considering the factors that govern 

the background state may lead to drought artifacts under a warming climate. 

Consideration of downscaling techniques, availability of climate data, estimation of 

potential evapotranspiration (PET), baseline period, non-stationary climate information, 

and anthropogenic forcing can be additional challenges for a reliable drought assessment 

under climate change. As one formulation of PET based on temperatures can lead to 

overestimation of future drying, estimation of PET based on the energy budget 

framework can be a better approach compared to only temperature-based equations. 

(b) El Nino Southern Oscillation (ENSO) exhibits robust association with 

compound drought and heatwaves over the Southern Hemisphere during the austral 

summer and fall, while Pacific Decadal Oscillation (PDO) influences their occurrences 

over the Western North America in the Northern Hemisphere during the boreal summer, 

which is supported by the composites of anomalies in the atmospheric circulations and 

surface energy budget. North Atlantic Oscillation (NAO) association with compound 

drought and heatwave events is relatively weak. The compound drought and heatwave 

occurrence over other regions is driven by a combination of these large-scale natural 

forcing. The analyses also highlight that the cooccurrence of weekly to sub-monthly scale 

anomalies in the observed temperature and precipitation may not be always aligned 

between the observations and the reanalysis. Therefore, caution must be exercised while 
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explaining such observed anomalies on the basis of reanalysis-based circulations and 

surface energy budget. 

(c) Significant increases in drought-related heatwaves and affected global land 

area is observed in recent (warmer) periods, 2000-2018. Several regions across the globe 

witnessed rise in compound drought and heatwave frequency (one to three events/year), 

duration (2–10 days/year), and severity. This increasing pattern is spatially asymmetric, 

and greater amplification is observed across the Northern hemisphere due to recent 

warming. Furthermore, the background aridity influences the spatiotemporal evolution of 

compound drought and heatwave frequency events. 

(d) An attribution study performed to quantify the odds of occurrence of these 

compound drought and heatwave days in a month over 10 climate regions revealed a 

significantly positive, and multiplicative effect on the odds from the anthropogenic global 

warming. Odd ratios estimated for these climate regions were found to be in the range of 

1.7 to 3.5, and as high as 5 to 60 at 1.5C, and 2C warming levels, respectively. Among 

all the climate regions, East Asia is the most affected region due to the rise in 

anthropogenic warming. 

(e) Potential impact of short-to-medium duration (1–7 days) heat stress events is 

likely to increase more than three-fold across densely populated regions of the U.S. 

including the Northeast, Southeast Piedmont, Midwest, and parts of the Desert Southwest 

by late this century (2060–2099) under the highest emissions scenario. The contribution 

from climate change alone more than doubles the impact in the coastal Pacific Northwest, 
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central California, and the Great Lakes region, implying a substantial increase in heat 

stress risk without aggressive mitigation efforts. 

(f) The seasonal frequency of EP events associated with ARs suggests that more 

frequent AR-EP events occur during the colder months (November to April). In contrast, 

the AR-EP events are less frequent but more severe in the warmer months (May to 

October). A total of 12-15 AR-EP events, with severity exceeding the 99th percentile 

precipitation threshold, were observed during the 3-month overlapping seasons between 

November and April from 1979 to 2019 that affected Georgia, Florida, Alabama, and 

South Carolina. On the other hand, the average precipitation magnitude of the AR-EP 

events is relatively higher (55-90 mm/day) in the warmer months (May to October).  

To explore the cascading nature of relevant meteorological forcing on the 

physical processes that favor such events, an event-centered composite analysis was 

performed based on the top 100 severe AR-EP events observed during the extended cold 

and warm season, separately. It was observed that during the progression of the AR-EP 

events, the anomalies associated with composite mean sea level pressure (MSLP) and 

850mb geopotential height (Z850) make a transition from the trough to ridge formation 

along with a south-eastward extension of Bermuda High in the cold season. The 

spatiotemporal evolution of these meteorological variables is found to have a cascading 

effect on the mode of moisture transport indicated by integrated vapor transport (IVT) 

and moisture availability shown by total column water vapor associated with the major 

AR-EP events. The warm season IVT field gets stronger 2-days before the AR-EP event 

occurrences indicating a continuous increase in moisture influx into the Gulf and Atlantic 



 

 371 

Coastal Plains. Similar strengthening of IVT is noted over the Gulf Coastal Plains regions 

during the cold season. A cascading effect is also noted for the moisture availability 

indicated by a significant increase in total column water vapor over the Gulf of Mexico 2 

days before the events. Overall, the cold season AR-EPs are driven by relatively stronger 

dynamical systems indicated by greater IVT intensity. In contrast, the warm season AR-

EPs are associated with a weaker IVT field, higher atmospheric instability, and more 

moist conditions. 

(g) Varying as well as contrasting spatial drivers of FD frequency, intensity, and 

their evolution were revealed. Changes in precipitation, temperature, vapor pressure 

deficit and soil-temperature coupling play an important role with a cascading 

(concurrent) impact on the evolution of FDs. Precipitation and temperature (soil-

temperature coupling) have the most dominant and contrasting control over FD intensity 

across the arid and humid (sub-humid) regions, underscoring the importance of water and 

energy supply as limiting factors in regulating FD intensification rates.  

(h) Relatively stronger compound and cascading effect (CCE) of drying on 

heating than that of heating on drying with extreme to exceptionally strong (AF>10%) 

CCE were noted in major part of North and South American continent, central and 

southern Africa, southern Europe, southern Asia, and northern and eastern Australia. The 

impact of meteorological variables on the CCEs is quantified based on odd ratios that 

suggest, vapor pressure deficit (evaporative stress) has the strongest influence on the 

CCE of drying on heating (heating on drying) across the globe. The role of background 
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aridity is also investigated which suggest relatively more amplified CCEs in the 

transitional evaporation regimes.  

Recommendation for future study:  Modern research has started focusing on the 

usage of real-time as well as big data for impact forecasting of extreme hydroclimatic 

events. Machine learning tools, and the concept of artificial intelligence can also be 

implemented using the prior knowledge of the physical system to evaluate and investigate 

the crucial aspect of interconnected events and their impacts. More direct approaches 

linking the impact of extreme events with the socio-economic indicators can also provide 

a better understanding of their compounding and cascading impacts across the physical 

and human systems. More robust techniques complementing the non-linear and 

bidirectional causations among the inter-connected extremes may prove to be valuable 

resources to understand these real-world problems and possible impacts under a system 

dynamics framework. More emphasis can be given on policy driven research that can 

directly connect the quantification, assessment, and research outputs to the stakeholder’s 

needs. Research projects that puts the scientists, stakeholders, policy makers, and 

communicators under a single banner is likely to enhance and aid in better mitigation 

efforts for reducing the compound and cascading impacts of hydroclimatic extremes 

under the changing climate scenario. 
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APPENDICES 

 
Appendix A 

Supplementary Information for Chapter 3 

 

 

Figure S1. 26 climate regions used in the study as defined in the AR5-SREX (IPCC 

SREX 2012). 
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Figure S2 Spatial distribution of yearly frequency of extreme drought events based on 

(left panel) GPCC and CPC dataset, and (right panel) ERA5 dataset during the (a, and b) 

DJF (c, and d) MAM, (e, and f) JJA, and (g, and h) SON. 
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Figure S3 Spatial distribution of yearly frequency of heatwave events based on (left 

panel) GPCC and CPC dataset, and (right panel) ERA5 dataset during the (a, and b) DJF 

(c, and d) MAM, (e, and f) JJA, and (g, and h) SON. 
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Figure S4 Spatial distribution of yearly frequency of CDHW events based on (left panel) 

GPCC and CPC dataset, and (right panel) ERA5 dataset during the (a, and b) DJF (c, and 

d) MAM, (e, and f) JJA, and (g, and h) SON. 
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Figure S5 Spatial distribution of correlation between ENSO (Nino3.4) and (left panel) 

CPC based seasonal mean of average temperature; and (right panel) GPCC based 

seasonal mean of total monthly precipitation during (a, and b) DJF, (c, and d) MAM, (e, 

and f) JJA, and (g, and h) SON. Grid cell where the correlations are found to be 

statistically significant (at 5% significance level) are marked by striplings. 
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Figure S6 Spatial distribution of correlation between PDO and (left panel) CPC based 

seasonal mean of average temperature; and (right panel) GPCC based seasonal mean of 

total monthly precipitation during (a, and b) DJF, (c, and d) MAM, (e, and f) JJA, and (g, 

and h) SON. Grid cell where the correlations are found to be statistically significant (at 

5% significance level) are marked by striplings. 
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Figure S7 Spatial distribution of correlation between NAO and (left panel) CPC based 

seasonal mean of monthly average temperature; and (right panel) GPCC based seasonal 

mean of total monthly precipitation during (a, and b) DJF, (c, and d) MAM, (e, and f) 

JJA, and (g, and h) SON. Grid cell where the correlations are found to be statistically 

significant (at 5% significance level) are marked by striplings. 
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Figure S8 Bar plot showing area (or percentage of grid cells) within each of the 26 

climate regions showing statistically significant (at 5% significance level) partial 

correlation estimates (as shown in Figure S5 to Figure S7) between the large scale 

climate oscillations (ENSO, PDO, and NAO) and the CPC based seasonal mean of 

monthly average temperature (red), and the GPCC based seasonal mean of total monthly 

precipitation (blue) during DJF. 
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Figure S9 Bar plot showing area (or percentage of grid cells) within each of the 26 

climate regions showing statistically significant (at 5% significance level) partial 

correlation estimates (as shown in Figure S5 to Figure S7) between the large scale 

climate oscillations (ENSO, PDO, and NAO) and the CPC based seasonal mean of 

monthly average temperature (red), and the GPCC based seasonal mean of total monthly 

precipitation (blue) during MAM. 
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Figure S10 Bar plot showing area (or percentage of grid cells) within each of the 26 

climate regions showing statistically significant (at 5% significance level) partial 

correlation estimates (as shown in Figure S5 to Figure S7) between the large scale 

climate oscillations (ENSO, PDO, and NAO) and the CPC based seasonal mean of 

monthly average temperature (red), and the GPCC based seasonal mean of total monthly 

precipitation (blue) during JJA. 
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Figure S11 Bar plot showing area (or percentage of grid cells) within each of the 26 

climate regions showing statistically significant (at 5% significance level) partial 

correlation estimates (as shown in Figure S5 to Figure S7) between the large scale 

climate oscillations (ENSO, PDO, and NAO) and the CPC based seasonal mean of 

monthly average temperature (red), and the GPCC based seasonal mean of total monthly 

precipitation (blue) during SON. 
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Figure S12 Spatial distribution of correlation between ENSO (Nino3.4) and (left panel) 

seasonal mean of average temperature; and (right panel) seasonal mean of total monthly 

precipitation from ERA5 during (a, and b) DJF, (c, and d) MAM, (e, and f) JJA, and (g, 

and h) SON. Grid cell where the correlations are found to be statistically significant (at 

5% significance level) are marked by striplings.  
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Figure S13 Spatial distribution of correlation between PDO and (left panel) seasonal 

mean of average temperature; and (right panel) seasonal mean of total monthly 

precipitation from ERA5 during (a, and b) DJF, (c, and d) MAM, (e, and f) JJA, and (g, 

and h) SON. Grid cell where the correlations are found to be statistically significant (at 

5% significance level) are marked by striplings.  



 

 386 

 

Figure S14 Spatial distribution of correlation between NAO and (left panel) seasonal 

mean of average temperature; and (right panel) seasonal mean of total monthly 

precipitation from ERA5 during (a, and b) DJF, (c, and d) MAM, (e, and f) JJA, and (g, 

and h) SON. Grid cell where the correlations are found to be statistically significant (at 

5% significance level) are marked by striplings.  
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Figure S15 Bar plot showing area (or percentage of grid cells) within each of the 26 

climate regions showing statistically significant (at 5% significance level) partial 

correlation estimates (as shown in Figure S12 to Figure S14) between the large scale 

climate oscillations (ENSO, PDO, and NAO) and the seasonal mean of monthly average 

temperature (red), and the seasonal mean of total monthly precipitation (blue) from 

EAR5 during DJF. 
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Figure S16 Bar plot showing area (or percentage of grid cells) within each of the 26 

climate regions showing statistically significant (at 5% significance level) partial 

correlation estimates (as shown in Figure S12 to Figure S14) between the large scale 

climate oscillations (ENSO, PDO, and NAO) and the seasonal mean of monthly average 

temperature (red), and the seasonal mean of total monthly precipitation (blue) from 

EAR5 during MAM.  

 

 

Figure S17 Bar plot showing area (or percentage of grid cells) within each of the 26 

climate regions showing statistically significant (at 5% significance level) partial 

correlation estimates (as shown in Figure S12 to Figure S14) between the large scale 

climate oscillations (ENSO, PDO, and NAO) and the seasonal mean of monthly average 

temperature (red), and the seasonal mean of total monthly precipitation (blue) from 

EAR5 during JJA.  
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Figure S18 Bar plot showing area (or percentage of grid cells) within each of the 26 

climate regions showing statistically significant (at 5% significance level) partial 

correlation estimates (as shown in Figure S12 to Figure S14) between the large scale 

climate oscillations (ENSO, PDO, and NAO) and the seasonal mean of monthly average 

temperature (red), and the seasonal mean of total monthly precipitation (blue) from 

EAR5 during SON.  
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Fig S19 Seasonal climatology of divergent winds vectors (m/s) and velocity potential 

(color shading, unit: m2/s, scaled by 106) contours at 200 mb. 
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Fig S20 (a) El Nino (b) La Nina based anomalies in divergent winds vectors (m/s) and 

velocity potential (color shading, unit: m2/s, scaled by 106) contours at 200 mb with 

respect to the climatology during JJA. 
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Figure S21 PDO warm phase (left panel) and cold phase (right panel) based anomalies in 

divergent winds vectors (m/s) and velocity potential (color shading, unit: m2/s, scaled by 

106) contours at 200 mb with respect to the climatology during (a-b) DJF, (c-d) MAM, 

and (e-f) SON. 
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Figure S22 NAO warm phase (left panel) and cold phase (right panel) based anomalies in 

divergent winds vectors (m/s) and velocity potential (color shading, unit: m2/s, scaled by 

106) contours at 200 mb with respect to the climatology during (a-b) DJF, (c-d) MAM, 

and (e-f) SON. 
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Figure S23 Composites of surface sensible heat flux (left panel), and latent heat flux 

(right panel) for (a-b) DJF, (c-d) MAM, (e-f) JJA, and (g-h) SON. All units are in W/m2. 
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Figure S24 El Nino (left panel) La Nina (right panel) based anomalies in surface latent 

heat flux with respect to the climatology during (a-b) DJF, (c-d) MAM, (e-f) JJA, and (g-

h) SON. The grid cells where the difference is statistically significant at 95% confidence 

level are marked with stippling. The sign convention implemented for the fluxes is 

positive upwards. 
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Figure S25 Same as in Figure S25 but based on the warm (left panel) and cold (right 

panel) phase of PDO.  
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Figure S26 Same as in Figure S25 but based on the warm (left panel) and cold (right 

panel) phase of NAO.  
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Figure S27 Surface sensible heat flux anomalies for the warm and cold phase of (a) 

ENSO, (c-f) PDO, and (g-j) NAO. 
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Appendix B 

Supplementary Information for Chapter 4 

 

B.1. Estimation of CDHW Severity  

The severity of a CDHW (CDHWs) event is calculated based on the cumulative sum of 

the daily severity values obtained over the consecutive days of the event. The daily 

severity is estimated as the product of the daily standardized values of maximum 

temperatures and the scPDSI value observed in the coinciding extreme drought week, w  

(scPDSIw). Thus, the severity for an event, i is given as,  

( ) , 25
,

1 75 25

max
1 ; 3,

id D
d i p

i w i i
d p p

T T
CDHWs scPDSI D d w

T T

=

=

  −
= −        −  


 

where Di = duration of the ith CDHW event; d indicates the heatwave day coinciding with 

drought week, w; and T25p, and T75p are the 25th and 75th percentile of the daily maximum 

temperature during the summer season, respectively.  Finally, the CDHWs for a given 

year is calculated as the average of the CDHWsi magnitudes observed within the year, 

which is estimated as, 

1 ; 0

0 ; 0

i N

i
i

CDHWs
if N

N
CDHWs

if N

=

=

 
 
  

=

=



 

where N represents the total number of events observed in a given year. 
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B2. Selection of Recent Warmer Period 

To investigate the role of warming, we compare the CDHW characteristics based on two 

equal periods between 1983 and 2016, past period (1983-1999), and a recent warmer 

period (2000-2016). The recent warmer period is determined based on the anomalies of 

summer mean daily maximum temperature (Tmax) estimated for each year between 1983 

and 2016 for the global land areas, as shown in Fig S1.  At first, the anomalies are 

evaluated for each grid location with respect to the long-term, 1983-2016 average, and 

finally, spatially averaged across the global land surface. Additionally, to investigate if 

the results are independent of the data sources, the anomalies are estimated based on 

three different datasets, daily gridded Tmax from (1) CPC, (2) Berkeley Earth (BE), and 

(3) ERA5. The results illustrated in Fig S1 suggest that corresponding to each of the three 

datasets, the 2001 to 2016 period is found to be considerably warmer than the preceding 

period, 1983-2000. This is indicated by the positive anomalies in temperature observed 

since the year 2001 that continues to increase almost uninterruptedly (except for the year 

2004) until the year 2016 (up to 0.5-0.75ºC across all three datasets). Importantly, the 

temporal pattern exhibited by the magnitude of these anomalies shows a close agreement 

among all the three datasets. 

B.3. Trend Analysis: 

Interannual trends in the CDHWf, CDHWd, and CDHWs are estimated by using 

the Sen’s slope estimator (Sen, 1968), and tested for significance based on the Mann-

Kendall (MK) trend test (Kendall, 1948; Mann, 1945) under the null hypothesis of no 



 

 401 

trend. A detailed explanation on the MK test and Sen slope estimator is provided in the 

following sub-sections. 

B.3.1. Mann-Kendall test 

The MK test is a non-parametric test that considers the test statistic, S to have 

zero mean and variance estimated as (Kendall, 1948; Mann, 1945)  

1

1 1
sgn( )

n n

j i
i j i

S x x
−

= = +

= −          

 (1) 

1, 0

sgn( ) 0, 0

1 0

j i

j i j i

j i

if x x
x x if x x

if x x

+ − 


− = − =

− − 

       

 (2) 

1
( 1)(2 5) ( 1)(2 5)

( )
18

m

i i i
t

n n n t t t
Var S =

− + − − +

=


      

 (3) 

where n is the number of data points, m is the number of tied groups; t denotes the 

number of ties of extent i, ix  and jx  are the data values in the time series at ith and jth data 

point (such that  j > i), respectively, and sgn( )j ix x−  is the sign function. In cases where 

the sample size n > 10, the standard normal variable Z is computed as, 
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1 0
( )

0 0
1 0
( )

S if S
Var S

Z if S
S if S

Var S

−





= =
 +
 


         

 (4) 

Positive values of Z indicate increasing trends, while negative values imply decreasing 

trends in the time series. The null hypothesis of no trend is rejected for an absolute value 

of Z greater than 1 /2Z − , obtained from the standard normal cumulative distribution tables. 

In this study, significance level of 0.05 =  is used.   

 B.3.2. Sen’s slope estimator 

Sen, 1968 developed a non-parametric procedure for estimating the true slope 

(change per unit time) given a linear trend is present in a time series. The slope of trend 

in the sample of N pairs of data are first computed as, 

, 1,...,k j
i

x x
Q for i N

k j
−

= =
−

         

 (5) 

where jx  and kx  are data values in the time series at data points j and k (k > j), 

respectively. The Sen’s estimator of slope is then computed as the median of these N 

values of iQ  such that, 

[( 1)/2]

[ /2] [( 2)/2]

,

1 ( ),
2

N

med
N N

Q if N is odd
Q

Q Q if N is even

+

+




= 
+



      

 (6) 
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Finally, the confidence interval of medQ  can be computed at specific confidence 

levels (in this work, 0.05 =  is used) as follows: 

1 /2 ( )C Z Var S −=           

 (7) 

where ( )Var S  has been computed as in Eq. (3), and 1 /2Z −  is obtained from the standard 

normal cumulative distribution tables.  

Then, 1 2
N CM −

=  and 2 2
N CM +

= are computed, where the lower and upper 

limits of the confidence interval, minQ  and maxQ  are the 1M th  largest and the ( 2 1)M th+  

largest of the N ordered slope estimates iQ  (Gilbert, 1987). The slope medQ  is considered 

to be significantly different from zero if the two limits ( minQ  and maxQ ) have similar 

sign.  

B.4. Statistical Analysis 

B.4.1. Two-sample Kolmogorov-Smirnov Test 

The two-sample Kolmogorov-Smirnov (KS) test is used to test whether two samples 

come from the same or different distribution family. KS is a nonparametric test that can 

evaluate two distribution functions (for two different samples) based on the distance 

between their empirical distribution functions. The null hypothesis is that the two 

distribution functions are drawn from the same distribution at a given significance level 

(here, α = 0.05). Here, the two-sample KS test is employed to assesses differences 

between the spatial distribution of the CDHW event characteristics evaluated for 1982-
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1999, and 2000-2016 for different regimes (arid, transitional, and humid) across the globe 

and the six different continents. The test indicates whether the data from the two periods 

come from the same distribution at a 0.05 significance level. 

For two given samples, one with a sample size of m and a cumulative distribution 

function (CDF) of F(x) and the other with a sample size of n and a CDF of G(x). The 

maximum distance between the two CDFs can be given as,  

, max | ( ) ( ) |m n x
D F x G x= −  

As for the Kolmogorov-Smirnov test for normality, the null hypothesis of same 

distribution (at significance level α) is rejected if Dm,n > Dm,n,α where Dm,n,α is the critical 

value with m and n being sufficiently large and Dm,n, α given by 

, , ( )m n
m nD c
mn 
+

=  

where c(α) = the inverse of the Kolmogorov distribution at α 

B.4.2. Wilcoxon Rank-sum Test 

The Wilkoxon Rank-sum, sometimes called the Mann Whitney U test is a nonparametric 

test to compare outcomes between two independent populations. It is extensively used to 

compare the medians between the two populations. In contrast, the null and two-sided 

research hypotheses for the nonparametric test are stated as follows: 

                                                     H0: The two populations are equal versus 

                                                     H1: The two populations are not equal. 
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Here, this test is performed as a two-sided test with the null hypothesis that the medians 

of the populations are equal at a given significance level (here, α = 0.05). The 

observations from the two samples (with say sample sizes n, and m) are pooled into one 

combined sample (sample size of n + m) while keeping a track of which sample each 

observation comes from, and then ranking lowest to highest from 1 to n+m, respectively. 

Here, the test is employed to assesses differences between the median of spatial 

distribution of the CDHW event characteristics evaluated for 1982-1999, and 2000-2016 

for different regimes (arid, transitional, and humid) across the globe and the six different 

continents.  
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Figures
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Figure S1 Anomalies in summer mean of daily maximum temperature (Tmax) for each 

year between 1983 and 2016 with respect to the long-term (1983-2016) average based on 

(a) CPC, (b) Berkeley earth surface temperature project, and (c) ERA5 dataset. 

 

 

Figure S2. (a-f) Spatial map showing the CDHWf (events/year) observed during (left 

panel) past period, 1983-1999, and (right panel) recent warmer period, 2000-2016, based 

on (a-b) GPCC-CPC, (c-d) GPCC-BE, and (e-f) ERA5 dataset. 



 

 408 

 

Figure S3. (a-f) Spatial map showing the CDHWd (days/year) observed during (left 

panel) past period, 1983-1999, and (right panel) recent warmer period, 2000-2016, based 

on (a-b) GPCC-CPC, (c-d) GPCC-BE, and (e-f) ERA5 dataset. 
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Figure S4. (a-f) Spatial map showing the CDHWs (per event/year) observed during (left 

panel) past period, 1983-1999, and (right panel) recent warmer period, 2000-2016, based 

on (a-b) GPCC-CPC, (c-d) GPCC-BE, and (e-f) ERA5 dataset. 
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Figure S5 (a-c) Heatmaps showing the latitudinal variation of CDHWf (events/year) for 

each year within the period, 1983-2016 based on (a)  GPCC-CPC dataset, (b) GPCC-BE 

dataset, (c) ERA5 dataset, (d-f) same as in (a-c) but for the CDHWd (days/year), and (g-i) 

same as in (a-c) but for the CDHWs (per event/year). 
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Figure S6 Figure 4 (a) Spatial map showing the arid, transitional, and humid regions 

identified based on the Aridity Index for the climatological period, 1983-2016, (b-h) 

Probability density of Past, 1983-1999 period (black), and recent warm, 2000-2016 
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period mean CDHWs (per event per year) for the arid, transitional, and humid regions of 

the (b) Europe, (c) North America, (d) Asia, (e) South America, (f) Australia, and (g) 

Africa based on GPCC-CPC, GPCC-BE, and ERA5 datasets. 
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Figure S7 Same as in Figure 4 but for CDHWf (events/year) 



 

 414 

 

Figure S8 Same as in Figure 4 but for CDHWd (days/year) 
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Appendix C 

Supplementary Information for Chapter 5 

 

Table S1 List of CMIP5 Models used for the calculation of global mean temperature 

cahnge 

Sl. No. Model Sl. No. Model 

1 ACCESS1-0 18 GISS-E2-H 
2 ACCESS1-3 19 GISS-E2-R 
3 BNU-ESM 20 HadGEM2-AO 
4 CCSM4 21 HadGEM2-CC 
5 CESM1-BGC 22 HadGEM2-ES 
6 CESM1-CAM5 23 IPSL-CM5A-LR 
7 CMCC-CM 24 IPSL-CM5A-MR 
8 CMCC-CMS 25 IPSL-CM5B-LR 
9 CNRM-CM5 26 MIROC-ESM-CHEM 

10 CSIRO-Mk3-6-0 27 MIROC-ESM 
11 CanESM2 28 MIROC5 

12 EC-EARTH 29 MPI-ESM-LR 
13 FGOALS_g2 30 MPI-ESM-MR 
14 FIO-ESM 31 MRI-CGCM3 
15 GFDL-CM3 32 NorESM1-M 
16 GFDL-ESM2G 33 NorESM1-ME 
17 GFDL-ESM2M 34 bcc-csm1-1 

  35 inmcm4 
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Table S2 Possible drivers considered in the correlation analysis and in the FLM. 

Acronyms   
SOI  Southern Oscillation Index 
DMI/IOD Indian Ocean Dipole 
SAM Southern Annular Mode 
AO Arctic Oscillation 
NAO North Atlantic Oscillation 
PDO Pacific Decadal Oscillation 

 

 

 

Calculation of Degree of Susceptibility of Heatwave towards Drought 

A Bayesian approach was adopted and the probability of having a HW day conditioned 

on drought weeks (pe) were estimated at each grid-point location and compared with that 

conditioned on no drought weeks (pc) for the observational period. In other words, we 

selected the HW days conditioned on drought as our experiment, and HW days 

conditioned on no drought as the control data set. The following equations illustrate the 

methodology for the estimation of pc and pe using relative frequencies of daily CHWD 

events at each grid cell locations across the globe during the observational period, 1982-

2016.  

( | )pe P HW day Drought=                                                                                                            

(1)         

( | )pc P HW day NoDrought=                                                                                                        

(2)                                                                                                                 

Therefore, applying the Baye’s theorem we estimated pe as, 
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( )
( )

P HW day Droughtpe
P Drought


=                                                            

(3) 

( )
( )

P HW day No Droughtpc
P No Drought


=                                                                                                           

(4) 

(    ) (  )/
(     ) ( )

P HW day Drought P No Droughtpe pc
P HW day No Drought P Drought

 
 =

 
  

 

   

where,
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N

i
i i i i pi

i

ne ne if HWT TX pct PDSI sc PDSI
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=

=  
 = 

=



 

       

(5)    

 1
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N

i
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=
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=
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 1
1, _ 0

( )
0, .

N

i
ii

i

nc nc if PDSI sc
P No Drought

nc otherwiseN
=

= 
= 

=


                                                 

(8) 

where, i is the daily time-step, and N is the total number of daily time steps for the period, 

1982-2016; HWTmaxi is the daily Tmax corresponding to the ith time step that constitute a 

HW day. 

Next, we performed a two-proportion z-test (or Chi-square test) to select the pe/pc values 

that have statistically significant (at 5% significance level) higher values than 1. This 

refers to a one-sided hypothesis testing for which the statistical hypothesis can be 

formulated as, 

0 1: / 1    : / 1H pe pc versus H pe pc   ; Upper tailed test. 

However, the z-statistic is based on a standard normal distribution. Therefore, to remove 

the normality assumption, the results obtained for the two mutually exclusive events were 

resampled, producing 1000 realizations each with replacement. The z-statistic was 

estimated for each of these samples as well as for the observed distribution as, 

pe pcz


−
=                                                                                                                                       

(9) 

where,   is the standard error from the pooled sample and can be given as, 

1 1(1 )p p
ne nc


 

= − + 
 

                                                                                                                

(10)               
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ne pe nc pcp
ne nc

 + 
=

+
                  

(11) 

Then, from the sampling distribution, we determined what proportion of the z-statistic 

had absolute values as large or larger than that observed z-statistic. We rejected the null 

hypothesis of equal proportions if that proportion was greater than 0.05. Finally, the 

DSHW towards an existing drought condition was measured by the pe/pc ratio that show 

statistically significant value greater than 1. 

 

FigS1. AR5 SREX Climate regions 
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Figure S1 Average number of CHWD events during the (a) Pre-2000 period (1983-1999) 

and (b) Post-2000 period (2000-2016) 
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Figure S2 Degree of susceptibility of heatwave towards drought. 
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Appendix D 

Supplementary Information for Chapter 6 

D.1. Calculation of Heat Index  

The computation of heat index (HI) is performed using a multi-stage algorithm that 

applies a simple formula proposed by Steadman, 1979b, 1979a and a regression equation 

along with some adjustments (Rothfusz, 1990). The equations consider the relationship 

between temperature and relative humidity. The procedure for the calculation of HI is 

available at https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml and can be 

summarized in the following four steps: 

Step 1: Calculate the HI using the simple formula provided by Steadman, 1979b, 1979a 

given as, 

( ) ( )   0.5    61.0  68.0 1.2   0.094HI T T RH=  + + − +                                           

(D.1.1) 

where T is the temperature in ℉ and RH is relative humidity in percent.  HI is the heat 

index expressed as an apparent temperature in ℉.  

Step 2: Average the HI with the T  

Step 3: If the result in step 2 is equal to or greater than 80℉, then apply the regression 

equation (Rothfusz, 1990) given as, 

42.34 2.05 10.14 0.22
00.05481717 .0012 0.00085

0.00

0

9

0.0 68

0001 9

H

H
RH RH T T RH T

I T RH T RH T
RRH H

T

T T RH R

= − + 



+  −   −  

 +    +   

− 

−

  

                

(D.1.2) 
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Step 4: If the RH is less than 13% and the T is between 80℉ and 112℉, then the 

following adjustment is subtracted from the HI calculated in step 3, 

( ) ( )
( )

17 9513
  

4 17adj

TRH
HI −

− −−
=                                                                                  

(D.1.3) 

Step 5: If the RH is greater than 85% and the T is between 80℉ and 87℉, then the 

following adjustment is added to HI calculated in step 3:  

( )
85 87   

10 5adj
RH THI +

− −   
=    

   
                                                                                       

(D.1.4) 

Note that we used daily maximum temperature (Tmax) to calculate HI in this study. 

D.2. Bias Correction of daily HI projections: 

We applied a non-stationary bias correction technique, following the Equidistant 

Cummulative Distribution Function Matching (EDCDFm) proceedure proposed by(Li et 

al., 2010). The EDCDFm is an improvement over the traditional Quantile Mapping (QM) 

approach that has been shown to produce reliable bias corrected GCM outputs for 

temperature projections under non-stationary conditions (Li et al., 2010; Miao et al., 

2016; Wang & Chen, 2014). Unlike the traditional QM approach, it incorporates the 

change in variance and skewness in addition to considering shift in the mean of the 

distribution. A non-parametric approach to estimate cummulative distribution functions 

(CDFs) of daily HI from observations and GCMs is applied in the study. The quantiles 

obtained from the non-parametric CDF for the projections of a specific GCM (period, 
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2006-2100) was subsequently mapped onto the same quantile of the observed 

distribution, in the reference period, 1979-2005. Similarly, the quantiles obtained from 

the CDF of future projections of daily HI was subsequently mapped onto the same 

quantile of the distribution of the historical model, in the reference period, 1979-2005.  

This improved quantile mapping method can be mathematically written as  

1
mod _ mod _ _ mod _ mod _

1
mod _ mod _ mod _

( ( ))

( ( ))
el adjusted el proj obs ref el proj el proj

el ref el proj el proj

T T F F T

F F T

−

−

= +

−
                                  

(D.1.5) 

where 
mod _el projF  is the CDF of the model for a future projection (RCP4.5, and RCP8.5 

scenario) period, and 1
_obs refF − , and 1

mod _el refF −  are quantile functions for observations and 

model (historical scenario) in the reference period, respectively.  

D.3. Parameter Estimation, Model Selection, and Significance Testing 

The parameter estimation and model selection was performed by using the log-likelihood 

function which can be derived from the cumulative distribution function provided in 

equation (3) of Chapter 6. For a sample of n years of annual maxima with values xi = (x1, 

..., xn), the log-likelihood function can be derived for 0   as (Coles, 2001a) 

1/

0 0 0 0
1 1

log ( | , , ) log (1 1/ ) log 1 1
n n

i t i t
i t t t

i it t

x xl L x n


 
      

 

−

= =

      − −
= = − − + + − +      

      
 

            

 (C.1.6) 

and for 0 =  as 
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1 1
log ( | , ) log exp

n n
i t i t

i t t t
i it t

x xl L x n  
  

 = =

    − −
= = − − − −    

    
                                     

(D.1.7) 

The stationary and non-stationary models (Table S2) are fitted to the time series of 1d-

HS, 3d-HS, and 7d-HS of the summer season, separately, by maximizing the log-

likelihood function. After fitting the candidate models (Table S2), the best models were 

selected based on the Bayesian information criterion (BIC; (Schwarz, 1978)). The BIC 

introduces a penalty term in order to compensate for the increasing number of parameters 

in the model as, 

ˆ2 logBIC l p n= − +                                                                                                                

(D.1.8) 

where, l̂  is the maximized log-likelihood of the model containing p parameters and n 

samples. The model with the smallest BIC value is chosen as the best-fit model.  

There is a high possibility that the selected models based on the BIC values are obtained 

by chance, therefore, we performed a likelihood ratio test (LRT) to find if the inclusion of 

the time trends as covariates in the parameters of the selected model contributes 

significantly to the model performance(Katz, 2013). The LRT is expressed as the 

difference in the deviance statistics of the nested models, mathematically represented as, 
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( )

2log

2 log ( ) log ( )

s
e

g

e s e g

s g

LLRT
L

L L

deviance deviance

 
= −   

 

= − −

= −

                                                                                         

(D.1.9)                   

where Ls is the likelihood function for the simpler (s) model, and Lg represents the same 

but for the general (g) model. The simpler model has fewer parameters than the general 

model. It is assumed that the difference between the deviance statistics as derived from 

the equation (D.1.9.) approximately follows the χ2  distribution with 1 degree of freedom 

under the null hypothesis. Finally, for any given level of significance testing (α=5%), the 

null hypothesis of LRT=0 is rejected in favor of the general model if the value of LRT is 

found to be greater than the (1- α)th quantile of the  χ2  distribution with degrees of 

freedom equal to the difference in the number of parameters between the nest models.  

A.4. Estimation of Return Levels  

The return level for a given time period are estimated at CONUS gridpoints by using the 

best-fit stationary and non-stationary GEV models. We estimate effective 40-year return 

levels (referred to as 40YHS) and the Pr(HS>40.6) that fulfill our objective to examine 

the high-end HS severity and exceedances above a critical limit of 40.6ºC to assess the 

heat burden(Matthews et al., 2017). Subsequently, the 40YHS value is calculated by 

using the estimated GEV parameters as(Coles, 2001b): 
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ˆ
ˆ1 ˆˆ1 , ( 0)ˆln(1 )pq

p




 



  
 = − −  +  
 −  

                                                                            

(D.1.10) 

where p (=1/40) is the exceedance probability, and ̂ , ̂ , and ̂  are the GEV-

parameters for the best-fit GEV model at any gridpoint. Return levels for the stationary 

GEV model (Model-1; Table S2) were estimated based on setting the parameters 0̂ = , 

0̂ = , and 0̂ = . On the other hand, the effective 40-yr return level for the non-

stationary GEV models (Model-2, and Model-4; Table S2), with the time trend as a 

covariate only in the location parameter ( t ), is estimated by using the 95th percentile of 

1 2 3, , ,...............t t t tn    values such that 95 1 2ˆ ( , ,......., )t t tnQ   = , 0̂ = , and 0̂ = . 

Similarly, in the case of the non-stationary GEV models (Model-3, and Model-5; Table 

S2), where both location and scale parameters vary with time, the effective 40-yr return 

levels were derived by estimating the 95th percentile of both t and t as, 

50 1 2

50 1 2

0

ˆ ( , ,......., )
ˆ ( , ,......., )
ˆ

t t tn

t t tn

Q
Q

   

   

 

=

=

=

                                                                                                  

(D.1.11) 

A similar approach for estimation of return levels has been adopted in previous studies 

related to the non-stationary analysis of extreme temperature events(Ouarda & Charron, 

2018)  
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Tables: 

Table S1: List of 9 CMIP5-GCMs based on the historical and RCP (RCP4.5, and 

RCP8.5) scenarios used in the study. The data are analyzed over historical (1979-2005) 

and future (RCP4.5 and RCP8.5, 2006-2100) periods. 

Sl. No. Model 
1 CanEMS2 
2 CSIRO-Mk3-6-0 
3 GFDL-ESM2G 
4 IPSL-CM5A-LR 
5 IPSL-CM5A-MR 
6 MIROC5 
7 MIROC-ESM 
8 MIROC-ESM-CHEM 
9 MRI-CGCM3 

 

Table S2: The five competing stationary and non-stationary GEV models used in the 

study. 

Models 

Parameters 

Location (  ) Scale ( ) Shape (  ) 

Model-1 0  0  0  

Model-2 0 1t +  0  0  

Model-3 0 1t +  0 1t +  0  

Model-4 2
0 1 2t t  + +  0  0  

Model-5 2
0 1 2t t  + +  0 1t +  0  
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Figures: 

 

Figure S1 (a-i) Spatial map of CONUS showing the mean of annual maximum daily 

maximu temperature (Tx) for the (a) present (1980-2019), (b) near-future (2020-2059), 
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and (c) far-future (2060-2099) climate sceanrio corresponding to 1day event (1d-Tx) for 

the RCP4.5 emission scenario, (d-f) same as in (a-c) but for 3d-Tx event, and (g-i) same 

as in (a-c) but for 7d-Tx event.  

 

Figure S2 Change in annual extreme HS severity. (a-o) spatial maps of change in the 

severity of (a) 1d-HS, (b) 3d-HS, and (c) 7d-HS events in the present climate, (d-f) same 
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as in (a-c) but during the near-future corresponding to RCP4.5 scenario, (g-i) same as in 

(a-c) but during near-future corresponding to RCP8.5 scenario, (j-l) same as in (a-c) but 

during far-future corresponding to RCP4.5 scenario, and (m-o) same as in (a-c) but 

during far-future corresponding to RCP8.5 scenario. Changes in severity of the HS events 

are estimated based on Sens's slope methodology(Sen, 1968) for each of the 40-year 

scenarios and gridpoints and the significant trends (tested at 5% significance level based 

on the pre-whitened Mann Kendall Trend test(Kendall, 1948; Mann, 1945)) are marked 

by stippling. 

 

Figure S3 (a-i) Map of mean of extreme summer HS severity for the CONUS in the (a) 

present (1980-2019), (b) near-future (2020-2059), and (c) far-future (2060-2099) climate 

sceanrio corresponding to 1d-HS event for the RCP4.5 emission scenario, (d-f) same as 

in (a-c) but for 3d-HS event, and (g-i) same as in (a-c) but for 7d-HS event.  
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Figure S4 (a-c) Maps of best-fit GEV-models obtained for the (a) historical, (b) near-

future based on RCP4.5, (c) near-future based on RCP8.5, (d) far-future based on 

RCP4.5, and (e) far-future based on RCP8.5 climate scenario for the 1d-HS events, (f-j) 

same as in (a-e) but for 3d-HS events, and (k-o) same as in (a-e) but for 7d-HS events. 

Model-1 represents the stationary GEV model, while Model-2 to Model-5 represents the 

nonstationary GEV models. Spatial maps showing the range of p-values corresponding to 

1d-HS events obtained from LR-test considering Model-1 as the simpler (s) model, and 

the models, Model-2 to Model-5 as the general (g) model, (f-j) same as in (a-e) but for 

3d-HS events, and (k-o) same as in (a-e) but for 7d-HS events.  
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Figure S5 (a-c) Spatial distribution of (a-e) location, (f-j) scale and (k-o) shape 

parameters corresponding to the AM-HI for the 1d-HS events corresponding to the five 

scenario-time period combinations used in the study. The estimation of the parameters is 

performed following equation A.1.11. 
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Figure S6 (a-c) Spatial distribution of 40YHI (ºC) severity for the (a) present, (b) near-

future based on RCP8.5, and (c) far-future based on RCP8.5 climate scenario 

corresponding to 1d-HS event, (d-f) same as in (a-c) but for 3d-HS event, (g-i) same as in 

(a-c) but for 7d-HS event. 
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Figure S7 same as in Figure S6 but for 40YTx (ºC). 
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Figure S8 Spatial maps showing the decadal trends in Warm Tail Spread 

(WTS)(Spangler & Wellenius, 2020) for (a-e) 1d-HS, (f-j) 3d-HS, and (k-o) 7d-HS 

events. 
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Figure S9 Spatial maps showing the trends in WTS for each CMIP5 model for the 1d-HS 

events corresponding to the five scenario-time period combinations used in the study. 
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Figure S10 Kernel density plots for the trends in WTS for the sub-regions in the nine 

individual CMIP5 models for the 1d-HS events corresponding to the five scenario-time 

period combinations used in the study. 
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Figure S11 Gridded population count for (a) Present (2015), (b) near-future based on 

SSP2, (c) near-future based on SSP5, (d) far-future based on SSP2, and (e) far-future 

based on SSP5. 
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Appendix E 

Supplementary Information for Chapter 7 

AR Detection Criteria 

A brief discussion on the AR-detection procedure and criteria (Guan and Waliser, 2015) 

is summarized in the following five steps.  

(i) Thresholding of IVT strength: ARs are defined based on the IVT intensity 

exceeding a fixed lower limit (100 kg m-1 s-1) or a threshold value estimated at every grid 

cell and for each of the 12 months. This lower limit of 100 kg m-1 s-1 is selected based on 

manual examination, and corroboration with previous AR detection results 

(Gorodetskaya et al., 2014; Guan and Waliser, 2015). While, the fixed lower limit is 

applied to all grid cells, it is observed that varying the lower limit between 50 and 

150 kg m−1 s−1 brings no notable impact on the AR detection (Guan and Waliser, 2015). 

The selected threshold employed in the AR detection methodology is therefore robust to 

picking up noise. The IVT threshold for a month is calculated as the 85th percentile of 

IVT intensity over all time steps during an overlapping 5-month window centered around 

that month between 1979 and 2019. The 85th percentile threshold is found to skillfully 

capture the ARs across the Central United States (Nayak et al., 2014), and it has been 

applied in other regional studies including SEUS and Britain (Debbage et al., 2017; 

Lavers et al., 2012). 

(ii) Determining the AR-objects: The grid cells where the IVT intensity exceeds 

either one of the corresponding threshold or 100 kg m-1 s-1 (whichever is greater) are 

extracted and retained for identifying a set of AR-objects corresponding to each time-
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step. The set of AR objects determined from these grid cells are such that any object 

artificially cut off at the circular longitudinal boundary is considered as one object. The 

retained objects are further checked for direction, geometry, and landfall criteria in the 

subsequent steps.   

(iii) Checking for IVT direction: The retained AR objects for each time-step are 

checked for (a) coherence in IVT direction such that an object is discarded if more than 

half of the grid cells have IVT deviating more than 45° from the mean IVT of the object; 

(b) an appreciable poleward component with a minimum IVT intensity of 50 kg m-1 s-1, 

and (c) consistency between the mean IVT direction and overall orientation such that an 

object is discarded if the direction of the mean IVT deviates from the overall orientation 

by more than 45°. 

(iv) Checking for Geometry: The AR objects that fulfill the requirements of IVT 

direction are further subjected to a check for the object’s geometry. For an object, the 

axis is first identified, based on which its corresponding object-length, and -width are 

determined. The objects having a length greater than or equal to 2,000 km and a length-

to-width ratio greater than or equal to 2 are retained as ARs. The ARs, retained hereafter, 

are checked for landfall requirements in the subsequent step. While employing this 

algorithm, we considered a broad spatial domain extending up to 55ºW latitude over the 

Atlantic Ocean, and the Caribbean and neighboring islands less than 2.5x2.5⁰ are not 

considered in the analysis (Guan and Waliser, 2015). The small islands are considered as 

the ocean surface following the original algorithm (Guan and Waliser, 2015). 
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Furthermore, following the same algorithm, the 2000 km length criteria have been 

employed by Debbage et al., 2017 to analyze AR interactions along the coastal SEUS. 

(v) Checking for landfall: If the AR intersects the coastline such that the mean AR 

IVT is directed onshore, the intersecting coastal grid cells are identified. The landfall 

characteristics are then determined based on the identified intersecting coastal grids such 

that the grid cell with the maximum onshore IVT intensity is selected as the location of 

landfall. Finally, an AR is considered to have made a landfall if the remaining length of 

the AR located over the ocean is found to be greater than or equal to 1000 km.  

 

 

Figure S1 Geographical distribution of (a) 95th and (b) 99th percentile thresholds (in mm) 

based on which the EP events are calculated in the study. The threshold is estimated 
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based on all non-zero daily precipitation totals at each precipitation grid for the period 

1979-2019. 
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Appendix F 

Supplementary Information for Chapter 8 

F.1. Flash drought Identification Criteria based on ESR 

The flash drought events are identified by following the criteria proposed by 1 that 

emphasizes both longevity and impact of rapidly intensifying drought events. The criteria 

are summarized as 

(a) Flash drought events are required to have a minimum length of five SESR changes 

SESR , which is equivalent to a duration of six pentads (30 days).  

(b) A final SESR value below the 20th percentile of SESR values.  

(c) The SESR  value must be at or below the 40th percentile between individual pentads, 

and no more than one SESR  above the 40th percentile following a SESR  that meets 

the former criterion. 

(d) The mean change in SESR ( SESR ) during the entire duration of the flash drought 

must be less than the 25th percentile of the climatological changes in SESR for that grid 

point and time of year. 

F.2. Calculation of Flash Drought Intensity based on ESR  

Following 1, flash droughts were categorized by four drought intensity indices (FD1, 

FD2, FD3, and FD4) based on the moderate (FD1) to exceptional (FD4) rate of 

intensification calculated by using the mean SESR change ( SESR ) during the entire 

event. The percentile thresholds used for each category are illustrated in Table S2. It is 

important to note that at a given grid point all percentile values used in criteria (b) and (c) 

in A.1., were taken from the pentad climatology of all SESR available between 1980 and 
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2018, whereas, for criterion (d), percentiles were calculated from the distribution of 

SESR  for all pentads that were encompassed within the flash drought event. The Flash 

drought intensity is calculated as the mean SESR change ( )SESR   during the flash 

drought period 1. A more detailed explanation on the flash drought identification 

methodology is available in 1. 

F.3. Calculation of Potential Evaporation using Priestley-Taylor Equation 

The Priestly-Taylor (PT) equation2 is extensively used in the calculation of potential 

evaporation (PE), applied to drought quantification. It is a simplified version of the 

Penman-Monteith method, where the vapor pressure deficit and convection terms are 

reduced to an empirical constant, ( 1.26) = . The PT equation is given as, 

( )

( )
1000,n

v

R G
PE 

 

 −
=  

  +
              (1) 

where, PE is in mm/day, v is volumetric latent heat of vaporization, 2453 MJ m-3, G is 

soil heat flux density (MJ m-2 day-1), ( 0.000665 )P =  is the psychrometric constant 

(kPa ºC-1), P is the atmospheric pressure (kPa), Rn is the surface net radiation (MJ m-2 

day-1) calculated as, n s LR R R= − , where, Rs and RL are the surface net incoming 

shortwave radiation, and surface net outgoing longwave radiation, respectively. Δ is slope 

of the saturation vapor pressure-temperature curve (kPa ºC-1) calculated as, 

( )
2

4098
237.3

s

a

e
T


 =

+
                                 (2) 

where, es is the saturation vapor pressure (kPa) given as,  



 

 446 

( )
17.67

243.54 66.112 1 7 10 3.46 10
a

a

T
T

s surfe P e +− −=  +  +                         (3),  

Ta is the daily mean 2m air temperature (ºC), and Psurf is the surface pressure (hPa). 

 

Tables 

Table S1 Thresholds used for flash drought classification. 

Flash drought intensity 
index 

Flash drought 
intensity 

Mean change in SESR or 
mean 1m RZSM (percentile) 

FD1 Moderate flash drought 20th - 25th 
FD2 Severe flash drought 15th - 20th 
FD3 Extreme flash drought 10th - 15th  

FD4 
Exceptional flash 
drought <10th 

 

Table S2 Aridity index (AI) classification system based on 3. 

Zones Range of Aridity 
Index 

Hyper-arid AI < 0.05 

Arid 0.05 < AI < 0.20 

Semi-arid 0.20 < AI < 0.50 

Sub-humid 0.50 < AI < 0.65 

Humid 0.65 < AI 
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Figures 

 

Figure S1 Spatial map showing the percent of (a) FDESR, and (b) FDRZSM years between 

1980 and 2018 based on ERA5 dataset, and (c-d) same as in (a-b) but based on MERRA2 

dataset. 
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Figure S2 Spatial map showing the climatological mean (a) Pr (mm/day/year), (b) 

climatological mean PET (mm/day/year), and (c) AI calculated for the period, 1980-

2018. The spatial map in (c) illustrates the humid, sub-humid, semi-arid, arid, and hyper-

arid climate regimes classified across the globe based on the range of AI (Table S2). 
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Figure S3 Same as in Fig 2 but based on MERRA2 dataset.  
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Figure S4 Spatial maps showing the mean standardized anomalies of (left) Pr, (2nd 

column) Tmax, (3rd column) VPD, and (right) pi based on the ERA5 dataset calculated at 

one pentad intervals starting from 4 pentads before (denoted by -4) to 3 pentads after 

(denoted by 3) the onset timings of FDESR. 
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Figure S5 same as in Fig S4 but for mean standardized anomalies based on the MERRA2 

dataset. 
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Figure S6 same as in Fig S4 but for mean standardized anomalies based on the ERA5 

dataset calculated at one pentad intervals starting from 4 pentads before (denoted by -4) 

to 3 pentads after (denoted by 3) the onset timings of FDRZSM. 
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Figure S7 same as in Fig S4 but for mean standardized anomalies based on the MERRA2 

dataset calculated at one pentad intervals starting from 4 pentads before (denoted by -4) 

to 3 pentads after (denoted by 3) the onset timings of FDRZSM. 
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Figure S8 same as in Figure 4 but for climate anomalies calculated based on MERRA2 

dataset. Note that the FDESR and FDRZSM intensity are calculated based on the GLEAM 

dataset. 
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Appendix G 

Supplementary Information for Chapter 9 

G.1. Estimation of Vapor Pressure Deficit 

In this study, daily vapor pressure deficit (VPD) is calculated by using daily mean dew 

point temperature, daily mean 2m air temperature, and surface pressure obtained from the 

ERA5 dataset. The VPD estimation based on these variables is given as68, 

17.67
243.56.112

d

d

T
T

wAVP f e +
=                                              (1) 

where, AVP is the actual vapor pressure and Td is the dew point temperature (ºC),  

17.67
243.56.112

a

a

T
T

wSVP f e +
=                                                   (2) 

where, SVP is the saturation vapor pressure (kPa), and Ta is the daily mean 2m air 

temperature (ºC), and fw is given as,  

4 61 7 10 3.46 10w surff P− −= +  +                                  (3) 

where, Psurf is the surface pressure in (hPa). 

Finally, VPD is calculated as, 

VPD AVP SVP= −                                                             (4) 
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Figures 

Figure S1 Spatial maps showing the estimates of AF (%) of dry days on hot day 

occurrence in a dry-hot cascade network considering (a) 0 days, (b) 1 day, (c) 2 days, (d) 

3 days, (e) 4 days, (f) 5 days, (g) 6 days, and (h) 7 days lag. 

Figure S2 Spatial maps showing the lower bound of (5-95%) confidence interval for AF 

(%) of dry days on hot day occurrence in a dry-hot cascade network considering (a) 0 
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days, (b) 1 day, (c) 2 days, (d) 3 days, (e) 4 days, (f) 5 days, (g) 6 days, and (h) 7 days 

lag. 

Figure S3 Spatial maps showing the upper bound of (5-95%) confidence interval for AF 

(%) of dry days on hot day occurrence in a dry-hot cascade network considering (a) 0 

days, (b) 1 day, (c) 2 days, (d) 3 days, (e) 4 days, (f) 5 days, (g) 6 days, and (h) 7 days 

lag. 
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Figure S4 Spatial maps showing the estimates of AF (%) of hot days on dry day 

occurrence in a hot-dry cascade network considering (a) 0 days, (b) 1 day, (c) 2 days, (d) 

3 days, (e) 4 days, (f) 5 days, (g) 6 days, and (h) 7 days lag. 

Figure S5 Spatial maps showing the lower bound of (5-95%) confidence interval for AF 

(%) of hot days on dry day occurrence in a hot-dry cascade network considering (a) 0 

days, (b) 1 day, (c) 2 days, (d) 3 days, (e) 4 days, (f) 5 days, (g) 6 days, and (h) 7 days 

lag. 
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Figure S6 Spatial maps showing the upper bound of (5-95%) confidence interval for AF 

(%) of hot days on dry day occurrence in a hot-dry cascade network considering (a) 0 

days, (b) 1 day, (c) 2 days, (d) 3 days, (e) 4 days, (f) 5 days, (g) 6 days, and (h) 7 days 

lag. 

Figure S7 Spatial distribution of lagged correlation coefficients between daily SM 

(lagged) and Tmax for (a) 0 days, (b) 1 day, (c) 2 days, (d) 3 days, (e) 4 days, (f) 5 days, 

(g) 6 days, and (h) 7 days lag. 
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Figure S8 Spatial distribution of lagged correlation coefficients between daily Tmax 

(lagged) and SM for (a) 0 days, (b) 1 day, (c) 2 days, (d) 3 days, (e) 4 days, (f) 5 days, (g) 

6 days, and (h) 7 days lag. 

Figure S9 Spatial distribution of statistically significant (at 5% significance level) odd 

ratios (exp(β)) corresponding to ESR anomalies calculated by fitting the logistic 

regression model for the dry-hot cascade network for a lag of (a) 0 days, (b) 1 day, (c) 2 
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days, (d) 3 days, (e) 4 days, (f) 5 days, (g) 6 days, and (h) 7 days. Note that, a decrease in 

ESR value indicates an increase in evaporative stress. 

Figure S10 same as in figure S9 but corresponding to surface net radiation (Rn) 

anomalies. 

Figure S11 same as in figure S9 but corresponding to precipitation (Pr) anomalies. 
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Figure S12 Spatial distribution of statistically significant (at 5% significance level) odd 

ratios (exp(β)) corresponding to surface net-radiation (Rn) anomalies calculated by fitting 

the logistic regression model for the hot-dry cascade network for a lag of (a) 0 days, (b) 1 

day, (c) 2 days, (d) 3 days, (e) 4 days, (f) 5 days, (g) 6 days, and (h) 7 days. 

Figure S13 same as in figure S12 but corresponding to precipitation (Pr) anomalies. 
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Figure S14 same as in figure S12 but corresponding to VPD anomalies. 

 
 

 

 

 

 


	Quantification of Compound and Cascading Hydroclimatic Extreme Events
	Recommended Citation

	tmp.1687872029.pdf.HFO95

