’ University of Tennessee, Knoxville
na LINIVERSITY of

TENNESSEE TRACE: Tennessee Research and Creative
E Exchange
Masters Theses Graduate School

8-2000

JiniOS : the network is the computer

Richard Clippard

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

Clippard, Richard, "JiniOS : the network is the computer. " Master's Thesis, University of Tennessee, 2000.
https://trace.tennessee.edu/utk_gradthes/9326

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9326&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a thesis written by Richard Clippard entitled "JiniOS : the network is the
computer." | have examined the final electronic copy of this thesis for form and content and
recommend that it be accepted in partial fulfillment of the requirements for the degree of
Master of Science, with a major in Computer Science.

Bruce Whitehead, Major Professor
We have read this thesis and recommend its acceptance:
Dinish P. Mehta, K. R. Kimble
Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council

1 am submutting herewith a thesis written by Richard Clippard entitled “JmOS The Network 1s the
Computer” 1 have exammed the final copy of this thesis for form and content and recommend that 1t be
accepted m partial fulfillment of the requirements for the degree of Master of Science with a major in
Computer Science

e bty

Bruce Whitehead, Major Professor

We have read this thesis
And recommend acceptance

D P meiSe

FRH A,

Accepted for the Council

Associate Vice Chancellor
And Dean of the Graduate School

JiniOS: The Network is the Computer

A Thesis
Presented for the
Master of Science
Degree
The University of Tennessee, Knoxviile

Richard Clippard
August 2000

No lability 1s assumed regarding the use of the information contamed herein, and Richard Chppard or the
Unversity of Tennessee Space Institute (UTSI) assumes no responsibility for errors or omissions, neither 1s
any liability assumed for damages resulting from the use of the information contained heremn

Zip 1s a registered trademark of Iomega, Inc

Pentium 1s a registered trademark of Intel Corporation, Inc

Inferno 1s a registered trademark of Lucent Technologies, Inc

1Button 1s a registered trademark of Dallas Semiconductor, Inc

Java, RMI, Solans, “The Network 1s the Computer”, and Jim are registered trademarks of Sun
Microsystems, Inc

Windows NT, Windows 95/98, Plug-and-Play are trademarks of Microsoft Corporation

All other brand names and product names mentioned m this document and 1n this software are trademarks,
registered trademarks, or service marks of their respective owners

11

Dedication

Thus thesis 1s dedicated to my parents, Gisela and Garnett, and to my wife, Pamela, for her encouragement,

support, and endless patience

|
\
1 |
|

Acknowledgements |

I want to thank my advisor and commuttee chairman, Dr Whitehead, and the other members of my
commuittee, Dr. Mehta and Dr Kimble, for ther mstruction, guidance and assistance. I want to thank my
brother for providing me with the computers used i my research and all hus technical assistance I also
want to thank Sandra Teal Reed for her reviews and mnputs I would like to thank Keith Edwards, author of

the book Core Jiny, for helping me with several Jin1 programming problems even though his book was

already done and Sun Microsystems for realizing the power of releasing new products as Open Source so
that everyone can have equal access Lastly, I would like to express my gratitude to those people who

reviewed by paper and to those who listened patiently as I preached

Abstract

While computers have grown more powerful and the operating systems that drive them have become easier
to use, the process for mstalling new hardware has changed very little from the techniques used with the
earliest computers The current method for mstalling new devices nto a computer 1s much too comphcated
even for an experienced user and often results m hours of frustration. In spite of the fact that there has been
phenomenal growth both 1n the speed and complexity of computers and the peripherals attached to them,
the process for mstalling these devices remams user mtensive This research addresses some of the
shortcomings of the current process and defines an operating system called JimOS, which implements the
solutions proposed heremn JimOS allows devices to nstall themselves nto any computer only when they

are needed, without any setup and very little user mntervention

Table of Contents

Chapter Page
1 Introduction . .1
2 Review of Current Operating Systems . 5
21 Hardware 5
22 Evolution 6
23 Innovation . - e . . . 8
24 Solution 9
3 Dastributed Systems . 12
31 Introduction . . . 12
32 Survey of Distributed Systems . . 13
33 Common Attributes . . 15
4. Concepts Used to Develop JmOS . ee . . 17
41 Introduction c. - . 1m
42 Ethernet . e 19
43 Java . .o e e e e e . 21
44 Remote Method Invocation e23
45 Jm. . . c26
451 Introduction . .o . . 26
452 Jm Server . e e e e 27
453 Leasmng. - . .. 29
454 Programs.. e e29
455 Jm Details . .. e e e e e e 32
5 Implementation of JniOS 37
51 Project Description . . 37
52 Device Software . . . 42
53 Chent Software . . . 48

V1

54

Starting the System

6 Evaluation and Conclusions

61 Evaluation
62 Conclusion
Bibhography
Appendices
A RMI Sample
B Specification for Service ID
C JmOS Server Sample — Keyboard
D JimOS Chent Sample — Keyboard .
E JimOS Boot Batch File
F Installation Survey .

Vita

vil

50

54

54

58

60

64

65

66

67

76

80

82

86

Figure

4 1 Basic chient/server model

4 2 Ethernet packet layers

4 3 RMI client/server model

4 4 Discovery/Jon

4 5 Discovery/Lookup

4 6 Jmm Structure

4 7 Configuration required by Jin1 .
4 8 Configuration used by JiniOS
5 1 System photograph

5 2 Actual system

5 3 Virtual system

5 4 Network topology

5 5 Sample keyboard service mterface

5 6 Sample keyboard service driver . ..

5 7 Service flowchart

5 8 Client flowchart

59 Keyboard service and client ..
5 10 Complete project

5 11 Ideal JimOS

List of Figures

Vil

Page

. 18

20

24

30

. 31

33

36

36

.38

39

39

40

42

43

46

49

51

52

53

Table
6 1 Installing a second IDE hard drive
6 2 Installing an mnternal IDE CD-ROM

6 3 Total msulation times

List of Tables

1X

Page
55
55

56

Chapter 1

Introduction

Michael Dertouzos, the director of the M1 T Laboratory for Computer Science for the past 25 years relates
the following story

Last year a few of us from the Laboratory for Computer Science at the Massachusetts

Institute of Technology were flying to Tatwan 1 had been trymng for about three hours to

make my new laptop work with one of those cards you plug in to download your

calendar But when the card software was happy, the operating system complamed, and

vices versa Frustrated, I turned to Tim Berners-Lee sitting next to me, who graciously

offered to assist After about an hour, the inventor of the Web admutted that the task was

beyond his capabilities

Next I asked Ronald Ruvest, the co-mnventor of RSA public-key cryptography, for his

help Exhibiting his wisdom, he politely declined At this point, one of our youngest

faculty members spoke up “You guys are too old Let me do 1t ” But he also gave up

after and hour and a half So I went back to my “expert” approach of typing random

entries mto the various wizards and lizards that kept popping up on the screen until by

sheer accident, I made 1t work three hours later (Dertouzos, p52)
Clearly, these were not people new to computers and this task, installing a card made for the device, should
have been trivial However, all too often when dealing with computers, what should be simple turns out to
be almost impossible This quote 1s from an article discussing M I T ’s new mfrastructure for information
technologies, the Oxygen system - a hardware and software system for handling mformation technology
He outlines three goals to allow people to “do more by dong less” bring technology nto our hives,

increase human productivity and ease of use, and offer these gams to all Of the three, the key 1s increasing

the ease of use (Dertouzos)

“Things should be made as simple as possible, but not any simpler” was a sentiment often echoed by Albert
Einstein, but this seems to go contrary to the current world of computers and computer technology Despite
massive efforts on the parts of hardware and software manufacturers, computers are still too difficult for the
average user to configure and maintamn
For the first 40 years of computer science, we have been preoccupied with catering our
technology to what machmes want We design systems and subsystems individually and

then throw them at the public, expecting people to make different components work
together (Dertouzos, p52)

The market 1s fragmented mto various camps such as personal computer (PC), Apple, and Unix, containing
components that are not mterchangeable A computer 1s typically composed of dedicated devices such as
CPU, memory, keyboard, mouse, monitor, and hard drives, which must be nstalled and configured for use
1n the ntended operating system for Once configured, the makeup of the computer changes very Iittle for
the Iife of the system In addition to the complexity of the basic system, an experienced system
administrator must handle settmg up and mamtaining a network by nstalling the proper drivers and setting
up the configuration files Sharing devices, such as hard drives and printers, in a homogenous system of
computers can be difficult and almost impossible m a heterogeneous system This leads to duplication of

basic devices such as printers, tape drives, and hard drives

The personal computer 1s too complex, but the technology 1t represents 1s not necessarily more complex
than many common household items the television, microwave and stereo for example But while we
spend countless hours mamtammg our PC’s, we spend hardly any time maimtaining these other systems
which raises the question “Why are computers so complex?” The PC’s complexity can be attributed to
three things the attempt to make a single device to too many things, the need to have a single machine
suffice for every person m the world, and the business model of the computer industry has to convince the
consumer that he needs a new version of a software package or a new computer This complexity stems out

of the desire to make the same personal computer be all things to all people (Norman)

Donald Norman states that the solution to the computer complexity problem 1s to separate the computer
mto “mformatton apphances” which he defines as

appliance n
A device or mstrument designed to perform a specific function, especially an electrical
device, such as a toaster, for household use

information appliance n

An apphiance specializing in information knowledge, facts, graphics, images, video, or
sound An information appliance 1s designed to perform a specific activity, such as music,
photography, or writing A distinguishing feature of nformation applhances 1s the ability
to share nformation among themselves (Norman, p 53)

A tool should be designed for each specific task so that its form, features and structure make 1t a perfect fit
Each tool should be designed so that the complexity of the appliance 1s the task not the tool, to allow

interaction, and to be fun to use The goal 1s to make each tool match a single and specific activity

If we carry the 1dea of an information apphance to today’s systems and separate the basic computer into
individual devices contammng enough mtelligence to communucate their specific requirements to the
operating system, we can go a long way to simplifymg some of the complexity mnherent in personal
computers In such a distributed system each new component announces its presence to the operating
system and provides the necessary information to use 1t only 1f requested Sun Microsystems has proposed
the Jin library as a software mechanism to support this kind of distributed hardware over a network Jini
consists of a small amount of Java code that resides on each device and a set of conventions to create a
“federation” of Java virtual machmes on the network Federation participants are dynamically connected to

share information and perform tasks

Ths 1dea of shared devices 1s not new, nor is 1t specific to Jm1 All of the major operating systems provide
some mechanism to export some of the components contamed within ’;he computer However currently the
operatng system nto which the device 1s mstalled has to know how the device will be used This typically
mvolves mstalling a vendor-supplied driver for the specific operating system, which can be difficult to do

and places the entire operating system overhead on the host desktop

One of the fundamental reasons that computers are too complex has to do with the relationship between the
computer and 1ts components The personal computer of today 15 just a miniature version of the large
mamnframe of yesterday with all of its problems and 1diosyncrasies The computer still views all of the
devices mstalled m 1t, or attached to 1t, as slaves and the devices view the computer as their master This
single concept can be blamed for most of the problems encountered mstalling hardware and for the
fragmentation of hardware that exists between operating systems today The current techniques for
mstalling, accessing, and mamtaming hardware are outdated and must be redesigned and the hardware

nside the computer must be replaced by external, self-configuring networks of devices
3

I propose, as an example of such a computer, to create a federation of networked devices using Jin1 and a
mmnmum of four personal computers that have been networked via an Ethernet connection One computer
will be the marmn system and all others will export their respective devices (monttor, keyboard, mouse, hard
drives, and printer) making themselves available to the mamn system While devices will reside mside the
computer case, as 1n the case of the hard drive, or be connected to 1t, as with the momtor, they will be
treated as independent entities The mtent 1s to simulate independent devices using the power and
ntelligence of the personal computers contaming them The mnclusion of new devices mto the federation
will be simulated by adding a personal computer and all of 1ts devices to the network Each device 1n the

newly added computer will announce 1tself and become available for use by the main computer

As a pont of reference, the configuration for this project mvolved mnstalling and configuring a hard drive, a
floppy drive, a CD-ROM drive, and a Zip drive mto a personal computer Also network cards were
mnstalled mto each of the four PC’s which were then connected to a hub and networked via the Windows 95
operating system Thus task required two programmers with a combned experience of over twenty years

over eight hours to complete This task should have taken 10 minutes

Of course, mn a truly distributed system each device would be independent and separate, contaimng a power
source and an Ethernet connection, however, that 1s beyond the scope of the project The mtelligent devices
containing even the small amount of processing power and memory and an Ethernet connection required

for this project are not yet available

Jm 1 still early mn 1ts development cycle and not intended for the general public This project will entail
not only getting the basic Jin1 software system operational but also writing drivers for the various hardware
components The goal 1s to demonstrate a computer that 1s composed of a system of distributed hardware

components tied together using Jini

Chapter 2

Review of Current Operating Systems
2.1 Hardware
The Microsoft Windows operating systems (both NT and Windows 9x and 2000) as well as the underlying
Disk Operating System (DOS) rely on the use of device drivers to access the various devices connected to a
personal computer The device driver converts the more general mnstructions of the operating system to
specific messages that the device type can understand The keyboard, mouse, hard drives and CD-ROM are
examples of devices that are accessed using device drivers While the drivers for the more typical devices,
such as hard drives are mcluded n the operating system, newer devices use drivers provided by the device
manufacturer and are nstalled mto the operating system when the device 1s connected to the computer
Additionally, the manufacturer may supply software, m the form of Dynamic Link Libraries (DLL’s) or
mformation files, which facilitate the communication between the user software and the operating system
devices For example, a printer uses several other programs to setup the printer, format the text and transfer
the final stream to the printer as well as countless files that contamn font definitions All the device drivers
and ancillary files must be stored on the computer before the device can be used In a typical mstallation,
the device drivers and their associated libraries account for one megabyte of space per printer and fourteen

megabytes for fonts

The device driver communicates with a device via the computer’s basic mput/output system (BIOS) which
1s loaded from static memory when the computer 1s first turned on The average BIOS for a personal
computer contamns about one million lines of low-level code (Pinto) It 1s mitially responstble for
performing a “power-on self test” (POST) to determne the health of the components, checking the system
configuration to determined how to finish the boot process and loading the boot record which eventually
loads the operating system After the operating system has taken over, the BIOS remains as the conduit
from the driver, nstalled 1n the operating system, to the actual hardware device. The BIOS assigns and
manages the mterrupts from the processor when something happens to an installed device For example,
when a key 1s pressed the processor performs an mterrupt that 1s handled by the BIOS to read the key. In

addition, the BIOS may transfer data to the operating system by storing 1t 1n a predefined region of memory
5

known as the base address Typically, each mstalled device has its own mterrupt and base address that are

specified when the device 1s mnstalled (“What 1s BIOS”) (Rusley)

Devices are defined to the BIOS erther by direct user specification during BIOS setup when they are first
mstalled m the computer, or through a mechanism known as ‘Plug and Play’ in which the device identifies
itself to the system when the computer 1s booted Since several devices are stored 1n the computer, the
computer must be powered off to mnstall them Moreover, since changes to the BIOS only take effect when
the computer 1s first booted, it must be powered off and back on to access new external devices Devices
are defined to the operatmg system by 1ts device drivers If the operating system does not already contamn a
driver for the device beng nstalled, one must be mnstalled before 1t can be used Oftentimes, the computer

must be restarted to load these drivers into the operating system

2.2 Evolution

the basic structure of our computers remams much the same as 1t was mn the 1950s We

have central processing units, memory, and disks And, despite the fact that we now use

computers with power that would have been unimaginable 40 years ago, to play games

and balance our checkbooks, we fundamentally interact with these machines in the same

ways that our predecessors did We mstall software on them, run applications, and

manage the (always scarce) disk resources of our systems A mamframe systems

administrator from 1950 would understand these tasks immediately In fact, in some

sense, we’ve all become systems adminustrators ~ (Edwards, p 5)
Operating systems evolved to this structure because of an assumption early on that processors and memory
were either expensive or not available or both, and that the fastest and most reliable way to communicate 1s
through a direct internal connection The 1dea was to have a single computer attached to dumb devices
which relied on the computer to manage and communicate with them The computer would know
everything about all the devices attached to 1t and all devices would follow a specified communications
protocol Hardware designers rely on the processing power of the personal computer to push nformation to
the device The keyboard communicates via the serial port, the printer via the parallel port, the mouse via

the senial port or bus, and the internal devices such as hard drtves, Zip drives and CD-ROM’s via the

internal bus In all cases, the device reltes on the computer to relay the information to 1t via a dedicated and

6

speciahized connection The operating system 1s the centralized repository of all the system’s mformation
on users, registered machines and addresses which means 1t tends to grow quite large—as much as 18 2
million Imes of code for Windows NT and Solaris (Pmnto) In addition, when PCs are connected to

networks, system administration and mamtenance costs dommate the total cost of ownership (Schmidt)

When DOS was released in 1982, the state of the art processor for the PC was the Intel 8080 Over time
processor speeds increased and prices for CPUs and memory dropped and computing power became much
more readily available DOS evolved mto Windows 2 0 and eventually Windows 95, but the mechanism for
handling devices was never revised, partially because of the massive mvestment by both manufacturers and
consumers 1n dumb devices, and partially because 1t seemed to work Later when Linux was released for
the PC there was a strong desire to use standard devices already nstalled into personal computers so Linux

had to implement this same scheme for accessing these devices, at least at the lowest level

This arrangement of requiring the operating system to have knowledge of all possible devices that may be
connected to 1t worked well while the systems that people used were relatively homogeneous and static and
the choices of devices were limited It did however, make installation of devices much more difficult,
because not only did the mstallers have to connect the hardware to the computer correctly, they also had to
connect the device to the operating system as well Additionally as the number of possible devices has
grown, so has the number of device drivers mstalled in the operating system As the number of choices has

grown the process for installing new devices seems to have become even more difficult

For example, the Zip drive from Iomega can be either internal or external, and connected to either the
parallel port, SCSI port or the internal bus Each of these 1s mutually exclusive, 1 ¢, they are not
mnterchangeable, and the user must decide which one to purchase depending on the requirements and
availability The driver that 1s mstalled depends on the connection and operating system Dr1vers that work
with Windows 95 will not work with Window NT or Linux Once the drive and driver are mstalled,

additional software 1s nstalled so that the operating system treats the Zip drive as a standard drive Itis

easy to use from this point having been mcorporated mnto the operating system, but the mstallation process

itself can be somewhat daunting

2.3 Innovation

This process must be completed for each new device added to an existing system Sometimes the system
must be rebooted before the additions take effect Each new device must be configured to work 1n the
existing computer with the existing operating system While Microsoft has worked extensively to make the
process of device configuration easter, 1t can still be very frustrating even for experienced users One
improvement 1s “Plug and Play,” which allows the device to 1dentify 1tself and suggest possible
configurations, and allows the operating system to organize the devices to avoid conflicts However the
device 1s still viewed as a dumb piece of hardware, and all the device drivers must be pre-installed for the
device to work It also does not simplify the process of physically mstalling the hardware into the computer

system

As poted out before, operating systems access hardware devices through loadable device drivers All
modern operating systems define their own mterface, kernel device model, between the operating system
and the device drivers thereby keeping the operatin;g system free from device details Different drivers must
be designed for all operating systems accessing a particular device because how operating systems access a
device via the driver 1s different for each operating system A possible solution to this problem 1s to
develop a portable device driver module, called a hardware device module, which resides between the
kernel device module and the device The hardware device module 1s written independent of any specific
kernel and 1s meant to model the particular hardware device that the driver supports The kernel device
module adapts the device-specific mterface of the hardware device module to the general device model of a
particular operating system Since the hardware device module 1s written mdependent of any specific
kernel, 1t only has to be designed once for each device Each driver still has to be distributed according to
the target operating system, but the task of converting the hardware device module to another system

should just require that it be compiled for that system (Ryan) This does not address the 1ssue of mstallation

but 1t makes the task of writing device drivers much easier and would make devices more readily available

across different operating systems

Another mnovation that does address the nstallation problem 1s the Universal Serial Bus (USB) USB
allows the user to chain together several external devices and connect a single wire to the computer, sumilar
to the Small Computer System Interface (SCSI) Each device m the cham 1s assigned an 1dentification
number that 1s used to address that particular device USB devices are “hot swappable,” that 1s, devices
may be added to or removed from the chain without restarting the computer system because they 1dentify
themselves to the operating system when they are connected USB 1s currently limited to 12 megabit (Mbat)
throughput shared by all devices and a cham length of five meters with 127 devices and up to five hubs
Device drivers for classes of devices, such as keyboard or camera, still have to be installed mn the operating
system before the device can be used, however, devices are more easily added to an existing system
(Quinnell) Given the limited length and the fact that some drivers still have to be mstalled, USB 1s not the

final solution either

2.4 Solution

Regardless of the device or the connection, the requirements of the operating system have remained the
same The operating system 1s expected to know everythmg about the device before 1t can be used The
process of mstallation 1s greatly stmplified because the device 1s external so the case does not have to be
opened and because 1t no longer depends on internal settmgs such as base address and interrupt number,
however, the user must still install an additional piece of software nto the operating system before the
device can be used. A much more palatable solution would be one 1n which the device explamns to the
operating system how the device 1s accessed and used Thus type of system would enlist a single common
means of communication, as well as a common language so that the operating system and the device can
nitiate communication This 1s similar to how the BIOS operates 1n the personal computer, except in this
case the device would be able to upload 1ts specifications and access mechanisms Finally there must exist a

means to discover new devices and determine when previously accessed devices are no longer available

The hardware must be modified so that the device has enough processing power to communicate
effectively with the host computer, and has enough static memory to store configuration information about
itself on the device so that 1t can be sent to the operating system when necessary Additionally each device
must have the ability to communicate via the established line This would require both a standardized
physical connection as well as a standardized protocol to serve as a basis for communication Additional
hardware changes would be necessary to enclose the device and provide power This 1s already the case for
a mayority of standard peripheral devices, such as printers and scanners and, in others, the push for USB 1s

dictating the externalization of devices

Having all devices external to the computer allows system configuration changes to be made rapidly and
easily by merely connecting or disconnecting devices to the system The operating system then must
determne the device’s availability, and how each device 1s used as 1t 1s connected The computer system
becomes a combination of distributed components, the number and configuration of which can grow or
shrink as requirements change No special skills are required to make system configuration changes Such a

system would then be called a distributed computer system

Ideally, whether the device cah be used 1 a computer should be mdependent of the type of computer or 1ts
operating system All devices should be usable by all computers This means not just personal computers,
but also Apple computers, workstations and mamnframe computers The proprietary aspects of the device

should be hidden from the operating system and especially from the user

The best computer operating system 1s one that 1s transparent to the user It allows you to change the
configuration of a system without having to know anything about computers, and without having to directly
modify the operating system by mnstalling additional drivers to access newly connected devices For
example, the home stereo system does not care what brand of component 1s attached to the amplifier The
system software does not have to be modified or rebooted to change the CD player Except in the case of
very high-end components, the users does not have to worry about the brand or types of components or

connections they have when deciding to add another device A more computer related example 1s that of
10

the Musical Instrument Data Interchange (MIDI) standard that allows for the sharmg of musical
mnformation among devices As long as the device follows the MIDI standard, 1t can be used without having
to worry about compatibility issues

A keyboard can connect to a synthesizer, rhythm machines, control pedals, and other

mstruments, creating orchestras that unleash the power of digital recording and synthesis

New mstruments can be invented, such as a voice device that allows smging to be

converted to MIDI sequences that are then fully mixed with other devices
(Edwards, p 58)

11

Chapter 3
Distributed Systems

3.1 Introduction

Because each workstation has private data, each must be administered separately,

mamtenance 1s difficult to centralize The machines are replaced every couple of years to

take advantage of technological improvements, rendering the hardware obsolete often

before 1s has been paid for Most telling, a workstation 1s a large self-contamed system,

not specialized to any particular task, too slow and 1/0-bound for fast compilation, too

expensive to be used just to run a window system For our purposes, primarily software

development, 1t seemed that an approach based on distributed specialization rather then

compromise could better address the 1ssues of cost-effectiveness, maintenance,

performance, rehability, and security (Schmidt, p 32)
There are a number of advantageous features of distributed operating systems that have motivated research
n the area of distributed systems for the past forty years These include resource sharmg, performance,
reliability, availability, price, extensibility, and network transparency (Mull) Distributed systems have
typically worked well for highly specialized applications They tended to focus on allowing computer
systems either to share resources or to distribute the load of certain mntensive operations Operating Systems
that allow distribution of some resources are common Windows 95 for example allows certain specific
devices such as hard drives to be shared among computers Smmularly, Network File System (NFS) allows
drives to be shared 1n the Unix operating system In both cases, the owner of the device exports 1t (either to
a specific user or for global access) and the user desiring to use 1t must mount 1t before accessmng 1t. In both
cases, the exporting computer must be a complete system, 1 ¢, each method relies on software, operating
system and possibly other devices to manage the device sharing. Both methods are mutually exclusive—
Windows does not allow devices that have been exported via NFS to be mounted without the addition of

specialized third-party software, and Unix systems will not typically NFS mount devices exported from a

Windows system

Distributed systems also have not typically operated well i a heterogeneous system of computers, or have
required specialized programming to take advantage of available devices They have not been at the
component level, but rather between complete systems Finally, they still did not address the connectivity

problem, that 15, they did not address the physical connection between the computer and its installed

12

devices They did not address the fact that certain devices do not work with certain operating systems or

computers because of erther proprietary connections or software

3.2 Survey of Distributed Systems

Plan 9 from Bell Labs, for example, 1s a distributed operating system written with the goal of building a
time-sharing system out of workstations It includes a new operating system (loosely based on Unix),
network protocol and compilers Plan 9 gives users a personal view of the public space by using local
names for globally accessible resources (Pike) Inferno 1s another new network operating system written to
“deliver content m a rich environment of heterogeneous networks, clients and servers” (“Inferno”, p. 1) It
1s also from Bell Labs and, like Plan 9, 1t organizes resources 1n 2 hierarchical file system, uses private and
global name spaces, 1s built on a common communication protocol, handles security 1ssues and has 1ts own
programming language (Limbo) and reference API’s. Unlike Plan 9 however, Inferno was designed to run
erther as erther the native operating system or hosted by another operating system (“Inferno la Commedia
Interattiva”) Neither system provides an automatic method for nstalling and mamtamimng connected

devices

The JINOS (Pinto) operating system 1s based on Java and Jim and 1s also a complete replacement of the
operating system The approach 1s to supply only the computing power necessary to run the Virtual
Machine effectively and to let the user build an operating system customized to his requirements by starting
with a processing module and adding services as needed The architecture 1s composed of a hardware layer,

a microkernel layer, a hardware abstraction layer and the Virtual Machmne

The NetSolve (Plank) software environment for networked computing uses a chent-server model that
allows users to distribute a variety of computational resources Clients specify the computations that they
want done by contacting agents who maintamn mformation on server availability, load, and support
software The agents then route the request to servers to perform the computations Two levels of fault-
tolerance are employed—on the server mn mdividual computations and using agents that detect server

failures by a time-out mechanism and move computations to other servers
13

The desk area network (DAN) (Barham) 1s an architecture for the internal connection of a computer system
using asynchronous transfer mode (ATM) as the interconnect between components Every device 1s
equipped with an ATM mterconnect nstead of the standard computer bus interface Devices are classified
wnto three categories, dumb, supervised and smart, according to their processing power and ability to
perform local management While the DAN 1s intended to be the mternal nterconnection of a machine, the

current operating system 1s still responsible for access control and protection (Hayter)

WebOS (Vahdat) 1s a framework for supporting applications that are geographically distributed Its goal 1s
to provide a common set of operating system services to wide area applications and make wide area
resources as easy to use as those available on a LAN or local resources It includes mechanisms for
resource discovery, global namespace, remote process execution, resource management, authentication and

security. The mtent 1s to write applications based on the WebOS framework to access remote services

Similarly, JetFile (Gronvall) 1s a distributed file system designed for a heterogeneous environment such as
the Internet It efficiently handles daily tasks such as mail processmng and document preparation with the
intent that a typical user will have no more mcentive to store files locally than i the JetFile system It relies
on “peer-to-peer” communication over multicast channels to facilitate resource location and retrieval
JetFile employs leasing and callback mechanisms to mamtain the coherency of the system A callback 1s a
notification that a cached item 1s no longer valid In the event that the callback 1s lost, clients will

eventually discover the service 1s no longer available when their requests tume out

The Stateless, Low-level Interface Machine (SLIM) (Schmidt) architecture defines a desktop machine as a
simple, stateless, /O device that uses a dedicated, off-the-shelf mterconnection technology to access a pool
of computational resources The SLIM system was designed around low-level hardware (display, keyboard,
mouse, etc) and a software-independent, dedicated 100 megabuts per second switch Ethernet protocol In
this way the advantages of thin-chient architectures, such as resource sharing, centralized administration,

and reduced cost, are maxmzed A prototype SLIM system was used by over 60 engineers, managers,
14

marketing personnel, and support staff “as their only desktop computing device for the past year, and they
have found their nteractive experience to be mdistinguishable from that of working on high-end

workstation-class machines” (Schmidt, p 34)

3.3 Common Attributes

Jin10S 1s different from the classical distributed operating system, which seem to be focussed more on
distributing the processing power (CPU’s) over a computational task The central functionality that JniOS
focuses on 1s that of network-attached peripherals where a computer peripheral communicates via a
network rather than a traditional I/O bus (Van Meter) Unlike other systems, where the entire operating
system was redesigned to support distributing all services, mn JimOS only the peripherals are distributed and
every attempt was made to design a system that could be incorporated mnto existing operating systems

Additionally the intent was to accomplish this using existmg technology

A system using Network Attached Peripherals (NAPs) 1s a heterogeneous distributed system and the
existing body of research on such 1ssues as discovery, namng, deadlock, and security are all relevant (Van
Meter) The protocols and mechanisms used by a network-connected device to become aware of the
network to which 1t 1s connected and the services available to 1t 1s called discovery The discovery process
usually involves a server at a known address that tracks services as they are announced or a distributed
server system that employs multicasting to 1dentify servers and services Discovery usually necessitates
some form of naming system to describe services so clients may choose the appropriate service This
naming system must be expressive enough to fully describe a wide variety of services, based on specific
properties of services, responsive, able to handle failures and network topology changes, and easily

configurable

The mmportance of resource discovery and service location 1s only now receiving attention in the research
community The Intentional Naming System (INS) (Adyjie-Wimnoto) was written to support dynamic
networks of mobile computers and devices In this system, a client uses a name to request a service without

exphcitly specifymng the end node INS uses a decentralized network of “resolvers” to discover names and
15

route messages based on advertised capabilities and client requirements These resolvers self-configure mnto
a spanning-tree, application-level overlay network that clients use to resolve their requests and advertise
services It implements names using expressions that are broken into attribute, the category n which an
object 1s classified, and value, the object’s classification Services periodically advertise their names to the
INR system on a well-know port As long as services are refreshed, they are kept alive, however, services
that have not been refreshed after a pre-defined time (lifetime), are discarded The current implementation
of INR 1s written 1n Java to take advantage of 1its cross-platform portability, and INRs use UDP to

communicate with each other

Most of the techniques being researched 1n the area of networked devices employ some sort of leasing to
determine the health of the network and the availabihity of services Services register and periodically
renew with a server or client If the lease lapses without a renewal, the service 1s dropped from a st of
viable candidates

The hard problems 1n distributed computing are not the problems of how to get things on

and off the wire. The hard problems mn distributed computing concern dealing with partial

failure and the lack of a central manager Partial failure 1s a central reality in distributed

computing Both the local and the distributed world contam components that are subject

to periodic failure In the case of local computing, such failures are either total, affecting

all the entities that are working together n an application, or detectable by some central

resource allocator (such as the operating system on the local machine) This 1s not the

case mn distributed computing, where one component (machme, network Iink) can fail

while the others continue . In a distributed system, the failure of a network link 1s

mdistingwishable from the failure of a processor on the other side of that line

(“Discovery Devices and Services m Home Networkmg”, p 5)
In order for the networked device technology to move from the research environment to the home, 1t must
be accepted by the consumer In order to be accepted 1t must be easy to use Consumers will overlook
wstallation problems 1f the product 1s easy to use but will not accept a product that is easy to mstall but
hard to use Furthermore, the networks that support these devices must be self-configuring and transparent

to the user (“Discovery Devices and Services in Home Networking”) This has not been the case with

distributed systems i the past since they were not targeted at the general user

16

Chapter 4
Concepts Used to Develop JiniOS

4.1 Introduction

Jm1OS represents an operating system that addresses the shortcomings of how current operating systems
mstall and access devices It deals specifically with this aspect of the operating system—it does not attempt
to supplant the entire operating system The concepts and techniques used m JimOS can be retrofitted mnto
existing operatmg systems without having to totally rewnte them Thus 1s an important feature, and one that
may help these concepts to become umversally accepted The focus of this research 1s to determine 1f the
tools to build such an operating system exist While the discussion will be focused primarily on the
personal computer world, there 1s nothing mn 1ts design to exclude 1t from bemng used in the workstation or
even mainframe systems In fact devices that are configured to work with Jin1OS will work regardless of

the primary operating system or even underlymg chip set (Intel Pentum, Mips, Alpha, Sun Motorola)

The Jin1OS host runs a server that registers all devices that answer requests for services All mitial
communication between the client computer and between the server and the devices 1s over a standard
Ethernet line using standard Internet protocols Each device stores all the software necessary to
communicate with 1t which 1t uploads to the server when the device registers itself with a server When a
computer wants to use the device for the first time, 1t polls the server for devices of a particular type that
have been registered Once a device has been selected, the software registered by the device 1s then
downloaded from the server to the chient computer and the chent then begins communication with the
device using the downloaded software Communication with server 1s terminated until the next request, so
in essence the device driver 1s mstalled only when necessary (Figure 4 1) This means that the computer
must be able to run the software loaded from the device regardless of the type of device or the type of
computer To date the only language for which this 1s true 1s the Java programming language, therefore, the
initial software loaded from the device must be written i Java This does not mean that all the software on
the device must be written 1n Java, but rather that software that will run on another computer must be n

Java

17

Step 1

device

server [driver

Step 2

device client

Step 3 device

driver

Step 4
Commumcabon

Figure 4 1 Basic client/server model

Jin10S connects all “smart” devices to the core system through standard Ethernet connections Because
each device must be capable of independent Ethernet communucation, 1t must have an Ethernet address, an
Ethernet connector and some small processor and memory that can handle Ethernet communication Each
device must have its own power source, and, lastly, each device must be capable of running a Java Virtual
Machine (JVM) m addition to any other software required for client communication The ability torun a

JVM 1s required because JimOS 1s based on Jini, the Sun Microsystems hibrary of Java classes for

distributed applications

Another class of languages that offer the same “write-once-run-anywhere” capability as Java are the
scripting languages such as Tcl and Perl Like Java, programs written n one of these languages can be
shipped to another computer and run there, as long as the mnterpreter 1s available on the target machine
However, while these offer similar portability of source code, they are not as well suited as Java because
they do not provide the object-oriented constructs available in Java, nor can they enforce Java’s level of
security restrictions Virtual machmes, the JVM for example, provide a platform-independent binary
format, security features for executing untrusted code, and an extensive set of programming nterfaces that
embody those of a general-purpose operating system Future networks will be characterized by mobile

code, large numbers of hosts, and large numbers of devices per user that span different operating systems
18

and hardware platforms Virtual machines have a potential to play a large role n these networks (Sirer)
The use of virtual machines turns an otherwise heterogeneous assortment of computers nto a homogenous

collection of seemingly identical machines (Waldo, 1994)

4.2 Ethernet

Communication on the Internet 1s comprised of a set of protocols that grew out of the United States
Defense Advanced Research Projects Agency (DARTA) desire for a more reliable communication protocol
for 1s packet-switched wide-area network known as ARPANET The Internet Protocol (IP), the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) are the most widely used
protocols 1n the suite named TCP/IP that makes up today’s Internet TCP provides reliable transmussion,
ensuring error-free transmussion of data by providing acknowledgement of packets received, retransmission
of lost packets, and reordermg of out of order packets, but 1t ties up system resources to do so UDP on the
other hand does not guarantee either that the packets are delivered or i what order they will be received,
but 1t consumes very little system resources TCP 1s appropriate for connections between computers where
a contmuous connection 1s important (telnet) or large amounts of data are being transmuitted (ftp) UDP 1s
best suited to situations where a host 1s monitoring a port that may be accessed by multiple hosts that
request small bits of data (http) Both protocols wrap the data to be transferred with additional host and
destination mformation IP 1s responsible for transmission of data across networks by wrappng TCP or
UDP packets with additional mformation necessary for the delivery of the data Protocols above TCP and
UDP such as Telnet, FTP and NFS add another layer to the packets before the TCP or UDP layer.
Essentially one could think of a transmitted packet as bemng stored 1n a series of smaller boxes, each
contamed 1 the next larger one (Figure 4 2) The outer box 1s the IP layer, then the TCP or UDP layer, and

finally the Telnet or FTP layer

The current IP header standard, called IPV4, 1s bemng revised to IPV6 mn order to overcome some of the
shortcommgs mn the current standard One of these shortcomngs concerns the fact that we are running out
of addresses because of the way they are assigned and because the number of networked machines 15

growng very rapidly The current standard 1s based on 32-bit address which allows for over four billion
19

Host Computer

Packet Data
Telnet / FTP / NFS
! .
| |
TCP/UDP Telnet / FTP Packet Data
!)
1 + |
IP TCP/UDP Telnet / FTP
| 1
B
E
[
£
w
Client Computer
P TCP/UDP Telnet / FTP Packet Data
|]
i 1 }
I I I
! ‘ |
TCP/ UDP Telnet / FTP
t .
Telnet/ FTP/NFS [Packet Data
1

Packet Data

Figure 4.2. Ethernet packet layers.

20

address (2%2 = 4 3 billion), but IPV6 1s based on 128-bit addressing which allows for 3 4x10°® addresses

(2" = 3 4x10°®) (Montfort)

An Ethernet card or software that emulates a card, such as that used by a modem, 1s required to
communicate via TCP/IP The host software transmits and receives the IP packets using this card connected
to a network via a standard class 5 (thin wire) connector that looks like a bigger version of a phone
connector (called an RJ45 connector) Current version of Ethernet protocol are generally limited to either
10 megabuts per second (Mbps) or 100 Mbps but there 1s nothing mn the protocol 1tself that sets an upper
Imit Each card, regardless of manufacturer or date of manufacturer, contains a unique identification
number known as 1ts Ethernet address This number 1s mapped to 32-bit number known as the Internet or IP
address This number, familiar to most users, takes the form 192 168 2 1, where each dotted section or octet

represents another level of address refinement starting with the leftmost set

Internet addresses are assigned by the Network Information Center (NIC) located at SRI International. IP
addresses n the Western Hemusphere and sub-Saharan Africa are assigned by NIC, and they get the
numbers from the American Registry for Internet Numbers European IP addresses come from the Réseux

IP Européens, and Asian IP addresses come from the Asia Pacific Network Information Center

Today, early 2000, the Internet contamns millions of computers all running the same standardized TCP/IP
protocol, regardless of the type of computer 1t is or the operating system running on 1t Dafferent programs
may add additional layers under the basic IP, but IP 1s used to deliver the packets. The growth of the

Internet can be attributed to the standards established by the TCI/IP and UDP protocols

4.3 Java
Java, officially released m April 1995, started out as a language designed to write

portable programs for embedded processors (Edwards, p 6)

Sun describes Java as follows Java. A simple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable, high-performance, multithreaded, and
dynamic language (Flanagan, 1997,p 3)

21

This List describes several features of Java that make 1t the 1deal language for JIn1OS Because Java 1s an
nterpreted language, the user must use an interpreter running a Java Virtual Machme (JVM) to execute a
Java program This means that the Java program will run on any computer that has the mterpreter running,
and that the Java program 1tself 1s architecture neutral As long as a JVM for the operating system exists,
the Java program will run on that system Additionally Java dictates the data byte ordering m files, which
avolds the common problems encountered when moving binary data from one platform to another Java
programs are compiled into platform mndependent byte-codes that are then run by the JVM During the
byte-code generation, the code 1s verified to ensure that the program 1s well formed and does not overflow
or underflow the stack or contam 1llegal byte-codes This 1s only one aspect of the secunty features of the
Java language Another aspect 1s that all Java programs can be restricted to specific functions to ensure
security by specifying a security policy file on the system running the JVM These restrictions are enforced
by the SecurityManager class, and all core Java classes that perform sensitive operations ask permission

from the SecurityManager before the operation 1s performed

Another benefit resulting from being an mterpreted language 1s that Java 1s a dynamic language Java
programs are not linked mto an executable, as with most other languages such as C++ and Fortran, so
classes can be dynamically loaded and mstantiated The distributed nature of Java, combined with the
dynamuc class loading capabilities makes 1t possible to download and execute classes via the Internet
Because Java 1s a distributed language, 1t provides support for high-level networking as well as the
traditional lower level networking support Distributed applications typically mvolve starting a new thread
of execution 1 the server to handle communications with each client As a chent request 1s recetved, a new
thread 1s started to process the client’s requests In this way, one server can process all communication with

several clients and still listen for new connection requests Multithreading 1s mcluded n Java

Finally, the Java language 1s simple and small and has been designed for writing robust and highly reliable
programs Software reliability 15 an extremely important feature when writing a device driver—it must not
fa1l or require any user intervention Exception handling to respond to errors that may occur 1s essential and

1s part of the core Java language
22

Java contains several classes that facilitate serialization (reflection), which volves being able to convert
an object mto a stream of bytes (marshal) and later reconstruct the object (unmarshal) from this stream
Once converted, these bytes can be written to a file or transmutted to another computer via an Ethernet
connection Serialization of objects 1s made much easier by the ability of Java classes to reflect upon
themselves Reflection allows Java classes to determine, at run time, the methods, fields and constructors
defined for a class Reflection typically allows classes to be serializable merely by extending the
Seralizable class and without additional programming Recall that devices n JimOS will transmit their
drvers to the requesting clients via a server These drivers will be Java class objects, and 1t 1s the

serialization aspect of Java that makes this possible

4.4 Remote Method Invocation

Remote method mnvocation (RMI) 1s a facihity included 1n the core Java that allows objects to interact with
other objects running on remote virtual machines on a network RMI provides a mechanism for obtaming a
reference to an object running on a remote host The methods associated with the object can be mvoked as
if 1t were running 1n the same JVM as the client, thereby allowing an application to be distributed across a
network RMI handles all the underlymg network communication between hosts so applications may be

made distributed without having to program the low-level Internet communication.

Because RMI 1s built mto the core Java application programming interface (API), integration of remote
objects 1nto an application 1s almost seamless The first step 1s to define the interface for the remote object
The mterface extends the Remote class and only defines the method signatures (method name and
argument types) of the methods and the public data items that are to be remotely accessible Next, an
implementation of the interface 1s created which extends the class UnicastRemoteObject and provides the
details of the methods 1n the interface class This 1s where the methods specified m the interface are
actually coded, so all methods specified in the mterface must be represented While this file may contan
member functions and data other than those outled 1n the nterface, only those specified in the interface

will be remotely accessible The implementation 1s then processed, by rmic for the Sun Java Development
23

Kemnel (JDK), by using the mterface and implementation to create a stub and skeleton for the object The
skeleton 1s compiled with client and the stub with the remote object When methods of a distributed object
are mvoked, they are converted to network requests by the stubs The skeleton reads the request on the host
where the object origmated and translates them to method calls The results are transmitted back to the
chient when the method completes These hide the underlying network details so 1t appears to the chent that
the method was run locally Figure 4 3 illustrates the functionality of a chient/server application n RMI and

a sample of an RMI program 1s located in Appendix A

In order to make the object available 1t must be exported to a name server, rmiregistry for the Sun JDK, by
the host and then mported by any client wanting to use 1t Thus 1s accomplished by the rebind and lookup
commands The implementation binds an mstance of the object to a name 1n the server (rebind), and the
chient uses the same name to fetch a copy of the object (lookup) The clhent uses the nterface, containing
just the method signatures, to cast the object to an mstance of the nterface so that the client can then mvoke

the methods of the object This 1s because 1n typical applications the chent does not have access to

Server JVM RMIJVM Chent JVM
1
Hello Server
Hello Skel)
Hello Stub =|' Hello Stub |
2 ‘ .
Hello Server ' Hello Ciient
Hello Stub
3 ,
Hello Server Hello Client
Hello Skel] Hello Stub {— =|' Hello Stub |
Hello Stub
4 __Hello Stub
Hello Server R Hello Client
Hello Skel =|| Hello Stub
Hello Stub

Figure 4 3 RMI client/server model
24

the implementation, thereby hiding code details from all chients Recall that Java provides techniques for
object senalization, which convert an object to a stream of bytes RMI extends this concept but the

underlyng 1dea 1s the same

Having to know beforehand the address of a name server and the name used to register the objects 1s a
major shortcoming when 1t comes to just using RMI to handle device management In order to use a remote
object, the client must first know the IP address or host name of the host running the name server, and the
name used to register the object In the case of JImOS this would mean that each device would be running a
copy of rmiregistry, which would usually have only one object exported to 1t Alternatively, each device
would have to know the IP address of a name server to use and the clients would have to know the same IP
address In both cases we do not know enough mformation to be able to connect the devices to the client
without using predefined IP addresses for either or both The operating system would then have to poll each
of the devices for which 1t somehow got an IP address to determine 1f 1t was new, still alive, or no longer

present Jini1 will solve these problems

Jim employs a modification of RMI which solves the addressmg and naming problem allowing the device
exporter to hide the internal execution details of the driver from the user The user only knows the class
mnterface, not how the class methods are implemented It also lets driver writers focus on the device support
software rather than having to worry about the communication details RMI 1s used for this project to
export devices that the operating system does not support sharing, 1 e, those devices that cannot normally
be shared among computers. RMI 1s used to run an application on a remote system that has a sound card
mstalled from one that has no sound card Sound cards cannot be shared under Windows 95 and, under
normal circumstances, cannot be run remotely None of the drivers necessary to communicate with the

sound card are available on the local system, so the methods that use them cannot run locally

25

4.5 Jini

4.5.1 Introduction

Java began as the Oak programming language, part of the Green project, for embedded processors at Sun
Microsystems Labs i 1990 Patrick Naughton, Mike Sheridan and James Gosling were “trying to figure
out what would be the next wave of computing and how we might catch it We quickly came to the
conclusion that at least one of the waves was going to be the convergence of digitally controlled consumer
devices and computers” (Gosling) The origmal vision for Java was to provide a means of supporting
groups of consumer-oriented electronic devices that could easily exchange information, but by t}le time 1t
was re-released as Java m 1995, 1t had grown into much more Whule 1t still provides the ability to securely
send and execute code between computers, the original goal of using Java to create groups of easily

admimistered devices was never met

In 1999 Sun Microsystems released the Jin library, which would make the vision of an easily administered
distributed network of devices a reality. Many of the same people that worked on the design of the Java
programming language were mstrumental in the design of the Jim system Among them were Bill Joy, one
of the chief mspirations, Jim Waldo, chief architect and designer, Ann Wollrath, inventor of Sun’s Remote
Method Invocation, and Ken Arnold, creator of Jin’s transaction and storage models Jini’s lookup and
discovery protocols were created by Bob Schexfler, who once led the X Consortium The distributed storage
model used for Jin1 was based on the Linda system from David Gelernter at Yale The Linda programming
language was built on the concept of “tuple spaces” and was aimed at distributed versus parallel
programming Tuple spaces allow processes to communicate, through space or time, even 1f they are
wholly 1gnorant of each other Processes communicate and synchronize their activities via a persistent store
called a “space” rather than direct communication (Freeman) In fact JavaSpaces, an implementation of the
origmnal tuple spaces described 1n the context of Linda, was later released by Sun Microsystems as a Jin
service for storing Java objects

In some ways the history of Jmu 1s the history of Java—Java 1s really the fulfillment of

the original Java vision of groups of consumer-oriented electronic devices nterchanging
bit of data and bits of code (Edwards, p 8)

26

Jin1 leverages the Java programming language to provide a simple substrate for

distributed programming Jin1 moves us from a world m which the “system” 1s the

indvidual networked device, to one m which the “system” 1s the collection of all these

devices working together (Edwards, p xx1x)
Jin1 extends the Java core to provide the mechanisms necessary to handle a network of embedded
processors communicating to create one complete system It builds on the networking capabilities, RMI
and other properties inherent m Java to create a library of Java classes tailored for communication between
remote devices and provides the tools to set up servers that manage sets of chient devices “Jini allows
anything with a processor, some memory, and a network connection to offer services to other entities on the

e

network or to use the services that are so offered” (Waldo, 1994)

Jin1 facilitates the creation of a distributed system composed of remote devices In the world of distributed
systems, the distinction between server and client becomes clouded Servers can also be clients and chents
servers So for the purpose of this research,

e server will indicate the Jini server,
o clent will be the application downloading from the server,
e driver or proxy will be the application loaded 1n the server, and

e device will be the hardware component and application loading the driver to the server

4.5.2 Jim Server

A Jinu server acts as a repository for methods and data Recall that one of the major shortcomings of using
RMI 1s that the application wanting to access the remote methods had to know the IP address of the host on
which the RMI name server 1s runming The Jin1 server uses Internet multicast to solve this problem When
a server 1s created, 1t announces 1ts presence to all hosts on the same subnet, 1 e , all hosts with the same
first three numbers in their IP address For example, given a Jin1 server with the IP address 192 168 2 13,
all hosts with an IP address between 192 168 2 1 and 192 168 2 255, inclusive, would receive a request All
hosts wantmg to participate with this server respond and wait further communication from a client The
server stores the IP addresses of each participant for use later In this way, the server merely acts as a “go-
between”. That 1s, after a device has uploaded its driver to a server and a client has downloaded the driver,

the chient communicates directly with the device using the methods provided by the driver In addition,
27

since a server 1s responsible for providing the initial communication between the chent and a device, and
provides nothing after communication between them has been established, devices may be registered with

several servers

The ability to move code from the service to the client 1s what distinguishes Jmni from CORBA and DCOM
In those systems, the code used to communicate with a service 1s associated with the client and knows how
to transfer mformation to the service via a static protocol defined m terms of an interface defimition
language (IDL) The code bemg moved 1s called a proxy and 1s central to the Jim1 system A proxy 1s a local
object that stands for a remote object so that the combination of the proxy and the service form a single

object that 1s itself distributed (Waldo, 1994)

Both clients and devices also use multicasting to 1dentify all the Jin1 servers on the subnet All Jim servers
that receive a request for 1dentification respond to the requestor The Jin1 software stores the IP address of
the server for use later, which hides the need to know IP addresses or host names as long as all servers,
chents and devices are on the same subnet This 1s usually the case 1n a home or even office environment
Jin1 makes provisions for servers that reside outside the subnet, but in this case the host name or IP address
must be used to establish mitial communication between the device and the server and between the chent
and the server As before, the IP address of the server 1s required only to store and retrieve drivers but not
between the clients and the devices In this way, devices such as printers can register themselves with
several known small networks to be visible to all clients Conversely, each smaller network might consult
known servers on other networks that contamn devices that chients might want to use. In fact, Jin allows

servers to register with other servers, thereby making themselves visible outside their normal range

Another important responsibility of the Jin server 1s to guarantee that all devices associated with a server
are still valid Communication between the server and a device 1s via UDP to avoid the overhead of
maintaming a permanent connection Unfortunately, this means that neither computer in a UDP connection
knows when the other 1s no longer accessible because of either lime or system failure If the server did not

communicate pertodically with a device to verify that 1t 1s still active, then a client would be able to
28

download drivers for devices that are no longer valid While the client could recover from this when 1t tries
to access the device, 1t gives an incorrect snapshot of the system Verification allows the server to clean up

limited resources by removing drivers for devices that are no longer accessible

4.5.3 Leasing

Jin1 uses leasing to determine 1f a device 1s still available The server sends a request to every device
registered with 1t at regular intervals and waits for a response from each one The duration, known as the
lease period, 1s specified by the device when it registers with the server If the device fails to respond to this
hal, 1t 1s removed from the server and all clients using the driver are notified that the device 1s no longer
available If the device comes up later, 1t will re-install its driver and all chents may then download them
agam This 1s known as a self-healing network—the loss of a device 1s not catastrophic and 1s recoverable
without user ntervention The device also uses leasing to ensure the server with whom 1t 1s registered 1s
still available Aside from specifying the lease duration, the Jmi software hides the leasing mechanisms
from the devices and clients and handles all registering and renewal of leases automatically Once a device
has 1dentified a Jmi server, the device uploads 1ts driver (Figure 4 4) Simlarly, a chient that has 1dentified a

server, downloads 1ts driver when necessary (Figure 4 5)

4.5.4 Programs

When a Jim program 1s executed, 1t identifies available Jin servers and the services available from each If
the program 1s associated with a device, 1t uploads 1ts driver to the server If the program 1s a client that
wishes to use one of the services, 1t contacts the server and requests the object associated with the desired
service The server then transfers the object (driver) to the client and the client then contacts the device
publishing the service using the methods of the driver If the object represents a remote object, these
method calls will be translated mto network requests and are run on the device, and results are then
communicated using RMI If not, they are run on the client and communication to the device must be
established another way (usually via a private protocol running on TCP or UDP) Once the nitial
communication has been established, the requirement for Java 1s no longer m effect The device may

choose to use any programming language to service the client, as long as the communication satisfies the
29

Other Network
multcast reques> Members
Service multcast request 5
[1]
3
o
multcast request 3 Jini Server
Other Network
Members
Service UDP response
h
=3
(1]
3
®° UDP response Jini Server
Other Network
Members
Service
m
' Dnver g
3
o Jimi Server
Other Network
Members
Service UDP
m
Dnver §
3
e upP Jini Server
Dnver

Figure 4 4 Discovery / Jomn

30

I Other Network
multicast request Members
Client multcast request "5
[
3
e
multcast request) Jim Server
Drnver
Other Network
Members
Client UDP response
n
5
o
)
®° UDP response Jim Server
Dnver
Other Network
Members
Client UDP request
5
[1]
3
% UDP request Jini Server
Dnver
Other Network
Members
Clent UDP response
Dnver

UDP response

Figure 4 5 Discovery / Lookup

T;wamz

Jim Server

Dnver

established protocol This may prove more difficult on the client side because the chient 1s running methods
of the driver to communicate and the driver 1s written n Java However, the driver may be written mn such a

way as to provide additional language choices to client

Regardless of how the communication 1s handled, the client must know the method names and their
arguments before they can be used Recall that when using remote method nvocation (RMI) a shared
program comes m two parts the mterface and the implementation Jin too follows this convention to
publish the structure of shared objects This means that services grouped by type must follow specific,
advertised mterface gmidelnes 1n order to be used by a client, regardless of how the methods are eventually
mmplemented For example, all prter devices must provide drivers with the same core method signatures
They may provide drivers with additional methods unique to their printers but the core method signatures
must be 1dentical Jim does not specify or enforce these standard device mterfaces—they will have to be

determined by the various device manufacturers

4.5.5 Jin details
Jini 1s constructed of layers on top of Java the same way as the Java Foundation Classes (JFC) and the Java

Database Connectivity (JDBC) libraries (Figure 4 6) but at its core, Jin1 1s pure Java

On top 1s a directory service, based on a “lookup” mechanism that allows different Jini-
enabled devices and apphications to register and be seen on the network. The next-level
service 1s persistence, provided by JavaSpaces technology, which stores objects so that
other users or apphcations can retrieve them Below that, a set of protocols based on
Java’s Remote Method Invocation enables objects to communicate and pass each other
code And finally a boot, join, and discover protocol allows Jini-compatible devices,
users, applications to announce themselves to the network and register n a discovery
(Kelly, p 132)

Jm1 1s built around five essential concepts several of which are famihiar from the discussion on distributed
systems discovery, lookup, leasing, remote events, and transactions Discovery 1s the mechanism described
above, used by devices to find communities of servers on the network and uploading (Joining) their drivers

to them Lookup 1s used by clients to find servers Leasmg, described previously, is one of the most

important concepts of Jin1 because 1t ensures that a communty will recover from the loss of any its
32

Directory Service
JavaSpaces
Remote Method Invocation
Boot, Join, Discover

Jaya Virtu, IiMaching
3

(/2] (/2]

o ¢ o

z) 8

< 2 =
s

Figure 4.6. Jini structure.

members. Leasing is also used by several JiniOS devices to ensure that the device is made available again
when the client terminates. Remote events allow members to notify each other of changes in their state
without each member having to poll the rest for changes. Jini makes extensive use of events because of the
non-predictable nature in dealing with network applications. For instance, when a request is made for
servers, rather that waiting a specified time for responses, Jini establishes an event to monitor and returns
control back to the calling routine, and then agrees to invoke the specified callback when the event is
triggered. Because there is no way of knowing beforehand how many servers will respond or how long it
will take them to respond, we cannot simply wait. The last concept, transaction, is implemented in Jini to
provide two-phase commit transactions for those operations that may require them. This ensures that those
services that require an all-or-nothing transaction process have a Java solution available to them. The
transaction feature of Jini was not used for JiniOS but was simulated at a low level by some devices, a hard
drive for example, by requiring an acknowledgement after every network-related operation, essentially

committing every operation.

33

When a new service 1s created or an existing service 1s modified a unique 1d, called the service 1d, 1s

associated with 1t The same service 1d should be used every time the service 1s registered and should be the
same for all Jim servers with which 1t 1s registered A client can decide 1f a service found on several servers
1s Just the same service registered everywhere or different services by comparing the service 1ds
Addrtionally if a service fails and then reappears, the client can determimne 1if the driver associated with the
service has changed and behave accordingly If the driver changes, a new service 1d should be created so
that all clients know that their drivers are no longer valid and must be replaced Finally, the service 1d can
be used to distinguish between drivers of the same type that may implement vender-specific methods For
example, drivers supplied Hewlett-Packard and Epson are both printer drivers and must implement the
standard mterface, but they may include additional methods that take advantage of their hardware The
service 1d could be used to distinguish between them The technique used to generate the service 1d 1s
located in Appendix B

Ji service Ids are 128 bits long Even if the world’s population reaches 100 billion, and

each of these people have, say, a million Jini-enabled VCR’s, cameras, and DVD players

to therr name assigming unique Ids to these devices would only take around 64 bats of

the service ID address space Jini1 uses a somewhat more sophisticated technique than

Just cranking out random 128-bit numbers, though But basically the service 1d 1s

created by stuffing together 60 bits of system clock, expressed m 100 nanosecond chunks

since the year 1582, a bunch of random “noise” thrown mn for good measure, and, on

some implementations, a unique host address for the lookup service (usually its ethernet

address, 1f 1t has one) This scheme guarantees unique numbers until the year 3400 AD, at

which pont the clock rolls over Even then, however, the host identifiers and random

number components will likely provide unqueness, although 1t can no longer be

guaranteed (Edwards, pp 283-284)
In addition to a service 1d, each service has an Entry object associated with 1t The Entry contams
information about a service such as the product name, manufacturer, vendor, version, model, and serial

number that a client uses to decide 1f this 1s the object 1t needs The Entry object corresponds to the

expressions used i the Intentional Naming Systems (INS) to classify and select services

The services that Jin1 requires are

e A simple Web server Jini requires this facility because when downloaded code 1s needed
through RM], the actual transmission of the code happens via the HTTP protocol . A
common configuration 1s to run an HTTP server on each host that needs to provide
downloadable code to other applications

34

e The RMI activation daemon allows objects that mat be invoked rarely to essentially
“go to sleep,” and be automatically awakened when they are needed The RMI activation
daemon manages the transition between active and active states for these objects, and 15
used extensively by the other core Ji run-tume services At a minimum, you will need to
run the activation daemon on each host that runs a lookup service, described below
o Alookupservice keeps track of the currently active Jin1 services that are available on
aLAN (Edwards, p 23)
JimOS, discussed 1n greater detail in the next section, 1s configured similar to that described above (Figures
47 and 4 8) There exists a personal computer running a lookup service, a RMI daemon and an HTTP
server pointing to the Jin1 code This same computer runs all chients and has another HTTP server pointing
to a chient download area to handle RMI requests for objects Each device runs an HTTP server poimnting to
the area where the driver to be transferred 1s located All leases are set to expire after ten mmutes so the
entire system will be stable and correct ten mmutes after a device or server or client terminates Most
devices contain Close methods that allow a client to disconnect from a device when finished so leasing 1s

employed primarily to recover from software or hardware failures or itentional system configuration

changes

35

. Host#1 Host #2 Host #3
md
1099 i : http 8085
servicedl service
Host #4 ‘Host#5 Host #6
hitp 8086 hitp 8085 hitp 8086
chient-dl servce-dl semvica
Ethemet

Figure 4 7 Configuration required by Jini

. JinOS Computer .
rmd hitp 8086 \
1099 -
chent-d! ' ’ “
Ethernet
Device #1 Device #2 Device #3
hitp 8085 hitp 8085 http 8085
service-di service service-di service service-d! service

Figure 4 8 Configuration used by JmOS

36

Chapter 5

Implementation of JiniOS

5.1 Project Description

The goal of this project 1s to create a simulation of a computer comprised of a federation of connected
devices I simulated several devices by writing their device drivers and a chent that accesses and uses these
devices The devices must be able to automatically nstall themselves by uploading their driver software to
the Jini server and must be able to tolerate the loss of the Jmi server and any client system failure The
client must be able to tolerate the loss of devices and be able to accept the addition of new devices without
requiring the system to be rebooted or any user mntervention Both must tolerate the loss of connection to
the server and each other Success will be determimned by how well the devices, servers, and chients behave

given these circumstances

Realizing that there are no devices currently on the market that meet all the hardware requirements
previously outhined (CPU, memory, Ethernet connection, etc), I configured four personal computers with
the necessary devices attached to provide the hardware components (Figures 5 1 and 5 2) to create the
appearance of a single, complete computer system (Figure 5 3) I selected a keyboard, monutor (text only),
hard drive, sound card and primter as the devices to model as JimOS devices For example, the keyboard 15
a complete personal computer with a keyboard attached. Likewise, the monitor 1s another complete
personal computer with a monitor attached The same holds true for the sound card and hard drive In order
to populate the server with enough device choices, several systems represent more than one device The
computer that exports the keyboard, for example, also exports a hard drive Sumilarly, the monitor and
sound card computer systems export hard drives However, each configuration behaves independently from
the devices that reside on the same physical computer with 1t The keyboard, for example, does not use the

fact that 1ts PC host also exports a disk drive and visa versa

Monitor for Computer B

Monitor for Computers
Aand C

Monitor for Pooh

i P RS

CPU for Computer B

CPU for Computer C

Figure 5.1. System photograph.

38

192168210

ComputerB
1921682 13

]

ComputerC
192 168 2 14
PlaserJet]
— =
192168212

Figure 52 Actual system

Personal Computer

© M@ keyorr
3 Hard Dnves

HPLaserJet 1 Printer
1 Sound Card

Figure 53 Virtual system

39

All four computers are connected to each other via Ethernet and all are on the same subnet (Figure 5.4).
The IP addresses “192.168.2.xx” were selected because this subnet is typically reserved for independent
home networks thus guaranteeing there will be no address conflicts between this local network and the
World Wide Web. In an complete JiniOS system the IP addresses of the devices can not be fixed since
there is no way for the manufacturer to know beforehand the local subnet (“192.168.2” in the above
address). Recall that Jini uses multicasting on the local network to identify servers and must know this to
perform the multicast. One possible solution would be to assign an IP address to a device during
installation but this would defeat the whole automatic-installation-only-when-you-need-it purpose of
JiniOS. A better solution is to use a technique such as Dynamic Host Configuration Protocol (DHCP)
which permits automated allocation of IP addresses. A DHCP server monitors the multicast address DHCP-
AGENTS.MCAST.NET (224.0.0.0) ports 67 and 68 and assigns an IP address to a client as it is requested .
(Harold). Each address is taken from a pool of addresses and is returned to the pool when the client is
finished. DHCP uses leasing to determine when a client is no longer available; i.e., when the client no
longer renews the lease, the address is returned to the pool (Hunt). DHCP was not used for this project but
it or some other mechanism for automatically assigning IP addresses without a network administrator
would be required in a final JiniOS system. DHCP may not be necessary in the future because the new
version of the IP header, IPV6, allows for autoconfiguration. This lets computers assign themselves a
permanent address based on the manufacturer of the network card and its 48-bit Ethernet address

(Montfort).

192.168.2.12 192.168.2.14

——

ComputerA ComputerB
192.168.2.10 192.168.2.13

Figure 5.4. Network topology.

40

https://19Z168.2.13
https://192.168.2.10
https://192.168.2.14
https://192.168.2.12
https://AGENTS.MCAST.NET
https://192.168.2.xx

All computers are running Windows 95, but this 1s not a requirement for JmiOS Windows 95 was selected
because Jin1 requires JDK 1 2 1 or higher and was only available for Windows 95 that the time the project
was started Also the universal portability of Java programs across different platforms and operating
systems has already been established and does not have to be proven by this project Since Jini 1s written
Java and all the services and chents are written in Java and all communication 1s based n standard Ethernet

protocols, the fact that all the systems are Windows 95 does not affect the conclusions

The keyboard, monitor and hard disk devices use a tailored protocol to communicate with their chents
They use the Ji server to distribute their respective drivers but methods withm these drivers establish a
dedicated TCP connection between the device and client Each employs leasing techniques to monttor the
health of the connection The sound card device employs RMI and a dedicated HTTP server This 1s
because the program to play the sound must be run on the computer with the sound card mnstalled An
HTTP server 1s used to transfer the music as streaming audio rather than transferring the entire sound file to
the device before playmg 1t By using streaming audio, the remote device does not have to store the file
locally and it can begn playing almost immediately Likewise, the printer requires a print server running on
the computer to which the printer 1s connected By using RMI, the client appears to running a print server
locally when, 1n fact, the file to be printed 1s transmitted to a remote print server The software that supports
the hard drive, the sound card and printer devices 1s written 1n Java The software that supports the
keyboard and the monttor devices 1s written 1n the C* programming language C** was chosen for the
keyboard because immediate access to the key pressed was required C™ was used for the monitor because

the device software for the monitor was similar to that for the keyboard

Sample source code for the keyboard device and a sumple client that accesses 1t 1s located mn Appendix C
The audio player and printer devices are somewhat more complicated by the fact that the driver that the
client downloads must be run using RMI The source code for these devices 1s not included n this
document but source code, along with a copy of this thesis, will be stored at the following Internet address

http //www utsi edu/cs/jin1os and may be viewed at any time

41

5.2 Device Software

The implementation of each device can be broken down mto three basic parts the mterface, the driver and
the device software The interface contains the class definition that the chient will use to create a usable
object from the one that 1s transferred from the Jin1 server when the driver 1s downloaded It 1s the only part
of the driver for which the client has to have the source code smce 1t contains the signatures of the methods
that the chient will mvoke to use the driver The object that 1s transferred from the Jim Server 1s of the type
Object, the super class of all Java objects The client casts this object to an object of the type of the
interface thereby gamng access to the methods and data. It 1s important to note that Java enforces this cast,
1 e, Java will not allow an invalid cast 1f the origmal object 1s not either of the interface type or one of its

descendants Figure 5 5 illustrates the type of information generally found in the interface

This interface guarantees to the client that the driver has implemented three methods open, close and read
None of the three take an argument and only read returns a value After the chent has downloaded the
driver object from the Jii server, the object will be cast to the KeyboardServiceInterface The chient will
then mvoke the open method to establish a connection to the device, the read method to read characters

from the keyboard, and finally the close method when the client 1s finished with this keyboard device

The driver implements the mterface for the device While the driver may contain additional methods
necessary to implement the task, 1t must define those methods listed m the mterface and only those methods
and data specified 1n the mterface are accessible to the chient The driver object 1s mstantiated on the device
but runs on the client’s machme This object will be transferred to each chent and will provide the only
connection between the client and the device In order to accomplish this, 1t also must implement the

Serializable class so that 1t can be serialized and transferred to the Jim server and then deserialize by the

Keyboard Service Interface

open()
close()
int read()

Figure 5 5 Sample keyboard service interface

42

client when 1t 1s downloaded Typically making a class serializable mvolves nothing more than ncluding
the Serializable class 1n the implements list of the class definition This ability of Jini to transfer the
program necessary to implement the driver to the chent only when the client requests 1t 1s what

distinguishes JimOS from other device driver mechanisms

This dr'lver, Figure 5 6, mplements the methods dictated 1n the nterface — namely open, close and read
KeyboardService uses a private TCP connection, as opposed to using RMI, to communicate between the
client and the device The driver 1s created on the device, uploaded to the Jim server and downloaded to the
chent The chient does not create a new mstance of KeyboardService, but mstead casts the object
downloaded from the Jin1 server as a KeyboardServicelnterface object. This distinction 1s important
because at this pomnt the client does not know the IP address of the device and cannot mitiate
communication with the device without 1t nor does the device know the address of the chent When a
KeyboardService object 1s created (on the device), the host name and port number of the device are
supplied to the constructor They are then serialized and stored on the Jin1 server when the driver 1s

registered The chient downloads the driver and casts 1t to KeyboardServicelnterface, and the hostname and

Keyboard Service Driver
constructor

Save host name
Save port number

open()

Create socket using stored host
name and port number

Get access to read socket

Get access to write socket
Start lease

close()

Signal other end we are done
close socket

read()

Read byte from socket
Return byte read

Figure 5 6 Sample keyboard service driver

43

port number that were already set are used by class methods to establish a connection back to the device
The device 1s histening to the specific port warting for a client connection Since the client supples 1ts IP
address and port number mn the connection protocol, both the device and the chient now have a means of
communication This allows the client to initiate communicate with a device without first knowing its

address or the port number of the device

The open, close and read method details are straightforward Open creates a TCP socket connection to the
device and assigns the class variables put and get to the output and mput socket variables, respectively The
read method uses the readByte method of the get variable to read a single byte from the socket This
translates to reading a byte from the device that the socket 1s connected, the keyboard n this case This read
blocks until a key 1s recetved The close method terminates the connection between the client and the

device

Recall that Jin1 uses leasing throughout to monitor the health of services and maintain the overall integrity
of the network The KeyboardService also uses leasing to monitor the health of the connection between the
device and the client The keyboard may remain unused for extensive periods while the user employs other
mnput mechamsms such as a mouse or barcode scanner or the computer sits idle In addition, this particular
device 1s designed to communicate with only one chent at a time While other devices, such as hard drives,
may allow several clients to connect simultaneously, we would expect a keyboard to be dedicated to a
single client Even though the KeyboardService driver provides a method to terminate communication, we
must have some mechanism to determine when a client 1s no longer active m order to free the keyboard for
another client We must be prepared m the event the client does not mvoke the close method either because
of poor programming practices or system or network failure The solution 1s to use leasing - at the same
time a client connects to the device via the open method a lease 1s automatically set up and maintained in a
separate thread Every time the lease runs out, the client lease thread renews 1t The same lease period 1s
monitored on the device If the lease 1s not renewed the device assumes that the chient has termmated and

the connection 1s no longer necessary whereupon the connection 1s closed and the device returns to waiting

for a connection
44

Next we have the program that 1s responsible for locating a Jin1 server and registering the driver with 1t,
and, 1f additional programs or threads are necessary to service the chent, 1t 1s responsible for starting them
This same program 1s responsible for mamntaming the lease contract with the Jini server after the driver has
been registered Remember that Jin1 uses leasing extensively to provide the self-healing property of Jini
federations As long as the lease 1s renewed the Jim server will keep and distribute a copy of the driver,

however, 1f the lease expires, the server will drop 1t and notify all chients that have copies of 1t

This program will typically be the only class on the device side that 1s Jiny, that 1s, this 1s the only class that
includes any Jmi-specific code Most services can be broken down mnto several simple tasks persistence,
discovery, nstantiation and registration and of these only discovery and registration are specific to Jin
These nvolve locating a Jin1 server and registering and maintaming leases for drivers Jimi provides several
classes to support the core Jim mechanisms as well as several convenience classes to make the task easier
For example the JoinManager class takes care of participating in discovery, propagating attributes, handling
groups, and mamtaining leases Using these convenience classes means that most devices will follow a
standard boilerplate, 1llustrated i Figure 5 7, to register with a Jim: server as long as they are willing to

allow the convenience class to take care of everything

The constructor first ensures that a security manager 1s running - required to run any remote applications
Then the current hostname and a port number are used to create an instance of the KeyboardService object
that will later be sent to the Jin1 server As stated before, the object 1s created on the device but 1s run on the
client Next we follow one of two basic paths either no service 1d has been assigned yet or we need to
reuse an existing service id Which path to take 1s decided 1n the constructor by whether or not the
serialization file exists or not If this file does not exist then no service 1d has been assigned and the method

register will be mvoked, otherwise, the method reregister will be invoked to use the existing service 1d

stored n the file

45

Start Security Manager

v

Create a proxy keyboard
object object to be
transferred to the Jini
server The local
hostname and port
number to use are
passed to the object's
constructor and stored in
the object

Do we
have a
service 1d?

Create a listener that will
No-p! be sent a new service 1d
by the Jin server

L)

Create new service

Yes informaton object to
describe keyboard
service

Register the proxy object

using the old service id
and old service
informaton

Register the proxy object,
the service information
object, and the kstener

Done

Invoked when a
Service |D event occurs

Listener

Store service
ID for reuse
later

Figure 5 7 Service flowchart

46

All services stored n a Jin1 server must have a service 1d which may be a previously assigned one or, m the
case of a new or modified service, a new one Rather than make the user contact a Jim server for an 1d and
wait for that 1d and then us 1t to register a service the JomnManager class has two forms One to register pre-
existing service and one to register new ones In the case of the latter, the user sets up a class one of whose
methods will be nvoked when a service 1d 1s created In this way, the registering program can proceed in
parallel while the service 1s bemng registered Once a JonManager has been created, transfer of control 1s
return to the mam routine which will start addition threads to handle client requests or just wait in an
nfinite sleep The process of registering the proxy object with respondmg Jin1 servers 1s event-driven and
occurs m parallel with this loop As each server identifies itself to the JoinManager, the object 1s

automatically registered with 1t by the Join Manager

The last 1tem to cover 1s the program or thread that runs on the device and services the requests from the
clients It functions much hke the BIOS and device driver 1n the current operating system 1n that it
translates high-level client requests mnto low-level, device-specific commands In the case of the keyboard,
this 1s a separate program that reads from the keyboard and transfers the data to the client In other cases,
the hard drive and audio player, 1t 1s another thread of execution and RMI, respectively, mn the devices
software discussed above In all cases since 1t runs on the device, 1t should be started by the same process
that starts the device software during the device boot The keyboard device was written as a separate
program because we needed access to the key pressed without requiring the user to press the Enter or
Return key Typically keyboard mput 1s buffered until the Return key 1s pressed, but we are able to
circumvent this process usmg a C™ program to collect pressed keys As stated before not all programs mn
Jin1OS have to be Java as 1s shown by this example This program is straightforward but heavily dependent
on the Windows operating system It creates three threads, LeaseThread, SignalThread and ClientThread
which are responsible for listening to lease renewal requests, close requests and sending the pressed key to
the client, respectively It allows only one connection at a time and all three threads must be termmated
before the next request for ownership 1s serviced. If any one thread terminates the system automatically

terminates the remaining two

47

One 1nteresting thing to note 1s that data transferred from a C or C++ program to a Java program via
Ethernet may encounter some word size and byte order problems Java 1s very strict about both of these
1ssues, however, most other programming languages are not, so some consideration must be given to

formatting the data to a format that Java will understand

5.3 Chent Software

A chent program 1 JImOS has to locate a Jini server, identify the drivers available on 1t, download the
drivers for the devices 1t needs, and access the devices via the methods provided m the driver (Figure 5 8)
As with the device software, first the client starts a security manager to ensure access to the device and then
broadcasts a request that all Jim servers identify themselves Unlike the device software, however, the
client has to set up an object to monitor replies Recall :chat in the device software almost everything was
handled by a convenience class (JomManager), but m this case the client needs to know the servers that
respond so that 1t can query them for mstalled devices Since there 1s no way of knowing beforehand how
many servers will respond or even how long 1t will take to get a response, the discovery process 1s event-
driven This 1s similar to the way service 1d’s were handled 1n the device software The client provides a
function that the Ji1 software will use to notify the client every time a Jin server responds That function

then uses a template to 1dentify those drivers that the client 1s nterested mn and stores them for later use

As was the case for service 1d’s, the discovery process 1s handled by a separate thread that runs in parallel
to the man program so that the program 1s not blocked until all the Jm1 servers have responded This
allows the mam program to contmue without having to wait for all the devices to finish loading Of course
there may be some cases where the main needs to wait until a particular device 1s available, the first time a
new prmnter 1s selected for example, so a mechanism must be built mto the chent software to wait fora
specific device Additionally, when Jim performs the discovery process 1t arranges a lease with all the
servers that respond so that the client 1s notified whenever the status of any of its registered drivers are
modified This allows the clients to reload any changed drivers to add new ones 1f they represent devices of
mterest Lastly, recall that as Jmni servers are created they broadcast their presence Since the discovery

process runs as a separate thread in the man program, the process of examinimg new servers for devices of
48

Start Security Manager

v

Create a template to find the
desired obecton the Jini

server
Y

Create a Lookup Discovery
object - sends out a message
looking for Jini servers

Y

Add a discovery listener to the
Lookup Discovery object that
will automatically be called
when Jini servers identify
themselves

For each Jini service that
identies itself

|
|
|
v

v

Use the template to look for
services that match whatwe
are looking for

v

Select from the available
services

v

Keep those services that
match

Exfract proxy object from
service information

v

Use methods of proxy object to
perform desired operations

Figure 5 8 Client flowchart

49

interest runs m the background So whenever a new device 1s needed by a client the list of available devices

1s scanned and the one that most closely matches 1s used

Figure 5 9 1llustrates the complete process for a single device The keyboard device uploads its driver to a
Jim server and the chent downloads that driver from the same server The client then uses the driver to
communicate directly with the keyboard device Figure 5 10 1llustrates the same process for all the devices

m this project

Ideally each chent program should be insulated by the operating system from having to perform the

discovery process just to access a device (Figure 5 11) Much as the BIOS does today, the operating system

should mamtamn a hst of available common devices and allow access to them via a high-level interface

This list would be derived nformation gleaned from local Jin1 servers, and 1t would be automatically

updated as the network topology changes Less commonly used devices could be actively searched for and

attached by the user thereby avoiding cluttering the mterface with little-used devices Since one of the goals

of this project was to demonstrate the feasibility of Jim networked devices, I decided not to go to this next \

step but mnstead let the client manage 1ts own devices as 1llustrated m Figure 5 10

5.4 Starting the System
Each client may run a Jim server but this 1s not necessary as long as there 1s at least one running on each

subnet or 1solated network Jim does not place any limits on the number of servers running on a network |
nor on how many different servers a particular service can be registered For the purpose of this project,

JimOS runs a Jin1 server on each complete personal computer In a production environment, however, we

would not expect a server on each desktop but rather one or two per office or even per floor or, n the case

of a home system, one or two per home

The process of running keyboard example 15 broken mnto three parts code necessary for the Jmn1 server,
code necessary for the keyboard driver and code necessary for the keyboard client The program necessary

to run the keyboard example 1s located in Appendix E
50

Keyboard Service Host

Keyboard Service JVM

Keyboard Service

Keyboard

Jini Server JVM

Keyboard

Driver

Keyboard Service

Keyboard
Driver

Keyboard Service

Keyboard
Driver

Keyboard Service

Keyboard
Driver

Driver

Keyboard
Driver

Keyboard

Keyboard Client JVM

Keyboard Client

Keyboard Client

Keyboard

Driver

Keyboard
Driver

Driver

Keyboard Client

Keyboard
Driver

Keyboard Device
Software

Figure 5.9. Keyboard service and client.

51

A l B I I [+ I IPoohI Jini Server lChentI

Audio
Server
dwver -4+ — 4+ ——F+—+ — [drver B drver |
service A
| |
Hard Drive
Server .
dver —+—T———T1TT——+—T— —-P{ drlverJ—— P{ driver J
service | - ‘n
Monitor
Server
drver (— 4= 14— —'— - — [dver |— W] drver |
service A
—1
Hard Drive
Server
drver |— 41— — -+ 4+ — [dver |- dnver |
service L
Keyboard !
. Server
driver [—1+— 1T — -H dnverJ— Dr driver J
service |« A
Printer
Server
driver | — driver |— W] drver |
service [« L
Hard Drive
Server
driver — b{ driver I— H driver l
service I

Figure 5 10 Complete project

52

LA]

L8]

Le |

IPooh I r.hnl Serveﬂ

[J|n|0il

Audio - >
Server B
dver — 1— 14— — 4+ -+ — — — —{ drver || _drver ,
service — L
1 . .
. Lol
Hard Drive
Server .
.
dver |—4— 4+ — 4+ 1+ — —+ — —m] dwver |— driver “.
service p
k- ¥ i&
. - >
Monitor ;
, Server 2
drver |— 4= 1— — ==+ —» drver |— W dnwer ;
‘ N
service
- P
- >
Hard Drive ’
Server @
3 D
‘ drver |—+— 4+— — - —»{ drver |—B{ driver ‘8
: s,
service &
.0
-l -
.) - >
Keyboard o,
Server .o
— 4— — driver P
driver - dwver |—m] dr g
service .
¥ As ¥
- >
N Pnnter »
Server ; e
.
e .
{ driver [] drver | — B dnver =2
. service .,
1 -< >
- >
Hard Drive ;
Server .
drver [drver | B drver o
@ 5
" service Lo
- < »
- >

Figure 5 11. Ideal JimOS

53

Chapter 6

Evaluation and Conclusions

6.1 Evaluation

In addition to writing device drivers for the keyboard, monitor, hard drive, printer and sound card I wrote a
single client (JiniPC) that accesses all of them I had written mdividual ¢lients to validate each device
separately but the mtent of this last program was to validate a complete system composed of networked
devices and to verify the ‘self-healing’ nature of the network All chents and JniPC performed as expected
The JiniPC program was able to access all the devices as they became visible without any user intervention
Hardware failure was simulated by stopping the service and repair was sumulated by restarting 1t In all
cases the JimPC program was able to recover once the device reappeared Based on these results, this part

of the project was a complete success

The primary goal of JiniOS was to make the process of mstalling and mamntammng the devices easier. 1
wanted be able to replace the antiquated methods used for mstalling new devices with one that allowed new

devices to 1nstall themselves

The mstallation of a hard drive 1s probably the most difficult task a typical user would attempt I conducted
an informal survey (Appendix F) to determine the minimum time that 1t takes to mstall a second hard drive
1n an existing system under 1deal circumstances (enough room 1n the case, enough connectors m the ribbon,
enough power connectors, etc) The survey form was sent to people with various backgrounds but all had
some experience nstalling a hard drive One mdividual was timed performing the installation of the hard

drive to validate the estimated times The results of the survey are located n Tables61,62,and 6 3

The estimates ignore the time 1t takes to select the device and assume that the user has enough knowledge
about the system to know what to buy. For mstance, the hard drive may be IDE, EIDE, SCS], or USB and
one or all may work Several of the people that responded also mcluded a horror story related to their

hardware experience

54

Table 6.1. Installing a second IDE hard 1

T 2500
5
=
£ 2000
g
» 1500
E 10.00
5.00
0.00
Step 1 Step 2 Step 3 Step4 Step 5 Step 6 Step 7 Step 8 Step 9
-a-A 10.00 5.00 10.00 5.00 2.00 3.00 5.00 3.00 5.00
e B 2.00 10.00 3.00 0.50 1.00 2.00 1.00 1.00 5.00
bl 10.00 10.00 15.00 10.00 5.00 10.00 10.00 20.00 30.00
—D 8.00 10.00 5.00 1.00 2.00 8.00 2.00 2.00 5.00
B 10.00 2.00 5.00 1.00 2.00 6.00 3.00 3.00 5.00
- F 5.00 10.00 10.00 1.00 2.00 3.00 0.50 2.00 3.00
—— Measure 2.00 6.00 3.00 0.00 2.00 3.00 2.00 22.00 18.00
— Average 7.50 7.83 8.00 3.08 233 5.33 3.58 5.17 8.83
Table 6.2. Installing an internal CD-ROM 1
25.00
20.00
£ 16,
- 00
g 10.00
o
£
5.00
0.00
Step 1 Step 2 Step 3 Step4 Step 5 Step 6 Step 7 Step 8 Step 9
a-A 10.00 3.00 5.00 5.00 2.00 3.00 5.00 3.00 5.00
- B 2.00 0.00 3.00 0.50 0.00 2.00 0.50 0.00 0.00
—— 10.00 5.00 5.00 20.00 10.00 10.00 5.00 20.00 5.00
PR, » 8.00 2.00 2.00 3.00 3.00 8.00 3.00 5.00 5.00
——E 10.00 5.00 15.00 1.00 2.00 6.00 2.00 5.00 2.00
oF 5.00 2.00 1.00 1.00 1.00 2.00 2.00 1.00 4.00
— Average 7.50 2.83 517 5.08 3.00 5.17 2.92 5.67 3.50

55

Table 6.3. Total installation times. 1

i 150.00 f
3 _
-1 120.00 4
- ,
£ 90.00
£
= 60.00 +
g 30.00 4
=
0.00
_g—Hard Drive | 48.00 25.50 120.00 43.00 37.00 36.50 58.00 51.67
—— CD_ROM 41.00 8.00 90.00 39.00 48.00 19.00 40.83

1. One user accidentally unseated the cable that runs from the CD-ROM to the sound card while
installing a hard drive. The plug was not totally disconnected but rather it was barely connected
resulting in intermittent behavior. It took several hours of frustration to find the problem.

2. A second user removed all the case screws when trying to remove the case. Unfortunately, the
screws that held the power supply, among other things, were t accessible from the outside and
were removed. This resulted in much more work to re-assemble the system.

3. A third respondent unknowingly bent one of the pins on the hard drive as he was plugging the
ribbon cable. When the system was turned on, it would not boot. After much frustration, the
problem was finally discovered but not after reseating all the cards and connectors and repeated
rebooting.

4. The time given for the validation installation does not include an addition three hours spent trying
to get the system to boot into Windows 95. The system would boot into DOS and into what is
called “Safe Mode” Windows which is where none of the special drivers are loaded, networking is
not loaded, and only the basic monitor is available. The problem was caused by the fact that the
system being updated was several years old and already had an existing master IDE drive. The
new drive, EIDE, was placed on the same ribbon with the old drive (as one would expect) but they
would not work together.

The above experiences help to emphasize the point that we do not want to open the computer case. The last
one illustrates what can go wrong when a proprietary connection is updated without regard to existing
systems. The installation of a keyboard and monitor are assumed trivial. Connection of a monitor does not

include the installation of a video card. While this task is not necessarily difficult, the wide array of choices

and possible conflicts with the motherboard make this something not typically attempted by a typical user.

The following steps are required to install any device in a system running JiniOS and could be expected to
be performed by any skill level in under ten minutes.

1. Attach power cable and Ethernet cable.

2. Turn device on.

56

3 Wart for driver to broadcast to the Jini server and then be broadcast to the computer

4 Select the device

We can see that there 1s a considerable advantage of JImOS over the current methods just from the
wstallation standpomt While the time required might not be substantially less for JimOS, there 1s a
sigmficant advantage when 1t comes to the required skill level and the risks associated with opening the
computer Also smce all devices are mstalled exactly the same way with exactly the same connectors,
mstallation mnto JiOS 1s much less mtimidating Additionally, some devices such as hard drives may be
shared among several computers without having to change anything 1n the operating system, the 1dea of

upgrading a collection of computers 1s much more attractive

All communication to the devices m JimOS 1s via a standard Ethernet connection Below are listed the

connections used today and their respective throughputs (“What 1s USB?”)

1 Parallel Port (printer) 150 Kbps (kilobits per second)

2 Serial Port (mouse) 920 Kbps

3 PS/2 Port (keyboard) 9 6 Kbps

4 EIDE (internal drive) 6 6 — 16 Mbps

5 USB Port (any) 15— 12 Mbps (Megabits per second)
6 SCSI Port (drive) 20 Mbps

7 Ethernet (any) 10 Mbps, 100 Mbps

We can see from this that standard Ethernet, at 10 to 100 Mbps and possibly 1 gigabit per second (Gbps)
the near future, can easily accommodate these devices with little special consideration The only exception
to this may 1n the area of video. The monitor driver for this project assumed a sumple text-only monitor
which could easily be handled here, however, when dealing with graphical monitors there 1s a much higher
volume of data that must be transmitted For example, 1f we assume a standard monitor with a resolution of
1280 by 1024 pixels and 16 million colors, we would have to transmit 31,457,280 bits of mformation for
every frame Assuming a refresh rate of thirty frames per second means having to transmat 943,718,400 bits

every second

57

The X window system developed for the Unix platform allows applications to display windows connected
to remote hosts It does this using a chient/server model and transmitting highly compressed commands
rather than screens for information A similar technique would have to be employed to effectively replace
an mternally connected video card with an external, remote one That 1s the commands now being sent to
the card would have to be transmutted via Ethernet to an external monitor/video device If this were done

then J1mOS would be able to handle graphical video monitors also

6.2 Conclusions

This research was started because the task of installing hardware into a computer was too difficult I have
shown that there exists a much simpler techmique using Jini, which will not only make the task of mstalling
new devices almost trivial but also remove the dependence of a device on an operating system These
methods could be employed to allow the same hard drive to be used by a personal computer, a Unix
workstation, an Apple computer and a large mamframe computer In addition, all four could use 1t at the
same time This sumpler technique 1s much more fault-tolerant as well as much less restrictive Since

drivers are distributed with the devices, new devices can enter the market much more quickly

Jin1 redefines the term device In the Jim specification, the items distributed by a Jini server are services
These may be software services mstead of hardware ones For example, a very fast computer can distribute
a service m which 1t agrees to perform a series of calculations Or a database can advertise services which
allow clients to access 1ts data In addition the Discovery / Jom protocol allows access to mobile networks
For mstance a laptop computer could connect to the network mstalled on an airplane and take advantage of
the faster processor or printer or mail or even food services Since the requirements of Jin1 are mmimal,
48K of Java binaries, there is a large market for retro-fitting existing devices The 1Pic 1s a complete single
chip computer that runs a complete implementation of a TCP/IP stack and an HTTP web-server which can
be coupled with a static RAM chip to deliver the necessary driver files (“Ipic — A Match Head Sized Web-
Server”) The 1Button 1s an mnexpenstve 16 mm computer chip that can be configured to contain 64 Kbytes
of RAM or a complete Java Virtual machine that 1s JavaCard™ comphant (1Button Overview) Cases that

contam a small CPU, some RAM, and an Ethernet chip could easily be manufactured These could be then
58

be attached to existing hardware and used 1n any Jin1 network Some consideration must be given as to how
to update drivers that are already installed m hardware This could mean that a device might have a new
driver loaded to 1t, which 1t stores m addition to the original In this way, a manufacturer could sell software

updates or enhancements for devices 1t has already distributed

The quickly escalating public interest m “plug-and-play” devices ensures that some changes are imminent.
Days after the release of Jini, Microsoft released Universal Plug and Play (www upnp org) which 1s their
attempt to mfluence the device market (“Universal Plug and Play Background™) UPNP 1s very similar to
Jin1 1 that 1t relies on a network and a universal server to distribute objects but 1s uses XML to transport
them Unlike Jin1 UPNP does not standardize the language of the drivers and may result m having to
distribute binaries based on operating system Simularly, The Salutation consortum (www salutation org)
has released a specification for a service discovery and service management architecture similar to Jim but
not based on Java It 1s mndependent of network transport, hardware platform, and operating system
software and supports standard intemet and other message formats Unfortunately, the final solution will be

all of the above, 1.e., whichever method, or methods, are adopted, 1t will have to be able to accommodate

the others There will never be a clear winner

59

Bibliography

60

Adijie-Winoto, Wilhiam, Elliot Schwartz, Har1 Balakishnan, and Jeremy Lilley, “The Design and
Implementation of an Intentional Naming System”, Proceedings of the 17" ACM Symposium on Operating
Systems Principles (SOSP’99), December 1999

Barham, P, M Hayter, D McAuley and I Pratt, “Devices on the Desk Area Network”, IEEE Journal on
Selected Areas n Communication, May 1995

“boot”, http //www.whatis com/boot htm, March 2000
“Class ServicelD Man Page”, Jim1 Technology version 1 0 API

Coffman, Edward, Jr and Peter Denning, Operating Systems Theory, Prentice-Hall, Inc, 1973

Dertouzos, Michael, “The Future of Computing”, Scientific American, August 1999

“Discovery Devices and Services m Home Networking”, IBM, Inc.,
http //www-3 1bm com/pvc/tech/networking htmi, March 2000

“DOS Batch Language A Personal View”, http //www maem umr edu/~batch, June 1999
Edwards, W Keith, Core Jini, The Sun Microsystems Press, 1999

Flanagan, David, Java mn a Nutshell, 2™ Edition, O’Reilly & Associates, 1997

Flanagan, David, Jim Farley, Wilhiam Crawford, Kris Magnusson, Java Enterprise in a Nutshell, O’Reilly
& Associates, 1999

Freeman, Eric, Susanne Hupfer, Ken Amnold, JavaSpaces Principles. Patterns, and Practice, Addison
Wesley, 1999

Gosling, James, “A Brief History of the Green Project”, http //java sun com/people/jag/green/index html,
April 2000

Gronvall, Bjorn, Assar Westerland, and Stephen Pk, “The Design of a Multicast-based Distributed File
System™ Operating Systems Review Conference, Winter 1998, pp 251-264

Harold, Elliotte, Java Network Programming, O’Reilly & Associates, 1997

Hayter, Mark and Derek McAuley, “The Desk Area Network”, Operating Systems Review, Volume 25,
Number 4, October 1991 ’

Hunt, Craig, TCP/IP Network Admimstration, 2" Edition, O’Reilly & Associates, 1998
“1Button Overview”, http //www 1button com/1buttons/index html, October 1999
“Inferno”, Lucent Technologies, http /inferno bell-labs com/mnferno, April 2000

“Inferno la Commedia Interattiva”, Lucent Technologies, http //inferno bell-
labs com/inferno/mfernosum html, April 2000

“IPic — A Match Head Sized Web-Server”, http //www-ccs cs umass edu/~shri/1Pic html, February 2000

61

www.whatis

“Jini™ Architecture Specification”, Sun Microsystems, 1999

“Jii™ Device Architecture Specification”, Sun Microsystems, 1999

“Jim™ Discovery and Jom Specification”, Sun Microsystems, 1999

“Jim™ Discovery Utilities Specification”, Sun Microsystems, 1999

“Jim™ Distributed Leasmg Specification”, Sun Microsystems, 1999

“Jm™ Entry Specification”, Sun Microsystems, 1999

“Jmi™ Entry Utilities Specification”, Sun Microsystems, 1999

“Jmi™ Lookup Service Specification”, Sun Microsystems, 1999

1 “Im™ Technology Helper Utilities And Services Specification”, Sun M1crosystems‘, 1999,

‘ . ' !

“Jini Technology’s Four-Year History”,
http //www abcomp be/news/events/receptions/abny99/history html, February 2000

Kelly, Kevin and Spencer Reiss ,“One Huge Computer”, Wired, v6 08, August 1998, pp 128-182

Knight, Richard, “Hard Disk Guide — Hard Disk Interfaces”,
http //www makeitsimple com/articles/hdguide/hd_gwide3 htm, March 2000

Lamb, Charles “JINI Net Intelligence a Your Command”, Software Development, Volume 8, Number 2,
February 2000

Montfort, Nick, “Breaking Protocol”, Wired, v7 12, December 1999, pp 344-347

Mull, Allison and Tobin Maginnis, “Evolutionary Steps Toward a Distributed Operating Systems Theory
and Implementation”, Operating Systems Review, Volume 25, Number 4, October 1991

Newman, Terry, “Batch Guide”, http //www nc5 mnfi.net/~wnewton/batch/batguide html, June 1999
Norman, Donald A., The Invisible Computer, The MIT Press, 1998

Pascoe, Robert, “Scheme ‘discovers’ networked services”, EETimes com,
http //'www eetimes com/story/OEG20000110S0027, April 2000

Pike, Rob, et al, “Plan 9 from Bell Labs”, Bell Labs, http //plan9 bell-labs com/plan9/doc/9 html, March
2000

Pmto, Hugo José, “JINOS The Impromptu Operating System”, CITAI Polytechnic Institute of Setiibal,
Portugal, http //developer jm1 org/exchange/users/hugojpmto/JINOSPaper html, March 2000

Plank, James, Henr1 Casanova, Jack Dongarra, and Terry Moore, “Netsolve An Environment for
Deploying Fault-tolerant Computing”, FastAbstracts Session, FTCS-28 28% International Symposium on
Fault-tolerant Computing, June 1998

Quinnell, Richard, “USB a neat package with a few loose ends”,
http //www ednmag com/reg/1996/102496/df 01 htm, March 2000

62

Rathbone, Andy, “Upgrading & Frxing PCs for Dummies® 4™ Edition”, IDG Books Worldwide, 1998
Rekesh, John, “UPnP, Jim and Salutation—A look at some popular coordination frameworks for future

networked devices”, California Software Laboratories, http //www cswl com/whitepr/tech/upnp html,
March 2000

Risley, David, “BIOS Guide”, http //www pcmech com/bios/index htm, March 2000

Ryan, Stein, “Synchronization 1n Portable Device Drivers”, Operating Systems Review, Volume 33,
Number 1, January 1999

Schmudt, Brian, Monica Lam, and Duane Northcutt, “The Interactive Performance of SLIM a Stateless,
Thin-client Architecture, Proceedings of the 17" ACM Sympostum on Operating Systems Principles
(SOS8P’99), December 1999

Sirer, Emmn, Robert Grimm, Arthur Gregory, and Brian Bershad, “Design and Implementation of a
Distributed Virtual Machine for Networked Computers”, Proceedings of the 17" ACM Symposum on
Operating Systems Principles (SOSP’99), December 1999

“Umversal Plug and Play Background”, http //www upnp com/resources/UpnPbkgnd htm, March 2000
Vahdat, Amin, Thomas Anderson, Michael Dahlin, David Culler, Eshwar Belani,Paul Eastham, Chad
Yoshikawa, “WebOS Operating System Services for Wide Area Applications”, The Seventh IEEE
Symposium on High Performance Computing, July 1998

Van Meter, Rodney, “A Brief Survey of Current Works on Network Attached Peripherals”, Operating
Systems Review, Volume 30, Number 1, January 1996

Waldo, Jim, Geoff Wyant, Ann Wollrath and Sam Kendall, “A note on Distributed Computng”, Technical
Report SMLI TR-94-29, Sun Microsystems Laboratories, Inc , November 1994

Waldo, Jim, “The JINI Architecture for Network-Centric Computing”, Communications of the ACM,
Volume 42, number 7, July 1999

Walker, Janice and Todd Taylor, The Columbia Guide to Online Style, Columbia University Press, 1998
“What 1s BIOS (Mmn1-FAQ)”, http //www sysopt com/brosdef.html, March 2000
“What 1s USB?”, Road Warrior Tips, Mobile and Wireless Guide, IGo Corporation, C 21 5

“What 1s USB and will 1t play a role n the 21 century?”,
http //www 1tweb co.za/sections/techforum/2000/0002090759 asp, March 2000

63

Appendices

64

Appendix A: RMI Sample

import java rmi.*;

public interface Hello extends Remote
public String sayHello() throws java.rmi.RemoteException;
}

Listing A 1 Interface

import java.net.*;
import java.rmi.*;
import java.rmi.server.*;

public class HelloImpl extends UnicastRemoteObject implements Hello ({
public HelloImpl() throws RemoteException {
super () ;

public String sayHello() throws RemoteException {
return("Hello World!");
}

public static void main(Straing[] args)
System.setSecurityManager (new RMISecurityManager());
try {HelloImpl h=new HelloImpl () ;
Naming.reband("hello", h) ;
System.out.println("Hello Server Ready.");
} catch (RemoteException re) {

System.out.println ("RemoteException: " + re);
} catch (MalformedURLException me) {
System.out.println("MalformedURLException. " + me);

}

Listing A 2 Server.

import java rmi.*,

public class HelloClient ({
public static void main(String args([l) {
System.setSecurityManager (new RMISecurityManager()) ;

try {Hello h = (Hello)Naming.lookup ("hello");
Straing message = h sayHello();
System out.println("HelloClient: " + message),
} catch (Exception e) ({
System.out.println(e) ;
}

Listmg A 3 Client

65

Appendix B Specification for Service ID

A universally umque 1dentifier (UUID) for registered services A service ID 1s a 128-bit value Service IDs

are intended to be generated only by lookup services, not by chents

The most significant long can be decomposed into the following unsigned fields

OxFFFFFFFF00000000 time_low
0x00000000FFFF0000 time_m1d
0x000000000000F000 version

0x0000000000000FFF time_h1

The least sigmficant long can be decomposed mto the following unsigned fields
0xC000000000000000 variant
0x3FFF000000000000 clock_seq

0x0000FFFFFFFFFFFF node

The variant field must be 0x2 The version field must be either 0x1 or 0x4 If the version field 1s 0x4, then
the most significant bit of the node field must be set to 1, and the remaming fields are set to values
produced by a cryptographically strong pseudo-random number generator If the verston field 1s 0x1, then
the node field 1s set to an IEEE 802 address, the clock_seq field 1s set to a 14-bit random number, and the
time_low, ime_mud, and time_hu fields are set to the least, middle and most significant buts (respectively)
of a 60-bit timestamp measured n 100-nanosecond units since midnight, October 15, 1582 UTC (“Class

ServicelD Man Page™)

66

Appendix C: JiniOS Server Sample - Keyboard

package keyboard;
import java.io.*;

public interface KeyboardServiceInterface {
public void open() throws IOException;

public void close() throws IOException;

public int read() throws IOException;

}) .
Listing C 1 Keyboard Interface

67

package keyboard;
import java.io.*;
import java.net.*;

public class KeyboardService implements Serializable,
keyboard.KeyboardServiceInterface{

int port;

String host;

Socket socket;

DataInputStream get;

DataOutputStream put;

public KeyboardService() {}

public KeyboardService (String host, int port) ({
this.host = host;
this.port = port;

}

public void open() throws IOException {
socket = new Socket (host,port) ;
System.out.println("Connection established with "+socket);

get
put

new DataInputStream (socket getInputStream ());
new DataOutputStream(socket.getOutputStream()) ;

Lease lease = new Lease(5);
lease.start () ;

}

public void close() throws IOException {
put.write((byte)0); put.flush(),
socket.close(),
socket = null;

}

public int read() throws IOException {
return ((int)get.readByte()) ;
}

class Lease extends Thread {
long lease=5000;
public Lease(int lease) {this.lease = lease*1000;}
public void run()
while (true) (
try {Thread.sleep(lease);
1f (socket == null) break;
put.write((byte)l);
put flush();}
catch (Exception e) {e.printStackTrace();}

Listing C 2 Keyboard Driver

68

https://java.net

package keyboard;

import java.i1o0.*;

public class ServiceWrapper extends common.BasicService {
static int port = 3493;

public ServiceWrapper () throws IOException,
ClassNotFoundException {
super (port) ;

}

public Object getProxy(String host, int port) {
return new KeyboardService (host,port);
}

public void run() ({
while (true) try {Thread.sleep(Long.MAX VALUE) ;}
catch (InterruptedException ex) {}

}

protected void register() throws IOException {
String product[] = {"Keyboard - Network accessable keyboard",

"OKBye, Inc.",
"OKBye, Inc.",
"v0.9b",

"132-Key Standard",
"000000000"};
register (product) ;

}

public static void main(String[] args) {
try {ServiceWrapper wrapper = new ServiceWrapper/();
new Thread (wrapper) .start();}
catch (Exception ex) {ex.printStackTrace();}

Listing C.3. Keyboard Service

69

package common,

import
import

import
import
import
import

import
import
import
import

import

java.1o0.*;
java.net.*;

net.jini.core.loockup.ServicelD;
net.jini.core.lookup.Serviceltem;
net.jini.core.discovery.LookupLocator;
net.jini.core entry.Entry;

net.jini.lookup.entry.*;

com. sun.jini.lookup.JoinManager;
com.sun.jini.lookup.ServiceIDListener;
com.sun.jini.lookup entry.BasicServiceType;

Java.rmi.RMISecurityManager;

public abstract class BasicService implements Runnable {
protected JoinManager join = null;

protected String serFile

protected Object proxy
protected String host

]

"gserialization.storage";
null;
"localhost";

static class PersistentData implements Serializable {

}

ServicelID sexrvicelD;
Entry[] attrs;
Strang[] groups;

LookupLocator[] locators;

public PersistentData() {}

class IDListener implements ServiceIDListener {
public void serviceIDNotify(ServicelID serviceID) ({

System.out.println("Got service ID " + servicelD);

PersistentData state = new PersistentData() ;

state.servicelID
state.attrs
state.groups
state.locators

servicelD,
join.getAttributes () ;
join.getGroups () ;
join getLocators () ;

try {writeState(state);}
catch (IOException ex) {

System.err praintln("Couldn't write to file:

ex.getMessage()) ;

ex.printStackTrace() ;
join.terminate () ;
System.exit (1) ;

Listing C 4 Service Boilerplate

70

public abstract Object getProxy(String host, int port);

public BasicService (int port) throws IOException,
ClassNotFoundException {
1f (System.getSecurityManager () == null)
System. setSecurityManager (new RMISecurityManager());

try {host = InetAddress.getLocalHost ().getHostName () ;}
catch (UnknownHostException e) {e.printStackTrace();}

proxy = getProxy (host,port);

File file = new File(sexFile);
1f (file.exists()) reregister();
else register() ;

| }

public void run() { .
while (true) try {Thread.sleep (Long.MAX VALUE) ;}
catch (InterruptedException ex) {}

}

protected void register () throws IOException {
String product[] = {"PRODUCT",
"MANUFACTURER",
"VENDOR",
"WERSION",
"MODEL",
"SERIALNUMBER" } ;
register (product) ;

}

protected void register (String[] info) throws IOException {
if (join != null)
throw new IllegalStateException ("Wrapper already started.");

System.out.println("Starting...");

Entry[] attributes = new Entry[] {new ServiceInfo (infol0],
info[1],
info[2],
infol3],
infol4],
anfol5]),

new BasicServiceType ("Service")};

join = new JoinManager (proxy, // Object to register
attributes, // Entry attributes
new IDListener(), // Service ID listener
null) ; // Lease manager

Listing C 4 Service Boilerplate (contmued)

71

protected void reregister() throws IOException,

}

ClassNotFoundException {
if (join != null)
throw new IllegalStateException("Wrapper already started.");

PersistentData state = readState();

System.out.println("Restarting: old id is "+state.servicelD);
join = new JoinManager (state.serviceID, //‘ Service ID

proxy, // Object to register
state.attrs, - // Entry attributes
state.groups, // Groups to join
state.locators, // Lookup locators
null) ; // Lease manager

protected void writeState (PersistentData state) throws IOException{

}

ObjectOutputStream out = new ObjectOutputStream(
new FileOutputStream(serFile));
out.writeObject (state) ;
out.flush();
out.close();

protected PersistentData readState() throws IOException,

ClassNotFoundException{
ObjectInputStream in = new ObjectInputStream (
new FileInputStream(serFile)) ;
PersistentData state (PersistentData) in.readObject () ;
in.close() ;

return state;

Listing C 4 Service Boilerplate (contmued)

72

#include <stdio.h>
#include <conio.hs>
#include <taime.h>
#include <stdlib h>
#include <straing.h>

#include <process.h>
#include <winsock.hs>

#include "thread.h"
static unsigned short port=3493;

int lease=5;
time_t theTime=0;
unsigned long thread[]1={0,0,0};

void ByteSwapAddr (unsigned int *word) {
*word = (*word&0xFF000000)>>24]
(*word&0x00FF0000) >> 8 |
(*word&0x0000FF00) << 8 |
(*word&0x000000FF) <<24;

}

float ByteSwapFlt (float word)
{ByteSwapAddr ((unsigned int*) &word) ; return (word) ; }

int ByteSwapInt (int word)
{ByteSwapAddr ((unsigned int*) &word) ; return (word) ; }

unsigned int ByteSwapUns (unsigned int word)
{ByteSwapaddr ((unsigned int*) &word), return (word) ; }

void LeaseThread (void *arg)

{
SOCKET *client= (SOCKET*)arg;
theTime = time(0) + lease;
while (1) {sleep(lease);
if ((theTime+lease-1) <= time(0)) break;}
praintf ("Client has died -- connection terminated.\n") ;
thread[0] = 0;
}
void SignalThread(voad *arg)
{

char stream([8]={0};
SOCKET *client=(SOCKET*)arg;

while (1) if (recv(*client,stream,1,0) > 0) {
if (*stream == 0) break;
else theTime = time(0) + lease;

Listing C 5 Keyboard Driver

73

printf ("Connection terminated by client request.\n");
thread[1l] = 0;

}

void ClientThread(void *arg)

{
int count;
SOCKET *client=(SOCKET*)arg;
for (count=1l; 1; count++) {int key= getch();
send (*client, (char*) (&key),1,0) ;}
1
%nt main (int argec, char** argv)

int status;

WSADATA WSAData;

if ((status=WSAStartup (MAKEWORD(1,1),&WSAData)) == 0) {
char hostname([32];
SOCKET server;
SOCKADDR_IN serverAddr;

printf ("Description:%s Status:%s\n",
WSAData .szDescription,
WSAData.szSystemStatus) ;

gethostname (hostname, sizeof (hostname)) ;
printf ("Host: %s\n",hostname) ;

serverAddr.sin_ family = AF INET;
serverAddr.sin port = htons (port);
serverAddr.sin_addr.s_addr = INADDR_ANY;

1f ((server=socket (AF_INET,SOCK_ STREAM,0)) =
printf ("Socket () failed.\n");
else if ((bind(server, (struct sockaddr *)&serverAddr,

INVALID SOCKET)

si1zeof (serverAddr))) == SOCKET_ERROR)
perror ("bind") ;
else if (listen(server,10) == -1) perror("listen");

else while(1)
SOCKET client;
SOCKADDR_IN clientAddr,
int size=sizeof (clientaAddr);
praintf("...waiting on a client connection...\n");
if ((client=accept (server,
(struct sockaddr *)&clientAddr,

&size)) == -1)
perror ("accept") ; ‘
else {printf("...got a client connection -- press key\n");
thread[0] = _beginthread (LeaseThread,
(unsigned) 0,
(void*) (&client)) ;
thread[1] = _beginthread(SignalThread,

Listing C 5 Keyboard Driver (continued)

74

(unsigned) 0,
(void*) (&client)) ;
thread[2] = _beginthread(ClientThread,
(unsaigned) 0,
(void*) (&client)) ;

WailtForMultipleObjects (3, (HANDLE*)thread,
FALSE, INFINITE);
if (thread[0]) TerminateThread ((HANDLE)thread([0],0);
1f (thread[l]) TerminateThread ((HANDLE)thread[1],0);
1f (thread[2]) TerminateThread ((HANDLE)thread[2],0);
closesocket (client) ;}
}
!
else prantf ("WSA Error %d\n",status),

praintf ("Fini\n"),
fgetc(stdin) ;
return (0) ;

Listing C 5 Keyboard Driver (continued)

75

Appendix D: JmOS Chent Sample - Keyboard

package keyboard;
import java.io.IOException,

public class KeyboardClient extends common.BasicClient {
public KeyboardClient () throws IOException {

super (KeyboardServiceInterface.class) ;
}

public KeyboardServiceInterface Keyboard()
return ((KeyboardServicelInterface)getClient (0));
}

public KeyboardServiceInterface Keyboard(int index) {
return ((KeyboardServiceInterface)getClient (1ndex)) ;
}

public static void main(String argsl[l) ({

try {
KeyboardClient client = new KeyboardClient() ;

client.waitForService () ;

System.out println("Available "ireclaient.available()) ;
System.out.println ("Name :"+client.name()) ;
System.out.praintln("Model :"+client.model()) ;
System.out.println("Version :"+client.version());
System.out.println("Vendoxr -"t+client.vendor()) ;
System.out.println("Manufacturer :"+client.manufacturer());

System.out.println("Serial Number :"+client.serialNumber());

KeyboardServiceInterface keyboard = client.Keyboard() ;
keyboard.open() ;

try {
while (true) {int key = keyboard.read();
System.out.print (key==13 ? '\n' : (char)key);
if (key == 'q') break;}

} catch (IOException e) {e.printStackTrace();}

keyboard.close() ;
} catch (IOException ex) {System.out.println("Couldn't create " +
client: " + ex.getMessage());}

Listng D 1 Keyboard Chent

76

package common;

import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.discovery.LookupDiscovery;

import net.jini.core.loockup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceMatches;
import net.jini.core.loockup.ServiceItem;

import net.jini.core.entry.*;
import net.jini.core.event.*;
import net.jini.core.lookup.*;

import net.jini.lookup.entry.*;
import com.sun.jini.lease.LeaseRenewalManager;
import com.sun.jini.lookup.entry.BasicServiceType;

import java.util.Vector;

1mport java.io.IlOException;

import java.rmi.RemoteException;

import java.rmi.RMISecurityManager;

import java.rmi.server.UnicastRemoteObject;

public class BasicClient {
protected Vector service = new Vector();
protected ServiceTemplate template;
protected LookupDiscovery disco;
protected LeaseRenewalManager leaseMgr = new LeaseRenewalManager () ;
protected Listener eventlListener;

class Discoverer implements Discoverylistener {
public void discovered(DiscoveryEvent ev) {
ServiceRegistrar regsl] = ev.getRegistrars();
for (int 1=0; 1<regs.length; 1++) addService(regs([il});

}

public void discarded (DiscoveryEvent ev) {
ServiceRegistrar regs[] = ev.getRegistrars();
for (int i=0; i<regs.length; i++) removeService (regs[1]);

}

class Listener extends UnicastRemoteObject
implements RemoteEventListener{
Listener () throws RemoteException {super();}
public void notify(RemoteEvent ev) {
1f (ev instanceof ServiceEvent)
addService{ (ServiceRegistrar)ev.getSource()) ;

Listng D 2 Clent boilerplate

77

public BasicClient (Class type) throws IOException {
if (System.getSecurityManager{) == null)
System.setSecurityManager (new RMISecurityManager()) ;

Class serviceTypes[] = {type};
template = new ServiceTemplate (null, serviceTypes, null);

disco = new LookupDiscovery (LookupDiscovery.ALL GROUPS} ;
disco.addDiscoveryListener (new Discoverer()) ;
eventlListener = new Lastener()};

}

protected void addService (ServiceRegistrar serviceRegistrar) {
EventRegistration eventRegistration,
try {eventRegistration =
serviceRegistrar.notify(template,
ServiceRegistrar.TRANSITION MATCH NOMATCH |
ServiceRegistrar.TRANSITION NOMATCH_ MATCH [
ServiceRegistrar.TRANSITION MATCH MATCH,
eventListener, null, 10 * 60 * 1000);
leaseMgr.renewUntil (eventRegistration.getLease(),
Long.MAX VALUE, null);
} catch (RemoteException e) {disco.discard (serviceRegistrar);
e.printStackTrace() ;
return; }

ServiceMatches matches = null;
try {1f ((matches = serviceRegistrar.lookup (template,
Integer.MAX VALUE))== null)
System.err.println("No matching service ");
else {System.out println("Got a matching service.");
for {int i=0; 1i<matches.totalMatches; 1++) {
1f (service.contains (matches.items([1]})
service.remove (matches.items[1]);
service.add (matches.i1tems [i]);

1}

} catch (Exception e) {e.printStackTrace();}

}

protected void removeService (ServiceRegistrar serviceRegistrar) {
ServiceMatches matches;
try {if ((matches = serviceRegistrar.lookup (template,
Integer.MAX VALUE)) != null)
for (1nt 1=0; 1<matches.totalMatches; 1++)
if (service.contains (matches.items[i]))
gservice.remove (matches.items [1]) ;
} catch (Exception e) {e.printStackTrace();}

Listing D 2 Client boilerplate (continued)

78 |

public void waitForService()
while (available() == 0) try {Thread sleep(1000);}
catch (InterruptedException ex) {}

}

private String attribute(int index, String attributeName) {
if (available{) <= index) return(null);
ServiceItem serviceltem = (ServiceItem)service.get (index);
Entry[] attributes = serviceltem.attraibuteSets;
for (int i=0; i<attraibutes.length; i++)
if (attributes[i] instanceof ServiceInfo)

if (attributeName.equalsIgnoreCase ("Name"))
return(((ServiceInfo)attributes[1]) .name) ;

else 1f (attributeName.equalsIgnoreCase ("Model"))
return (((ServiceInfo)attributes[1]) .model) ;

else if (attributeName.equalsIgnoreCase ("Version"))
return(((SexrviceInfo)attributes[i]) .version);

else if (attributeName.equalsIgnoreCase ("Vendor"))

return (((ServiceInfo)attributes[i]) .vendor) ;
else if (attributeName.equalsIgnoreCase ("Manufacturer"))
return (((ServiceInfo)attributes[i]) .manufacturer) ;
else if (attributeName.equalsIgnoreCase ("SerialNumber"))
return (((ServiceInfo)attributes[1]) .serialNumber) ;
return(null) ;

}

public int available () {
return (service.size());
}

public String name (int index) {return(attribute (index, "Name")) ;}
public String model (int 1ndex) {return (attribute (index, "Model"));}
public String version (int index)
{return(attribute (1ndex, "Version")) ;}
public String vendor (int index)
{return (attribute (index, "Vendor")) ; }
public String manufacturer (int index)
{return (attribute (index, "Manufacturexr")) ; }
public Straing serialNumber (int index)
{return (attribute (index, "SerialNumber")) ; }

public String name () {return (name (0));}
public String model 0O {return (model (0)),}
public String version 0O {return (version (0)):}
public String vendor 0 {return (vendor (0));}
public String manufacturer () {return(manufacturer(o));}
public String serialNumber () {return (serialNumber (0)) ;}

public Object getClient (int index) {
waitForService () ; ‘
if (available() <= index) return(null);
ServiceItem serviceItem = (ServiceItem)service.get (index);
return (serviceItem.service) ; :

Listmg D 2 Client boilerplate (continued)

79

Appendix E: JimOS Boot Batch File
@echo off

REM Set hostname
call \java\JiniProjects\scripts\hostname
echo Host: %HOSTNAMES%

REM Set base variables
set JINI=\Java\Jdini\files\jinil 0

REM Set the rest

set LOOKUP_POLICY=%JINI%\example\lookup\policy
set BROWSER_ POLICY=%JINI%\example\browser\policy
set JARFILE=%JINI%\lib\reggie.jar

set CODEBASE=http://$HOSTNAMES:8080/reggie-dl.jar
set LOGDIR=\Javal\JiniArea\reggie log

set GROUP=public

set BROWSER=com.sun.Jjini.example.browser.Browser

@echo on

REM Start HTTP Server

start \java\jdkl.2.1l\bin\java
-jar $JINI%\lib\tools.jar
-port 8080
-dir %JINI%\1lib
-vexrbose

REM Start RMI Activation Daemon
deltree /y log
start \java\jdkl.2.1\bin\rmid

REM Wait for RMI Activation Daemon to finish loading

\java\jdki.2.1\bin\java

-cp \Java\JdiniTutorial\CoreJini\examples-util.jar

com.sun.jini.example.books.RMIDWait

REM Start Lookup Service

deltree /vy %LOGDIR%

start \java\jdkl.2.1l\bin\java
-Djava.security.policy=%LOOKUP_POLICY%
-jar %$JINI%\lib\reggie.jar
%CODEBASE% %LOOKUP_ POLICY% %LOGDIR% %GROUP%

echo off

:fina
Listing E 1 Start Jin1 System

80

@echo off

REM Set hostname
call \java\JdiniProjects\scripts\hostname
echo Host: %$HOSTNAME%

start \java\jdkl.2.1i\bin\java
-jar \Java\Jdini\files\jinil_ 0\lib\tools.jar
-port 8085
-dir \Java\JiniArea\service-dl
~verbose

set STDCP=\Java\Jini\files\jinil 0\lib\jini-core.jar;
\Java\Jini\files\jinil_0\lib\Jjini-ext.jar;
\Java\Jini\files\jinil O\lib\sun-util.jar

@echo on

start ..\Native\keyboard

\Java\jdkl.2.1l\bin\java
-cp %STDCP%;\Java\JiniArea\service
-Djava.rmi.server.codebase=http://$HOSTNAMES : 8085/
-Djava.security.policy=\Java\diniArea\policy
keyboard. ServiceWrapper

Listing E 2 Start Keyboard Service

@echo off

set STDCP=\Java\Jini\files\jinil 0\lib\jini-core.jar;
\Java\Jini\files\jinil_ 0\lib\jini-ext.jar;
\Java\Jdini\files\jinil 0\lib\sun-util.jar

@echo on

\java\jdkli.2.1\bin\java
-cp %STDCP%;\Java\JiniArealclient
-Djava.security.policy=\Java\JiniArea\policy
keyboard.KeyboardClient

Listing E 3 Start Keyboard Client

81

Appendix F: Installation Survey

Adapted from Upgrading & Fixing PCs for Dummies, 4™ Edition by Andy Rathbone (Rathbone)

82

Adding a second IDE/EIDE hard drive to a PC running Windows 95

1 Turn off the computer, unplug 1t, and remove the case

: a)
|
b)
<)

d)

Turn off the computer, monutor, and peripherals (modem, CD-ROM, and so on) Make sure
that everything attached to your computer 1s turned off and unplugged

Unplug your computer Unplug your computer’s power cord from the wall

Remove the screws from the PC’s back or outside edges The older PC, the more screws
you’ll find.

Shide off the cover On some computers, the cover slides toward the front while on other
computers, the cover lifts up and off

2 Smnce you are adding a second drive, you might need to move a jumper to change 1t to a slave

drive (as opposed to a master) You have to check the drive’s manual about how to do this Also be

careful to touch the case to discharge any electrostatic charge before handling the drive

3 Shide the new drive into a vacant bay If the new drive 1s smaller than the bay you need to add rails

or mounting brackets to make the hard drive fit the available space For example 1f you are mounting a

3 5-mnch drive mn a 5 25-mnch bay, you will need to attach mounting brackets to each side of the drive so

that 1t can be mounted 1n the bay The brackets and additional screws will sometimes be supplied with

the drive, otherwise, you will have to buy them

4 Attach two cables to the hard drive (look at the cables attached to the main drive for help) Make

sure that no cables have come loose either from the motherboard or other devices

2)

b)

Ribbon cable (wide cable) Since this 1s a second drive, the ribbon cable running to the main
drive should have another connector on 1t The connector 1s keyed (has a notch or ridge that
must match the ridge or notch on the drive) and must be attached correctly Typically one side
of the cable will be marked (striped or colored) Thus 1t the side that should line up with the
pin marked number 1 on the drive

Power cable (smaller cable) The computer should have spares (unattached) of these that can
be used These are also keyed and will only fit one way

5 Attach the drive to the bay with all four screws

6 Replace the cover, attach all the peripherals, plug everything in, and turn on the computer

7 Configure the CMOS for the new drive This 1s where you tell the computer the details about the

new drive This is accomplished m one of three ways

a)

b)
c)

Some drives check the CMOS to see what hard drive your computer expects to find and then
automatically mimic that drive (Plug-and-Play) If the computer 1s fairly recent and the drive
1s relatively new, this 1t the most common avenue

Others let you pick any hard drive that 1s listed 1n the computer’s CMOS table

Still others require you to specify the drive’s recommended cylinders, heads, and sectors
These specifications are usually buried mn the drive manuals

83

_____ 8 Partition the drive Open a DOS window and type FDISK Sometimes Windows will hang and
you will have to reboot into DOS by pressing the F8 key while 1t 1s booting Select the option to
change the current fixed drive to the new drive Create a single logical DOS partition, save, and exit
Windows 95 will not allow the use of a drive larger than 2 Gbytes, so the drive must be partitioned into
pieces smaller than 2 Gbytes before 1t can be formatted Windows 98 and Windows NT do not have
this restriction. When you exit from FDISK, the computer must be rebooted

_____ 9 Format the drive After the computer completely reboots (from Step 8), the drive has to be
formatted before 1t can be used Each partition created in Step 8 has to be formatted separately. If this
1s the second drive, 1ts drive letter will most probably be D (and then E, F, G, and so on) This may
cause problems with other disk devices (CD-ROM, Zip, etc), because their drive letters have been
mcreased to accommodate the new drive The drive can be formatted in several ways

a Rught-click the new drive mn Windows Explorer and select format from the menu

b Rught-click the drive in the “My Computer” window and select format
¢ Open a DOS window and type FORMAT x:, where x 1s the drive letter of the new drive

84

Installing an internal CD-ROM in a PC running Windows 95

____1 Tum off the computer, unplug 1t, and remove its case- See Step 1 mn the previous procedure for
mstalling a second hard drive for complete steps

_____2 Plug the CD-ROM drive’s card into one of the available slots and screw 1t down

_____3 Find an available bay Remove the plate that covers opening 1n the case These are usually held i
place by plastic tabs at either side of the plate Shde the CD-ROM drive mto the bay from the front of
the computer

_____ 4 Connect the cables First connect the cable between the CD-ROM drive and the card nstalled mn
Step 2 Consult the mstallation manual supplied with the drive about where the cable attaches to the
card and the drive Next connect the power cable As with the hard drive, there should be a free
(unconnected) cable available

5 Screw the drive in place Some drives attach with screws m the sides or two screws in the front

______6 Replace the cover, attach all the peripherals, plug everything n, and turn on the computer |
_____ 7 Wart for the computer to completely boot
8 Runthe CD-ROM drive’s software If the drive 1s Plug-and-Play, Windows may either nstall the

new device automatically or 1t may prompt the user for a device driver disk or 1t may do nothing In the

last case, run the nstall disk provided by the CD-ROM manufacturer to load the drivers manually

9 The computer may have to be rebooted before the drive can be used

85

Vita .
Richard Chippard was born in Ft McClellan, Alabama on April 21, 1959 His father was serving n the
Army most of Richard’s early life so Richard attended schools throughout the southern United States and
Germany He graduated from Franklin County High School n Winchester Tennessee m 1977 He received
an Associate of Arts in Mathematics from Motlow State Community College, Tullahoma, Tennessee in
1979 He eamned a Bachelor of Arts degree in Mathematics and a Bachelor of Arts degree in Computer
Science from The Universtty of Tennessee, Knoxville Tennessee in 1982 Richard entered The Master’s
program m Computer Science at The University of Tennessee Space Institute mn 1996, officially receiving

the Master’s degree 1 August, 2000

He 1s presently employed as a senior programmer analyst at the Arnold Engmeering Development Center in

Amold Air Force Base, Tennessee

86

	JiniOS : the network is the computer
	Recommended Citation

	JiniOS : the network is the computer

