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Abstract 

A finite difference numerical method is developed for the simulation of time-

dependent incompressible Navier-Stokes equations 

As in the original projection method developed by Chorm, we first solve 

diffusion-convection equations to predict a intermediate velocity field which are 

then projected onto the space of divergence-free field. We integrate the diffusion-

convection by 6 implicit scheme and solve the pressure Poisson equation by suc 

cessive over-relaxation method. The second order centered difference is employed 

to discretize both the convective and viscous terms 

We develop two-dimensional and three-dimensionalcomputer programsin For 

tran language Numerical results are presented 

We couple our inpressible Navier-Stokes solver with an interacting continuum 

modelfor two-phase flows with heat, masstransfer and phase change The Volume 

of Fluid method is employed in the present study Two example simulations are 

presented, convective melting ofsolid particles m a fluid under micro-gravity,and 

a three dimensional driven cavity problem. 
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Chapter 1 

Introduction 

The Navier-Stokes equations are the equations governing the motion of usual 

fluids like water, air, and oil, under quite general conditions They appear in the 

study ofmanyimportant phenomena,either alone or coupled with other equations. 

They are derived under the physical assumption that there exists a linear local 

relation between stress and strain rates 

The Navier-Stokes equations are nonlinear. The nonlinear term contained 

m the equations comes from kmematical considerations (i.e., it is inherent in 

the motion) and does not result from assumptions about the physical model 

Consequently this term can not be avoided by changing the physical model [20] 

This makes the the mathematical study of these equations difficult, although the 

physical model leading to the Navier-Stokes equations is quite simple. 

The exact solutions of Navier-Stokes equations are very difficult to reach In 

fact, we know just a few exact solutions, almost all of which are obtained under 

some significant simplifications of domain and the equations (i e,the nonlinear 

terms are removed). Therefore, these solutions are not as helpful to people as 

expected. 

On the other hand,the huge demand of knowledge of fluid field continuously 

motivates the efforts to search for accurate and efficient numerical solutions of 

the Navier-Stokes equations So far, a dozen of numerical algorithms have been 

developed and played an important role m several scientific and engineering fields 

Thorough review of current status of numerical methods for Navier-Stokes equa 

tions can be found m [16] and [23] 

Among these methods, one class with solid mathematical foundation is the 

projection method. The philosophy of projection method is the orthogonal de 

composition of a vector-valued function in a Hilbert Space This orthogonality 



property is rejflected in the Hodge decomposition which states that a vector field 

can be uniquely decomposed into a divergence-free component u'' that satisfies 

u'^ n = 0 and the gradient of some scalar (j). Furthermore, if we integrate by 

parts, we obtain that 

/ dx=0. (1) 

Consequently,the Hodge decomposition defines an orthogonal projection V on 

such that Vu= By using this projection,one can interpret the incompressible 

Navier-Stokes equations as an evolution equation for velocity within the space of 

divergence-free vector fields [3]. 

This idea was first applied in [15], [20] to prove the existence and uniqueness 

of the solution of Navier-Stokes equations. In 1969, Chorm [4] and Temam [20] 

applied it to numerical methods simultaneously After their original papers,some 

efforts have been devoted to improve the accuracy and several variants of their 

original methods have been developed [3], [14],[19],[22] 

Chorm's method is based on a discrete form of the Hodge decomposition. In 

this method,we first comput an intermediate vector field, which is then projected 

onto divergence-free fields to recover the velocity. The calculation of the discrete 

Hodge projection involves discretizmg the Navier-Stokes equations and using the 

resulting discrete operator and its adjoint to form the projection 

The most widely used discretization methods of Navier-Stokes equations can 

be fall into three categories finite difference, finite element and finite volume 

method 

The finite difference method is the oldest and simplest one Its idea can be 

traced back to Euler m the 18th century. This method is based on the Taylor 

expansion and can be applied to PDEs straightforwardly 

The discovery of the finite element method is attributed to some structural 



engineers In this method the space domain is discretized into a finite number of 

small, non-overlapping elements with more arbitrary shape and size Normally 

the numerical unknowns are stored at the vertices(or nodes)ofthese elements. 

In each element the field variables are approximated by linear combinations of 

local interpolation functions using the nodal values. These small elements can 

be assembled by a variational principle or weighted residuals method to form an 

algebraic system In the jargon of structural engineers, these matrices are called 

stiffness matrix and mass matrix 

The most physically intuitive method is the finite volume method,in which the 

physical space is divided into a finite number ofcontrol volumes, or cells, and the 

integral form ofthe conservation law is applied directly to these control volumes. 

This assures that such quantities as mass, momentum and energy conserved at 

the discrete level. The great advantage of both finite element and finite volume 

method is their flexibility m dealing with complex geometry 

In the present study, we present a numerical method based on Chorm's projec 

tion method and finite difference discretization. It is first order accurate in time 

and second order accurate in space 

We restrict our attention to homogeneous boundary conditions. We assume 

that the mesh spacing is uniform m the x, y and 2 directions 

The presentation is organized in the following order. 

In chapter 2, we briefly describe the basic equations of fluid mechanics and 

derive the incompressible Euler and Navier-Stokes equations and the boundary 

conditions for well-posedness. 

In chapter 3, we present a detailed description of the projection method for 

the incompressible Navier-Stokes equations. 

In chapter 4, we describe the details of our numerical method, including the 

time-stepping procedure in a semi-discrete form, a spatial discretization for a di 

vergence form nonlinear advection-diflfusion equations, the Gauss-Siedel iteration 



for the pressure Poisson equation and a discussion of an upwind method for the 

volume-of-fluid advection equation, which is usually coupled with the incompress 

ible Navier-Stokes equations to calculate the problems with free-boundaries. 

In chapter 5, we discuss the implementation details and computational results 

Five test cases are given with further discussions. At the end of this chapter, we 

present the numerical results for a benchmark problem,the driven cavity flow in 

R^, which reveals some three dimensional spatial structures of the flow 



Chapter 2 

Equations of Motion 

In this chapter, we briefly describe the basic equations of fluid mechanics. 

These equations are derived from the conservation laws of mass, momentum and 

energy 

§2.1 Euler's equations 

We begin with the simplest assumptions, leading to Euler's equations for a 

perfect fluid. 

Let D be a region in two- or three-dimensional space {d=2,3), fllled with 

a fluid Let x6£)be a point m D and consider the the particle of fluid moving 

through X at time t. The dependent variables in the Eulerian description of 

fluid mechanics are the fluid density p(x,t), the velocity vector field u(x,t), and 

the pressure field p(x,t) We temporarily assume that the quantities are smooth 

enough so that the standard operations of calculus can be performed on them. 

The fundamental kinematic principle is expressed by the notion of the con-

vechve derivative. The rate of change of a quantity given by the function f{x,t) 

along a flow line is 

dfjx,t) ^ f{x+n5t,t+St)-/(x,t) 
dt st^o 5t 

= +̂u V/(x,0. (2) 
The fundamental equations of motion for a fluid system are equations for 

p(x,t), u(x,t)={ui,U2,U3) and p{x,t). 

Consider the volume 5V of an element of mass dm as the system evolves 

Conservation of mass means that dm does not change for this element If the 
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element compresses or expands then the volume and density will change, but the 

mass IS fixed 

(5) 

The rate of change of the volume occupied by 5m is obtained as follows For 

a rectangular volume 5V=5x5y5z we write 

d5V d5x.. d5y.. dSz.._^^SyS,+—SxSz+—5xSv (4) 

The length elements increase or decrease according to the relative velocity of 

their endpoints. The rate ofchange of the length 5x is 

^=ui{x+5x12,y,z,t)-ui{x-5x/2,y,z,t)= (5) 
and likewise for the other components. Combined with equation (4), this gives 

=̂(V u)«y (6) 
Hence the divergence of the velocity vector field is the local rate of change of 

the volume of elements of mass. In terms ofthe density p, 

dp _ d 5m _ 5m d5V ^ 
Id"JtW"~{5Vy dt " ^ ^ ^ 

Using the definition of the convective derivative, we see that conservation of 

mass manifests itself as the contmmty equation 

0=^+u-Vp+pV-u=|^+V-(pu) (8) 
Newton's second law of motion, which states that the rate of change of mo 

mentum equals the net applied force, can be applied to each element of mass in 

the fiuid In the absence ofany externally applied forces, the net force 5F acting 



on each element of mass is due to the pressure field The component of force in 

the rc-direction is 

5Fi=p(x — i5x/2,t)6y6z — p(x+i5x/2,t)5ySz= —^6V (9) 
ox 

Similar expressions hold for the y and 2; components of the force Hence 

Newton's second law for the element offiuid mass5m at position 5x is, 

—((ymu(x,t))=5F=—5Wp. (10) 
OjL 

Recalling the equation of conservation of mass (3) and the definition of the 

convective derivative and dividing through by5m we obtain the Euler's Equations 

dn 1^+u.Vu=--Vp (11) 

Combined,the continuity equation and Euler's equations provide d+1 evolu 

tion equations for the d+2dependent variables(p,p and the d components of u). 

What remains is to provide a connection between density and pressure Typically 

this IS m the form ofa thermodynamic equation ofstate. For example,m an ideal 

gas at constant temperature,p~ p. Iftemperature variations are to be accounted 

for, then the pressure may become a function of both the local density and the 

local temperature and a further evolution equation for the temperature must be 

supplied. A significant simplification is achieved by considering fiuids which are 

effectively incompressible Mathematically the condition of mcompressibility is 

simply 

V u=0 (12) 

Physically, this constraint restricts applicability to problems where all the rel 

evant velocities are much less than the speed ofsound m the fiuid The continuity 

equation (8) then implies that the convective derivative of the density vanishes. 



so the density of each fluid element never changes from its initial value This, in 

turn,implies that an initially homogeneous(constant density)fluid remains so. 

/9(x,0)=constant => /9(x,t)=constant (13) 

Euler's equations for an incompressible homogeneous fluid are 

-7^+u • Vu+-Vp=0 (14)
at p 

V •u=0, (15) 

where the density is now a parameter These are d+1 equations for the d+1 

unknowns(p and the d components of u). 

Boundary conditions are determined by the physics of the problem at hand 

If the fluid IS confined to a fixed region O of space bounded by a stationary 

boundary then the fluid can not cross these rigid boundaries This means 

that the normal component ofthe velocity vector field satisfies 

n • u|sn =0, (16) 

where n is the local normal to dO. 

§2.2 Incompressible Navier-Stokes equations 

Viscosity IS the tendency of a fluid to resist shearing motions. As such, it 

IS a fnctional force with its origins m the microscopic interactions between the 

atoms or molecules making up the fluid Its net effect is to dissipate organized, 

macroscopicforms ofenergy- the kinetic energy in the flow field - and convert it to 

the disorganized, microscopicform of energy - heat. Shearing forces in continuum 

mechanical systems are described by the stress tensor. The tensorial nature of 



 

these forces results from the fact that there are two directions associated with 

each such force, the direction of the force itself and the orientation of the area 

across which the force acts. 

Consider a rectangular shaped portion of fluid, centered at the point (x,y,z) 

with side lengths (Sx, 5y, Sz) The component S'lj of the stress tensor S is the 

force per unit area m thejth direction acting across an area element whose normal 

IS m the zth direction Forces m the direction of the normal to an area element 

are associated with shear stresses. Newton's third law implies that forces ofequal 

magnitude and opposite direction act on the "plus" sides due to the matter on 

the "minus" sides Adding these forces, the net force on the fluid element in the 

^th direction is 

SFj = Sij(x+6x/2,y,z)Sy6z — Sij(x — Sx/2,y,z)SySz+ 

S^j{x,y+6y/2,z)Sx5z — S2j{x,y — 6y/2,z)6xSz+ 

S'sj{x,y,z+5zf2)6x6y -Ss,{x,y,z-Szl2)6x5y (17) 

Expanding each element of the stress tensor about the center of the element 

and keeping only the leading terms gives 

^ dS,,{x.y,z)^3S,,{x,y,z) 
OX dy oz 

Hence the force per unit volume acting at a point in the fluid due to stresses 

within the fluid is the divergence of the stress tensor, 

f=V S. (19) 
The stress tensor is always symmetric and can be decomposed into portions 

due to the pressure p and the symmetric shear stress tensor , 



 

Sij — —SijP+T^J (20) 

Then the most general form of the equation of motion for the velocity vector 

field u is 

—+u• Vu+-Vp=-V •T. (21) 
ot p p 

A Newtonian fiuid is defined as one in which the shear stress tensor is a linear 

function ofthe rate ofstrain tensor, where we define the symmetric rate ofstrain 

tensor as 

The most general linear isotropic(direction independent)relationship be 

tween the symmetricshear stress tensor T and the symmetric rate ofstrain tensor 

R IS 

T=Q!R+ySTr(R)I, (23) 

where I is the unit tensor and the constants a and /3 are material parameters. 

The components ofthe viscous force per unit volume are 

(V • T),=aAw,+(2/3+a)—V - u (24) 
uXi 

Together with the condition of incompressibility, (21), becomes the incom 

pressible Navier-Stokes equations 

„ 1„ ^ 
-1- u • Vu -1- -Vp=i/Au, (25) 

at p 

V • u=0. (26) 

10 



The material parameter v is the kinematic viscosity As with the incompress 

ible Euler equations, the Navier-Stokes equations are four coupled nonlinear par 

tial differential equations for four unknown functions: the three components of u 

and the pressure p Compared to the incompressible Euler equations,the effect of 

the linear coupling between stress and rate ofstrain is to introduce the "diffusion" 

term m (30) 

Suppose the fluid is confined to a fixed region of space ft bounded by dft 

Not only the normal component of the velocity vector field must vanish on the 

boundary, as it does m the boundary condition for the Euler equations in 16, 

but also the tangential components of the fluid's velocity are controlled. These 

"no-shp" boundary conditions for rigid boundaries are that the fluid at must 

move with the prescribed boundary motion. If the velocity of the boundary is 

given by U(x,t) for x G dft, then the appropriate boundary conditions for u are 

u|sn =U (27) 

If an external body force(per unit volume)f is imposed on the fluid, then 

the incompressible Navier-Stokes equations become 

5u „ 1„ ^ 1 . ,
H-u • Vu-J--Vp=i/Au-f-f, (28)

ot p p 

V • u=0. (29) 

11 



Chapter 3 

Projection Method 

§3.1 Projection Method 

We consider the time dependent Incompressible Navier-Stokes Equations in 

primitive variable formulation, which were derived in the previous chapter 

—+u• Vu+-Vp=i/Au+-f, (30)
ot p p 

V • u=0, (31) 

where Cl is an open bounded domain in {d= 2,3) with a sufficiently smooth 

boundary F 

The equations (30) and (31) should be completed with appropriate boundary 

conditions for the velocity. 

As with incompressible ideal flow,the pressure pin incompressible viscous flow 

IS determined through the equation V • u=0. We now shall explore the role of 

the pressure in incompressible flow m more depth. Let Clhe a. region m space(or 

m the plane)with smooth boundary dfl We claim the following decomposition 

theorem 

Theorem Any vector field w can be uniquely decomposed in theform 

w=u+Vp, (32) 

where u has zero divergence and is parallel to dfi; i.e., u • n=0 on dfl 

Proof First of all we establish the orthogonality relation 

12 



/ Vp dV=0. (33) 
JnJCl 

By the identity 

V(pu)=(Vu)p+u• Vp, (34) 

the Divergence Theorem, and V • u=0, we get 

f u-VpdV= f V{pv.) dV= f pu-nd-i4=0, (35) 

since u• n=0 on dQ,. We use this orthogonality to prove uniqueness. Suppose 

that w=Ui+Vpi=u+Vp2- Then 

0=ui-U2+V(pi-p2)- (36) 

Taking the inner product with ui — U2 and integrating, we get 

0= /{||ui-U2||^ +(ui-U2) y{pi-p2)}dV= f \\ui-VL2\f dV (37) 
*/o */o 

bythe orthogonality relation. It follows that Ui=U2and Vpi= Vp2,which is the 

samething aspi=pz+contant. Ifw=u+Vp,we notice that V-w= V-Vp=Ap 

and that w • n=n• Vp. We use this remark to prove existence Given w let p be 

defined by the solution of the Neumann problem 

Qn 
Ap=V • w m with —=w • n on dCt. (38) 

an 

It IS known [7] that the solution to this problem exists and is unique up to the 

addition of a constant to p. With this choice of p, define u=w — Vp. Then 

clearly u has the desired properties V-u=0,u-n=Oby construction of p 

13 



It IS natural to introduce the operator V , an orthogonal projection operator, 

which maps w onto its divergence-free part u By the preceding theorem,P is 

well defined Notice that by construction P is a linear operator and that 

w=Pw+Vp (39) 

Pu=u if V • u=0, u • n=0, and P(Vp)=0 (40) 

We apply these ideas to the incompressible Navier-Stokes equations. If we 

apply the operator P to both sides, after rearrangement of convective term and 

pressure term, we obtain 

P(^+Vj.)=-P(-(u-V)u+^Au) (41) 
Since u is divergence-free and vanishes on the boundary, the same is true of 

5tu(if u is smooth enough). Thus, by (40),PdtU=5tU. Since P(Wp)=0, we get 

f=P(-(u V)u+iAu). (42) 
Although Au is divergence free, it need not be parallel to the boundary and 

so we cannot simply write T'Au This form,(42), ofthe Navier-Stokes equations 

eliminates the pressure and expresses 5tU m terms of u alone The pressure can 

then be recovered as the gradient part of —(u• V)u-l-;^Au Thisform is not only 

of theoretical interest, shedding light on the role of pressure, but is of practical 

interest for numerical algorithms [6] 

Typical initial and boundary conditions[3]involve specifying an initial velocity 

field and specifying Dinchlet or Neumann conditions for velocity, no boundary 

conditions are required for pressure Orthogonality of the pressure gradient with 

divergence-free vector fields eflfectively eliminates pressure from the system while 

14 



enforcing (31), in fact specifying pressure boundary conditions over-determines 

the system 

§3.2 Numerical Approximation- Fractional Step 

In this section, we present a variant of the fractional-step method introduced 

by Chorin[4]for time advancement ofthe Navier-Stokes and continuity equations 

for incompressible flows 

The fractional step, or time-spittmg method,is in general a method ofapprox 

imation of the evolution equations based on decomposition ofthe operators they 

contain A historical review of fractional step method can be found in the book 

ofYanenko [25] 

In application ofthis method to the Navier-Stokes equations, we use the inter 

pretation that pressure plays the role of a projection operator which projects an 

arbitrary field into a divergence-free vector field A two step time-advancement 

scheme for equations (30) and (31)can be written as 

+(u • Vu)*=i/Au* -I- if*, (43)
At p 

=-V(p"+^) (44) 

with 

V u"+^=0 (45) 

In the first step,equation (43),an auxiliary field u isintroduced and evaluated, 

u differs from because the pressure term and the continuity equation (31) 

have not been taken into account u, u* and f* may be evaluated by an implicit 

or an explicit scheme. 

15 



In the second step, equations(44) and (45)can be solved as a coupled system 

ofequationsfor and with prescribed boundary condition for To do 

this, Chorin [4] introduced an iteration scheme. In the present study we decouple 

them m the following manner,by taking the divergence on both sides of equation 

(44), 

•u (46) 

=u- (47) 

16 



Chapter 4 

A Numerical Method for Incompressible 

Navier-Stokes Equations 

In this chapter, a numerical method for computing three-dimensional, time-

dependent incompressible flowsis presented This method is based on afractional-

step, or time-splitting, scheme in conjunction with the implicit approximate-

factorization technique. The pressure Poisson equation is solved by point or line 

Gauss-Seidel iteration with successive over-relaxation(SOR)acceleration. Appro 

priate boundary conditions for the intermediate velocity field are derived. 

§4.1 Temporal Discretization 

We consider the implicit time advancement scheme for the advection-diffiision 

equations in divergence form: 

|=_v (uu-ivu). (48) 
We discretize the equations(48)m time by finite difference and obtain a semi-

discretized form as follows 

=-V •(uu)"-i- ^[(1-0)V2u"+0V=^u]-h 0{At), (49) 
where 0 < 9 < 1 9=0 leads to an explicit scheme. If ̂ = 05, we have the 

trapezoidal formula . When 9 = 10, the equation becomes the implicit Euler 

method The function u(t)= u(nAt)= u" is assumed to be a solution of the 

partial differential equation (48) For convenience, we drop the error term m the 

rest of this section. 

In 1970s,Beam-Warming[1],[2], developed an efficient non-iterative alternating-

direction-imphcit(ADI)method to reduce the computational cost This method 

17 



 

 

has been successfully applied to solutions ofcompressible Navier-Stokes equations 

and Euler equations. 

For convenience, we rewrite the equation (48) and (49) as follows with u = 

{u,v,w) 

^=-V («u-±V«). (48a) 

|=_V.(„u-ivB), (48b) 

dll) 1^=_V (»u--V«). (48c) 
and 

^ 71 T 

=-V •(«u)"+ —[(1-0)V\"+evH], (49a)
ZXr lie 

^ XI -1 

= (uu)"+ —[(l-0)VV+0V2u], (49b)
ist Re 

=-V •(u;u)"+4-[(l-0) +ev'^w] (49c)
ZXr Re 

We will restrict our attention to (49a) and apply Beam-Warming's method to 

it The extension of this method to (49b) and (49c) is similar 

We first linearize the flux function 

f=fiu,Vu) (50) 

by using the local Taylor expansion 

f=f"+(%)°st+0(se) (51) 

18 



The chain rule yields 

df _dfdu df d(Vu) 
dt du dt d{Vu) dt ' 

Notice, for the viscous flux, we have = /ms(Vu)= ;^Vu Substituting 

(52)into (51), we obtain 

f=r+{^)s(vu)+o(se), (53) 
where is the Jacohian 

Let 5u=u — u^ Then equation (49a)can be written as-

[I-9^{da,Mi+dyM2+d,M3)]Su=Am", (54)
He 

where I is the identity operator, and 

7e"=-V-(u«)"+-^(Au)", (55)
Re 

and 

The role of the implicit spatial operator in the left-hand-side {9 0) can be 

interpreted as a stabilizer added to the explicit scheme, where 0=0 A general 

discussion of the implicit stabilization method can be found m Yanenko [25] On 

the other hand,this scheme can be viewed as a two-step method, with an explicit 

predictor plus an implicit corrector [1] 

Beam and Warming [1] designed an Approximate Factorization technique by 

adding a small O(At^) term to the left-hand-side to factorize a n-dimensional 

implicit operator in equation (49a)into the product ofn one dimensional implicit 

operators Thus equation (54) can be rewritten as: 
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(I-0^d^Mi){I-e^dyM2){I-d^d,Mz)5u= A^7^" (57)
xie Ke He 

These implicit operators can be inverted in the following sequence 

(/-e^d^Mi)Su= At-RJ", (57a)
He 

(/— 9^dyM2)Su=5u, (57b)
Ke 

(/-e^d.Msj^u=6u, (57c)
Re 

u= +Su (57d) 

§4.2 Spatial Discretization 

Now we consider the discretization of the spatial operators in equations (57a) 

to (57d) 

In the right-hand-side of(57a), both the first and second derivatives are ap 

proximated by standard,second-order accurate,central difference Thus we obtain 

the residual 71^ as 

COnV — d-

1 , . 
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vise — ^^2 + 

+Ui,j-l,k ~ 2Wjj,fc)+ 

+Wj,j,*:-1 ~ , (59) 

=At(-^conv+^visc) (60) 
In this section w" is replaced by where x=lAa:, y=jAy, z= AiA^: 

The second-order central difference is used to approximate the spatial differ 

ential operator in the left-hand-side Hence we have the following coupled linear 

algebra system 

Ci5ui-i -I- C26u^ -I- cz5ut+i=TZ^, (61) 

where 

Thus a huge matrix inversion problem is reduced to aseries ofsmall bandwidth 

(tridiagonal)matrix inversion problems that have efficient solution algorithm, 

e g Thomas algorithm 

§4.3 Solution ofthe Pressure Poisson Equation 
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We apply the second-order central difference to the Laplacian m the pressure 

Poisson equation to obtain a discretized form as follows 

a52(<?^ij,fc+l ~ ^'Pt,3,k +4't,J,k-l) — St,],k, (65) 

where 

\j,k — J (66) 

and 

"t" 2Ay ~ ^z,3-i,k) (67) 
1 /"f" 2Az '^I,3,k-l) 

Here C and D are the discrete approximation of Laplacian and divergence 

operator 

Standard point Gauss-Seidel iteration is employed. Thus equation (65)can be 

rewritten as 

2{di+d2+ds)4i^'^l-

^^(^h3,k+l ^i^,k-l)~ \3,kj (68) 

where 
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Aa;2 Ay2 (69) 
Alternatively, using the line Gauss-Seidel iteration, equation (68) is slightly 

modified as 

2(di+d2+ = d, +ei..)+ 

^3(<?^Kj,fc+l+ 0I^^fe_l)+ (70) 

where can be obtained by Thomas algorithm 

After each iteration,we accelerate the convergence bysuccessive over-relaxation 

as follows 

=0}^+^+(1-a;)<^", (71) 

where 1 < w < 2. An alternative is the successive under-relaxation,0 < a; < 1, 

which assure the convergence. In our computation, we fix a;=1.35 

§4.4 Solution of e Advection Equation 

For fiows with free surfaces,several methods have been developed for numerical 

simulations One of most widely used is due to Hirt and Nichols [13], which is 

based on the concept of a fractional volume of fluid (VOF). This method has 

been shown to be flexible and efficient for treating complicated free boundary 

configurations We briefly describe this method m this section. A more detailed 

description can be found m [13]. 

Suppose that we define a function e whose value is unity at any point occupied 

by fluid and zero otherwise. The average value of e m a cell would represent the 
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fractional volume of the cell occupied by fluid In particular, a unit value of e 

would correspond to a cell full of fluid, while a zero value would indicate that the 

cell contains no fluid Cells with e values between zero and one must then contain 

a free surface 

The time dependence of e is governed a flrst order kinematic hyperbolic equa 

tion as follows 

^+u-Ve=0 (72) 
For incompressible fluid,the e advection equation can be written in conserva 

tion law form by combining equation (74) with continuity equation 

-+V (ue)=0, (73) 

or in component form 

de df dg dh ^ . 

where the flux functions are 

f= €u, g=ev, h=ew. (75) 

We first consider an explicit finite-difference approximation for a ID advection 

equation The higher dimensional extension of this scheme is straightforward 

de df ^ . . 

~ ^(/i+i/2 —f1-1/2), (77) 

where f1+1/2 is the numerical flux with dependence 
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 — e^+i), (78) 

and 

We require that/satisfies the consistency condition 

(80) 

A numerical flux can be constructed in the following way [12] 

f1+1/2= /j+1+ft- 0-1+1/2 )Aej+i/2 ], (81) 

where 

ft=fi^t), (82) 

ipia)=|a| (83) 

The function ip is the coefficient of numerical viscosity Note that when a=0 

the numerical viscosity vanishes, which leads the calculation unstable To avoid 

this, the following modification of ip is introduced in [12] as 

|o| |o|> 6 
ip{a)= < (84) 

(a2+(52)/25 |a|<0. 

and 

.^t+^f/\+\^ ^ /ocN
^1+1/2= •^ (85)

f(e.) Ae,+J =0, 
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where 5 is a small number 0<5<0 1 The finite difference operator acting on e 

IS 

^^z+i/2= ^i+i — (86) 

Similar treatment of the fluxes in the y and 2: directions can be applied to 

equation (74) 

§4.5 Boundary Conditions 

In this section, we discuss the numerical implementations of boundary condi 

tions. 

4.5.1 Pressure Boundary Condition. 

Since the mathematical theory says that no physical boundary conditions are 

required for pressure, some numerical boundary conditions must be derived m 

practical calculations One widely used method is to use the normal momentum 

equation [16] to obtain a Neumann boundary condition. 

In the present study, the Reynolds number Re is relatively high So by the 

boundary layer theory [18], the normal momentum equation is reduced to a ho 

mogeneous Neumann boundary condition 

^
dp
=0 on dQ. (87)

dn 

4.5.2 Velocity Boundary conditions. 

At the solid walls, the homogeneous Dinchlet boundary condition is specified 

u=0 on dO, (88) 

We derived the consistent boundary condition for the intermediate velocity 

field as follows Summing up (43) and (44), we have 
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„n+l_ 1 
— =-V •(uu)- +-B-V^u (89) 
i\t lie 

Inserting (43)into the above equation, we have 

Un+l _ ijn u — u" 

At At 

Since at the solid walls, (88) holds for time nAt and (n+l)At , the above 

equation is reduced to 

u=u''+ on (91) 

Applying(88) to the Navier-Stokes equations, we have 

Vp"+^= Vp"+ -u") 
Re (92) 

=Vp"+0{At/Re) I on 912 

Hence, we reach a consistent boundary condition for the intermediate velocity 

field as follows 

u=u"+AtVp" on dQ. (93) 

This can rewritten m its components as 

9n" 
=u"+At— , (93a) 

(JJU 

v''= v''+At^ , (93b)
dy 

w= w'^+At— , (93c) 
oz 
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where the pressure gradient at the wall is approximated by centered or one-side 

(upwind) finite differences. 

Note that the above equations can be cast into a delta form 

5u= At-£ , (93a') 

Sv=At-^ , (93b') 

dv^dw=At^ , (93c') 
which also are the desired boundary condition for the implicit operator m (57)for 

the advection-diffusion equations 

This result is the same as the result in [14], which they derive by a different 

approach 
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Chapter 5 

A Continuum Model for 

Convective Melting of Solid particles in Fluid 

In this chapter, we present a mathematicalmodelfor two-phase flows developed 

by a research group m Tennessee State University [11] 

§5.1 Introduction 

The understanding of the phase-change characteristics of two-phase flows oc 

curring in micro-gravity conditions is important for the safety of space applica 

tions Such problems arise in an increasing number of applications in material 

processing. When a medium consists of packed(or dispersed)particles melt in a 

flowingfuild, at least three distinctive features arise: (1)Particles experience a full 

range of size variation due to phase change and collision, i.e. from initially large 

size( may be uniform)to eventually diminishing within the melting zone, (2) 

There is momentum exchange between particles and fluid due to slip(relative) 

and particle collision,(3)Heat is transferred from fluid to particles and is strongly 

influenced by flow characteristics (local Peclet number ),specific inter-facial areas 

(particle surface area per unit volume) 

The coupled heat, mass and momentum transfer mechanism during convective 

melting is further complicated due to the presence ofthe Earth gravity field The 

density difference between fluid and solid phases causes the melting particles either 

to float to the fluid surface or settle down to the bottom of the fluid field The 

resulting individual particle motion is then interacting with that from adjacent 

particles through collisions This makes prediction of melting rate under non-

thermal equilibrium conditions very complex Possible experiments under micro-

gravity may give a way to study such complex phenomena by eliminating gravity 

related effects. To be able to perform such a task, it is important to identify 
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the mam governing parameters for complete description of convective melting 

processes. 

§5.2 Mathematical Modeling of Two-Pheise Flows 

The volume-averaged equations ofthe contmua modelfor multi-phase flow are 

[11] 

+V •(p^Ufc)=Sr-K, (94) 

(p^Ufc)-j- V •(p^UfcUfc) — —Vp^+V-T^+p^bfc -f Fj-k+ (95)
dt 

o 

-(p^Efc)+V •{p'EkUk)=-p'v Ilk 

+< > —V • q'^ -|- Qi—k+ >, (96) 

where Sj-k represents the rate of mass generation of phase k per unit volume 

and may be caused by chemical reactions or phase changes. This unit'volume'is 

that ofthe multi-phase system F/_ii-accounts for the transfer ofthe total stress 

across the interface per unit volume and includes the drag force, Saffman force, 

and Magnus force ofthe phase Si-K'^k represents the momentum transfer across 

the interface per volume,due to the mass generation ofthe phase. Qi-k accounts 

for the heat transfer across the interface. Sj-kEj-k represents the internal energy 

transferred by the mass generation as a result of phase change 

The total stress has already been written as the form of pressure plus shear 

stress,T*= — in the above equations Tosolve the equations,constitutive 

equations, which describe the relationship between stress and dependent variables. 
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must be specified. In addition, the interchange terms of mass, momentum and 

energy is also need to be specified 

For a liquid-solid two-phase system, the relationship between liquid and solid 

volume fraction is 

Q+e,= 1. (97) 

Therefore, only one ofliquid and solid volume fraction is independent variable 

We write e=ei, then =1 — e 

Densities ofthe liquid phase and the solid particle phase are 

p'=epi p'=(l- €)ps, (98) 

Mass generation rates ofthe liquid phase and the solid particle phase per unit 

volume are expressed as 

S=Sj-,=Sj.,= -T,)=-{Ti-T.). (99) 
S fS 

Because the solid particle phase is treated as a continuum and particles m 

the liquid-solid system may be treated as 'amplified molecules' in the present 

continuum model, the transport properties of the solid phase are needed in the 

model The pressure of the liquid phase and of the solid particle phase may be 

written as 

p'=ep p® =(1-e)p+ps, (100) 

where ps shows the contribution to the pressure of solid phase due to the interac 

tion between particles. Such a general formulation with proper values of material 

constants does not exist today. A modulus of elasticity or particle-to-particle in 

teraction , G(e), IS introduced into the present continuum model of liquid-solid 
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two-phase system, similar to that m the hydrodynamic model for gas-solid flu-

idization of Pritchett et al,(1978) 

G(e)=f (101) 
Therefore, in the solid momentum equation, we have 

Vps=G(e)Ve (102) 

The modulus of elasticity may be taken as 

G(€)= (103) 

where usually Gq=l.OPa,C=100,and e* =0.45. The introduction ofthe mod 

ulus ofelasticity is necessary not only m the physical sense, but alsofrom the need 

of numerical technique. This term becomes of numerical significance only when 

the volume fractions ofliquid go below the minimum value It also helps to make 

the system numerically stable, because it converts the imaginary characteristics 

into real values. Our preliminary calculations show that it is necessary to adjust 

this pressure to prevent the volume fraction from reaching impossibly low values. 

Shear stress tensors of the liquid phase and the solid particle phase are 

r'= eri r® =(1-e)rs. (104) 

The liquid and solid are assumed as Newtonian fluids as first approximation 

when there are no better experimental results, 

Ti = pi[Vui+(Vui)^], Ts = -h(Vu,)^]. (105) 

Body force vectors of the liquid phase and the solid particles phase under 

normal condition are 
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p%= p'g, = p'g (106) 

Momentum transfer vectors across the interface per unit volume are 

-F/_2=F/_5=/5(ui-Us)-(1-e)D(e)pi^(uz-u^)-pVe (107) 
On the right-hand side ofthis relation,the first term is drag force. The second 

term is virtual mass force, and the third term is the force caused by the gradient 

of volume fraction D[e) is the virtual mass coefficient For dispersed spherical 

particles, D{e)=0.5 

If e IS less than 08,then the drag coefficient^ is given by Ergun's equation as 

[11] 

p= +1 75(1-e)7T^|u,-u.|. (108) 
e {(f>sdpy {(t>sdp) 

If € IS greater than 0 8,the drag coeflficient m this porosity range becomes 

where Cd is related to the Reynolds number by 

Rep{l+0.15ii:e° ®®^)/24 Rcp < 1000, 
Cd={ (110) 

0.44 Rep > 1000 

In equation (124),e~^ shows the effect due to the presence ofother particles 

m the fluid and acts as a correction to the usual Stock law for free fall ofa single 

particle. 

According to the thermodynamics relation ofinternal energy and temperature, 

internal energies per unit mass ofthe liquid phase and the solid particle phase are 
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El — Cy/Tl, Eg= Cy^gTs, (111) 

with the heat capacity of phase i=l,s, and Tj the temperature 

Heat flux vectors in the liquid phase and the solid particle phase are given by 

Fourier^s law as 

q'= q® =-(1-e)keff,s'^Tg, (112) 

where all of variables are volume-averaged,therefore the thermal conductivity are 

effective m the volume-average sense, as follows 

^eff,l — kb^i/e, ^eff,s — ^6,s/(l ^)) (H^) 

where 

h,i=(1-VT^)ki, (114) 

kb^s ={^-^)[nA+{l-v)Z]ks, (115) 

2 ,B-B/A^ ,A. B-1 1,„ 
l-B/A^l-B/Af^^B^ l-B/A~2^ ^^^' ^ ^ 

B=1 25(1/€-1)^°/^ (117) 

For spherical particles, A= kglh,and 77 =726 x 10"^ 

Heat transfer across the interface ofthe liquid phase and the solid phase is 

Qi-t= —Qi-s= —h{Ti — Tg), (118) 

where h is a volume convective heat transfer coefficient [11], 
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The convective heat transfer coefficient hp can be computed by [11] 

Nu,=̂ =2+ime'/Pr^'\ (120) 
Incorporating the above relations into (a 1-3), the volume-averaged equations 

of mass, momentum and energy conservation can be expressed by 

Q 

^(epi)+V-(epjuO=5, (121) 

Q 

—[(1-e)p,]+V •[(1-e)psU,]=-5, (122) 

—(epjuj) -I- V •(epiUjUi)= 

-eVp -t- V •[epiCVui 4- Vuf)]-1- ep^g 

-p{ui-Us)+(1-e)D{e)pi-^{ui-u^)-I- Sui, (123) 

^[(1-e)psUs)+V •[(1-e)psUsUs)= 
-(1-e)Vp-(?(€)Ve+V •[(1-e)//s(Vus -f Vu^)]+(1-e)psg 

-I- ^(u,-Us)-(1-e)D{e)pi-^{ui-Us)-^Us, (124) 

—(epiCTj^iTi) -I- V • {epiCy^iTiUi)= 

V • {eKff,iVTi)-h{Ti-Ts)-f SC,,iTi, (125) 
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d
^[(1~ ^)PsCv,sTs]+V •[(1 — e)PsCv,sTiUs]= 

V •[(1 — ekgff^sVTs]+h{Ti — Tg) — SCy^gTs (126) 

In the thermal energy equation, the pressure terms, the dissipation function 

terms and the terms of Joule's heating and thermal radiation usually can be 

neglected, as we have done 

There are ten nonlinear coupled partial differential equationsfor ten dependent 

variables e, vi, wi, Ug, Vg, Wg, Ti, Tg, p. Therefore, the set of equations with 

appropriate initial and boundary conditions is closed 
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Chapter 6 

Results and Discussion 

Test cases, designed to investigate the accuracy and limitations of algorithm 

implementations, can be grouped into three classes of problem [23]. verification, 

benchmarking, and validation. Verification involves the comparison of computa 

tional to analytical results for problems m which a"closed form" solution exists 

Benchmarking is the comparison of results to those produced by an independent 

computational model,i e., "code to code" comparisons. Code validation requires 

the comparison ofcomputer simulations to experimental data. The results oftest 

cases, selected from first two categories, are presented in this chapter with the in 

tent ofexploring the accuracy,convergence, and stability ofour numerical method 

we developed in previous chapters. 

§6.1 Two-Dimensional Developing Flows in a Duct 

Two dimensional, steady state, isothermal, laminar flow in a straight duct is 

a widely used verification case for incompressible Navier-Stokes solvers. The flow 

IS linear so that an exact solution can be obtained The exact solution is archived 

in Schlichting's book [18] 

In this case, a uniform mesh is employed, with a domain 

={(x,y) I 0 < a; < 30, 0 < y < 1} 

This two-dimensional domain is partitioned uniformly with Ax = 01 and 

Ay= 0.025 For moderate Reynolds number flows, this mesh is fine enough to 

resolve the velocity gradient m y direction 

In this test case, we meet three kinds of boundaries, i e, inflow outflow and 

solid wall The boundary conditions are specified as follows for these boundaries 
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(a) at the inflow boundary = {(x,y)|a; =0 }, we have the Dirichlet 

boundary condition 

u= 1, u=0 on 

(b)at the outflow boundary 89.2={(x,y)|a;=30}, we have the Neumann 

boundary condition 
du dv ^ _
■5- = 0, ^ = 0 oil ^^2 
dx dx 

(c) at the solid wall boundary 89^ = { (x, y) | y = 0 or y = 1 } we have the 
Dirichlet boundary condition 

u = u = 0 on 89z. 

The calculation starts with a uniform initial field with u = l and u = 0 for Re 

=100. We integrate the equations m time and solution goes to steady state, 1 e 

8u/8t —)• 0, as time t —> 00. In practical calculation, we assume that the steady 
state IS reached and the calculation is terminated when 

^n+l _ n 
Max\ " " I < 10-® 

In each time step, the Poisson equation is iterated for 500 cycles, which makes 

the discrete divergence small enough and discrete continuity equation satisfied 

When less iterations were performed, we observed the increasing mass loss in the 

result 

Fig.l shows our computation result of velocity profile for a flow at Re = 50. 

It IS a parabola and the wall boundary layer is clearly presented 

§6.2 Two-Dimensional Driven Cavity Flows 
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Figure 1: Velocity profile ofa developed duct flow 

This laminar two-dimensional driven cavity flow problem was benchmarked by 

Ghia et al [8]. 

The rectangular driven cavity is 

f2={(x,y) I 0 < X < 1, 0< y < 1 }. 

It is partitioned uniformly with Ax= Ay=0.03125 for flows with relatively 

low Reynolds number. In the calculations for Reynolds above 3200, the mesh is 

refined with Ax=Ay=0.0078125. 

Flow is driven by the lower wall. This is characterized by the boundary con 

ditions. On the boundary 5f2i ={(a:,y)|y=0}, we specify 

u=l, u=0 on 

At the rest of the boundary dn,2= dO,— dCli, we specify 

u=v =0 on 80,0 



VNWJX 

o 

Figure 2: Velocity vector and streamlines ofthe driven cavity flow at Re=400 

At the very beginning of the calculation, the velocity field is initialized as 

«= t;=0, inf2x{t=0} 

There are several standing vortices exist in the cavity which are highly depend 

on Reynolds number. At very low Reynolds number,the flow is almostsymmetric 

with respect to the center line and two corner eddies are visible. As Reynolds 

number increases, the center of the mam vortex moves towards the downstream 

corner(Fig. 2for Re=400,Fig. 3for Re=1000,Fig 4for Re=3200,and Fig. 

5for Re=5000)before it returns toward the center at higher Reynolds numbers 

At Reynolds number=5000,a tertiary corner eddy is visible m Fig. 6, which 

shows both the velocity vector and streamline contour From the velocity vectors, 

asmallereddy can also be observed m the corner,which is too weak to be displayed 

clearly by the streamlines 

For more higher Reynolds numbers, the nonlinear convective terms are com 

pletely dominate Steady state solutions do not exist and periodic solutions are 
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Figure 3: Velocity vector and streamlines ofthe driven cavity flow at Re=1000 

£ 

m 

Figure 4: Velocity vector and streamlines ofthe driven cavity flow at Re=3200 



m 

Figure 5: Velocity vector and streamlines of the driven cavity flow at Re=5000 
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Figure 6" The tertiary corner eddy in the driven cavity flow at Re=5000 
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expected. As Reynolds number increases further, transition from laminar flow to 

turbulent flow will happen. 

§6.3 Two-Dimensional Thermo Driven Cavity Flows 

Buoyancy-driven flow,resulting from natural convection m an enclosed cavity, 

is another famous benchmark for incompressible Navier-Stokes problems This 

problem also has many practical applications including nuclear reactor insulation, 

energy conservation, ventilation of rooms,solar energy collection, etc 

The problem, commonly referred to as the "double-glazing" problem, is that 

of two-dimensional flow of an incompressible fluid of Prandtl number 071 in an 

upright square cavity of side 1 The buoyancy body force is modeled by the 

Boussmesq approximation The upper and lower horizonal walls are adiabatic, 

and the vertical side-walls are set at the constant uniform temperature Thot and 

Tcoid- The velocity boundary conditions is no-slip on the four walls 

In the present study,the energy equation isincorporated and calculated m each 

time step after the solution of the Navier-Stokes equations. The energy equation 

in non-dimensional form can be written as 

„ 1 ^ Gr^ ^+u.Vu=-Vp+-Au+^Tg. (127) 

V u=0, (128) 

where g is the gravity vector and$is the dissipation function as 
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(130)dv du 2 , fdw dv 2 , (du dw ̂  

The non-dimensional parametersRe, Pr, Ec, Gr are known as Reynolds num 

ber, Prandtl number, Eckert number and Grashof number respectively. Rayleigh 

number is defined as Ra=FrGr 

In this case, the computational domain is the same as that in case 2 

The velocity boundary is condition is 

u=0 on dO., 

For the temperature,we need tospecify both Dinchlet and Neumann boundary 

conditions as follows 

On ={(x,y) I a;=0}we have 

T=1 on 

On 5^2={(x,y) I ai =1}we have 

T=0 on 80,2 

On dOs — 80— U 8O2) we have 

9T ^ 
=0 on 80^. 

8n 

The temperature contour for Rayleigh number of 100 are shown in Fig 7. The 

slight stratification the temperature field is viewed Fig 8 is the velocity vector 

and streamline contour, m which the primary vortex is clearly presented. 

This result is compared to that reported m [23] Calculations for higher 

Rayleigh number cases will be carried out m future studies 
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Figure 7 Temperature contour ofthe thermo driven cavity flow at Ra=100 

Figure 8 Velocity vector and streamlines ofthe thermo driven cavity flow at Ra=100 
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§6.4 Two-Dimensional Melting ofIce in Water 

In this case, we simulate the melting of ice m water, a hquid-sohd two-phase 

flow,by coupling the model reported in chapter 5 with the incompressible Navier-

Stokes solver 

The computational domain is defined as 

fl={(a;,?/)|0<a:<l, 0<y<l} 

The boundary conditions for the liquid phase in dimensionaless variables are 

dT 
ui=vi=0 and —=0 on y=0 and y= 1, 

on 

ui=1, vi =0, Ti =1.0733 on a;=0 

At the outlet boundary, we use extrapolation technique to approximate the 

normal derivatives, 

dTi _ dui _dvi 
dn dn dn 

For the solid phase, we have the following boundary conditions. 

dTg
Us= Vs =0 and =0 on dO, 

on 

We initialize the flow fleld using 

ui=1, u;=0, Ti= 1 0733, Pi=1 0, 

Us=0, tis =0, Ts=09817, p,=0917, 

e =074 

Some flow field parameters are in the following list 
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Figure 9. Velocity vector ofa two-phase flow, melting of ice in water 

Latent heat for fusion his 3.35 X 

Reynolds number Rtp epi|U(-Us|o?p///; 

Prandtl number Pr 701. 

Nusselt number Nup hpdpjki 

Paritcle diameter dp 0001m. 

Sphericity (j) 1 

Thermal Conductivity k ki =0.617W/m K, ks=0mW/m K 

Specific Heat Cy Cyi=mAJ/kg •K Cys=20A0J/kg •K 

Viscosity /x /i;=0 OOISN" s/vn?, Us=0.02N •s/m^ 

Fig 9 IS the velocity vector plot The counterrotating vortices can be seen 

In the present study, all the test cases are solved in nondimensional form 

without considering the real physics. In our future studies, experimental data[11] 

will be adopted to validate the model 

§6.5 Three-Dimensional Driven Cavity Flows 
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In this case, we extend our calculation to three-dimensional problems by adding 

a spanwise direction to the two-dimensional case 2. Thus the computational 

domain is 

^ {(2;,y,-2) I 0 < x < 1, 0 < y < 1, 0 <z< 1 }. 

It IS partitioned uniformly with Ax=Ai/= =003125 

The boundary condition is similar to that in case 2. 

On the boundary ={(x,y,z)|x=0},we specify 

n=0, x =1, w =0 on 

At the rest of the boundary 30,2=30 — we specify 

u=v=w=Q on 3O2 

At the very beginning of the calculation, the velocity field is initialized as 

u= V =w= inf2x{t=0} 

Since low Reynolds number fiows are relatively easier to obtain, we first cal 

culate a low Reynolds number solution, which is then used as initial field for 

calculation of a high Reynolds number flow In fact, the higher Reynolds number 

solution can be viewed as a perturbation of the lower Reynolds number solution 

and only a small amount ofcomputation is needed. Thus by successively increas 

ing the Reynolds number,the computation is accelerated significantly to reach a 

desired high Reynolds number solution 

One characteristic of three dimensional driven cavity fiows is the existence 

of Taylor-Gortler-type vortices, which are formed as a result of the streamline 

curvature owing to the primary vortex. The observation ofthis three-dimensional 

structure by numerical simulation is reported m [24] 
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Figure 10: Velocity vector plot of the 3D driven cavity flow at z=0.5 plane 

Fig. 10 show shows the primary vortex for Reynolds number of 1000 at the 

plane z=0.5, which looks like the two-dimensional solution. Fig. 11 and Fig. 12 

are the velocity vector plot at the planes y=0.5 and x=0.5 respectively, which 

are perpendicular to the primary vortex plane. These figure show the existence 

of a counter-rotating vortices. 
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Figure 11- Velocity vector plot of the 3D driven cavity flow at y=0 5 plane 
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Figure 12 Velocity vector plot ofthe 3D driven cavity flow at x=0.5 plane 
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