Probabilistic fatigue crack growth analysis using response surface methodology

Glenn Chris Cox

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

Cox, Glenn Chris, "Probabilistic fatigue crack growth analysis using response surface methodology. " Master's Thesis, University of Tennessee, 2000.
https://trace.tennessee.edu/utk_gradthes/9327

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:
I am submitting herewith a thesis written by Glenn Chris Cox entitled "Probabilistic fatigue crack growth analysis using response surface methodology." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Civil Engineering.

Karen C. Chou, Major Professor

We have read this thesis and recommend its acceptance:
Richard M. Bennett, Edwin G. Burdette
Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School
(Original signatures are on file with official student records.)

To the Graduate Council

I am submitting herewith a thesis written by Glenn Chris Cox entitled "Probabilistic Fatigue Crack Growth Analysis Using Response Surface Methodology " I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Civil Engineering

Karen C. Phon
Dr Karen C Chou, Major Professor

We have read this thesis and recommend its acceptance

Edwin Es. Burdeute

Accepted for the Council

Associate Vice Chancellor and Dean of The Graduate Stol

PROBABILISTIC FATIGUE CRACK GROWTH ANALYSIS USING RESPONSE SURFACE METHODOLOGY

A Thesis
Presented for the Master of Science
Degree
The University of Tennessee, Knoxville

Glenn Chris Cox
December 2000

DEDICATION

I dedicate this thesis to my parents, Gordon and Janıe, for the love and support they have always given me and for instilling in me the qualities that will contınue to make me successful.

ACKNOWLEDGMENTS

All honor and glory to my Lord and Savior Jesus Christ for His everlasting love and guidance in my life.

During the process of obtaining my graduate degree there have been many people who have given support and assistance. I am grateful to the members of my thesis committee. Dr. Karen C. Chou, Dr. Richard M. Bennett, and Dr. Edwin G. Burdette. In particular, I would like to thank Dr. Chou, who served as my major professor, for the opportunity to work as a research assistant on this project. I would also like to thank her for all the activities she has assisted me with while a student at the University of Tennessee, Knoxville.

I would like to express my appreciation to The United States Navy who provided the funding for this project

I would also like to thank Allison Lockwood for her excellent assistance and encouragement in completing this project.

Lastly, I would like to thank my parents, Gordon and Janie, my brother, John, and fiancée, Ashley, as well as the rest of my family, for the love and encouragement they have given me during the process of obtaining my undergraduate and graduate degrees.

Abstract

All aircraft operated by the United States Navy were designed to operate for a predetermined number of flight hours defined as the flight life expectancy (FLE). An aircraft is due to retire from service once the FLE is reached. Due to the end of the cold war and budget priority, it is anticipated that fleets of United States Naval aircraft will be used beyond their designed FLE. A study was performed for the US Navy to address the aging aircraft issue by examining crack growth at the logeron of the aircraft. The objective of the study was to develop a probability model for the number of load cycles (N) needed for a crack to grow from its initiation size to critical size Fatigue crack growth due to constant stress intensity as well as random stress block was examined. The Parıs equation was used to compute the fatigue crack growths. Response surface methodology was used to approximate the number of load cycles with respect to the geometric and material properties and stress intensity level. The most workable relationshıp was a linear function with all the input parameters and number of load cycles in their natural logarithmic base. The statistical analyses of the study showed that the mean number of load cycles (N) approximated from the response surface functions predicted the mean pseudo population load cycles at a 95 percent confidence level. The study also showed that the probability density function of the number of load cycles from the response surface functions, Gaussian distribution, fit the histogram of the pseudo population well.

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1
2. ANALYSIS PROCEDURES 6
2.1 Fatıgue Crack Growth Model 6
2.2 Response Surface Methodology 9
2.3 Pseudo Population. 11
2.4 Constant Stress and Random Stress Block Analyses 12
2.5 Statistical Analyses and Verifications 13
2.5.1 Statistical Moments of Response Surface Functions 13
2.5.2 Verification of the Response Surface Function Statistical Moments 15
2.5.3 Distribution of the Response Surface Functions and Pseudo Populations 16
3. DISCUSSION OF ANALYSIS RESULTS 18
3.1 Constant Stress Analysis. 18
3.1.1 Response Surface Functions and Pseudo Population 18
3.1.2 Verification of the Response Surface Function Statistical Moments 21
3.1.3 Statistical Analysis of the Pseudo Population 24
3 1.4 Comparison of the Response Surface Functions with the Pseudo Population 25
3.1.5 Optimal Sample Size and Range of Input Parameters 28
3.2 Random Stress Block Analysis 32
3.2.1 Response Surface Functions and Pseudo Population 32
3.2.2 Verification of the Response Surface Function Statistical Moments 38
3.2.3 Statistical Analysis of the Pseudo Population 47
3.2.4 Comparison of the Response Surface Functions with the Pseudo Population 47
3.2.5 Optımal Sample Size and Range of Input Parameters 49
4. CONCLUSIONS AND RECOMMENDATIONS 54
REFERENCES 58
VITA 61

LIST OF TABLES

Table Page
2.1 Critical values of $D_{\text {cr }}$ in the Kolmogorov-Smirnov test. 17
3.1 Statistical data for input parameters 18
3.2 Sample sizes, input ranges, and coefficients from regression analysis for constant stress analysis 19
3.3 Summary of the sets of input values for crack growth computations 21
3.4 Means and standard deviations from point estimate method and results of the 95% confidence interval test for constant stress analysis. 22
3.5 Means and standard deviations from Taylor series expansion and results of the 95% confidence interval test for constant stress analysis. 23
3.6 Results of the Kolmogorov-Smirnov test for constant stress analysis. 26
3.7 Sample sizes, input ranges, and coefficients from regression analysis for set 1 of random stress block analysis 33
3.8 Sample sizes, input ranges, and coefficients from regression analysis for set 2 of random stress block analysis 34
3.9 Sample sizes, input ranges, and coefficients from regression analysis for set 3 of random stress block analysis 35
3.10 Sample sizes, input ranges, and coefficients from regression analysis for set 4 of random stress block analysis 36
3.11 Means and standard deviations from point estimate method and results of the 95% confidence interval test for set 1 of random stress block analysis 39
3.12 Means and standard deviations from point estimate method and results of the 95% confidence interval test for set 2 of random stress block analysis 40
Table Page
3.13 Means and standard deviations from point estimate method and results of the 95% confidence interval test for set 3 of random stress block analysis 41
3.14 Means and standard deviations from point estimate method and results of the 95\% confidence interval test for set 4 of random stress block analysis 42
3.15 Means and standard deviations from Taylor series expansion and results of the 95\% confidence interval test for set 1 of random stress block analysis 43
3.16 Means and standard deviations from Taylor series expansion and results of the 95\% confidence interval test for set 2 of random stress block analysis 44
3.17 Means and standard deviations from Taylor series expansion and results of the 95\% confidence interval test for set 3 of random stress block analysis. 45
3.18 Means and standard deviations from Tayior series expansion and results of the 95% confidence interval test for set 4 of random stress block analysis 46
3.19 Results of the Kolmogorov-Smirnov test for all 4 sets of random stress block analyses. 48

LIST OF FIGURES

Figure Page
2.1 Typical crack growth curves 9
3.1 Typical comparison between the proposed probability model from a response surface function and histogram from the pseudo population 27
3.2 Typical comparison between a response surface function and the pseudo population cumulative distributions 27
3.3 Comparison of fraction of $D_{\text {cr }}$ and maximum input range for a pseudo population size of 10,000 29
3.4 Comparison of fraction of $D_{\text {cr }}$ and maximum input range for a pseudo population size of 50,000 30
35 Comparison of fraction of $D_{\text {cr }}$ and maximum input range for a pseudo population size of 100,000 31
3.6 Comparison of fraction of $D_{\text {cr }}$ and maximum input range for a pseudo population size of 10,000 (set 1). 50
3.7 Comparison of fraction of $D_{\text {cr }}$ and maxımum input range for a pseudo population size of 10,000 (set 2). 51
38 Comparison of fraction of $D_{\text {cr }}$ and maxımum input range for a pseudo population size of 10,000 (set 3). 52
3.9 Comparison of fraction of $\mathrm{D}_{\text {cr }}$ and maximum input range for a pseudo population size of 10,000 (set 4). 53

CHAPTER 1

INTRODUCTION

All aircraft operated by the United States Navy were designed to operate for a predetermined number of flight hours defined as flight life expectancy (FLE). An aircraft is due to retre from service once the FLE is reached. Since World War II, the FLE criterion has served the fleets of aircraft in the US Navy well. Due to the end of the cold war and budget priority, it is anticipated that fleets of arrcraft will be used beyond their designed FLE. This undoubtedly raised the question of how safe an aircraft would be for Navel service beyond its designed FLE.

The US Navy has defined the FLE based on an undefined probability that a crack on the frame of an aircraft will reach a critical size (crack size is defined as the length of the crack) beyond FLE However, once a crack, smaller than the critical size, is detected pror to its FLE, the component would be repaired or replaced and the aircraft would be allowed to continue to fly until it reaches the FLE. The University of Tennessee has been contracted by the Navy Aır System to perform an assessment study on aging aircraft.

A realistic analysis of any structural system should consider the randomness inherent in the loads and resistance. For fatigue analysis, a stochastic crack growth model would be desired. Maymon (1998) gave three major reasons why stochastic crack growth models are preferred:

1) The geometry, dimensions, and material properties may differ slightly between specimens. Thus, the whole structure is not deterministic.
2) The external loading in practical engineering cases is usually random.
3) The structures or specimens properties are random even under wellcontrolled production conditions.

Maymon further stated that stochastic models can be incorporated in the calculation of the probability of structural failure due to crack propagation and that the engineering community should study and adopt such methods in practıcal design.

A 1983 NASA funded study (Wirsching, 1983) provided specific recommendations on how designers should model fatigue strength. The paper presented several engineering models used to describe fatigue behavior, one being the use of statistical models to analyze number of load cycles to failure data. The author stated that in order to make design decisions on the basis of a set of observations of a design factor, it was necessary to describe the distribution of that factor. Therefore, statistical models are usually employed. The author later developed a statistical model in another NASA funded study (Wu and Wirsching, 1983) The objective of that study was to determine the probability of having a certain crack size (or fallure) given a service life of N cycles. While this study provided useful information at the service life, no information was known beyond the service life or the knowledge of how long a service life should be for a given crack size.

This type of study is typical of those focused in the area of crack size and load cycles. Despite the extensive studies performed by the researchers, their results cannot be directly applied to the aging aircraft with which the U.S. Navy is concerned. As stated earlier, Wu and Wirsching's study gave no knowledge of how long a service life should be for a given crack size. Furthermore, due to the time dependent relationship between crack size and load cycles, one cannot simply invert the relationship developed by Wu and Wirsching to yield the number of load cycles given crack size.

A 1998 internal report (Chou, 1998) and presentation (Hoffman, 1998) to the Structural Division at the Navy Air System showed that to assess aging aircraft was to evaluate the total life of the aircraft. The focus was narrowed to fatigue around boltholes at the longeron of an aircraft. A preliminary total life reliability model was developed (Chou, 1998). The total life was defined as the duration for crack initiation combined with the duration for crack growth (crack grows from initiation to critical size). In order to use the total life model, the probability models for the number of load cycles needed for crack intiation and for crack growth are required. The focus of this study is to develop a probability model for the number of load cycles for a crack to grow from initiation to critical size.

To begin the process of developing the probability model, a crack growth model must be established. The Paris equation, which was' developed by Paris and Erdogan (Bannantine, et al., 1990) in the early 1960's, is still the most widely
used method used to model the crack growth rate. This equation was used in the study to determine the crack growth curves. However, due to the mathematıcal complexity in determining the crack growth curves, the probability model for the number of load cycles was developed numerically.

Researchers have demonstrated that response surface method is a viable tool in developing a relationship between a response and multiple parameters input (Myers et al., 1989, Bucher, 1990, Draper and Lin, 1990, Rajashekhar and Ellingwood, 1993, and Liu and Moses, 1994). Furthermore, the response surface can be determined using only a limited number of data points. Once a response surface is determined (it is usually represented by a polynomal function), basic probability can be applied to derive the probability model for the response value.

In this study, the response surface was determined using the number of load cycles computed by the Paris equation. An ınıtiation crack size of 0.01 inches and a critical size of 0.3 inches were used in this study. These values were provided by the engineers at the Navy Air System. All material properties were assumed to be constant throughout the entire crack growth.

In Chapter 2, the analysis procedures used to develop the probability model are explained. This chapter presents the Paris equation for computing the fatigue crack growth model. It also discusses the response surface methodology and its application to the crack growth problem. Finally, it explains the statıstical analyses used to verify and check the proposed probability model.

In Chapter 3, the results from analysis procedures outlined in Chapter 2 are presented. These include the results from all statıstical testıng performed, including the statistical moments and probability distribution. Finally, Chapter 4 presents some conclusions and recommendations.

CHAPTER 2

ANALYSIS PROCEDURES

2.1 FATIGUE CRACK GROWTH MODEL

The crack growth model used in this study was based on the Paris equation. The Paris equation (Bannantıne et al., 1990) defines the fatigue crack growth rate as

$$
\begin{equation*}
\frac{d a}{d N}=c(\Delta k)^{m} \tag{2.1}
\end{equation*}
$$

where, $\mathrm{a}=$ crack size, $\mathrm{N}=$ number of load cycles, $\mathrm{c}=$ geometric parameter, $\mathrm{m}=$ material constant, and $\Delta k=$ stress intensity factor which is defined as

$$
\begin{equation*}
\Delta k=\beta(\Delta \sigma) \sqrt{\pi a} \tag{2.2}
\end{equation*}
$$

in which $\beta=$ correction factor and $\Delta \sigma=$ stress intensity.
The Paris equation can be applied to any type or shape of metal, as long as one uses the approprate geometric and material coefficients. This equation also has no regard for crack sizes in which it is not applicable. Theoretically, one could solve for the crack growth rate of a crack that is several feet in length However, good engıneering judgment would suggest that failure has probably long since occurred. Therefore, like many engineering equations, the user must be aware of where the formula is applicable.

The Paris equation provides one with the crack growth rate However, to determıne the number of cycles needed for this study, the Paris equation given
by Equation (2.1) needs to be integrated so that the number of cycles can be computed if the crack size and input parameters are known. If the equation is examined closely at its simplest form when the input parameters are constants, the crack size and number of cycles are the only changing variables. Equation (2 1) can be simplified to the following:
$\frac{d a}{d N}=\operatorname{constant}(\sqrt{a})^{m}$
However, even in this simple form, where m is not an even integer, the equation cannot be integrated to a closed form expression. Therefore, numerical integration has to be used instead.

Since the objective here is to examine the variation in the number of load cycles for a given crack size, the difference between the crack initiation size and critical size was divided into 100 equal intervals. The number of load cycles ΔN needed to achieve each increment of crack length Δ a was computed as:
$\frac{\Delta a}{\Delta N_{J}}=c\left(\Delta k_{J}\right)^{m}=c\left(\beta_{J}(\Delta \sigma) \sqrt{\pi a_{J}}\right)^{m}$
Rearranging Equation 24 to solve for $\Delta \mathrm{N}$ yields:

$$
\begin{equation*}
\Delta N_{J}=\frac{\Delta a}{c\left(\Delta k_{J}\right)^{m}}=\frac{\Delta a}{c\left(\beta_{J}(\Delta \sigma) \sqrt{\pi a_{J}}\right)^{m}} \tag{2.5}
\end{equation*}
$$

where
$\Delta a=\frac{a_{f}-a_{l}}{100}$
and $\beta_{\mathrm{\jmath}}$ and a_{j} are, respectively, the correction factor and crack size at the $\mathrm{j}^{\text {th }}$ increment and a_{f} and a_{1} are, respectively, the critical (0.3 inches) and the initiation (0 01 inches) crack sizes

The total number of load cycles needed for the crack to grow from its initiation size to critical size was simply computed as

$$
\begin{equation*}
N=\sum_{J=1}^{100}(\Delta N)_{J} \tag{2.7}
\end{equation*}
$$

Typical crack growth curves, developed from the Paris equation, can be seen in Figure 2.1. The crack growth curves presented are for the crack sizes ranging from 0.01 inches to 0.3 inches considered in this study.

2.2 RESPONSE SURFACE METHODOLOGY

Response surface method (RSM) uses a limited amount of data to approximate a system in which a large number of variables influence the response of the system. The history of RSM can be found in a report written by Myers and his colleagues (1989). The use of "response curves" has been dated back into the 1930's, but it wasn't introduced formally until an artıcle (Box and Wilson, 1951) about the notion of composite designs was published in 1951. This article spurred the use of RSM as a powerful tool in design and data analysis.

Figure 2.1. Typical crack growth curves

Rajashekhar and Ellingwood (1993) gave a concise description of how to apply RSM to engineering problems, and it is summarized here. Suppose a response variable Y depends on the input parameters $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$, and the design variables $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ are obtaıned experımentally or sımulated a sufficient number of times to define the response surface. Each experiment or simulation can be represented by a point with coordinates $x_{11}, x_{2 j}, x_{3!}, \ldots, x_{n!}$ in an $(n+1)$-dımensional space. At each point a response value of y_{j} is determined. Usıng the input parameters $\left(x_{11}, x_{2 j}, x_{3 j}, \ldots, x_{n j}\right)$ and corresponding output $\left(y_{j}\right)$, one
can establish a relationship between them. This relationship is referred to as the response surface (RS) function.

In most engineering systems, the relationship between the input parameters and the output value is very complex and almost impossible to derive mathematically. Response surface method offers a convenient approximation to develop such a relationship because only a limited number of input response data points are needed. Furthermore, these points can be obtained through experiments, engineering analyses (such as finte element method), or through sımulation.

The study on hand fell naturally to the response surface method. The crack growth rate was well defined. However, the relationship between the number of load cycles and the input parameters could not be computed via a closed form expression Therefore, RSM was a desirable choice to approximate the relationship for the purposes of establishing a probability model.

To develop the response surface functions, the response variable was the number of load cycles, N, which was a function of the input parameters (c, m, and $\Delta \sigma$). Multiple sets of input parameters were then defined and the corresponding output N for each set was solved using Equations (2.5-2.7). The input variables were defined rather than simulated, to ensure that a wide spectrum of input variables were used. With input parameters (c, m, and $\Delta \sigma$) and output (N) known, a relationship could be defined between the two using a regression analysis. Since N is a function of 3 variables, a typical linear
regression analysis (the simplest regression relationship) yields 4 coefficients. Hence, a minimum of 5 sets of ($c, m, \Delta \sigma$, and N) values are required for the regression analysis. MATLAB ${ }^{\circledR}$ statistıcal toolbox (by Mathwork, Inc.) was used to perform the regression analysis using the least-squared-error criteria. Both linear and nonlinear regression analyses were attempted to develop a response surface function for N as well as for natural \log of N, InN. The most workable regression function was a linear regression with all the variables transformed to the natural logarithmic values. Hence, the basic RS function became
$\ln (N)=b_{1}{ }^{*} \ln (c)+b_{2}{ }^{*} \ln (m)+b_{3}{ }^{*} \ln (\Delta \sigma)+b_{4}$
where $b_{1}=$ coefficients obtained from the regression analysis.

2.3 PSEUDO POPULATION

The pseudo population represents the actual population of the natural log of $\mathrm{N}, \ln \mathrm{N}$. In theory, the pseudo population takes into account all possible values and combinations of c, m, and $\Delta \sigma$ and record the corresponding output N for each unique set. The pseudo population was used as the basis to check the validity of the response surface (RS) functions.

The pseudo population was created by randomly generating several thousand sets of the input variables (c, m, and $\Delta \sigma$). Equations (2.5-2.7) were then applied to determine the number of cycles N for the crack to grow from its initiation size to critical size. This pseudo population was generated in lieu of the
actual flight data because the sample size of the actual data was small and they were costly to produce.

2.4 CONSTANT AND RANDOM STRESS BLOCK ANALYSES

Two different types of stress intensity were analyzed, constant stress and random stress block. In both cases, the geometric parameter (c) and material constant (m) were assumed to be constant throughout the crack growth life. The constant stress analysis assumed that the stress intensity ($\Delta \sigma$) remained constant for a single crack growth curve, while the random stress block analysis assumed the stress intensity fluctuated from interval to interval throughout a single crack growth curve. The random stress block analysis best represents the actual loading to which an aircraft frame would be subjected, but the idea of constant stress intensity simplified the calculations and represents a deterministic crack growth.

Both analyses were easy to accomplish because the numerical integration of the Paris law required that the difference between the initiation and critical crack sizes be broken into several intervals to calculate the crack growth curves. The constant stress analysis was accomplished by holding the stress constant for each interval. Therefore, each curve was represented by a single set of c, m, $\Delta \sigma$, and N. To accomplish the random stress block analysis a stress value was randomly generated for each interval. Therefore, each curve was represented by a single set of (c, m, and N) along with $100 \Delta \sigma$ values. However, the mean of the

100 stress values was used as $\Delta \sigma$ in each set, thus creating a single set of (c, m, $\Delta \sigma$, and $N)$. The reason for using the mean was that the $\Delta \sigma$ values were centralized around that number.

2.5 STATISTICAL ANALYSIS AND VERIFICATIONS

2.5.1 Statistical Moments of Response Surface Functions

Any probability model based on experimental data requires statistical verifications. The statistical moments, such as the mean and standard deviation, were determined based on output (lnN) of the RS functions from both constant and random stress block analyses. Point estımate method and Taylor series expansion were used to calculate the mean and standard deviation of $\ln N$ for each RS function.

The point estimate method (Rosenbleuth, 1975, 1981; Harr, 1987) is simple and requires no continuity on the RS function. Hence, information on the derivatives of the RS function is not needed. The method requires eight points that represent the following combinations of c, m, and $\Delta \sigma:\left(\bar{c}+s_{c}, \bar{m}+s_{m}\right.$, $\left.\overline{\Delta \sigma}+\mathrm{s}_{\Delta \sigma}\right), \quad\left(\bar{c}+\mathrm{s}_{\mathrm{c}}, \quad \bar{m}+\mathrm{s}_{\mathrm{m}}, \quad \overline{\Delta \sigma}-\mathrm{s}_{\Delta \sigma}\right), \quad\left(\bar{c}+\mathrm{s}_{\mathrm{c}}, \quad \bar{m}-\mathrm{s}_{\mathrm{m}}, \quad \overline{\Delta \sigma}+\mathrm{s}_{\Delta \sigma}\right), \quad\left(\bar{c}-\mathrm{s}_{\mathrm{c}}, \quad \bar{m}+\mathrm{s}_{\mathrm{m}}\right.$, $\left.\overline{\Delta \sigma}+\mathrm{s}_{\Delta \sigma}\right),\left(\bar{c}-\mathrm{s}_{\mathrm{c}}, \bar{m}-\mathrm{s}_{\mathrm{m}}, \overline{\Delta \sigma}+\mathrm{s}_{\Delta \sigma}\right),\left(\bar{c}-\mathrm{s}_{\mathrm{c}}, \bar{m}+\mathrm{s}_{\mathrm{m}}, \overline{\Delta \sigma}-\mathrm{s}_{\Delta \sigma}\right),\left(\bar{c}+\mathrm{s}_{\mathrm{c}}, \bar{m}-\mathrm{s}_{\mathrm{m}}, \overline{\Delta \sigma}-\mathrm{s}_{\Delta \sigma}\right)$, $\left(\bar{c}-\mathrm{s}_{\mathrm{c}}, \bar{m}-\mathrm{s}_{\mathrm{m}}, \overline{\Delta \sigma}-\mathrm{s}_{\Delta \sigma}\right)$; in which \bar{c}, \bar{m}, and $\overline{\Delta \sigma}$ represent the mean of c, m and $\Delta \sigma$, respectively, and s_{j} represents the standard deviation of parameter j. Each set of (c, m, and $\Delta \sigma$) was substituted into its respective $R S$ function (Equation
(2.8)) to solve for the $\ln N$ values, n_{1}. The mean and standard deviation of $\ln N$ became:
$E[\ln N]=\frac{1}{8} \sum_{l=1}^{8} n_{l}$
$s_{\ln N}^{2}=\frac{1}{8} \sum_{\imath=1}^{8} n_{l}^{2}-(E[\ln N])^{2}$
The other method used to estimate the mean and standard deviation of InN from the RS functions was Taylor series expansion. Taylor series expansion requires that the RS functions be continuous at least up to the second derivative and it is more accurate than the point estimate method. Second order Taylor series expansion was used to compute the mean and first order Taylor series expansion was used for the variance (Benjamin and Cornell, 1970). Based on the assumption of mutual independence among the parameters, the resulting mean and standard deviation were calculated as:

$$
\begin{align*}
& E[\ln N]=b_{1} \ln (E[c])+b_{2} \ln (E[m])+b_{3} \ln (E[\Delta \sigma])+b_{4}-\frac{1}{2}\left[b_{1} \zeta_{c}^{2}+b_{2} \zeta_{m}^{2}+b_{3} \zeta_{\Delta \sigma}^{2}\right] \tag{2.11}\\
& s_{\ln N}^{2}=b_{1}^{2} \zeta_{c}^{2}+b_{2}^{2} \zeta_{m}^{2}+b_{3}^{2} \zeta_{\Delta \sigma}^{2} \tag{2.12}
\end{align*}
$$

where $\zeta_{*}^{2}=\ln \left\lfloor V_{*}^{2}+1\right\rfloor$ and $V_{*}^{2}=\frac{s_{*}^{2}}{E[*]^{2}}$.
When $V_{*}^{2} \ll 1$, then $\zeta_{*}^{2} \approx V_{*}^{2}$. Therefore, ζ_{*}^{2} in Equations (2.11) and (2.12) can be replaced by V_{*}^{2}.

2.5.2 Verification of the Response Surface Function Statistical Moments

The means and standard deviations calculated from the two above methods were used to establish a confidence interval to compare with the mean of $\ln \mathrm{N}$ from the pseudo population. If the pseudo population mean is within the range of the sample mean (based on the RS functions), then one can conclude that the sample mean of $\ln N$ is representative of the "population" mean within a certain confidence level. - A ninety-five percent confidence interval of the population mean for each RS function was chosen. The lower and upper limit of the confidence interval were calculated as
$\bar{x}-k_{\alpha / 2} \frac{s}{\sqrt{n}}$ and $\bar{x}+k_{\alpha / 2} \frac{s}{\sqrt{n}}$
where $\bar{x}=$ mean of $\ln N, s=$ standard deviation of $\ln N, n=$ sample size, $\alpha=0.05$ for a 95% confidence interval, and $k_{\alpha / 2}$ is determined from a normal probability plot and is defined as

$$
\begin{equation*}
k_{\alpha / 2}=\Phi^{-1}\left(1-\frac{\alpha}{2}\right) \tag{2.14}
\end{equation*}
$$

in which $\Phi^{-1}=$ inverse cumulative distribution function of a standardized normal variant and $k_{\alpha / 2}=1.96$ for $\alpha=0.05$.

2.5.3 Distribution of Response Surface Functions and Pseudo Population

 Since the natural logarithm of the number of load cycles InN was lineraly related to the input parameters in the natural logarithm base, the probabilitymodel of lnN can be approximated by Gaussian distribution (Benjamin and Cornell, 1970). Therefore, it would be of interest to examine if the pseudo population possessed two fundamental characteristics of Gaussian distribution. These characteristics are the coefficient of skewness being zero and the coefficient of Kurtosis being three. If the coefficient of skewness of the pseudo population is zero and the coefficient of Kurtosis is three, then the probability model based on the RS function would have a higher probability to be a good fit to the pseudo population. The goodness of fit test, as presented subsequently, was a better method for assessing the quality of the probability model developed based on the limited data. However, the coefficients of skewness and Kurtosis provide a quick check for the case of Gaussian distribution. The coefficient of skewness was calculated as

$$
\begin{equation*}
\frac{1}{n}\left[\Sigma\left(x_{i}-\bar{x}\right)^{3} / s^{3}\right] \tag{2.15}
\end{equation*}
$$

and the coefficient of Kurtosis was calculated as

$$
\begin{equation*}
\frac{1}{n}\left[\Sigma\left(x_{2}-\bar{x}\right)^{4} / s^{4}\right] \tag{2.16}
\end{equation*}
$$

The last statistical verification preformed was the Kolmogorov-Smirnov test. Kolmogorov-Smirnov (K-S) test is a common goodness-of-fit test used to verify the probability model of a population based on a limited number of samples. The test compared the difference in cumulative distribution between the model based on RS functions and the pseudo population. If the maximum
absolute difference in the cumulative distributions was within a critical value $D_{\text {cr }}$ (tolerance) for a given significant level, then the proposed model was acceptable. The critical value $D_{\text {cr }}$ depended on the number of "experımental" data (sample size or number of crack growth curves) that were used to develop the RS function (and hence the proposed probability model). Table 2.1 presents the critical values of $D_{c r}$ in the K-S test for a signıficant level of five percent.

Table 2.1. Critical values of Dcr in the Kolmogorov-Smirnov test (values taken from Ang and Tang (1975))

Sample Size (n)	$D_{\text {cr }}$
5	0.56
10	0.41
15	0.34
20	0.29
25	0.27
30	0.24
35	0.23
40	0.21
45	0.2
50	0.19
>50	$136 / \sqrt{n}$

CHAPTER 3

DISCUSSION OF ANALYSIS RESULTS

3.1 CONSTANT STRESS ANALYSIS

3.1.1 Response Surface Functions and Pseudo Population

To determine the constant stress response surface (RS) functions, all input parameters (c, m, and $\Delta \sigma$) were manually defined using the statistical data presented in Table 3.1. A sample size ranged from 5 to 729 sets of $(c, m, \Delta \sigma$, and N) values, as shown in Column 2 of Table 3.2, were used to create thirtynine RS functions. Each set of (c, m, $\Delta \sigma$, and N) represents a single crack growth curve. Therefore, an RS function based on a sample size of 729 was actually based on 729 crack growth curves. It was found during the study that the number of samples (or curves) was not the only factor influencing the RS functions. The range of the input parameters (c, m, and $\Delta \sigma$) also influenced the "quality" of the RS functions. Hence, various values of (c, m, and $\Delta \sigma$) were considered as well.

Table 3.1. Statistical data for input parameters

Parameter	Mean	Standard Deviation	Coefficient of Varıation	Probability Distribution
c	$1.0 \mathrm{E}-8$	$2.3 \mathrm{E}-9$	0.23	lognormal
m	30	0.1	0.033	normal
$\Delta \sigma(\mathrm{ksI})$	13.9	1.39	0.1	normal

Table 3.2. Sample size, input ranges, and coefficients from regression analysis for constant stress analysis

$\begin{gathered} \text { RS Function } \\ \text { No } \end{gathered}$	$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	No of Std. Dev. from Mean	Coefficients			
			b1	b2	b3	b4
(1)	(2)	(3)	(4)	(5)	(6)	(7)
1	5	001	-0 8383	-03668	-2 3913	0.8531
2	5	005	-1.2163	-65087	-28365	18106
3	5	01	-1.0955	-71310	-2 9251	49527
4	5	05	-10085	-75415	-3 0187	72528
5	5	1	-1.0173	-76537	-3.0375	7.2654
6	5	15	-1.0266	-77639	-30562	7.2680
7	5	2	-1 0362	-7.8722	-3 0750	7.2632
8	5	25	-10461	-79790	-3.0937	72526
9	5	3	-1.0563	-80842	-3.1125	72354
10	8	1	-1.0000	-74098	-30000	72106
11	8	15	-10000	-7.3873	-30000	71810
12	8	2	-1 0000	-73554	-30000	71396
13	8	15	-10000	-73138	-30000	7.0852
14	8	3	-1.0000	-72616	-3.0000	70170
15	27	05, 0	-10000	-7.4242	-3 0000	7.2297
16	27	1,0	-10000	-7.4141	-30000	72167
17	27	2,0	-10000	-7.3732	-30000	71644
18	27	2 5, 0	-10000	-7.3419	-3.0000	7.1239
19	27	3, 0	-10000	-73029	-30000	7.0742
20	27	35,0	-1.0000	-72557	-3 0000	70141
21	27	4,0	-1.0000	-7.1996	-30000	70742
22	125	1,05,0	-10000	-74171	-30000	72211
23	125	2, 1, 0	-10000	-73850	-3 0000	71799
24	125	25,15,0	-10000	-73573	-3 0000	71443
25	125	25, 1, 0	-10000	-73625	-3 0000	71518
26	125	25,2,0	-10000	-73472	-3 0000	71303
27	125	3,15,0	-10000	-7.3302	-3 0000	71101
28	125	3 5, 2, 0	-1.0000	-73152	-3 0000	70930
29	343	15, 1, 0 5, 0	-10000	-74062	-3 0000	7.2072
30	343	2, 1,05,0	-1.0000	-7 3924	-3.0000	7.1900
31	343	25, 2, 1,0	-1.0000	-73610	-3.0000	71489
32	343	3, 2, 1, 0	-1.0000	-73403	-3.0000	71231
33	343	35,2, 1, 0	-1.0000	-73139	-3 0000	70905
34	729	2, 15, 1, 05, 0	-1.0000	-73916	-3 0000	71885
35	729	2.5, 2, 1, 0.5, 0	-10000	-7.3704	-3 0000	71617
36	729	3, 2, 1, 05,0	-10000	-73522	-3 0000	71394
37	729	$35,2.5,1,0.5,0$	-1.0000	-73217	-3 0000	71011
38	729	3 5, 2, 1, 05,0	-1.0000	-73289	-3 0000	71110
39	729	4, 3, 2, 1, 0	-1.0000	-72788	-3 0000	70453

To create the sets of ($c, m, \Delta \sigma$, and N), combinations of the mean values along with the mean values plus or minus certan amounts of their standard deviation were used for each input parameter. Column 3 in Table 3.2 presents the range of the input parameters used to determine the sample size. For example, RS function number one from Table 3.2 has a sample size of 5 and a range of 0.01 standard deviations from the means of the input parameters. Thus, the values for c, m, and $\Delta \sigma$ for the five sets were $(\bar{c}, \bar{m}, \overline{\Delta \sigma}),(\bar{c}+0.01 \mathrm{~s} \mathrm{c}, \bar{m}$, $\overline{\Delta \sigma}),\left(\bar{c}, \bar{m}+0.01 \mathrm{~s}_{\mathrm{m}}, \overline{\Delta \sigma}\right),\left(\bar{c}, \bar{m}, \overline{\Delta \sigma}+0.01 \mathrm{~s}_{\Delta \sigma}\right)$, and $\left(\bar{c}+0.01 \mathrm{~s}_{\mathrm{c}}, \bar{m}+\right.$ $0.01 \mathrm{~s}_{\mathrm{m}}, \overline{\Delta \sigma}+0.01 \mathrm{~s}_{\Delta \mathrm{c}}$); in which \bar{c}, \bar{m}, and $\overline{\Delta \sigma}$ represent the mean of c, m and $\Delta \sigma$, respectively, and $\mathrm{s}_{\mathrm{\jmath}}$ represents the standard deviation of parameter j . Table 3.3 summarizes the combinations of the input values for crack growth curve computations using sets of 5,8 , and 27 curves. For sample sizes of 125,343 , and 729 , the permutation sequence is similar to that of sample size 27 .

Equations (2.5-2.7) were used to calculate the number of cycles N for each set of input parameters. A linear regression was then performed on each set of (c, $m, \Delta \sigma$, and N) to determine the coefficients for the RS functions (Equation 2.8). Recall that each value was transformed to its natural logarithmic base for the regression analysis. Columns 4-7 in Table 3.2 present the coefficients of each RS function.

Table 3.3. Summary of the sets of input values for crack growth computations (note: $0=$ mean value; $+=$ mean plus x standard deviations; - = mean minus x standard deviations; x given in third column of Table 3.2)

Sample Size	c	m	$\Delta \sigma$									
5	0	0	0	0	$+$	0	$+$	0	0	$+$	$+$	$+$
	0	0	+									
8	0	0	$+$	0	$+$	0	$+$	0	0	$+$	$+$	$+$
	0	0	-	0	-	0	-	0	0	-	-	-
27	0	0	$+$	0	+	-	$+$	$+$	+	-	+	0
	0	0	-	0	-	+	+	$+$	-	-	-	0
	0	0	0	+	0	$+$	+	-	+	-	+	$+$
	0	+	0	+	0	-	+	-	-	-	+	-
	0	-	0	+	0	0	-	0	+	-	-	$+$
	0	+	+	+	$+$	0	-	0	-	-	-	-
	0	-	-	+	-	0	-	0	0			

3.1.2 Verification of the Response Surface Function Statistical Moments

The point estimate method and Taylor series expansion were used to calculate the mean and standard deviation of lnN for each RS function. Columns 3 and 4 in Tables 3.4 and 35 summarize the results from both methods. Using two significant figures, the mean of InN is 9.6 and the standard deviation is about 0.45 . This corresponds to a mean number of load cycles of 16,340 cycles and a standard deviation of 7,740 cycles (Benjamin and Cornell, 1970).

One thousand sets of 10,000 crack growth curves were simulated to represent the pseudo population. The statistical data in Table 3.1 were used to randomly generate c, m, and $\Delta \sigma$ values for each curve. Columns 5 and 6 in Tables 3.4 and 3.5 present the 95 percent confidence interval of the population

Table 3.4. Means and standard deviations from point estimate method and results of the 95% confidence interval test for constant stress analysis

RS Function No	Sample Size	Average Value	Standard Deviation	95\% Confidence Interval		Pseudo Population		Percent Acceptable
				Lower Limit	Upper Limit	Passed	Farled	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	5	963	0310	936	991	1000	0	100\%
2	5	965	0457	925	101	1000	0	100\%
3	5	965	0457	925	100	1000	0	100\%
4	5	9.65	0459	924	10.0	1000	0	100\%
5	5	965	0463	924	101	1000	0	100\%
6	5	965	0468	924	101	1000	0	100\%
7	5	9.66	0472	924	101	1000	0	100\%
8	5	966	0477	925	101	1000	0	100\%
9	5	967	0481	925	101	1000	0	100\%
10	8	964	0454	933	996	1000	0	100\%
11	8	964	0454	932	995	1000	0	100\%
12	8	963	0453	932	994	1000	0	100\%
13	8	962	0453	931	994	1000	0	100\%
14	8	961	0452	930	992	1000	0	100\%
15	27	964	0455	947	982	1000	0	100\%
16	27	964	0455	947	9.81	1000	0	100\%
17	27	964	0454	946	981	1000	0	100\%
18	27	963	0453	946	9.80	1000	0	100\%
19	27	962	0452	945	979	1000	0	100\%
20	27	961	0452	944	978	1000	0	100\%
21	27	974	0451	957	991	1000	0	100\%
22	125	964	0455	956	972	1000	0	100\%
23	125	964	0454	956	972	1000	0	100\%
24	125	963	0453	955	971	1000	0	100\%
25	125	963	0454	956	971	1000	0	100\%
26	125	963	0453	955	971	1000	0	100\%
27	125	963	0453	955	971	1000	0	100\%
28	125	963	0453	955	971	1000	0	100\%
29	343	964	0454	959	969	1000	0	100\%
30	343	964	0454	959	969	1000	0	100\%
31	343	963	0454	959	968	1000	0	100\%
32	343	963	0453	958	968	1000	0	100\%
33	343	963	0453	958	967	1000	0	100\%
34	729	964	0454	961	967	964	36	964\%
35	729	964	0454	960	967	996	4	996\%
36	729	963	0453	960	967	1000	0	100\%
37	729	963	0453	960	966	1000	0	100\%
38	729	9.63	0453	960	966	1000	0	100\%
39	729	962	0452	959	965	1000	0	100\%

Table 3.5. Means and standard deviations from Taylor series expansion and results of the $\mathbf{9 5 \%}$ confidence interval test for constant stress analysis

RS Function No	Sample Size	Average Value	Standard Deviation	95\% Confidence Interval		Pseudo Population		Percent Acceptable
				Lower Limit	Upper Limit	Passed	Falled	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	5	9.61	0309	934	988	1000	0	100\%
2	5	9.62	0456	922	10.0	1000	0	100\%
3	5	9.62	0455	9.22	10.0	1000	0	100\%
4	5	962	0458	9.22	100	1000	0	100\%
5	5	962	0462	922	100	1000	0	100\%
6	5	963	0467	9.22	10.0	1000	0	100\%
7	5	9.63	0471	9.22	100	1000	0	100\%
8	5	963	0475	9.22	101	1000	0	100\%
9	5	9.64	0480	922	10.1	1000	0	100\%
10	8	9.62	0453	930	993	1000	0	100\%
11	8	961	0453	930	992	1000	0	100\%
12	8	9.60	0452	929	992	1000	0	100\%
13	8	960	0451	928	9.91	1000	0	100\%
14	8	958	0.451	927	990	1000	0	100\%
15	27	962	0453	945	979	1000	0	100\%
16	27	9.62	0453	9.45	979	1000	0	100\%
17	27	961	0453	944	978	1000	0	100\%
18	27	9.60	0452	943	977	1000	0	100\%
19	27	960	0451	943	977	1000	0	100\%
20	27	9.59	0450	942	9.76	1000	0	100\%
21	27	958	0.449	941	975	1000	0	100\%
22	125	962	0453	954	970	1000	0	100\%
23	125	961	0453	953	969	1000	0	100\%
24	125	961	0452	953	969	1000	0	100\%
25	125	961	0452	953	969	1000	0	100\%
26	125	960	0452	952	968	1000	0	100\%
27	125	960	0452	952	968	1000	0	100\%
28	125	960	0451	952	968	1000	0	100\%
29	343	962	0453	9.57	966	1000	0	100\%
30	343	9.61	0.453	957	966	1000	0	100\%
31	343	961	0452	956	965	1000	0	100\%
32	343	9.60	0452	956	965	1000	0	100\%
33	343	9.60	0451	955	965	1000	0	100\%
34	729	961	0453	958	965	1000	0	100\%
35	729	961	0452	958	964	1000	0	100\%
36	729	961	0452	957	964	1000	0	100\%
37	729	960	0452	957	964	1000	0	100\%
38	729	960	0452	957	964	1000	0	100\%
39	729	959	0451	956	963	988	12	98.8\%

mean using the point estımate and Taylor series approxımations of the RS functions. For the point estimate method, all the pseudo population means fell withın the 95 percent confidence interval determined from the response surface functions except for RS functions 34 and 35 (Table 3.4, columns 7-9) However, more than 95 percent of the pseudo population means still fell within the confidence interval for these functions The results for the Taylor series expansion (Table 35, columns 7-9) were even better. All pseudo population means fell within 95 percent confidence intervals determined from the RS functions except for RS function no. 39, which 98.8 percent of the pseudo population means fell within that confidence interval.

3.1.3 Statistical Analysis of the Pseudo Population

To further assess the probability model of $\operatorname{In} N$, the distribution of the pseudo population was examıned. One hundred sets of 10,000 pseudo population crack growth curves were generated. The average coefficient of skewness from the 100 sets of data was 0.048 and the standard deviation of the coefficient of skewness was 0.026 . The average coefficient of Kurtosis from the same 100 sets of data was 3.03 and the standard deviation was 0.049 . The average coefficient of skewness indicates that the $\ln \mathrm{N}$ values are skewed slightly to the right. Although the pseudo population indicates that the probability distribution of $\operatorname{In} \mathrm{N}$ is not exactly symmetric, the coefficient of skewness and the coefficient of Kurtosis are very close to the target values of zero and three,
respectively Therefore, it was likely that $\ln \mathrm{N}$ could stlll be modeled by Gaussian distribution.

3.1.4 Comparison of the Response Surface Functions with the Pseudo Population

The Kolmogorov-Smirnov (K-S) test was used to check if the proposed probability model (based from the RS functions) was acceptable. For comparisons, three sets consisting of $10,000,50,000$, and 100,000 simulated crack growth curves were used. Columns 5, 7, and 9 in Table 3.6 present the maximum difference in cumulative distribution between the normal distribution developed based on the RS function and the pseudo population. As can be seen from the table, the maximum differences are much less than the critical difference of $D_{\text {cr }}$ given in column 4. To better visualize how the maximum difference compared to $D_{c r}$, the fraction of $D_{c r}$ was calculated by dividing $D_{c r}$ into the difference The resulting fractions are presented in Columns 6, 8, and 10. Most of the differences are less than 10 percent of $D_{c r}$ and the greatest difference is 36 percent of the critical difference

It was also observed that on the average, the test results got better as the pseudo population size increased, that is the RS functions were "fitting" the pseudo population better as the pseudo population size increased. This is good considering that as the pseudo population size increases, it begins to approach the "actual" population. Figure 3.1 and 32 present typical comparisons between the proposed probability model and the pseudo population Figure 3.1 presents

Table 3.6. Results of the Kolmogorov-Smirnov test for constant stress analysis

RS Function No	Sample Size	No of Std Dev from Mean	D_{cr}	Pseudo Population Size 10,000		Pseudo Populatıon Size 50,000		Pseudo Population Size. 100,000	
				Difference	Fraction of $D_{\text {cr }}$	Difference	Fraction of $D_{c r}$	Difference	Fraction of $D_{\text {cr }}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1	5	001	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0096	0171	0094	0168	0093	0166
2	5	005		0020	0.035	0011	0.020	0008	0.014
3	5	01		0.020	0037	0.012	0.021	0008	0015
4	5	05		0022	0.039	0.013	0023	0.010	0018
5	5	1		0.024	0042	0016	0.029	0.013	0.022
6	5	15		0027	0.049	0.020	0.036	0.016	0.029
7	5	2		0032	0057	0025	0044	0021	0037
8	5	2.5		0037	0066	0030	0054	0026	0046
9	5	3		0043	0077	0036	0.064	0032	0057
10	8	1	$\begin{aligned} & 9 \\ & 7 \\ & 0 \end{aligned}$	0017	0036	0009	0019	0.005	0.010
11	8	1.5		0.013	0027	0.005	0010	0003	0006
12	8	15		0012	0025	0.012	0.026	0016	0.033
13	8	2		0009	0020	0007	0016	0008	0017
14	8	3		0019	0039	0021	0.045	0025	0053
15	27	05, 0	$\left\lvert\, \begin{gathered} \infty \\ \stackrel{\infty}{N} \\ 0 \end{gathered}\right.$	0020	0077	0009	0035	0009	0035
16	27	1,0		0018	0.071	0.007	0028	0007	0029
17	27	2,0		0011	0.044	0.005	0019	0.004	0016
18	27	25,0		0.010	0037	0010	0038	0007	0.027
19	27	3, 0		0011	0044	0016	0062	0013	0051
20	27	35,0		0016	0061	0023	0090	0.021	0080
21	27	4, 0		0.024	0092	0.031	0121	0029	0112
22	125	1, 0.5, 0	$\stackrel{N}{\mathbf{N}}$	0019	0155	0008	0065	0.008	0065
23	125	2, 1,0		0014	0112	0003	0023	0003	0026
24	125	25,15,0		0009	0072	0007	0061	0005	0.043
25	125	25,1,0		0011	0086	0.006	0047	0.004	0037
26	125	25,2,0		0009	0078	0.010	0080	0007	0056
27	125	3,15,0		0010	0081	0011	0091	0008	0067
28	125	35,2,0		0010	0083	0018	0145	0015	0123
29	343	1.5, 1, 05.0	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0017	0233	0006	0083	0.006	0085
30	343	2,1,05,0		0015	0.209	0004	0.060	0005	0.062
31	343	25, 2, 1, 0		0009	0128	0007	0092	0005	0067
32	343	3, 2, 1, 0		0.009	0128	0009	0127	0007	0.091
33	343	35,2, 1, 0		0010	0141	0012	0169	0.010	0.132
34	729	2, 15, 1, 0.5,0	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	0015	0.293	0.004	0077	0.004	0079
35	729	2 5, 2, 1, 0.5,0		0012	0.232	0.005	0091	0004	0077
36	729	3,2, 1, 05,0		0010	0.190	0007	0131	0005	0098
37	729	$35,2.5,1,05,0$		0.010	0.196	0011	0.211	0008	0156
38	729	$35,2,1,05,0$		0009	0.187	0009	0.178	0007	0130
39	729	4, 3, 2, 1, 0		0.012	0241	0018	0.361	0.016	0.308

Figure 3.1. Typical comparison between the proposed probability model from a response surface function and histogram from the pseudo population

Figure 3.2. Typical comparison between a response surface function and the pseudo population cumulative distributions
the fitting of the probability density function of an RS function (RS function no. 17 in Table 3.2) to the histogram compiled from the 10,000 pseudo population crack growth curves. Figure 3.2 presents the cumulative distribution function of the same RS function and 10,000 pseudo population crack growth curves.

3.1.5 Optimal Sample Size and Range of the Input Parameters

The previous sections have shown that all RS functions were acceptable to model the number of load cycles for a crack to grow from its initiatıon to critical size. The RS functions were developed using a limited number of crack growth curves that ranged from 5 to 729 as well as a wide range of input values (c, m, and $\Delta \sigma$) ranging from 0.01 standard deviations from the mean to 4 standard deviations from the mean. It was desirable to identify the optimal sample size and range of input values used to deveiop an RS function and eventually, a probability model would be derived from that function.

To determine these optimal values, Figures 3.3-3.5 were developed to create a graphical comparison between the maximum number of standard deviations from the mean and the fraction of $D_{\text {cr }}$ for each $R S$ function The maximum number of standard deviations from the mean can be found in Table

3.6, column 3

It was observed that as the sample size increases, the fraction of $D_{c r}$ increases. However, this does not imply that the more samples one uses to determine a RS function, the worse the approximation. The reason for this

Figure 3.3. Comparison of fraction of $D_{c r}$ and maximum input range for a pseudo population size of 10,000

Wi Figure 3.4. Comparison of fraction of Dcr and maximum input range for a pseudo population size of $\mathbf{5 0 , 0 0 0}$

${ }_{\mathrm{W}}^{\mathrm{W}}$ Figure 3.5. Comparison of fraction of Dcr and maximum input range for a pseudo population size of $\mathbf{1 0 0 , 0 0 0}$
observation is that $D_{\text {cr }}$ decreases with the increasing sample size (Table 2.1) Therefore, as the sample size increases, $D_{\text {cr }}$ decreases, which causes the fraction of $D_{\text {or }}$ to increase. Despite this observation, for a given sample size, there was a fairly distinct trend that if the range of input values were significantly close (zero to one standard deviations) or significantly far (three to four standard deviations) from the mean, the fraction of $D_{\text {cr }}$ would be larger Based on this trend, it is recommended that the optimal choice is one with a sample size of 27 and 2 to 2.5 standard deviations from the mean. Hence, RS function numbers 17 or 18 given in Table 3.2 would be the optimal RS functions for modeling the number of load cycles needed for a crack to grow from the initiation size of 0.01 inches to 03 inches for the parametric values given in Table 3.1.

3.2 RANDOM STRESS BLOCK ANALYSIS

3.2.1 Response Surface Functions and Pseudo Population

The random stress block response surface (RS) function was determined using a range of 9 to 81 sets of ($c, m, \Delta \sigma$, and N) values as shown in Column 2 of Tables 3.7-3.10. Each table represents one of four sets of 25 RS functions that were developed More than one set was analyzed to ensure consistency among the RS functions because $\Delta \sigma$ was a random variable regenerated for each interval of each crack growth curve. As can be seen in Columns 2 and 3 of each table, all four sets had the same sample size and range of input variables. For

Table 3.7. Sample sizes, input ranges, and coefficients from regression analysis for set 1 of random stress block analysis

Set 1							
RS Function No	Sample Size	No. of Std Dev from Mean	Coefficlents				
(1)	(2)	(3)	b2	b3	b4		
1	9	05,0	-1.0764	-76857	(6)	(7)	
2	9	1,0	-09860	-77167	-18294	59954	
3	9	2,0	-09960	-7.1420	-17821	48982	
4	9	25,0	-1.0048	-7.1392	-3.6392	85623	
5	9	3,0	-09873	-7.0882	-2.5506	59580	
6	9	35,0	-0.9923	-71602	-2.5929	60526	
7	9	4,0	-09988	-7.2555	-37718	9.1179	
8	25	$1,05,0$	-10274	-71966	-25699	54003	
9	25	$2,1,0$	-0.9873	-7.3006	-2.8595	70110	
10	25	$25,15,0$	-10049	-7.4089	-3.1474	7.5614	
11	25	$2.5,1,0$	-09994	-7.3434	-2.6179	61931	
12	25	$2.5,2,0$	-1.0141	-73210	-35680	83889	
13	25	$3,15,0$	-10124	-71745	-3.7681	87967	
14	25	$35,2,0$	-10068	-73509	-4.2062	10.2243	
15	49	$15,1,05,0$	-1.0249	-72475	-3.1146	69448	
16	49	$2,1,05,0$	-10033	-74570	-28443	6.8514	
17	49	$25,2,1,0$	-09954	-73256	-2.5492	60685	
18	49	$3,2,1,0$	-10058	-73341	-30202	7.1276	
19	49	$35,2,1,0$	-10043	-7.2638	-2.7447	6.3533	
20	81	$2,1.5,1,05,0$	-10026	-7.1761	-28431	6.5500	
21	81	$25,2,1,05,0$	-0.9945	-7.3736	-33822	83313	
22	81	$3,2,1,0.5,0$	-09989	-7.2768	-31634	75694	
23	81	$35,25,1,05,0$	-09989	-7.2129	-32588	77499	
24	81	$3.5,2,1,05,0$	-09996	-7.3273	-25532	5.9963	
25	81	$4,3,2,1,0$	-10030	-7.2492	-26345	60579	

Table 3.8. Sample sizes, input ranges, and coefficients from regression analysis for set 2 of random stress block analysis

RS Function No						
Sample Size	No of Std Dev from Mean	b1	b2	b3	b4	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
1	9	05,0	-10903	-72182	-43285	8.8938
2	9	1,0	-10305	-79127	-29133	70445
3	9	2,0	-09893	-7.3553	-2.3365	56562
4	9	25,0	-10026	-73374	-41131	100554
5	9	3,0	-10018	-71871	-3.3523	79199
6	9	35,0	-10012	-73008	-12521	24884
7	9	4,0	-09883	-73910	-43472	109922
8	25	$1,0.5,0$	-10124	-69337	-30539	66626
9	25	$2,1,0$	-10198	-7.0277	-37205	83837
10	25	$25,15,0$	-10150	-73195	-38196	90499
11	25	$25,1,0$	-10004	-73741	-35403	86402
12	25	$25,2,0$	-09993	-73499	-36070	88129
13	25	$3,15,0$	-10076	-7.2343	-24311	54234
14	25	$35,2,0$	-10075	-73045	-18996	40963
15	49	$15,1,05,0$	-10130	-72645	-30419	69866
16	49	$2,1,05,0$	-10162	-73791	-3.4716	81800
17	49	$25,2,1,0$	-10008	-73182	-33983	81953
18	49	$3,2,1,0$	-10031	-7.1956	-22746	50656
19	49	$35,2,1,0$	-10030	-7.3001	-31874	75724
20	81	$2,15,1,05,0$	-09962	-72027	-32615	78015
21	81	$25,2,1,05,0$	-10019	-73676	-27263	64613
22	81	$3,2,1,05,0$	-10020	-72118	-28603	66415
23	81	$35,25,1,05,0$	-09913	-72996	-34559	85008
24	81	$35,2,1,05,0$	-10040	-72278	-36212	86184
25	81	$4,3,2,1,0$	-10006	-72536	-34110	81480

Table 3.9. Sample sizes, input ranges, and coefficients from regression analysis for set 3 of random stress block analysis

Set 3						
RS Function	Sample	No of Std Dev	Coefficients			
No.		from Mean	b1	b2	b3	b4
(1)	(2)	(3)	(4)	(5)	(6)	(7)
1	9	05, 0	-1 0492	-65216	-3.7205	7.2973
2	9	1,0	-09950	-7.1331	-2.7995	65443
3	9	2,0	-0 9941	-7.1689	-2.2940	52474
4	9	25,0	-09891	-7.4936	-4.0574	103406
5	9	3, 0	-09904	-71027	-34679	83217
6	9	35,0	-1 0121	-71153	-2 1386	44325
7	9	4, 0	-0.9932	-7.4008	-3.9267	97996
8	25	1, 0.5, 0	-1 0329	-7.6381	-4 3541	104839
9	25	2, 1, 0	-1 0073	-7.3088	-27039	62448
10	25	25, 1.5, 0	-1 0008	-73121	-36646	88946
11	25	25, 1, 0	-0 9872	-71995	-2 4429	5.8118
12	25	25,2,0	-1 0265	-72084	-3.3279	74120
13	25	3, 1.5, 0	-0 9918	-7.3485	-2 8174	68646
14	25	3.5, 2, 0	-0 9968	-73619	-2 1012	48932
15	49	15, 1, 05,0	-09818	-74112	-33303	84816
16	49	2,1,05,0	-09951	-74759	-31385	77941
17	49	25,2, 1, 0	-10058	-72171	-37047	87987
18	49	3, 2, 1, 0	-0 9995	-72302	-3 1968	75948
19	49	3 5, 2, 1, 0	-0 9949	-7.2767	-2.8075	66929
20	81	2, 15, 1, 0.5, 0	-09967	-7.2365	-3.1169	74486
21	81	25, 2, 1, 0 5, 0	-0.9999	-7.3189	-27477	65023
22	81	3, 2, 1, 05,0	-1.0003	-73065	-31746	76034
23	81	35,25, 1, 05, 0	-0.9939	-72895	-3.8231	94051
24	81	3.5, 2, 1, 05, 0	-10077	-7.2009	-2.9253	6.7001
25	81	4, 3, 2, 1, 0	-0.9974	-72843	-2.8318	67188

Table 3.10. Sample sizes, input ranges, and coefficients from regression analysis for set 4 of random stress block analysis

Set 4						
RS Function No	Sample Size	No of Std Dev from Mean	Coefficients			
			b1	b2	b3	b4
(1)	(2)	(3)	(4)	(5)	(6)	(7)
1	9	05, 0	-10750	-81408	-36738	84646
2	9	1,0	-0 9939	-7.4898	-3.2190	8.0532
3	9	2,0	-0 9656	-73683	-0 0324	00476
4	9	2.5, 0	-0 9901	-73413	-48926	123527
5	9	3, 0	-10084	-7 2923	-4 1942	101094
6	9	35,0	-10021	-71151	-2 1318	4.5943
7	9	4,0	-10114	-70179	-29335	64335
8	25	1, 05,0	-0 9741	-73712	-2 9379	75503
9	25	2, 1, 0	-1 0049	-73967	-32364	77854
10	25	25, 1.5, 0	-10195	-7.2885	-27473	61010
11	25	25, 1, 0	-09808	-72012	-36670	9.1468
12	25	25, 2, 0	-1 0004	-72894	-37440	90758
13	25	3,15,0	-10091	-73565	-26733	61746
14	25	3 5, 2, 0	-1 0066	-73050	-2 9651	69151
15	49	15, 1, 0 5, 0	-09915	-7.4343	-27740	68646
16	49	2, 1, 0 5,0	-10056	-72345	-3 0817	71953
17	49	25,2, 1,0	-09942	-73280	-27692	66716
18	49	3,2, 1, 0	-09970	-72928	-2 6429	62497
19	49	3 5, 2, 1, 0	-10032	-73241	-3 1683	75473
20	81	2, 15, 1, 0 5, 0	-10010	-73905	-29921	72140
21	81	2.5, 2, 1, 0.5, 0	-10015	-73395	-28170	66754
22	81	3, 2, 1, 05,0	-10052	-73448	-29197	68874
23	81	35,25,1,05,0	-09998	-73145	-3 1287	74950
24	81	35, 2, 1, 05, 0	-09962	-73095	-28594	68461
25	81	4, 3, 2, 1, 0	-09960	-72676	-3 1442	75479

example, RS function number 1 from Tables 3.7-3.10 have a sample size of nine and 0.5 standard deviations from the means of the input parameters. Thus the values for c, m, and $\Delta \sigma$ for the nine sets were $(\bar{c}, \bar{m}, \Delta \sigma),\left(\bar{c}+0.5 \mathrm{~s}_{\mathrm{c}}, \bar{m}, \Delta \sigma\right)$, $\left(\bar{c}, \bar{m}+0.5 \mathrm{~s}_{\mathrm{m}}, \Delta \sigma\right),\left(\bar{c}-0.5 \mathrm{~s}_{\mathrm{c}}, \bar{m}, \Delta \sigma\right),\left(\bar{c}, \bar{m}-0.5 \mathrm{~s}_{\mathrm{m}}, \Delta \sigma\right),\left(\bar{c}+0.5 \mathrm{~s}_{\mathrm{c}}, \bar{m}+0.5 \mathrm{~s}_{\mathrm{m}}\right.$, $\Delta \sigma),\left(\bar{c}-0.5 \mathrm{~s}_{\mathrm{c}}, \bar{m}+05 \mathrm{~s}_{\mathrm{m}}, \Delta \sigma\right),\left(\bar{c}+0.5 \mathrm{~s}_{\mathrm{c}}, \bar{m}-0.5 \mathrm{~s}_{\mathrm{m}}, \Delta \sigma\right)$, and $\left(\bar{c}-0.5 \mathrm{~s}_{\mathrm{c}}, \bar{m}-\right.$ $0.5 \mathrm{~s}_{\mathrm{m}}, \Delta \sigma$), in which \bar{c} and \bar{m} represent the mean of c and m , respectively, $\Delta \sigma$ is the average of the 100 stress values for each curve and s_{1} represents the standard deviation of parameter J. As one can see from these sets of input parameters, $\Delta \sigma$ was not altered by its standard deviation and was left as the average of the 100 stress values (which can be different from curve to curve) for each curve in every set.

Equations (2.5-2.7) were used to calculate the number of cycles N for each set of input parameters. A linear regression was then performed on each set of ($\mathrm{c}, \mathrm{m}, \Delta \sigma$, and N) to determine the coefficients for the RS functoons. Recall that each value was transformed to ts logarthmic base for the regression analysis. Columns 4-7 in Table 3.7-3.10 present the coefficlents of each RS function.

3.2.2 Verification of the Response Surface Function Statistical Moments

The point estumate method and Taylor series expansion were used to calculate the mean and standard deviation of InN for each RS function. Columns 3 and 4 in Tables 3.11-3.18 summarize the results from both methods.

Using two significant figures, the mean of InN is 9.7 and the standard deviation is about 0.34 . This corresponds to a mean number of load cycles of 17,290 cycles and a standard deviation of 6,050 cycles (Benjamin and Cornell, 1970). It is of interest to note that the standard deviations using random stress blocks were smaller than those using constant stresses.

One hundred sets of 10,000 crack growth curves were simulated to represent the pseudo population. The statistical data in Table 3.1 were used to randomly generate c and m, for each crack growth curve while $\Delta \sigma$ was randomly generated for each of the 100 increments for each curve.

Columns 5 and 6 in Tables 3 11-3.18 present the 95 percent confidence interval of the population mean using the point estimate and Taylor series approximations of the RS functions. As can be seen columns 7-9 from the tables, all pseudo population means fell within the confidence interval determined from the RS functions.

Table 3.11. Means and standard deviations from point estimate method and results of the 95% confidence interval test for set 1 of random stress block analysis

Set 1								
RS Function No	Sample Size	Average Value	Standard Deviation	95\% Confidence Interval		Pseudo Populatıon		Percent Acceptable
				Lower Limit	Upper Limit	Passed	Failed	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	9	9.70	0359	947	994	100	0	100\%
2	9	968	0346	945	991	100	0	100\%
3	9	968	0333	947	9.90	100	0	100\%
4	9	968	0335	946	990	100	0	100\%
5	9	9.68	0331	9.46	989	100	0	100\%
6	9	967	0333	945	9.89	100	0	100\%
7	9	965	0337	943	987	100	0	100\%
8	25	969	0340	955	982	100	0	100\%
9	25	968	0336	955	9.81	100	0	100\%
10	25	968	0341	9.55	981	100	0	100\%
11	25	968	0339	954	981	100	0	100\%
12	25	967	0341	953	980	100	0	100\%
13	25	968	0337	955	981	100	0	100\%
14	25	966	0340	952	979	100	0	100\%
15	49	970	0341	960	979	100	0	100\%
16	49	969	0342	959	978	100	0	100\%
17	49	9.68	0338	9.58	977	100	0	100\%
18	49	968	0340	959	978	100	0	100\%
19	49	968	0338	959	978	100	0	100\%
20	81	968	0335	961	976	100	0	100\%
21	81	968	0339	961	975	100	0	100\%
22	81	968	0.337	961	9.75	100	0	100\%
23	81	968	0336	961	975	100	0	100\%
24	81	967	0338	960	974	100	0	100\%
25	81	967	0337	959	974	100	0	100\%

Table 3.12. Means and standard deviations from point estimate method and results of the 95\% confidence interval test for set 2 of random stress block analysis

' ${ }^{\prime}$ Set 2								
$\begin{aligned} & \text { RS Function } \\ & \text { No } \end{aligned}$	Sample Size	AverageValue	Standard Deviatıon	95\% Confidence Interval		Pseudo Population		$\begin{gathered} \text { Percent } \\ \text { Acceptable } \end{gathered}$
				Lower Limit	Upper Limit	Passed	Farled	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	9	969	0.351	946	992	100	0	100\%
2	9	970	0358	947	993	100	0	100\%
3	9	968	0337	946	990	100	0	100\%
4	9	967	0339	9.45	989	100	0	100\%
5	9	969	0335	947	991	100	0	100\%
6	9	965	0338	943	9.87	100	0	100\%
7	9	9.67	0.338	9.45	9.89	100	0	100\%
8	25	969	0.331	956	982	100	0	100\%
9	25	969	0335	956	982	100	0	100\%
10	25	968	0341	9.55	982	100	0	100\%
11	25	968	0340	955	981	100	0	100\%
12	25	968	0339	9.55	982	100	0	100\%
13	25	9.67	0337	954	980	100	0	100\%
14	25	966	0339	9.53	980	100	0	100\%
15	49	969	0339	960	979	100	0	100\%
16	49	969	0342	959	978	100	0	100\%
17	49	968	0.338	958	977	100	0	100\%
18	49	9.68	0336	959	978	100	0	100\%
19	49	967	0338	958	977	100	0	100\%
20	81	969	0335	961	976	100	0	100\%
21	81	968	0340	960	975	100	0	100\%
22	81	968	0336	961	975	100	0	100\%
23	81	968	0336	960	975	100	0	100\%
24	81	967	0337	960	975	100	0	100\%
25	81	966	0337	959	974	100	0	100\%

Table 3.13. Means and standard deviations from point estimate method and results of the 95% confidence interval test for set 3 of random stress block analysis

Set 3								
RS FunctionNo	Sample Size	Average Value	Standard Deviation	95\% Confidence Interval		Pseudo Population		Percent Acceptable
				Lower Limit	Upper Limit	Passed	Failed	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	9	970	0328	949	991	100	0	100\%
2	9	970	0.333	948	992	100	0	100\%
3	9	968	0.334	946	990	100	0	100\%
4	9	968	0.341	946	990	100	0	100\%
5	9	967	0331	945	988	100	0	100\%
6	9	966	0335	944	988	100	0	100\%
7	9	966	0339	944	988	100	0	100\%
8	25	969	0351	955	9.83	100	0	100\%
9	25	969	0.339	955	9.82	100	0	100\%
10	25	968	0.338	955	982	100	0	100\%
11	25	969	0333	956	982	100	0	100\%
12	25	967	0340	954	981	100	0	100\%
13	25	968	0338	954	981	100	0	100\%
14	25	967	0339	9.54	980	100	0	100\%
15	49	969	0338	9.60	979	100	0	100\%
16	49	968	0341	959	978	100	0	100\%
17	49	968	0337	9.58	9.77	100	0	100\%
18	49	968	0336	9.59	9.77	100	0	100\%
19	49	9.67	0336	957	9.76	100	0	100\%
20	81	969	0.336	961	976	100	0	100\%
21	81	968	0338	961	975	100	0	100\%
22	81	968	0.338	961	975	100	0	100\%
23	81	967	0337	960	975	100	0	100\%
24	81	968	0337	961	976	100	0	100\%
25	81	967	0.337	959	9.74	100	0	100\%

Table 3.14. Means and standard deviations from point estimate method and results of the 95% confidence interval test for set 4 of random stress block analysis

Set 4								
RS FunctionNo	Sample Size	Average Value	Standard Deviation	95\% Confidence Interval		Pseudo Population		Percent Acceptable
				Lower Limit	Upper Limit	Passed	Farled	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	9	9.69	0370	945	993	100	0	100\%
2	9	9.69	0341	947	992	100	0	100\%
3	9	968	0.334	947	990	100	0	100\%
4	9	968	0.337	946	990	100	0	100\%
5	9	967	0339	944	9.89	100	0	100\%
6	9	966	0334	944	988	100	0	100\%
7	9	966	0333	945	988	100	0	100\%
8	25	969	0335	956	983	100	0	100\%
9	25	968	0341	955	982	100	0	100\%
10	25	967	0341	954	981	100	0	100\%
11	25	968	0332	955	981	100	0	100\%
12	25	967	0338	954	981	100	0	100\%
13	25	968	0341	954	981	100	0	100\%
14	25	966	0339	953	979	100	0	100\%
15	49	9.69	0340	9.60	979	100	0	100\%
16	49	9.69	0.337	960	979	100	0	100\%
17	49	968	0.338	958	977	100	0	100\%
18	49	968	0337	958	977	100	0	100\%
19	49	967	0339	958	977	100	0	100\%
20	81	969	0340	962	976	100	0	100\%
21	81	968	0.339	960	975	100	0	100\%
22	81	9.68	0340	961	976	100	0	100\%
23	81	9.67	0338	960	975	100	0	100\%
24	81	9.67	0337	960	975	100	0	100\%
25	81	967	0336	9.59	974	100	0	100\%

Table 3.15. Means and standard deviations from Taylor series expansion and results of the 95% confidence interval test for set 1 of random stress block analysis

Set 1								
RS Function No.	Sample Size	Average Value	Standard Deviation	95\% Confidence Interval		Pseudo Population		Percent Acceptable
				Lower Limit	Upper Limıt	Passed	Failed	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	9	969	0359	945	992	100	0	100\%
2	9	966	0.345	944	989	100	0	100\%
3	9	967	0333	9.45	988	100	0	100\%
4	9	967	0334	945	989	100	0	100\%
5	9	966	0330	945	988	100	0	100\%
6	9	966	0332	944	988	100	0	100\%
7	9	9.64	0336	942	986	100	0	100\%
8	25	967	0339	954	981	100	0	100\%
9	25	967	0335	954	980	100	0	100\%
10	25	967	0340	954	980	100	0	100\%
11	25	966	0338	953	980	100	0	100\%
12	25	966	0340	9.52	979	100	0	100\%
13	25	967	0336	954	980	100	0	100\%
14	25	965	0339	952	978	100	0	100\%
15	49	968	0340	959	978	100	0	100\%
16	49	967	0341	958	977	100	0	100\%
17	49	9.66	0337	957	976	100	0	100\%
18	49	967	0339	957	976	100	0	100\%
19	49	966	0337	957	976	100	0	100\%
20	81	967	0334	960	974	100	0	100\%
21	81	967	0338	960	974	100	0	100\%
22	81	967	0336	960	974	100	0	100\%
23	81	967	0335	960	974	100	0	100\%
24	81	966	0338	958	973	100	0	100\%
25	81	965	0336	958	973	100	0	100\%

Table 3.16. Means and standard deviations from Taylor series expansion and results of the 95% confidence interval test for set 2 of random stress block analysis

Set 2								
$\begin{array}{\|l} \text { RS Function } \\ \text { No } \end{array}$	Sample Size	Average Value	Standard Deviation	95\% Confidence Interval		Pseudo Population		Percent Acceptable
				Lower Limit	Upper Limit	Passed	Failed	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	9	9.68	0350	945	9.91	100	0	100\%
2	9	969	0357	9.45	992	100	0	100\%
3	9	967	0.337	945	9.89	100	0	100\%
4	9	9.66	0338	944	988	100	0	100\%
5	9	968	0.335	946	990	100	0	100\%
6	9	963	0337	941	985	100	0	100\%
7	9	966	0.337	944	988	100	0	100\%
8	25	9.68	0.330	9.55	981	100	0	100\%
9	25	968	0.334	955	981	100	0	100\%
10	25	968	0340	954	981	100	0	100\%
11	25	967	0339	9.54	981	100	0	100\%
12	25	968	0.338	9.54	981	100	0	100\%
13	25	966	0.337	952	979	100	0	100\%
14	25	965	0338	951	978	100	0	100\%
15	49	968	0338	959	9.78	100	0	100\%
16	49	9.68	0342	958	977	100	0	100\%
17	49	967	0338	957	976	100	0	100\%
18	49	967	0335	957	9.76	100	0	100\%
19	49	966	0337	957	976	100	0	100\%
20	81	9.68	0.334	960	975	100	0	100\%
21	81	9.67	0339	959	9.74	100	0	100\%
22	81	9.67	0.335	959	974	100	0	100\%
23	81	967	0.336	959	974	100	0	100\%
24	81	966	0336	959	974	100	0	100\%
25	81	966	0336	958	973	100	0	100\%

Table 3.17. Means and standard deviations from Taylor series expansion and results of the 95% confidence interval test for set 3 of random stress block analysis

Set 3								
$\begin{array}{\|c\|} \hline \text { RS Function } \\ \text { No } \\ \hline \end{array}$	Sample Size	Average Value	Standard Deviation	95\% Confidence Interval		Pseudo Population		Percent Acceptable
				Lower Limit	Upper Limit	Passed	Failed	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	9	969	0.327	948	990	100	0	100\%
2	9	969	0332	947	9.90	100	0	100\%
3	9	966	0.333	944	988	100	0	100\%
4	9	967	0340	945	990	100	0	100\%
5	9	966	0331	944	987	100	0	100\%
6	9	965	0335	943	986	100	0	100\%
7	9	965	0338	943	987	100	0	100\%
8	25	969	0350	955	9.82	100	0	100\%
9	25	967	0338	954	980	100	0	100\%
10	25	967	0337	9.54	981	100	0	100\%
11	25	967	0.333	954	980	100	0	100\%
12	25	966	0339	953	980	100	0	100\%
13	25	967	0337	953	980	100	0	100\%
14	25	965	0338	952	978	100	0	100\%
15	49	968	0337	959	978	100	0	100\%
16	49	967	0340	958	977	100	0	100\%
17	49	967	0336	958	976	100	0	100\%
18	49	967	0335	9.58	976	100	0	100\%
19	49	965	0336	956	975	100	0	100\%
20	81	968	0335	9.60	975	100	0	100\%
21	81	967	0.337	959	974	100	0	100\%
22	81	967	0.337	960	974	100	0	100\%
23	81	967	0336	959	974	100	0	100\%
24	81	967	0336	960	974	100	0	100\%
25	81	965	0336	958	973	100	0	100\%

Table 3.18. Means and standard deviations from Taylor series expansion and results of the 95% confidence interval test for set 4 of random stress block analysis

Set 4								
RS Function No	Sample Size	Average Value	Standard Deviation	95\% Confidence Interval		Pseudo Population		Percent Acceptable
				Lower Limit	Upper Limit	Passed	Failed	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	9	968	0369	944	992	100	0	100\%
2	9	968	0341	946	990	100	0	100\%
3	9	966	0333	9.44	988	100	0	100\%
4	9	9.68	0.336	946	990	100	0	100\%
5	9	9.66	0338	944	988	100	0	100\%
6	9	964	0.333	9.42	986	100	0	100\%
7	9	965	0332	944	987	100	0	100\%
8	25	968	0335	955	981	100	0	100\%
9	25	967	0340	954	981	100	0	100\%
10	25	966	0340	953	979	100	0	100\%
11	25	968	0332	955	981	100	0	100\%
12	25	967	0337	953	980	100	0	100\%
13	25	966	0340	953	980	100	0	100\%
14	25	965	0338	952	978	100	0	100\%
15	49	9.68	0339	9.58	977	100	0	100\%
16	49	9.68	0.336	9.59	977	100	0	100\%
17	49	967	0337	9.57	976	100	0	100\%
18	49	966	0336	9.57	976	100	0	100\%
19	49	9.66	0338	9.57	976	100	0	100\%
20	81	9.68	0339	960	975	100	0	100\%
21	81	9.67	0338	959	974	100	0	100\%
22	81	967	0339	960	974	100	0	100\%
23	81	966	0337	959	973	100	0	100\%
24	81	966	0337	959	973	100	0	100\%
25	81	966	0336	9.58	973	100	0	100\%

3.2.3 Statistical Testing of the Pseudo Population

The coefficients of skewness and coefficient of Kurtosis were calculated to examine the distribution of the pseudo population. One hundred sets of 10,000 pseudo population crack growth curves were generated. The average coefficient of skewness from the 100 sets of data was 0.046 and the standard deviation was 0.026. The average coefficient of Kurtosis from the same 100 sets of data was 3.03 and the standard deviation was 0.054 . The average coefficient of skewness indicates that the $\ln \mathrm{N}$ values are skewed slightly to the right. However, as the case in the constant stress analysis, both coefficients are very close to their target values of zero and three, respectively. Therefore, it was likely that $\ln N$ could still be modeled by Gaussian distribution

3.2.4 Comparison of the Response Surface Functions with the Pseudo Population

The Kolmogorov-Smirnov (K-S) test was used to check if the proposed probability model (based on the RS functions) was acceptable. For comparisons, one set of 10,000 simulated growth curves was used. Table 319 presents the results for all four sets of RS functions. Columns $5,7,9$, and 11 present the maximum difference in cumulative distribution between the normal distribution developed based on the RS function and the pseudo population. As can be seen from the table, the maximum differences are much less than the critical difference of $D_{c r}$ (column 4). The fraction of $D_{c r}$ is presented in Columns 6, 8,10 ,
Table 3.19. Results of the Kolmogorov-Smirnov test for all 4 sets of random stress block analysis

RS Function No	Sample Size	No of Std Dev from Mean	D_{cr}	Pseudo Population Size Used for all Comparisons 10,000							
				Set 1		Set 2		Set 3		Set 4	
				Difference	Fraction of $D_{c r}$	Difference	Fractıon of $D_{\text {cr }}$	Difference	Fraction of $D_{c r}$	Difference	Fraction of $D_{\text {cr }}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
1	9	05,0	$\left\lvert\, \begin{aligned} & \text { O } \\ & 寸 \\ & \hline \end{aligned}\right.$	0038	0086	0028	0063	0037	0084	0034	0077
2	9	1,0		0007	0016	0.034	0076	0031	0071	0024	0055
3	9	2,0		0008	0019	0006	0013	0005	0011	0006	0014
4	9	25,0		0015	0034	0003	0008	0016	0036	0019	0043
5	9	3, 0		0007	0015	0019	0044	0010	0.022	0004	0008
6	9	35,0		0008	0019	0.043	0099	0021	0048	0025	0057
7	9	4,0		0026	0058	0003	0006	0011	0026	0015	0033
8	25	1,05,0	$\left\lvert\, \begin{aligned} & 0 \\ & N \\ & 0 \end{aligned}\right.$	0014	0052	0021	0077	0032	0118	0025	0093
9	25	2, 1, 0		0012	0044	0024	0087	0013	0049	0014	0053
10	25	25,15,0		0010	0035	0019	0071	0016	0058	0.005	0018
11	25	25, 1, 0		0003	0013	0014	0051	0017	0061	0018	0.068
12	25	25, 2, 0		0007	0026	0.017	0061	0004	0.014	0006	0021
13	25	3,15,0		0.010	0038	0009	0033	0005	0.018	0003	0013
14	25	35, 2, 0		0016	0060	0021	0078	0014	0053	0017	0064
15	49	15,1,05,0	$\frac{N}{\sigma}$	0028	0144	0.023	0119	0024	0124	0020	0.106
16	49	2,1,05,0		0016	0084	0019	0.100	0013	0070	0022	0116
17	49	25,2, 1, 0		0004	0021	0.009	0.045	0011	0058	0.005	0028
18	49	3, 2, 1, 0		0010	0051	0009	0.046	0012	0.060	0005	0.026
19	49	35,2, 1, 0		0.003	0.016	0003	0017	0.010	0054	0003	0.016
20	81	2,15,1,05,0	$\frac{\overline{50}}{5}$	0012	0081	0019	0.128	0.017	0112	0021	0.136
21	81	25, 2, 1, 0.5,0		0011	0070	0006	0042	0008	0053	0005	0034
22	81	$3,2,1,05,0$		0012	0080	0008	0055	0009	0060	0.010	0.068
23	81	$35,25,1,05,0$		0012	0079	0008	0054	0007	0.048	0003	0019
24	81	$35,2,1,05,0$		0007	0048	0005	0034	0012	0.079	0004	0.024
25	81	$4,3,2,1,0$		0011	0.074	0009	0061	0010	0069	0009	0061

and 12. Most of the differences are less than 10 percent of $D_{c r}$ and the greatest difference is only 14 percent of the critical difference.

3.2.5 Optimal Sample Size and Range of the Input Parameters

Figures 3.6-3.9 present a graphical comparison between the maximum number of standard deviations from the mean and the fraction of $D_{c r}$ for each RS function. The maximum number of standard deviations from the mean can be found in Table 3 19, column 3.

Unlike the constant stress case where the fraction of $D_{c r}$ showed a distinct trend with respect to sample size and maximum number of standard deviations from the mean, the trend is not nearly as clear for the random stress situation. In partıcular, almost all sample sizes showed a high fraction of $D_{c r}$ at low values (0.5 and 1) of the maximum number of standard deviations from the mean. Hence, the choice of optimal sample size and range of input parameters was not quite as obvious. Examination of Figures $3.6-3.9$ suggested that a sample size of 9 to 25 with a standard deviation of 2.0 to 2.5 would perhaps yield the best RS function.

Figure 3.8. Comparison of fraction of Dcr and maximum input range for a pseudo population size of 10,000 (set 3)

Figure 3.9. Comparison of fraction of Dcr and maximum input range for a pseudo population size of 10,000 (set 4)

CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

A study was performed to assess aging aircraft by examining crack growth at the logeron of the aircraft. The objective of the study was to develop a probability model for the number of load cycles N needed for a crack to grow from its intiation size to critical size. Two different types of stress intensity were analyzed, constant stress and random stress block.

A fatigue crack growth model was developed based on the Paris equation. Response surface method (RSM) was used to develop relationships (RS functions) between the load cycles N (calculated from the Paris equation) and the input variables. A wide spectrum of sample sizes and ranges of the input variables were considered. The most workable regression function to approximate N was a linear regression with all varıables transformed to their natural logarthmic values Point estimate method and Taylor series approximation were used to determine the means and standard deviations of InN from the RS functions By central limit theorem, InN from the RS functions was assumed to be Gaussian distributed.

Comparing the means of InN from the pseudo populations to the 95 percent confidence interval computed from the RS functions indicated the RS function provides an acceptable mean value for the pseudo population. The results of the Kolomogmorov-Smırnov (K-S) test showed that the Gaussian
distribution was an acceptable model for both the constant stress and random stress block despite the observation that the coefficient of skewness and coefficient of Kurtosis of the pseudo population were slightly greater than their target values of zero and three, respectively, for a Gaussian distribution.

Once the probability model for the number of load cycles is known, a decision can be made on the flight hours where a tolerable risk is defined. For instance, assume the response surface function using 27 samples with a maximum input range of 2.0 standard deviations from the mean (RS function no. 17 in Table 3.2) for the constant stress was to be used to deterimine the number cycles the aircraft should fly. Table 3.5 gives the mean and standard deviation of $\ln N$ as 9.61 and 0.453 , respectively. If an acceptable risk is defined as five percent, then the maximum number of cycles one should fly the arrcraft after a crack has been initiated is

$$
\begin{aligned}
& \ln N=\bar{x}-\Phi^{-1}(0.05)(s) \\
& \ln N=961-1.645(0.453) \\
& \ln N=8.865 \\
& n=7078 \text { cycles }
\end{aligned}
$$

During the study, it was found that the RS function not only depended upon the sample size, but also the range of input values. From the spectrum of sample sizes and ranges of input values examıned, the optimal sample sıze and range of the input parameters, for the constant stress analysis, were respectively 27 and 2 to 2.5 standard deviations from the mean. Likewise, for the random
stress block, the optimal choice was 9 to 25 samples and 2 to 2.5 standard deviations from the mean.

The optimal sample size and range of input parameters information will help future development of crack growth models. For example, when a different type of material, geometry, stress level, or even critical crack size are considered, one only needs to have 27 sample crack growth curves and a range of input parameters with 2 standard deviations from the mean to develop a probabilistic crack growth model when constant stress is used.

While the probability model presented here for crack growth compared well with the pseudo population, a couple of issues could be addressed to enhance the overall goal of assessing aging aircraft. The crack size interval should be examined more closely. As stated in the introduction, most studies of fatigue crack growth consider the crack size as a changing variant, while N is a given integer. However, in this study the crack size was divided into equal increments, which were held constant. The constant crack size could affect the accuracy of the crack growth model. This is especially true where the crack growth is making a transition from slow growth to rapid growth. Continuing studies should consider a variable crack size increment. Consideration should also be given to dividıng the crack size range of interest into smaller crack size increments.

In this study, the input parameters were known and the crack growth curve was well behaved. One may argue that Monte Carlo simulations is a more
efficient method for developing the probability model of N. However, this study demonstrated that the response surface method is a viable method even in the situation where the statistics of the input parameters is not available. Furthermore, response surface method will be extended to study crack initiation, where few studies have been performed and the statistics of the input parameters were not well developed

It is also suggested that the probability model be compared to any existıng data that are available. Although the existing data may be small and limited, a comparison is vital before the probability model is used in the total life model of an arrcraft.

REFERENCES

REFERENCES

Ang, A.H-S. and Tang, W.H. (1975) Probability Concepts in Engineering Planning and Design, Vol. 1, John Wiley \& Sons, New York.

Bannantine, J.A , Comer, J.J. and Handrock, J.L. (1990) Fundamentals of Metal Fatigue Analysis, Prentice Hall, New York.

Benjamin, J.R. and Cornell, C.A. (1970) Probability, Statistics and Decision for Civil Engineers, McGraw Hill, New York.

Box, G E.P. and Wilson, K.B. (1951) "On the Experımental Attaınment of Optimum Condıtions," Journal of the Royal Statistical Society, Ser. B, 13, 1-45.

Bucher, C.G. and Bourgund, U. (1990) "A Fast and Efficient Response Surface Approach for Structural Relıability Problems," Structural Safety, Vol. 7, pp. 57-66.

Chou, K.C. (1998) "Reliability Assessment Model for Aging Aırcraft," preliminary report to Structures Divisıon, Navy Air Station, Patuxent River, MD, part of NavyASEE Summer Faculty Program.

Draper, N.R. and Lin, D.K.J. (1990) "Small Response-Surface Designs," Technometrics, Vol 32, No. 2, May, pp. 187-194.

Harr, M.E. (1987) Reliability Based Design in Civil Engineering, McGraw Hill, New York.

Hoffman, M.E. (1998) "STIP Project: Reliability Assessment Method," Status Report: 03FY98, August 5, presented to the Structures Division, Navy Air Station, Patuxent River, MD.

Liu, Y.W and Moses, F. (1994) "A Sequential Response Surface Method and its Applicatıon in the Reliability Analysis of Aırcraft Structural Systems," Structural Safety, Vol. 16, pp. 39-46.

Maymon, G. (1998) "Some Engineering Applications in Random Vibrations and Random Structures," Progress in Astronautics and Aeronautics, Vol. 178.

Myers, R.H., Khuri, A.I. and Carter, W.H. Jr. (1989) "Response Surface Methodology: 1966-1988," Technometrics, Vol. 31, No. 2, May, pp. 137-157.

Rajashekhar, M.R. and Ellingwood, B.R. (1993) "A New Look at the Response Surface Approach for Reliability Analysis," Structural Safety, December, pp. 205220.

Rosenblueth, E. (1975) "Point Estimates for Probability Moments," Proceedings of National Academy of Science, U.S.A., Vol. 72, No. 10, October, pp. 38123814.

Rosenblueth, E. (1981) "Two Point Estimate in Probability," Applied Math. Modelling, Vol. 5, October, pp. 329-335.

Wirsching, P.H. (1983) Statistical Summaries of Fatigue Data for Design Purposes, NASA Contractor Report 3697, National Aeronautics and Space Administration, Lewis Research Center.

Wu, T-T. and Wirsching, P.H. (1983) Application of Advanced Reliability Methods to Local Strain Fatigue Analysis, NASA Contractor Report 168198, National Aeronautics and Space Administration, Lewis Research Center.

Glenn Chris Cox was born in Knoxville, Tennessee on October 8, 1976 to Gordon and Janie Carpenter Cox and was raised in nearby Lake City, Tennessee. He attended public school in Anderson County and graduated from Anderson County High School in June, 1994. Upon graduation he enrolled at the University of Tennessee, Knoxville (UTK). As an undergraduate at UTK he was active in the student chapter of American Society of Civil Engineers (ASCE), serving as secretary from June 1997 to May 1998 and vice president from June 1998 to May 1999. He became a member of Chi Epsilon, a natonal civil engineering honor society, during the fall term of 1998. He served as president of the Chi Epsilon student chapter at UTK from June 1999 to May 2000. He recerved his Bachelor of Science in Civil Engineering in August, 1999. He enrolled in graduate school at UTK during the summer term of 1999 and graduated with a Master of Science in Civil Engineering in December, 2000. He became engaged to the love of his life, Ashley Hamby, on June 23, 2000. Their wedding is planned for July 7, 2001. He began employment September, 2000 as an engıneer assistant with Lockwood Greene, Inc., in Knoxville, Tennessee.

