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Abstract 

The classical definition of convergence of a sequence {s„} of real 

numbers may be extended by permitting the defining inequality to fail 

on an infinite, but relatively small,exceptionalset ofintegers n. In this 

thesis the cases ofexceptionalsets oflinear density zero and logarithmic 

density zero are considered. Basic properties of classical convergence 

are shown to hold for these cases, an example is constructed to show 

that a set oflogarithmic density zero need not have linear density zero, 

and for each case a Tauberian condition sufficient to deduce classical 

convergence is provided. 
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 1 Introduction. 

Sequences are a valuable tool in many areas of mathematics. For 

example,they are used in constructing the real numbers from the ra 

tional numbers,working with continuity offunctions,and defining con 

vergence of infinite series. In this thesis we will consider real-valued 

sequences defined on the positive integers N and two types of sequen 

tial convergence which differ from the classical concept of sequential 

convergence. 

We begin with a definition of the classical concept of convergence. 

Definition 1. A sequence {s„} of real numbers is convergent(or con 

verges) to the real number s, its limit, iffor each e: > 0 there is an 

iV G N such thatfor all n> N,|s„ — s| < e. 

In 1951,H.Fast[2]introduced the concept ofstatistical convergence 

by allowing in the definition of classical convergence an exceptional set 

E=E{e)oflinear density zero, that is, a set Efor which \En\/n goes 

to zero as n goes to infinity, where En={k < n: k e E}and \En\ is 

the cardinality of En. 

Definition 2. A sequence {s„} of real numbers is statistically con 

vergent (or statistically converges) to the real number s, its statistical 



hrrntf iffor each £> 0, the set E{£)={A; G N:|sa: — s|> has linear 

density zero; i.e., 

(1) lim \{k <n: Is^ — s\ > e:}!/n=0. 
n-^oo 

For convenience, we will refer to statistical convergence as LinD-

convergence and say that a statistically convergent sequence with sta 

tistical limit s is LinD-convergent with LinD-limit s. 

Requiring E{£)to have linear density zero is simply a way ofrequir 

ing that it is small relative to N. Another way to require E^e)to be 

small is to ask that it have logarithmic density zero,that is. 

n 

k£E[e)n ^=1 

Recall [1, p.192]that 

n 

^l/A;=logn+7-^77„ 
k=l 

where {rjn} is a nonincreasing sequence with limit zero and7is Euler's 

constant. Therefore,(2) may be rephrased as 

Y 1A)/Iogn=0. 
k£E{e)n 

This leads to the following definition. 



Definition 3. A sequence {sn} of real numbers is LogD-convergent to 

the real number s, its LogD-hmit, iffor each £> 0 

£ l/fc)/logn=0,
kEjE(^E)n 

where the set E{£) is defined in Definition 2. 

In Section 2 we first describe some examples and then show that 

LinD-convergence of a sequence is equivalent to two other conditions. 

In particular, condition (iii) of Theorem 1 allows one to associate with 

a LinD-convergent sequence a single set E which has linear density-

zero and is independent of £. The situation for LogD-convergence is 

similar. Using the existence ofsuch sets is simpler than using the sets 

E{£) of Definitions 2 and 3. In Section 3 we prove some results for 

LinD-convergence of sequences that are analogous to basic results for 

the classical convergence ofsequences. It will be clear that the results 

of Sections 2 and 3 also hold for LogD-convergence. In Section 4 

the ideas of linear and logarithmic density are discussed and a set of 

logarithmicdensityzero,but not oflinear density zero,is constructed to 

demonstrate that the two concepts of linear and logarithmic smallness 

are distinct. Finally in Section 5, a sequence which converges off 

a set of linear or logarithmic density zero and satisfies an additional 

condition is shown to converge in the classical sense. 



 

2 Examples and Equivalent Conditions 

It is obvious that any sequence {sj^} which converges to a limit s 

in the classical sense also converges to s in the LinD sense because 

for each £ > 0,|{fc G N : |sfc — s| > £:}| is finite and every finite 

set clearly has linear density zero. The corresponding statement for 

LogD-convergence also is true. 

The sequence {s„} defined by 

(j n= j=1,2,3,... 
Sn= < 

I 0 otherwise 

is clearly not classically convergent,but is LinD-convergent and LogD-

convergent to zero. To establish the latter claim simply note that 

for 1 > £ > 0 we have |{A: < n : \sk — 0| > £}| < \/n and that 

goes to zero as n goes to infinity. 

This sequence is obviously unbounded,but "wilder" behavior is pos 

sible. Ifthe rationals are enumerated as ri, r2,... and Sj2 is redefined 

to be Tj, then the new sequence is still LinD- and LogD-convergent 

to zero, but its range is dense in the real numbers. As will be dis 

cussed in Section 4, a set oflinear density zero has logarithmic density 

zero. Thus in these examples it is only necessary to establish LinD-

convergence. 

In the next section it will be shown that sequences which are LinD-



convergent have several of the properties of classically convergent se 

quences. To prove these results we will use another characterization 

of LinD-convergence. To obtain it we will need an extension of the 

concept of a Cauchy sequence, which is important because it does not 

require knowledge ofthe limit of the sequence. 

Definition 4. A sequence{s„} is LinD-Cauchy iffor each e: > 0, there 

exists iV G N such that 

lim \{k <n:|sfc — sn\ > £}|/n=0. 
n—>00 

The following theorem has been presented by J. A. Fridy ([3]). 

Theorem 1. Let{s^} be a sequence of real numbers. The following 

statements are equivalent: 

{sn} is LinD-convergent; 

(ii){sn} is LinD-Cauchy; 

(ill) there exist a sequence {tn} of real numbers and a real number 

s such that 

tn s as n^oo and lim IjA: <n:tk^ Sfcjl/n=0. 
n->oo 

Proof Let densE"=0 mean that the linear density ofE is zero. 

We first show that (i) implies (ii). Suppose {s^} is LinD-convergent 



to s. Then by Definition 2,for each J > 0 

lim \{k <n:|sfc — s|> ^}|/n=0. 
n—>oo 

Thus there exists E{S) C N such that dens£?(J)=0 and |sn — s| < 5 

for n G 'N\E{5). Fix £■ > 0; there exists E{e/2) C N, dens,E{e/2) = 0, 

such that \sk — s| < e/2 for k G N\E{£/2). Fix iV G N such that 

|sjv — -s| < ^/2. For k G N\£'(e/2), \sk — Siv| < I^a: — s| + |s — sn\ < £• 
Therefore for each £ > 0 there exists N = N^e) such that 

lim |{A; < n : |sa: — Siv| > £^}| /n = 0 
n^oo 

and thus (i) implies (ii). 

Next we show that (ii) implies (iii). Let £o = 1- By Definition 

4 there exists iV G N such that dens{A; : Sk ^ [s^v — 1, sjv + 1]} = 0. 

Let I = [sn — IjSat + 1]- Let £i = 1/2 . There exists N{1) 

such that dens{fc : Sk ^ [sjv(i) — 1/2, Siv(i) + 1/2]} = 0. Let Ji = 

[5iV(i) — 1/2, Siv(i) + 1/2]. Put Ii = I n Ji; then 

|{A; <n: Sk ^ /i}| /n < \{k < n : Sk f /}| /n \{k < n : Sk ^ Ji}| /n 

and therefore lim„_>oo \{k <n:sk^ /i}| /n = 0. Let £2 = 1/2^. 

There exists N{2) such that dens{fc : Sk ^ [sn(2) —1/2^, sjv(i) + l/2^]} = 
0. Let J2 = [5jv(2) — l/2^,Siv(i) + 1/2^] and put I2 = Iif] J2; then 
dens{A: : Sk ^ I2} = 0. Continue in this fashion to get intervals Ij 

such that /i D J2 D • ■ • , dens{A: : Sk ^ Ij} = 0 and < l/2^~^. 



 

Now by the Nested Interval Property [5, p. 32], = {s} for 

some s. We next construct the desired sequence {tn}- There ex 

ists iVi G N such that n > Ni implies \{k <n:Sk ̂ /i}|/n < 1. 

Similarly, there exists N2 G N, iV2 > -A^i, such that n > N2 implies 

\{k < n:Sk ̂ h}]/iT' < 1/2- In general, there exists a sequence 

of integers Nj such that 0 < iVi < iV2 < • • • and n > Nj implies 

\{k <n:Sk f ij}|/n < l/j. Put 

Sk if /: < Ni 

h= \ Sk ii Nj < k < Nj+i and Sk G Ij 

8 if Nj< k < Nj+i and Sk ̂ Ij 

Now fix e > 0 and fix jo such that < e. For j> jo and 

Nj< k < Nj+i,if Sk G Ij, then 

I^A: — 5|= |sfc — s| < 1/2^"^ < 1/2^°"^ < e, 

and if Sk ^ Ij, then — s| = |s — s| = 0 < e. Therefore for 

k > iVjo, — s|<£ and this implies tk^s as k 00. 

It remains to show that Sk =tk except on a set oflinear density zero. 

For Nj<71 < Nj+i, 

\{k < n:Sk tk}\/n < \{k < n:Sk ̂  

Since the last term tends to zero as n tends to infinity, 

lim \{k:tk^ Sk}\/n=0, 
n-^00 



 

so that (ii) implies (iii). 

Finally we show (iii) implies (i). Fix e: > 0. Then 

{A: < n:|sa; — s|> e}C {A;< n: Sjfc ̂  U {A:< n: — s|> e} 

and thus 

0 < lim |{A: < n: \sk — si > ejl/n 
n-J-oo 

< lim \{k <n:tkj^ Sfc}|/n 
n—^oo 

+ lim |{A; < n : \tk — s|> s}\/n 
n—>00 

= 0 

by (iii). Therefore,{s„} is LinD-convergent to s and (iii) implies (i). 

The proof of Theorem 1 is now complete. 

The definition of a LogD-cauchy sequence analogous to a LinD-

Cauchy sequence may be stated easily. Then an analog of Theorem 1 

also holds for LogD-convergence with obvious changes in the proof. 

Also, it is clear that (iii) is equivalent to the statement that there is 

a set C N of linear density zero (or logarithmic density zero) such 

that Sn ̂ s as n oo,n ̂ E. We shall use this rephrasing in the 

remainder of this thesis, and thereby avoid any need for the sets E^e) 

in Definitions 2 and 3. 



3 Basic Results For Sequences Convergent Off Small Sets. 

In this section basic results about the convergence ofsequences are 

established in the context of linearly or logarithmically small excep 

tional sets. The first result concerns the uniqueness of LinD-limits. 

Theorem 2. Suppose E,F Q'H have linear density zero. If s 

as n oo,n ̂ E, and —)• s* as n oo,n ^ F,then s=s*. 

Proof. Let £> 0. There exists N=N{s)such that n > N,n^E, 

imply |s„ — s| < e/2 and n > N,n ̂ F,imply |s„ — s*| < e/2. Since 

\{EUF)n\/n < \En\/n-\-\Fn\/n which goes to zero as n tends to infinity, 

EUF has linear density zero and there are arbitrarily large n> N such 

thatn ̂ EUF. For such n we have0 <|s—s*|<|s„—s|-|-|s„—s*|< e. 

Since £ > 0 is arbitrary, we have s — s*=0 or s=s* as claimed. 

The next four results concern the behavior of LinD-convergent se 

quences under the operations of addition, scalar multiplication, multi 

plication and division. 

Theorem 3. Suppose F',F C N have linear density zero. IfSn s 

as n oo,n ̂ E, and tn —>■ t as n ^ co,n ^ F, then Sn + tn s 

asn—^oo,n^E\JF, where ElJ F has linear density zero. 

Proof. Let £ > 0 and N = N{£) be such that n > N,n ^ E, 

imply |s„ — 5| < s/2 and n > N,n ^ F, imply \tn — ^| < e/2. Put 

1 



 

G = EU F. Then G has linear density zero and for n > A/",n ̂  

G,|sn+ —(s — i)| <|s„ — s|+ < 2£'/2=6. Thus the result 

holds. 

For the operation of scalar multiplication we have the following re 

sult. 

Theorem 4. Suppose E C. ̂ has linear density zero. If a is a 

complex number and -)■ s, as n oo,n ^ E, then asn -> as as 

n oo,n ^ E . 

Proof. Let £ > 0 and N = N(e) be such that n > N,n ^ E, imply 
|s„-s| < £/(l-|-|a|). Then forn > iV,n ^ E, |as„-as| = |a| |sn-s| < 
e. Thus aSn as as n ^ oo,n ^ E. 

The next result shows that the product of two LinD-convergent se 

quences converges to the product of their LinD-limits. 

Theorem 5. Suppose F7, F C N have linear density zero. If Sn ^ s 

as n oo,n ^ E, and tn t as n oo,n ^ F, then Sntn —> st as 

n—^oo,n^EVJF, where E\J F has linear density zero. 

Proof. Since tn —> t as n oo,n ^ F, there exists m < oo such 

that \tn\ < m for all n > 1, n ^ F. Let £ > 0 and N = N{£) be such 
that n > N,n ^ E, imply |s„ - s| < £/[2(m + 1)] and n > N,n e F, 
imply \tn — ^1 < £/[2(|s| -|- 1)] . Put G = E U F; then G has linear 

10 



 

 

density zero and ioi n > N,n ^ G, 

st| ^ K^n ^)^n| ~l~ 1(5(^71 I 

— I^n ^ll^nl ~t~ l^ll^n 

< m|Sn-s|+|s||t„-t| 
me Isk 

< -TT+2(?t2+1) 2(|s|+1) 
< e. 

Therefore Sntn —)• si as n —)> 00,n ^ G,where G has linear density zero. 

Thefinaltheoremin thissection concerns quotients ofLinD-convergent 

sequences. 

Theorem 6. Suppose E",F C N are sets of linear density zero. If 

Sn s as n —¥ co,n ̂ E, and tn t as n oo,n ̂ F, where t 0, 

then Sn/tn —>■ s/t as n —>■ 00, n ^ EUF, where EUF has linear density 

zero. 

Proof. Let £ > 0 and N = N{£) be such that n > N,n ^ E, 

imply |s„ - s| < e\t\/4: and n > N,n ^ F, imply |t„| > |t|/2 > 0 and 

\in ~ < ^I^P/4(1 + |s|). Put G = E U F; then G has linear density 

11 



zero and for n > iV,n ^ G, 

\^n/^n — I ^n^)/^n^| 

< [|^||Sn-S|+|5||tn -t|]/|^„||i| 

< 2[elip/4+£:|ip|5|/4(l+5)]/|tp 

< £ 

Therefore —>• s/t as n —>■ 00, n ^ G, where G has linear density-

zero. 

The statements and proofs of the analogous results with linear den 

sity zero replaced by logarithmic density zero are essentially the same 

as those presented here and will not be given. 

12 



4 Distinction Between Linear and Logarithmic Density. 

In this section we briefly discuss some relations between linear den 

sity and logarithmic density and present an example of a set E of 

logarithmic density zero which is not of linear density zero. 

We have deflned so far only what it means for a set Eto be oflinear 

or logarithmic density zero. Ifone requires only thatthe relevant limit 

exist with value a,not necessarily zero, then one says that the set E is 

of linear or logarithmic density a. Clearly, in each case 0 < a < 1. 

One also may consider lower and upper linear densities ofE defined, 

respectively, by 

densS=liminf\En\/n, densE=Hmsup\En\/n 
n->oo n-^oo 

and lower and upper logarithmic densities of E deflned, respectively, 

by 

logdens£? = liminf(7 l/A;)/logn,
n-^00 ^ ' 

keEn 

logdens£J = limsup(^^ l/A;)/logn. 
keEr, 

One can show [4, p. 121] 0 < dens£^ < logdenSjEJ < logdenSjE < 

densL". It follows, of course, that a set of linear density zero also is 

13 



a set of logarithmic density zero. The example we present next has 

logarithmic density zero and, hence, lower linear density zero, but its 

upper linear density is strictly positive. 

The example set E involves two sequences {a^} and {6„} which we 

will construct so that oi =9 < 6i = 10 < 02 < 62 < • • •• We take E 

to have the form 

E=U^iO':an<j< bn}. 

Put Xn= \En\/n, Hn=( 1/j)/\ogn. We shall determine and 
jeEn 

bn so that limsupx„=0.1 and lim yn =0. 
n-¥oo n->oo 

There aresome useful observationsthatdo not depend on anyfurther 

restrictionson{a„}and{6„}. First,note that Xn and yn are decreasing 

for bm-i <'n<am,m>2,since \En\ and^1/jare constant for these 
J&E„ 

n while n and logn increase. Also,for each m=1,2,... we have the 

inequalities 

(3) < Xa^+\ < • • • < Xj}^. 

This result follows from the obvious inequality 

q/n <(g+l)/(n+1)(0 < g < n,n=1,2,3,...), 

since ai=9implies \En\ < n. 

A less obvious observation is that for each m=1,2,• • • we have the 

14 



inequalities 

(4) Vam < 2/am+l <'"<ybm-

This result follows from 

(5) g„/logn< (gn+l/(n+l))/log(n+l), 

where ^1/j,am<n< bm-
jeEn 

To see the validity of this observation, note first that it is clearly 

true for m=1 and then fix m > 2and n so that am < n < bm- Now 

note that(5) holds if and only if 

(6) Qn[log(n+1)-logn]<(l/(n+1))logn. 

By the Mean Value Theorem,there exists G (n,n+1)such that 

log(n+1)-logn= 1/sn. 

Thus our inequality(6)is equivalent to 

(7) Qn/Sn < (l/(n+1))logn. 

Since bi =10, we have 
n 

Qn < 1/^ <logn — log9 <logn — 2. 
fc=10 

Therefore(7)follows from 

(logn-2)/s„ <(l/(n+ 1))logn 

15 



 

or, since > n,from 

logn — 2 <(n/n+l)logn (n > 10) 

or,equivalently,from(l/(n+l))logn < 2(n > 10), which followsfrom 

the easily established inequality(1/n)logn < 2(n > 6i = 10). Thus 

the inequalities(3) are established. 

From these observations it is clear that 

max-[iC7j. djji <C. n 

and 

Vbrn < n < 0"m->rl\• 

Thus,E will have the desired properties if lim =0 and 
m—^oo 

limsup > 0. 
m->oo 

Note that 

m m bj 

^bm = i^/bm)^{bj-%), Vbrn =(l/lOg6^)̂ ^ l/k 
J=1 J=1 k=aj+l 

For each m= 1,2,3,... we wish to have xj,^ =0.1. Then for m > 2, 

we will have 

m—l 

^ jjbj CLj) {bffi dm)~ 0.16|7j 
3=1 

16 



or, equivalently, 0.16^-1+&m — = 0.16m- It follows that we will 

have 

— 0.96m "h 0.16m—1-

Of course, we must determine the 6m in such a way that Um ̂ N. We 

will choose a strictly increasing sequence {pj} of positive integers with 

Pi=l and take 

Pm 

(8) = 
J=1 

Then Um,6m G N and 

6m ̂  ^^m—1 ^ 2), 

since 6m > 6m-1 and Um is a strictly convex combination of 6m and 

^m—1-

Recall that pi= 1. We need to choosePm, > 2,in (8)so that 

m 

(9) = E£ 1A)/I0g6m 
J=1 A:=aj+1 

m-1 

=(E E l/A;)/log6m+(^ l/A;)/log6m
j=l /i;=aj+l A:=am+1 

goes to zero as m —> oo. Suppose pi,... ,Pm-i have been chosen and 

thus 6i,...,6m-i and ai,... ,Um-i are determined. Replace Um and 

6m in(9)by a and 6,respectively,and observe that the first term in the 

17 



 

last line of(9)clearly goes to zero as h goes to infinity. The remaining 

term in the last line of(9) also goes to zero as h goes to infinity. To 

obtain this result, note that 

b 

0<^ 1/fc < log6 — loga. 
k=a+l 

Recall that b > bm-i and a=0.96+0.16^-1; therefore 

log6 > loga 

= log(0.96+0.16^_i) 

> log(0.96) 

= log0.9+log6. 

It follows that as 6 —)• oo we have loga/log6 —)• 1 and, consequently, 
b 

( ^/k)/logb^O as6 —>• oo. Thusifwe takepm and,hence,bm= b 
k=a+l 

sufiiciently large, we will have 0 < < 1/m. It follows that E has 

logarithmic density zero and our construction is complete. 

18 
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5 Tauberian Conditions for LinD- and LogD-Convergence. 

In this section we combine LinD-convergence and LogD-convergence of 

a sequence with Tauberian conditions to deduce classical convergence. 

We begin with the linear density case. 

Theorem 7. Suppose Sn s as n oo,n ̂ E,densE=0 and {s„} 

satisfies the Tauberian condition 

Sm — —)•0 (m > n —)■ oo, mjn 1). 

Then Sn s as n oo. 

Proof. Let E = '■ an < j <bn} where an < bn and 6^ + 1 < 

an+\ for n 1,2,3, . . . . Then 0^1 an/bn — ibn an)/bn S: \ En \ jbn ^ 
0 as n —)■ oo; it follows that an/bn —)■ 1 and, thus, bn/an 1. Clearly 

for m G [un, as n —)■ oo, 

1 ^ m/On ^ bn/an ^ 1. 

Fix £ > 0. There exist Ni and r; > 0 such that m > n > Ni and 

1 < m/n <1 + 77 imply — s„l < e/2. There also exists N2 > Ni — 1 

such that n> N2 and n ^ E imply 

(10) |s„ — s| < s/2. . 

19 



 

Finally, there exists Nz > N2 such that n > Nz implies a„ > N2 and 

bnlicin — 1) < 1+ Thus for n > Nz and m G [a„,6„] we have 

Un — 1 > -^2, Tn/{an — 1)< 1+ri and therefore 

\^m 51 ^ I^TTi -|- |Sa^_i s| 

< £. 

Combining this estimate with the one in (10)shows that s„ —)• s as 

n 00 and the proofis complete. 

For the logarithmic density case we use an analogous Tauberian con 

dition. 

Theorem 8. Suppose Sn s as n 00,n ̂  E,E of logarithmic 

density zero, and{s„} satisfies the Tauberian condition 

Sm — Sn-^0 {m>n—^oo,logm/logn —)■ 1). 

Then Sn s as n 00. 

Proof. The proof parallels that of Theorem 7. Let E — : 

O'Ti < j < bn} where and 6„ -h 1 < a„+i for n = 1, 2,3, . . . . We 
again use the Tauberian condition to estimate — Sa^_i|. For that 

purpose we need (log / log -> 1 as n —>■ co, a result which follows 

20 



from 

(11) 0 < 1-logan!log bn =(log bn-loga„)/log bn 
bn 

< {l/\ogbn)^l/k 
k—flyj 

— ( /̂ ^ ^ 1/Aj —^0 cis n —^ oo. 

The second inequality in (11)is an application of 

/q Q 9~1 
l/tdt= 1/k+^Ak+i, 

A:=2J+1 k=p 

where^^+1 isthe area ofthe planar region{{t,y):k < t < k+1, l/{k+ 

1)^ 2/ ̂ 1/0) "the estimates 
q-l q-l 

< 1/2^(1/fc-!/(&+1))=ll2(\lp-llq)< 1/p. 
k=p k=p 

It follows from (11)that for m G [a„,6„], as n —)■ oo, 

1 < (logm)/loga„ < (log 6J/log On -)• 1. 

Obvious changes in the proof of Theorem 7 now yield Theorem 8. 
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