DOI:10.4067/S0718-221X2023005XXXXXX 1 MECHANICAL AND ACOUSTIC CHARACTERISTICS OF FOUR 2 WOOD SPECIES SUBJECTED TO BENDING LOAD 3 Wengang Hu^{1, 2*}https://orcid.org/0000-0001-8077-6324, Runzhong Yu¹ 4 ¹ Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of 5 Forest Resources, Nanjing, P. R. China. 6 ² Nanjing Forestry University, College of Furnishings and Industrial Design, Department of 7 8 Furniture Design, Nanjing, P. R. China. 9 10 *Corresponding author: hwg@njfu.edu.cn **Received:** June 29, 2022 11 12 Pre-Accepted: June 21, 2023 13 **Posted online:** June 22 ABSTRACT 14 15 The mechanical and acoustic properties of four commonly used wood species, including poplar (Populus tomentosa), mahogany (Swietenia mahagoni), beech (Fagus orientalis), and Ash 16 (Fraxinus excelsior) wood were investigated through using three-point bending and notched 17 bending tests synchronizing with power spectrum analysis method and fractal dimension theory. 18 19 The results showed that the bending modulus of elasticity and modulus of rapture changed in 20 the same trend with the order ranging from high to low was ash, beech, poplar and mahogany, successively. The brittle fracture occurred in mahogany samples and ductile fracture raised in 21 the other three wood species. Positive proportional correlation was observed between maximum 22 acoustic pressure and fractal dimension of power spectrum regardless of seeing four wood 23 species as independent or population samples. The failure modes can be identified by 24 25 amplitude-frequency curve and fractal dimension of power spectrum with following laws: the peak value in amplitude-frequency curve and fractal dimension of power spectrum were 26 relatively higher when a single crack developed at latewood; for crack developed at earlywood, 27 only one peak was observed in power amplitude-frequency curves, and the corresponding 28 29 fractal dimension of power spectrum was smaller than the that of latewood; in case of failure modes with two cracks developed at earlywood, there are two peaks in amplitude-frequency 30 curve and the fractal dimension of power spectrum was between those of single crack developed 31 at earlywood and latewood. The vibrational properties of the four wood species can be 32 characterized through using power spectrum analysis method and notched bending test method 33 can be used to distinguish the failure modes of samples. 34 Keywords: Fractal dimension, mechanical properties, notched bending, vibrational 35

36 characteristic, wood species.

38 INTRODUCTION

Acoustic emission (AE) is the emission of sound waves in the audible and ultrasonic range, 39 which is caused be microscopic fractures, friction of fracture surfaces, outflow of liquids, 40 41 transport process in capillaries of other effects (Niemz et al. 2022). The AE has been studied for nearly half a century in the field of wood and wood-based materials. The AE technique 42 includes determining the physical and mechanical properties of wood, as well as grading, drying, 43 and detecting defects of wood based on the AE of wood when subjected to loads (Hu et al. 44 2021a, Zhao et al. 2020). The AE has been widely used in healthy monitoring of wood 45 constructions including wood timber, shear wall, and other component of wood buildings and 46 products (Yin et al. 2021). The main focus of AE is the investigation of the relationships 47 between structure and properties of wood. However, the vibrational properties of wood were 48 rarely investigated. 49

It is known that AE in wood can appear as a result of mechanical stresses caused by mechanical, external loading or wood-internal sorptive stresses (Raczkowski *et al.* 1994). So far, many publications (Krajewski *et al.* 2020, Yan *et al.* 2022, Wu *et al.* 2021, Nasir *et al.* 2019, Niu and Huang 2022, Tang *et al.* 2022) had reported the basic knowledge of AE generated by external loading and AE applied to monitor the AE generated by wood-internal sorptive stresses in wood products and structures. Ozyhar *et al.* (2013) determined the moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves.

57 Researchers have tried to obtain more accurate AE signals to know the position and details 58 of cracks in wood and wood constructions. However, AE characteristic signals of wood are

59	affected by many factors, such as wood species (Perrin et al. 2019, Xu et al. 2020, Ansell 1982,
60	Lin et al. 2022, Liu et al. 2023), moisture content (Sato et al. 1984, Fu et al. 2021), density
61	(softwood and hardwood) (Ansell 1982, Reiterer et al. 2000, Chen et al. 2006), wood grains
62	(Brémaud et al. 2011; Boccacci et al. 2022), loading types (Chen et al. 2006, Ohuchi et al. 2011)
63	and the distance between the AE source and the transducers (Lukomski et al. 2017, Pan et al.
64	2022, Zhao et al. 2022, Zhu et al. 2022). Most studies were mainly focused on how these factors
65	influenced AE characteristic signals and their relationships with mechanical properties of wood
66	(Rescalvo et al. 2020). The most important factors influencing AE of wood are the structure
67	(density, fiber length, particle geometry, type and percentage of adhesive, etc.), the moisture
68	content, and the history (e.g., fungal infections or insect attack, mechanical or climate pre-stress)
69	of wood and wood-based material (Niemz et al. 2022).
70	All above studies indicated that: 1) ratio of earlywood to latewood had significant effect
71	on AE signals when subjected to tensile load (Ansell 1982); 2) AE signals of wood decreased
72	in high moisture content (Sato et al. 1984); 3) AE counts of softwoods were higher than those
73	of hardwoods when cracked in mode I compact tension tests, while in torsion load condition,
74	opposite results were obtained (Sato et al. 1984), which suggested that loading types seriously
75	influenced AE events. In addition, Perrin et al. (2019) investigated the effects of wood species
76	on AE signals under four-point bending load condition, which reported that unique AE signal
77	appeared for each kind of wood species indicating that the more diverse the wood species was,
78	the more characteristic the AE signal was. This contributes to classify the different wood species.
79	Above research confirmed that AE signal has potential in evaluating wood mechanical

properties. However, there are still many aspects of AE properties unknown. The aim of this 80 study was to obtain and compare the AE characteristics of four commonly used wood species. 81 In this study, the maximum acoustic pressure and power spectrum of four commonly used wood 82 83 species under three-point bending load condition using notched bending samples. Specifically, 1) the physical and mechanical properties of the four wood species were studied; 2) the 84 mechanical and acoustic characteristics of the four wood species were determined using 85 notched bending test method; 3) failure modes of notched bending samples were analyzed based 86 on fractal dimension theory; 4) the relationship between vibrational characteristics and fractal 87 dimension was fitted. 88

89 MATERIALS AND MEHTODS

90 Materials

91 The four wood species used in this study were poplar (*Populus tomentosa*), mahogany 92 (*Swietenia mahagoni*), beech (*Fagus orientalis*), and ash (*Fraxinus excelsior*). All above wood 93 lumbers were bought from local commercial wood supplier (Nanjing, China) and stored in the 94 woodshop of Nanjing Forestry University for more than 12 months and reached air dry 95 condition.

96 **Spec**

Specimen preparation

Figure 1 shows the dimensions of the samples used in this study. All these samples were cut
from full-size lumbers of each species. The samples for three-point bending tests measured 300
mm × 20 mm × 20 mm (length × width × thickness) according to the ASTM D4761-19 (2019).
The dimensions of sample for notched bending test were the same with those of three-point

bending test except a notch measured 5 mm × 10 mm × 20 mm (height × width × depth) at the
middle of length, and 1 mm initial cracks at the notch corners were made using a knife. Among
these four wood species, the boundary of earlywood and latewood of ash wood were clear.
Therefore, for ash wood samples, the notched bending test samples with initial cracks at
earlywood and latewood were prepared. Other wood species were not distinguished earlywood
and latewood.

107

Figure 1: Dimensions of specimens used for (a) three-point bending, and (b) notched
 bending.

110

111 Experimental design

Table 1 shows the experimental design, which indicates that there are 108 samples prepared in this study with 12 replications for each combination of wood species and testing method. After bending tests, the clear samples measured 20 mm \times 20 mm \times 20 mm were cut at the nondestruction parts for measurements of specific gravity (SG) and moisture content (MC) with 10 replications for each species.

117

	Sample type				
Wood species	Three-point bending	Notched bending		SG and MC	
Poplar	12	12		10	
Mahogany	12	12		10	
Beech	12	12		10	
A ala	10	Earlywood	12	10	
Asn	12	Latewood	12	10	

Table 1: Arrangement of samples tested in this study.

120 **Testing methods**

121 *Three-point bending*

The three-point bending tests were conducted according to ASTM D4761-19 (2019). The load was controlled by displacement with a loading rate 5 mm/min. The bending modulus of elasticity (MOE) and the modulus of rapture (MOR) of the four wood species were calculated using Eq. 1 and 2, respectively. The first loading point was 200 N, and second loading point was 700 N, which were selected to ensure the wood kept in elastic stage. The MOE can be calculated according to Eq. 1. Then the load continued until samples completely failed. The MOR is available using Eq. 2.

129 $E = \Delta P l^3 / (4\Delta f b h^2)$ (1) 130 $\sigma = 3P_{\text{max}} l / 2b h^2$ (2)

131 where *E* is bending modulus of elasticity (MPa); σ is bending modulus of rapture (MPa); ΔP 132 is change of load in elastic range (N); Δf is change of deflection corresponding to ΔP (mm); *l*, 133 *b* and *h* are length, width and height (mm) of samples, respectively; P_{max} is the ultimate load 134 when samples fracture (N).

135 Notched bending

Figure 2 shows the setup for the notched bending tests and vibrational properties tests. The

loading condition was the same with that of three-point bending test, the span was 240 mm. 137 Meanwhile, a non-touched microphone sensor (with a pre-amplifier built in) was set in front of 138 the notched corner with a distance of 5 mm (Fig. 2) used to record the vibrational signal 139 140 generated during the cracks propagation when subjected to the notched bending load. The universal testing machine did not stop loading until reaching the maximum load. The universal 141 testing machine and computer recorded the load and deflection data, and the FFT analyzer 142 (CF9200, ONOSOKKI, Japan) recorded the vibrational signals including maximum acoustic 143 pressure and power spectrum. The specific settings of FFT were that 1) the sample frequency 144 ranged from 0 kHz to 4 kHz with a sample point of 2018; 2) the threshold of the microphone 145 was 1 Pa to filter environmental noise. The main testing procedure was that: 1) turn on the FFT 146 analyzer and set the parameters according to above descriptions; 2) start loading until sample 147 fail with a loading speed of 5 mm/min controlled by displacement; 3) output the data, *i.e.*, time, 148 deflection, and load, from the universal testing machine, and vibrational signals, *i.e.*, frequency, 149 amplitude, and acoustic pressure, were also outputted from the FFT analyzer. 150

Figure 2: Setup for testing acoustic emission properties when subjected to notched bending
 load: (a) front view; (b) top view.

154

155 Specific gravity and moisture content

At the moment finishing the three-point bending tests and notched bending tests, the SG and MC were measured using the samples cut from the tested three-point samples according to ASTM D2395-17 (2017) and ASTM D4442-20 (2020), respectively.

- 159 **Statistical analysis**
- The basic physical and mechanical properties and mechanical and acoustic characteristics 160 of the four types of wood species were analyzed using analysis of variance (ANOVA) general 161 linear method (GLM) procedure. Mean comparisons using the protected least significant 162 difference (LSD) multiple comparison procedure was conducted if any significant was 163 identified. All these analyses were performed at 5% significance level using SPSS 22.0 (IBM, 164 2013). Fractal dimensions were calculated using Fraclab 2.2 toolbox (INRIA, 2017) built in the 165 Matlab R2014a (MathWorks, 2014). The specific calculation procedure of fractal dimensions 166 of power spectrum followed our former work (Hu et al. 2021b). 167
- 168 RESULTS AND DISCUSSION
- 169 **Basic physical and mechanical properties**

Figure 3 shows the typical load and deflection curves of the four wood species when subjected to three-point bending load, which indicates that the failure modes of ash, beech and poplar are ductile, and that of mahogany is nearly brittle. Table 2 further shows the mean comparisons of basic physical (SG and MC) and mechanical properties (ultimate load, MOE and MOR) of all evaluated wood species. All testing results of dependent variables evaluated were in normality distributions. Significant differences of SG exist between the four wood 176 species. The specific order of SG from high to low is ash, beech, mahogany, and poplar. In case of MC, ash wood had significantly higher MC than beech and mahogany followed by poplar, 177 but the difference between beech and mahogany was not significant. The values of all 178 mechanical properties of the four wood species had the same trends that ash and beech had 179 significantly greater values than those of poplar and mahogany, but no significantly difference 180 was found between ash and beech wood. Here, the ultimate load, MOE and MOR of poplar 181 were all significantly higher than mahogany, which was opposite to the relative values of their 182

density. This may lie to the brittle failure of mahogany shown in Fig. 3. 183

184

185

Figure 3: Typical load-deflection curves of three-point bending tests.

Wood	Specific	Moisture	Ultimate	MOE	MOR
species	gravity	content (%)	load (N)	(MPa)	(MPa)
Poplar	0,45 (9,23) D	8,64 (2,52) C	2451(16) B	7118(13,0) B	82,5 (14,2) B
Mahogany	0,65 (5,75) C	9,26 (2,20) B	1634(24) C	6399(15,8) C	59(20,7) C
Beech	0,68 (5,53) B	9,22 (2,70) B	3051(14) A	10958(16,0) A	116,3(12,6) A
Ash	0,74 (2,54) A	9,69 (2,37) A	3593(11) A	11192(11,5) A	120,4(11,9) A
Note: The values in parenthesis after mean values are coefficient of variances in percentage, and four means in					
the same column not followed by a common letter are significant different one from another at 5% significance					
level.					

usical and mechanical properties of four species evaluated 186

187

Mechanical and acoustic properties of notched bending samples 189

Figure 4 shows a combination of typical load-deflection, acoustic pressure-time, and power 190 spectrum (amplitude-frequency curve) of an ash wood sample. In theory, the acoustic pressure 191 192 and power amplitude reached their peak values when the load reached the maximum value. Meanwhile, the amplitude-frequency curves indicate the energy releasing process. The greater 193 the amplitude is, the more the energy releasing is, and the larger the area generated by fracture 194 is. Based on the above theory, the fractal dimensions of power spectrum curve (FDPS) were 195 used to indicate the morphology of fracture surface indirectly.

197 198

196

Table 3 shows the ultimate load, maximum acoustic pressure and FDPS of notched 199 bending tested samples. The maximum acoustic pressure of mahogany was significantly higher 200 201 than those of poplar, beech and ash. There were no significant differences between poplar, beech and ash. Combining the failure modes and load-deflection curves shown in Fig. 5, it can be 202 found that the failure mode of mahogany under notched bending test was also brittle, and the 203

other three wood species were ductile, which was consistent with three-point bending test. 204

Above results also confirmed the results of other researchers (Lukomski et al. 2017) that 205

206 mahogany was more sensitive to notched corner than the other three wood species.

207

are significant different one from another at 5% significance level.

208

Table 3: Comparisons of mechanical and vibrational characteristics of notched bend	ling
samples for four wood species.	

	-	1		-	
Wood spacias	Maximum acoustic	Ultimate	EDDS	×	
wood species	pressure (Pa)	Load (N)	TDF3		
Poplar	18,0(34) B	746(33) C	1,333(6,5) A		
Mahogany	23,7(45) A	623(19) C	1,270(4,6) C	\mathbb{N}	
Beech	16,3(60) B	1089(28) B	1,282(6,0) B	\triangleright	
Ash	17,1(41) B	1305(13) A	1,290(3,3) B		
Note: The values in parenthesis after mean values are coefficient of variances in					
percentage, and four means in the same column not followed by a common letter					

209

Figure 5: Failure modes of notched bending tested samples: (a) load-deflection curves; (b) 210 poplar; (c) mahogany; (d) beech; (e) ash. 211

- 212
- 213

Relationships between acoustic pressure and FDPS

For further analysis the acoustic characteristics, Fig. 6 shows the relationships between 214

maximum acoustic pressure and FDPS fitted using linear regression method regarding each 215

wood species as independent sample and population sample, respectively. 216

Figure 6: Relationship between maximum acoustic pressure and FDPS: (a) independent sample; and (b) population sample.

Table 4 shows the fitting equations and their corresponding correlation coefficients when four 219 wood species were regarded as independent and population samples. It indicated that there were 220 linear positive proportional relationships between maximum acoustic pressure and FDPS 221 regardless of four wood species seen as independent or population samples, which suggested 222 that the relationship maybe suitable to other wood species, but further studies need to be 223 conducted to confirm it. Ash wood had the highest correlation coefficient of 0,904 among the 224 four wood species, which owned to that the grains of ash wood samples are straight during 225 samples preparation. The correlation coefficients of the other three wood species were all bigger 226 than 0,76 which satisfied the engineering application (Zhou et al. 2022ab, Tao and Yan 2022). 227

228 Failure modes of notched ash wood samples

Figure 7 shows the typical failure modes and their corresponding amplitude-frequency curves of ash wood samples when subjected to notched bending load, which indicates that there are three types of failure modes including single crack at latewood (Fig. 7a), single crack at earlywood (Fig. 7b), and double cracks at earlywood (Fig. 7c).

Sample		Fitting equation	Correlation coefficient	р
	Poplar	<i>y</i> =75,9676 <i>x</i> - 80,649	0,877	0,0207
Independent	Mahogany	<i>y</i> =147,8792 <i>x</i> - 164,057	0,810	0,0014
sample	Ash	<i>y</i> =172,6187 <i>x</i> -203,754	0,904	2,199e- 5
	Beech	<i>y</i> =78,8380 <i>x</i> -8,793	0,768	0,01536
Population sample		<i>y</i> =93,1628 <i>x</i> -100,522	0,767	2,215e- 7

234	Table 4: Fitting	equations and	correlation	coefficients of	facoustic	pressure-FDPS lines.
2JT	Table To I hung	equations and	conclution		acoustic	problement Dr D miles.

(a)	(b)	(c)

Figure 7: Typical failure modes of notched ash wood samples (a) single crack located at 236 latewood, (b) single crack located at earlywood, and (c) double cracks located at earlywood. 237 Table 5 shows the mean maximum amplitude and FDPS of the ash wood samples corresponding 238 to three typical failure modes, which indicates that the maximum amplitude and FDPS values 239 of ash wood samples with single crack generated at latewood were greater than those of 240 earlywood. The maximum amplitude of ash wood samples with double cracks generated at 241 earlywood was lower than those of single cracks at earlywood, but the FDPS was slightly higher 242 243 than single cracks at earlywood. Meanwhile, there were two peaks in amplitude-frequency curves when the double cracks generated at earlywood, whereas, one peak when single cracks 244

- 246 predicting where and numbers of cracks generated when subjected to notched bending load.
- 247 Previous study also supported this point (Hu and Zhang 2022).

Table 5: Mean comparison of power spectrum and FDPS of ash failure modes.

Failure modes	Maximum amplitude (Pa·s)	FDPS
(a)	6,42e-5 (3,4)	1,348 (2,6)
(b)	5,67e-5 (4,1)	1,280 (4,4)
(c)	4,51e-5 (5,3)	1,287 (3,2)
Note: The values in variances in percent	n parenthesis after mean values are co tage.	efficient of

252 CONCLUSIONS

249

250

251

In this study, the mechanical properties and acoustic emission of four commonly used wood

species were studied through using power spectrum analysis method (PSAM) and fractal theory.

255 Following conclusions were drawn.

256 1) The modulus of elasticity (MOE) and modulus of rapture (MOR) of the four wood species

evaluated were ash, beech, poplar and mahogany from high to low, and MOE and MOR had

the same changing trends.

- 259 2) Although the specific gravity of mahogany was greater than poplar, the MOE and MOR
 260 of mahogany were lower than those of poplar. Because brittle fracture was occurred to
 261 mahogany when subjected to three-point bending and notched bending loads.
- 3) Mahogany had the highest acoustic pressure among the four wood species, which
 indicated that brittle fracture generated higher acoustic pressures. There were positive linear
 proportional relationships between four wood species and fractal dimensions of power spectrum
 (FDPS).

4) The number of peaks in acoustic pressure-frequency curve of ash wood and its FDPS

bending load.

269

270 AUTHORSHIP CONTRIBUTIONS

- 271 W. H.: Conceptualization, Resources, Data curation, Formal analysis, Methodology, Writing -
- original draft, Project administration, Writing review & editing. R. Y.: Data curation, Software,
- 273 Formal analysis, Validation, Writing original draft, Writing review & editing.

274 ACKNOWLEDGEMENTS

- 275 This study was supported by Scientific Research Foundation of Metasequoia Teacher
- 276 (163104060), and A Project from International Cooperation Joint Laboratory for Production,
- 277 Education, Research, and Application of Ecological Health Care on Home Furnishing.

278 **REFERENCES**

- American Society for Testing and Materials. 2019. Standard test methods for mechanical
 properties of lumber and wood-based structural materials. ASTM D4761-19. ASTM.
 West Conshohocken, PA, USA. https://www.astm.org/d4761-19.html
- American Society for Testing and Materials. 2017. Standard test methods for specific
 gravity (relative density) of wood and wood-based materials. ASTM D2395-17. ASTM.
 West Conshohocken, PA, USA. https://www.astm.org/d2395-17.html
- American Society for Testing and Materials. 2020. Standard test methods for direct
 moisture content measurement of wood and wood-base materials. ASTM D4442-20.
 ASTM. West Conshohocken, PA, USA. https://www.astm.org/d4442-20.html
- Ansell, M.P. 1982. Acoustic emission from softwoods in tension. *Wood Sci Technol* 16: 35 58. https://doi.org/10.1007/BF00351373
- Boccacci, G.; Frasca, F.; Bertolin, C.; Siano A.M. 2022. Influencing factors in acoustic
 emission detection: A literature review focusing on grain angle and high/low tree ring
 density of scots pine. *Appl Sci* 12: 859. <u>https://doi.org/10.3390/app12020859</u>
- Brémaud, I.; Gril, J.; Thibaut, B. 2011. Anisotropy of wood vibrational properties:
 dependence on grain angle and review of literature data. *Wood Sci Technol* 45:735-754.
 <u>https://doi.org/10.1007/s00226-010-0393-8</u>
- 296 Chen, Z.; Gabbitas, B.; Hunt, D. 2006. Monitoring the fracture of wood in torsion using
 297 acoustic emission. *J Mater Sci* 41: 3645-3655. <u>https://doi.org/10.1007/s10853-006-6292-</u>
 298 <u>6</u>
- Rescalvo, F.J.; Morillas, L.; Valverde-Palacios, I.; Gallego, A. 2020. Acoustic emission in
 I-214 poplar wood under compressive loading. *Eur J Wood Wood Prod* 78: 723-732.
 https://doi.org/10.1007/s00107-020-01536-7

302	Fu, W.; Guan, H.; Kei, S. 2021. Effects of moisture content and grain direction on the elastic
303	properties of beech wood based on experiment and finite element method. <i>Forests</i> 12:
304	610. https://doi.org/10.3390/f12050610
305	Hu, W.; Li, S.; Liu, Y. 2021a. Vibrational characteristics of four wood species commonly
306	used in wood products. <i>BioResources</i> 16: 7101-7111.
307	https://doi.org/10.15376/niores.16.4.7101-7111
308	Hu, W.; Liu, Y.; Li, S. 2021b. Characterizing mode I fracture behaviors of wood using
309	compact tension in selected system crack propagation. <i>Forests</i> 12: 1369.
310	https://doi.org/10.3390/f12101369
311	Hu, W.; Zhang, J. 2022. Effect of growth rings on acoustic emission characteristic signals of
312	southern yellow pine wood cracked in mode I. Constr Build Mater 329: 127092,
313	https://doi.org/10.1016/j.conbuildmat.2022.127092
314	IBM. 2013. SPSS 22.0. Armonk, NY, USA. www.ibm.com/legal/copytrade.shtml
315	INRIA. 2017. Fraclab 2.2 toolbox. France. https://project.inria.fr/fraclab/
316	Krajewski, A.; Bilski, P.; Witomski, P.; Bobinski, P.; Guz, J. 2020. The progress in the
317	research of AE detection method of old house borer larvae (Hylotrupes bajulus L.) in
318	wooden structures. Constr Build Mater 256: 119387.
319	https://doi.org/10.1016/j.conbuildmat.2020.119387
320	Lin, Q.; Zhang, X.; Zhu, N.; Kusumah, S.; Umemura, K.; Zhao, Z. 2022. Preparation and
321	investigation of an eco-friendly plywood adhesive composed of sucrose and ammonium
322	polyphosphate. Wood Mater Sci Eng 17: 2121176.
323	https://doi.org/10.1080/17480272.2022.2121176
324	Liu, X; Yang, S.; Zhang, C., Huang, H., Varodi, A.M. 2023. Comparative study on slow
325	pyrolysis products of abandoned furniture materials. <i>Bioresources</i> 18: 629-640.
326	https://doi.org/10.15376/biores.18.1.629-640
207	
327	Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017.
327 328	Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate
327 328 329	Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u>
328 329 330	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u>
328 329 330 331	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting
327 328 329 330 331 332	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network
327 328 329 330 331 332 333	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. <u>https://doi.org/10.1515/hf-2018-0289</u>
 327 328 329 330 331 332 333 334 	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. <u>https://doi.org/10.1515/hf-2018-0289</u> Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i>
327 328 329 330 331 332 333 334 335	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. <u>https://doi.org/10.1515/hf-2018-0289</u> Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and Technology</i>. Springer International Publishing.
327 328 329 330 331 332 333 334 335 336	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. <u>https://doi.org/10.1515/hf-2018-0289</u> Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and Technology</i>. Springer International Publishing. <u>https://link.springer.com/book/10.1007/978-3-030-81315-4</u>
327 328 329 330 331 332 333 334 335 336 337	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. <u>https://doi.org/10.1515/hf-2018-0289</u> Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and Technology</i>. Springer International Publishing. <u>https://link.springer.com/book/10.1007/978-3-030-81315-4</u> Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full
327 328 329 330 331 332 333 334 335 336 337 338	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. <u>https://doi.org/10.1515/hf-2018-0289</u> Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i> <i>Technology</i>. Springer International Publishing. <u>https://link.springer.com/book/10.1007/978-3-030-81315-4</u> Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206.
327 328 329 330 331 332 333 334 335 336 337 338 339	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. <u>https://doi.org/10.1515/hf-2018-0289</u> Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i> <i>Technology</i>. Springer International Publishing. <u>https://link.springer.com/book/10.1007/978-3-030-81315-4</u> Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206. <u>https://doi.org/10.13360/j.issn.2096-1359.202108018</u>
327 328 329 330 331 332 333 334 335 336 337 338 339 340	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. <u>https://doi.org/10.1515/hf-2018-0289</u> Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i> <i>Technology</i>. Springer International Publishing. <u>https://link.springer.com/book/10.1007/978-3-030-81315-4</u> Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206. <u>https://doi.org/10.13360/j.issn.2096-1359.202108018</u> Ohuchi, T.; Hermawan, A.; Fujimoto, N. 2011. Basic studies on fracture toughness of sugi
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. https://doi.org/10.1784/insi.2017.59.5.256 MathWorks. 2014. Matlab R2014a. Natick, MA, USA. www.mathworks.com Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. https://doi.org/10.1515/hf-2018-0289 Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i> <i>Technology</i>. Springer International Publishing. https://link.springer.com/book/10.1007/978-3-030-81315-4 Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206. https://doi.org/10.13360/j.issn.2096-1359.202108018 Ohuchi, T.; Hermawan, A.; Fujimoto, N. 2011. Basic studies on fracture toughness of sugi and acoustic emission. <i>J Fac Agr Kyushu U</i> 56: 99-102. https://doi.org/10.5109/19536
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. https://doi.org/10.1784/insi.2017.59.5.256 MathWorks. 2014. Matlab R2014a. Natick, MA, USA. www.mathworks.com Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. https://doi.org/10.1515/hf-2018-0289 Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i> <i>Technology</i>. Springer International Publishing. https://link.springer.com/book/10.1007/978-3-030-81315-4 Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206. https://doi.org/10.13360/j.issn.2096-1359.202108018 Ohuchi, T.; Hermawan, A.; Fujimoto, N. 2011. Basic studies on fracture toughness of sugi and acoustic emission. <i>J Fac Agr Kyushu U</i> 56: 99-102. https://doi.org/10.5109/19536 Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. 2013. Determining moisture-dependent
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. https://doi.org/10.1784/insi.2017.59.5.256 MathWorks. 2014. Matlab R2014a. Natick, MA, USA. www.mathworks.com Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. https://doi.org/10.1515/hf-2018-0289 Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i> <i>Technology</i>. Springer International Publishing. https://link.springer.com/book/10.1007/978-3-030-81315-4 Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206. https://doi.org/10.13360/j.issn.2096-1359.202108018 Ohuchi, T.; Hermawan, A.; Fujimoto, N. 2011. Basic studies on fracture toughness of sugi and acoustic emission. <i>J Fac Agr Kyushu U</i> 56: 99-102. https://doi.org/10.5109/19536 Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. 2013. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. <i>Wood Sci Technol</i>
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. https://doi.org/10.1784/insi.2017.59.5.256 MathWorks. 2014. Matlab R2014a. Natick, MA, USA. www.mathworks.com Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. https://doi.org/10.1515/hf-2018-0289 Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and Technology</i>. Springer International Publishing. https://link.springer.com/book/10.1007/978-3-030-81315-4 Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206. https://doi.org/10.13360/j.issn.2096-1359.202108018 Ohuchi, T.; Hermawan, A.; Fujimoto, N. 2011. Basic studies on fracture toughness of sugi and acoustic emission. <i>J Fac Agr Kyushu U</i> 56: 99-102. https://doi.org/10.5109/19536 Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. 2013. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. <i>Wood Sci Technol</i> 47: 329-341. https://doi.org/10.1007/s00226-012-0499-2
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. <u>https://doi.org/10.1515/hf-2018-0289</u> Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i> <i>Technology</i>. Springer International Publishing. <u>https://link.springer.com/book/10.1007/978-3-030-81315-4</u> Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206. <u>https://doi.org/10.13360/j.issn.2096-1359.202108018</u> Ohuchi, T.; Hermawan, A.; Fujimoto, N. 2011. Basic studies on fracture toughness of sugi and acoustic emission. <i>J Fac Agr Kyushu U</i> 56: 99-102. <u>https://doi.org/10.5109/19536</u> Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. 2013. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. <i>Wood Sci Technol</i> 47: 329-341. <u>https://doi.org/10.1007/s00226-012-0499-2</u> Pan, P.; Yan, X.; Wang, L. 2022. Effects of thermochromic fluorane microcapsules and self-
 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. https://doi.org/10.1784/insi.2017.59.5.256 MathWorks. 2014. Matlab R2014a. Natick, MA, USA. www.mathworks.com Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. https://doi.org/10.1515/hf-2018-0289 Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i> <i>Technology</i>. Springer International Publishing. https://link.springer.com/book/10.1007/978-3-030-81315-4 Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206. https://doi.org/10.13360/j.issn.2096-1359.202108018 Ohuchi, T.; Hermawan, A.; Fujimoto, N. 2011. Basic studies on fracture toughness of sugi and acoustic emission. <i>J Fac Agr Kyushu U</i> 56: 99-102. https://doi.org/10.5109/19536 Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. 2013. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. <i>Wood Sci Technol</i> 47: 329-341. https://doi.org/10.1007/s00226-012-0499-2 Pan, P.; Yan, X.; Wang, L. 2022. Effects of thermochromic fluorane microcapsules and self- repairing waterborne acrylic microcapsules on the properties of water-based coatings on
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. https://doi.org/10.1784/insi.2017.59.5.256 MathWorks. 2014. Matlab R2014a. Natick, MA, USA. www.mathworks.com Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. https://doi.org/10.1515/hf-2018-0289 Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i> <i>Technology</i>. Springer International Publishing. https://link.springer.com/book/10.1007/978-3-030-81315-4 Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206. https://doi.org/10.13360/j.issn.2096-1359.202108018 Ohuchi, T.; Hermawan, A.; Fujimoto, N. 2011. Basic studies on fracture toughness of sugi and acoustic emission. <i>J Fac Agr Kyushu U</i> 56: 99-102. https://doi.org/10.5109/19536 Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. 2013. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. <i>Wood Sci Technol</i> 47: 329-341. https://doi.org/10.1007/s00226-012-0499-2 Pan, P.; Yan, X.; Wang, L. 2022. Effects of thermochromic fluorane microcapsules and self- repairing waterborne acrylic microcapsules on the properties of water-based coatings on basswood surface. <i>Polymers</i> 14: 2500. https://doi.org/10.3390/polym14122500
327 328 329 330 331 332 333 334 335 336 337 338 337 338 339 340 341 342 343 344 345 346 347 348	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. <u>https://doi.org/10.1784/insi.2017.59.5.256</u> MathWorks. 2014. Matlab R2014a. Natick, MA, USA. <u>www.mathworks.com</u> Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. <u>https://doi.org/10.1515/hf-2018-0289</u> Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i> <i>Technology</i>. Springer International Publishing. <u>https://link.springer.com/book/10.1007/978-3-030-81315-4</u> Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206. <u>https://doi.org/10.13360/j.issn.2096-1359.202108018</u> Ohuchi, T.; Hermawan, A.; Fujimoto, N. 2011. Basic studies on fracture toughness of sugi and acoustic emission. <i>J Fac Agr Kyushu U</i> 56: 99-102. <u>https://doi.org/10.5109/19536</u> Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. 2013. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. <i>Wood Sci Technol</i> 47: 329-341. <u>https://doi.org/10.1007/s00226-012-0499-2</u> Pan, P.; Yan, X.; Wang, L. 2022. Effects of thermochromic fluorane microcapsules and self- repairing waterborne acrylic microcapsules on the properties of water-based coatings on basswood surface. <i>Polymers</i> 14: 2500. <u>https://doi.org/10.3390/polym14122500</u> Perrin, M.; Yahyaoui, I.; Gong, X. 2019. Acoustic monitoring of timber structures:
 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 	 Lukomski, M.; Strojecki, M.; Pretzel, B.; Blades, N.; Beltran, L.; Freeman, A. 2017. Acoustic emission monitoring of micro-damage in wooden art objects to assess climate management strategies. <i>Insight</i> 59: 256-264. https://doi.org/10.1784/insi.2017.59.5.256 MathWorks. 2014. Matlab R2014a. Natick, MA, USA. www.mathworks.com Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. 2019. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. <i>Holzforchung</i> 73: 827-838. https://doi.org/10.1515/hf-2018-0289 Niemz, P.; Teischinger, A.; Sandberg, D. 2022. <i>Springer Handbook of Wood Science and</i> <i>Technology</i>. Springer International Publishing. https://link.springer.com/book/10.1007/978-3-030-81315-4 Niu, X.; Huang, T. 2022. Research on backrest modeling of Ming-style furniture with full carving using technology of eye tracking. <i>J Forest Eng</i> 7: 200-206. https://doi.org/10.13360/j.issn.2096-1359.202108018 Ohuchi, T.; Hermawan, A.; Fujimoto, N. 2011. Basic studies on fracture toughness of sugi and acoustic emission. <i>J Fac Agr Kyushu U</i> 56: 99-102. https://doi.org/10.5109/19536 Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. 2013. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. <i>Wood Sci Technol</i> 47: 329-341. https://doi.org/10.1007/s00226-012-0499-2 Pan, P.; Yan, X.; Wang, L. 2022. Effects of thermochromic fluorane microcapsules and self- repairing waterborne acrylic microcapsules on the properties of water-based coatings on basswood surface. <i>Polymers</i> 14: 2500. https://doi.org/10.3390/polym14122500 Perrin, M.; Yahyaoui, I.; Gong, X. 2019. Acoustic monitoring of timber structures: Influence of wood species under bending loading. <i>Constr Build Mater</i> 208: 125-134.

351	Raczkowski, J.; Molinski, W.; Ranachowski, Z. 1994. Acoustic emission in fracture
352	mechanics of wood. J Theor Appl Mech 32: 299-322.
353	http://www.ptmts.org.pl/jtam/index.php/jtam/article/view/v32n2p299
354	Reiterer, A.; Stanzl-Tschegg, S.E.; Tschegg, E.K. 2000. Mode I fracture and acoustic
355	emission of softwood and hardwood. Wood Sci Technol 34: 417-430.
356	https://doi.org/10.1007/s002260000056
357	Sato, K.; Kamei, N.; Fushitani, M.; Noguchi, M. 1984. Discussion of tension fracture of
358	wood using acoustic emission. A statistical analysis of the relationships between the
359	characteristics of AE and fracture stress. Mokuzai Gakkaishi 30: 653-659.
360	http://www.jwrs.org/english/journals/mkz-toce/mkze-30/
361	Tao, Y.; Yan, X. 2022. Influence of HLB value of emulsifier on the properties of
362	microcapsules and self-healing properties of waterborne coatings. <i>Polymers</i> 14: 1304.
363	https://doi.org/10.3390/polym14071304
364	Tang, L.; Lu, L.; Guan, H. 2022. Modern optimized design and anti-bending property of
365	traditional corner joints. J Forest Eng /:166-1/3. https://doi.org/10.13360/j.issn.2096-
366	<u>1359.202108007</u> Wy V. Darwin M. Dogton M.L. Cogori D. Cong V. I. 2021. On the determination of
269	wu, 1.; Ferrini, M.; Fastor, M.L.; Casari, F.; Gong, A.J. 2021. On the determination of
260	Struct 250: 113231 https://doi.org/10.1016/j.competruct.2020.113231
370	Struct 257. 115251. $\underline{\text{Intps://doi.org/10.1010/j.compstruct.2020.115251}}$ Xu W · Fang X V · Han I T · Wu Z H · Zhang I L 2020. Effect of coating thickness on
371	sound absorption property of four wood species commonly used for piano soundhoards
372	Wood Fiber Sci 52: 28-43 https://doi.org/10.22382/wfs-2020-004
373	Yan, X.: Li, W.: Han, Y.: Yin, T. 2022. Preparation of melamine/rice husk powder coated
374	shellac microcapsules and effect of different rice husk powder content in wall material on
375	properties of wood waterborne primer. <i>Polymers</i> 14: 72.
376	https://doi.org/10.3390/polym14010072
377	Yin, Y.; Miao, Y.; Wan, K.; Wang, X.; Zhai, X.; Liu, Z. 2021. Analysis and evaluation of
378	wood acoustic vibration signal based on Daubechies wavelet base. J Forest Eng 6: 68-75.
379	https://doi.org/10.13360/j.issn.2096-1359.202012016
380	Zhao, Q.; Zhao, D.; Zhao, J. 2020. Thermodynamic approach for the identification of
381	instability in the wood using acoustic emission technology. Forests 11: 4.
382	https://doi.org/10.3390/f11050534
383	Zhao, Z.; Zhang, X.; Lin, Q.; Zhu, N.; Gui, C.; Yong, Q. 2022. Development and
384	investigation of a two-component adhesive composed of soybean flour and sugar solution
385	for plywood manufacturing. <i>Wood Mater Sci Eng</i> 17: 2086067.
386	https://doi.org/10.1080/17480272.2022.2086067
387	Zhou, C.; Li. Z.; Kaner, J.; Leng, C. 2022a. Development of a selection system for the
388	colour of wardrobe furniture. <i>BioResources</i> 17: 3912-3928.
389	$\frac{\text{nups://doi.org/10.155/0/diores.17.5.3912-3928}}{Closed of the second se$
390	Znou, C.; Sni, Z.; Kaner, J. 2022b. Life cycle analysis for reconstituted decorative lumber
391	from an ecological perspective: a review. <i>BioResources</i> 17: 4052-4063.
392	https://doi.org/10.15376/biores.17.3.Zhou
393	Zhu, Z.; Jin, D.; Wu, Z.; Xu, W.; Yu, Y.; Guo, X.; Wang, A. 2022. Assessment of surface
394	roughness in milling of beech using a response surface methodology and an adaptive
395	network-based fuzzy inference system. <i>Machines</i> 10: 567.
200	https://doi.org/10.2200/mashings10070567

396 <u>https://doi.org/10.3390/machines10070567</u>