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ABSTRACT 

This paper looks at several methodsfor solving networkflow problems. The first 

chapter gives a briefbackground for linear programming(LP)problems. Itincludes 

basic definitions and theorems. The second chapter givesan overview ofgraph theory 

including definitions,theorems,and examples. 

Chapters 3-5 arethe heartofthis thesis. Chapter3includes algorithms and 

applications for maximumflow problems. It includesalook ata very importanttheorem. 

Maximum Flow/Minimum Cut Theorem. There is also asection onthe AugmentingPath 

Algorithm. Chapter4deals with shortest path problem. Itincludes Dijsksta's Algorithm 

and the All-Pairs Labeling Algoritlun. Chapter5includes information on algorithms and 

applications forthe minimum costflow(MCF)problem. The algorithms covered include 

the Cycle Canceling,Successive ShortestPath,and Primal-Dual Algorithms. Each of 

these chapters 3-5 contain definitions,theorems,and algorithmsto solve networkflow 

problems. 

Throughoutthe paperthe computer programLINDO is used. It servesacouple of 

functions. First it is a wayofchecking each solution. The second use is to exposethe 

reader to avery valuable toolin linear programming. 

Ill 
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CHAPTERONE 

LINEARPROGRAMMING 

§ 1.1: Introduction 

Mathematicalprogramming(MP)is a branch ofmathematics dealing with 

techniques for maximizing or minimizing an objective function subjectto linear, 

nonlinear,and integer constraints onthe variables. MP originated outofWorld WarII 

[5].The word "programming"wasa specific plan for various military operations. Later 

MP became partofwhat is now called Operations Research(OR). Linear programming 

(LP)is a special case ofMP[7]. LP originated back to the workofGeorge Dantzig in 

1947[12]. Forthe LP problem,the linear objective function is ixiaximized or minimized 

subjectto linear equality or inequality constraints. It is importantto knowthe basics of 

LP since network flow problems are atype ofLP combined with graph theory. There 

will be more about graphtheory in Chapter Two. 

The unknown values that we aretrying to solve are called decision variables. We 

can representthem asa vector, x=(x„X2,...,x„). The objectivefunction is afunction in 

the decision variables. Thus we have z(x)=(cj,C2,...,c„Xxi,X2,...,x„)^, where(ci,C2,...,Cn) 

is a vector ofconstants and(xi,X2,... is the transpose ofthe vector. Another wayto 

writethe objective function is z(x)=CiXi+c2X2+...+CnXn. The function z(x)must satisfy 

certain restrictions onthe decision variables called constraints. 



The goalofaLP problem is to maximize or minimize the objective fimction 

subjectto the constraints. The basic problem setup foraLP problem is as follows: 

Optimizez(x) (1.1) 

subject to Ax=b,where x,b eR" (1.2) 

where x>0. (1.3) 

It is oftenthe case thatthe constraints are inequalities instead ofequalities. Ifit is the 

intentto maximizez(x)then the standard LP setup is 

MAX z(x) 

subjectto Ax <b,where x,b e R" 

where x >0. 

Onthe other hand,ifit is the intent to minimizez(x)thenthe standard LP setup is 

MINz(x) 

subjectto Ax> b,where x,b g R° 

where x >0. 

Note: A in all ofthese cases is a mxn matrix. 

WhentheLP problem is solved,ifpossible,it is said to have afeasible solution 

as long as allthe constraints are satisfied. The feasible solution is a vector 

X=(x„X2,...,x„)suchthat 

XiPj+X2P2+...+XnPn =Po5 



where P,,P2,."5Pn column vectorsofmatrix A and P^ is column vectorofconstants. 

Ifthe goal is to MINz(x)then the minimmn feasible solution is feasible when it 

minimizesthe objective function. 

Theorem 1.1: The setofall feasible solutions ofaLP problem is aconvex set. 

Proof: Weshow that every convex combination ofanytwo feasible solutions is also 

feasible solution. Let Ax,=band AXj=b,where x, and Xj -0- For 0<a <1,let 

X=axi+(l-a)x2, x>0. Thus, 

Ax =A(ax,+(l-a)x2) 

=aAx,+(l-a)Ax2 

= b [7]. 

Ifthere is no solution what satisfies all the constraintsthen it istermed infeasible. 

Anoptimalsolution is the feasible solution thatoptimizesthe objective function. Ifno 

solution can be considered optimal because there is alwaysa better solution,thenthe 

problem is called unbounded. 

§1.2: SolvingLPProblems 

There are several methodsused to solve LP problems. This section looks attwo 

methods: graphical and simplex method. LINDO(Linear,Interactive and Discrete 

Optimizer),acomputer program,will also be used to solveLP problems. The graphical 

method is used with simpleLP formulations. It involves graphing the constraints on a 

single axis and identifying the feasible region. Thefeasible region(denoted byK)isthe 



region what satisfies all the constraints. Allofthe comers points offeasible region are 

checked forthe optimal solution. The comer points are sometimes called the extreme 

points. 

Example 1.2.1: Acompany has3 plants and makes2products. Using the information 

firom Table 1.2.1,what mix ofproducts 1 and2will be most profitable? 

Solution: Let Xj=number ofitemsofproductj. 

LP formulation: Maxz=3xi+5x2 

ST xi+0x2<4 

Oxi+2x2<12 

3xi+2x2<18 

where xi,X2>0 

Table 1.2.1 DataforExample 1.2.1 

AVAILIABLE 

PLANT PRODUCTS CAPACITY 

1 2 

1 1% 0 4% 

2 0 2% 12% 

3 3% 2% 18% 

UNIT 

PROHT $3 $5 



A 
X2 

Feasible 

Region 
(K) 

^ XI 

V 

Figure 1.2.1 GraphofLP Formulation Showing Feasible Region 

The extreme points are: {(0,0), (4,0), (0,6), (4,3), (2,6)},asseen in Figure 1.2.1. 

Byinspection the optimal solution isz*=36 where xi =2and X2=6. The company 

should produce2units ofproductone and6units oftwo to produce a maximum profit of 

$36. 

The graphical method is not usefulfor large models,thusthe simplex method is 

used. The basic idea is to start with acomer point ofthe feasible region(usuallythe 

origin)and moveto adjacentcomer point so asto increase z(x)the fastest. This process 

is continued until z(x)cannot be increased further. The simplex movesto an adjacent 



 

• • • 

• • • • • • • • • • 

• • • • • • • • • • 

comer point feasible solution by increasing one ofthe x,'s fromzero and adjusting the rest 

so asto satisfy the constraints,thatforces oneofthe nonzero x,'s to becomezero[10]. 

Tosetupthe simplex algorithm we first identify x,o=b,and x,j=a,j for all 

m m 

i=l,2,...,mandj=l,2,...,n. Wealso define zo=^c,x,o and Zj=2]c,x,j forj=l,2,...,n. 
1=1 1=1 

The simplex is setup in atableform called the tableau. See Table 1.2.2forthe setup of 

the Simplex Tableau. 

Theorem 1.2: Ifany basic feasible solution satisfy the condition Zj-Cj <0holds for all 

j=l,2,...,nthen(1.1)and(1.2)constitutesa minimum feasible solution. Ifthe problem is 

to maximizethe objective function ifall Zj-Cj>0thenthe maximum optimal solution 

isfoimd. 

Table 1.2.2Initial Step ofTableau 

i Basis C Po Cl C2 

Pi P2 Pi Pm PnH-l Pn 

1 Pi Ci XlO 1 0 0 0 Xi^+1 Xln 

2 P2 C2 X20 0 1 0 0 X2^+l X2n 

1 Pi Ci XlO 0 0 1 0 Xi^l Xln 

m Pm XmO 0 0 0 1 Xni,nn-1 Xim 

m+1 zo 0 0 0 0 Zm+l"Cin+l Zn"Cn 



 

After setting up the tableau(table for simplex algorithm)do thefollowing steps: 

1. Test Zj-Cj to see if Zj-Cj<0for allj(this isthe minimum feasible solution). 

2. If Zj-Cj>0,select largest vectorto be introduced into basis(i.e. select vector with 

max(z -c)). 
j ^ 

3. Since a vector is introduced into basis weremove a vector from basis byfinding 

0=min ,wherek correspondsto vectors selected in step 2. 

4. Transform the tableau by complete elimination and continue the process. 

Example 1.2.2: Usethe simplex method to solve Example 1.2.1. 

Solution: Introducethree slack variable: xs,X4,and X5 to form a standard LP problem 

(i.e. equality constraints). There is now5 variables and 3equations,sotwo ofthe 

variables are arbitrary. The objective function is rewritten in canocialform as follows: 

z - 3xi - 5x2 = 0. Thepivotvalue is determined bytherowthat hasthe smallest 0 

and the column ofthe most negative coefficientofthe objective function. The simplex 

ends whenthere are no more negative coefficients ofthe objective function. The basic 

variable onthe pivotrow leaves and tableau and the variable corresponding to pivot 

column entersthe tableau. The simplex tableaus are shownin Table 1.2.3 to Table 1.2.5. 

The simplex method ends in Table 1.2.5 since all the Zj- Cjare positive. Fromthe 

tableau in Table 1.2.5,Xi=2,X2=6,X3=2,X4=0,and xs=0. The maximumz(x)is 36. 



 

 

 

   

 

Table 1.2.3 First TableauofSimplex Method(P4leaving/P2 entering) 

3 0 0 0 

:?SF^V 
i Basis c Po Pi P3 P4 P5 0 

f-j'-vi- /r 

-~-1 P3 0 4 1 1 0 0 
^.y*'. 1 f̂  V 

"vS 
.*•••. , 

-w. 

rci-''^A 

r •> y < •i' i J^5 Wi:' ''"7 

;iite < ^ ' ,/-r"-"v {-Vv'' -1 

3 P5 0 18 3 0 0 1 9 

——4 0 -3 0 0 0 

'y-'' ^ V-'' * 

Table 1.2.4 Second Tableau after OneIteration(P5 leaving/Pi entering) 

i Basis c Po ;y«Bi;y, P2 P3 P4 P5 0 
' ■" "' ' 

1 P3 0 4 ^y, ^ 0 1 0 0 4 
X s>
,Vrt»^ X'''V'a? 

2 P2 5 6 t/ 1 0 1/2 0 

;<)y'--, , -2.?;'. .-'1',;; 
. I ~ I »'£''■ ' 

V ' , <.0, '■ , V-* ^ 

..V > 

—4 30 \f'-3(' ' 0 0 5/2 0 



Table 1.2.5 Third Tableau after Two Iteration 

i Basis c Po Pi P2 Ps P4 Ps 0 

1 P3 0 2 0 0 1 1/3 -1/3 

2 P2 5 6 0 1 0 '/2 0 

3 Pi 3 2 1 0 0 -1/3 1/3 

4 36 0 0 0 3/2 1 

The simplex method isa very usefuland powerfultoolfor solving LP problems 

butaneven more powerfultool is the programLINDO. Referto the appendbcfor 

informationonhowto use LINDO. LINDO is acomputer program designed to solve LP 

problems. It is a very fast and eflScient wayto solvethem[11]. 

Example 1.2.3: Solve Example 1.2.1 by using LINDO. 

FromtheLINDOReports Window(Figure 1.2.2)we can see thatthe objective function 
r 

value is$36 with xi=2and X2=6. See Figure 1.2.2for the outputofLINDO. 

§1.3: TypesofLPProblems 

There are many applicationsofLP problems. This section discusses afew such 

applications. In particular,this section coversthe transportation,assignment,and 

transshipment problem. These typesofLP formulations can be foimd in[12]and[4]. It 

will beshown later howthe problems can'be modeled asnetworkflow problems. 



Fie Edit Solve Qeports ii/lndow Help 

IBOMKIi3EIMOE 
li'rfneporU Window I[ill 

OBJECTIUE FUNCTION UALUE 

1) 36.00000 

REDUCED COST 

X1 2.000000 0.000000 

X2 6.000000 0.000000 

UARIABLE UALUE 

ROU SLACK OR SURPLUS DUAL PRICES 

2) 2.000000 0.000000 

3) 0.000000 1.500000 

t) 0.000000 1.000000 

5) 2.000000 0.000000 

6) 6.000000 0.000000 

HO. ITERflTIDNS°= 2 

Figure 1.2.2LINDO Solution ofExample 1.2.1 

Transportation Problem 

The transportation problem involves shipping a product(supply)to a location 

(demand). The setofm supply points from where a product is shipped can supply at 

most Si units. The n demand points can receive at least dj units ofa product. The cost 

associated with shipping the product is denoted by Cy. The LP formulation is as follows: 

Transportation Problem: min^^CyXij 
i=i j=i 



 

 

subjectto ^Xy<s, 
j=i 

m 

1=1 

where x,j>0 

m n 

This isa balanced transportation problem if ~ • 
1=1 j=i 

AssignmentProblem 

The assignment problem is asubset ofthe transportation problem. It is a balanced 

transportation problem. It also hasthe special property ofthe x,j's being0or 1. Let x,j= 

1 ifi is assigned to meetdemandj,and let x,j=0ifi is not assigned to meetdemandj. 

TheLP formulation is asfollows: 

AssignmentProblem: min^ 
n

^ 
n 

c^x^ 
1=1 j=i 

5]Xy =1 fori= l,2,...,n 
j=i 

II 

=1 forj= l,2,...,n 
1=1 

where 0<Xy < 1 

TransshipmentProblem 

The transshipment problem is also aspecial case ofthe transportation problem, 

butthis time shipments are allowed between supply points or betweendemand points. A 

11 



 

 

 

transshipmentpointisa pointthrough which a productcan be both received and shipped 

to other points. The supply point can only ship products,andthe demand point can only 

receive products. TheLPformulation is as follows: 

TransshipmentProblem: minX 
m 

S
n 

1=1 j=i 

n n 

subjectto 
j=i j=i 

n n 

j=i j=i 

n n 

J=1 J=1 

where 0<x,j< u,j 

12 



CHAPTERTWO 

INTRODUCTION TONETWORKS 

Network theory concerns a class ofLP problems having a very special network 

structme. The combinatorial nature ofthis structure has resulted in a development of 

very efficient algorithms that combine ideas on data structures with algorithms from 

computer science,and mathematics from operations research [9]. Before developing the 

algorithms the terminology ofnetworks must be covered. Some ofthe definitions and 

proofe ofsometheoremsin this chapter may be found in[1], [2], [3], [6],and[7]. 

§2.1: Definitions 

A network, is made up ofnodes and arcs. We will denote the graph or network 

using G(N,A),whereN isthe setofnodesand A is the setofarcs. The nodes are vertices 

or points ofthe network. An arc consists ofan ordered pair ofnodes that represents a 

possible direction ofmotion that may occur. It is denoted by(i,j). The initial node is a 

starting node which we will denote the initial node with s. The terminalnode is a ending 

node which we will denote the terminal node with t. Often the nodes s and t are called 

source and sink respectively. 

A sequence ofarcs such that every arc has exactly one node in common with the 

previous arc is called a chain. For example this set ofarcs forms a chain: {(s,i),(j4)j 

(j,t)}. Apath is a chain in which the terminal node ofeach arc is identical to the initial 
13 



node ofthe next arc. Note a chain is a path, but a path is nota chain. For example,this 

set ofarcs form a path: {(s,i),(i,j),(j,t)}. A circuit has a path from nodes s to t and an 

arc fromtto s. Anexample ofa circuit is{(s,i),(i,j),(j,t),(t,s)}. A cycle is a loop in the 

path. A cycle is a closed path. For example,this set ofarcs form a cycle: {(s,i), (i,t), 

(t,j),(j,s)}. Allofthese examplescan be seen in Figure 2.1.1. 

A connectedgraph meansthere existsa chain between every pair ofnodes. Ifthis 

is the case it istermed weakly connected. A strongly connected-graph has a directed path 

from eagh node to every other node(see Figure 2.1.2). A graph is termed a suhgraph, 

G'(N',A'),ifN'c N and A'c A. A bipartite graph is a granli G=fN.A)that can be 

partitioned into two subsets Ni and N2,. 

§2.2:Matrix RepresentationsofNetworks 

Networks can be represented in a matrix form. One such matrix is called the 

node-arc incidence matrix. It is an x m matrix. There is one row for each node and one 

column for each arc(i,j). Ifthere is an arc coimecting two nodes we use a+1,but ifthere 

is notan arc,a0is used. 

Only2m outofthe nm entries are nonzero. It is because ofthis that the node-arc 

incidence matrix is not an elBcient method of storage. The matrix does have some 

important properties. Each column has entries that are either-1,0,or +1. Secondly,the 

number of+rsin arow equals the out-degree(i.e. the number ofarcs leaving the node). 

Finally,the number of-1's in arow equals the in-degree(i.e. the number ofarcs entering 

the node). 

14 



Path 
Chain 

0 
Circuit Cycle 

Figure 2.1.1 ExamplesofDifferent Network Types 

Figure 2.1.2 AnExampleofConnected Network 

15 



Example 2.2.1 Find the corresponding node-arc incidence matrix for the following graph 

in Figure 2.2.1. The corresponding node-arc incidence matrix isshown in Table 2.2.1. 

There are also two important theorems dealing with node-arc incidence matrices, 

but jSrst we introduce anew definition. A matrix.A,is ummodular ifthe determinant of 

each basis matrix of A has a value of+1 or -1. The basis matrix is a matrix who's 

columns are linearly independent. An integer matrix.A,is a matrix where each a,j entry 

is an integer. 

Theorem 2.2.1[Unimodularity Theorem ]: Let A be an integer matrix with linearly 

independentrows.Thenthe following three conditions below are equivalent. 

(a) A is unimodular. 

(b) Every basic feasible solution defined bythe constraints Ax=b and x > 0,is integer 

for any integer vector b. 

(c)Every basis matrixB ofA has an integer inverse B"^ 

Figure 2.2.1 Networkfor Example 2.2.1 

16 



Table 2.2.1 Node-ArcIncidence Matrix 

Arcs (1,2) (1,3) (2,4) (3,2) (3,5) (4,3) (4,5) 

Nodes X. 

1 +1 +1 0 0 0 0 0 

2 -1 0 +1 -1 0 0 0 

3 0 -1 0 +1 +1 -1 0 

4 0 0 -1 0 0 +1 +1 

5 0 0 0 0 -1 0 -1 

Proof:(a implies b): Each basis feasible solution Xg has an associated basic matrix B 

for whichBXg =b. 

det(A)ByCramer's rule,any component Xjofthe solution Xg will be oftheform x^= 
det(B)' 

We obtain the integer matrbc in this formula by replacing the j*"* column ofB with the 

vector b.Since,A is unimodular(given),det(B)is ±1,so Xj is integer. 

(b implies c): Let B be a basis matrix ofA. Since B has a nonzero determinant, its 

inverse B exists. Let e^ denote the j**" unit vector. LetD=B and Dj denote the j'*' 

column ofD. We will show that the column vector Dj is integer for each j whenever 

condition(b)holds. Select an integer vector a so that Dj+ d > 0. Let x=Dj+ d. 
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Notice that Bx-B(Dj+ a)=B(B ij + d)= ij +Bet. Multiplying byD=B we 

see that x=Dj+ d. Since Cj +Bd is integer, condition(b)implies that Dj + d is 

integer. We find that Dj is integer. 

(c implies a); LetB be a basis matrix ofA. By assumption,B is an integer matrix, so 

det(B)is an integer. By condition(c),B"Msan integer matrix;consequently,det(B"') 

is also an integer. SinceB B =I,det(B)det(B"')=1,which implies that det(B ~^)= 

±1 [1]. 

Theorem 2.2.2 The node-arc incidence matrix A of a directed network is totally 

unimodular. 

Proof: To prove the theorem,we need to show that every square sub-matrix F ofA of 

size k has determinant 0,+1,-1. We establish this result by performing induction on k. 

Since each element ofN is 0, +1, or -1,the theorem is true for k=l. Now suppose it 

holds for k, we show it is true for k+l. LetF be any(k+l)x(k+l)sub-matrix ofA. F 

satisfies one of3 properties:(1)F contains a column with no nonzero element,(2)every 

column ofF has exactly two nonzero elements,in which case,one ofthese must be a +1 

and the other a-1,and(3)some column Fj has exactly one nonzero element, in the ith 

row. Wenow prove allthree cases. The first is trivial, det(F)=0. 

Case2: rowsofF axe linearly dependent,thus det(F)=0. 

Case 3: let F'be a sub-matrix ofF,then F'is obtained by deleting row and column ofF. 

Thus,det(F)=±det(F'). Since det(F')=0,-1,or+1,then det(F)=0,-1,or+1[1] 
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Asstated earlier the node-arc incidence matrix is not efficient for storage;thus we 

have another matrix representation called the node-node adjacency matrix, or simply the 

adjacency matrix. Here we can storethe matrix in a n x n matrix. For each arc we place 

a 1 at each i,j location and a zero elsewhere. In doing this there are n^ entries with m 

being nonzero. 

Example 2.2.2: Find the corresponding node-node adjacency matrix for the same graph 

in Figure 2.2.1. The corresponding adjacency matrix isshown in Table 2.2.2. 

Table 2.2.2 Adjacent Matrix 

Nodes 

Nodes 1 2 3 4 5 

1 0 1 1 0 0 

2 0 0 0 1 0 

3 0 1 0 0 1 

4 0 0 1 0 1 

5 0 0 0 0 0 
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CHAPTERTHREE 

MAXIMUMFLOWPROBLEM 

In some situations the number ofquantities that pass through an arc may have a 

limited capacity so it would be wise to know the most that can be sent at one time. For 

other situations it would be cheaper to ship the highest capacity to cut down on cost 

factors. In situations like these we can use the maximum flow method for the most 

effective flow of quantities. Our goal is to send the most allowable x,j through the 

network given a limiting capacity. Information used in this chapter was aided by the 

following sources: [1],[3],and[7]. 

The amount offlow from outside the initial nodethatflows into the source node is 

denoted by/. There is an associated flow though the network called a flow vector, 

denoted by x,consisting ofall arc flows x,j V (i,j)e A. The maximum capacity ofx is 

denoted by Uy. We find/through algorithms in which we send the largest x,j given the 

maximum capacity, u,j. The feasible flow is represented by x°. 

It should be noted ifan arc (i,j) does not exist we let u,j= 0. In other words all 

arcs are possible butflow is restricted to the arcs in which u,j> 0. We also cannot exceed 

a^^fthe Uii's. Sometimes we also have a minimum capacity, denoted by Ij. It is often 

the case that l,j =0. 
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Theorem 3.1: Theflow into the source nodesequals the flow outofthe terminalnode t. 

Theorem 3.2: Ifthere exists no chain ofarcs, each with positive capacity,joining nodes 

sto t,then the maximum flow iszero. 

Theorem 3.3: The maximum flow is positive ifthere exists a chain ofarcs, each with 

positive capacity,joining node sto t. 

Maximize: f (3.1) 

II 

m m 

subjectto V0 if i l,m (3.2) 
j=i j=i 

-f if i=m 

where 0< x,j < Uy V (i,j)e A (3.3) 

A basic fact about the networks is that there is a conservation offlow (i.e. what 

ever enters a node leaves the node). Thusthere is no stockpiling. It is important to note 

that if(3.2)is equal to fthen conservation offlow is at the sgurce:if(3.2)is equaU:o-XL 

then conservation of flow is at the intermediate nodes: if(3.2) is equal to -f then 

conservation offlow is..atJthe sink. 

Weconsider the maximum flow problem subject to the following assumptions: 

1. The network is directed., 

2. All capacities are nonnegative integers. 
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3. The network does not contain a directed path from node sto nodetcomposed only of 

infinite capacity arcs. 

4. Whenever arc(y)belongsto A.Then arc fi-D belongsto A. 

5. The network does not contain paralleLarcs(i.e. two or more arcs with the same 

and head nodes). 

§3.1: Maximum Flow/Minimum CutTheorem 

Next we introduce the Maximum Flow /Minimum Cut Theorem. First we divide 

the nodes into two distinct sets,X and Y,whereX eN and Y=N-X. We let(X,Y)denote 

the set ofarcs from i eXtojeY. A cut is a line drawn on the network that separatesX 

from Y. The arcsthat are cut are known asthe cut-set. Figure 3.1.1 showsan example of 

a cut and the cut-set. The cut-set is denoted by dotted lines in Figure 3.1.1. A network 

hasafinite number ofcuts. 

X={ 1} 

Y={2,3,4} 

Note:The cut-set is 

(1,2)and(1,3) 

Cut 

Figure 3.1.1 AnExample ofthe Cut-Set 
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The capacity ofa cut is define.d,as,f(X^Y')=^u.jjQLjgi3dte_siinplv the sum ofthe 
leX 
jeY 

capacities ofthe arcs in the cut. Based on the example ofFigure 3.1, we see that the 

capacity ofthe cut is the sum ofthe capacities ofarc(1,2)and(1,3),which is 5. Ifan arc 

is at maximum capacity it is called saturated(i.e. x,j=u,j). 

Theorem 3.1.1 Given any partition ofthe nodes into two classes, where the first class 

includes node s and the second class includes node t,then a feasible solution is maximum 

ifevery arc is saturated thatjoinsanodeofthe first classto nodeofsecond class. 

Lemma 3.1.1 The flow value fof any feasible solution is less than or equal to the 

capacityf(X,Y)ofany cut-set. 

Proof: For any cut(X,Y)wesum the firsttwo constraints of(3.2)for allieX to obtain 

j j 

Thiscan be rewritten as 

ieX leX leX ieX 
jeX jeY jeX jeY 

or 

isX ieX igX igX 
jeY jeY jeX jeX 

Thus, 

(3.4) 
leX ieX 
jeY jgY 

Since Xj,>0and each x,j < u,j. 
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f<2;x.s2u,=f{X.Y) 
leX igX 
jeY jsY 

Thus,the maximum flow is boxmded above bythe capacity ofthe arbitrary cut(X,Y),and 

hencefmust be bounded above by the minimalcut capacity[7] 

Theorem 3.1.2[ Maximum Flow/Minimum Cut Theorem ]: For any network the 

maximalflow value from node sto nodet is equalto the minimum cut capacity. 

Proof: Since all arc capacities are finite a maximum flow exists. It could be zero,but let 

f be the value of maximum flow. We now look at the cut(X Y ') for f'and the 

corresponding arc flow x,j|. 

Suppose X'contains both node s and node t. Thus we can find a path from node s to 

node tsuch that for any arc in the path either u,j-x,j>0or Xj,>0. Thus we could find a 

flow greater than f Thus s e X'and t e Y'and(X',Y ')is a cut. Note that x,j=u,j 

when i e X'andjeY',and Xj,=0 for i e X'andjeY'. Thus(3.4)becomes 

leX' leX' leX' 
jeY' jeY' jeY' 

But byLemma3.1.1 f<f(X,Y)for all cuts(X',Y')and sincef=f(X',Y'),then 

(X',Y')must yield the minimalcut capacity and thus, 

maxf=f•=mini(X,Y)=f(X',Y')[7]. 

Wenow use Theorem 3.1.2to solve a maximum flow network. 

Example 3.1.1: Find the maximum flow for the following network in Figure 3.1.2 using 

Theorem 3.1.1. 
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(3j3) (c,j,Uij)
(2,4 

(1,2) 

(1,5) 
2,2 

Figure 3.1.2NetworkforExample 3.1.1 

Table 3.1.1 shows all the possible cut sets fisr this example. Thus by Theorem 

3.1.1,the maximum flow is6. The problem is that this can become very tedious,thus we 

mustcome up with some better methodsto find the maximiiTn flow. 

§3.2: Ford&Fulkerson Algorithm 

We now look at a(labeling method for finding the maximuim flov^ It was 

developed by Ford and Fulkerson in 1956. They were the first to study the maximum 

flow problem fi"om a computational viewpoint[6]. Below is an algorithm we will use to 

obtain the maximalflow. It isknownasthe Ford&Fulkerson Method. 
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Table 3.1.1 Possible Cut Sets 

X Y 

1 2,3,4 6 

2 1,3,4 9 

3 1,2,4 9 

4 1,2,3 8 

1,2 3,4 7 

1,3 2,4 11 

Ford&Fulkerson Algorithm: 

1. Set Xy's to zero. 

2. Start with the source node s and label it [-,<»]. This means an unlimited amount of 

commodities are available. The general labeling convention is defined by the following: 

[i±,Aj]where Ajis the positive number representing the change in the capacities and i 

+ represents an increase in flow by an amoimt Ajfrom node i to j and i-represents a 

decrease in flow by an amount Ajfromnodejto i. 

3. Labelthe rest ofthe nodes using the labeling convention and the following two rules: 

(a) Ifx,j<u,jassign the label[i+, Aj]to nodej, where Aj=min(A„u,j-x,j)or 

(b)IfXj,>0,assignthe label[i-, Aj],where Aj= min(A„Xj,). 
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4. Atnode t,the value of Ajis the amount we send throughthe path fromsto t. 

5. The process ends when a path from the initial node to the terminal node cannot be 

found. 

Wenow solve the same network fromExample 3.1.1 usethe labeling method. 

Example 3.2.1: Find the maximum flow for the following network in Figure 3.2.1. The 

iterations for this algorithm is given in Table 3.2.1 to Table 3.2.3. On the tables a * 

represents a possible path from source to sink forthe network. 

The algorithm ends when there are no more paths from s to t. We have send a 

totalofsix imits through the network,this is our maximum flow. The optimal solution is 

thefollowing:Xi2=4,Xi3=2,X23=l,X24=3,and X34=3. 

(2,4) 3,3 

(1,2) 

(2,2) 

Figure 3.2.1 Network for Example 3.2.1 
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Table 3.2.1 Initial Setup ofProblem 

(y) X.J Uu A, Aj Label 

(1,2) 0 4 00 4 4 [l+,4] 

(1,3) 0 2 00 2 2 [l+,2]* 

(2,3) 0 2 4 2 2 [2+,2] 

(2,4) 0 3 4 3 3 [2+,3] 

(3,4) 0 5 2 5 2 [3+,2]* 

Table 3.2.2Labels after2UnitsofFlow Along Path 1-3-4 

(y) X.J U.J A. U,j-X.j Aj Label 

(1,2) 0 4 00 4 4 [l+,4]* 

(1,3) 2 2 — — — — 

(2,3) 0 2 4 2 2 [2+,2] 

(2,4) 0 3 4 3 3 [2+,3]* 

(3,4) 2 5 2 3 2 [3+,2] 
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Table 3.2.3 Labels after3UnitsofFlow Along Path 1-2-4 

(ij) X,j Uu A, U,J-X,J Aj Label 

(1,2) 3 1 1 [1+,1]*4 00 

— — — —(1,3) 2 2 

(2,3) 0 2 1 2 1 [2+,l]* 

(2,4) 3 3 — — — — 

(3,4) 2 5 1 3 1 [3+,l]* 

We have seen a labeling method for finding the maximum flow; we now look at 

the same algorithm but with networks. Ford and Fulkerson developed the algorithm 

which works by improving upon an initial flow incrementally along some path [9], this 

approach has becomeknown asthe augmenting path algorithm. To solve the augmenting 

path algorithm we will deal with residual networks. The idea is that we will measure 

flow in terms ofincrements. We can think ofa residual network as a remaining flow 

network. So is an arc (i,j) has a flow x,j, then it is still possible to send u,j-Xij units of 

flow through the arc. We can also send flow backwards, thus canceling the flow (i.e. 

send aflow ofx,j from nodejto node i). 

The residual capacity is the min r,j ofany arc in the path, where r,j = u,j-x,j. A 

residual network G(x) corresponds to a flow vector x, where x is defined as follows: 

replace arc(i,j)bytwo arcs(i,j)and (j,i)- The arc(i,j) has cost c,j and residual capacity r,j 
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. The arc (j,i) has cost Cj, c,j and residual capacity tj, — x,j. An augmentingpath is a 

directed path fromthe sourceto the sink in the residual network. 

Whenever the network contains an augmenting path, we can send additional flow 

from the source to sink. This is the basic concept behind the augmented path algorithm. 

When weaugmentflow weadd addition units ifwe are going in the same direction as the 

original arc. We subtract umts ifwe are going in the opposite direction as the original 

arc. The process terminates when G(x)does not contain a directed path from node s to 

node t. 

Theorem 3.2.1: A flow x"is a maximum flow ifand only ifthe residual network G(x®) 

contains no augmenting path. 

Augmenting Path Algorithm: 

1. Setx,j's=0. 

2. Identify the augmenting pathP from node sto node t. 

3. Set 5 =min{r.j:(ij)e P }. 

4. Augment 8units offlow alongP and update the G(x)network. 

Example 3.2.2: Find the maximum flow for the following network in Figure 3.2.2 using 

the augmenting path algorithm. The iterations are shown in Figures 3.2.3 to 3.2.8. 

The algorithm now ends by Theorem 3.2.1 since there will be no more augment 

paths in residual network. We see from the network that f=6. The optimal x,j's are as 

follows:Xi2=4,Xi3=2,X23=1,X24=3,X34=3. 
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(2,4) 
(3,3) 

(1,2) 

0 / 

(1,5)(2,2 
>r 

Figure 3.2.2 Network for 
Example 3.2.2 

Figure 3.2.4 Updated Network 
after Augmenting 3Units 

>r 

Figure 3.2.3 Residual Network 
Showing Path ForExample 3.2.2 

> f 

Figure 3.2.5 New ResidualNetwork 
Showing aPath forExample 3.2.2 
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Figure 3.2.6 Updated Network Figure 3.2.7New Residual Network 
after Augmenting 1 Unit Showing aPath forExample 3.2.2 

Figure 3.2.8 Updated Network after Augmenting2Units 
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We now look at entering the problem in LINDO to verify the results. As seen in 

Figure 3.2.9 we must first add a dummy arc with capacity zero to set up LP formulation 

in Figure 3.2.10. The arcflow ofthis arc will bethe value we wish to maximize since the 

flow that entersa network leaves the network. From the LEMDO Report Window(Figure 

3.2.11)onthe next page we see thatthe optimal solution isz*=6 with xo=6,Xi2=4, Xi3=2, 

X23=l,X24=3,and X34=3. 

§3.3: Application 

A production process indicates the various paths that a product can take on its way to 

assembly throughthe plant. The numbers beside each arc represents athe upper limit on 

items per hour that can be processed at the station. What is the maximiun number of 

parts per hourthatthe plant can handle? Which operations should be improved? 

We solve the residual network by the augmenting path algorithm. We first setup 

the network forthis example(see Figure 3.3.1). 

(2,4) 3,3 

1,2) 

(2,2 (1,5) 

Figure 3.2.9NetworkforLINDO 
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3%'LINDO ' '■' V.: /a 

' Fte;;Edt>--'Solye''?aepoit»; itfreJbwV 

[0 
<unhUcd> □IX 

Max xe 
ST 

!!x12<-*
'|X13<=2
5 X23<=2 
fx2«=3 
Sx3«=5 
Px0-x12-x13=O 
Jx12-x23-x2fc=fl 
||Xl3*x23-x3'i°a 
'x2«l*x34-xB=0 
END 

Figure 3.2.10 LP Formulation in LINDO 

•IffIX 

Fie £A SoM Report) uindow 

IBIAItSI msm. 
3%Rt?pt>ilv WiniJow HB 
LP OPTIMIH FOUKD AT STEP 

OBJEGTIUE FUKCTIOH VALUE 

1) 6.000808 

VARIABLE VALUE REDUCED COST 
XO 6.000000 o.eooeoe 

X12 1|.000000 e.oooQOO 
X13 2.808000 0.880880 
X2a 1.000008 8.880800 
X24 3.008000 0.800888 
X34 3.000808 0.Be6B08 

ROU SLACK OR SURPLUS DUAL PRICES 
2) 0.008000 1.880888 

3) e.iOBOoo 1.800880 

*) 1.808808 8.880800 
5) O.OOBBOD 8.BBB088 i 

6) 2.e0B0QB 8.000800 
7) 8.080000 1.000800 
8) 0.800000 0.800880 

9) o.eoeooB 0.080800 1 
IB) B.008008 0.800800 

HQ. ITERATIONS- S) 

;

ll jE 

Figure 3.2.11 LINDO Output of Solution 
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First we choose the path s-l-2-4-t from figure 3.3.1. Thus 5= min{12,5,4,10}=4. 

We augmentthe path by4 units. The residual network is then formed,as seen in Figure 

3.3.2. A new path from source to sink is then identified. Thus the path s-l-3-6-t is 

chosen from Figure 3.3.2. Thus 8=min{8,9,3,10}=3. We augment the path by 3 units 

now. The new residual network isshown in Figure 3.3.3. 

We now choose another path from Figure 3.3.3, say s-l-3-5-t. Thus 

5=min{5,6,7,10}=5. We augment the path by 5 units. The algorithm now ends since 

there are no more augmenting paths from source to sink. Thus we see thatthe maximum 

flow is 12 parts per hour. The values ofx,j's are as follows: Xsi=12,Xi2=4, xi3=8, X24=4, 

X25=0,X35=5, X36=3, X4t=4,X5t=5,aud X6t=3. 

10 

12 10 

10 

Figure 3.3.1 Network forExample 3.3.1 
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10 

10 

Figure 3.3.2ResidualNetwork#1 forExample 3.3.1 

10 

Figure 3.3.3 ResidualNetwork#2for Example 3.3.1 
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We now answer the question: Whatimprovements should be made? The 

operation from 2 to 5 is not necessary. The operations 4-t, 5-t, and 6-t is only at half 

capacity,thus we need to combine some ofthese operations for a more efficient system. 

We can also solve this problem using LINDO. First, as before, we have to add a 

dummy arc ofcapacity zero. Figure 3.3.4 shows the LP formulation and Figure 3.3.5 , 

showstheLINDO outputofthe solution. 

Iat'Xl 

I.£ile'£dit^SoJve:,^ Eepoits ^ \ ^ V'C.. , A4./ J," 

lillliil 
Sw <untiUed> 

;;Hax xO 
;sT 
;xs1<=12 
>x12<=5 

"x13<=9 
;x2ii<=i» 
,'x25<=7 
:x35<=7 
,x36<<°3 
"xllt<=1Q 
S|x5t<=10
]x6t<=1Q 
'xB-xs1=8 
xs1-x12-x13=8 

;x12-x2ii-x25=e 
»x13-x35-x36=8 

^'x2it-xilt=9 
,x25+x35-x5t=8 
!X36-x6t=e 

ix'it*x5t*x6t-x8=8 
,'END 

ty 

Figure 3.3.4LP Formulation ofApplicationProblem 
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^LINDO •[Flepofis Window]" 

1 g^';£A;;5fliye;fi^ n\W;HW,^g-r.^Jfy-clgrxi 

LP DFTIHUn FBUHD AT STEP 1 

OBJECTIUE FUHCTIBH UALUE 

1) 12.88888 

UARIABLE UALUE REDUCED COST 

X8 12.888888 8.888888 

XS1 12.888888 8.888888 

X12 5.888888 8.808888 

X13 7.888888 8.888888 
X2<l <1.888888 8.888888 
X25 1.888888 8.808088 

X35 4.888888 8.808888 

X3A 3.888888 8.888888 

X4T 4.888888 0.888888 

X5T 5.888888 8.888888 

XAT 3.888888 8.888888 

BOH SLACK OR SURPLUS DUAL PRICES 

2) 8.888888 1.888888 

3) 8.888888 

t) 2.C 

5) 
6) 6.888888 

7) 3.888888 

8) 
9) 
18) 

11) 8.888888 

J 

Figure 3.3.5 LINDO OutputofSolution for ApplicationProblem 
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CHAPTERFOUR 

SHORTESTPATHPROBLEM 

The shortest path problem is used when we must find the least costly flow from 

node s to node t. The cost is denoted by c,j. The total cost is found by summing the 

costsofthe arcs inthe path. 

The mathematical notation is as follows: 

m m 

Minimize: ^^c^Xy (4.1)
1=1 j=i 

1 i=l 

m m 

Subjectto =•0 i7il,m 
j=i j=i 

-1 i=m 

where x,j=1 or0. (4.3) 

Note that ifx„ is 1 we move along the arc; ifx„ is0 we do not move along the arc. 

There arefour basic assumptions aboutthe shortest path problem. They are as follows: 

1. All arc lengths are integers. 

2. The network containsa directed path from node sto every other node inthe network. 

3. The network doesnot contain a negative cycle. 

4. The network is directed. 
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§4.1:Dijkstra's Algorithm 

Dijkstra's algorithm finds the shortest path firom source to all other nodes in 

network with nonnegative arc lengths. We denote the distance label as d(i). 

Theorem 4.1.1 [ShortestPath Optimality condition]: 

For every nodejeN,let d(j)denote the length ofsome directed path fi-om the source 

node to nodej. Thenthe number d(j)represents shortest path distances itfthey satisfy 

thefollowing shortestpath optimality conditions: d(j)<d(i)+c,j. 

Dijkstra's algorithm: 

1. SetX=OandY=N. 

2. For each node i e N,set d(i)= oo. 

3. Set d(s)=0. 

4. While|X|<n,let i e Ybe anodefor which d(i)=min{d0:jeY}. Also let 

X=Xu{i}andY=Y-{i}. 

5. For each(i,j) e A(i)do the following: ifd(j)> d(i)+c,j then d(j)=d(i)+c,j. 

Example 4.1.1: Below is an acyclic network in Figure 4.1.1. Use Dijkstra's algorithm to 

find the shortest path for the network. The iterations ofDijkstra's algorithm are shown in 

Figure 4.1.2to Figure 4.1.4. 

Another wayto solve the shortest path problem is to make a tree diagram. This is 

an easy but impractical method.Refer to Figure 4.1.5 for an example ofatree diagram. 
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(3,3) (2,4) (3,3)(2,4) 

[CO] 
(1,2) 

1,2) 

(2,2) (1,5) (2,2) 1,5) 

[00 

Figure 4.1.1 Network for Figure 4.1.2InitialLabels for 
Example 4.1.1 Example 4.1.1 

[2][co]->2 
(2,4) 

(3,3) (2,4) (3,3)
[0 

[°o]-^5 [3 

(1,2)(1,2 

(1,5)
(2,2) (2,2 (1,5) 

[oo]^ 2 3 U2] 

Figure 4.1.3 Label after First Figure 4.1.4Final Labels 
and Second Iteration Showing Shortest Distance 
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^^4 

>r 4 

3* 

Figure 4.1.5 Tree Diagramfor Example 4.1.1 Showing ShortestPath 

§4.2; All-Pairs Generic Label-Correcting Algorithm 

The all pairs shortest path algorithm requires that we determine the shortest path 

distances between every pair ofnodes in a network. We start with a distance label d[i,j] 

and updatethe distance labels untilthey satisfy Theorem 4.2.1. 

Theorem 4.2.1 [All-Pairs ShortestPath Optimality Conditions]; 

Forevery pair ofnodes[i,j]sNxN,let d[i,j] representthe length ofsome directed path 

from node ito nodejsatisfying d[i,j]=0 for allieN,and 

d[i,j]<c,jforall(i,j)eA. 

These distances represent all-pairs shortest path distances iffthey satisfy the following 

all-pairs shortest path optimality conditions: d[i,j]< d[i,k]+d[k,j]for all nodes i,j,k. 
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All-Pairs Generic Label Correcting Algorithm: 

1. Set d[i,j]=00 for all [i,j]eNxN. 

2. Setd[U]=OforallieN. 

3. For all(i,j)eA set d[i,j]=c,j. 

4. While the network contains three nodes i,j,k satisfying 

d[ij]> d[i,k]+d[kj],set d[U]=d[i,k]+d[kj]. 

Example 4.2.1:Find the shortest pathfor the following networkin Figme 4.2.1 using the 

all-pairs label-correcting algorithm. 

We first label allthe NxN nodesaccording to the algorithm(steps 1-3); 

d[l,l]=0 d[2,l]=oo d[3,l]=«) d[4,l]=oo 

d[l,2]=2 d[2,2]=0 d[3,2]=oo d[4,2]=oo 

d[l,3]=2 d[2,3]=l d[3,3]=0 d[4,3]=oo 

d[l,4]=oo d[2,4]=3 d[3,4]=l d[4,4]=0 

Next we updatethe nodes according to step4ofthe all-pairs generic label correcting 

algorithm. 
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(3,3) 
(2,4) 

(1,2) 

(1,5)2,2) 

Figure 4.2.1 Network forExample 4.2.1 

d[l,2]>d[l,3]+d[3,2] 

2 > d[l,3]+d[3,2] (felse) 

d[l,3]>d[l,2]+d[2,3] 

2 > d[l,2]+d[2,3] (felse) 

d[2,3]>d[2,4]+d[4,3] 

2 > d[2,4]+d[4,3] (felse) 

d[2,4]>d[2,3]+d[3,4] 

3 >d[2,3]+d[3,4] (true) 

Therefore,d[2,4]=3. 

d[3,4]> d[3,2]+d[2,4] 

2 > d[3,2]+d[2,4] (false) 
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Thus only the distant label ofarc(2,4)is updated. The rest ofthe distant labels stays the 

same. Byinspection wesee the shortest path is 1-3-4(see Figure 4.2.2). 

§4.3: Application 

A company has warehouses located in different cities, see Figure 4.3.1. Each warehouse 

produces separate products. These products are then shipped to the other warehouses. 

For the company we need to cut down on cost and ship products in a fast and efficient 

way. Suppose the warehouse in Boston needs a product that is located in Los Angeles. 

Use the network below to find the shortest path. Each ofthe arcs has the associated cost 

for shipping one unit through the arc. The solution is shown on Figure 4.3.2. We can 

see thatthe shortest path is 1-3-5-9 withatotal distance of186. 

d[l,2]=2 d[2,4]=3 

d2,3= 

d[3,4]=l 
d[l,3]=2 

Figure 4.2.2 Network with Updated Distance Labels 
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Boston 

Portland CO 
Chicago 

130 [00] 58 

40
SaltLake 85 
City ^ 

48 

29 32 [CO] 

[CO] 3 
66 Kansas City 

62 Washington 

43 
00 

CO] 53 

[00] 
27 

75 
29 

Memphis 

29 
Los 

Angeles 85 
Dallas 

00 

Figure 4.3.1 Network for ShortestPath Application 
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Boston 

Portland [186]
Chicago 

130 [128 58 9,; 

40 
SaltLake 85 

48 
City 

29 32 8 [167]
[43] 

66 Kansas City 
62 Washmgton 

43 

[109] Or" 53 

[114] 
27 

75 
29 

Memphis 

29 
Los 

Angeles 85 
Dallas 

Figure 4.3.2 Network Showing the ShortestPath 
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CHAPTERFIVE 

MINIMUM COSTFLOWPROBLEM 

Both the shortest path and maximum flow problem is a special case ofminiTnnm 

cost flow problem (MCF Problem). Because of this we sometimes referred to the 

minimum costflow problem asthe generalflow problem. Our goalforthe MCFProblem 

is to find a path so as to ship a commodity fi-om source to sink at miniminn cost. Each 

arc has a cost c,j associated with it, where c,j is the cost ofshipping one unit fi-om node i 

to nodej.Informationforthis chapter can befoimd in[1],[3],[6],and[12]. 

m m 

Minimize: z=]^^CyX,j (5.1) 
1=1 j=i 

F if i=l 

m m 

subjectto =• 0 if i^l,m (5.2) 
j=i j=i 

-F if i=m 

where 0<Xy <Uy V (i,j)eA (5.3) 

In orderforthe problem to be feasible we must have the following condition: F < f. 

Weconsiderthe minimum cost problem vmderthese assumptions: 
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1. Alldata are integral. 

2. The network is directed. 

3. The minimum costflow problem has a feasible solution. 

4. We assume the network G(N,A) contains an uncapacitated directed path between 

every pair ofnodes. 

5. All arc costs are nonnegative. 

/ 

§5.1 Cycle Canceling Algorithm 

The cycle canceling algorithm uses shortest path computations to find augmenting 

cycles with negative flow costs; it then augments flow along these cycles and iteratively 

repeatsthese computations for detecting negative cost cycles and augmenting flows[1]. 

Theorem 5.1.1[Augmenting Cycle Theorem ]: 

Let X and x° be any two feasible solutions ofa network flow problem. Then x eqiials x° 

plusthe flow on at mostm directed cycles in G(x®). Furthermore,the costofx equals the 

costofx°plusthe costofflow onthese augmenting cycles. 

Theorem 5.1.2[Negative Cycle Optimality Conditions]: 

A feasible solution x* is an optimal solution ofthe minimum cost flow problem iffthe 

residual network G(x*)contains no negative cost cycle. 

Proof: Suppose that x is a feasible flow and that G(x)contains a negative cycle. Thus x 

cannot be an optimal flow, since by augmenting positive flow along the cycle we can 

improve the objective function value. Therefore, if x* is an optimal flow,then G(x*) 

cannotcontain a negative cycle. Suppose x* is afeasible flow and that G(x*)contains no 
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negative cycle. Let x" be an optimal flow and x* is not equal to x°. Bythe augmenting 

cycle property we can decompose the difference vector x° - x* into at most m 

augmenting cycles with respect to the flow x* and the sum ofthe costs offlows on these 

cycles equals cx°-cx* > 0. Since x° is an optimal flow,cx°-cx* < 0. Thus cx°-

cx*=0. Thus cx°= cx*. Thus x* is also an optimal flow. This augment shows that if 

G(x*)contains no negative cycle,then x* must be optimal[1]. 

The negative cycle optimality conditions brings us to a method to solve the 

minimum cost flow problem. The method is called the cycle-canceling algorithm. We 

maintain a feasible solution at every iteration. We continue the following algorithm until 

we have no negative cycles. 

Cvcle Canceling Algorithm: 

1. Establish afeasible flow x,j in the network. 

2. Changethe network into aresidualnetwork. 

3. Identify any negative cycle. Ifthere is notone then the process ends. 

4. For the negative cycle determine the residual capacity(minimum r,j). Augment this 

cycle by a flow amountequalto the residualcapacity. 

5. Continue steps3and4untilthere are no negative cycles. 

Example 5.1.1: Use the cycle-canceling algorithm to solve the minimum cost flow 

problem fi-om the network below in Figure 5.1.1. Let the flow be4 units. We will see 

from this algorithm that our solution will be Xi2=2, Xi3=2, X23=2, X24=0 and X34=4 with the 

minimum cost of 14. The steps to the algorithm are shown in Figure 5.1.2 to Figure 

5.1.8. 
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2,4) \(3,3) (2,1 (-3,3) 

1,2 
(-2,3 

(1,2) 

(2,1) 
(2,2 

(1,5) 
(-2,1) 

1,4) 

Figure 5.1.1 Networkfor Figure 5.1.2ResidualNetworkfor 
Example 5.1.1 Exan:q)le 5.1.1 

(2,1) 

yi-2,3) 
(1,2) 

(-3,3) 
(2,4) 

(3,3) 

(1,2) 

2,1 (-1,1 

(-2,1) yf (1,4) 
(2,2 1,5 

Figure 5.1.3 A Negative Cycle Figure 5.1.4 Updated Network after 
Augmenting2Units 
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(2,1) A 3,2) 

2,1 3,2
(-3,1)(-2,3) 

(-3,1)(-2,3)
(-1,2) 

(-1,2) 
2,1 -1,3 

(-1,3)
(-2,1) 

(1,2)
1,2

(-2,1) (2,1) 

Figure 5.1.5 New ResidualNetwork Figure 5.1.6 Second Negative Cycle 

(2,2) A (3,3)3,3) 
(2,4) 

(-2,2 

(-1,2
(1,2) 

0 
(1,1) 

(-1,4)(2,2) 1,5) (-2,2) 

Figure 5.1.7Updated Networkfor Figure 5.1.8 NewResidualNetwork 
Example 5.1.1 after Augmenting 1 Unit ForExample 5.1.1 
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§5.2Successive ShortestPath Algorithm 

The successive shortest path algorithm selects a node,s,with excesssupply and a 

node,t, with unfulfilled demand and sendsaflow fromsto talong a shortest path in the 

residual network. 

Apseudoflow isafunction x:A -> R+satisfying the capacity and nonnegativity 

constraints(not necessarily the mass balance constraints). Theimbalance ofanode i is 

denoted by e(i)=b(i)+ ̂ Xj,- ^x,j,where b(i)=F,0,or-F. The node 
{j(J.i)sA} {j(i,j)eA} 

potentials, 7i(i)'s,are linear programming dual variables corresponding to the mass 

balance constraint ofnode i. Thereducedcostis given by the following equation: 

C% =C.j-7l(i)+7l(j). 

Ife(i)>0forsome node i, wesay e(i)is the excess ofnode i; ife(i)<0,we say 

e(i)is deficit ofnode i;ife(i)=0wesay node i with e(i)is balanced. LetEbe the 

numberofexcess nodesandD bethe number ofdeficit nodes. Ifthe network contains an 

excess node it must containa deficit node. 

Theorem 5.2.1[Reduced Cost Optimality Conditions]: 

A feasible solution x* is an optimalsolution ofthe minimum costflow problem ifand 

onlyifsomesetofnode potentials satisfy the following reduced costoptimality 

conditions: c^> Ofor every arc(i,j)in G(x*). 

Successive ShortestPath Algorithm: 

1. Setx=0and 7t =0. 

2. Set e(i)=Ffor all n nodes. 
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3. SetE={i:e(i)>0}andD={i:e(i)<0}. 

4. Select a node k,elementofE,and a node 1,elementofD. 

5. Determine the shortest path from nodekto all other nodes in G(x)with respectto the 

reduced costs c"ij. 

6. LetP denotethe shortest path from nodekto node 1. 

7. Update n by letting 7t = tc -d. 

8. Augmentthe flow along pathP byanamoxmtequalto min[e(k),-e(i), min{r,j:(i,j) 

elementofP}], 

9. Finally update x,G(x),Eand D,and reduced costs. Continuethe process untilthe 

solution satisfiesthe mass balance constraints. 

Example 5.2.1^ Use the successive shortest path algorithm to solve the minimum cost 

flow problem in Figure 5.2.1. The labels for each node are shown in Figure 5.2.2. 

e(2)=0 
7i(2)=0 

3,3)(3,3 (2,4)/2,4 e(4)=-4
e(l)=4 

7r(4)=0
7r(l)=0 

/ (1,2(1,2) 

(1,5)
2,2) (1,5 (2,2) 

V 
e(3)=0 

3 ) 7i(3)=0 

Figure 5.2.1 Networkfor Figure 5.2.2NodeLabels 
Example 5.2.1 
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Wesetthe initial feasible solutionto x,j=0.Notice the flow,F,is4.Also notice 

since Xy's are zero the residual network is the same asthe original network. E={1}and 

D={4} 

Wenow calculatethe shortest distance with respect to reduced costs. 

d=(0,2,2,3) 

Thusthe shortest path is 1-3-4. Wenow updatethe ti's and reduced cost. 

7t(l)-d(l)=0-0=0 

7i(2)-d(2)=0-2=-2 

7t(3)-d(3)=0-2=-2 

7t(4)-d(4)=0-3=-3 

C"i2 =Ci2— 7t(l)+ 7I(2)=0 

c"l3 =Ci3-7C(1)+ 7r(3)=0 

c"24 =024-71(2)+71(4)=2 

0^34 =C34-71(3)+ 71(4)=0 

We can see from Figure 5.2.3 the new labels for the node potentials and reduced 

costs. Notice the original network is now updated as seen in Figure 5.2.4. The algorithm 

now selects a shortest patL The shortest path is 1-3-4,so we augment by the 6=min{ 

4,-(-4), 2,5}=2. After augmenting by2 units we obtain a new residual network(see 

Figure 5.2.5). The algorithm then starts over by updating the reduced costs and node 

potentials. 
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e(2)=0 
7t(2)=-2 

(23)0,4 

e(l)=4 
e(4)=-47t(l)=0 
7i(4)=-3 

(1 2 

(0,2) (05 

e(3) 
7t(3)=-2 

Figure 5.2.3 Node Labels after OneIteration 

0,4 2,3 

l) ' 2 (4 

0,5)
(0,2) 

Figure 5.2.4 Updated Network 

56 



�

e(2)=0 
7i(2)=-2 

(0,4 (2,3) 

e(l)=2 e(4)=-2 
7i(l)=0 7r(4)=-3

(1,2) 
(0,3) 

(0,2 
(0,2 

e(3)=0 
7t(3)=-2 

Figure 5.2.5 New ResidualNetworkforExample 5.2.1 

The goalofthe algorithm isto have all the nodes balanced,so we again identify 

any excess and deficient nodes. Ifthere are notany thenthe algorithm ends. Upon 

observing Figure 5.2.5 it is clear thatthere is one excess node and one deficient node,E 

{1}andD={4}. Thus wenow calculate the shortest distance with respectto reduced 

costs: 

ci=(0,0,1,1) 

Thusthe shortest path is 1-2-3-4. Wenow update the tt's and c",j's(see Figure 5.2.6). 
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e(2)=0 
n(2) 

1 3)(0,4) 

e(l)=2 e(4)=-2 
7t(l)=0 7c(4)=-4

(0,2) 
0,3 

(0,2)
(1 2) 

e(3) 
7i(3)=-3 

Figure 5.2.6 Updated ResidualNetwork 

Wenow augment by2units again. Since e(l)=2and e(4)=-2 fromFigure 5.2.6, 

then afrer this augmentation of2unitsthere will not be any excess or deficient nodes. 

The solution isshownin Figure 5.2.7. The minimum cost is 14 with Xi2=2,Xi3=2,X23=2, 

X24=0,and X34=4. 

§5.3: Primal-Dual Algorithm 

The final algorithm we willlook atis the primal-dual algorithm. It is very similar 

to the successive shortest path algorithm,except it solves a maximum flow problem that 

sends flow along all shortest paths. 
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2,3
0,4 

1,2 

0,5)
(1,2) 

>r 

Figure 5.2.7 Updated Network forExample 5.2.1 after Augmenting2Units 

For each node i with b(i)>0,weadd azero cost arc(s,i)with capacity b(i). For 

each node i with b(i)<0,we add azero cost arc(i,t) with capacity-b(i). 

The algorithm transformsthe minimum cost problem into aproblem with one 

excess node and one deficit node. The nodes are a source node,s,and sink node,t. The 

primal-dual solves a maximum flow problem on asubgraph ofthe residual network G(x). 

The admissible network G°(x)satisfies the reduced cost optimality conditionsfor node 

potentials n. The admissible network contains only those arcs in G(x)withzero reduced 

cost. We denote G°(x)asthe admissible network,which is ansubgraph ofG(x). 

PrimalDual Algorithm:Wecontinue aslong as e(s)>0 

1. Setx=Oand n=0. 

2. Set e(s)=b(s)and e(t)=b(t). 
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3. Determine the shortest pathfrom node sto all other nodesin G(x)with respect to the 

reduced costs c",j. 
I 

4. Update n by letting 7t = tt -d. 

5. Define the admissible network G°(x). 
j 

6. Establish a maximum flow from node sto nodet in G°(x). 

7. Update e(s), e(t),and G(x). 

Example5.3.1: Usethe primal-dual algorithm to solve the minimum costflow problem. 

NoticeE={1}andD={4}. The network isshown in Figure 5.3.1. Notice each node is 

given alabel, b(i). Fromthe labels weknow thatflow enters node 1 and exits node4 

with a value of4. Figure 5.3.2showsthe initial node labels. 

(3,3 
(2,4) 

-4
(1,2) 

(1,5)(2,2) 

3 0 

Figure 5.3.1 Networkfor Example 5.3.1 
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e(2)=0 
7t(2)=0 

3,3
(2,4) 

e(l)=4 
e(4)=-47t(l)=0 ( 1 1,2 71(4)=0 

(1,5)(2,2) 

e(3)=0 
71(3)=0 

Figure 5.3.2NodeLabels for Example 5.3.1 

Wenow calculate the shortest distance with respectto reduced costs: d=(0, 

2,2,3). Thusthe shortest path is 1-3-4. Wenow update the %'s(see Figmre 5.3.3). 

Nextidentify the admissible network asseen in Figure 5.3.4. Wesend the 

maximum flow along the admissible network by using a maximum flow algorithm. We 

will use the augmenting path algorithm. 

We pick the path 1-3-4. Thus 5=niin{ 2,5}=2. Thus weaugment2units along path 

1-3-4. Wenow calculate the shortest distance with respectto reduced costs,d=(0,0,1,1) 

Thusthe shortest path is 1-2-3-4. Wenow update the n'sand reduced costs(see 

Figure 5.3.5). Afterthis update anew admissible network is identified and the 

augmenting path algorithm is invoked. See Figure 5.3.6 forthe new admissible network. 
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e(2)=0 
71(2)=-2 

(23) 

e(l)=4 e(4)=-4 
7C(1)=0 (1,2) 7t(4)=-3 

0,5
(0,2) 

3 j e(3)=0 
7t(3)=-2 

Figure 5.3.3 Updated ResidualNetworkfor Example 5.3.1 

Figure 5.3.4 Admissible Network 
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e(2)=0 
7r(2)=-2 

(1,3)
(0,4) 

e(4)=-2
e(l)=2 

(0,2) 71(4)=-4
71(1)=0 

(0,3) 
0,2

(1,2) 

e(3)=0 
3 ) 71(3)=-3 

Figure 5.3.5 Updated Node Potentials 

Figure 5.3.6New Admissible Network 
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Here again we see Figure 5.3.7thatthe minimum cost is 14 with Xi2=2, Xi3=2, X23=2, 

X24=0,and X34=4. 

The primaldual algorithm requiresaspecialform inthat the algorithm transforms 

the minimum cost problem into aproblem with one excess node and one deficit node.In 

the above example we started with one excess node and one deficit node. Now lets see 

what happens with we have morethan one excessand deficit nodesas is the case for 

Figure 5.3.8. 

We mustadd in dummyarcsto transform the network—seethe following network 

in Figure 5.3.9. Wecombine all the excess nodesinto one node and allthe deficit nodes 

into one node. Since node 1 and node2have excessof2units each,then the new excess 

node,s,hasatotalof4units. Thesame is true forthe deficient nodes. Thusnode t has a 

totalof4units deficient. 

(0,4) (2,3) 

1,2 

(0,5)
(1,2) 

Figure 5.3.7 Updated network After Augmenting2Units 
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-2u 

1,1) (2,1) 
-2 

N 4 

(2,2) 

Figure 5.3.8 Network Showing Excessand Deficit Nodes 

0 
(1,1) 

(0,2)
0,2) 

1,1 (2,1) 0 

(0,2) 

(2,1) 

Figure 5.3.9NewNetwork after Transformation 

65 



Wenow solve the MCFProblem in LINDO. First the LP formulation hasto be entered 

in LINDO. Figure 5.3.10showsthe formulation. Fromthe outputin Figure 5.3.11 we 

see the solution is as follows: 

z=14 with xi2=2,xi3=2,X23=2,X24=0,and X34=4. 

This verifies our algorithms for the MCFProblem. 

§ 5.4: Applications 

Example 5.4.1: [Transportation Problem] 

A company supplies goodsto two customers. The company hastwo warehouses. 

The costofshipping 1 unit from warehouse to customer is shown in the Table5.4.1 

below. Find the minimum costofshipping from the warehousesto customers. Solve 

using the primal-dual algorithm. 

fî LINDO 

k-Qb" Solve fleports- -tfndow 

<unliUed> 

,HIN 2x12«^2x13«^x23*3x2li*x3<l 
iST i 
'x12<=ft 
i x13<=2 
IX23<=2 
'x2«=3 

;X3li<=5 
'X12+x13-=4 

|'-X12+X2«»+X23=B 
,-x13-x23»x3l|=8 
['-X2^-X3l|=-«I 

Figure 5.3.10 LP Formulation ofMCFProblem 
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•iS'LINDO ^ 
'E!8t^E(R..J'£o|yofaepoilsJf;SfiSdow 

[yi^Repoits Window 
eeISI 
'V 'Vs.* 

1 

?SSHEI31 

LP OFTIHUH FOUND DT STEP 3 

OBJECTIUE FUNCTION UALUE 

1) i4.6Beee 

UARIABLE UALUE REDUCED COST 

X12 2.( 

X13 2.808000 

X23 2.( 

X24 1. 

X34 4.080000 

ROU SLACK OR SURPLUS DUAL PRICES 

2) 2.000080 O.f 

3) 8.000000 1.1 

«*) 0.000000 

5> 3.000000 

6) 1.000080 0.000080 

7> 8.008000 -3.000800 

8) 0.000000 -1.1 

9) 0.000008 

18) 8.088008 

NO. ITERATIONS^ 3 

Figure 5.3.11 LINDO OutputofSolution for Example 5.3.1 

The network is given in Figure 5.4.1 for the transportation problem. Since the 

network has more than one excess and deficient nodes,wetransform the network (see 

Figure 5.4.2). Next all the nodes are given an initial label. These labels can be seen in 

Figure 5.4.3. 
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Table 5.4.1 CostMatrix forExample 5.4.1 

A B 

1 $15 $35 

2 $10 $50 

-2
(15,1) 

(35,2) 

(10,2) 

-2 

(50,2) 

Figure 5.4.1 Network for TransportationProblem 
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(15,1) 

(35 t(0,2) 

10 1) 

(0,2) 
50 

(0,2) 

Figure 5.4.2Transformed Network for TransportationProblem 

e(l)=0 

7t(l)=0 (15,1) e(A)=0 

M aI <A)=o 
(35 

e(s)=4 
(0,27t(s)=0/(0,2) 

t 1 e(s)=-4
(10,1) 7l(t)=0 

(0,2) 

(0,2
(50 

e(2)=0 e(B)=0 
71(2)=0 7r(B)=0 

Figure 5.4.3 Transformed Network Showing Node Potentials 
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Wefirst calculate the distances firom the reduced cost: 

d=(0,0,0,10,35,10). 

The reduced costs are asfollows: 

c"sl ~0 c"2A~ 10 

c"s2~0 c"2B~50 

c''ia=15 c"At=0 

c'^iB'^SS C^Bt^O. 

Wecan see fi-om the distance labels thata shortest path is s-2-A-t. Wenow updatethe 

node potentials and reduced cost(see Figure 5.4.4): 

7i(s)-d(s)=0 c"si=0 

7r(l)-d(l)=0 c"s2=0 

7r(2)-d(2)=0 c"ia=5 

7r(A)-d(A)=-10 c",B=0 

71(B)-d(B)=-35 c"2a~0 

7r(t)-d(t)=-10 c"2b=15 

C"At~0 

c"Bt=25. 
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e(l)=0 
e(A)=07l(l)=0 
7i(A)=-100 

e(s)=4 
(0 (0,2)\7l(s)=0/(0^) 

t ) e(s)=-4 
0,1) 7i(t)=-10 

0,2) 
(25,2) 

15 

e(2)=0 e(B)=0 
7I(2)=0 7t(B)=-35 

Figure 5.4.4New Node Labels for TransportationProblem 

We nextformthe admissible network(includes the arcs withzero reduced cost)in 

Figure 5.4.5. Notice thatthe augmented pathform sourceto sink is s-2-A-t. Weneed to 

send the maximum flow along this path. Thus weusethe augmenting path algorithm. 

Notice the maximum flow occuring along the path s-2-A-t is the minimumofthe 

residuals. Weaugment by 6=min{2,1,2}=1,thus one unitofflow is sent along this 

path. Wenow calculate the new distance labels: d=(0,0,0,5,0,5). 

Wenow calculate new node potentials and new reduced costs(seeFigme 5.4.6): 

7t(s)-d(s)=0 c"si=0 

7t(l)-d(l)=0 C"s2=0 

7i(2)-d(2)=0 C"lA —0 

7r(A)-d(A)=-15 c"lB —0 

7t(B)-d(B)=-35 c"2A=-5 
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7i(t)-d(t)=-15 c"2B — 15 

c"At=0 

c"Bt~20. 

Thenew updated network is seen in Figure 5.4.7. Again we establish an 

admissible network(Figure 5.4.8). Thistime wecanaugment 1 unitofflow along the 

path s-l-A-t. 

\ 
V 

Figure 5.4.5 Admissible Networkfor TransportationProblem 

e(l)=0 

7l(l)=0 (5>1) e(A)=0 

w n(A)-10 

(0 
e(s)=3 

7l(s)=0/(0^) 0 

e(s)=-3 
(0,1) 07c(t)=-10 

(0,1) 
(25,2) 

(15
(0,1) e(B)=0 

e(2)=0 7r(B)=-35 
7i(2)=0 

Figure 5.4.6 UpdatedNetworkfor TransportationProblem 
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e(l)=0 
7l(l)=0 (O'O e(A)=0 

Ma] <A)=-15 
0 

e(s)=3 
(0,1)7c(s)=0/(0^) 

e(s)=-3 
S ) (5,1) 7t(t)=-15 

\(0,1) ^ 
(20,2) 

15 

e(B)=0 

e(2)=0 7t(B)=-35 
7i(2)=0 

Figure 5.4.7 Updated Network#1 for TransportationProblem 

W A 

N 

Figure 5.4.8 New Admissible Network#1 for TransportationProblem 
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We now find the new distance labels: d=(0,0,0,35,0,20). Wenow computethe 

new node potentials and reduce cost(see Figme 5.4.9): 

7t(s)-d(s)=0 c"si-0 

7t(l)-d(l)=0 c"s2=0 

7r(2)-d(2)=0 c"ia=35 

7t(A)-d(A)=-50 C"IB=0 

7i(B)-d(B)=-35 c"2a=-40 

7t(t)-d(t)=-35 c"2b=15 

c''a.= 15 

c"Bt=0. 

The updated network isshownin Figure 5.4.10. Next weidentify admissible 

network(Figure 5.4.11). Weaugment 1 unitofflow through the path s-l-B-t. The new 

distance labels can be foimd also: d=(0,15,0,0,15,15). 

e(l)=0 

7l(l)=0 (0,1) e(A)=0 

7i(A)=-15 
(0,1) 

e(s)=2 (0 
7r(s)=0 

0 
(0,2) 

(5 
t J ®(s)—2 

7t(t)=-15 
(0 1) 

(0,1) 
(15 

(20,2) 

e(B)=0 

e(2)=0 71(B)=-35 
n(2)=0 

Figure 5.4.9Updated Network#2for TransportationProblem 
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e(l)=0 

71(1)=0 (35,1) e(A)=0 
A 7t(A)=-50 

0,1 

<s=2 (0 

7r(s)=0 
(-15,2)

(0,1 

t ) e(s)=-2
(40,1) 7r(t)=-35 

(0,1) 

(0,2
(15

0,1) 
e(B)=0 

e(2)=0 7i(B)=-35 
7c(2)=0 

Figure 5.4.10Updated Network#3for TransportationProblem 

(0,1) 

(0,1) 

0,1) 

(-15,2) 

(0,1) 

(0,2) 

Figure 5.4.11 New Admissible Network#2for TransportationProblem 
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Wenow updatethe node potentials and reduce cost(Figure 5.4.12): 

7t(s)-d(s)=0 c%i=0 

7r(l)-d(l)=-15 0^82=0 

7t(2)-d(2)=0 c"ia=35 

7t(A)-d(A)=-50 c"IB=0 

7r(B)-d(B)=-50 c"2a=-40 

7r(t)-d(t)=-50 c"2b=15 

c"At=15 

c"Bt=0. 

e(l)=0 
7t(l)=0 (35,1) e(A)=0 

7r(A)=-501 k 

e(s)=l (0 1) 

7l(s)=0 
-15,2

(0,2) 

t I e(s)=-l
(40,1) 7t(t)=-35 

0,1) 0 

(15 
0 t̂)=0 
e(2)=0 71(B)=-35 
7I(2)=0 

Figure 5.4.12Updated Network#4for TransportationProblem 
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Weconstructthe new admissible network next(see Figure 5.4.13). There will be 

1 unit augmented throughthe path s-2-Brt. The algorithm now ends since there are no 

more excess nodes. Thusthe solution is Xsi=2, Xs2=2, xia=1,xib=1,xaA^l,X2b=1,XAt=2, 

XBf=2and the minimum cost is 110. 

Asbefore wenow solve the problem using LINDO. We first entertheLPformulation 

into LINDO(Figure 5.4.14). The solution byLINDO is given in Figure 5.4.15. Aswe 

cansee the minimum cost is 110. The assignment and transshipment problem can be 

solved the same way:either by primal-dual algorithm or using LINDO. 

(0,1) 

15,2) 
0,2 

(40,1 

(0,1) (0 

(0,1) 

0,1 
(0,1) 

Figure 5.4.13 New Admissible Network#3for TransportationProblem 
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— 
Igfis'EA s<*^ 

iii^iBi .laiai^r 
HIN 15}(1a«35Klb«iex2a«58x2li 

ST 1 
XS1<»2 

XS2<°2 

xla<"i 
Xlb<a1 

x2a<-1 

x2b<»l 

xat<<-2 

xbt<"2 

xs1>xs2-^ 
-xs1*x1a»x1b=B 

-xsZ«x2a«-x2bB| 

-x1a>x2a-*>xat«6 

~xlb-x2b«xbt-6 

-xat-xbt»-b 

j. . 

Figure 5.4.14 LP Formulation ofTransportationProblem inLINDO 

5^LINDO -(Reports Wtndowl 

^fte E<* Solw Exports SJfndow' ,'^t "i', » 

l iDii^a'^aHtal i I■ i^ial4^8.^iBi,:|a!aj'sa 
LP OPTINJH FOUND AT STEP 

OBJECTIUE FUNCTION UALUE 

1) IIB.BBBB 

UBRIABLE UALUE REDUCED COST 
X1B I.BBBBSa 0.000080 
X1B i.BeBsee 0.000000 
X2A i.eaeaoB o.eaeeoo 
X2B i.aaeeae o.oaoaoa 
XS1 R.aaaaoa o.eeeaoo 
XS2 2.800000 0.000000 
XAT 2.008080 o.eoaeoo 
XBT 2.808080 8.808088 

ROD SLACK OR SURPLUS DUAL PRICES 

2) 0.808000 o.eaoeoo 

3) 0.800000 o.oooooej 
H) o.eeoBoe 35.000000 
5) 8.808080 15.000080 

6) o.oeoooe 40.000000 
7) 0.000000 e.eoeooa 

B) 0.000000 0.008808 
9) e.eaeoeo 8.800000 

1B) e.eoeeoa -50.800000 

11) o.eoaeoo -50.000000 

12) B.eoeooe -50.800000 
13) 8.808000 0.800000 
1A) B.oooaeo 0.000080 

Figure 5.4.15 LINDO Output of Solution for Transportation Problem 
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APPENDIX 

LINDO(Linear, Interactive, and Discrete Optimizer)is a powerfiil tool for 

solving linear programming problems. It allows the user to input the LP formulation, 

solve it, assess the correctness and make any necessary changes quickly. Information 

used in this appendix is jfrom[10]and[11]. 

Upon opening the program there will be a blank window called the imtitled screen 

(see Figure Al). This is where the problem is typed in as written. First the objective 

fimction is entered. UseMAXfor maximization and MIN for minimization. Onthe next 

line type SUBJECT TO or ST for short. Next all the constraints are entered into the 

program. Ifthe inequality on a constraint is <,then enter it as <= in LINDO. The final 

step is to enter END. This tells LINDO that all the information is entered into the 

program. 

•SSlindo • " 

^filef Etft;>^olve>fieports\' i 

DiiaiaiHisi IjtftiaiSLifflijii.Ill/BiaitiaiamiiBiffliiai;:.iM 
<untitled> 

iJ 

id. 
Figure Al: AnExample ofthe Untitled Screen 
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For example if we wish to maximize the objective function 2xi+2x2 subject to 

xi+X2<3 and Xi-X2<2,then we type the problem in the blank window(see Figure A2)as 

follows: 

MAX2x1+2x2 

ST 

xl+x2<=3 

xl-x2<=2 

END 

To solve the problem use the solve command under the solve menu or press F5 or Ctrl+s. 

Once the solve command is implemented LINDG will start to compile the model. Ifthe 

model is not formulated correctly an error message will appear onthe screen. 

'^Tindo jp5^l::intx 
r,FilerE(ft-,S^^';,,Reports'^ 

aisi'5gff¥ii 

,MnX 2X1+2X2 
.ST S 
Xl+X2<=3 

f:x1-x2<=2 
END 

u 

Figure A2: AnExample ofLP FormulationEntered into LINDG 
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Corrections will have to be made in order for LINDO to compute the solution. If 

no errors are detected the LINDO Solver Status window(Figure A3)will appear on the 

screen. The screen tells information about the solution. As the Table A1 points out the 

LINDO Solver Status screen mainly is helpful for Inter Programming(IP)formulations. 

A small window will appear next asking ifsensitivity or range analysis needs to be foimd 

(see Figure A4). Just click no and close the LINDO Solver Status screen. This option is 

mainly used by advanced users. 

LINDO Solver Status pJEm 

□ptHMzer Status 

Status Optinal 

Iterations: 

Infeasibaitr 
Objective: 

Best IP; 

IP Bound: H/A 

Branches: N/A 

Elapsed Tune: 00:00:00 

Update Interval: | 

Interrupt Solver 

Figure A3: The LINDO Solver Status Window 



 

UNDO ■■■•i 

DO RANGE(SENSITMTY) ANALYSIS? 

i Yes No I 

Figure A4: Example ofRange Analysis Option Screen 

Table Al: Description ofLINDO Solver Status Window 

Field/Control Description 

Status Gives status of current solution 

Iterations Number of solver iterations 

Infeasibility Amount by which constraints are violated 

Objective Current value of the objective function 

Best IP Objective value of the best integer solution 

found (only used for integer programming 

IP Bound Theoretical bound on the objective for IP* 

Branches Number of integer variables "branched" on 

By LINDO's IP solver 

Elapsed Time Elapsed time since the solver was invoked 

Update Interval The frequency (in seconds) that the Status 

Window is updated 
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Once the option no is clicked on the window asking for range analysis, minimize 

the LINDO Solver Status window. There will be a new window,the Reports Window 

(Figure A5). This report gives information about the solution. The report contains the 

following information: the number ofiterations, the optimal solution, the values ofthe 

variables, the reduced cost, the dual price and the values of any of the slack/surplus 

variables. The reduced cost is the rate at which the objective function value will be hurt 

ifa variable currently zero is arbitrarily forced to increase bv a small amount. The dual 

price is the rate at which the objective fonction value will improve as the right hand side 

or constantterm ofthe constraint is increased a smallamount. 

SSlindo 

£ie £dt Solve fieports Window 

i^^rieporls Window flfilCj 

LP OPTIMUM FOUND OT STEP 

OBJECTIUE FUNCTION UflLUE 

6.088008 

UORIABLE UALUE REDUCED COST 

X1 8.888880 0.888880 

X2 3.888888 8.888880 

ROW SLACK OR SURPLUS DUAL PRICES 

2) 8.880888 2.888880 
3) - 5.888888 8.888804 

NO. ITERATIONS-

Figure A5: AnExample ofReport Windows 



TheReport Window always contains information about different rows. Ifthe row 

number is 1, it corresponds to the objective fimction. Ifthe row number is 2 to n, it 

corresponds to the constraints. For this example. Row 2 corresponds to the first 

constraint and Row3corre^ondsto second constraint. 

Forthis example,the maximum objective fimction isz=6. The variables xi and X2 

are0and 3respectively. Eventhough xi=0the reduced costis0,thus,a small increase in 

this variable will not effect the objective function. The dual price for the first constraint 

is 2;thus,a small increase in the constantterm(3)will increase the objective function by 

arate of2. 

Table A2: File MenuCommands 

New F2 Create anew Model Window 

Open F3 Openan existing file 

View F4 Openan existing View Window 

Save F5 Savethe active window astext 

Close F7 Close the active window 

Print F8 Send the active windowto the printer 

Date Shift+F4 Displaythe current date and time 

Elapsed Time Shift+FS Displaythe elapsed time ofcurrent session 

Title Shifl+F3 Displaythe title ofactive model 

Exit Shift+F6 ExitLINDO 
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Table A3: Solve MenuCommands 

Compile Model Ctrl+e Compile the modelinthe active window 

Solve Ctrl+s Send the modelto LINDO solver 

Pivot Ctrl+n Perform one iteration on current model 

Table A4: Help MenuCommands 

Contents F1 Showthe contentofLINDO help 

Howto use Help Ctrl+Fl Learn how to usethe Help Menu 

Table A2 to Table A4 gives some short cuts to LINDO's commands. These are 

only a select few ofthe manyLINDO commands. Further information can be found on 

the LINDO help menu and from the LINDO website: www.lindo.conL There is also a 

free downloadable demo versionofLINDO. 
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