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ABSTRACT 

All aircraft operated by the United States Navy were designed to operate 

for a predetermined number of flight hours defined as the flight life expectancy 

(FLE). An aircraft is due to retire from service once the FLE is reached. Due to 

the end of the cold war and budget priority, it is anticipated that fleets of United 

States Naval aircraft will be used beyond their designed FLE. A study was 

performed for the US Navy to address the aging aircraft issue by examining 

crack growth at the logeron of the aircraft. The objective of the study was to 

develop a probability model for the number ofload cycles(N)needed for a crack 

to grow from its initiation size to critical size Fatigue crack growth due to 

constant stress intensity as well as random stress block was examined. The 

Pans equation was used to compute the fatigue crack growths. Response 

surface methodology was used to approximate the number of load cycles with 

respect to the geometric and material properties and stress intensity level. The 

most workable relationship wasa linearfunction with all the input parameters and 

number of load cycles in their natural logarithmic base. The statistical analyses 

ofthe study showed that the mean number of load cycles(N)approximated from 

the response surface functions predicted the mean pseudo population load 

cycles at a 95 percent confidence level. The study also showed that the 

probability density function of the number of load cycles from the response 

surface functions, Gaussian distribution, fit the histogram of the pseudo 

population well. 
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CHAPTER 1 

INTRODUCTION 

All aircraft operated by the United States Navy were designed to operate 

for a predetermined number offlight hours defined asflight life expectancy(FLE). 

An aircraft is due to retire from service once the FLE is reached. Since World 

War II, the FLE criterion has served the fleets of aircraft in the US Navy well. 

Due to the end of the cold war and budget priority, it is anticipated that fleets of 

aircraft will be used beyond their designed FLE. This undoubtedly raised the 

question of how safe an aircraft would be for Navel service beyond its designed 

FLE. 

The US Navy has defined the FLE based on an undefined probability that 

a crack on the frame ofan aircraft will reach a critical size (crack size is defined 

asthe length ofthe crack)beyond FLE However,once a crack,smaller than the 

critical size, is detected prior to its FLE, the component would be repaired or 

replaced and the aircraft would be allowed to continue to fly until it reaches the 

FLE. The University of Tennessee has been contracted by the Navy Air System 

to perform an assessmentstudy on aging aircraft. 

A realistic analysis of any structural system should consider the 

randomness inherent in the loads and resistance. For fatigue analysis, a 

stochastic crack growth model would be desired. Maymon (1998) gave three 

major reasons why stochastic crack growth models are preferred; 



1) The geometry, dimensions, and material properties may differ slightly 

between specimens. Thus,the whole structure is not deterministic. 

2) The external loading in practical engineering cases is usually random. 

3) The structures or specimens properties are random even under well-

controlled production conditions. 

Maymon further stated that stochastic models can be incorporated in the 

calculation of the probability of structural failure due to crack propagation and 

that the engineering community should study and adopt such methods in 

practical design. 

A 1983 NASA funded study (Wirsching, 1983) provided specific 

recommendations on how designers should model fatigue strength. The paper 

presented several engineering models used to describe fatigue behavior, one 

being the use of statistical models to analyze number of load cycles to failure 

data. The author stated that in order to make design decisions on the basis ofa 

set of observations of a design factor, it was necessary to describe the 

distribution of that factor. Therefore, statistical models are usually employed. 

The author later developed a statistical model in another NASA funded study 

(Wu and Wirsching, 1983) The objective of that study was to determine the 

probability of having a certain crack size (or failure) given a service life of N 

cycles. While this study provided useful information at the service life, no 

information was known beyond the service life or the knowledge of how long a 

service life should befor a given crack size. 



This type ofstudy Is typical ofthose focused in the area of crack size and 

load cycles. Despite the extensive studies performed by the researchers, their 

results cannot be directly applied to the aging aircraft with which the U.S. Navy is 

concerned. As stated earlier, Wu and Wirsching's study gave no knowledge of 

how long a service life should be for a given crack size. Furthermore,due to the 

time dependent relationship between crack size and load cycles, one cannot 

simply invert the relationship developed by Wu and Wirsching to yield the 

numberofload cycles given crack size. 

A 1998 internal report(Chou, 1998)and presentation (Hoffman, 1998)to 

the Structural Division at the Navy Air System showed that to assess aging 

aircraft was to evaluate the total life of the aircraft. The focus was narrowed to 

fatigue around boltholes at the longeron of an aircraft. A preliminary total life 

reliability model was developed (Chou, 1998). The total life was defined as the 

duration for crack initiation combined with the duration for crack growth (crack 

grows from initiation to critical size). In order to use the total life model, the 

probability models for the number of load cycles needed for crack initiation and 

for crack growth are required. The focus ofthis study is to develop a probability 

model for the number of load cycles for a crack to grow from initiation to critical 

size. 

To begin the process of developing the probability model, a crack growth 

model must be established. The Paris equation, which was developed by Paris 

and Erdogan(Bannantine,et al., 1990)in the early 1960's, is still the most widely 



used method used to model the crack growth rate. This equation was used in 

the study to determine the crack growth curves. However, due to the 

mathematical complexity in determining the crack growth curves, the probability 

modelforthe number ofload cycles was developed numerically. 

Researchers have demonstrated that response surface method is a viable 

tool in developing a relationship between a response and multiple parameters 

input(Myers et al., 1989, Bucher, 1990, Draper and Lin, 1990, Rajashekhar and 

Ellingwood,1993,and Liu and Moses,1994). Furthermore,the response surface 

can be determined using only a limited number of data points. Once a response 

surface is determined (it is usually represented by a polynomial function), basic 

probability can be applied to derive the probability modelfor the response value. 

In this study, the response surface was determined using the number of 

load cycles computed by the Paris equation. An initiation crack size of 0.01 

inches and a critical size of 0.3 inches were used in this study. These values 

were provided by the engineers at the Navy Air System. All material properties 

were assumed to be constantthroughoutthe entire crack growth. 

In Chapter 2, the analysis procedures used to develop the probability 

model are explained. This chapter presentsthe Paris equation for computing the 

fatigue crack growth model. It also discusses the response surface methodology 

and its application to the crack growth problem. Finally, it explains the statistical 

analyses used to verify and check the proposed probability model. 



In Chapter 3, the results from analysis procedures outlined in Chapter 2 

are presented. These Include the results from all statistical testing performed, 

presentssome conclusions and recommendations. 

including the statistical moments and probability distribution. Finally, Chapter4 



CHAPTER2 

ANALYSISPROCEDURES 

2.1 FATIGUE CRACK GROWTH MODEL 

The crack growth model used in this study was based on the Pans 

equation. The Paris equation (Bannantine et a!., 1990)defines the fatigue crack 

growth rate as 

—=c(aA:)'" (2.1)
dN ^ ^ 

where,a = crack size, N = number of load cycles,c= geometric parameter, m = 

material constant,and Ak=stress intensityfactor which is defined as 

AA=j&{Aa)^^a (2.2) 

in which p = correction factor and Aa=stress intensity. 

The Paris equation can be applied to any type or shape of metal, as long 

as one uses the appropriate geometric and material coefficients. This equation 

also has no regard for crack sizes in which it is not applicable. Theoretically,one 

could solve for the crack growth rate of a crack that is several feet in length 

However, good engineering judgment would suggest that failure has probably 

long since occurred. Therefore,like many engineering equations,the user must 

be aware of where the formula is applicable. 

The Paris equation provides one with the crack growth rate However,to 

determine the number of cycles needed for this study, the Paris equation given 



by Equation (2.1) needs to be integrated so that the number of cycles can be 

computed if the crack size and input parameters are known. If the equation is 

examined closely at its simplest form when the input parameters are constants, 

the crack size and number of cycles are the only changing variables. Equation 

(2 1)can be simplified to the following: 

=constant 
da (V?)" (2.3)
dN 

However,even in this simple form, where m is not an even integer,the equation 

cannot be integrated to a closed form expression. Therefore, numerical 

integration has to be used instead. 

Since the objective here is to examine the variation in the number of load 

cycles for a given crack size,the difference between the crack initiation size and 

critical size was divided into 100 equal intervals. The number of load cycles AN 

needed to achieve each increment ofcrack length Aa was computed as: 

-^=c[Lkj)"' ajY (2.4) 

Rearranging Equation 24to solve for AN yields: 

ANj=-r^^^=— — ^ (2.5)
c[j0j{Acr)^;raj)"' 

where 

af-a,
Aa=-^ ^ (2.6)

100 ^ ' 



and Pj and aj are, respectively, the correction factor and crack size at the 

increment and af and a,are, respectively,the critical(0.3 inches)and the initiation 

(001 inches)crack sizes 

The total number of load cycles needed for the crack to grow from its 

initiation size to critical size was simply computed as 

100 

N='^{an)j (2.7) 
7=1 

Typical crack growth curves, developed from the Paris equation, can be 

seen in Figure 2.1. The crack growth curves presented are for the crack sizes 

ranging from 0.01 inches to 0.3 inches considered in this study. 

2.2 RESPONSESURFACE METHODOLOGY 

Response surface method (RSM) uses a limited amount of data to 

approximate a system in which a large number of variables influence the 

response ofthe system. The history of RSM can be found in a report written by 

Myers and his colleagues(1989). The use of"response curves" has been dated 

back into the 1930's, but it wasn't introduced formally until an article (Box and 

Wilson, 1951) about the notion of composite designs was published in 1951. 

This article spurred the use of RSM as a powerful tool in design and data 

analysis. 

8 
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Figure 2.1. Typical crack growth curves 

Rajashekhar and Ellingwood (1993)gave a concise description of how to 

apply RSM to engineering problems, and it is summarized here. Suppose a 

response variable Y depends on the input parameters Xi, X2, X3,...., Xn,and the 

design variables Xi, X2, X3,. Xn are obtained experimentally or simulated a 

sufficient number of times to define the response surface. Each experiment or 

simulation can be represented by a point with coordinates Xij, X2j, X3j, Xnj in an 

(n+1)-dimensional space. At each point a response value of y is determined. 

Using the input parameters(xij, X2j, X3j Xnj)and corresponding output(y),one 



can establish a relationship between them. This relationship is referred to as the 

response surface(RS)function. 

In most engineering systems, the relationship between the input 

parameters and the output value is very complex and almost impossible to derive 

mathematically. Response surface method offers a convenient approximation to 

develop such a relationship because only a limited number of input response 

data points are needed. Furthermore, these points can be obtained through 

experiments, engineering analyses (such as finite element method), or through 

simulation. 

The study on hand fell naturally to the response surface method. The 

crack growth rate was well defined. However, the relationship between the 

number of load cycles and the input parameters could not be computed via a 

closed form expression Therefore, RSM was a desirable choice to approximate 

the relationship for the purposes of establishing a probability model. 

To develop the response surface functions,the response variable wasthe 

number of load cycles, N, which was a function of the input parameters (c, m, 

and Aa). Multiple sets of input parameters were then defined and the 

corresponding output N for each set was solved using Equations (2.5-2.7). The 

input variables were defined rather than simulated, to ensure that a wide 

spectrum ofinput variables were used. With input parameters(c, m,and Aa)and 

output (N) known, a relationship could be defined between the two using a 

regression analysis. Since N is a function of 3 variables, a typical linear 

10 



regression analysis (the simplest regression relationship) yields 4 coefficients. 

Hence, a minimum of 5 sets of(c, m, Aa, and N)values are required for the 

regression analysis. MATLAB® statistical toolbox(by Mathwork, Inc.) was used 

to perform the regression analysis using the least-squared-error criteria. Both 

linear and nonlinear regression analyses were attempted to develop a response 

surface function for N as well as for natural log of N, InN. The most workable 

regression function was a linear regression with all the variables transformed to 

the natural logarithmic values. Hence,the basic RSfunction became 

ln(N)= bi*ln(c)+b2*ln(m)+b3*ln(Acj+ b4 (2.8) 

where b,= coefficients obtained from the regression analysis. 

2.3 PSEUDO POPULATION 

The pseudo population represents the actual population ofthe natural log 

of N,InN. In theory,the pseudo population takes into account all possible values 

and combinations of c, m, and Act and record the corresponding output N for 

each unique set. The pseudo population was used as the basis to check the 

validity ofthe response surface(RS)functions. 

The pseudo population was created by randomly generating several 

thousand sets of the input variables (c, m, and Act). Equations (2.5-2.7) were 

then applied to determine the number of cycles N for the crack to grow from its 

initiation size to critical size. This pseudo population was generated in lieu ofthe 

11 



actual flight data because the sample size ofthe actual data was small and they 

were costly to produce. 

2.4 CONSTANT AND RANDOM STRESS BLOCK ANALYSES 

Two different types of stress intensity were analyzed, constant stress and 

random stress block. In both cases, the geometric parameter(c) and material 

constant(m)were assumed to be constant throughout the crack growth life. The 

constant stress analysis assumed that the stress intensity (Aa) remained 

constant for a single crack growth curve, while the random stress block analysis 

assumed the stress intensity fluctuated from interval to interval throughout a 

single crack growth curve. The random stress block analysis best represents the 

actual loading to which an aircraft frame would be subjected, but the idea of 

constant stress intensity simplified the calculations and represents a deterministic 

crack growth. 

Both analyses were easy to accomplish because the numerical integration 

of the Paris law required that the difference between the initiation and critical 

crack sizes be broken into several intervals to calculate the crack growth curves. 

The constant stress analysis was accomplished by holding the stress constant 

for each interval. Therefore,each curve was represented by a single set ofc, m, 

Aa,and N. To accomplish the random stress block analysis a stress value was 

randomly generated foreach interval. Therefore,each curve was represented by 

a single set of(c, m,and N)along with 100 Aa values. However,the mean ofthe 

12 



100stress values was used as Aa in each set,thus creating a single set of(c, m, 

Act, and N). The reason for using the mean was that the Aa values were 

centralized around that number. 

2.5 STATISTICAL ANALYSISAND VERIFICATIONS 

2.5.1 Statistical Moments ofResponse Surface Functions 

Any probability model based on experimental data requires statisticai 

verifications. The statisticai moments,such as the mean and standard deviation, 

were determined based on output(InN)of the RS functions from both constant 

and random stress block analyses. Point estimate method and Taylor series 

expansion were used to caicuiate the mean and standard deviation of InN for 

each RSfunction. 

The point estimate method (Rosenbleuth, 1975, 1981; Harr, 1987) is 

simple and requires no continuity on the RS function. Hence,information on the 

derivatives of the RS function is not needed. The method requires eight points 

that represent the following combinations of c, m, and Aa: (c+Sc, m+Sm, 

A£7+Sa<t), (c+Sc, rn+Sm, Act-Sact), (c+Sc, m-Srn, Act+Sact), (c-Sc, /W+Sm, 

Act+Sact),(c-Sc, m-Sm, A<T+Sact),(c-Sc, /n+Sm, Act-Sao),(c+Sc, 7«-Sm, Act-Sac), 

(c-Sc, /M-Sm, Act-Sact): in which c, m,and Aa represent the mean of c, m and 

Aa, respectiveiy, and Sj represents the standard deviation of parameter j. Each 

set of(c, m, and Aa)was substituted into its respective RS function (Equation 

13 



 

(2.8)) to solve for the InN values, n,. The mean and standard deviation of InN 

became: 

= (2.9) 

(2-10) 
1=1 

The other method used to estimate the mean and standard deviation of 

InN from the RS functions was Taylor series expansion. Taylor series expansion 

requires that the RS functions be continuous at least up to the second derivative 

and it is more accurate than the point estimate method. Second order Taylor 

series expansion was used to compute the mean and first order Taylor series 

expansion was used for the variance (Benjamin and Cornell, 1970). Based on 

the assumption of mutual independence among the parameters, the resulting 

mean and standard deviation were calculated as: 

E[\nN]=bME[c\)+b2\ri{E[m\)+bME[i^o])-vb^-^[b^Cl^b2Cl+hdo\ (2-11) 

4W = +bid +bUla (2.12) 

where C* ijand = 5* 

E[*f' 

When «1,then d . Therefore, d m Equations(2.11)and (2.12)can 

be replaced by . 

14 



2.5.2 Verification ofthe Response Surface Function Statistical Moments 

The means and standard deviations calculated from the two above 

methods were used to establish a confidence interval to compare with the mean 

of inN from the pseudo population. If the pseudo population mean is within the 

range of the sample mean (based on the RS functions), then one can conclude 

that the sample mean of InN is representative of the "population" mean within a 

certain confidence level. A ninety-five percent confidence interval of the 

population mean for each RS function was chosen. The lower and upper limit of 

the confidence interval were calculated as 

x-k^/—r= and x+k^/—j=- (2.13) 
/2^In /lyin 

where x= mean of InN,s = standard deviation of inN, n = sample size,a = 0.05 

for a 95% confidence interval, and k^/ is determined from a normal probability 
/i 

plot and IS defined as 

1-^ (2.14) 
y 

in which O ̂ = inverse cumulative distribution function ofa standardized normal 

variant and k^/ .96fora =0.05. 

2.5.3 Distribution ofResponse Surface Functions and Pseudo Population 

Since the natural logarithm of the number of load cycles InN was lineraly 

related to the input parameters in the natural logarithm base, the probability 

15 



model of InN can be approximated by Gaussian distribution (Benjamin and 

Corneii, 1970). Therefore, it would be of interest to examine if the pseudo 

population possessed two fundamental characteristics of Gaussian distribution. 

These characteristics are the coefficient of skewness being zero and the 

coefficient of Kurtosis being three. If the coefficient of skewness of the pseudo 

population is zero and the coefficient of Kurtosis is three, then the probability 

model based on the RS function would have a higher probability to be a good fit 

to the pseudo population. The goodness of fit test, as presented subsequently, 

was a better method for assessing the quality ofthe probability model developed 

based on the limited data. However,the coefficients of skewness and Kurtosis 

provide a quick check for the case of Gaussian distribution. The coefficient of 

skewness was calculated as 

(2.15) 

and the coefficient of Kurtosis was calculated as 

(2.16) 

The last statistical verification preformed was the Kolmogorov-Smirnov 

test. Kolmogorov-Smirnov (K-S)test is a common goodness-of-fit test used to 

verify the probability model of a population based on a limited number of 

samples. The test compared the difference in cumulative distribution between 

the model based on RS functions and the pseudo population. If the maximum 

16 



absolute difference in the cumulative distributions was within a critical value Dcr 

(tolerance)for a given significant level,then the proposed model was acceptable. 

The critical value Dcr depended on the number of "experimental" data (sample 

size or number of crack growth curves) that were used to develop the RS 

function (and hence the proposed probability model). Table 2.1 presents the 

critical values of Dor in the K-S test for a significant level offive percent. 

Table 2.1. Critical values ofDcr In the Kolmogorov-Smlrnov test(values 
taken from Ang and Tang(1975)) 

Sampie 
Dcr 

Size fnl 

5 0.56 

10 0.41 

15 0.34 

20 0.29 

25 0.27 

30 0.24 

35 0.23 

40 0.21 

45 0.2 

50 0.19 

>50 1 36 

17 



CHAPTER3 

DISCUSSION OF ANALYSIS RESULTS 

3.1 CONSTANTSTRESS ANALYSIS 

3.1.1 Response Surface Functions and Pseudo Population 

To determine the constant stress response surface (RS) functions, all 

Input parameters(c, m,and Aa)were manually defined using the statistical data 

presented in Table 3.1. A sample size ranged from 5 to 729 sets of(c, m, Aa, 

and N)values, as shown in Column 2 of Table 3.2, were used to create thirty-

nine RS functions. Each set of (c, m, Aa, and N) represents a single crack 

growth curve. Therefore, an RS function based on a sample size of 729 was 

actually based on 729 crack growth curves. It was found during the study that 

the number of samples (or curves) was not the only factor influencing the RS 

functions. The range of the input parameters(c, m,and Aa)also influenced the 

"quality" of the RS functions. Hence, various values of (c, m, and Aa) were 

considered as well. 

Table 3.1. Statistical data for input parameters 

Parameter Mean Standard Deviation 
Coefficient of Probability 

Variation Distribution 

c 1.0 E-8 2.3 E-9 0.23 loonormal 

m 30 0.1 0.033 normal 

Arr(ksi) 13.9 1.39 0.1 normal 
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Table 3.2. Sample size,input ranges,and coefficientsfrom regression 
analysisfor constantstress analysis 

RS Function Sample No ofStd. Dev. Coefficients 
No Size from Mean b1 b2 b3 b4 

(1) (2) (3) (4) (5) (6) (7) 
1 5 001 -08383 -03668 -23913 0.8531 

2 5 005 -1.2163 -65087 -28365 1 8106 

3 5 01 -1.0955 -7 1310 -29251 49527 

4 5 05 -1 0085 -75415 -30187 72528 

5 5 1 -1.0173 -76537 -3.0375 7.2654 

6 5 1 5 -1.0266 -77639 -30562 7.2680 

7 5 2 -1 0362 -7.8722 -30750 7.2632 

8 5 25 -1 0461 -79790 -3.0937 72526 

9 5 3 -1.0563 -80842 -3.1125 72354 

10 8 1 -1.0000 -74098 -30000 72106 

11 8 1 5 -1 0000 -7.3873 -30000 71810 

12 8 2 -1 0000 -73554 -30000 71396 

13 8 1 5 -1 0000 -73138 -30000 7.0852 

14 8 3 -1.0000 -72616 -3.0000 70170 

15 27 05,0 -1 0000 -7.4242 -30000 7.2297 

16 27 1,0 -1 0000 -7.4141 -30000 72167 

17 27 2,0 -1 0000 -7.3732 -30000 71644 

18 27 25,0 -1 0000 -7.3419 -3.0000 7.1239 

19 27 3,0 -1 0000 -73029 -30000 7.0742 

20 27 35,0 -1.0000 -72557 -30000 70141 

21 27 4,0 -1.0000 -7.1996 -30000 70742 

22 125 1,05,0 -1 0000 -74171 -30000 72211 

23 125 2,1,0 -1 0000 -73850 -30000 71799 

24 125 25,1 5,0 -1 0000 -73573 -30000 71443 

25 125 25,1,0 -1 0000 -73625 -30000 71518 

26 125 25,2,0 -1 0000 -73472 -30000 71303 

27 125 3,1 5,0 -1 0000 -7.3302 -30000 71101 

28 125 35,2,0 -1.0000 -73152 -30000 70930 

29 343 1 5,1,05,0 -1 0000 -74062 -30000 7.2072 

30 343 2,1,05,0 -1.0000 -73924 -3.0000 7.1900 

31 343 25,2,1,0 -1.0000 -73610 -3.0000 71489 

32 343 3,2,1,0 -1.0000 -73403 -3.0000 71231 

33 343 35,2,1,0 -1.0000 -73139 -30000 70905 

34 729 2,1 5,1,05,0 -1.0000 -73916 -30000 71885 

35 729 2.5,2,1,0.5,0 -1 0000 -7.3704 -30000 71617 

36 729 3,2,1,05,0 -1 0000 -73522 -30000 71394 

37 729 35,2.5,1,0.5,0 -1.0000 -73217 -30000 71011 

38 729 35,2,1,05,0 -1.0000 -73289 -30000 71110 

39 729 4,3,2,1,0 -1.0000 -72788 -30000 70453 
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To create the sets of(c, m,Act, and N), combinations of the mean vaiues 

along with the mean values plus or minus certain amounts of their standard 

deviation were used for each input parameter. Column 3 in Table 3.2 presents 

the range of the input parameters used to determine the sample size. For 

example, RS function number one from Table 3.2 has a sample size of5 and a 

range of0.01 standard deviationsfrom the means ofthe input parameters. Thus, 

the values for c, m,and Actfor the five sets were'{c, m, Act),(c + O.OISc, m, 

Act),(c, m + 0.01Sm, Act),(c, m, Acr + 0.01Sacj). and (c + 0.01Sc, m + 

0.01Sm, Act + 0.01Sact); m which c, m,and Aa represent the mean of c, m and 

Act, respectively, and Sj represents the standard deviation of parameter]. Table 

3.3 summarizes the combinations of the input values for crack growth curve 

computations using sets of 5,8, and 27 curves. For sample sizes of 125, 343, 

and 729,the permutation sequence is similar to that ofsample size 27. 

Equations (2.5-2.7) were used to calculate the number of cycles N for 

each set of input parameters. A linear regression was then performed on each 

set of (c, m. Act, and N) to determine the coefficients for the RS functions 

(Equation 2.8). Recall that each value was transformed to its natural logarithmic 

base for the regression analysis. Columns 4-7 in Table 3.2 present the 

coefficients ofeach RSfunction. 
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Table 3.3. Summary of the sets of input values for crack growth 
computations (note: 0= mean value;+= mean plus x standard deviations; 
-= mean minus xstandard deviations;x given in third column ofTable 3.2) 

Sample Size c m Aa C m Aa c m Aa c m Aa 

0 0 + 0 + 0 0 + + +0 0
5 

0 0 + 

+ + + + + +0 0 0 0 0 08 
0 0 0 0 0 0 -

+ + + + + +0 0 0 0 

0 0 Q + + + Q 

0 Q + 0 + + + + +0 
27 + + + +0 0 0 

0 0 0 0 0+ + + 

_+ + + +0 0 0 

0 0 0 0-+ 

3.1.2 Verification ofthe Response Surface Function Statistical Moments 

The point estimate method and Taylor series expansion were used to 

caicuiate the mean and standard deviation ofinN for each RSfunction. Columns 

3 and 4 in Tables 3.4 and 35summarize the results from both methods. Using 

two significantfigures,the mean ofInN is 9.6 and the standard deviation is about 

0.45. This corresponds to a mean number of load cycles of 16,340 cycles and a 

standard deviation of7,740 cycles(Benjamin and Cornell, 1970). 

One thousand sets of 10,000 crack growth curves were simulated to 

represent the pseudo population. The statistical data in Table 3.1 were used to 

randomly generate c, m, and Aa values for each curve. Columns 5 and 6 in 

Tables 3.4 and 3.5 presentthe95 percent confidence interval ofthe population 
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Table 3.4. Means and standard deviationsfrom point estimate 
method and results ofthe95% confidence interval testfor 

constantstress analysis 

RS Function Sample Average Standard 95% Confidence Interval Pseudo Population Percent 

No Size Value Deviation Lower Limit Upper Limit Passed Failed Acceptable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 5 963 0310 936 991 1000 0 100% 

2 5 965 0457 925 101 1000 0 100% 

3 5 965 0457 925 100 1000 0 100% 

4 5 9.65 0459 924 10.0 1000 0 100% 

5 5 965 0463 924 10 1 1000 0 100% 

6 5 965 0468 924 10 1 1000 0 100% 

7 5 9.66 0472 924 10 1 1000 0 100% 

8 5 966 0477 925 10 1 1000 0 100% 

9 5 967 0481 925 10 1 1000 0 100% 

10 8 964 0454 933 996 1000 0 100% 

11 8 964 0454 932 995 1000 0 100% 

12 8 963 0453 932 994 1000 0 100% 

13 8 962 0453 931 994 1000 0 100% 

14 8 961 0452 930 992 1000 0 100% 

15 27 964 0455 947 982 1000 0 100% 

16 27 964 0455 947 9.81 1000 0 100% 

17 27 964 0454 946 981 1000 0 100% 

18 27 963 0453 946 9.80 1000 0 100% 

19 27 962 0452 945 979 1000 0 100% 

20 27 961 0452 944 978 1000 0 100% 

21 27 974 0451 957 991 1000 0 100% 

22 125 964 0455 956 972 1000 0 100% 

23 125 964 0454 956 972 1000 0 100% 

24 125 963 0453 955 971 1000 0 100% 

25 125 963 0454 956 971 1000 0 100% 

26 125 963 0453 955 971 1000 0 100% 

27 125 963 0453 955 971 1000 0 100% 

28 125 963 0453 955 971 1000 0 100% 

29 343 964 0454 959 969 1000 0 100% 

30 343 964 0454 959 969 1000 0 100% 

31 343 963 0454 959 968 1000 0 100% 

32 343 963 0453 958 968 1000 0 100% 

33 343 963 0453 958 967 1000 0 100% 

34 729 964 0454 961 967 964 36 964% 

35 729 964 0454 960 967 996 4 996% 

36 729 963 0453 960 967 1000 0 100% 

37 729 963 0453 960 966 1000 0 100% 

38 729 9.63 0453 960 966 1000 0 100% 

39 729 962 0452 959 965 1000 0 100% 
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Table 3.5. Means and standard deviationsfrom Tayiorseries 
expansion and results ofthe95% confidence intervai testfor 

constantstress analysis 

RS Function Sample Average Standard 95% Confidence Interval Pseudo Population Percent 

No Size Value Deviation Lower Limit Upper Limit Passed Failed Acceptable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 5 9.61 0309 934 988 1000 0 100% 

2 5 9.62 0456 922 10.0 1000 0 100% 

3 5 9.62 0455 9.22 10.0 1000 0 100% 

4 5 962 0458 9.22 100 1000 0 100% 

5 5 962 0462 922 100 1000 0 100% 

6 5 963 0467 9.22 10.0 1000 0 100% 

7 5 9.63 0471 9.22 100 1000 0 100% 

8 5 963 0475 9.22 10 1 1000 0 100% 

g 5 9.64 0480 922 10.1 1000 0 100% 

10 8 9.62 0453 930 993 1000 0 100% 

11 8 961 0453 930 992 1000 0 100% 

12 8 9.60 0452 929 992 1000 0 100% 

13 8 960 0451 928 9.91 1000 0 100% 

14 8 958 0.451 927 990 1000 0 100% 

15 27 962 0453 945 979 1000 0 100% 

16 27 9.62 0453 9.45 979 1000 0 100% 

17 27 961 0453 944 978 1000 0 100% 

18 27 9.60 0452 943 977 1000 0 100% 

19 27 960 0451 943 977 1000 0 100% 

20 27 9.59 0450 942 9.76 1000 0 100% 

21 27 958 0.449 941 975 1000 0 100% 

22 125 962 0453 954 970 1000 0 100% 

23 125 961 0453 953 969 1000 0 100% 

24 125 961 0452 953 969 1000 0 100% 

25 125 961 0452 953 969 1000 0 100% 

26 125 960 0452 952 968 1000 0 100% 

27 125 960 0452 952 968 1000 0 100% 

28 125 960 0451 952 968 1000 0 100% 

29 343 962 0453 9.57 966 1000 0 100% 

30 343 9.61 0.453 957 966 1000 0 100% 

31 343 961 0452 956 965 1000 0 100% 

32 343 9.60 0452 956 965 1000 0 100% 

33 343 9.60 0451 955 965 1000 0 100% 

34 729 961 0453 958 965 1000 0 100% 

35 729 961 0452 958 964 1000 0 100% 

36 729 961 0452 957 964 1000 0 100% 

37 729 960 0452 957 964 1000 0 100% 

38 729 960 0452 957 964 1000 0 100% 

39 729 959 0451 956 963 988 12 98.8% 
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mean using the point estimate and Tayior series approximations of the RS 

functions. For the point estimate method, ail the pseudo population means fell 

within the 95 percent confidence interval determined from the response surface 

functions exceptfor RSfunctions 34 and 35(Table 3.4, columns 7-9) However, 

more than 95 percent of the pseudo population means still fell within the 

confidence interval for these functions The results for the Taylor series 

expansion (Table 35, columns 7-9) were even better. All pseudo population 

means fell within 95 percent confidence intervals determined from the RS 

functions except for RS function no. 39, which 98.8 percent of the pseudo 

population meansfell within that confidence interval. 

3.1.3 Statistical Analysis ofthe Pseudo Population 

To further assess the probability model of InN, the distribution of the 

pseudo population was examined. One hundred sets of 10,000 pseudo 

population crack growth curves were generated. The average coefficient of 

skewnessfrom the 100 sets of data was 0.048 and the standard deviation ofthe 

coefficient ofskewness was 0.026. The average coefficient of Kurtosis from the 

same 100 sets of data was 3.03 and the standard deviation was 0.049. The 

average coefficient ofskewness indicates that the InN values are skewed slightly 

to the right. Although the pseudo population indicates that the probability 

distribution of InN is not exactly symmetric, the coefficient of skewness and the 

coefficient of Kurtosis are very close to the target values of zero and three. 
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respectively Therefore, it was likely that InN could still be modeled by Gaussian 

distribution. 

3.1.4 Comparison of the Response Surface Functions with the Pseudo 

Population 

The Kolmogorov-Smirnov (K-S) test was used to check if the proposed 

probability model (based from the RS functions) was acceptable. For 

comparisons, three sets consisting of 10,000, 50,000, and 100,000 simulated 

crack growth curves were used. Columns 5, 7, and 9 in Table 3.6 present the 

maximum difference in cumulative distribution between the normal distribution 

developed based on the RSfunction and the pseudo population. As can be seen 

from the table, the maximum differences are much less than the critical 

difference of Dcr given in column 4. To better visualize how the maximum 

difference compared to Do-, the fraction of Dcr was calculated by dividing Dor into 

the difference The resulting fractions are presented in Columns 6, 8, and 10. 

Mostofthe differences are less than 10 percent of Dcr and the greatest difference 

is 36 percent ofthe critical difference 

It was also observed that on the average,the test results got better as the 

pseudo population size increased, that is the RS functions were "fitting" the 

pseudo population better as the pseudo population size increased. This is good 

considering that as the pseudo population size increases, it begins to approach 

the "actual" population. Figure 3.1 and 32 present typical comparisons between 

the proposed probability model and the pseudo population Figure 3.1 presents 
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Table 3.6. Results ofthe Kolmogorov-Smirnov testfor 
constantstress analysis 

Pseudo Population Pseudo Population Pseudo Population 
RS 

Function 
Sample No ofStd Dev 
Size from Mean 

n
'-'cr 

Size 10,000 

Fraction 

Size 50,000 

Fraction 

Size. 100,000 

Fraction 
No Difference of o'er Difference 

OfDcr 
Difference OfDcr 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
1 5 001 0096 0171 0094 0168 0093 0166 

2 5 005 0020 0.035 0011 0.020 0008 0.014 

3 5 01 0.020 0037 0.012 0.021 0008 0015 

4 5 05 o 0022 0.039 0.013 0023 0.010 0018 

5 5 1 
CO 
m 0.024 0042 0016 0.029 0.013 0.022 

6 5 1 5 
o 

0027 0.049 0.020 0.036 0.016 0.029 

7 5 2 0032 0057 0025 0044 0021 0037 

8 5 2.5 0037 0066 0030 0054 0026 0046 

9 5 3 0043 0077 0036 0.064 0032 0057 

10 8 1 0017 0036 0009 0019 0.005 0.010 

11 8 1.5 o 0.013 0027 0.005 0010 0003 0006 

12 8 1 5 
1^ 

0012 0025 0.012 0.026 0016 0.033 

13 8 2 
o 

0009 0020 0007 0016 0008 0017 

14 8 3 0019 0039 0021 0.045 0025 0053 

15 27 05,0 0020 0077 0009 0035 0009 0035 

16 27 1.0 0018 0.071 0.007 0028 0007 0029 

17 27 2,0 oo 0011 0.044 0.005 0019 0.004 0016 

18 27 25,0 
m 
CM 0.010 0037 0010 0038 0007 0.027 

19 27 3.0 o 
0011 0044 0016 0062 0013 0051 

20 27 35,0 0016 0061 0023 0090 0.021 0080 

21 27 4,0 0.024 0092 0.031 0121 0029 0112 

22 125 1,0.5,0 0019 0155 0008 0065 0.008 0065 

23 125 2,1,0 0014 0112 0003 0023 0003 0026 

24 125 25,1 5,0 c>g 0009 0072 0007 0061 0005 0.043 

25 125 25,1,0 
CM 
T— 0011 0086 0.006 0047 0.004 0037 

26 125 25,2,0 o 
0009 0078 0.010 0080 0007 0056 

27 125 3, 1 5,0 0010 0081 0011 0091 0008 0067 

28 125 35,2,0 0010 0083 0018 0145 0015 0123 

29 343 1.5,1,05,0 0017 0233 0006 0083 0.006 0085 

30 343 2,1,05,0 CO 0015 0.209 0004 0.060 0005 0.062 

31 343 25,2,1,0 o 0009 0128 0007 0092 0005 0067 

32 343 3.2,1,0 
o 

0.009 0128 0009 0127 0007 0.091 

33 343 35,2,1,0 0010 0141 0012 0169 0.010 0.132 

34 729 2,1 5,1,0.5,0 0015 0.293 0.004 0077 0.004 0079 

35 729 25,2,1,0.5,0 0012 0.232 0.005 0091 0004 0077 

36 729 3,2,1,05,0 o 
in 0010 0.190 0007 0131 0005 0098 

37 729 35,2.5,1,05,0 
o 

o 0.010 0.196 0011 0.211 0008 0156 

38 729 35,2,1,05,0 0009 0.187 0009 0.178 0007 0130 

39 729 4,3,2,1,0 0.012 0241 0018 0.361 0.016 0.308 
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Natural Logarithm of Number of Cycles,InN 

Figure 3.2. Typical comparison between a response surface 
function and the pseudo population cumulative distributions 



the fitting ofthe probability density function ofan RSfunction(RSfunction no. 17 

in Table 3.2)to the histogram compiled from the 10,000 pseudo population crack 

growth curves. Figure 3.2 presents the cumulative distribution function of the 

same RSfunction and 10,000 pseudo population crack growth curves. 

3.1.5 Optimal Sample Size and Range ofthe inputParameters 

The previous sections have shown that ail RS functions were acceptable 

to model the number ofload cyclesfor a crack to grow from its initiation to critical 

size. The RS functions were developed using a limited number of crack growth 

curves that ranged from 5 to 729 as well as a wide range of input values (c, m, 

and Aa) ranging from 0.01 standard deviations from the mean to 4 standard 

deviations from the mean, it was desirable to identify the optimal sample size 

and range of input values used to develop an RS function and eventually, a 

probability model would be derived from thatfunction. 

To determine these optimal values. Figures 3.3-3.5 were developed to 

create a graphical comparison between the maximum number of standard 

deviations from the mean and the fraction of Dcr for each RS function The 

maximum number of standard deviations from the mean can be found in Table 

3.6,column 3 

It was observed that as the sample size increases, the fraction of Dcr 

increases. However, this does not imply that the more samples one uses to 

determine a RSfunction,the worse the approximation. The reason for this 

28 



0
3
5
 

♦
S
a
m
p
l
e
Si
ze
5
 

M
 
S
a
m
p
l
e
Si

ze
8
 

0
.
3
0
 

A
 
S
a
m
p
l
e
Si

ze
2
7
 

—
0
—
S
a
m
p
l
e
Si

ze
 1
2
5
 

S
a
m
p
l
e
Si

ze
3
4
3
 

0
.
2
5
 

—
•
—
S
a
m
p
l
e
Si

ze
7
2
9
 

a
 
Z
 
0
2
0
 

0
1
0
 

0
0
5
 

0
.
0
0
 

0
5
 

1 
1 
5
 

2
 

2
5
 

3
 

3.
5 

M
a
x
i
m
u
m
 I
np

ut
Ra
ng
e(
N
u
m
b
e
r
of

St
d.

De
v.
fr

om
 M
ea
n)
 

^
 F

ig
ur
e
3.
3.
 C
om

pa
ri

so
n 
of

fr
ac
ti
on
 o
f 

an
d 
ma

xi
mu

m
In

pu
t
ra

ng
e
fo
r
a 
ps
eu
do
 p
op

ul
at

io
n 
si
ze
 o
f
10

,0
00

 



0
.
4
0
0
 

♦
S
a
m
p
l
e
Si
ze
5
 

—
■—

Sa
m

pl
e 

Si
ze

 8
 

0
3
5
0
 

A
 

Sa
m

pl
e 

Si
ze

 2
7 

-^
-S

a
m

p
le

 S
iz

e 
12

5 
—

A—
Sa

m
pl

e 
Si

ze
 3

43
0
3
0
0
 

• 
Sa

m
pl

e 
Si

ze
 7

29
 

13
 0

2
5
0
 

o
 

c
 
0
2
0
0
 

_o
 

o
 

(
0
 

0
1
5
0
 

0
1
0
0
 

0
.
0
5
0
 

0
.
0
0
0
 

0.
5 

1 
1.

5 
2 

2 
5 

3 
3.

5 
4 

4
5
 

M
ax

im
um

 In
pu

t R
an

ge
 (N

um
be

r o
f S

td
. D

ev
. f

ro
m

 M
ea

n)
 

^ 
Fi

gu
re

 3
.4

. 
Co

m
pa

ris
on

 o
f f

ra
ct

io
n 

of
 D

or
 a

nd
 m

ax
im

um
 in

pu
t r

an
ge

 fo
r a

 p
se

ud
o 

po
pu

la
tio

n 
siz

e 
of

 5
0,

00
0 



0
3
5
0
 

♦
S
a
m
p
l
e
Si
ze
5
 

—
■—

Sa
m

pl
e 

Si
ze

 8
 

0
.
3
0
0
 

A
 

Sa
m

pl
e 

Si
ze

 2
7 

—
^S

am
pl

e 
Si

ze
 1

25
 

Sa
m

pl
e 

Si
ze

 3
43

 
0
.
2
5
0
 

•
 

Sa
m

pl
e 

Si
ze

 7
29

 

0
2
0
0
 

0
1
5
0
 

0
1
0
0
 

0
0
5
0
 

0
0
0
0
 

0 
5 

1 
1.

5 
2 

2.
5 

3 
3 

5 
4

4
.5

 

M
ax

im
um

 In
pu

t R
an

ge
 (N

um
be

r o
f S

td
. D

ev
. f

ro
m

 M
ea

n)
 

^
 F

ig
ur

e 
3.

5.
 C

om
pa

ris
on

 o
f f

ra
ct

io
n 

of
 D

or
 a

nd
 m

ax
im

um
 in

pu
t r

an
ge

 fo
r a

 p
se

ud
o 

po
pu

la
tio

n 
si

ze
 o

f 1
00

,0
00

 



observation is that Dcr decreases with the Increasing sample size (Table 2.1) 

Therefore, as the sample size increases, Dcr decreases, which causes the 

fraction of Dcr to increase. Despite this observation, for a given sample size, 

there was a fairly distinct trend that if the range of input values were significantly 

close(zero to one standard deviations)or significantly far(three to four standard 

deviations)from the mean, the fraction of Dcr would be larger Based on this 

trend, it is recommended that the optimal choice is one with a sample size of27 

and 2to 2.5 standard deviationsfrom the mean. Hence,RSfunction numbers 17 

or 18 given in Table 3.2 would be the optimal RS functions for modeling the 

number of load cycles needed for a crack to grow from the initiation size of 0.01 

inches to03inches for the parametric values given in Table 3.1. 

3.2 RANDOM STRESS BLOCK ANALYSIS 

3.2.1 Response Surface Functions and Pseudo Population 

The random stress block response surface(RS)function was determined 

using a range of9to 81 sets of(c, m,Aa,and N)values asshown in Column 2of 

Tables 3.7-3.10. Each table represents one offour sets of25 RS functions that 

were developed More than one set was analyzed to ensure consistency among 

the RS functions because Aa was a random variable regenerated for each 

interval ofeach crack growth curve. As can be seen in Columns2and 3ofeach 

table, all four sets had the samesample size and range ofinput variables. For 
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Table 3.7. Samplesizes,input ranges,and coefficientsfrom 
regression analysisfor set 1 ofrandom stress block analysis 

Set1 

RS Function Sample No.ofStd Dev Coefficients 

No Size from Mean b1 b2 b3 b4 

(1) (2) (3) (4) (5) (6) (7) 
1 9 05,0 -1.0764 -76857 -29294 59954 

2 9 1.0 -09860 -77167 -1 8748 48982 

3 9 2.0 -09960 -7.1420 -1 7821 3.8418 

4 9 25,0 -1.0048 -7.1392 -3.6392 85623 

5 9 3.0 -09873 -7.0882 -2.5506 59580 

6 9 35,0 -0.9923 -7 1602 -2.5929 60526 

7 9 4,0 -09988 -7.2555 -37718 9.1179 

8 25 1.05,0 -1 0274 -7 1966 -25699 54003 

9 25 2.1,0 -0.9873 -7.3006 -2.8595 70110 

10 25 25,1 5,0 -1 0049 -7.4089 -3.1474 7.5614 

11 25 2.5,1,0 -09994 -7.3434 -2.6179 61931 

12 25 2.5,2,0 -1.0141 -73210 -35680 83889 

13 25 3,1 5,0 -1 0124 -7 1745 -3.7681 87967 

14 25 35,2,0 -1 0068 -73509 -4.2062 10.2243 

15 49 1 5,1,05,0 -1.0249 -72475 -3.1146 69448 

16 49 2,1,05,0 -1 0033 -74570 -28443 6.8514 

17 49 25,2,1,0 -09954 -73256 -2.5492 60685 

18 49 3,2,1,0 -1 0058 -73341 -30202 7.1276 

19 49 35,2,1,0 -1 0043 -7.2638 -2.7447 6.3533 

20 81 2,1.5,1,05,0 -1 0026 -7.1761 -28431 6.5500 

21 81 25,2,1,05,0 -0.9945 -7.3736 -33822 83313 

22 81 3,2,1,0.5,0 -09989 -7.2768 -3 1634 75694 

23 81 35,25,1,05,0 -09989 -7.2129 -32588 77499 

24 81 3.5,2,1,05,0 -09996 -7.3273 -25532 5.9963 

25 81 4,3,2,1,0 -1 0030 -7.2492 -26345 60579 
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Table 3.8. Sample sizes,input ranges,and coefficientsfrom 
regression analysisforset2ofrandom stress block analysis 

Set2 

RS Function Sample No ofStd Dev Coefficients 

No Size from Mean b1 b2 b3 b4 

(1) (2) (3) (4) (5) (6) (7) 
1 9 05,0 -1 0903 -72182 -4 3285 8.8938 

2 9 1.0 -1 0305 -79127 -29133 70445 

3 9 2,0 -09893 -7.3553 -2.3365 56562 

4 9 25,0 -1 0026 -73374 -4 1131 100554 

5 9 3.0 -1 0018 -7 1871 -3.3523 79199 

6 9 35,0 -1 0012 -73008 -1 2521 24884 

7 9 4.0 -09883 -73910 -43472 109922 

8 25 1,0.5,0 -1 0124 -69337 -30539 66626 

9 25 2,1,0 -1 0198 -7.0277 -37205 83837 

10 25 25,1 5,0 -1 0150 -73195 -38196 90499 

11 25 25,1,0 -1 0004 -73741 -35403 86402 

12 25 25,2,0 -09993 -73499 -36070 88129 

13 25 3,1 5,0 -1 0076 -7.2343 -24311 54234 

14 25 35,2,0 -1 0075 -73045 -1 8996 40963 

15 49 1 5,1,05,0 -1 0130 -72645 -30419 69866 

16 49 2,1,05,0 -1 0162 -73791 -3.4716 81800 

17 49 25,2,1,0 -1 0008 -73182 -33983 81953 

18 49 3.2,1,0 -1 0031 -7.1956 -22746 50656 

19 49 35,2,1,0 -1 0030 -7.3001 -3 1874 75724 

20 81 2,1 5,1,05,0 -09962 -72027 -32615 78015 

21 81 25,2,1,05,0 -1 0019 -73676 -27263 64613 

22 81 3,2,1,05,0 -1 0020 -72118 -28603 66415 

23 81 35,25,1,0 5,0 -09913 -72996 -34559 85008 

24 81 35,2,1,05,0 -1 0040 -72278 -36212 86184 

25 81 4,3,2,1,0 -1 0006 -72536 -34110 81480 
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Table 3.9. Sample sizes,input ranges,and coefficientsfrom 
regression analysisfor set3ofrandom stress biock anaiysis 

Sets 

RS Function Sample No ofStd Dev Coefficients 

No. Size from Mean b1 b2 b3 b4 

(1) (2) (3) (4) (5) (6) (7) 
1 9 05,0 -1 0492 -6 5216 -3.7205 7.2973 

2 9 1.0 -09950 -7.1331 -2.7995 65443 

3 9 2,0 -09941 -7.1689 -2.2940 52474 

4 9 25,0 -09891 -7.4936 -4.0574 103406 

5 9 3,0 -09904 -7 1027 -34679 83217 

6 9 35,0 -1 0121 -7 1153 -2 1386 44325 

7 9 4,0 -0.9932 -7.4008 -3.9267 97996 

8 25 1,0.5,0 -1 0329 -7.6381 -4 3541 104839 

9 25 2,1,0 -1 0073 -7.3088 -27039 62448 

10 25 25,1.5,0 -1 0008 -73121 -36646 88946 

11 25 25,1,0 -09872 -7 1995 -24429 5.8118 

12 25 25,2,0 -1 0265 -72084 -3.3279 74120 

13 25 3,1.5,0 -09918 -7.3485 -28174 68646 

14 25 3.5,2,0 -09968 -73619 -21012 48932 

15 49 1 5,1,05,0 -09818 -74112 -33303 84816 

16 49 2,1,05,0 -09951 -74759 -3 1385 77941 

17 49 25,2,1,0 -1 0058 -72171 -37047 87987 

18 49 3.2,1,0 -09995 -72302 -3 1968 75948 

19 49 35,2,1,0 -09949 -7.2767 -2.8075 66929 

20 81 2,1 5,1,0.5,0 -09967 -7.2365 -3.1169 74486 

21 81 25,2,1,05,0 -0.9999 -7.3189 -27477 65023 

22 81 3,2,1,05,0 -1.0003 -73065 -3 1746 76034 

23 81 35,25,1,05,0 -0.9939 -72895 -3.8231 94051 

24 81 3.5,2,1,05,0 -1 0077 -7.2009 -2.9253 6.7001 

25 81 4,3,2,1,0 -0.9974 -72843 -2.8318 67188 
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Table 3.10. Sample sizes,input ranges,and coefficientsfrom 
regression analysisforset4ofrandom stress block analysis 

Set4 

RS Function Sample No ofStd Dev Coeffdents 

No Size from Mean b1 b2 b3 b4 

(1) (2) (3) (4) (5) (6) (7) 
1 9 05,0 -1 0750 -8 1408 -36738 84646 

2 9 1,0 -09939 -7.4898 -3.2190 8.0532 

3 9 2,0 -09656 -73683 -00324 00476 

4 9 2.5,0 -09901 -73413 -48926 123527 

5 9 3,0 -1 0084 -72923 -4 1942 10 1094 

6 9 35,0 -1 0021 -7 1151 -2 1318 4.5943 

7 9 4,0 -1 0114 -70179 -29335 64335 

8 25 1,05,0 -0 9741 -73712 -29379 75503 

9 25 2,1.0 -1 0049 -73967 -32364 77854 

10 25 25,1.5,0 -1 0195 -7.2885 -27473 61010 

11 25 25.1,0 -09808 -72012 -36670 9.1468 

12 25 25,2,0 -1 0004 -72894 -37440 90758 

13 25 3,1 5,0 -1 0091 -73565 -26733 61746 

14 25 35,2,0 -1 0066 -73050 -29651 69151 

15 49 1 5,1,05,0 -09915 -7.4343 -27740 68646 

16 49 2,1,05,0 -1 0056 -72345 -30817 71953 

17 49 25,2,1,0 -09942 -73280 -27692 66716 

18 49 3,2,1,0 -09970 -72928 -26429 62497 

19 49 35,2,1,0 -1 0032 -73241 -31683 75473 

20 81 2,1 5,1,05,0 -1 0010 -73905 -29921 72140 

21 81 2.5,2,1,0.5,0 -1 0015 -73395 -28170 66754 

22 81 3,2,1,05,0 -1 0052 -73448 -29197 68874 

23 81 35,25,1,0 5,0 -09998 -73145 -31287 74950 

24 81 35,2,1,05,0 -09962 -73095 -28594 68461 

25 81 4,3,2,1,0 -09960 -72676 -31442 75479 
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example,RSfunction number 1 from Tables 3.7-3.10 have a sample size of nine 

and 0.5 standard deviations from the means of the input parameters. Thus the 

values for c, m,and Aa for the nine sets were {c, m,Aa),(c + 0.5Sc, m,Aa), 

{c,m +0.5Sm, Acj),(c - 0.5Sc, m ,Aa),{c,m - 0.5Sm, Aa),(c + 0.5Sc, m + 0.5Sm, 

Aa),(c - 0.5Sc, 7w +05Sm, Aa),(c + 0.5Sc, m - 0.5Sm, Aa), and(c - 0.5Sc, m -

0.5sm, Aa), in which c and m represent the mean ofc and m,respectively, Aa is 

the average of the 100 stress values for each curve and Sj represents the 

standard deviation of parameter j. As one can see from these sets of input 

parameters, Aawas not altered by its standard deviation and was left as the 

average ofthe 100 stress values(which can be differentfrom curve to curve)for 

each curve in every set. 

Equations (2.5-2.7) were used to calculate the number of cycles N for 

each set of input parameters. A linear regression was then performed on each 

set of(c, m,Aa,and N)to determine the coefficients for the RS functions. Recall 

that each value was transformed to its logarithmic base for the regression 

analysis. Columns 4-7 in Table 3.7-3.10 present the coefficients of each RS 

function. 
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3.2.2 Verification ofthe Response Surface Function Statisticai Moments 

The point estimate method and Taylor series expansion were used to 

calculate the mean and standard deviation ofInN for each RSfunction. Columns 

3and4in Tables 3.11-3.18 summarize the resultsfrom both methods. 

Using two significant figures, the mean of inN is 9.7 and the standard 

deviation is about 0.34. This corresponds to a mean number of load cycles of 

17,290 cycles and a standard deviation of 6,050 cycles(Benjamin and Cornell, 

1970). It IS of interest to note that the standard deviations using random stress 

blocks were smallerthan those using constantstresses. 

One hundred sets of 10,000 crack growth curves were simulated to 

represent the pseudo population. The statistical data in Table 3.1 were used to 

randomly generate c and m,for each crack growth curve while Aa was randomly 

generated for each ofthe 100 incrementsfor each curve. 

Columns 5 and 6 in Tables 311-3.18 present the 95 percent confidence 

interval of the population mean using the point estimate and Taylor series 

approximations of the RS functions. As can be seen columns 7-9 from the 

tables, all pseudo population meansfell within the confidence intervai determined 

from the RSfunctions. 
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Table 3.11. Means and standard deviationsfrom point estimate 
method and resuits ofthe95%confidence intervai testforset 1 of 

random stress block analysis 

Set1 

RS Function Sample Average Standard 95% Confidence Interval Pseudo Population Percent 

No Size Value Deviation Lower Limit Upper Limit Passed Failed Acceptable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
1 9 9.70 0359 947 994 100 0 100% 

2 9 968 0346 945 991 100 0 100% 

3 9 968 0333 947 9.90 100 0 100% 

4 9 968 0335 946 990 100 0 100% 

5 9 9.68 0331 9.46 989 100 0 100% 

6 9 967 0333 945 9.89 100 0 100% 

7 9 965 0337 943 987 100 0 100% 

8 25 969 0340 955 982 100 0 100% 

g 25 968 0336 955 9.81 100 0 100% 

10 25 968 0341 9.55 981 100 0 100% 

11 25 968 0339 954 981 100 0 100% 

12 25 967 0341 953 980 100 0 100% 

13 25 968 0337 955 981 100 0 100% 

14 25 966 0340 952 979 100 0 100% 

15 49 970 0341 960 979 100 0 100% 

16 49 969 0342 959 978 100 0 100% 

17 49 9.68 0338 9.58 977 100 0 100% 

18 49 968 0340 959 978 100 0 100% 

19 49 968 0338 959 978 100 0 100% 

20 81 968 0335 961 976 100 0 100% 

21 81 968 0339 961 975 100 0 100% 

22 81 968 0.337 961 9.75 100 0 100% 

23 81 968 0336 961 975 100 0 100% 

24 81 967 0338 960 974 100 0 100% 

25 81 967 0337 959 974 100 0 100% 
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Table 3.12. Means and standard deviationsfrom point estimate 
method and results ofthe95%confidence Interval testforset2of 

random stress block analysis 

Set2 

RS Function Sample Average Standard Percent95% Confidence Interval Pseudo Population 
No Size Value Deviation Lower Limit Upper Limit Passed Failed Acceptable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
1 9 969 0.351 946 992 100 0 100% 

2 9 970 0358 947 993 100 0 100% 

3 9 968 0337 946 990 100 0 100% 

4 9 967 0339 9.45 989 100 0 100% 

5 9 969 0335 947 991 100 0 100% 

6 9 965 0338 943 9.87 100 0 100% 

7 9 9.67 0.338 9.45 9.89 100 0 100% 

8 25 969 0.331 956 982 100 0 100% 

9 25 969 0335 956 982 100 0 100% 

10 25 968 0341 9.55 982 100 0 100% 

11 25 968 0340 955 .981 100 0 100% 

12 25 968 0339 9.55 982 100 0 100% 

13 25 9.67 0337 954 980 100 0 100% 

14 25 966 0339 9.53 980 100 0 100% 

15 49 969 0339 960 979 100 0 100% 

16 49 969 0342 959 978 100 0 100% 

17 49 968 0.338 958 977 100 0 100% 

18 49 9.68 0336 959 978 100 0 100% 

19 49 967 0338 958 977 100 0 100% 

20 81 969 0335 961 976 100 0 100% 

21 81 968 0340 960 975 100 0 100% 

22 81 968 0336 961 975 100 0 100% 

23 81 968 0336 960 975 100 0 100% 

24 81 967 0337 960 975 100 0 100% 

25 81 966 0337 959 974 100 0 100% 
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Table 3.13. Means and standard deviationsfrom pointestimate 
method and results ofthe95%confidence interval testforset3of 

random stress block analysis 

Sets 

RS Function 

No 

Sample 
Size 

Average 
Value 

Standard 

Deviation 
95% Confidence Interval 

Lower Limit Upper Limit 
Pseudo Population 
Passed Failed 

Percent 

Acceptable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
1 9 970 0328 949 991 100 0 100% 

2 9 970 0.333 948 992 100 0 100% 

3 9 968 0.334 946 990 100 0 100% 

4 9 968 0.341 946 990 100 0 100% 

5 9 967 0331 945 988 100 0 100% 

6 9 966 0335 944 988 100 0 100% 

7 9 966 0339 944 988 100 0 100% 

8 25 969 0351 955 9.83 100 0 100% 

9 25 969 0.339 955 9.82 100 0 100% 

10 25 968 0.338 955 982 100 0 100% 

11 25 969 0333 956 982 100 0 100% 

12 25 967 0340 954 981 100 0 100% 

13 25 968 0338 954 981 100 0 100% 

14 25 967 0339 9.54 980 100 0 100% 

15 49 969 0338 9.60 979 100 0 100% 

16 49 968 0341 959 978 100 0 100% 

17 49 968 0337 9.58 9.77 100 0 100% 

18 49 968 0336 9.59 9.77 100 0 100% 

19 49 9.67 0336 957 9.76 100 0 100% 

20 81 969 0.336 961 976 100 0 100% 

21 81 968 0338 961 975 100 0 100% 

22 81 968 0.338 961 975 100 0 100% 

23 81 967 0337 960 975 100 0 100% 

24 81 968 0337 961 976 100 0 100% 

25 81 967 0.337 959 9.74 100 0 100% 
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Table 3.14. Means and standard deviationsfrom point estimate 
method and results ofthe95%confidence interval testforset4of 

random stress block analysis 

Set4 

RS Function Sample Average Standard 95% Confidence Interval Pseudo Population Percent 
No Size Value Deviation Lower Limit Upper Limit Passed Failed Acceptable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
1 9 9.69 0370 945 993 100 0 100% 

2 9 9.69 0341 947 992 100 0 100% 

3 9 968 0.334 947 990 100 0 100% 

4 9 968 0.337 946 990 100 0 100% 

5 9 967 0339 944 9.89 100 0 100% 

6 9 966 0334 944 988 100 0 100% 

7 9 966 0333 945 988 100 0 100% 

8 25 969 0335 956 983 100 0 100% 

9 25 968 0341 955 982 100 0 100% 

10 25 967 0341 954 981 100 0 100% 

11 25 968 0332 955 981 100 0 100% 

12 25 967 0338 954 981 100 0 100% 

13 25 968 0341 954 981 100 0 100% 

14 25 966 0339 953 979 100 0 100% 

15 49 9.69 0340 9.60 979 100 0 100% 

16 49 9.69 0.337 960 979 100 0 100% 

17 49 968 0.338 958 977 100 0 100% 

18 49 968 0337 958 977 100 0 100% 

19 49 967 0339 958 977 100 0 100% 

20 81 969 0340 962 976 100 0 100% 

21 81 968 0.339 960 975 100 0 100% 

22 81 9.68 0340 961 976 100 0 100% 

23 81 9.67 0338 960 975 100 0 100% 

24 81 9.67 0337 960 975 100 0 100% 

25 81 967 0336 9.59 974 100 0 100% 
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Table 3.15. Meansand standard deviationsfrom Taylorseries 
expansion and results ofthe95%confidence interval testforset 1 of 

random stress block analysis 

Setl 

RS Function Sample Average Standard 95% Confidence Interval Pseudo Population Percent 

No. Size Value Deviation Lower Limit Upper Limit Passed Failed Acceptable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
1 9 969 0359 945 992 100 0 - 100% 

2 9 966 0.345 944 989 100 0 100% 

3 9 967 0333 9.45 988 100 0 100% 

4 9 967 0334 945 989 100 0 100% 

5 9 966 0330 945 988 100 0 100% 

6 9 966 0332 944 988 100 0 100% 

7 9 9.64 0336 942 986 100 0 100% 

8 25 967 0339 954 981 100 0 100% 

9 25 967 0335 954 980 100 0 100% 

10 25 967 0340 954 980 100 0 100% 

11 25 966 0338 953 980 100 0 100% 

12 25 966 0340 9.52 979 100 0 100% 

13 25 967 0336 954 980 100 0 100% 

14 25 965 0339 952 978 100 0 100% 

15 49 968 0340 959 978 100 0 100% 

16 49 967 0341 958 977 100 0 100% 

17 49 9.66 0337 957 976 100 0 100% 

18 49 967 0339 957 976 100 0 100% 

19 49 966 0337 957 976 100 0 100% 

20 81 967 0334 960 974 100 0 100% 

21 81 967 0338 960 974 100 0 100% 

22 81 967 0336 960 974 100 0 100% 

23 81 967 0335 960 974 100 0 100% 

24 81 966 0338 958 973 100 0 100% 

25 81 965 0336 958 973 100 0 100% 
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Table 3.16. Meansand standard deviationsfrom Taylorseries 
expansion and results ofthe95%confidence interval testforset2of 

random stress block analysis 

Set2 

RS Function Sample Average Standard 95% Confidence Interval Pseudo Population Percent 
No Size Value Deviation Lower Limit Upper Limit Passed Failed Acceptable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
1 9 9.68 0350 945 9.91 100 0 100% 

2 9 969 0357 9.45 992 100 0 100% 

3 9 967 0.337 945 9.89 100 0 100% 

4 9 9.66 0338 944 988 100 0 100% 

5 9 968 0.335 946 990 100 0 100% 

6 9 963 0337 941 985 100 0 100% 

7 9 966 0.337 944 988 100 0 100% 

8 25 9.68 0.330 9.55 981 100 0 100% 

g 25 968 0.334 955 981 100 0 100% 

10 25 968 0340 954 981 100 0 100% 

11 25 967 0339 9.54 981 100 0 100% 

12 25 968 0.338 9.54 981 100 0 100% 

13 25 966 0.337 952 979 100 0 100% 

14 25 965 0338 951 978 100 0 100% 

15 49 968 0338 959 9.78 100 0 100% 

16 49 9.68 0342 958 977 100 0 100% 

17 49 967 0338 957 976 100 0 100% 

18 49 967 0335 957 9.76 100 0 100% 

19 49 966 0337 957 976 100 0 100% 

20 81 9.68 0.334 960 975 100 0 100% 

21 81 9.67 0339 959 9.74 100 0 100% 

22 81 9.67 0.335 959 974 100 0 100% 

23 81 967 0.336 959 974 100 0 100% 

24 81 966 0336 959 974 100 0 100% 

25 81 966 0336 958 973 100 0 100% 
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Table 3.17. Means and standard deviationsfrom Taylorseries 
expansion and results ofthe95%confidence interval testforset3of 

random stress block analysis 

Sets 

RS Function Sample Average Standard 95% Confidence Interval Pseudo Population Percent 

No Size Value Deviation Lower Limit Upper Limit Passed Failed Acceptable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
1 9 969 0.327 948 990 100 0 100% 

2 9 969 0332 947 9.90 100 0 100% 

3 9 966 0.333 944 988 100 0 100% 

4 9 967 0340 945 990 100 0 100% 

5 9 966 0331 944 987 100 0 100% 

6 9 965 0335 943 986 100 0 100% 

7 9 965 0338 943 987 100 0 100% 

8 25 969 0350 955 9.82 100 0 100% 

9 25 967 0338 954 980 100 0 100% 

10 25 967 0337 9.54 981 100 0 100% 

11 25 967 0.333 954 980 100 0 100% 

12 25 966 0339 953 980 100 0 100% 

13 25 967 0337 953 980 100 0 100% 

14 25 965 0338 952 978 100 0 100% 

15 49 968 0337 959 978 100 0 100% 

16 49 967 0340 958 977 100 0 100% 

17 49 967 0336 958 976 100 0 100% 

18 49 967 0335 9.58 976 100 0 100% 

19 49 965 0336 956 975 100 0 100% 

20 81 968 0335 9.60 975 100 0 100% 

21 81 967 0.337 959 974 100 0 100% 

22 81 967 0.337 960 974 100 0 100% 

23 81 967 0336 959 974 100 0 100% 

24 81 967 0336 960 974 100 0 100% 

25 81 965 0336 958 973 100 0 100% 
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Table 3.18. Means and standard deviationsfrom Taylorseries 
expansion and results ofthe95% confidence interval testforset4of 

random stress block analysis 

Set4 

RS Function Sample Average Standard 95% Confidence Interval Pseudo Population Percent 

No Size Value Deviation Lower Limit Upper Limit Passed Failed Acceptable 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
1 9 968 0369 944 992 100 0 100% 

2 9 968 0341 946 990 100 0 100% 

3 9 966 0333 9.44 988 100 0 100% 

4 9 9.68 0.336 946 990 100 0 100% 

5 9 9.66 0338 944 988 100 0 100% 

6 9 964 0.333 9.42 986 100 0 100% 

7 9 965 0332 944 987 100 0 100% 

8 25 968 0335 955 981 100 0 100% 

9 25 967 0340 954 981 100 0 100% 

10 25 966 0340 953 979 100 0 100% 

11 25 968 0332 955 981 100 0 100% 

12 25 967 0337 953 980 100 0 100% 

13 25 966 0340 953 980 100 0 100% 

14 25 965 0338 952 978 100 0 100% 

15 49 9.68 0339 9.58 977 100 0 100% 

16 49 9.68 0.336 9.59 977 100 0 100% 

17 49 967 0337 9.57 976 100 0 100% 

18 49 966 0336 9.57 976 100 0 100% 

19 49 9.66 0338 9.57 976 100 0 100% 

20 81 9.68 0339 960 975 100 0 100% 

21 81 9.67 0338 959 974 100 0 100% 

22 81 967 0339 960 974 100 0 100% 

23 81 966 0337 959 973 100 0 100% 

24 81 966 0337 959 973 100 0 100% 

25 81 966 0336 9.58 973 100 0 100% 
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3.2.3 Statistical Testing ofthe Pseudo Popuiation 

The coefficients ofskewness and coefficient of Kurtosis were calculated to 

examine the distribution of the pseudo population. One hundred sets of 10,000 

pseudo population crack growth curves were generated. The average coefficient 

ofskewnessfrom the 100sets ofdata was0.046 and the standard deviation was 

0.026. The average coefficient of Kurtosis from the same 100 sets of data was 

3.03 and the standard deviation was0.054. The average coefficient ofskewness 

indicates that the InN values are skewed slightly to the right. However, as the 

case In the constant stress analysis, both coefficients are very close to their 

target values of zero and three, respectively. Therefore, it was likely that InN 

could still be modeled by Gaussian distribution 

3.2.4 Comparison of the Response Surface Functions with the Pseudo 

Population 

The Kolmogorov-Smlrnov (K-S) test was used to check If the proposed 

probability model(based on the RSfunctions)was acceptable. For comparisons, 

one set of 10,000 simulated growth curves was used. Table 319 presents the 

results for all four sets of RS functions. Columns 5, 7, 9, and 11 present the 

maximum difference in cumulative distribution between the normal distribution 

developed based on the RSfunction and the pseudo population. As can be seen 

from the table, the maximum differences are much less than the critical 

difference of Dcr(column 4). Thefraction of Is presented In Columns6,8,10, 
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and 12. Most of the differences are less than 10 percent of Dcr and the greatest 

difference is only 14 percent ofthe critical difference. 

3.2.5 Optimal Sample Size and Range ofthe Input Parameters 

Figures 3.6-3.9 present a graphical comparison between the maximum 

number of standard deviations from the mean and the fraction of Dcr for each RS 

function. The maximum number of standard deviations from the mean can be 

found in Table319,column 3. 

Unlike the constant stress case where the fraction of Dcrshowed a distinct 

trend with respect to sample size and maximum number of standard deviations 

from the mean,the trend is not nearly as clearfor the random stress situation, in 

particular, almost all sample sizes showed a high fraction of Dor atlow values(0.5 

and 1)of the maximum number of standard deviations from the mean. Hence, 

the choice ofoptimal sample size and range ofinput parameters was not quite as 

obvious. Examination of Figures 3.6-3.9 suggested that a sample size of9to 25 

with a standard deviation of2.0 to 2.5 would perhaps yield the best RSfunction. 
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CHAPTER4 

CONCLUSIONSAND RECOMMENDATIONS 

A study was performed to assess aging aircraft by examining crack 

growth at the iogeron ofthe aircraft. The objective ofthe study was to develop a 

probability model for the number of load cycles N needed for a crack to grow 

from its initiation size to critical size. Two different types of stress intensity were 

analyzed,constantstress and random stress block. 

A fatigue crack growth model was developed based on the Paris equation. 

Response surface method (RSM) was used to develop relationships (RS 

functions) between the load cycles N (calculated from the Paris equation) and 

the input variables. A wide spectrum of sample sizes and ranges of the input 

variables were considered. The most workable regression function to 

approximate N was a linear regression with all variables transformed to their 

natural logarithmic values Point estimate method and Taylor series 

approximation were used to determine the means and standard deviations ofInN 

from the RS functions By central limit theorem,InN from the RS functions was 

assumed to be Gaussian distributed. 

Comparing the means of InN from the pseudo populations to the 95 

percent confidence interval computed from the RS functions indicated the RS 

function provides an acceptable mean value for the pseudo population. The 

results of the Kolomogmorov-Smirnov (K-S) test showed that the Gaussian 
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distribution was an acceptable model for both the constant stress and random 

stress block despite the observation that the coefficient of skewness and 

coefficient of Kurtosis of the pseudo population were slightly greater than their 

target values ofzero and three, respectively,for a Gaussian distribution. 

Once the probability model for the number of load cycles is known, a 

decision can be made on the flight hours where a tolerable risk is defined. For 

instance, assume the response surface function using 27 samples with a 

maximum input range of 2.0 standard deviations from the mean(RS function no. 

17 in Table 3.2)for the constant stress was to be used to deterimine the number 

cycles the aircraft should fly. Table 3.5 gives the mean and standard deviation 

of InN as 9.61 and 0.453, respectively. If an acceptable risk is defined as five 

percent, then the maximum number of cycles one should fly the aircraft after a 

crack has been initiated is 

lnA^=^-0~^(0.05X5) 
lniV=961-1.645(0.453) 
lniV=8.865 

n=7078 cycles 

During the study, it was found that the RS function not only depended 

upon the sample size, but also the range of input values. From the spectrum of 

sample sizes and ranges of input values examined,the optimal sample size and 

range ofthe input parameters,for the constant stress analysis, were respectively 

27 and 2 to 2.5 standard deviations from the mean. Likewise, for the random 
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stress block, the optimal choice was 9 to 25 samples and 2 to 2.5 standard 

deviationsfrom the mean. 

The optimal sample size and range of input parameters information will 

help future development of crack growth models. For example, when a different 

type of material, geometry, stress level, or even critical crack size are 

considered,one only needs to have 27sample crack growth curves and a range 

of input parameters with 2 standard deviations from the mean to develop a 

probabilistic crack growth model when constantstress is used. 

While the probability model presented here for crack growth compared 

well with the pseudo population, a couple of issues could be addressed to 

enhance the overall goal of assessing aging aircraft. The crack size interval 

should be examined more closely. As stated in the introduction, most studies of 

fatigue crack growth consider the crack size as a changing variant, while N is a 

given integer. However, in this study the crack size was divided into equal 

increments, which were held constant. The constant crack size could affect the 

accuracy of the crack growth model. This is especially true where the crack 

growth is making a transition from slow growth to rapid growth. Continuing 

studies should consider a variable crack size increment. Consideration should 

also be given to dividing the crack size range of interest into smaller crack size 

increments. 

In this study, the input parameters were known and the crack growth 

curve was well behaved. One may argue that Monte Carlo simulations is a more 
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efficient method for developing the probability model of N. However,this study 

demonstrated that the response surface method is a viable method even in the 

situation where the statistics of the input parameters is not available. 

Furthermore, response surface method will be extended to study crack initiation, 

where few studies have been performed and the statistics of the input 

parameters were not well developed 

It is also suggested thatthe probability model be compared to any existing 

data that are available. Although the existing data may be small and limited, a 

comparison is vital before the probability model is used in the total life model of 

an aircraft. 
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