An analysis of factors related to areawide highway traffic congestion

Elisabeth Anne Hahn

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

Hahn, Elisabeth Anne, "An analysis of factors related to areawide highway traffic congestion. " Master's Thesis, University of Tennessee, 2000.
https://trace.tennessee.edu/utk_gradthes/9331

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:
I am submitting herewith a thesis written by Elisabeth Anne Hahn entitled "An analysis of factors related to areawide highway traffic congestion." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Civil Engineering.

Arun Chatterjee, Major Professor
We have read this thesis and recommend its acceptance:
Frederick J. Wegmann, Mary Sue Younger, Shih-Lung Shaw
Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School
(Original signatures are on file with official student records.)

To the Graduate Council.
I am submitting herewith a thesis written by Elisabeth Anne Hahn entitled "An Analysis of Factors Related to Areawide Highway Traffic Congestion." I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Civil Engineering.

Dr. Arum Chatterjee, Major Professor

We have read this thesis and recommend its acceptance:

$\frac{\text { Many Hue Younger }}{\text { Dr. Mary Sue Younger }}$
Shat-t q Show
Dr. Shih-Lung Shaw

Accepted for the Council

Interim Vice Provost and Dean of the Graduate school

An Analysis of Factors Related to Areawide Highway Traffic Congestion

A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville

Elisabeth Anne Hahn
December 2000

DEDICATION

This thesis is dedicated to my parents,
George and Charlotte Hahn.
I am eternally grateful for their encouragement and support.
And a very special thanks to Melanie J White.
I couldn't have possible made it without her willingness to let me hog the computer and her encouragement and laughter.

ACKNOWLEDGMENTS

I am very grateful to Dr. Arun Chatterjee for providing direction, for assisting me in accessing the needed resources, and for his encouragement and kindness throughout the process. Dr. Mary Sue Younger was very patient and helpful in guiding me through the regression analysis, and Dr. Shaw generously donated his time to review my findings.

Dr. Rich Margiotta graciously took the time to meet with me to discuss this project and supplied both HPMS data and congestion indices used to perform the regression analysis

Also, I would like to thank Deanna Flinchum and Dr. Stephen Richards at the Southeastern Transportation Center for providing the funding for me to pursue a Master of Science Degree in Civil Engineenng with a focus on Transportation Engineering.

Dr Fredenck Wegmann has provided enthusiastic support I have greatly appreciated his patience, guidance, and his sense of humor which made my expenence as a graduate student enjoyable. He and the others acknowledged in this section are responsible for making this research effort a positıve expenence

Abstract

Roadway expansion is a traditional strategy used to accommodate travel demand and reduce traffic congestion in urban areas. The potential negative effects of roadway expansion and mounting concerns over urban area congestion, however, have spurred research into the factors that control congestion.

The aım of this study is to investigate the relationship between traffic congestion, travel demand, and supply of roadways. To accomplish this goal, data for the top 138 urbanızed areas (by population) were assembled for developing a least squares regression model. Travel Rate Index, a congestion measure developed by researchers at the Texas Transportation Institute, was selected as the response (dependent) variable. A variety of explanatory variables were used to address highway and transit supply and travel demand related factors.

The partial regression coefficients measured the effect of each explanatory (independent) variable on congestion (as measured by Travel Rate Index), holding all other independent vanables constant. The results of the multiple regression analysis indicated a negative correlation between freeway lane mıles and Combined Travel Rate Index. Additionally, a strong positive correlation was observed between Combined Travel Rate Index and population density and net land area, respectively. A positive correlation was observed between Combined Travel Rate Index and bus transit service revenue mıles Principal artenal lane mules and rail transit revenue mıles vanables were not observed to be

significant for explaining traffic congestion and were removed entirely during the stepwise regression

The results indicated that the best predictors among the tested vanables were freeway lane mıles, population density, net land area, and bus revenue mıles. When used together, these predictors accounted for approximately 61% of the total vanation in the dependent variable, Combined Travel Rate Index. Overall, population and net land area accounted for the bulk of the vanation in congestion level (Travel Rate Index).

TABLE OF CONTENTS

Chapter I Introduction \& Research Goal 1
Chapter II Literature Review 3
Beltways Boon, Bane, or Blip?
Factors Influencing Changes in Urbanized Area Traffic. 4
Hours of Congestion as a Transportation Measure of Effectıveness Under Capacity Constrained Conditions 5
Speed And Delay Predıction Models For Plannıng Applications 5
Highway Capacity and Areawide Congestion. 6
Induced Traffic 7
Urban Mobility Study. 8
Chapter III. Scope And Methodological Approach 11
Travel Rate Index (TRI) 12
Lane Miles 15
Vehicle Revenue Miles 15
Chapter IV Exploratory Data Analysis. 16
Univanate Analysis 16
Bivariate Analysis 17
Correlation Among Vanables 20
Sample Size 22
Chapter V. Multiple Regression Models 24
Dependent Variables 24
Independent Variables 24
Backwards Elimination 24
Distribution of Residuals 26
Regression Equations for Inıtial Models 31
Interpretation of Partial Regression Coefficients 32
Goodness of Fit 33
Residuals 34
Chapter VI. Discussion of Factors 38
Freeway and Non-Freeway Principal Arterial Lane Miles 38
Population Density 40
Net Land Area 40
Bus Transit Service 41
Ra1 Transit Service 42
Chapter VII. General Findings and Recommendations. 43
Concluding Remarks and Recommendations 45
Works Consulted 50
References 51
Bibliography 53
Appendices 55
Appendıx A Urbanized Areas Ranked by Population 56
Appendix B Input Data for Regression Model. 60
Appendix C Input Data for Computing TRI 71
Appendix D JMP Output 76
Appendix E List of Symbols and Abbreviations 82
Vita 84

LIST OF TABLES

Table IV-1. Simple Correlatıon Matrix 21
Table V-1 Summary of Fit For Response Vanables (Initial Models) 27
Table V-2: Predictor Variables Retaned By The Backwards Elımınatıon Regression Procedure 31
Table V-3 Standard Error and Coefficient of Vaniation 34
Table V-4• Summary of Fit for Response Variables After Removal of Outhers 36
Table V-5: Predictor Variables Retaned By The Backwards Elımınation Regression Procedure After Removal of Outhers 37
Table V-6. Standard Error and Coefficient of Variation After Removal of Outhers 37
Table A-1 Urbanized Areas Ranked by Population 57
Table B-1 Input Data for Regression Model 61
Table C-1: Input Data for Computing TRI 72
Table D-1: Observed and Predicted TRI and Residuals 77
Table E-1 List Of Symbols and Abbreviations 83

LIST OF FIGURES

Figure IV-1 Frequency Histogram and Outher Box Plot for Principal Artenal Lane Miles 17
Figure IV-2: Combined TRI by Principal Artenal Lane Miles 18
Figure IV-3: \ln Combined TRI by \ln Combined Bus Revenue Miles 19
Figure V-1: Frequency Histogram, Outler Box Plot, and Normal Quantıle Plot For Residuals of Combined TRI 28
Figure V-2: Frequency Histogram, Outler Box Plot, and Normal Quantile Plot For Residuals of Freeway TRI 29
Figure V-3. Frequency Histogram, Outher Box Plot, and Normal Quantile Plot For Residuals of Principal Artenal TRI 30

Chapter I. Introduction \& Research Goal

Urban area traffic congestion is the result of the interaction of travel demand and transportation supply Highway travel demand is explained by a combination of socioeconomic and demographic characteristics such as population and population density, transit use, auto dependence etc Traditionally, increasing road capacity is considered to be an essential strategy for combating congestion, although a number of transportation demand and system management strategies are being applied as lower cost alternatıves for alleviatıng congestion.

An anti-freeway sentıment was energized in some urban areas in the late 1960's and resulted in the cancellation of a few proposed freeway projects. Such a sentıment still exists, and there are many persons who blame highways for.

- the decline of environmental quality and resource preservation due to increased auto dependency and land development,
- reduced economic opportunity through disinvestments in the urban core,
- increased travel times, and as a result, increased cost of commerce,
- underutilization of alternative modes (e.g. transit) and loss of opportunity to develop more efficient alternatıves, and
- loss of a sense of community.

Recently, the issue of induced travel demand has gained attention. Induced travel demand theory suggests that increasing roadway capacity of major arterial hıghways, as a means to solving urban area traffic congestion, is a short term solution and may actually serve to perpetuate the problem by inducing more travel and in turn bringing about urban sprawl This study does not address the issues involving induced travel

New research efforts to quantify networkwide congestion have resulted in the establishment of congestion measures with a broader range of applications than Highway Capacity Manual methods The new procedures can be used for the analysis of congestion along roadway sections, corridors, and within sub-areas and regional networks Furthermore, they allow for the companson of facilities having different performance characteristics and are considered to be straightforward, consistent, and reliable (Schrank et al. 1999). These performance measures provide an alternative approach for investigating congestion as it relates to roadway supply and other factors.

Among the major highways, the most attention drawing facilities are freeways Traffic congestion on freeways as well as freeway expansion is often controversial. The goal of this research is to try to explain freeway traffic congestion in terms of the supply of different types of highways-freeways and non-freeways, transit supply, and in terms of travel demand related factors such as population density and land area. Traffic congestion on principal artenals is also examined.

Chapter II. Literature Review

Traffic congestion measures have been generated for a vanety of reasons, including for input into air quality/energy models, assessment of traffic controls, prioritization of transportation improvement projects, identification of facility/system deficiencies, and development of policy guidelines These measures and related procedures vary in a number of ways: cost of data collection, level of complexity, and applicability (e g corndor vs areawide measures), etc (Levinson 1996).

In an article entitled Alternative Methods for Measuring Congestion Levels, Michael Meyer (1994) provides a summary of congestion measures generated from the mid 1950's up untıl the early 90 's, some of which are still being applied today. These include:

- ratio of actual travel time to the optımum travel time on a roadway section,
- straight travel time to traverse a specific section of roadway,
- reduction of speed under high volume conditions,
- relationship of average overall speed to speed changes and frequency of speed changes per mile, and
- v / c ratios in excess of 077 for urban areas of population of more than 50,000

The above list does not include all traffic congestion measures used in different studies In most cases, the congestion measure is related to either speed or traffic density. An example of a traffic density measure is Vehicle Miles Traveled (VMT) per lane mıle of roadways The studies that examined the relationships of traffic congestion with transportation supply and travel demand related factors were of special interest to this study. The scope and findings of several of these studies are presented in this chapter.

Beltways: Boon, Bane, or Blip? Factors Influencing Changes in Urbanized Area Traffic, 1990-1997

In a recent study, research was conducted to quantify the effect of beltways on sprawl and on traffic congestion (Hartgen 1999) Changes for the top 65 urbanized areas in size, population, population density, economic activity, transit service and use, roadway supply (for 7 urban road classes), and extent of beltway completion were evaluated using 1990, 1994, and 1997 data from vanous sources. A stepwise linear regression analysis was used for investigating the relationship between VMT to demographic, network, beltway and transit related statistics. Traffic density was used as a measure of congestion (VMT/lane-mıle of road). Resulting elasticities were reviewed and the following key points were made:

- Growth in employment was concluded to be the primary factor in increasing traffic;
- Geographic area, population, and employment, in non- or partally belted urbanized areas, increased faster than belted areas;
- population density was positively correlated with traffic congestion;
- increases in geographic area were observed to alleviate traffic congestion by providing a larger road network; and
- transit service was found to play a minor role in lowenng VMT on higher systems and was positively correlated with VMT on lower systems

Overall, beltway construction was not found to be a key cause of urban sprawl.
Beltway completion did not affect overall regional traffic growth rate. Changes in freeway lane mileage, however, were reported to have a modest effect.

Hours of Congestion as a Transportation Measure of Effectiveness Under Capacity Constrained Conditions

In another study, a performance measure referred to as hours of congestion was proposed for the purpose of screening preliminary transportation improvement alternatives (Dey 1998). Hours of congestion were estımated by companing transportation supply and demand across a hypothetical screen-line for each hour of a day. Supply was measured as roadway capacity or a maxımum theoretical person throughput, and the demand was obtained by employing the travel demand forecasting process. When demand was recorded to exceed capacity, the excess was stored in a queue until it could be processed. The tıme required for queue dissipation was tracked, and congested hours were computed as the time during which demand equaled or exceeded capacity (Dey 1998). This method was applied in a project in Washington, D C., called the Capital Beltway Major Investment Study. This study was performed to assist the Virgınia DOT in prescreening alternatives to alleviating beltway traffic congestion on the 66 -mıle loop around D.C. known as I-495 Forecasted hours of congestion for year 2020 ranged between 18 and 22 hours for a no action alternative, whereas, other alternatives resulted in a substantially smaller estımate (e.g 6 to 8 hours of congestion)

Speed And Delay Prediction Models For Planning Applications

In a study by Margiotta et al. (1998) a simulation model was developed, called QSIM, to study the effects of queuing on speed estimation. As part of this study, a ratio of Average Annual Daily Traffic (AADT) to two way capacity was employed as a measure of congestion, and this ratio was incorporated into a queuing model to test the impact of
uncongested and congested conditions on speed and on average delay over the course of a year. The conclusion of this study was that QSIM provides an improvement over traditional methods for speed estimation, which consider only the peak hour and tend to overestımate speeds Under congested conditions, QSIM was concluded to predict substantially more delay than traditional methods. According to the authors of this report, overestimation of speeds in congested or highly congested conditions could lead, in turn, to an underestımation of the extent of congestion, and, thus, an underestimation of the benefits of transportation improvements/control strategies (Margiotta et al 1998).

Highway Capacity and Areawide Congestion

In a paper entitled Hıghway Capacıty and Areawıde Congestion by Xuehao Chu (2000), the congestion measure, darly VMT/lane mıles, was employed to investigate the relationship between highway capacity and congestıon. Data for 391 urbanized areas in the U.S, which largely came from the Federal Hıghway Admınıstration's (FHWA) Annual Highway Statıstics Series, was used to perform the analysis. Additional information on minor artenals and collectors was obtained from other FHWA sources. Chu employed an economic model of vehicle travel in which the dependent variable was defined as the measure of congestion (dally VMT per lane miles), and the independent vanables included personal income, fuel cost, user cost of travel by alternative modes, and lane miles. The result of this exploration was a negative elasticity of VMT to lane mıles for freeways, principal arterials, minor arterials, and collectors That is, an increase in capacity of roadways resulted in a decrease in congestion. More specifically, Chu's
models predicted an approximately $018 \%, 027 \%$, and 037% reduction in congestion in response to a 1% increase to existing capacity of 1000 lane miles for principal artenals, mınor artenals, and collectors, respectıvely For freeways, Chu's model predıcted 003%, $0.07 \%, 0.08 \%, 0.09 \%, 012 \%$, and 014% reduction in freeway congestion in response to a 1% increase to existing capacity of $50,250,500,1000,5000,10,000$ lane miles, respectively The higher functional system roadways displayed smaller reductions in congestion due to capacity expansion This, Chu suggested, may be due to a higher induced vehicle travel occurring on higher functional class highways.

Induced Traffic

A number of facility specific, as well as areawide studies have examıned induced travel demand. These studies often involve the estimation of elasticities through a least squares regression procedure, where growth in demand is measured in VMT or some variation, and supply is measured by travel time savings or lane miles (Barr 1999). Overall, several of these studies have reported a positive correlation between VMT and capacity and/or a negative correlation between VMT and travel time. These findings have been interpreted, by some, as evidence that capacity improvements increase mobility and reduce the time and cost of travel. Although increased mobility is desirable, it is linked by many of the authors of such studies to a potential loss in the benefits of capacity expansion over time (Fulton et al 2000).

There are some doubts, however, that have been raised about the concept of induced travel demand For example, travel induced by capacity expansion may not necessarily occur on the expanded roadway segment. It may be more likely to emerge durng the non-peak penods. It has also been suggested that any increase in travel occurning following capacity expansion might be traffic that has been diverted from lower systems rather than being an induced, newly created travel demand (Hartgen 1999) In fact, the travel mıght be shifting from other simılar class roadways as well, as drivers become aware of a new facility that may better serve their needs (e.g. one that is closer to their ongin or destınation or lowers their travel time) Finally, some studies have found travel demand to increase on the expanded roadway but not to levels exceeding the new capacity, in the long term (e.g. within the design peniod).

Urban Mobility Study

Researchers at the Texas Transportation Institute (TTI) have developed a number of performance measures to describe the quality of transportation for approximately 68 urbanızed areas within the United States (Schrank et al. 1999).

The roadway congestion index (RCI) is one of the measures denved by TTI. It employs traffic density, darly vehicle mıles of travel per lane mıle of roadway, to indirectly measure congestion. RCI assumes that congested facilities are ones that expenence performance above a threshold of 13,000 and 5000 da1ly VMT per lane, for freeways and principal arterials, respectively. These levels correlate to a LOS D or worse. RCI is a
weighted (by VMT) based on the proportion of travel on freeways versus principal arterials An undesirable level of congestion is one where RCI is greater or equal to 1 (Schrank et al 1998).

Researchers at TTI have defined of congestion to be
". travel time or delay in excess of that normally incurred under light or freeflow travel conditions."
(Lomax et al 1997, page 20)
TTI considers one of its current pnmary performance measures of mobility, which is based on the above definition, to be their travel rate index (TRI) (Levinson 1996). TRI is a comparison of travel time durng peak periods of the average day with travel time during free flow conditions. Travel rates are computed using speed estimates for freeways and principal artenals The delay described by TRI is recurring and is not associated with accident or incident delay TRI is an estimator of the additional time it takes to travel during peak penods due to congested conditions caused by high volumes of traffic (Schrank et al. 1999).

Researchers at TTI have armved at a number of conclusions as a result of the analysis of the 68 urbanized areas using the TRI measure According to TTI, overall mobility in urban areas can be improved if additional roads are constructed at pace that equals the growth in traffic demand They further state, however, that few urban areas can sustan that level of roadway expansion. These may be either due to financial, political, or nght of way or environmental constraints The conclusion is drawn that additional roadway capacity cannot be the only alternatıve method used to address urban mobility. TTI
further looked at vehicle occupancy and demand management options. They determıned that vehicle occupancy would have had to have gone from 1.25 to 1.29 , on average, to accommodate the additional passenger miles of travel in 1997. Alternatives to capacity expansion (ımproved traffic signal coordınation, incident management, flexıble work hours, telecommuting, congestion pricing, ramp metering, HOV lanes etc.) could contribute to mobility but are generally employed on a corrndor level or are difficult to measure on an areawide basıs (Lomax et al. 1999).

Despite the lack of consensus, there continues to be a belief that no one single action can effectively control traffic congestion and enhance urban mobility. Instead a combination of measures (that include capacity improvements and demand management solutions) is the best approach.

Chapter III. Scope and Methodological Approach

The scope of this study encompasses the top 138 urbanized areas (by population) within the United States. The term, urbanized area, used in this report is based on the U.S. Census Bureau definition. These areas are presented in Table A-1 and are ranked by the 1997 population estımates. The data for this analysis is presented in Table B-1, and it includes the following vanables:

- Population
- Net Land Area
- Freeway Travel Rate Index (TRI)
- Principal Artenal Travel Rate Index (TRI)
- Combined Travel Rate Index (TRI)
- Freeway Lane Miles
- Principal Arterial Lane Miles
- Bus Annual Revenue Miles
- Commuter Rall Annual Revenue Miles
- Light Ral Annual Revenue Miles
- Heavy Ral Annual Revenue Miles

The regression analysis methodology for this study consisted of several phases: collection and data generation; a descriptıve/exploratory analysis which included an examınation of relationships among variables (using frequency histograms, scatter plots, box plots and other statistical tools), fit of the model to the data using stepwise regression; review of partial regression coefficients, residuals and other outputs; an evaluation of results

The regression analysis included a TRI measure as the dependent vanable and highway supply related vanables and other urban area charactenstics as independent vaniables.

Population and net land area were combined to compute population density, which also was used as a variable Observatıons for the previously hsted vanables were assembled for indıvidual urbanized areas The data set includes 138 urbanızed areas and 9 vanables Three of the variables dealing with traffic congestion were treated as dependent variables, one at a time, while the others were selected as independent vanables The purpose of the analysis is to determine statistically if the variation of each dependent vaniable among urban areas can be explained by the variations in one or more of the independent vanables It should be pointed out that most of the independent variables were selected to represent the supply of transportation facilities and services. However, the demand related variables $v i z$, population were also employed. An investigation of the distribution of vaniables (univanate analysis) was performed first, followed by an exploration of the relationship of each independent variable with the dependent variables The bivanate analysis was followed by a stepwise multiple regression process using the backwards elımination procedure. An explanation of the different vanables and sources of data are provided in the following paragraphs

Travel Rate Index (TRI)

TRI values for 1997 were computed for the top 138 federal-aid urbanized areas following guidelines provided by TTI and were provided by Dr. Richard A. Margıotta, a Transportation Engineenng consultant with Cambridge Systematics, Inc There are differences between Combined TRI values computed for this study by Dr. Margiotta and those provided by TTI due to certain modifications made by TTI to VMT, average speeds and other input data TTI provides a summary of adjustments made in Appendix B of the

1999 Annual Mobility Report (Schrank et al 1999) According to TTI, HPMS data are reviewed for consistency and reasonableness Based on this assessment, changes are made to the HPMS data by TTI before the performance measures are calculated. These adjusted data were not avallable for this research Instead, the unadjusted HPMS data were used.

Combined TRI is computed as a weighted average of travel rates and VMT on freeways and principal arterials The equation used for computing Combined TRI is as follows.
(Equatıon III-1)
Combined Travel Rate Index (TRI) =

Freeway and Principal Arterial TRI values are computed separately and are simply the ratio of travel rate to freeflow travel rate

Freeway TRI $=\frac{$\begin{tabular}{c}
Freeway

Travel Rate

}{Freeway}

Freeflow Travel Rate
\end{tabular}

(Equation III-2)

$$
\text { Princıpal Artenal TRI }=\frac{\begin{array}{c}
\text { Princıpal Arterial } \\
\text { Travel Rate }
\end{array}}{\begin{array}{c}
\text { Prncıpal Arterial } \tag{EquationIII-3}\\
\text { Freeflow Travel Rate }
\end{array}}
$$

The resulting unit for Travel Rate is minutes per mule It is computed by estimating the average speed using mathematical models, not measurements. Speed estımates for sample urban freeway and arterial segments were adjusted to reflect conditions on the entire roadway system using appropnate expansion factors based on the sample size of each class of roadway. The 1999 Urban Mobility Report provides the critena used for estumating speed (Schrank et. Al 1999) AADT per lane is used to infer the average speed, and then average speed is converted to minutes per mile using the equation II-4.

$$
\text { Travel Rate }=\frac{60}{\text { Avg. Speed (in mıles per hour) }}
$$

(Equation III-4)

The calculated travel rate from these procedures is meant to represent conditions in a 6-hour peak penod: 3 hours in the morning and 3 hours in the afternoon and represents peak commuting times. Vehicle mules of travel and average speeds used to compute TRI are presented in Table C-1

This study, as does TTI's, draws its base data for computing TRI from the FHWA's Hıghway Performance Monitonng System (HPMS) HPMS is a federally administered information system The system was developed in 1978 and is updated annually with state-furnished data on the extent, condition, performance, use, and operating
characteristics of the national highway system The data is used to assess highway system performance under FHWA's strategic plannıng process and for allocation of federal-a1d highway funds under the Transportation Equity Act for the $21^{\text {st }}$ Century (TEA-21) Additionally, HPMS serves as a resource for states, MPOs, local governments, and research institutions interested in assessing the condition, performance, and investment needs of roadways under study (FHWA 2000)

Lane Miles

Lane miles represent roadway supply. Freeway and arterial lane mıles in each urban area were obtained from the HPMS database and are presented in B-1

Vehicle Revenue Miles

Vehicle revenue miles represent transit service supply and are defined by the distance traveled by transit vehicles when providing service to fare paying passengers. Vehicle revenue mıles for bus and trolley, and for light, heavy, and commuter rall were obtaned from the Federal Transit Admınıstration's (FTA) 1997 National Transit Database (see Table B-1)

Chapter IV. Exploratory Data Analysis

Prior to the development of multiple regression models, a vanety of exploratory analyses were performed to examine each vanable individually and also their relationships with each other These univanate and bivanate analyses are presented in this chapter.

This study was performed using a statistical software package, JMP JMP is a product of SAS Initially, the data was fit to a linear model. Nonlinear models were also investıgated (e g. fit polynomial-quadratıc) A loganthmic transformation was ultımately chosen, however, to lineanze the data

Univariate Analysis

A univariate analysis was performed to describe the data by generating sample frequency distributions for all vanables, Y_{1} through Y_{3}, and X_{1} through X_{7}, individually The resulting histograms, especially for the independent vanables, were strongly skewed to the night. Outher box plots provided a quick summary of that data, indicating median, spread, and range. It was also noted that individual outhers (unusual or extreme observations falling above or below a range defined by $15 \cdot 1$ nterquartule range) were present in outher box plots generated for all the predictor vaniables Some outliers were observations having the highest populations among the urbanized areas in the study (e g. Los Angeles, CA, New York-Northeastern NJ, Chicago, L.), while others were urbanized areas having lower than the average population The outher box plots also reflected the skewed nature of data, as the interquartıle range (box portion

Figure IV-1: Frequency Histogram and Outlier Box Plot for Principal Arterial Lane Miles
Outhers from left to right include Philadelphia, Washington DC, Atlanta, Houston, Detrott, Tacoma, New York-Northeastern New Jersey, Chicago and Los Angeles
showing the middle half of the data, lower quartile to the upper quartule) was located to the far left, thus, indicating a one-sided data distribution. As an example, the outher box plot and frequency histogram for principal arterial lane mules $\left(\mathrm{X}_{4}\right)$ are presented in Figure IV-1.

Bivariate Analysis

Because of the presence of the outhers and appearance of the distribution (skewed to the nght) it was concluded that a loganthmic transformation should be attempted to reduce the resulting positive skewness by compressing the upper tail of the distribution The

Figure IV-2: Combined TRI By Principal Arterial Lane Miles
need to rescale the data was confirmed when viewing the plots from the bivanate analyses, as scatterplots revealed no obvious relationships between the dependentindependent variable pars, and observations were bunched in the lower range of the independent vanable values A typical example of this phenomenon is exhibited as Figure IV-2.

Logarithmic transformation of the response and predictor vanables had a noticeable impact on the data. The result of transforming the independent vaniables using the natural $\log (\ln (X))$ was a more symmetric distribution and more linear appearance of the data when plotted in a bivaniate analysis

After the transformation of the variables was complete, each of the three response (dependent) vanables $\ln \left(\mathrm{Y}_{1}\right), \ln \left(\mathrm{Y}_{2}\right)$, and $\ln \left(\mathrm{Y}_{3}\right)$ was pared with each of the predictor
(1ndependent) variables $\ln \left(X_{1}\right), . ., \ln \left(X_{7}\right)$ An example scatterplot, obtaned from the fit Y by X platform in JMP, is presented in Figure IV-3

The scatterplots generated by the bivanate analysis revealed a few urbanized areas having relatively high residuals (differences between the observed value $(\mathrm{Y} i)$ and the fitted (predicted) value ($\left.\hat{Y}_{l}\right)$), namely Stamford, CT-NY and Lowell, MA-NH Also, the urbanized areas that were seen earlier in the outher box plots obtained dunng the univanate analysis appeared in the bivanate plots as well (e.g. New York-Northeastern New Jersey in Figure IV-3). The latter observations, however, did not appear to be influential.

Figure IV-3: In Combined TRI By ln Combined Bus Revenue Miles

Correlation Among Variables

A correlation analysis helped determine how closely pars of variables were linearly related (see Table IV-1). All correlation coefficient values, denoted as r, ranged between 0 and 1 , indicating a positive correlation between variables. Population (ln $\left(\mathrm{X}_{1}\right)$) was found to be strongly correlated with net land area $\left(\ln \left(\mathrm{X}_{3}\right)\right)$ (correlation coefficient, $\mathrm{r}=$ $0.93)$, freeway lane mules $\left(\ln \left(\mathrm{X}_{4}\right)\right)(\mathrm{r}=091)$, principal artenal lane mıles $\left(\ln \left(\mathrm{X}_{5}\right)\right)(\mathrm{r}=$ $0.81)$, and combined bus revenue miles $\left(\ln \left(\mathrm{X}_{6}\right)\right)(\mathrm{r}=093)$, respectively Net land area $\left(\ln \left(\mathrm{X}_{3}\right)\right)$ was strongly correlated with freeway lane mules $\left(\ln \left(\mathrm{X}_{4}\right)\right)(\mathrm{r}=0.91)$.

Additionally, combined bus revenue mıles $\left(\ln \left(\mathrm{X}_{6}\right)\right)$ was observed to be correlated (although to a lesser extent) to net land area $\left(\ln \left(\mathrm{X}_{3}\right)\right)(\mathrm{r}=084)$, freeway lane mules (ln $\left.\left(\mathrm{X}_{4}\right)\right)(\mathrm{r}=086)$, and principal arterial lane mules $\left(\ln \left(\mathrm{X}_{5}\right)\right)(\mathrm{r}=0.76)$ It was also noted that correlation between Combined TRI and freeway TRI was strong ($r=0.95$), whereas, the correlations between Combined TRI and Principal Artenal TRI, and that between Freeway TRI and Principal Arterial TRI were weaker ($\mathrm{r}=069$ and $\mathrm{r}=0.50$, respectıvely).

Although the relationship between population and other vanables was closely linear ($\mathrm{r}>0.9 \mathrm{in} 3$ out of 4 cases), the correlation coefficients between population density $\left(\ln \left(\mathrm{X}_{2}\right)\right)$ and the other vanables were relatively small (ranging between $\mathrm{r}=0.26$ and $r=060$) Because of the strong positive correlation between population (ln $\left(X_{1}\right)$) and other variables, it was decided that population $\left(\ln \left(\mathrm{X}_{1}\right)\right)$ would not be used as a predictor vaniable in the model.
Table IV-1: Simple Correlation Matrix ${ }^{1}$

Variable	ln Comb. TRI	ln Fwy TRI	In of Princ. Art. TRI	In Pop. Density	ln Net Land Area (Sq. Mi.)	In Fwy Lane Miles	$\begin{gathered} \text { ln } \\ \text { Princ. } \\ \text { Art. } \\ \text { Lane } \\ \text { Miles } \\ \hline \end{gathered}$	In Comb. Bus Rev Miles	In Pop. (1000's)
In Comb. TRI	10000	09490	06938	05325	06643	06251	06177	07463	07556
ln Fwy TRI	09490	10000	04994	05401	06655	06665	06132	07609	07594
In of Princ. Art. TRI	06938	04994	10000	0.3622	05125	04503	04267	05184	05643
$\underline{l n}$ Pop. Density	05325	05401	03622	10000	02577	04126	04268	06021	05968
In Net Land Area (Sq. Mi.)	06643	06655	05125	02577	10000	09068	07755	08399	09291
In Fwy Lane Miles	06251	06665	04503	04126	09068	10000	07055	08568	09110
In Princ. Art. Lane Miles	06177	06132	04267	04268	07755	07055	10000	07580	08074
In Comb. Bus Rev Miles	07463	07609	05184	06021	08399	08568	07580	10000	09279
In Pop. (1000's)	07556	07594	0.5643	0.5968	09291	09110	088074	09279	10000

Combined rail revenue miles was not included in the correlation of Y 's analysis due to lack of a sufficient number of obseivations

However, although net land area ($\ln \left(\mathrm{X}_{3}\right)$) was highly correlated with freeway lane mıles $\left(\ln \left(\mathrm{X}_{4}\right)\right)$, these variables were included in the regression analysis The latter vanable, it was assumed, would be eliminated in the stepwise regression if it was not needed The combined bus revenue mule vanable ($\ln \left(\mathrm{X}_{6}\right)$) was also left in the model.

Sample Size

Of the onginal 138 urbanızed areas selected for this study, there were 8 urbanized areas for which the FTA's National Transit Database did not contain transit profiles These omissions were due in part to reporting exemptions permitted by FTA For this reason the following areas were elımınated from the data set when the transit supply vaniables were retained in the model.

1. Birmingham, AL
2. Trenton, NJ-PA
3. Akron, OH
4. Ogden, UT

5 Atlantic City, NJ
6. Greenville, SC
7. Macon, GA
8. Fall Rıver, MA-RI

Additionally, a review of the National Transit Database transit profiles revealed that only 25 urbanized areas used in this study contaned rail revenue mıle data. When combined rail revenue miles were included in the analysis, 113 rows of data were automatically omitted from the regression analysis. That $1 s$, only rows containıng data for each vanable type could be entered in the stepwise regression. To avoid a considerable reduction in sample size, combined rail revenue mıles $\left(\ln \left(X_{7}\right)\right)$ was entered into the model as a 'dummy vanable', thus, increasing the number of observations back to 130 and in turn
improving the reliability and precision of the model To accomplish this, X_{7} value was 'zero' ($\mathrm{X}_{7}=0$), if commuter and/or light and/or heavy rall was absent in an urbanized area, and its value was 'one' $\left(X_{7}=1\right)$ if commuter and/or light and/or heavy rall was present in an urbanızed area

Chapter V. Multiple Regression Models

An equation of the form presented in Equation V-1 was tested for the regression model
$\hat{Y}_{1}=a+b_{1} X_{1}+.+b_{n} X_{n}$
(Equation V-1)
$\hat{Y} \quad$ predıcted (fitted) Y
X independent vanable
a Y-intercept
b partial regression coefficients
1 positive integer 1 through n
The model vanables were as follows

Dependent Variables

$Y_{1} \quad$ Combined Travel Rate Index for freeways and non-freeway arterials
$Y_{2} \quad$ Travel Rate Index for freeways only
Y_{3} Travel Rate Index for non-freeway arternals only

Independent Variables

$\mathrm{X}_{2} \quad$ Population Density (persons/sq. mı)
$\mathrm{X}_{3} \quad$ Net Land Area (sq. mi.)
$\mathrm{X}_{4} \quad$ Freeway Lane Mules
$\mathrm{X}_{5} \quad$ Principal Arterial Lane Miles
$\mathrm{X}_{6} \quad$ Combined Bus Transit Service Revenue Miles (including bus and trolley bus revenue miles combined)
$X_{7} \quad$ Combined Raıl Transit Service Revenue Miles Indicator ('Dummy') Variable

Backward Elimination

The regression of the \ln of Y_{1}, Y_{2}, and Y_{3}, respectively on the \ln of $X_{2} \ldots X_{7}$ was performed by applying the backward elımınation procedure in JMP. The backward elımınation process starts with the model contaıning all potential independent variables. The vaniable that is least significant is removed and the model is refitted This procedure is repeated until all the remanning vanables have p values smaller than the probability to
leave The backward elimınation procedure is sometımes preferred over other methods (e.g. JMP's forward or mixed selection processes) It is more likely to allow for identification of a set of variables, which taken together, have considerable predictive capacity even though individually they may not Other regression methods might fail to identify such sets, as vaniables that do not predict well individually would never be entered into the model Because the backward elimination procedure begins with all the predictor variables entered into the model, joint predictive capabilities of the predictors can be evaluated (Dallal 2000).

The significance level for removal (also called the probability to leave) for the stepwise regression was specified as 0.05 . This p-value was employed, because it is one that is typically used in transportation research.

Additionally, a statistic called variance inflation (VIF) was used to check for multicollineanty. VIF indicates, for each independent variable, how much larger the variance of the estimated coefficient is than it would be if the vanable was uncorrelated with other independent vanables. It is computed as $1 /\left(1-r^{2}\right)$, where r^{2} is obtained from the regression coefficient of that independent variable on all other independent variables VIF was computed in JMP and inspected after completion of the regression runs. A VIF value of 1 indicated that the vanable is not involved in multicollineanty A value greater than 1 indicated that some degree of multicollnneanty exists (Freund et al 1997). A VIF of 10 was used as the cutoff point. Independent vanables having a VIF of 10 or greater
were considered to display a high multicollıneanty and were elımınated from the model (Garson 2000 and Neter et al 1996) The results of each of the three regressions, ıncludıng parameter estımates (partıal regression coefficients), standard error, t-test results, and 95% confidence intervals, are summarized in Table V-1. These models are referred to as 'initial models', because a second set of models were developed after eliminating a few outhers from the data. The initial models were eventually retaned as the final models. Additionally, as explained in Chapter IV, because of the strong positive correlation between population $\left(\ln \left(\mathrm{X}_{1}\right)\right)$ and other variables, population $\left(\mathrm{X}_{1}\right)$ was eliminated as a predictor vanable from the model

Distribution of Residuals

Upon completion of the stepwise regression, frequency histograms, outher box plots, and normal quantile plots were generated for the residuals (see Figures V-1 through V-3). The outlier box plots indicated the presence of unusual or extreme residuals Where outhers were identified in the outher box plots, a secondary analysis was performed, whereby the stepwise regression procedure was repeated, this time without the outlying observations (note the results of this analysis are discussed in latter sections of this report). A review of the histograms of the residuals shows a farly normal distribution. The normal quantile plots (quantıle-quantile or $\mathrm{q}-\mathrm{q}$ plots) were generated as an additional tool for visualizing the extent to which each is normally distributed. The normal quantile plots showed close to a diagonal straight line in each case, suggesting that the variables were distributed normally
Table V-I: Summary of Fit for Response Variables (Initial Models)

$\mathrm{Y}=\ln$ Combined TRI, $\mathrm{r}^{\mathbf{2}}=\mathbf{0 . 6 1 2}$							
Term (X)	Estimates	Std Error	t Ratio	Prob $>$ \|t 1	Lower 95\%	Upper 95\%	VIF
Intercept	-1 195457	0135778	-880	<0001	-1464181	-0 926733)
In Pop Density	00926048	0025568	362	0)0004	00420029	0)1432067	24462146
In Net Land Area	00855926	0022575	379	00002	00409127	()1302725	89750719
In Fwy Lane Mile	-0044164	001743	-2 53	00125	-007866	-0009669	71409856
In Combined Bus Revenue Miles	00303697	0013358	227	00247	00039331	00568064	75668956
$\mathrm{Y}=\ln$ Freeway TRI, $\mathrm{r}^{2}=0.607$							
T'erm (X)	Estimates	Std Error	t Ratio	Prob $>1 t$	Lower 95\%	Upper 95\%	VIF
Intercept	-1 339427	0152419	-879	<0001	-1641063	-1037791	0
In Pop Density	0086377	003034	285	00052	00263345	01464195	23319333
In Net Land Area	00481995	0020573	234	00207	00074853	00889137	50459416
In Combined Bus Revenue Miles	00388398	0016043	242	00169	00070908	00705888	73893064
$\mathbf{Y}=\ln$ Principal Arterial TRI, $\mathbf{r}^{2}=\mathbf{0 . 3 2 0}$							
Term (X)	Estimates	Std Error	t Ratio	Prob >14	Lower 95\%	Upper 95\%	VIF
Intercept	-0 62956	0138433	-4 55	<0001	-0 903359	-0 35576	0
In Pop Density	00729863	0.019268	379	00002	00348773	01110954	13182049
In Net Land Area	0081749	0019232	425	<0001	00437102	01197879	62779096
In Fwy Lane Miles.	-0034783	0017661	-197	00510	-0) 069714	00001481	70331669

Figure V-1: Frequency Histogram, Outlier Box Plot, and Normal Quantile Plot For Residuals of Combined TRI
Note: The outliers shown in the outlier box plot are the residuals for Stamford, CT-NY and Lowell, MA-NH, from the least to the most extreme value (left to right).

Figure V-2: Frequency Histogram,
Outlier Box Plot, and Normal Quantile Plot For Residuals of Freeway TRI
Note: The outliers shown in the outlier box plot are the residuals for Knoxville TN, Lowell, MA-NH, and Stamford CT-NY, from the least to the most extreme value (left to right).

Figure V-3: Frequency Histogram, Outlier Box Plot, and Normal Quantile Plot For Residuals of Principal Arterial TRI
Note: The outlier shown in the outlier box plot is the residual for Evansville, IN-KY.

Regression Equations for Initial Models

The expressions for the estimated regression lines for each of the response variables are.

$$
\ln \left(Y_{1}\right)=-1195457+00926048 \ln \left(X_{2}\right)+00855926 \ln \left(X_{3}\right)-0044164 \ln \left(X_{4}\right)+.
$$

$$
. .+0.0303697 \ln \left(\mathrm{X}_{6}\right)
$$

(Equation V-2)
$\ln \left(\mathrm{Y}_{2}\right)=-1339527+0086377 \ln \left(\mathrm{X}_{2}\right)+00481995 \ln \left(\mathrm{X}_{3}\right)+0.0388398 \ln \left(\mathrm{X}_{6}\right)$
(Equation V-3)
$\ln \left(\mathrm{Y}_{3}\right)=-0.62956+00729863 \ln \left(\mathrm{X}_{2}\right)+0081749 \ln \left(\mathrm{X}_{3}\right)-0034783 \ln \left(\mathrm{X}_{4}\right)$
(Equation V-4)
Y $1 \quad$ Combined Travel Rate Index for freeways and non-freeway arternals
$Y_{2} \quad$ Travel Rate Index for freeways only
$\mathrm{Y}_{3} \quad$ Travel Rate Index for non-freeway arterials only
$\mathrm{X}_{2} \quad$ Population Density (persons/sq. mı.)
$\mathrm{X}_{3} \quad$ Net Land Area (sq. mı)
$\mathrm{X}_{4} \quad$ Freeway Lane Mules
$\mathrm{X}_{5} \quad$ Principal Artenal Lane Miles
$\mathrm{X}_{6} \quad$ Combined Bus Transit Service Revenue Miles (including bus and trolley bus revenue miles combined)
$X_{7} \quad$ Combined Rail Transit Service Revenue Miles Indicator Variable (including commuter, light, and heavy rail)

A summary of the predictor vanables retained by the backwards elımınation procedure are presented in Table V-2

Table V-2: Predictor Variables Retained By The Backwards Elimination Regression Procedure ${ }^{1}$

Predictor Variable		$\begin{gathered} \hline \text { Combined } \\ \text { TRI } \\ \mathbf{r}^{2}=0.612 \end{gathered}$	$\begin{gathered} \text { Freeway } \\ \text { TRI } \\ \mathrm{r}^{2}=0.607 \end{gathered}$	Principal Arterial TRI $r^{2}=0.320$
In population density	(X_{2})	\checkmark	\checkmark	\checkmark
ln net land area	(X_{3})	\checkmark	\checkmark	\checkmark
In fwy lane mı	$\left(\mathrm{X}_{4}\right)$	\checkmark		\checkmark
ln pa lane mı	(X_{5})			
In comb bus rev mu	(X_{6})	\checkmark	\checkmark	
rail rev mu indicator variable	$\left(\mathrm{X}_{7}\right)$			

Interpretation of Partial Regression Coefficients

The final set of equations indicates.

- a positive correlation between population density and Combined TRI, holdıng all other independent variables constant.
- a positive correlation between net land area and Combined TRI, holding all other independent variables constant.
- a positive correlation between combined bus transit service revenue miles and Combined TRI, holding all other independent variables constant
- a negative correlation between freeway lane miles and Combined TRI, holding all other independent variables constant.
- rail indicator and principal arterial lane miles variables can be removed entirely from all of the models

Additionally, as mentioned earlıer, a strong correlation was observed between Combined TRI and Freeway TRI durnng the exploratory data analysis. Once the regression model results were inspected it became apparent why that was the case. As indicated by Equation III-1, VMT is used to compute the weighted average of Freeway and Principal Arterial TRI, which is referred to as Combined TRI by TTI. Inspection of the data inputted to compute Combined TRI (see Table B-1) shows freeway VMT on average outnumbering principal arterial VMT by a ratio of approxımately 3.1 Thus Combined TRI is more heavily weighted by freeway VMT than by principal arterial VMT. Combined TRI as a result resembles Freeway TRI. The varıables retaned in the backward elimination procedure for Freeway and Principal Arternal TRI reflect the impact of the weighted average, they can be combined to yield the same variables retained for the Combined TRI model Once this was observed, a greater emphasis was placed for the remainder of this study on the model for Combined TRI This model, like
the index, would adequately describe the combined results of the models for Freeway and Principal Arterial TRI.

Goodness of Fit

The standard error of the estımate (S_{yx}) was computed to measure the variability (degree of scatter) of the results (Lapin 1997). Syx provides a measure of the average amount that the predicted values of TRI are off from the observed values (see Equation V-5).

$$
\begin{equation*}
S_{y x}=\frac{\left.\sum_{\left[Y_{1}\right.}-\hat{Y}\left(X_{1}\right)\right]^{2}}{n-p} \tag{EquationV-5}
\end{equation*}
$$

where
$1=1$ through n
$\mathrm{Y}_{1}=$ observed TRI
$\hat{\mathrm{Y}}\left(\mathrm{X}_{1}\right)=$ predicted TRI
$\mathrm{p}=\mathrm{k}+1$
$\mathrm{k}=$ number of predictors

The standard error of the estımate was observed to be relatıvely low, ranging between 0.008 to 0.01 units

The coefficient of variation (CV) was estimated to give an indication of the relative scatter of the data with respect to the mean and is computed on a percent basis (see Equation V-6):

$$
\begin{equation*}
\mathrm{CV}=\frac{\mathrm{S}_{\mathrm{yx}}}{\text { Mean } \mathrm{Y}} * 100 \tag{EquationV-6}
\end{equation*}
$$

Table V-3: Standard Error and Coefficient of Variation

Response Variable	\mathbf{n}	\mathbf{p}	$\mathbf{S}_{\mathbf{y x}}$	$\mathbf{C V}(\%)$
Combined TRI $\left(\mathrm{Y}_{1}\right)$	130	5	0008302	0.695188
Freeway TRI $\left(\mathrm{Y}_{2}\right)$	130	4	0.010215	0.861073
Prncipal Artenal TRI $\left(\mathrm{Y}_{3}\right)$	138	4	0.008198	0.689376

The standard error of the estimate and coefficient of vanation for the three models are presented in Table V-3

The predicted values using the regression equation for Combined TRI would miss actual TRI values by 0.008 units on the average, or approximately 0.7% with respect to the mean Also the predicted values using the equation for Freeway TRI would miss actual TRI values by 0010 units or approxımately 0.9% with respect to the mean, and the predicted values using the equation for Principal Arternal TRI would miss actual TRI values by 0008 units or approximately 0.7% with respect to the mean.

Residuals

After each stepwise regression the distribution of the residuals were computed (see Table D-1) and plotted. In each case outhers were identified. The outher box plot for Combined TRI displayed outhers identified as Lowell (MA-NH) and Stamford (CT-NY). The outher box plot for freeway TRI displayed outhers identified as Lowell (MA-NH), Stamford (CT-NY), and Knoxville (TN). The outher box plot for principal arterial TRI displayed the outher Evansville (IN-KY) (see Figures V-1 through V-3). Because outhers are unusual or extreme values they sometımes have the potential of exerting a
large influence or leverage on the best-fit location of the regression line (Freund 1997). For this reason the regression models were generated a second time in JMP, but this time munus the extreme or unusual observations.

The results from this second analysis (see Table V-4) were inspected to see if excluding outhers would greatly impact the results of the regression analysis. The standard error and coefficient of vaniation were also recomputed for companson with before conditions. Vanables retaned in the stepwise regression were compared, before and after conditions, to see how the model changed. Additionally, the characternstics of the influential observations (urbanized areas) were investigated to determine if evidence suggests that the permanent removal of outhers would be justified (see Tables V-4 through V-6). The results of the second regression analysis show an mcrease in the value of the coefficient of determination (e.g. from $r^{2}=0.612$ to $r^{2}=0.675$ for the Combined TRI model). Even so, the variables retained in the repeated stepwise regression were identical to those generated in the first analysis with outhers (see Tables V-1 and V-4). Also, negligible changes in standard error of the estimate and coefficient of vanation were observed (e.g. from $S_{y x}=0.008302$ to an $S_{y x}=0.008497$ and $C V=0.695$ to $C V=0.712$ for the Combined TRI model). For the reasons stated, the outliers were retained and the initial models were used for the final analysis.
Table V-4: Summary of Fit for Response Variables After Renoval of Outliers

$\mathrm{Y}=\ln$ Combined TRI, $\mathrm{r}^{2}=0.675$							
Term (X)	Estimates	Std Error	t Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%	VIF
Intercept	-1162549	0122967	-9 45	<0001	-1405957	-0919142	0
In Pop Density	00761047	0023334	326	00014	00299154	0) 1222941	24816764
In Net Land Area	00852003	0020437	417	<0001	00447455	01256551	87800426
In Fwy Lane Mile	-0043222	0015768	-274	00070	-0 074435	-001201	7024091
In Combined Bus Revenue Miles	00358926	0012164	295	00038	0011815	00599702	75487723
$\mathrm{Y}=\ln$ Preeway TRI, $\mathrm{r}^{2}=0.683$							
Term (X)	Estimates	Std Error	1 Ratio	Prob> $>$ t \mid	Lower 95\%	Upper 95\%	VII ${ }^{\text {i }}$
Intercept	-1339427	0152419	-879	<0001	-1641063	-1037791	0
In Pop Density	0086377	003034	285	00052	00263345	01464195	23319333
In Net Land Area	00481995	0.020573	234	00207	00074853	00889137	$50+59416$
In Combined Bus Revenue Miles	00388398	0016043	2.42	00169	00070908	00705888	73893064
Y $=\ln$ Principal Arterial T RI, $\mathbf{r}^{2}=0.354$							
Term (X)	Estimates	Std Error	t Ratio	Prob $>\|t\|$	Lower 95\%	Upper 95\%	VIF
Intercept	-0653269	0133176	-491	<0001	-0916689	-() 389849	0
In Pop Density	0.0744839	0018517	402	< 0001	00378576	01111103	$131709+2$
In Net Land Area	00846252	0018496	458	<.0001	00480397	01212106	62501449
In Fwy Lane Miles	-035719	001697	-2 10	00372	-0069286	-0)002152	7000456

Table V-5: Predictor Variables Retained By The Backwards Elimination Regression Procedure After Removal of Outliers ${ }^{1}$

Predictor Variable		$\begin{gathered} \text { Combined } \\ \text { TRI } \\ \mathbf{r}^{2}=0.675 \end{gathered}$	$\begin{gathered} \text { Freeway } \\ \text { TRI } \\ \mathbf{r}^{2}=0.683 \end{gathered}$	Principal Arterial TRI $r^{2}=0.354$
ln population density	(X_{2})	\checkmark	\checkmark	\checkmark
ln net land area	(X_{3})	\checkmark	\checkmark	$\sqrt{ }$
In fwy lane mr	(X_{4})	\checkmark		\checkmark
In pa lane mı	(X_{5})			
ln comb bus rev mi	$\left(\mathrm{X}_{6}\right)$	\checkmark	\checkmark	
raul rev mi indic var	$\left(\mathrm{X}_{7}\right)$			

${ }^{1}$ Note: a check mark ($\sqrt{ }$) indicates which variables were retained, and a blank space indicates which vaniables were eliminated in the stepwise regression

Table V-6: Standard Error and Coefficient of Variation After Removal of Outliers

Response Variable	\mathbf{n}	\mathbf{P}	$\mathbf{S}_{\mathbf{y} \cdot \mathbf{x}}$	$\mathbf{C V}(\%)$
Combined TRI $\left(\mathrm{Y}_{1}\right)$	128	5	0.008497	0711532
Freeway TRI $\left(\mathrm{Y}_{2}\right)$	127	4	0.010542	0888616
Principal Arterial TRI $\left(\mathrm{Y}_{3}\right)$	137	4	0.008274	0.6958

Chapter VI. Discussion of Factors

An explanation of the significance of each independent vanable with regard to its relation with traffic congestion (TRI variables), as revealed by the regression analysis, is presented in the following sections The observed relationships are explained in some cases intuitively, also.

Freeway and Non-freeway Principal Arterial Lane Miles

The results of the stepwise regression analysis performed for this study indicate that a significant relationship exists between freeway lane miles and Combined TRI, which is a measure of traffic congestion. As mentioned earlier, a negative correlation between freeway lane miles and Combined TRI was observed in the multiple regression analysis. The vanable for principal artenal lane miles, in contrast, was eliminated in the stepwise regression.

This inclusion of freeway lane mıles in, and removal of principal arterial lane mules from the multiple regression model may be partially explaned by the fundamental role that freeways and principal arterials play in urbanized areas. Non-freeway principal arterials carry major volumes of trips within the urbanized area, whereas, freeways provide an alternative conduit to principal arterials such that intra-city as well as intercity, and regional trips can occur on these facilities. Freeways are fully access-controlled facilities They have greater capacity, enable travel at hıgher speeds, and one lane of freeway can carry up to approxımately 2 to 3 times the amount of traffic carned per hour by a typical non-freeway arterial lane with traffic signals and little driveway control. Most

1mportantly, freeways act to decrease parallel arterial volumes (Coleman 1997) Freeways attract commuter traffic in large urban areas and traffic congestion commonly is associated with delay on freeways.

Non-freeway principal artenals form the backbone of the hıghway network in an urban area and serve intracity commuters. They also have a critical role of feeding traffic to/from freeways in many cases (Hartgen 1999) Although principal arternals were eliminated from the model, they are believed to have an impact on congestion levels durng non-commuting times. If pnncipal artenals lack the capacity, for example, to accommodate the demand onginating from freeways, then congestion can become a problem at their interchanges with freeways.

The freeway lane mule vanable was eliminated dunng the stepwise regression performed for Freeway TRI and was retained in the model for Principal Arterial TRI. Hartgen employed traffic density as the measure of congestion, and its units were in terms of VMT and VMT/lane (using 1990 and 1997 data). For his models the freeway lane mule vanable was noticeably absent. However, when a percent change in VMT (\% $\%$ VMT) was computed (between 1997 and 1990), and the regression was repeated, the model vanıables changed such that a number of vanables formerly elimunated (freeway lane mules and other principal artenal miles among them) were now retained in the stepwise regression. A sımilar phenomenon was observed when the dependent variable was freeway VMT/lane. The elımınation of freeway lane miles from the Freeway TRI model
in the study presented in this report, like Hartgen's study, could be due to the use of single year of data Perhaps an expanded data set covering a 5-year or longer time span would yıeld a different model for Freeway TRI, one that includes freeway lane mıles. For the Principal Artenal TRI model, the inclusion of the freeway lane mile vanable in the model may be evidence of the role of the principal artenal as a feeder to freeways. In this case freeway lane mile expansion may play a greater role in easing lower-system traffic congestion.

Population Density

An inspection of the models revealed a positive correlation between population density and Combined TRI, holdıng all other independent vanables constant Hartgen (1999) also observed a positive relationship between population density and traffic density (VMT/lane mule of roadway) and noted that this finding is consistent with the belief that an increase in urban density is accompanied by an increase in traffic congestion The results of the multiple regression analysis, similarly, suggest an increase in travel time durng peak periods in higher density urban areas due to congested conditions caused by high volumes of traffic

Net Land Area

A positive correlation was observed to exist between net land area and Combined TRI, holding all other independent vanables constant. Stated more simply, the urbanized areas having larger net land areas tend to have longer travel times during peak peniods, relative to freeflow travel times. TRI values are higher in urbanized areas having larger
net land area probably for a number of reasons sprawl may be more conducive to traffic congestion during commuting hours. Urban freeways are radially oniented in most cases, and each radıal freeway can be likened to a stream or niver within a watershed area This watershed area for a radial freeway is larger for urban areas with larger net land areas More traffic converges on radıal freeways as an urban area grows causing more congestion Also, although urbanized areas having larger net land area mıght exhibit lower population densities, the congestion index for these urbanized areas may be exacerbated by the longer travel distances required by commuters dunng peak periods to get to the outskirts of town

Bus Transit Service

A positive correlation was observed to exist between combined bus transit service revenue miles and Combined TRI, holding all other independent vanables constant. This finding seems to contradict what one might normally expect, as an increase in transit supply is usually considered as a strategy for the alleviation of traffic congestion The simple correlation matrix that was generated during the descriptive/exploratory portion of this study (see Table IV-1) showed combined bus revenue mıles to be highly correlated with population ($r=0.93$). The results of the simple correlation and the stepwise regression analysis suggest that bus transit service is strongly a function of population and may have acted as a surrogate for the urban area size. Furthermore the usage characteristics of bus transit service supply are a complex phenomena. The implications
of bus transit supply and demand may require a more detarled analysis than an aggregate study such as this can provide.

Rail Transit Service

The rail transit revenue mile indicator vanable was not found to be correlated with TRI measures as it was removed from all of the models durng the stepwise regression. Although rail does have more of a potential for decreasing traffic congestion level on highways due to its characteristic niders, rall nderhip levels in most U.S. cities may just be too low to have an impact. Rall riders rarely represented more than 05% of the population on a darly basis or 0.05% of the population on an hourly basis according to Hartgen (1991). Although more recent data indicates an increase in rail transit demand, rail transit supply and demand at the present are stıll too limited to have a sıgnificant impact on hıghway traffic congestion. Additionally, the Natıonal Transit Database listed 25 of the 138 urbanized to have commuter, hight or heavy rail revenue mıle data. Although an indicator vaniable was employed in an attempt to overcome the fact that only a few urbanized areas offer passenger rail service, they may have been too small in number for the indicator vaniable to be retained/selected as being significant.

Chapter VII. General Findings and Recommendations

A detaled traffic engineering study can be performed to determine site-specific causes of congestion The purpose of this study, however, was not to perform a detaled site specific analysis, but to examine recurring networkwide traffic congestion in different cities to determine if the vanation in the level of congestion can be explained by variations in the areawide values of travel demand and roadway supply related variables

Since the data for this networkwide study could not feasibly be collected first hand, it was necessary to turn to outside sources to perform this study. The data uthlized by this study were obtained from other sources that are widely recognized. However, in most cases these other sources have developed their respective data based on mathematical models and/or statistical sampling procedures as a matter of practicality The travel rate index, which was used to represent traffic congestion levels, is computed using speed estimates generated using a mathematical model, which is developed and calibrated using observed data. Also, roadway supply related measures such as freeway lane mıles were obtaned from the HPMS database, which relies on a sampling procedure. Thus, a certain amount of error can be expected to be associated with the estimated values of these vaniables.

Recognizing the limitations of the data and of the analysis, the results must be interpreted in a general way. The findings of this study, as presented in Chapter VI, and in the subsequent paragraphs, therefore, are presented with the caution that they should not be taken too ngidly

As part of the bivanate regression analysis the correlation coefficient was not only computed to measure the degree of the linear relationship between the dependent and independent vanables, but also to examine the relationship between pairs of the independent vanables. The results are presented in the form of a simple correlation matrix (see Table IV-1). In general, the congestion measures were observed to be positively correlated with the travel demand related variables-population, net land area, and population density, as anticipated. However, the 'positive' correlation observed between the supply related variables such as freeway lane mıles and pruncipal arterial lane miles, respectively, with TRI appears to be counter-intuitive, since increased roadway supply may be expected to decrease traffic congestion, provided the demand level remains constant. Further examination of the simple correlation matrix showed the supply related variables to be have a strong positive correlation with the demand related variables, net land area and population, indicating that the larger urban areas have more lane-mıles of highways. The multiple regression analysis, however, showed a distinction between the demand related and supply related variables with regard to their relationship with the TRI. The regression equations presented in Chapter V (Equations V-2 and V-4, in particular) indicate that when both demand and supply related variables are correlated with TRI, the partial regression coefficients associated with the demand vanables are positive, and the partial regression coefficient associated with the supply vanable (freeway lane mules) is negative. This is compatible with the notion that as an urban area grows in size traffic congestion also grows. Additionally, the negative correlation between freeway lane miles and congestion level, holdıng all else constant, substantiates
the idea that this growth in congestion is offset somewhat by increasing the supply of freeway lane miles As discussed previously, this observation can be explaned by the fundamental role that freeways play in urbanized areas (see Chapter VI, Discussion of Factors)

There are a few findings of this study that are somewhat unexpected and paradoxical. It was anticıpated that the principal arterial lane mıle variable would be significant and would have a negative correlation with the congestion measures, holding all other vanables constant. The concept behind this expectation is that non-freeway principal artenals provide alternative routes for travel and serve to facilitate distribution of traffic uniformly over the entire roadway network, thus, preventing the concentration of traffic on freeways. The results of the regression analysis performed by this study, however, did not clearly substantiate this concept

Concluding Remarks and Recommendations

This study was performed without any direct financial support Although assistance was obtained from others in accessing data, and guidance was provided for the statistical analysis, many of the potential factors influencing traffic congestion (e.g. land use density and employment related charactenstics) could not be included in the analysis with the limited resources and within the time allotted. Although the findings of this study are limited in scope and do not address all aspects of traffic congestion, this study provides a strong foundation for a more focused and detaled future analysis

It is important to note that the study detanled herein was performed with the primary goal of exploring the relationship between freeway traffic congestion and the supply of freeways and non-freeway artenals The models were based on the statistical analysis of the data for top urbanized areas (by population). Because the results are indicative of the more highly populated areas, extrapolation of the results to urbanized areas of smaller population would not be appropnate. This approach could be modified in future investigations by taking a random sample of study areas from the full population of 396 urbanized areas. A randomly selected sample would not only allow for data interpolation but also for inferences regarding the population.

A number of assumptions had to be made in building the regression model for this study. Variables had to be selected, and the regression procedure and significance level also had to be chosen. The stepwise regression control panel in JMP gives the user the option of enterng or removing certain vanables from the analysis prior to building a model In JMP, the user chooses among the backward elimination, forward selection, or the mixed selection options and must also choose a significance level/probability attributed to the regressor term. It became apparent during this study that results of the stepwise vanable selection will differ depending on the choices made:

1. With regard to the stepwise variable selection process, no one method is necessanly considered to be better than another, however; some statisticians do offer suggestions for choosing a procedure for certain situations

2 When vanables are highly correlated, the ones that appear in the model can change with the addition of only a few observations.
3. The process selects vanables that are significant at a level specified by the user, referred to as the probability to enter or leave There appears to be a lack of consensus, unfortunately, on how to select an appropriate significance level. Again, the decision is left up to the user and often, for lack of guidance, researchers fall back on the use of default values commonly applied in their field

In the case of this study, for example, when the number of variables entered into the model was reduced, and/or when the significance was changed slightly, the combined rall revenue mıle indicator vanable or principal artenal lane mıle vaniable, which were eliminated from the initial models) were in some cases retained. Obviously there is a diversity of options, which must be considered in conducting a study such as this.

As noted earher, approximately 61% of the total vanation in the dependent variable, Combined TRI, was accounted for by the predictors' freeway lane mıles, population density, net land area, and combined bus revenue miles. This leaves 39% of the variation unexplaned by the regression model Other socioeconomic or demographic factors that might be considered for inclusion in a future analysis to fill this void could be car ownership, vehicle occupancy, gas prices, income, employment growth, and/or land use density. An employment related factor might be especially worth adding into the model as it has been determined to be a key factor influencing the growth of traffic density (Hartgen 1999). Another factor that has been considered to be important with respect to traffic congestion is the spatıal relatıonship of jobs and affordable housing (FTA 1993). Urban area land use density, if incorporated into the model, could possibly provide a tool for gauging land use impacts on congestion. Land use data, computed as proportion of total land area, for residential, commercial, mixed uses, etc, could be incorporated into
the model to describe an urban area, especially for an aggregate model Residential land use density could be measured as the number of dwelling units per acre, and commercial land use could be measured as number of employees per acre or commercial space per acre Another potential factor, not often addressed relates to the system characteristics of the urban area transportation network Urbanized area transportation networks perhaps could be categonzed having a grid system, radial system or an irregular pattern Also, another factor that might be considered is the presence or absence of beltways or toll roads

Some factors related to areawide congestion investigated in future studies might require the use of other statistical analysis approaches in addition to the classical regression method. That is, the use of other investigative tools might allow for the inclusion of other factors such as land use patterns, road system spacing, trup lengths, etc., that otherwise are not conducive to evaluation by regression analysis Additionally, although the regression analysis served to develop a statistical relation between the TRI and the predictor vaniables, the regression model does not imply the presence of a cause and effect relationship. Therefore, methods other than the classical regression method and/or the straightforward aggregate analysis such as the one presented in this study, may be required to augment this study to confirm the presence of a causal relationship between the predictor and response variables.

The interpretation of the coefficients of independent variables was hindered by the fact that the supply variables selected in this study are strongly a function of the size of the urbanized area. One possible way to overcome this problem of colneanty would be to compute percent changes in independent variables over time It is clear that a more focused study including other explanatory variables and multiple years of data is needed to more definitively ascertain the nature of the relationship of travel demand and the supply of roadways, respectively, with urban area traffic congestion.

Works Consulted

References

Barr, Lawrence C., Testing for the Significance of Induced Highway Travel Demand in Metropolitan Areas, US Department of Transportation, Volpe National Transportation Systems Center, 1999.

Chu, Xuehao, Highway Capacity and Areawlde Congestion, Paper No 00 1506, The 79the Annual Meeting of the Transportation Research Board, January 2000

Coleman, Steve, Planning Urban Arterial Freeway Systems, Institute of Transportation Engineers Report RP-015B, July 1997.

Dallal, Gerard E., Division of Biostatics, Tufts University, Professor Dallal's web site Simplifying a Multiple Regression Equation, http //www.tufts edu/ ~gdallal/sımplify.htm, November, 2000.

Dey, Soumya S., Hours of Congestion as a Transportatıon Measure of Effectiveness Under Capacity Constrained Condittons, ITE Journal, December 1998.

Federal Hıghway Admınıstration (FHWA), Office of Highway Polıcy and Informatıon, Highway Performance Monitoring System, www fhwa.dot gov/ohim/hpms page.htm, September 2000.

Federal Transit Adminıstration (FTA), The Impact Of Varıous Land Use Strategies On Suburban Mobility, Report No FTA-NJ-08-70001-93-1 Final Report, December 1993.

Freund, Rudolf J. and William J. Wilson, Statistical Methods, $2^{\text {nd }}$ Edition, Academic Press, 1997

Fulton, Lewis M., Robert B. Noland, Daniel J. Mezler, and John V. Thomas, A Statistical Analysis of Induced Travel Effects In The U.S. Mid-Atlantic Region, 79 ${ }^{\text {th }}$ Annual Meeting of the Transportation Research Board, Paper no 00-1289, January 2000.

Garson, David, Multivanate Analysis, class notes for Public Administration 765, North Carolına State University, Raleıgh, North Carolina, http.//www2.chass. ncsu.edu/garson/pa765/regress.htm, 2000

Hansen, Mark and Yuanlin Huang, Road Supply and Traffic In Calıfornıa Urban Areas, Transportation Research A, Vol. 31, 1997.

Hartgen, David T., Beltways: Boon, Bane, or Blip? Factors Influencing Changes in Urbanızed Area Traffic, 1990-1997. UNC Charlotte Center for Interdisciplınary Transportation Studies, Publication Number 190. June 1999.

Hartgen, David T., Transportation Myths: Travel Behavior, System Conditıon, and Land Use, ITE Journal, September 1991

Lapın, Lawrence L , Modern Engineering Statıstıcs, Wadsworth Publıshing Co., 1997
Levinson, Herbert S and Timothy J. Lomax, Developing A Travel Time Congestion Index, Transportation Research Record 1564, Planning and Adminıstration, Transportation Demand Management and Ridesharing, 1996

Margıtta, Rıchard, Harry Cohen, and Patrick DeCorla-Souza, Speed and Delay Prediction Models For Planning Applications, Presented at the Transportation Planning for Small and Medium Sized Areas Conference, September 1998.

Meyer, Michael D , Alternative Methods for Measurng Congestion Levels, Curbing Gndlock. Peak-Peniod Fees to Relief Congestion, Transportation Research and Education Center, Georgia Institute of technology, 1994.

Neter, John, Michael H. Kutner, Christopher J. Nachtsheım, and Wıllıam Wasserman, Applied Linear Regression Models, $3^{\text {rd }}$ Edition, McGraw-Hıll Inc., 1996.

Noland, Robert B. and Lewison L Lem, Induced Travel A Review of Recent Literature And The Implications For Transportatıon and Environmental Policy, Presented at the European Transport Conference and the Conference of the Association of Collegıate Schools of Planning, Revision: October 2000.

Noland Robert B. and William A Cowart, Analysis of Metropolitan Highway Capacity And The Growth In Vehtcle Miles of Travel, $79^{\text {th }}$ Annual Meetıng of the Transportation Research Board, Paper No. 001288, January 2000

Schrank, David, and Tim Lomax, The 1999 Annual Mobiltty Report, Information for Urban America, Texas Transportation Institute, Texas A\&M University, 1999.

Bibliography

Chın, Shih-Miao, David L Green, Janet Hopson, Ho-Ling Hwang, and Brad Thompson, Toward Natıonal Indicators of VMT and Congestion Based on Real-Time Traffic Data, Transportation Research Record 1660, 1999

Cohen, Harry S , Review of Empırıcal Studies of Induced Traffic Congestion, Cambridge Systematics, Appendix B or NRC, TRB Special Report No. 245, 1995.

Dunphy, Robert T and Kımberly Fisher, Transportation, Congestion, and Density. New Insıghts, Transportation Research Record 1552, 1996

FHWA, Office of Highway Policy and Information, Status of the Nations Surface Transportatıon Conditıons and Performance Report, http //www fhwa.dot.gov /II//policy/1999cpr/data.htm, 1999.

Hanks, James W., Jr. and Tımothy J. Lomax, Roadway Congestion in Major Urban Areas: 1982 to 1988 Transportation Research Record 1305, 1991.

Lomax, Tım, Shawn Turner, and Gordon Shunk, Natıonal Cooperatıve Hıghway Research Program (NCHRP) Report 398, Quantifying Congestion, Volume 1, Final Report, Transportation Research Board (TRB), 1997.

Lomax, Tim, Shawn Turner, and Gordon Shunk, Natıonal Cooperatıve Hıghway Research Program (NCHRP) Report 398, Quantifying Congestion, Volume 2, Users Guide, Transportatıon Research Board (TRB), 1997.

Lomax, Timothy J., Methodology for Estimating Urban Roadway System Congestion, Transportation Research Record 1181, Transportation Research Board, 1988.

Marshall, Norman L., Evidence of Induced Demand in the Texas Transportation Insttute's Urban Roadway Congestion Study Data Set, Presented at TRB, January 2000

Morettı, Frank R., The Best Solutıons to Traffic Congestion, Dispelling the Myths about The Impact of Expanding Roads, The Road Information Program, December 1999.

New Jersey Institute of Technology, Mobility And The Costs of Congestion In New Jersey, The National Center for Transportation and Industrial Productivity, February 2000.

Noland, Robert B and Lewison L Lem, Relationships Between Highway Capacıty and Induced Vehicle Travel. Presented $38^{\text {th }}$ Annual Meetıng of the Western Regional Science Association, Ojai, CA, February 1999

Schrank, David and Tim Lomax, Urban Roadway Congestion Annual Report-1998, The Urban Mobility Study, Texas Transportation Institute, Texas A\&M University. 1998.

Shaw, Jane S. and Ronald D Utt, A Guide To Smart Growth, Shattering Myths Providing Solutions, The Hentage Foundation and Political Economy Research Center, 2000

Turner, Shawn M. Timothy J Lomax, and Herbert S. Levinson, Measuring and Estimating Congestion Using Travel Time-Based Procedures, Transportation Research Record 1564, Plannıng and Admınistration, Transportation Demand Management and Ridesharing, 1996.

Appendices

Appendix A

Urbanized Areas Ranked by Population

Table A-1: Urbanized Areas Ranked by Population ${ }^{1}$

	Urbanzed Area	Prımary State	Pop (1000)
1	New York-Northeastern NJ	NY	16,335
2	Los Angeles	CA	12,327
3	Chcago-Northwestern IN	L	7,980
4	Philadelpha (PA-NJ)	PA	4,542
5	San Francisco-Oakland	CA	3,970
6	Detroit	MI	3,852
7	Washington (DC-MD-VA)	DC	3,436
8	Boston	MA	2.890
9	San Diego	CA	2,621
10	Phoenix	AZ	2,410
11	Atlanta	GA	2.401
12	Minneapolis-St Paul	MN	2,290
13	Baltumore	MD	2.107
14	Miamı-Hialeah	FL	2,047
15	St Lous (MO-IL)	MO	1,984
16	Seattle	WA	1,950
17	Houston	TX	1,840
18	Denver	CO	1,800
19	Pittsburgh	PA	1,768
20	Cleveland	OH	1,739
21	San Jose	CA	1,628
22	Portland-Vancouver (OR-WA)	OR	1,442
23	Portland	ME	1,442
24	Fort Lauderdale-Hollywood-Pompano Beach	FL	1,404
25	Ruverside-San Bermardmo	CA	1,368
26	Kansas Clity (MO-KS)	MO	1,357
27	Sacramento	CA	1,328
28	M1lwaukee	WI	1,243
29	Cincınnatı ($\mathrm{OH}-\mathrm{KY}$)	OH	1,223
30	New Orleans	LA	1,070
31	Buffalo-Niagara Falls	NY	1,070
32	San Antonio	TX	1,068
33	Orlando	FL	1,049
34	Oklahoma Caty	OK	1027
35	West Palm Beach-Boca Raton-Delay Beach	FL	924
36	Indıanapolis	IN	915
37	Columbus	OH	907
38	Providence-Pawtucket (RI-MA)	RI	900
39	Memphis (TN-AR-MS)	TN	895
40	Salt Lake City	UT	876
41	Jacksonville	FL	822
42	Loursville (KY-IN)	KY	799
43	Tulsa	OK	756
44	Honolulu	HI	694
45	Brmingham	AL	646
46	Tucson	AZ	629
47	Rochester	NY	617

[^0]Table A-1 Continued

	Urbanzzed Area	Prımary State	Pop (1000)
48	Nashville	TN	613
49	Richmond	VA	611
50	Augusta (GA-SC)	GA	610
51	El Paso (TX-NM)	TX	607
52	Sprungfield (MA-CT)	MA	602
53	Hartford-Middletown	CT	593
54	Dayton	OH	592
55	Tacoma	WA	586
56	Charlotte	NC	572
57	Austin	TX	554
58	Omaha (NE-IA)	NE	544
59	Fresno	CA	537
60	Akron	OH	537
61	Grand Rapids	MI	495
62	Toledo (OH-MI)	OH	494
63	Wilmington (DE-NJ-MD-PA)	DE	490
64	Albany-Schenectady-Troy	NY	490
65	Albuquerque	NM	486
66	Allentown-Bethlehem-Easton (PA-NJ)	PA	457
67	Savannah	GA	452
68	Charleston	SC	427
69	Columbus (GA-AL)	GA	420
70	Bndgeport-Mulford	CT	413
71	Chattanooga (TN-GA)	TN	384
72	Baton Rouge	LA	377
73	Bakersfield	CA	373
74	Youngstown-Warren	OH	373
75	Wichita	KS	364
76	Syracuse	NY	363
77	Worcester (MA-CT)	MA	355
78	Columbia	SC	355
79	Flunt	MI	344
80	Trenton (NJ-PA)	NJ	340
81	Little Rock-North Little Rock	AK	340
82	Knoxville	TN	339
83	Mobile	AL	324
84	Spokane	WA	323
85	Hamasburg	PA	310
86	Macon	GA	305
87	Jackson	MS	304
88	Stockton	CA	299
89	Lawrence Haverhill (MA-NH)	MA	298
90	Corpus Christ1	TX	297
91	Des Momes	IA	294
92	Ogden	UT	292
93	Lansing-East Lansing	MI	287
94	Pensacola	FL	285

Table A-1 Continued

	Urbanızed Area	Prımary State	Pop (1000)
95	Greenville	SC	268
96	Davenport-Rock Island-Moline (IA-IL)	IL	266
97	Shreveport	LA	263
98	Madıson	WI	259
99	Ann Arbor	MI	258
100	Canton	OH	250
101	Fort Wayne	IN	248
102	Peona	\underline{L}	246
103	South Bend-Mishawaka (IN-MI)	IN	240
104	Lexington-Fayette	KY	237
105	Lorann-Elyria	OH	234
106	Winston-Salem	NC	230
107	Lowell (MA-NH)	MA	221
108	Montgomery	AL	220
109	Greensboro	NC	217
110	Rockford	IL	212
111	Lubbock	TX	197
112	Reading	PA	194
113	Roanoke	VA	194
114	Stamford (CT-NY)	CT	193
115	Lincoln	NE	192
116	Brockton	MA	186
117	Ene	PA	186
118	Evansville (N -KY)	IN	184
119	Waterbury	CT	183
120	Kalamazoo	MI	178
121	Atlantic City	NJ	177
122	Huntington-Ashland (WV-KY-OH)	WV	172
123	Amanillo	TX	169
124	Utica-Rome	NY	163
125	Fall River (MA-RI)	MA	157
126	Pueblo	CO	155
127	New Bedford	MA	147
128	Topeka	KS	141
129	Sagmaw	MI	138
130	Cedar Rapids	IA	136
131	Springfield	IL	132
132	Binghamton	NY	127
133	Duluth (MN-WI)	MN	123
134	Beaumont	TX	115
135	Waterloo-Cedar Falls	IA	111
136	Waco	TX	107
137	Port Arthur	TX	61
138	Galveston	TX	59

Appendix B

Input Data for Regression Model
Table B-1• Input Data for Regression Model ${ }^{1}$

	Urbanized Area	Prumary State	Population (1000's)	Net Land Area (sq mi)	Fwy TRI	Princıpal Art. TRI	Combined TRI	Miles Fwy Lane	Principal Arterial Lane Miles
1	Los Angeles	CA	12,327	2,231	166	135	155	6,927	8,778
2	Seattle	WA	1,950	844	161	118	151	1,261	1,129
3	San Francisco-Oakland	CA	3,970	1,203	152	12	15	2,936	702
4	Miam-Hialeah	FL	2,047	545	157	137	149	638	1,034
5	Fort Lauderdale-Hollywood-Pompano Beach	FL	1,404	489	156	138	149	654	986
6	Stamford (CT-NY)	CT	193	82	155	108	149	121	60
7	Washington (DC-MD-VA)	DC	3,436	999	151	141	148	2,326	1,545
8	Atlanta	GA	2,401	1,757	15	13	145	2,243	1,888
9	Chicago-Northwestern IN	IL	7,980	2,730	153	13	145	3,115	4,143
10	Riverside-San Bernardino	CA	1,368	514	149	117	144	901	524
11	Portland-Vancouver (OR-WA)	OR	1,442	685	149	127	144	746	638
12	Orlando	FL	1,049	667	14	145	143	755	1,028
13	San Diego	CA	2,621	733	145	13	142	1,968	849
14	West Palm Beach-Boca Raton-Delay Beach	FL	924	556	152	123	142	450	644
15	Boston	MA	2,890	1,138	143	134	142	1,505	741
16	Houston	TX	1,840	1,537	146	113	14	2,889	1,943
17	New York-Northeastern NJ	NY	16,335	3,962	136	143	138	7,716	3,967
18	Tacoma	WA	586	341	146	115	137	306	444
19	Phoenx	AZ	2,410	1,054	15	124	137	1,086	2,626
20	Lowell (MA-NH)	MA	221	116	137	127	137	165	35
21	Knoxville	TN	339	355	137	134	136	272	354
22	Baltımore	MD	2,107	712	138	126	135	1,534	1,100
23	Honolulu	HI	694	135	131	141	133	416	168
24	Albuquerque	NM	486	192	146	119	133	292	782
25	Indianapolis	IN	915	422	136	126	133	829	966
26	Milwaukee	WI	1,243	512	136	12	132	1,061	654
27	San Jose	CA	1,628	365	135	118	132	1,524	759
28	Austin	TX	554	314	136	122	132	658	628
29	Denver	CO	1,800	720	135	122	132	1,588	1,102

[^1]Table B-1 Continued

	Urbanzed Area	Prımary State	Population (1000's)	Net Land Area (sq. mi)	Fwy TRI	Princıpal Art TRI	Combined TRI	Fwy Lane Miles	Principal Arterial Lane Miles
30	Bridgeport-Milford	CT	413	178	132	124	132	293	63
31	Wilmington (DE-NJ-MD-PA)	DE	490	254	131	131	131	341	356
32	Cincınnat1 ($\mathrm{OH}-\mathrm{KY}$)	OH	1,223	630	132	123	131	1,132	530
33	Detroit	MI	3,852	1,304	133	126	131	2,978	2,358
34	Minneapolis-St Paul	MN	2,290	1,192	131	13	131	1,672	386
35	Lousville (KY-IN)	KY	799	384	13	129	13	705	471
36	St Lours (MO-IL)	MO	1,984	1,057	131	123	13	2,240	1,273
37	Jacksonville	FL	822	727	125	138	13	659	588
38	Charlotte	NC	572	299	128	133	13	486	308
39	Philadelpha (PA-NJ)	PA	4,542	1,350	123	143	129	2,000	1,465
40	Tucson	AZ	629	312	118	133	128	183	660
41	San Antomio	TX	1,068	485	132	119	128	1,048	816
42	Salt Lake City	UT	876	353	128	13	128	535	197
43	Fort Wayne	IN	248	93	109	141	128	105	212
44	Sacramento	CA	1,328	383	128	127	128	718	986
45	Nashville	TN	613	571	126	129	127	729	514
46	Cleveland	OH	1,739	838	128	115	127	1,516	331
47	New Orleans	LA	1,070	355	131	12	126	451	786
48	Pensacola	FL	285	337	1	137	125	96	265
49	Greensboro	NC	217	163	126	115	124	274	154
50	Memphis (TN-AR-MS)	TN	895	409	132	115	124	469	973
51	Chattanooga (TN-GA)	TN	384	360	126	119	124	320	274
52	Waterbury	CT	183	89	124	107	123	108	28
53	Birmingham	AL	646	608	12	133	123	655	418
54	Providence-Pawtucket (RI-MA)	RI	900	515	125	112	123	721	316
55	Evansville (IN-KY)	IN	184	123	1	146	122	172	122
56	Columbus	OH	907	476	122	123	122	871	368
57	Grand Rapids	MI	495	318	111	145	122	437	262
58	Canton	OH	250	160	122	121	122	198	81

Table B-1 Contnued

	Urbanized Area	Prımary State	Population (1000's)	Net Land Area (sq mı)	Fwy TRI	Prıncipal Art TRI	Combined TRI	Fwy Lane Miles	Princıpal Arterial Lane Miles
59	Lawrence Haverhill (MA-NH)	MA	298	205	121	124	121	322	56
60	Rochester	NY	617	335	12	116	119	492	127
61	Richmond	VA	611	406	118	123	119	664	303
62	Tulsa	OK	756	394	119	119	119	566	246
63	Oklahoma City	OK	1,027	711	122	111	119	746	935
64	Fresno	CA	537	168	113	124	118	231	369
65	Pittsburgh	PA	1,768	1,112	113	127	118	1,288	1,024
66	Ann Arbor	MI	258	159	118	116	118	266	147
67	Dayton	OH	592	369	116	123	118	681	321
68	Allentown-Bethlehem-Easton (PA-NJ)	PA	457	187	113	134	117	310	109
69	Trenton (NJ-PA)	NJ	340	192	113	127	117	296	208
70	Harrsburg	PA	310	207	116	128	117	442	100
71	Akron	OH	537	356	118	108	116	507	166
72	Baton Rouge	LA	377	274	121	108	116	265	450
73	Charleston	SC	427	251	112	122	116	384	561
74	Odgen	UT	292	188	114	122	116	244	126
75	Kansas City (MO-KS)	MO	1,357	1,034	116	114	116	1,790	733
76	Atlantic City	NJ	177	89	108	13	115	136	118
77	El Paso (TX-NM)	TX	607	227	122	106	115	361	656
78	Montgomery	AL	220	202	105	128	115	135	199
79	Hartford-Middletown	CT	593	366	115	115	115	634	188
80	Omaha (NE-IA)	NE	544	221	106	123	114	428	533
81	South Bend-Mishawaka (IN-MI)	IN	240	147	1	123	113	179	220
82	Lexington-Fayette	KY	237	286	101	134	112	241	168
83	Lincoln	NE	192	81	1	116	112	52	214
84	Savannah	GA	452	420	1	121	112	159	337
85	Stockton	CA	299	90	113	109	111	194	210
86	Augusta (GA-SC)	GA	610	371	113	11	111	199	405
87	Bakersfield	CA	373	176	113	11	111	146	361

Table B－1 Continued

		\pm	ন	\because	\cdots	E	\％	은		셍은	キ	O	－	－	N	g	$\stackrel{\text { d }}{\sim}$		\％				\bigcirc	子	－	8	F	\bigcirc	흥
	G		\pm	\bigcirc	）	\％	\％	珨	$\stackrel{\sim}{\infty}$	\cdots	8	\％	－	$\underset{\sim}{\infty}$	\％	${ }_{6}$	\cdots	J	－	ソ	先	－	Nom		웃	O	\ldots	－	－
					$=$	8	8	O		8%	∞	0	$\stackrel{\circ}{\circ}$		＇	5	＇	¢	¢	8	8	\％	\checkmark	－	\checkmark	2	\％		O
			0	\cdots	\sim		0	\sim		\bigcirc	－	5	$\stackrel{\circ}{\circ}$	\bigcirc	N		$\exists \because$	\％	N	8	I	8	$\underset{\sim}{*}$	\％	\cdots	ニ	8	－	0°
空		\％	\cdots	0	\bigcirc	8	$=$	¢		2－	8	\％	응	－	8	－	－	$\stackrel{\circ}{\circ}$	\bigcirc	5	－	\％	－		O	它	－	\％	O
	$\left\|\begin{array}{c} 0 \\ 0 \end{array}\right\|$	ㄲ	$)^{\infty}$	－	\cdots	\bigcirc	\＃	∞		（\％）	N	2	\％	N	N	N	\cdots	－	2	근	\cdots	ล	\bigcirc	\％	\％	N	∞	N	ก
	응	$\stackrel{\infty}{\sim}$	－	－	$\stackrel{+}{0}$	̇	${ }^{\text {N }}$	${ }^{\circ}$		N	$\stackrel{\circ}{-}$	\％	욱	－	\cdots	爫	（악	\because	n	¢	\％	9	N	－	O	－	\bigcirc	¢	\％
	z	Σ	2	\＆	$\underline{\Sigma}$	5	3	3		$\underset{\sim}{3}$	㐫	4	込	4	¢	O	\％	－	U	${ }_{2}^{2}$	2	\times	\％	x	\leq	2	$<$	－	$\frac{2}{2}$
				00 0_{0}^{3} 0 0		Bo					E			$\begin{array}{\|l} \hline 0 \\ \hline 0 \\ 0 \\ \hline \end{array}$					0	$\begin{aligned} & \text { E } \\ & \stackrel{6}{6} \\ & \stackrel{m}{g} \end{aligned}$							业		Bue
	∞	∞	8	ন	－	\％	\％	n		25	\propto	2	8	응	O－	O－	S	\bigcirc	－	¢	${ }^{\circ}$	－	을	三	\cdots	$\stackrel{m}{2}$	\pm	\because	

Table B-1 Continued

	Urbanzed Area	Prımary State	Population (1000's)	Net Land Area (sq. mi)	Fwy TRI	Prmcıpal Art. TRI	Combined TRI	Miles Fwy Lane	Princıpal Arterial Lane Miles
117	Sagınaw	MI	138	78	1	109	104	115	166
118	Springfield	IL	132	77	1	11	104	169	109
119	Huntington-Ashland (WV-KY-OH)	WV	172	104	1	109	104	177	151
120	Macon	GA	305	194	1	111	103	161	134
121	Peoria	IL	246	151	1	111	103	254	141
122	Albany-Schenectady-Troy	NY	490	365	102	113	103	674	184
123	Galveston	TX	59	35	1	104	103	26	140
124	Fhint	MI	344	237	101	106	103	343	330
125	Davenport-Rock Island-Moline (IA-IL)	IL	266	163	101	109	103	305	130
126	Wichita	KS	364	176	101	107	102	468	206
127	Sprıngfield (MA-CT)	MA	602	422	102	106	102	391	117
128	Port Arthur	TX	61	89	1	104	102	112	180
129	Binghamton	NY	127	163	1	118	102	227	24
130	Utica-Rome	NY	163	206	1	107	102	307	98
131	New Bedford	MA	147	67	1	109	102	103	32
132	Pueblo	CO	155	75	102	1	101	184	44
133	Topeka	KS	141	85	1	103	101	158	182
134	Cedar Rapids	IA	136	135	1	103	101	217	110
135	Fall Rıver (MA-RI)	MA	157	116	1	113	101	183	29
136	Waco	TX	107	154	1	102	101	202	143
137	Duluth (MN-WI)	MN	123	151	1	102	101	135	107
138	Waterloo-Cedar Falls	IA	111	113	1	1	1	91	155

Table B-1 Continued

Table B-1 Continued

	Urbanzed Area	Primary State	Population (1000's)	Net Land Area (sq. mi.)	Fwy TRI	Principal Art. TRI	Combined TRI	Fwy Lane Miles	Princıpal Arterial Lane Miles
30	Bridgeport-Mulford	CT	413	178	132	124	132	293	63
31	Wilmington (DE-NJ-MD-PA)	DE	490	254	131	131	131	341	356
32	Cincinnat1 ($\mathrm{OH}-\mathrm{KY}$)	OH	1,223	630	132	123	131	1,132	530
33	Detroit	MI	3,852	1,304	133	126	131	2,978	2,358
34	Minneapolis-St Paul	MN	2,290	1,192	131	13	131	1,672	386
35	Loursville (KY-IN)	KY	799	384	13	129	13	705	471
36	St Louis (MO-IL)	MO	1,984	1,057	131	123	13	2,240	1,273
37	Jacksonville	FL	822	727	125	138	13	659	588
38	Charlotte	NC	572	299	128	133	13	486	308
39	Phıladelphıa (PA-NJ)	PA	4,542	1,350	123	143	129	2,000	1,465
40	Tucson	AZ	629	312	118	133	128	183	660
41	San Antonio	TX	1,068	485	132	119	128	1,048	816
42	Salt Lake City	UT	876	353	128	13	128	535	197
43	Fort Wayne	IN	248	93	109	141	128	105	212
44	Sacramento	CA	1,328	383	128	127	128	718	986
45	Nashville	TN	613	571	126	129	127	729	514
46	Cleveland	OH	1,739	838	128	115	127	1,516	331
47	New Orleans	LA	1,070	355	131	12	126	451	786
48	Pensacola	FL	285	337	1	137	125	96	265
49	Greensboro	NC	217	163	126	115	124	274	154
50	Memphis (TN-AR-MS)	TN	895	409	132	115	124	469	973
51	Chattanooga (TN-GA)	TN	384	360	126	119	124	320	274
52	Waterbury	CT	183	89	124	107	123	108	28
53	Birmıngham	AL	646	608	12	133	123	655	418
54	Providence-Pawtuckel (RI-MA)	RI	900	515	125	112	123	721	316
55	Evansville (IN-KY)	IN	184	123	1	146	122	172	122
56	Columbus	OH	907	476	122	123	122	871	368
57	Grand Rapids	MI	495	318	111	145	122	437	262
58	Canton	OH	250	160	122	121	122	198	81

Table B－1 Continued

	$\stackrel{\sim}{0}$		\％	$\stackrel{\square}{2}$	$\stackrel{\sim}{\text { g }}$	\％	5	寺守	ন	O－	\％	8		\％	O	N	N	\cdots	0	2	∞	n	N	－	$\stackrel{4}{\sim}$	－		\％	\％
总	$\|\underset{\sim}{\|c\|}\|$	N	\％	家		\cdots	－	－	－	응	－	～	合	$\stackrel{\sim}{0}$	＋	史	$\stackrel{i}{9}$		－	\sim	（	$\stackrel{\sim}{*}$	$\stackrel{\square}{1}$	示	\sim	$\stackrel{\sim}{2}$	\％	2	1
		\cdots		\because	の	\propto	\cdots	$\stackrel{\infty}{-}$	∞	こ	ᄃ	$=$	$\underline{\square}$	0	\bigcirc	\bigcirc	\bigcirc	，	ニ	\because	\sim		\cdots	\bigcirc	\sim	N		＝	ニ
		은	ก	へ	－$=$	d	N	스응	N	m	ה	$\stackrel{\sim}{\sim}$	\circ	\bigcirc	N	N	吅		8	－	\sim	N	ส	示	앙	त	8	－	－
空炰	त̄	\sim	\sim	0	N	N	\cdots	\sim	\bigcirc	\cong	\cdots		\propto	N	N	\pm	$\underline{\square}$	∞	N	\bigcirc	\sim	8	－	O	－	－	\cdots	\cdots	$\stackrel{2}{2}$
	$\left\lvert\, \begin{gathered} \dot{N} \mid \end{gathered}\right.$	$\stackrel{\sim}{m}$	hol	\％	号に	$\stackrel{\circ}{-}$	\cdots	2	O	응	\％	－	\％	\cdots	\cdots	∞	$\stackrel{ \pm}{8}$	∞	N	N	\％	ה	E	$\stackrel{\sim}{\sim}$	∞	\％	8	ন	$\stackrel{\square}{\square}$
를 合 会 a	$\left\|\begin{array}{c} \infty \\ \underset{N}{2} \end{array}\right\|$	1	$\overline{0}$	，	O	－	\therefore	0	N	\％	\％	을	N	N	J	N	\cdots	ス	¢	సె	0	㟋	$\stackrel{\circ}{4}$	－	N	N	ה	\bigcirc	\ldots
朇	Σ	立	\leq	\％	\％	S	¢	Σ	정	Σ	2	$\underline{2}$	T	5	－	5	$\stackrel{0}{2}$	z	践	4	¢	装	z	2	听	S	S	0	U
		$\begin{aligned} & \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ & \hline \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \text { 吡 } \\ \hline \end{array}$					膏	Allentown－Bethlehem－Easton（PA－NJ）			$\begin{aligned} & \text { 든 } \\ & \hline \end{aligned}$									Omaha（NE－IA）			들	唇	䉼	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 9 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
	안	8	\square	O	S_{6}	S	is	8	5	¢	8	\bigcirc	ス	N	\cdots	̇	\sim	앙	R	$\stackrel{\sim}{\sim}$	2	∞	－	－	∞	－	∞	∞	∞

Table B-1 Continued

Table B-1 Continued

	Urbanized Area	Primary State	Population (1000's)	Net Land Area (sq. mi.)	Fwy TRI	Prıncipal Art. TRI	Combined TRI	Fwy Lane Miles	Princıpal Arterial Lane Miles
117	Saginaw	MI	138	78	1	109	104	115	166
118	Springfield	IL	132	77	1	11	104	169	109
119	Huntungton-Ashland (WV-KY-OH)	WV	172	104	1	109	104	177	151
120	Macon	GA	305	194	1	111	103	161	134
121	Peoria	IL	246	151	1	111	103	254	141
122	Albany-Schenectady-Troy	NY	490	365	102	113	103	674	184
123	Galveston	TX	59	35	1	104	103	26	140
124	Flunt	MI	344	237	101	106	103	343	330
125	Davenport-Rock Island-Moline (IA-IL)	IL	266	163	101	109	103	305	130
126	Wichita	KS	364	176	101	107	102	468	206
127	Sprıngfield (MA-CT)	MA	602	422	102	106	102	391	117
128	Port Arthur	TX	61	89	1	104	102	112	180
129	Binghamton.	NY	127	163	1	118	102	227	24
130	Utica-Rome	NY	163	206	1	107	102	307	98
131	New Bedford	MA	147	67	1	109	102	103	32
132	Pueblo	CO	155	75	102	1	101	184	44
133	Topeka	KS	141	85	1	103	101	158	182
134	Cedar Rapıds	IA	136	135	1	103	101	217	110
135	Fall Rıver (MA-RI)	MA	157	116	1	113	101	183	29
136	Waco	TX	107	154	1	102	101	202	143
137	Duluth (MN-WI)	MN	123	151	1	102	101	135	107
138	Waterloo-Cedar Falls	IA -	111	113	1	1	1	91	155

Appendix C

Input Data for Computing TRI
Table C-1: Input Data for Computing TRI

Table C-1 Continued

Table C-1 Continued

Table C-1 Contmued

Appendix D
 JMP Output

Observed and Prechcted TRI and Residuals

	Urbanzed Area	Combined TRI	Freeway TRI	PrucipaI Arterial TRI	Predicted Combmed TRI	Preilcted Freeway TRI	Predicted Prucipal Arterial TRI	Restuals for Combined TRI	Restiduals for Freeway 'TRI	Restuals for Prucıpal Arterial TRI
1	Los Angeles	155	166	135	153	162	138	0014	0024	-0022
2	Seattle	151	161	118	136	139	127	0102	0148	-0073
3	San Francisco-Oakland	150	152	120	141	147	130	0064	0036	-0082
4.	Mamm-Hualeal	149	157	137	140	140	130	0062	0116	0053
5	Fort L,auderdale-Hollywood-Pompano Beach	149	156	138	132	131	126	0124	0173	0090
6	Stamford (CT-NY)	149	155	108	112	109	114	0287	0354	-0054
7	Waslungton (DC-MDVA)	148	151	141	140	145	130	0058	0042	0084
8	Atlanta	145	150	130	134	136	127	0080	0097	0023
9	Chucago-Northwestern In	145	153	130	151	154	138	-0040	-0005	-0058
10	Riverside-San Bernardmo	144	149	117	130	131	125	0106	0129	-0063
11	Portland-Vancouver (OR WA)	144	149	127	135	135	126	0067	0101	0006
12	Oriando	143	140	145	127	127	123	0118	0101	0163
13	San Diego	142	145	130	136	142	128	0040	0023	0019
14	West Palm Beach-Boca Raton-Delay Beach	142	152	123	128	125	124	0107	0198	-0009
15	Boston	142	143	134	139	141	130	0021	0016	0029
16	IIonston	140	146	113	131	136	123	0069	0073	-0088
17	New York-Northeastern NJ	138	136	143	159	168	141	-0144	-0 209	0014
18	Tacoma	137	146	115	125	122	121	0094	0179	-0052
19	Phoenix	137	150	124	136	135	130	0007	0102	-0046
20	Lowell (MA-NH)	137	137	127	110	107	114	0220	0250	0106
21	Knoxville	136	137	134	115	111	117	0171	0214	0136
22	Baltimore	135	138	126	134	138	127	0007	0002	-0004
23	Honolula	133	131	141	129	132	120	0032	-0010	0158
24	Albuquerque	133	146	119	121	120	119	0096	0200	-0001
25	Indıanapolıs	133	136	126	123	125	121	0076	0087	0040
26	Miwauke	132	136	120	131	135	123	0006	0010	-0025
27	San Jose	132	135	118	131	138	124	0007	-0019	-0046
28	Anstm	132	136	122	122	124	117	0080	0091	0039

Appendix D-1 Contmued

	Urbanzed Area	Comburd TRI	Freeway TRI	Prmepal Artenal TRI	Predicted Combmed TRI	Preducted Freeway TRI	Predicted Prucipal Arterial TRI	Residuals for Combuned TRI	Restluals for Freevay TRI	Restidals for Prutcipal Arterial TRI
29	Denver	132	135	122	134	138	125	-0013	-0024	-0024
30	Bridgeport-Milford	132	132	124	117	115	118	0123	0135	0053
31	Winnungton (DE-NJ-MD- PA)	131	131	131	122	121	119	0074	0083	0098
32	Cumennati (OH-KY)	131	132	123	128	130	123	0024	0014	0002
33	Detront	131	133	126	137	141	130	-0042	-0060	.0031
34	Minneapols-St Paul	131	131	130	135	137	128	-0028	-0043	0019
35	Louisville (KY-IN)	130	130	129	124	125	120	0048	0038	0068
36	St Lonis (MO-IL)	130	131	123	131	135	125	-0004	-0028	-0014
37	Jacksonville	130	125	138	123	121	122	0055	0030	0126
38	Charlotte	130	128	133	120	120	119	0076	0061	0112
39	Philadelplua (PA-NJ)	129	123	143	144	147	133	-0110	-0 176	0070
40	Tucson	128	118	133	128	123	124	-0002	-0040	0071
41	San Antomo	128	132	119	128	131	122	0000	0005	-0022
42	Salt Lake City	128	128	130	130	130	122	-0012	-0018	0060
43	Fort Wayne	128	109	141	114	110	117	0113	-0006	0189
44	Sacramento	128	128	127	130	131	125	-0012	-0019	0016
45	NasIville	127	126	129	117	117	118	0078	0076	0085
46	Cleveland	127	128	115	132	135	125	-0038	-0054	-0084
47	New Orleans	126	131	120	132	132	125	-0048	-0005	. 0040
48	Pensacola	125	100	137	116	107	120	0073	-0067	0135
49	Greensboro	124	126	115	108	106	112	0139	0170	0023
50	Memplus (TN-AR-MS)	124	132	115	126	125	123	-0019	0056	-0070
51	Chattanooga (TN-GA)	124	126	119	114	111	117	0081	0129	0014
52	Waterbury	123	124	107	111	107	114	0101	0145	-0064
53	Brınugham	123	120	133			119			0108
54	Provilence-Pawtucket (RI-MA)	123	125	112	125	125	122	-0016	-0001	-0084
55	Evansville (IN-KY)	122	100	146	109	106	113	0116	-0057	0260
56	Columbus	122	122	123	124	125	121	-0016	-0028	0017
57	Grand Rapids	122	111	145	116	115	118	0046	-0035	0205
58	Canton	122	122	121	111	108	115	0094	0124	0052
59	Lawrence Haverhull (MA NH)	121	121	124	111	109	115	0087	0102	0079
60	Rochester	119	120	116	121	121	120	-0021	-0009	-0030

Appendix D-1 Contunued

	Urbanzed Area	Combined TRI	Freetway TRI	Prucipal Arterial TRI	Predicted Combuned TRI	Predicted Freeway TRI	Predicted Principal Arterial TRI	Restuals for Combmed TRI	Restuals for Freeway TRI	Residuals for Pruncupal Arterial TRI
61	Richmond	119	118	123	119	119	118	0001	-0010	0038
62	Tulsa	119	119	119	120	119	121	-0012	-0003	-0016
63	Oklahoma City	119	122	111	121	119	123	-0020	0023	-0104
64	Fresno	118	113	124	123	120	121	-0038	-0062	0026
65	Pittsbargh	118	113	127	133	134	126	-0122	-0 173	0006
66	Ann Arbor	118	118	116	113	112	114	0046	0055	0018
67	Dayton	118	116	123	121	122	118	-0,023	-0052	0042
68	Allentown-Bethlelient- Easton (PA-NJ)	117	113	134	117	116	118	-0002	-0024	0125
69	Trenton (NJ-PA)	117	113	127			116			0091
70	Harrisharg	117	116	128	110	110	114	0062	0055	0119
71	Akron	116	118	108			118			-0091
72	Baton Ronge	116	121	108	115	112	118	0005	0078	-0086
73	Charleston	116	112	122	115	113	117	0011	-0011	0041
74	Ogden (U'T)	116	114	122			115			0055
75	Kansas Chty (MO-KS)	116	116	114	124	126	122	-0064	-0080	-0070
76	Atlantue Clty	115	108	130			113			0142
77	EI Paso (TX-NM)	115	122	106	124	123	120	-0073	-0010	-0127
78.	Montgomery	115	105	128	109	103	116	0052	0019	0103
79	Hartford-Middletown	115	115	115	120	121	118	-0045	-0052	-0028
80	Omaha (NE-IA)	114	106	123	120	120	119	-0051	-0125	0036
81	Sonth Bend-Mishawaka (IN-MI)	113	100	123	113	110	115	0002	-0093	0069
82	Lexington-Fayette	112	101	134	109	105	114	0025	-0040	0160
83	Lucoln	112	100	116	117	109	117	-0040	-0090	-0011
84	Savamah	112	100	121	121	113	122	-1)076	-0124	-0007
85	Stockton	111	113	109	117	116	116	-0051	0028	-0) 16.1
86	Augusta (GA-SC)	111	113	110	120	113	123	-0078	0001	-0115
87	Bakerstield	111	113	110	120	115	120	-0079	-0021	-0083
88	Buffalo-Nıagara Falls	111	114	106	127	126	124	-0138	-0103	-0156
89	Kalamazoo	111	105	118	109	106	113	0016	-0009	0045
90	Greenville	110	113	107			116			-0085
91	Reading	110	108	112	113	109	115	-0025	-0011	-0022
92	Lansing-East Lansing	110	103	120	113	112	114	-0 023	-0084	0050
93	Des Moines	109	109	109	110	111	113	-0010	-0021	-0034
94	Spokane	109	110	108	121	118	118	-0 108	-0068	-0091

Appendix D-1 Contanued

	Urbauzed Area	Combuned TRI	Freeway TRI	Prucipal Arterial TRI	$\left\lvert\, \begin{gathered} \text { Preducted } \\ \text { Combined TRI } \end{gathered}\right.$	Preducted Freeway TRI	Preducted Pruncipal Arterzal TRI	Ressuluals for Combuned TRI	Restudals for Freeway TRI	Restuluals for Pruccpal Arternal TRI
95	Madison	109	107	115	115	116	113	-0056	-0085	0013
96	Corpus Christ	109	109	106	114	114	114	-042	-0043	-0074
97	Roanoke	108	100	121	111	108	114	-0032	-0080	0062
98	Brockton	108	109	100	113	107	115	-0048	0014	-0142
99	Lutle Rock-North Little Rock	108	108	107	113	114	114	-10 045	-0051	-0066
100	Portland (ME)	108	107	108	106	102	110	0018	0043	-0022
101	Mobile	107	102	116	112	108	116	-0048	-0061	-0002
102	Worcester (MA-CT)	107	105	117	113	112	115	-0055	-0055	0014
103	Toledo (OH-MI)	107	107	111	116	118	116	-0084	-0096	-0048
104	Columbus (GA-AL)	107	100	115	115	109	120	-0073	-0089	-0039
105	Beaumont	107	108	104	103	100	109	0036	0075	-0050
106	Columbıa	107	105	112	113	112	115	-0056	-0069	-0030
107	Jackson	106	107	106	109	108	114	-0029	-0013	-0070
108	Rockford	106	100	111	111	108	115	-0050	-0073	-0031
109	Amarille	105	103	109	106	105	111	-0012	-0017	-0018
110	Youngstorvn-Warren	105	100	123	113	111	117	-0073	-0103	0053
111	Lubbock	105	100	108	108	107	112	-0031	-0068	-0034
112	Shreveport	105	101	112	112	108	114	. 0060	-0071	-0021
113	Whaston-Salem	105	105	117	109	108	113	-0038	-0028	0039
114	Ene	105	100	106	118	109	119	-0.119	-0083	-0115
115	Loram-Elyrra	104	105	101	105	102	113	-0009	0029	-0111
116	Syracase	104	104	108	115	116	115	-0098	-0107	-0060
117	Saguay	104	100	109	107	104	111	-0028	-0037	-0021
118	Springfield	104	100	110	106	105	109	-0021	-0052	0005
119	$\begin{aligned} & \text { Huntugton-Asliand (Wy } \\ & \text { KY.OH) } \end{aligned}$	104	100	109	107	105	112	-0028	-0046	. 0025
120	Macon	103	100	111			118			-0057
121	Peoria	103	100	111	111	109	114	-0073	-0089	-00123
122	Albany-Schenectady-Tro,	103	102	113	117	118	116	-0129	-0 148	-0030
123	Galveston	103	100	104	105	098	109	-0022	0017	-0051
124	Flint	103	101	106	115	114	116	-0108	-0.0117	-0087
125	Davenport-Rock IslandMolue (IA-IL)	103	101	109	113	112	114	-0091	-0108	-0042
126	Whchata	102	101	107	112	113	115	-0093	-0110	-0069

Appendix D-1 Continued

	Urbamzed Area	Combmed TRI	Freevay TRI	Principal Arterial TRI	$\begin{array}{\|c\|} \hline \text { Predicted } \\ \text { Combined TRI } \\ \hline \end{array}$	Predicted Freeway TRI	Predicted Prmicipal Arterial TRI	Residaals for Combured TRI	Restuals for Freeway TRI	Restuals for Pructpal Arterial TRI
127	Sprunfield (MA.CT)	102	102	106	116	112	121	-0132	-0098	-0129
128	Port Arthur	102	100	104	096	092	105	0060	0079	-0011
129	Bunghamton	102	100	118	104	102	109	-0022	-0023	0081
130	Utica-Rome	102	100	107	105	103	110	-0.026	-0031	-0026
131	New Bedford	102	100	109	111	108	112	-0082	-0077	-0028
132	Paeblo	101	102	100	104	103	110	-0032	-0009	-0099
133	Topeka	101	100	103	106	105	110	-0052	-0045	-0069
134	Cedar Rapids (IA)	101	100	103	105	103	109	-0035	-0028	-0059
135	Fall River (MA-RI)	101	100	113			111			0018
136	Waco	101	100	102	100	098	108	0006	0024	-0055
137	Dulath (MN-WI)	101	100	102	108	104	110	-0066	-0042	-0079
138	Waterloo-Cedar Fall	100	100	100	104	099	111	-0042	0012	-0103

Appendix E
List Of Symbols And Abbreviations

Table E-1: List Of Symbols And Abbreviations

CV	coefficient of vanation
DOT	Department of Transportation
FHWA	Federal Highway Admınistration
FTA	Federal Transit Admınıstration
HPMS	Hıghway Performance Management System
LOS	level of service
MPO	Metropolitan Plannıng Organızatıon
PA	Principal Arterral
rev	Revenue
Sq mi	square mule
$\mathrm{S}_{\mathrm{y} x}$	standard error of the estimate
TTI	Texas Transportation Institute
TRI	travel rate index
UT	The Unıversity of Tennessee, Knoxville
var	vanable
VIF	vanance inflation factor
VMT	vehicle mıles of travel

Vita

Elisabeth Hahn is onginally from Columbus, Ohio She received a Bachelor of Science in Civil Engineering from the University of Tennessee in November of 1992 and has written this thesis to fulfill the requirements for obtaining a Masters of Science in Civil Engineering.

Elisabeth has 6 years of expenence working as a Civil Engineer on environmental engineering projects for Stone and Webster, and Bechtel Corporation in Tennessee She has been involved in several projects while doing her graduate study at UT, some of which are listed below:

- Travel demand forecasting model development for two small cities in Tennessee
- Transit benefits study
- FHWA freight planning website renovation

Elisabeth has been active as an officer of UT's student chapter of the Institute of Transportation Engineers She was president of the chapter during 1999-2000. She enjoys travel in other countries, surfing, and backpacking.

[^0]: ${ }^{1}$ Urbanized areas are ranked by pop in descendung order

[^1]: 'Ranked by Combined TRI in descending order

