11 University of Tennessee, Knoxville
i LN IWERSITY of

TENNESSEE TRACE: Tennessee Research and Creative
ENLRVILLE Exchange
Masters Theses Graduate School

12-2000

Design, implementation and testing of a digital baseband receiver
for spread spectrum telesensing

Brian Parker Chesney

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

Chesney, Brian Parker, "Design, implementation and testing of a digital baseband receiver for spread
spectrum telesensing. " Master's Thesis, University of Tennessee, 2000.
https://trace.tennessee.edu/utk_gradthes/9296

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9296&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a thesis written by Brian Parker Chesney entitled "Design,
implementation and testing of a digital baseband receiver for spread spectrum telesensing." |
have examined the final electronic copy of this thesis for form and content and recommend that
it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with
a major in Electrical Engineering.

Danny Newport, Major Professor
We have read this thesis and recommend its acceptance:

Charles Britton, Daniel B. Koch

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council B

I am submitting herewith a thesis written by Brian Parker Chesney entitled “Design,
Implementation and Testing of a Digital Baseband Receiver for Spread Spectrum Telesensing ” 1
have examined the final copy of this thesis for form and content and recommend that 1t be accepted
1n partial fulfillment of the requirements for the degree of Master of Science in Electrical
Engineering

o nl

Dr Dénny Newport, Major Professor

We-hayve read this thesis

Dr Daniel Koch

Accepted for the Council

CLMU

Interim Vice Provost and!
Dean of the Graduate Schi

Design, Implementation and Testing of a Digital
Baseband Receiver for Spread Spectrum Telesensing

A Thesis Presented for the Degree of
Master of Science

The University of Tennessee, Knoxville

Brian Parker Chesney

December, 2000

Abstract

Telesensing 1mvolves receiving data wirelessly from a remote sensor
Generally, the sensor node 1s fixed and configured to transmuit only or perform very basic
reception Because of their low power consumption, telesensors can be powered by a
battery for long pertods of time without a measurement or transrmssion interruption This
allows several nodes to be placed at strategic locations and creates a need to have all the
individual data collected and processed at a centralized location Frequency Division
Multiple Access (FDMA) provides robust data transmission from multiple telesensors to
the same receiver at the cost of added bandwidth.

Thus thesis focuses on the digital recovery of spread spectrum data 1n an
FDMA system A general digital spread spectrum receiver architecture 1s given (without
transceiving capability) and each component 1s designed, implemented and tested m the
rece1ver as a whole A sliding correlator with a threshold 1s used to synchronize the
pseudonoise (PN) code used to encode the data with the mcoming data System clocks are
also recovered from the mcoming data and distributed to the downstream modules The
design 1s implemented 1 an FPGA and tested with favorable packet error rate results m an
FDMA system The components of the digital receiver processor could be used 1n
conjunction with a Costas Loop demodulator to provide CDMA for multiple sensors and
its functionahty and robustness are confirmed in this thesis This would fit into a complete

CDMA, allowing the demodulator to discriminate between various sensors

i1

Table of Contents

1.0 Introduction.....icceesecsisensscscsnsassasesassanes 1
1.1 TeleSENSING weverrrrercsessssssnscsssrsssesssassasssssssessressessasaarssasssasssesesssssase 1
1.2 Scope of Thesis 3
2.0 Background ..)
2.1 Wireless COmMMUNICAtION .vcrucerrerrneneesaresnesersacsnesaessnssnnsessscases 4
2.2 Multiple Access 7
2.3 Spread Spectrum .10
2.4 PN Codes.....cceurnrsrsnnansersassons 13
3.0 System Overview w25
3.1 Data Acquisition Chip26
3.2 Low-power TranSIMitterccoeeveseresecssrssnaesasescsssnessnssssssssssasanes 27
3.3 FSK RECEIVET wurvueursirriarsecssssrnsnnssssssereessaesssansasssassensesssssssssassonsnnns 29
3.4 Component Limitations.......ceceesecssesssnseenssessesssesnsassassanses 29
4.0 Digital Receiver Architecture w31
4.1 Clock Recovery and Chip Resolutioncoeesessene. 31
4.2 Digital DeSPreader ..o mcecsmrereeeresereesesesesssssssassssssssssssssanessenens 34
4.3 Embedded Protocol Removal......... 39
4.4 Packet Detector 40
4.5 Acquisition Processor 43
5.0 Implementation 45
6.0 Testing and Results 47

111

7.0 Conclusions and Future Work

References

Appendix - VHDL Code

Vita

iv

103

List of Figures

Figure | FSK 1n the Frequency Domain

Figure 2 FDMA 1n the Frequency Domain

Figure 3 A TDMA Frame

Figure 4 Ideal FSK

Figure 5 Spread Spectrum

Figure 6 Code Division Multiple Access

Figure 7 Linear Feedback Shift Register

Figure 8 Autocorrelations

Figure 9 Cross-correlation between Code 1 and Code 2
Figure 10 Spreading with Code 1

Figure 11 Spreading with Code 2

Figure 12 Properly Recovered Data

Figure 13. Improperly Decoded Data

Figure 14 Sensor Data Link

Figure 15 ACQ2 Block Diagram

Figure 16: RFMD 2510 Block Diagram

Figure 17- RFMD 2945 Block Diagram ,
Figure 18. Direct-Sequence Spread Spectrum Receiver
Figure 19 Dagital Recerver Block Diagram

Figure 20 Polanty Decoder Dither Conditions

Figure 21 Polarity Decoder Block Diagram

Figure 22 Despreader Correlator Block Diagram
Figure 23 Despreader Correlator Histogram

Figure 24 Packet Detector Block Diagram

Figure 25 Acqusition Processor Block Diagram
Figure 26 Initial Wireless Testing

Figure 27 Repackaged Wireless Transmutter

Figure 28 Internal Circuitry of Wireless Transmitter
Figure 29 Repackaged Wireless Receiver

Figure 30 RF Front-End of Repackaged Wireless Receiver
Figure 31 Dagital Spread Spectrum Baseband Processing Board
Figure 32 Repackaged Wired Testing

Figure 33 Repackaged Wireless Testing

Acknowledgements

I would like to thank the following people for their help and support
throughout my education at the University of Tennessee First, I would like to thank Jerry
Stoneking for his role 1n getting me accepted to the University of Tennessee Also, I
would like to thank Charles Britton and James Rochelle for admitting me into the UT Joint
Program. I would like to thank Charles Britton for his guidance and support 1n additional
capacities, that of Principle Investigator on the research project that funded this work as
well as a member of my thesis commuttee I would also like to thank the rest of my
committee, Danny Newport, my Major Advisor, and Daniel Koch for their direction and
invaluable contributions to helping me finish my thesis

I would like to thank the researchers and staff of the Monolithic Systems
Group of ORNL’s Instrumentation and Control Division, especially Gary Alley, Bull
Bryan, Lloyd Clonts, Nance Ericson, Shane Frank, Gayle Jones, and Gary Turner. I would
also like to thank Gary Turner for his patience and sharing with me his immense technical
knowledge I would also like to thank all of the members of the Joint Program,
particularly, Derek Austin, Eric Bolton, Andrew Moor, Aaron Symko, and Stephen Terry
for their friendship and support. Also, I would like to thank Jeff Falin for his pivotal role
1n my acceptance into the Joint Program

I would like to thank my parents, Alan and Barbara Chesney, for their
patience and support I would also like to thank them for the care and advice that has
always been plentiful and much appreciated. Similarly, I would like to thank my sister

and brother-in-law, Sara and Elliot Tucker for their love, support, and excellent advice, as

vi

well I thank my grandparents,] Dukehart and Marjory Chesney for their tireless and
unconditional support. I would also like to thank Roger Borchers, Blair Brown and Greg
Holloran as well as Benj and Lorna Wood, Alex Morris, Michael Ruff, Sheila
Smitherman, and Meredith Novy for their continued support through the years

Thus research was funded by a grant from Graviton, Inc. I thank them for
their support and contribution, especially Larry Goldstein, Steve Tietsworth, and David
Fern The Principle Investigator for this research was Charles Britton. The majority of
the work was performed at the Oak Ridge National Laboratory, managed by UT-Battelle

for the U S Department of Energy under contract No DE-AC05-000R22725

V31l

1.0 Introduction

Low-power wireless sensors can be used to efficiently report specific
conditions at a remote location Micromachined cantilever sensors fabricated on a silicon
die can be used to provide the sensor data, providing a low-power solution to acquiring
certain data [1] Because these sensors can be so low-power that they could run off of a
battery, the parts used to transmit the data need to be simuilarly low-power Although, the
wireless link provided by this project 1s independent of the data being transmutted on 1t, 1t
was designed for a telesensing application. The transmuitter aspect of this wireless solution
1s provided by an in-house, ORNL-developed analog-to-digital converter (ADC) chip and
a commercial low-power transmitter To provide data robustness and provide multiple
access 1n future generations, spread spectrum communication is employed This requires
a digital recerver to recover the spread spectrum signal, despread it and interface with a
Personal Computer (PC) to display the data Thus thesis focuses on the design of the

digital spread spectrum recerver to provide remote access for wireless data transfer

1.1 Telesensing

Wireless sensor data transmission 1s free from certain limitations of cellular
telephony Transmussion bursts do not need to be carefully coordinated to appear as a
seamless stream of continuous speech to the human ear. Therefore, data can be transferred
every few seconds or more as opposed to the millisecond increments required by cellular

telephony. As an example, GSM, the Time Division Multiple Access (TDMA) cellular

standard used for wireless telephony mn Europe, requires that the speech for a given call be
transmitted every 4 ms in 125 us frames This frequency of transmission would be
overkill for a sensor that only needs to update 1ts status on the order of seconds or minutes
or even once an hour

As a result of this long lag between transmussion bursts, the RF front-end
circuitry can be turned off since the period of time between transmissions greatly dwarfs
the time required to turn 1t back on and transmut a burst of data Also, the digital
transmuission processing core, responsible for relaying the sensor data to the RF circuitry,
can be put nto sleep mode to save power. Both of these power down features greatly
reduce the power consumption of the system

Additional power conservation can be attained if the transmutter 1s not
configured for reception as well The transmutter does not have to interrupt 1ts sleep mode
to spend power on recerving mstructions from the host sensor data processor However,
even 1f this were a desired trait of a potential wireless telesensor implementation, sensor
data does not require computationally-expensive and power-hungry digital signal
processing to restore synthesized human speech, as with digital cellular telephones

These three features of telesensing, RF and digital circuitry power
conservation and simplified or nonexistent transcerving n the transmutter allow
telesensing to have tremendous power savings over digital cellular telephony Therefore,
the data transmussion circuitry can run autonomously using a single compact battery,
instead of a traditional cellular telephone battery. These wireless telesensor transmutters
can be left alone to transmut data reliably for months mstead of needing to be recharged

every couple of days as with a standard cellular telephone battery The telesensors

2

transmit data less frequently and at lower rates than cellular telephones, but this 1s ﬁsually

appropriate for their application to sensor data.

1.2 Scope of Thesis

The goal of this thesis 1s to move an analog voltage representing the output
from an analog sensor wirelessly from the stand-alone sensor site to a host PC for display
Specifically, this thesis focuses on the design of the digital spread spectrum recerver used
to recover the transmutted data The architecture was designed for telesensing, but, since
the actual transmission and reception of data 1s independent of the application, the
wireless link was not tested with sensors as mputs An appropriate background 1n digital
communications 15 developed so that design considerations 1n the digital receiver can be
appreciated Then, the system overview 1s given, detailing the specific components used
1n the system and how thus affects the design of the receiver Next, the architecture of the
digital spread spectrum recerver 1s detailed and 1ts functionality explained Later, the
implementation of the design and the testing and results of the implementation are
discussed Finally, lessons learned from the project and conclusions on digital spread

spectrum design are presented.

2.0 Background

2.1 Wireless Communications

The purpose of wireless communications 1s to transmut data through an
ambient physical medium, such as air, so that a physical channel does not need to be built
and maintained, such as a cable or twisted pair telephone line This requires coupling the
intended transmutted signal to the medium, something easily done with tethered
communications since the channel 1s designed to support the transmtted signal For
wireless communications, this requires building an antenna to convert an incident voltage,
the medium of the signal to be sent, to a radio frequency (RF) wave, a different signal but
one that can propagate through the desired medum.

The size of the antenna required to couple a given signal to the air via RF
waves varies inversely with the frequency of that signal Lower frequency signals require
prohibitively large antennas and so must be converted to a higher frequency signal This
1s done by using a higher frequency carrier that 1s modulated by the signal to be sent

The data to be sent can be transmutted as offsets from the carrier frequency
This 1s known as frequency shift keying (FSK) and 1s the method used to transmuit the
information 1n this system In this case, the receiver/transmitter pair employ a binary
frequency shift keying (BFSK) alphabet to transmit data The general analytic expression

for the alphabet 1s

2 E,
Equation 1: s(t) = 7 cos(2mf t + @)

where ¢ 1s time-limited between 0 and T, 1 1s a member of the binary alphabet {0,1} and the
energy transmitted in one bit 1s £, Different frequencies are used to transmit a 0 and a 1
usually a fixed frequency increment centered around the carrier frequency

In order to ensure data fidelity at the recerver, the symbols of the BFSK
alphabet must be orthogonal to each other, so that they do not mterfere with one another

Since the signals are time-limited to T seconds, they can be expressed as

2 E, t
Equation 2: s,(t) = T cos(2mf,t + @) rect(})

where rect(#/7) = 1 when |¢] 1s less than or equal to 7/2 and 0 otherwise The Fourier

transform of s(t) 1s

s(nT(f-£))

Equation 3: SN =3O} =T nT(f~f,)

For signals separated by multiples of 1/T Hertz,

Equation 4: fi—f =

1 E

where m 15 an iteger greater than or equal to 1 The value of 1/7'1s known as the
mummum frequency separation for the two signals The frequency domain representation
of these signals evaluated at multiples of this mimmmum separation 1s nonzero for one
signal while the other 1s zero and vice versa Thus 1s evidenced by Figure 1 Therefore,
the two signals do not imterfere with each other at all and are orthogonal [2], [3], [4], [5]

For FSK digital communication, an FM superheterodyne receiver 1s
usually employed It mixes the incoming signal with a local oscillator to an intermediate
frequency (IF) By downconverting to an IF instead of baseband, the receiver does not
have to match the frequency in the local oscillator exactly with the ncoming signal This
creates 1mages at other frequencies, but these can be suppressed by appropriate filtering
before the signal 1s mixed down to IF

Since 1t 1s much easier to maintain a constant bandwidth m a fixed filter
than a tunable one, the channel filtering 1s done at IF Also, high-stable gain 1s more
difficult to provide 1n a tunable amplifier than a fixed-frequency amplifier This makes
covering a wide frequency band easier and 1s why superheterodyne recervers are standard

for FM radios [6]

1

o

S
-

Figure 1: FSK in the Frequency Domain

2.2 Multiple Access

To employ wireless communication effectively, especially for telesensing
applications, multiple users will need to be accommodated. For a sensor designed to
detect the presence of a certain element, it usually would not be sufficient to just have one
sensor in one place. Generally, an array of sensors would be used to cover a larger area.
These results would need to be coordinated and analyzed at a central location. If the

receiver is able to listen to all of these sensors, then only one PC is needed to display and
7

assimilate the information gathered Thus requires multiple sensors having wireless access
to the receiver

There are three primary methods of allowing multiple users access to
wireless RF communication FDMA, TDMA, CDMA Frequency Division Multiple
Access (FDMA) separates users by the carrier frequency they use to communicate The
separation between carriers must allow for the full spectrum of the signal to be
communicated so that signals from adjacent carriers do not overlap as shown m Figure 2
This requires a certain amount of bandwidth, BW, for a given number of users, n, wishing

to use fj, amount of the frequency spectrum, with signals separated by £, - f,_;

n

Equation 5: BW = 2 (B, + Oy

1=1

There are multiple access schemes that allow more effective use of this
amount of bandwidth since each user gets their own amount of bandwidth to occupy, even
when they are not using it A more efficient way of allocating bandwidth would be

allowing users to share a carrier Time

fp fa3-fa2
-—p -
- m m m p-frequency
fcl fc2 ch

Figure 2: FDMA in the Frequency Domain

Division Multiple Access (TDMA), lets a certain number of users share a carrier equally
Each user 1s assigned a time slot m a frame that 1s transmutted on the carrier, repeating
periodically In Figure 3, for example, the frame has a period, T, supports m users, and
each one transmits on the carrier for 7/m seconds For the same amount of bandwidth as
above, m*n users can be supported instead of n This works well for applications where
small delays 1 transmission bursts can go relatively unnoticed An example of this 1s the
GSM standard for cellular telephony, which specifies that a 4-ms frame accommodate 32
users for a transmission time of 125-us each This 4-ms lag 1n speech 1s barely, 1f at all,
perceptible by the human ear, so 1s adequate for relaying human voice [7]

Code Drvision Multiple Access (CDMA) allows multiple users to share the
same carrier by encrypting each user’s message This requires a code that can only be
decoded by the appropriate decryption key To reduce computational complexity, the
encoding algorithm should be easy to invert given the encoding key. The exclusive OR
(XOR) function 1s an easily mvertible bmary function and 1s used for encoding a message
for CDMA purposes Simnce the encoding and decoding functions are well-known, the
problem now reduces to finding a sufficiently strong encrypting code that does not give

away the message sent and keeping that key secret

- T seconds >

Figure 3: A TDMA Frame

CDMA uses a code 1 the transmutter that runs at an integer multiple of the
data rate to encode data, called spread data The rate of the code, called the chipping rate,
must run faster than the data rate because each data bit 1s being encoded before 1t 1s
transmitted It must run at an integer multiple so that the receiver can recover the message
data from the spread data, since the recerver has prior knowledge of the code but no
knowledge of the timing (1 €, 15 not passed a clock from the transmutter) Making these
encrypting codes, also called spreading codes, unique with respect to each other allows
multiple users to share the same carrier without interfering with each other’s data The
strength of CDMA lies 1n the generation of strong individual codes as well as a set of

codes that are umque to each other [2], [8], [9]

2.3 Spread Spectrum

The frequency spectrum of a signal 1s spread when the signal 1s combined,
through modulo-2 addition with a psendorandom or pseudonoise (PN) sequence As

shown 1n Figure 4, the original data signal, 1n the case of FSK modulation, consists 1deally

-t fl\ | /}\ p-frequency

Figure 4: Ideal FSK

10

of narrow signals at the carrier frequency and also at fixed frequency mcrements from the
carrier The frequency spectrum of the 1deal signal 1s limited to the bandwidth needed to
clude the small FSK increments. The 1dea behind combiming this signal with a PN
sequence 1s to create a signal that looks like noise when not properly decoded. This 1s
achieved by ;naklng the signal appear to be random A truly random signal contains all
possible frequency components equally

As a data signal 1s randomized, 1t’s frequency spectrum must be spread to
include more of the frequency spectrum However, 1t 1s only spread to a certain extent
since the PN sequence 1s not truly 1andom and repeats with some determmed pertod
Figure 5 shows a broader spectrum than the signals in Figure 4 CDMA 1s mmplemented
using spread spectrum at the cost of added bandwidth However, this cost 1s offset by the
gamn 1 multiple access afforded by the orthogonality of the PN codes. It 1s possible to use
the PN code 1n different ways to encrypt communication If the PN sequence 1s used to

directly modulate the carrier, this 1s direct sequence spread spectrum On the other hand,

- } { | pfrequency

Figure 5: Spread Spectrum

11

1f 1t 15 used to shuft the carrier frequency in discrete mcrements, this 1s known as frequency
hopping [8] Each user 1s given their own PN code and may enjoy secure communication

independent of other users on that same carrier frequency as shown 1n Figure 6.

- } pfrequency

Figure 6: Code Division Multiple Access

12

2.4 PN Codes

If the encrypting code 1s a suitably selected sequence, then only the exactly
aligned code reveals the message and a misaligned code reveals nothing This can be

measured by the digital normalized autocorrelation function. The autocorrelation, R, /n],

N-1
Equation 6: R [n] =]%/z x[n] x[n+1]

1=1

measures the correlation between x/n] and a time-shifted version of itself This repeats at
least with period N, since N 1s the length of the code The 1deal autocorrelation function
for an encrypting code then 1s the Kronecker delta function which only has a nonzero
value at 0 Transforming white noise from the frequency spectrum to the time domain
also yields a similar function Imitating whate noise 1n an encrypting sequence 1s desirable
because an improperly decoded signal will resemble white noise and give no useful
information about how to properly decode the signal

Since deterministic hardware 1s used to generate these codes, they cannot
be truly random, but can approximate random binary strings There are three general rules
for analyzing digital codes to determune 1f they sufficiently resemble random bits First,
the number of ones and zeros 1n the code must not differ by more than one Second, the
autocorrelation must not exceed /N, where N 1s the length of the code, when not exactly
aligned with 1tself Finally, the PN sequence must have balanced runs, 1 e , 1/2 of the runs
of consecutive similar digits are of length 1, 1/4 length 2, 1/8 length 3, and so on [2], [9]

13

Pseudorandom sequences are efficiently generated from linear feedback
shift registers (LFSR) These LFSRs are a string of one-bit registers cascaded together
with connections to binary adders (XOR gates) at predetermined positions The
connections to the XOR gates are known collectively as the tap configuration and are
determined by a generator polynomial The output of the tap configuration 1s fedback nto
the first register and the feedback loop continues until the appropriate number of bits are
shifted out of the output, which 1s the last register [10]

The generic k-stage LFSR 1n Figure 7 has Y(x) as the output PN sequence
The seed, m(x), 1s k-bits long and 1mtially loaded 1nto the LFSR The tap configuration,
given by h(x), 1s a k-bit binary string of coefficients that determine which switches are

closed to contribute to the sum fedback into the register holding the least significant bit

Since the k-stage shift register has 2* possible states, after 24-1 transitions all have been

exhausted and the LFSR starts repeating states agamn Therefore the output PN sequence

would start repeating agamn with a maximum perodicity of 2%-1

my m, . mye.o my.| Y

hy hy hg

| |
e

Figure 7: Linear Feedback Shift Register

14

Codes that repeat with maximum periodicity are maximal length (ML)
codes and are destirable because they demonstrate the autocorrelation property described
earlier A code’s periodicity 1s solely determined by the tap configuration as the choice of
seed does not affect the length of the PN sequence as long as 1t 1s not all zeros [2], [8], [9]
The coefficients of the tap configuration, bt string 4(x), are determined experimentally
The ML tap configurations for a given length can be found by exhausting all the
possibilities and checking the periodicity of the resulting codes Tables for tap
configurations that generate ML sequences can be found 1n [8]

To employ effective multiple access, the generated codes also must not
interfere with each other and there must be enough codes to accommodate several users
For a k-stage LFSR, the number of ML sequences that can be generated 1s Euler’s function

divided by the LFSR length.

k
Equation 7: ML =02 -1

num k

Euler’s function gives the number of numbers that are coprime to, 1 € , have no common
factors with, and less than a certain number, mcluding 1 Euler’s function 1s maximized
for prime numbers since all of the numbers less than 1t are coprime to 1t Therefore, 1f 2%-
1 1s a prime number, the corresponding k-stage LFSR will generate the maximum number
of usable PN sequences [8].

However, these sequences must not be mistaken for each other 1f they are

going to be a usable set This 1s determined by the digital cross-correlation function.

15

N-1
Equation 8: R, =]%/ 2 x[n] yln+i]

1=1

R, represents the cross-correlation between two codes, x/n] and y/n] [3], [11] This1s
useful in examining the orthogonality of two codes, or the difficulty in mistaking one for
the other

As an example, consider two different LFSR tap configurations that use the
same 1nitial seed They are chosen to be [0 0 1 1] and [1 0 0 1] and happen to be the only
two configurations for a 4-stage LFSR that generate ML sequences The resulting
sequences for seed [1 0 0 0] are respectively,
000100110101111and000111101011001

They meet the criteria for number of ones and zeros and runs listed above
Both have eight ones and seven zeros Figure 8 shows that their autocorrelations only
exceed 1/15 when they are exactly aligned with themselves Finally, they both have
balanced runs Each has 8 runs of consecutive digits four one-bit runs, two two-bit runs,
a three-bit run, and a four-bit run Their resulting autocorrelations are shown 1n the Figure

8 and are as close to an impulse function as a deterministic algorithm can be

Autocorrelation for Code 1

1
=
in

o

Figure 8: Autocorrelations

To use these two codes on the same carrier, they must be minimally
correlated. The normalized cross-correlation is given in Equation 5 and graphed in Figure
9. If we are trying to send [0 1 0 1] as data using these codes, this would result in Figures

10 and 11, respectively. Since the chip length is 15, the code spreads the data by 15, i.e.,

18

Cross-correlation between Code 1 and Code 2

04 T T ! !
R RO B ¢ B o
AT e TG ORI | S I R
SR B TSR L I R S R e
1 3 SRR (OO, WSty SRS, (SRR G PR AP ‘,
R L s
IR e
e s R
U e e . ..
5E =Ty 35 rt; 5 i 15

Figure 9: Cross-correlation between Code 1 and Code 2

Windows Help

Spreading with Code 1

-—

o

{b) PN Code 1

|
—

I
=%
T

1

{c) Spread Data
0 —

Figure 10: Spreading with Code 1

File Wi

Spreading with Code 2

T T T 1

(a) Data
o
T

{b) PN Code 2

(c) Spread Data
O -—
T T
i 1

Figure 11: Spreading with Code 2

every bit is turned into 15 bits by the PN code. The original data can be recovered again
by performing the XOR function again with the correct code, as shown in Figure 12.
However, if the wrong PN code is used, the data is not recovered and the result looks like
noise, as shown in Figure 13.

Figure 9 shows that the correlation between Codes 1 and 2 never reaches

50%. If one of the codes is compared with the incoming spread data stream and 8 or more

20

Data recovered with PN Code 1

1.5 T T 1 T T

0.5

=05

=1i5 1 1 1 1 1
0 10 20 30 40 50 60

Data recovered with PN Code 2
1.5 T T T T T

0.5

T

=051 -

-15 1 I 1 1 1

Figure 12: Properly Recovered Data

21

0.5

=05

Data despread with the wrong PN Code

T

Ll

-1.5 L L i ; ;
0 10 20 30 40 50 60
i Data despread with the wrong PN Code
; T T T T T
1
0.5 o
0 -
=005 4
ot -
% 0 20 30 20 50 60

of the bits in a window of 15 consecutive bits are positively or negatively correlated, then
the chosen code is probably the correct code for despreading the incoming data.
Therefore, a threshold of 8 matches can be established for determining whether a code is
being properly despread or not. If fewer then 8 bits are positively or negatively correlated
then either the wrong data is trying to be decoded for that PN code or more of the data
needs to be acquired. Later, this will prove usefu.l in the despreader module of the digital

receiver for decoding the spread data without a synchronous clock.

22

Figure 13: Improperly Decoded Data

It 1s possible to generate ML codes that are not the output of an LFSR but
still have a low cross-correlation with other codes of the same set A k-stage LESR
resulting in n-bit ML codes can only produce a subset of all the possible n-bit strings
Therefore as n and k increase, more and more sequences are available that comply with the
randommness properties, but are not attainable with an LFSR One way of generating these
codes 1s by XORing two ML codes together This results mn an ML code known as a Gold
code

Some research focuses solely on how to generate more PN sequences of a
given length Lately, research has focused on using chaotic signals to generate new PN

sequences For a certain sequence length there are only a certain number, b, of ML

sequences that can be generated Gold codes create more sequences, but only 47 at the
\

most. For a 6-stage LFSR generating 63-bit codes, according to Equation 8, fewer than 6

ML codes can be generated They yield at most 36 different possible Gold Codes There

are 263 possible bit strings and many of them could be ML sequences as well

The signals generated by a chaotic source mnherently have mmimal non-
zero shift autocorrelation and generally have good cross-correlation properties This 1s
because a chaotic source 1s very sensitive to imtial conditions and can produce a variety of
outputs Therefore, 1t mtrinsically has a broad spectrum Heidari-Baten1 and McGillem
first proposed and studied chaotic sequences generated by a logistics map [12], [13], [14],
[15] Adler and Rivlin used Chebyshev polynomuals to generate PN sequences and Chen
et al studied their performance [16], [17] They found that the chaotic sequences slightly

outperformed the Gold Codes 1n terms of error performance over signal to noise ratio

23

They also found that chaotic sequences allowed significantly more users similar bit error
rate compared to Gold Codes or conversely, that the bit error rate was improved for

chaotic sequences over Gold Codes for the same number of users

24

3.0 System Overview

The goal of this thesis 1s to design a digital recerver processor to relhably
transfer sensor data to a PC monitor display The digital receiver processor 1s integrated
with a receiver RF front-end circuit (RF MicroDevice’s RFMD 2945) to receive signals
from a digital transmission processor (an ORNL-developed chip called ACQ2) and a
transmutter RF front-end circuit (RF MicroDevice’s RFMD 2510). The ACQ2 and 2510
chips generate a direct sequence spread spectrum signal for reception and decoding by the

2945 chip and the digital recerver The sensor data link 1s shown mn Figure 14

sensor > data > modulator
acquisition

PC < digital < demodulator I

receiver

Figure 14: Sensor Data Link

25

3.1 Data Acquisition Chip

provide baseband digital data for wireless monitoring of mouse vital signs It samples 1ts

four sensor mputs, as shown in Figure 15, and creates a ser1al data packet and produces a

spread spectrum digital stream for wireless transmission in the digital controller It

employs a 10-bit successive approximation analog-to-digital converter (ADC) anda?2 5V

bandgap reference to digitize the sensor mputs The digital controller 1s responsible for

the front-end electronics, RAM, PN engine, packet builder, and spreading control It also

|
The ACQ2 chip was developed at the Oak Ridge National Laboratory to

has a differential encoder to ensure a robust data stream and can choose from two maximal

length sequence 63-chip PN codes as well as a 63-chip Gold code to ensure secure spread

spectrum communmcation Off-chip RF front-end circuitry can be put into sleep mode

between sampling periods to save power

Sensors

SAR ADC | g—
controller

14

SAR

ADC bandgap
reference

Figure 15: ACQ2 Block Diagram

26

External
Crystal
FEE
Digital Bl
Controller Spread
Data &
Clock

3.2 Low-power Transmitter

The RFMD 2510 15 a low-power wireless transmutter that can operate 1n the

US 915 MHz band It has an on-chip voltage-controlled oscillator (VCO) consisting of a

phase detector and charge pump as well as a programmable phase-locked loop for

frequency synthesis The loop filter for the VCO 1s off-chip and included 1n the evaluation

board 1n addition to the reference crystal needed It also has power-down capability and

only consumes 1 uA when 1n sleep mode It 1s this low-power feature that made the 2510

attractive since wireless transmutters generally spend more time sleeping than

transmitting A basic diagram of the transmutter 1s given 1n Figure 16

—_>®_>VCO out

Mod n

Figure 16: RFMD 2510 Block Diagram

Phase Phase
Detector Locked
Oscin__p, -
& Charge Loop
Pump
[18]

27

3.3 FSK Receiver

The RFMD 2945 receiver converts an input RF signal into a digital output
signal using a frequency modulated feedback demodulator A block diagram 1s shown 1n
Figure 17 The VCO output provides the RF carrier reference, which 1s mixed with the

mncoming RF signal Thus tracks, through two filters, the incoming RF signal and holds 1t

at the discrimunator center frequency If the input frequency falls below this carrier

frequency then a 0 1s output and 1f 1t 1s above, then a 1 1s output [8], [19]

IF
RF signal | LNA —>®—> filter

digital signal ~——

IF
—® Amp
A 1
vVCO
Programmable PLL
Y
IF
Discriminator € filter
2

Figure 17: RFMD 2945 Block Diagram

28

3.4 Component Limitations

Multiple access was required to allow more than one sensor node to
transmit data to a single digital recerver to be displayed on the PC. Since the ACQ chip
has a PN engine 1n 1t and can build spread packets, originally, the system was to have
multiple sensors chirping on the same frequency separated by different PN codes --
CDMA However, due to the limutations of the RFMD 2945 receiver, this was not possible
and the sensors nstead had to be separated by different carrier frequencies -- FDMA The
2945 chip only allows, as mputs, an RF signal and a carrier frequency The 2945
demodulates frequency-shift keyed (FSK) data from the given carrier frequency leaving a
digital signal However, to strip out the PN code and recover the data for a given
transmitter, the matched filter and correlation functions necessary to do this need to be
performed before the RF signal is demodulated Simnce this could not be done with the
components chosen to provide the RF link, an FDMA scheme was employed 1nstead

Figure 18 shows the necessary components of a direct sequence spread
spectrum recetver The correlation needs to be calculated before the IF mixing and
filtering, which 1s impossible given the constraint of the REMD 2945 receiver The PN
1eference code needs to be discovered in the RF signal before 1t 1s demodulated and
brought down to baseband The clock generation and synchromecity decision need to be
made while demodulation 1s occurring and not segregated to a separate digital processor
because at baseband multiple PN codes will concatenate and their information will be

utterly unrecoverable

29

Revd = 4] Correlator I IF .| Demod | Info o,

signal
T local ref l
code,

Sync
decision

PN Sk | Clock <
gen gen

Figure 18: Direct-Sequence Spread Spectrum Receiver

Two transmutters were built and tested, Tx101 and Tx104 They consisted
of an evaluation board for the 2510 chip and ACQ chip Each transmuts three data
channels, a temperature channel, and a sequential packet counter Each can use multiple
length PN codes, but for this demonstration only 63-chip Gold codes were considered
when building the digital recerver In fact, since the transmitters were separated 1n
frequency, one PN code was shared by both transmutters. Even though 1t did not provide
multiple access, the PN code did provide data robustness and a measure of confidence n
the fidelity of the recerved data For display purposes only the temperature, the first two
data channels and the sequential packet counter were shown on the PC. However, all data
channels were analyzed and demonstrated reliable transmission A LABVIEW program

coordinated the results display on the PC

30

4.0 Digital Receiver Architecture

Once the RF signal has been demodulated and the baseband digital signal
has been recovered, the serial data stream 1s sent to the digital receiver for despreading and
stacking for display on the PC The digital receiver has no prior knowledge of the phase
of the clocks used to generate the baseband digital data stream 1n the transmutter and so
must deduce this information from the inbound data stream Also, thus clock recovery
must be done 1n real time so that recetved digital data can continue to stream through the
1ecewver To present stacked parallel words to the PC from the inbound digital bit stream,
the digital receiver must perform five main functions, separated as design modules. chip
polarity decoding, despreading, protocol stripping, packet validation and packet

processing The partitioning of these functions 1s shown 1n Figure 19

4.1 Clock Recovery and Chip Resolution

Clock recovery and chip resolution are performed by the first module, the
polarity decoder Farst, the polarity of each inbound data Lchlp must be resolved This first
module takes the demodulated data as input (DEMOD) as well as a reference clock
(SMPCLK). It uses an oversampling scheme to resolve the logic polarity of each chip
(SPDA), derive the PN clock (DPNCLK), and align the PN clock

Three consecutive five-sample windows of the input data are analyzed
early, middle, and late The windows are compared to each other and the derived PN

clock (DPNCLK) 1s dithered according to which one has the greatest magnitude The

31

DEMOD | DPACK |
Pol MD
» » | DSPCIK o, |
SMPCLK | pe. Desp Pro SMB
|_DPNCIK | | TRK_ o, |
— Cor Dec
MD>
| MB | T
SDATA
STRK
pack |_PKDA 4, | . DRDY
ac.
IPKDWR . Acq DO[9 0
DSPCLK | D% Proc »-DOB 0]
| PRKWC o, | . 5 OVR
 PKWWR .|

| S

Figure 19: Digital Receiver Block Diagram

clock 1s dithered on the falling edge meaning that the time between the last falling edge

and the next nising edge 1s always the same The pertodicity of the clock 1s determined by

the falling edge Figure 20 shows the polarity decoder 1n the default state so no dithering

1s performed If the early window had the largest sampled magnitude of the three, the

falling edge would be advanced one sample clock (SMPCLK) cycle as indicated by the

dashed lines to the left of the default falling edge If the late window were largest, the

falling edge to the right of the default edge would be used to retard the clock

32

mwrves B U O O I R

-t early window >

<_—m1dd]ﬁJmM>
«— latewmdow =~

DEMOD—_] |—
DPNCLm :——_I___;

. Figure 20: Polarity Decoder Dither Conditions

As shown 1n Figure 21, the polarity decoder consists of a 7-bat shift register
to form the three consecutive oversampling windows, a comparator to decode the polarity
of the oversampled bit and the dithermg logic. The dithering logic compares the
magnitude of the three windows and adjusts the clock generation and synchronization

logic according to the method described above

33

SMPCLK _I_>

RFDATA—®

7-bit shift
register

L

Polarity
Detector

SMPCLK

-

| . SPDA

SMPBI[6 0] MAXPOL

Sync logic

4.2 Digital Despreader

- (A, B, C window)

retard default

advance

Segment Counter

P & Clock Generator

- DPNCLK

Figure 21: Polarity Decoder Block Diagram

The second module measures the correlation of the spread code to the

)

inbound data, compares 1t to a stored reference code and determines the polarity of the

despread data bit Also, track mode 1s determined and parameters for establishing 1t and

disengaging 1t are updated The despread clock 1s derived and aligned with the data The

despreader 1s shown 1 Figure 22

34

SPDA__ .| 63-bit Right N L g Magnitude — g PRETRK
DPNCLK__ Shift Register Accum Subtractor

PN Ref

magmtude and polarity

'—» pDPACK

| Reg C C TRK
PRETRK > > >
Magnitude
Comparator MAXMAG
—p»| Missed L MDD
Bit/Det I p-MB
| __pm| Reg B B
- DCUD
|—> t RET g,.| Dither
L Reg A L pelA DEF g, Control - g DSPCLK

Figure 22: Despreader Correlator Block Diagram

Earlier, correlation was presented as normalized, that 1s, as a fraction of the
maximum correlation However, this correlation calculation requires the computationally-
expensive operation of division and 1s not used 1 the implementation of the digital
receiver, since 1t 1s not necessary The earlier derivation provides a way of analyzing
codes of various lengths, but since the length of the PN code for this design 1s known and
fixed, scaling the correlation 1s unnecessary As long as the comparison thresholds are
understood to be valid for 63-bit PN codes, then the absolute correlation calculation
without the normalization suffices

The first job of the despreader correlator 1s to calculate the correlation of

the inbound data stream with the reference PN code This 1s done using three consecutive

35

63-bit windows of the inbound chips, a 63-bit right shift register and summing the bits 1n
each window Then, the inbound chip stream 1s analyzed using comparators to perform
two functions. dithering the derived despread data clock (DSPCLK) and deriving the
polarity of the serial despread data (SDATA)

Dithering the derived despread data clock 1s accomplished by comparing
the correlation windows Like the polarity decoder dithering in Figure 20, the rising edge
of the derived PN clock always stays the same, relative to the last falling edge and the
following falling edge 1s dithered according to the output of the sliding correlator If the
first window has the largest correlation, then the falling edge of DSPCLK occurs 1 clock
cycle of DPNCLK earlier with respect to the last rising edge than 1t did the previous cycle
If the last window has the largest correlation, then the falling edge of DSPCLK occurs 1
clock cycle of DPNCLK later with respect to the last rising edge than 1t did the previous
cycle Otherwise, the middle window 1s assumed to have the largest correlation and the
periodicity of the previous clock cycle 1s repeated.

The derivation of the polanty of the despread data involves analyzing the
inbound chip stream for correlation with the stored PN reference and periodicity of the
signal The correlation dimension statistics determine the polarity of the current bit, while
the temporal statistics indicate a measure of confidence of how well the inbound spread

data 1s being despread Figure 23 shows a histogram of how this works

36

Figure 23: Despreader Correlator Histogram

The red, green, and black dashed lines represent thresholds for correlation
decisions. They are calculated with respect to a baseline of 0, which would indicate that
the inbound signal is not at all related to the stored reference. Positive values of
correlation indicate that the data bit is a zero, since XOR with 0 is a transparent operation.
Negative correlation values indicate that the data bit was a one since XOR with a one

results in inversion.

The red dashed lmes indicate the maximum positive and negative value of
correlation possible for a 63-bit code This occurs when the inbound chips exactly match
the stored reference; and for this implementation, that value 1s 63 The green dashed lines
indicate the detection threshold (DSMDTH]S5 0]) set for the despreader correlator and are
set 11 Figure 23 at 50 as an example The black dashed lines mdicate the bit threshold
(DSMBTH(5.0]) set for the despreader correlator and are set in Figure 23 at 10 as an
example '

If the absolute value of the correlation calculated lies above the detect
threshold, the serial data 1s aligned closely enough with the reference PN code and the
despread data bt polarity 1s declared This 1s shown mn Figure 23 as the blue peaks n
correlation The decoded data 1s 01001 If the absolute value of the calculated correlation
lies between the bit and detection thresholds, the inbound chips are not yet correctly
aligned with PN reference meaning there 1s a missing polarity detection but a data bit has
been detected If 1t falls below the bit threshold, 1t 1s assumed that the inbound data has no
correlation with the PN reference and that neither a data bit nor a polarity detection has
been detected This 1s shown 1n the two blue peaks near the baseline This can be caused
by one of the chips becoming corrupted 1n the transmission However, due to the
robustness of the PN codes, this minor correlation 1s rejected and the data can still be
correctly decoded.

Correlation statistics must be tracked temporally, that 1s, over consecutive
PN chip length bit cycles (for this project, 63 bits) to determine how well the shiding

correlator 1s performing These statistics are used to declare the pre-track and track

modes, which enable the downstream processing circuitry as well as provide the

38

acquisition processor mnformation for determming the fidelity with which an entire packet
of data was decoded The number of consecutive detection cycles must exceed DSTKTH
before track can be declared The key 1s that the detection cycles need to repeat with a
perniodicity equal to the PN chip length. If consecutive failures to repeat exceed DSNTTH,
then the track 1s disabled and establishing a new track must begin again. However, 1f for
stance, there 1s only one cycle where the maximum correlation failed to repeat with the
correct periodicity, then information indicating which thresholds 1t passed 1s sent to the
acquisition processor, as the missed detect (MD) and mussed bit (MB) statistics, and the
track mode 1s kept enabled The acquisition processor compares these accumulated values
for a packet to a threshold (PKMDTH[5 0] and PKMBTH][5 0], respectively) and this
contributes to the decision of whether the packet 1s considered good and cached or bad and

discarded

4.3 Embedded Protocol Removal

The third module removes the embedded communications protocol from
the despread data stream The embedded protocol 1s differential encoding calculated

recursively as

Equation 9: enclk] = in[k] ® enc[k-1]

where enc/0] =1 To decode

39

Equation 10: dec[k] = enc[k] ® enc[k—-1]

where enc[0] = 1

Equation 11: declk] = in[k]l ® enclk—- 1] ® enc[k—1]

Equation 12: dec[k] = n[k]

Therefore, the protocol remover 1s simply an exclusive OR gate with a clocked output.
However, this 1s not just the encoder implemented m reverse Unlike the encoder where
the output 1s fed back to encode the next but, the decoder uses a shding window of two
incoming encoded bits to determine the next decoded bit instead of feeding back the last

decoded bat.

4.4 Packet Detector

Now that the incident serial chip stream has matched the stored
pseudorandom reference to the satisfaction of the first two modules and the embedded
communications protocol has been removed, the despread bit stream 1s assumed to be a
serial data packet stream built 1n the manner configured 1n the data acquisition chip
(ACQ2) The fourth module validates the preamble words at the beginning of the

despread serial packet, measures the acquisition mode parameters, converts the serial

40

words to parallel, and counts the number of words 1n each packet For the Graviton proof-
of-concept demonstration the 8-word packet followed the form of Table 1

The first two words, RF sync and Frame sync, are the preamble words and
are stripped out as the packet detector converts the serial data to 10-bat parallel words

Once these two words have been found, the packet detector skips the sequential counter,

Table 1: Packet Format

Word # Function Hex Value
l RF Sync 333
2 Frame Sync O1F
3 Seq Counter 001
4 TxID 005
5 Temp 1FD
6 Data 1 014
7 Data 2 019
8 Data 3 02F

and validates the transmutter 1dentification number, word four If the two sync words and
the identification number all match, then the packet detector enables the acquire mode and
sends the now 6-word packet (PKDA[9 0]) to the acquisition processor with a data strobe
(PKDWR) The packet detector also counts the number of words 1n the packet
(PKWC[5 0]) and sends that to the acquisition processor as well with a word count strobe
(PKWWR)

The values of the last six words 1 Table 1 are given only as examples and

represent the pinned-down settings used to test the digital receiver The sequential counter

41

increments between 1 and 3FFy,., and indicates the order in which the packets were sent
The transmtter 1dentification can be used to rotate through different transmutters and
identify which data came from which transmutter In a true CDMA scheme this would be

helpful, but not so much so for an FDMA setup, so those values were pmned The

temperature channel ranges from 40° F to 120° F and 1s sensed on the ACQ chip The
other three data channels range from 0 to 2 5 'V with a precision of about 0 002 V For
ease of testing, all four data channels were pinned to the values given 1n Table 1

The Packet Detector 1s shown in Figure 24 The seral data from the
protocol decoder 1s converted to 10-bit parallel words The first two words of the packet

are verified and the third 1s skipped so that the fourth, the 1dentification number can be

SDATA______] Serial to - PKDWR
DSPCLK— P Parallel P-PKDA[9 0]

—

Word count L . PKWWR
Accumulator ——————®PKWCI[5 0]

CLACQ

PREAMBLE [o compare

acq mode ACQ

logic
L—— | compare
9715 EE— J Q
SPCLK

+ skip word

Figure 24: Packet Detector Block Diagram

42

verified A word count 1s generated for the acquisition processor as well as strobes for the

parallel data and the packet word count.

4.5 Acquisition Processor

The fifth module vahdates the packet by evaluating the flags generated
the previous modules These flags include number of words mn the packet and number of
nussed bits and detects This module 1s also responsible for stacking the good data and
interfacing with the host The acquisition processor uses two FIFOs to store the imbound
data The first 1s a temporary FIFO to hold all the words 1n a packet together as the
packet error logic validates the packet The packet error logic will throw out a packet 1f 1t
has too few words or too many missed bits or mussed detects from the despreader If the
packet 1s deemed good, 1t 1s transferred to the data FIFO, otherwise, 1t 1s cleared from the
temporary FIFO In either case the acquisition mode (ACQ) 1s cleared and the processor
waits for the next packet. If the data FIFO 1s full, then the acquisition processor alerts the
host PC via the data ready signal (DRDY) and awaits a clock from the PC to clock the data
out of the FIFO to the output port pins The data FIFO holds 16 6-word 10 bits/word
packets when 1t 1s full The acquisition processor 1s shown 1n Figure 25

When the acquisition processor 1s transitioning a good packet from the
temporary FIFO to the data FIFO, 1t cannot accept an incoming packet For this project,

the time between packets 1s about 3-5 seconds, which 1s fast for telesensing Usually the

43

SPCLK_____ o] PKDA__p] Tomp
KDWR gl o) 5 S R
KWWR gl oo | RD/WR
ACQ______ o] CIK
RD______ | RD/WR
|—>
SPCLK______|
KWWR______ |
ACQ—p Packet 7 Ig;toa
KWCTH_ 5] Error ™
SMDET ____ |
SMBIT____ |

. DO[9 0]

Figure 25: Acquisition Processor Block Diagram

sensor readouts need only be updated a few times an hour This limitation helped simplify

the processing logic and since there 1s no threat of a packet arriving while the previous 1s

being processed, 1t 1s an appropriate design trade-off

44

5.0 Implementation

The digital recerver was implemented 1n an Altera FLEX 10K50RC240-3
Field Programmable Gate Array (FPGA) using the Altera Max-+Plus II version 9 3
software Modules 1 and 2, the polarity decoder and the despreader correlator,
respectively were written 1n a different VHDL environment and so had to be converted to
the Max+Plus II environment, along with their simulation stimuli The changes to the
code were mostly semantic changes and did not affect the structure or functionality of the
code

All of the modules were written in VHDL except for the data cache FIFO
and the temporary packet FIFO, which were implemented using Altera’s Library of
Parameterized Modules (LPM) LPMs are technology-independent modules that conform
to industry-wide conventions for implementing common functions 1n gate arrays [20].
The LPMs used were sections of the chip optimized to implement data storage functions
The synthesis tool had control over the physical placement of the design, but with some
linutation In order to ensure accuracy i the polarity decoder’s sample clock (SMPCLK)
and the derived PN clock (DPNCLK), these two clocks were placed on the device’s two
clock trees Also, each module was assigned as a clique, which meant that the fitting tool
would route each individual module 1n a physically confined area

The thresholds used to determune the dithering conditions were brought
off-chip to programmable pins on the test board along with other programmable
thresholds This allowed flexibility in determining the optimal settings for reliable

reception A LABVIEW program was written to clock the data out of the cache FIFOQ

45

when 1t was ready and display 1t on the screen as graphs of indrvidual data channels A
digital recerver test board was built that allowed programming of the dithering thresholds
to test the device It had a socketed Electrically Erasable Programmable Read-Only

Memory (EEPROM) so that the design could be iterated without removing the device.

46

6.0 Testing and Results

Initially, the design did not fit into the device chosen, meaning that the
compiler could not find a way to implement the design given the resources of the device
specified Orgmally, 1t contained a monitor multiplexer to allow analysis of internal
signals as testing was performed This was taken out and the design fit The device could
be reprogrammed to bring different internal signals to the output pins as necessary, and
while this made analysis slower, 1t significantly reduced the amount of resources the
design required and allowed fit into the originally chosen part

The design was tested both cabled and wirelessly The cabled test was
performed with 40 dB of signal loss and allowed mtial functional testing of the device
without interference or multipath so that the primitive functionality of the device could be
confirmed. Wireless testing was then performed once basic functionality was confirmed.
Interference from other RF transmutters was not a concern since the building 1n which the
testing was performed acted as an RF shield. The threshold settings were not immediately
optimized functional settings were found and the testing was performed holding these
constant Figure 26 shows the results Occasionally, packet displayed on the PC would be
incorrect This was considered a data drop out and 1ts frequency 1s shown m Table 2 The
results 1n Table 2 were taken over the 1024-sample window shown 1n Figure 26 and are
typical for each device

The cause of the data dropouts was traced back to the downstream

processing of the despread serial packet The data (SPDA[9 0]) out of the packet

47

Figure 26: Initial Wireless Testing

Table 2: Data Acquisition Error Rate

Channel Tx101 Tx104
Temp. 5.87E-3 1.466E-2
Data 1 5.87E-3 4.564E-2
Data 2 5.87E-3 1.662E-2
Counter 4.89E-3 1.075E-2

48

detection module going mto the temporary storage buffer was not resembling the serial
data out of the protocol remover It worsened the more the despread clock (DSPCLK) had
to dither Therefore, the incorrect data was probably due to ncorrect values being latched
into the serial to parallel converter in the packet detector module as a result of the dithered
clock bemng routed mefficiently on the chip As a result of the limitation of resources
internal to the device, DSPCLK could not be put on a clock tree and had to be routed as a
regular signal

The test environment was shielded from outside RF signals, but included
several nearby solid objects These objects could reflect RF waves causing interference at
the receiver, a phenomenon known as multipath. This also degrades error rate
performance, but 1s not something that could have been easily measured Therefore, the
effect of multipath on the error performance has not been directly quantized These two
real world implementation 1ssues, mnternal clock routing and RF multipath, probably
account for most of the data errors and explain why the system demonstrated worse error
performance than 1s generally predicted by digital communication theory

The transmutters were also tested for range They were able to range 16
yards non-line-of-sight and still the receiver was able to decode the mformation This
setup was not tested for packet or word error rate Thus error rate testing was performed at
ranges of 6 to 10 feet.

The transmutter and the receiver were both repackaged for portability and
demonstration purposes The repackaged transmutter 1s shown 1n Figures 27 and 28 and
the repackaged receiver 1s shown 1n Figures 29, 30 and 31. The repackaging of the

transmitter caused shielding problems that degraded performance The design was

49

Figure 27: Repackaged Wireless Transmitter

50

Figure 28: Internal Circuitry of Repackaged Wireless Transmitter

51

Figure 29: Repackaged Wireless Receiver

52

53

Figure 30: RF Front-End Circuitry of Repackaged Wireless Receiver

54

Figure 31: Digital Spread Spectrum Baseband Processing Board

iterated to try to alleviate the DSPCLK distribution problem Instead of clocking the logic
n the downstream modules on the falling edge of DSPCLK, the edge that 1s being
dithered, the logic was clocked on the rising edge. This helped some but not much and
only vindicated the notion that the clock distribution problem needs to addressed 1 an
ASIC environment where clock routing 1s well-defined or in a programmable part with
more clock trees to ensure the fidelity of the clock signal.

To further optimize the design, the thresholds were optimized and entered
into the design as constants to free up logic cells for more efficient routing The transfer
between the data storage FIFO and the temporary packet FIFO was cleaned up and
simplified The wired and wireless results are shown in Figures 32 and 33, respectively.
They do not show performance comparable to the imitial testing, but provide the design n

a a compact package that 1s portable.

55

Figure 32: Repackaged Wired Testing

56

57

Figure 33: Repackaged Wireless Testing

https://fc.t2.aH

7.0 Conclusions and Future Work

The monitor multiplexer was unnecessary It was included 1n the original
design as a carryover from a design i the ASIC environment where 1t was useful in
analyzing devices whose designs could not be easily iterated. This was not necessary for
an FPGA mmplementation since the device can be easily reprogrammed to bring out any
necessary signals. Additionally, setting the programmable thresholds as constants in the
VHDL code helped free up logic cells While changing these constants 1s significantly
slower than changing dip switches on a test board, the free logic cells allowed easier and
more efficient routing of the design. This was especially important since the design was
done 1n VHDL and not hand-placed schematic capture, which would have allowed the
compiler less flexibility 1n fitting the design

There were not enough clock trees on the Altera part, which meant that the
third clock (DSPCLK) had to be routed as a regular clock signal This proved costly since
this clock was already being dithered and occasionally caused problems n the
downstream modules latching data correctly Some of the data lines may have been
violating setup and hold times, but this was hard to determine due to the aperiodic nature
of a dithered clock routed mefficiently This scenario 1s possible but not as likely as data
lines 1n the same parallel word being latched at different times creating erroneous outputs
Thus 1s likely since the problem became much worse with the wireless testing as the clock
had to do more dithering

There were some routing problems with the software tool trying to
optimize the VHDL conversion by using internal chip resources called embedded array

58

blocks (EAB) These blocks were physically in the middle of the chips floor plan and
occasionally interfered with requiring each individual module to be routed tightly
together For instance, a module may use an adder and be implemented 1n one corner of
the chip, except for that adder, which 1s placed halfway across the chip in the EAB This
may not have been the main routing problem, but did not help keep the design close
together This problem can also be solved by the three reasons given above for the next
generation design

These were limitations of the part chosen, but will not be a problem 1n
future generations of the digital receiver design for three reasons First, the next-
generation 1s bemng composed of fundamental modules that are bemng physically hand-
placed 1n the device Second, the choice of FPGA has changed to a device that has more
clock trees and will ensure a tighter design with more predictable clock delays Third,
once the system specifications are decided for the wireless system, the digital recerver can
be implemented 1n an ASIC with well-defined timing for clocks

Sheng and Broderson’s book on low-power wideband CDMA helped
lluminate the problems encountered on clock distribution They designed a system to
support asymmetrical multipoint transceivers transmitting to a centralized base station
recelver The book focuses mainly on the downlmk (base station receiving from the
transceivers) design and shows how to build a CMOS implementation of the transmitter
baseband modulator, RF transmutter, RF analog recerver, and the baseband digital signal
processor (DSP) They used a matched filter correlator for both the I and Q channels but
the DSP 1s segmented from the RF front end as 1n this system. They paid a significant

amount of attention to clock buffering They mmmized skew by balancing the capacitive

59

load seen by the buffers. With a knowledge of the process parameters, transistors were
sized appropriately and predictable clock distribution and propagation resulted [21].

The digital spread spectrum receiver worked well The receiver was able
to demonstrate reliable wireless spread spectrum transmission across a room. The mtial
testing showed low error rate for the unpackaged design and was able to show Graviton,
Inc how spread spectrum telesensing can be achieved Repackaging made the receiver
look more like a viable product, but exacerbated some problems the receiver was having
with timing However, these are 1ssues that will be addressed and remedied in the next
generation The current digital receiver was not able to demonstrate CDMA, but this was
due to component limitations 1n the rest of the system and not a result of a flaw 1n the
design However, the receiver did demonstrate the fundamental digital circuitry needed to
implement CDMA and 1ts reliable reception of sensor data proves that 1t will be a
fundamental building block of the next-generation design

CDMA communication requires 1ntricate interface between complex
digital and analog functions Therefore, to implement a CDMA receiver both have to be
considered The digital portion of the receiver must be able to adjust the analog front-end
circuitry responsible for demodulating the incident RF signal Also, the timing and
distribution of the clocks must be tightly controlled in the digital portion of the receiver
has this has a tremendous effect on the data being recovered by the recerver With
CDMA’s sustained popularity and wide range of design topics to explore, 1t will continue

to be a widely-researched topic

60

61

References

References

[1] Britton, C L etal “Battery-powered, wireless, MEMS sensors for high-sensitivity
chemical and biological sensing ” Presented at The 1999 Conference on
Advanced Research in VLSI Atlanta, GA March 1999

[2] Sklar, Bernard Duigital Communications Fundamentals and Applications New Jer-
sey Prentice-Hall, 1988.

[3] Proakis,J and M Saleht Communication Systems Engineering New Jersey Prentice
Hall, 1994

[4] Poor, H and G Wornell Wireless Communications New Jersey Prentice-Hall, 1998

[5] Glisic, S and P Lappanen Wireless Communications TDMA vs CDMA Boston
Kluwer, 1997

[6] Rohde, U,] Whitaker and T Bucher Communications Recervers Prinmicples and
Design, Second Edition NewYork McGraw-Hill, 1996

[7] Mehrotra, A GSM System Engineering. Boston Artech, 1997

[8] Dixon, Robert Spread Spectrum Systems with Commercial Applications, Third Edi-
fion New York Wiley and Sons, 1994

[9] Viterb1, A CDMA Principles of Spread Spectrum Reading, MA Addison-Wesley,
1995

[10] Peterson, W and E Weldon Error-correcting Codes Cambridge MIT Press, 1972

[11] Yang, S CDMA RF System Engineering Boston® Artech, 1998

[12] Heidari-Baten: and C McGillem “Chaotic sequences for spread spectrum An alter-
native to PN-sequences,” Proceedings of the IEEE International Confer-
ence on Selected Topics in Wireless Communications p 437-440, 1992

[13] Heidari-Baten1 and C McGillem “A chaotic direct-sequence spread spectrum com-
munication system,” IEEE Transactions on Communication vol 422

num 2/3/4,p 1524-1527, 1994

[14] Chen, C etal “Design of chaotic spread spectrum sequences using ergodic theory

62

[15] Shaw, R “Strange Attractors, Chaotic Behavior, and Information Flow ” Zeutschrift
Jfur Naturforschung. 36a, 1981. p 80-112.

[16] Adler, R. and T Rivlin “Ergodic and mixing properties of Chebyshev polynomals,”
Proceedings of the American Mathematics Society vol 15,p 794-796,
1964

[17] Chen, C and K. Yao. “Basic 1ssues in chaotic communication systems

[18] http //www rfmd com/DataBooks/db97/2510 pdf

[19] http //www rfmd com/DataBooks/db97/2945 pdf

[20] http //www altera com

[21] Sheng, S and R Broderson Low-power CMOS Wireless Communication* A Wide-
band CDMA Systems Design Boston' Kluwer, 1998

[22] Otte,R ,L de Jong, A van Roermund Low-power Wireless Infared Communication
Boston Kluwer, 1999

63

64

Appendix

8.0 VHDL Code

8.1 Clock Divider

Iibrary 1eee,

use 1eee std_logic_1164 all,

use 1eee std_logic_arith all;

use 1eee std_logic_unsigned.all,

entity clk_div 1s

port

(
signal smpclkx8 1 std_logic,
signal smpclk out std_logic

)s
end clk_div,

architecture behavior of clk_div 1s
signal smpclk_1 std_logic,
signal smpclk_2 std_logic,
signal smpclk_3 std_logic,
begin

div_by_8 process(smpclkx8)
begin
if nising_edge(smpclkx8) then

smpclk_1 <= not(smpclk_1),
else

smpclk_1 <=smpclk_1;
end 1f,
if rising_edge(smpclk_1) then

smpclk_2 <= not(smpclk_2),
else

smpclk 2 <= smpclk_2,
end 1if,
if nsing_edge(smpclk_2) then

smpclk_3 <= not(smpclk_3),
else
, smpclk_3 <= smpclk_3;
end 1f,
smpclk <= smpclk_3,
end process div_by_8§,

65

end behavior,

8.2 Polarity Decoder

library 1eee,

use 1eee std_logic_1164 all,
use 1eee std_logic_anth all,

use 1eee std_logic_unsigned all,

entity poldec_alt2 1s
port
(

o e sk shesie ok sk sk ok she sk ok she ok sk sk e she sk ke she st sk sfe ke sk sk sfe sk sk sk e s st e sk sk ok sk sk sk ofe sk ok ok ol ok sk ok sk ok ok she sk sfe sfe sk sk ke sk skeok

-- Declare I/O interface

ok sk st sk ot sk ok s ok e skt s ok ke ok ke sk sk ok ke s ol e s sl e ok s s o se st e s sfe s s s e o o s s sl s sk sk e sk ok s o o ok s sk e sk ko

signal rfdata 1n std_logic,
signal smpclk 1n std_logic,
signal mrstb 1n std_logic,

signal sysclrb out std_logic,

signal Idvar out std_logic,

signal dpnclk_o out std_logic,

signal batdith- out std_logic_vector(1 downto 0),
signal bitsmp out std_logic_vector(6 downto 0),
signal spda out std_logic,

signal Apol_o out std_logic,

signal Bpol_o out std_logic,

signal Cpol_o out std_logic,

signal bitseg out std_logic_vector(2 downto 0)

),
end poldec_alt2,

3t e sk e e s ot e s o s ke sk ok ke sk s ok ke e s o e e sk o e e s o ok s s e e e s o e s oo ke s o st sk ok sk e s sk e sk sk sk ok e ok

-- Declare architecture behavior body

S sfeske ks stk sk ste ke ok sk e she s st s sk ke sk s sk ske e sk st ok sk s sk st sk s sk sk sl slesfe ke e sk s sk e ok st s ofe s s sfeshe st sfe sk sk e sk ok ok

architecture behavior of poldec_alt2 1s

66

e s she ke sk sk she sk sfe s sk ok she sk ok sfe sk sfe st sie s sk she she e she sk ke she ok ok ok e sk sk sk sk sk sk e sk sk sl sheofe sk ok sk she sk sk ok ke sk oot sk sfe sk sk ok

-- Declare the internal signals
kst skeoke st ok sk o s of e ok ok o ke oo st o ok o ke s o o o ke s o oo stk s o s o s s s s e s s o e s sk ok e st e sk ok ok ok ok o

signal ldvar_sigl, ldvar_sig2, sysclrb_sig std_logic,
signal bitsmp_d,bitsmp_q std_logic_vector(6 downto 0),
signal bitseg_d,bitseg_q std_logic_vector(2 downto 0),
signal bitdith_d,bitdith_q std_logic_vector(1 downto 0),
signal dpnclk_d,dpnclk_q std_logic;

signal spda_d,spda_q std_logic,

signal Amagh std_logic_vector(2 downto 0),
signal Bmagh std_logic_vector(2 downto 0),
signal Cmagh std_logic_vector(2 downto 0),
signal Amag]l std_logic_vector(2 downto 0),
signal Bmag] std_logic_vector(2 downto 0),
signal Cmagl std_logic_vector(2 downto 0),
signal Amag std_logic_vector(2 downto 0),
signal Bmag std_logic_vector(2 downto 0),
signal Cmag std_logic_vector(2 downto 0),
signal Apol std_logic,

signal Bpol std_logic,

signal Cpol.std_logic,

signal temp std_logic_vector(2 downto 0),

o 3R 3k 2 3 ok s e ok s ok sk she ke she s e she o sfe she s sk s sfe ok e she s she sk ok sfe sfe sk sk sk ok steske st ok she e o sk sk sfe ik ok ofe o sk oo ok ke s sk sk sk sk sk ok

-- Declare the required constants
e sk sk ke sk sheofe sfe s she she s she sfe ke ke s sk sk sfe ke she s sk sfe sk sk sk ok sk ke sk sk sk st ok she sk sfe sk s st sk oo ok sk s she she s ske ok s sk sk sk skok ke sk sl ok

constant DEFAULT. std_logic_vector(1 downto 0) =007,
constant RETARD. std_logic_vector(1 downto 0) =017,
constant ADVANCE std_logic_vector(1 downto 0) =107,

constant RETARDPT std_logic_vector(2 downto 0) ="0117,
constant DEFAULTPT std_logic_vector(2 downto 0) =100,
constant ADVANCEPT" std_logic_vector(2 downto 0) =71017,
constant MAXPT std_logic_vector(2 downto 0) ="101",

constant GND std_logic_vector(1 downto 0) =700,

N

- sk sk e ol sk sl ke o sk sk ohe s she e sfe sk s sfe s sheshe sfe e s sk e sk ok sk she ok s sk st ek sk sk sk skeskok sk sheske sk sk sk sk ok sk ok e sdeokesk

-- If n DEFAULT BITHDIT=0, BITSEG roll point=4, SPDA=Bpol.

--If in RETARD BITHDIT=1, BITSEG roll point=3, SPDA=Cpol

67

--If in ADVANCE BITHDIT=2, BITSEG roll pomnt=5, SPDA=Apol

2 sk st ol ok ok e sk o e she sk ofe sk sk ke she ok sk sk ok ok sfe s sk sk ol sfe sk sk s skeoske she sl sfe sk sfe ke she ook skl she sheske she sk skeoioske sk sk sleoleskoskeok

sk ks o s ot o ke s ol ke s sl of e s ok s ook o sk e skt ol s sk o ke sk ook s skt s sk okt st s sk sk sk ook sk sk e sk sk ke sk sk ok
7

-- Declare the operational sequence definitions (text only)
o st sk e she ok ke sfe sk e sk ofe ok sk sfe ofe she sfe ok se sk ok Sk sk ofe sk ok st sfe s sk sk she ke sk sk ok ok sfe ke sk ke sfe sk sfe st sl sk s sl sk sk sk sk ek sk ok

-- This module 1s used to recover an accurate and robust data stream

-- with a flexible data clock The recovered mput (RFDATA) data

-- stream 18 oversampled (5 to 1 rati0) to enable an accurate and

-- flexible data sample window Because of the times five oversample
-~ five bits are sampled plus to enable a shiding (Tau-dither) scheme

-- two additional bits are sampled The seven sampled bits are divided
-- into three windows (A,B,C) each with five bits Magnitudes are

-- detected and compared for optimum sampling decisions, bit polarity
-- alignment, and to recover an accurate data clock from the data stream

_ s s e sk sk ofe ofe ok sk she e ofe ofe ok s sk she sk sk ofe ofe sk s ok sk sl s ske sl ofe sk she sk st she ok she sieske s stk sk o sk ke ko sl ok sk sk sk sl ek sfesk sk sk ok

-- Begin architecture behavior application
sk sk e she ofe ofe she sfe s o e ofe sfe ofe she oo s sheofe ofe ofe s sheshe ofe sfe she sk sfe s sk sk s sesfe sfe s e sk e skod o sk sk koo o sk sk sk sk sk ke ke sk sk sk sk ek

begin

--The operation controller sets the system reset (sysclrb) and programmable

--settings load (1dvar)

opcon process(smpclk, mrstb)

begin

if mrstb = 0’ then
sysclrb_sig <= “0’,
ldvar_sigl <= “0’,
ldvar_sig2 <= ‘0,

elsif falling edge(smpclk) then
sysclrb_sig <= ‘1",
ldvar_sigl <= ldvar_s1g2,
Idvar_si1g2 <= *1’,

end 1f,

sysclrb <= sysclrb_sig,

ldvar <= ldvar_sigl,

end process opcon;

flops. process(smpclk, sysclrb_sig)
begin
if sysclrb_sig = ‘0’ then
bitsmp_q <= “0000000”,

68

o 3K 3K B 2k s e sk s ok o s ke s sk ke ofe sk she sfesie she she ke s sk sfe sk sk sk ofe sk sk ok ok ok sk sk sk sk ok e ok sfe sk sk st ke sfe st sk s skesk sk sksk sk sk ook

-- Declare the port outputs for test outputs only,remove later
o sl sk ok ok sk ok ok shesie sl sfesie she sk ok ok sk ok sk sk ok sheske sk sk s sk sk st ol sk st ofe ok ol ok sk sk ok sk she 3k oo sk sfe sfeske sk st skoske ke skeske sk ko sk sk sk sk ok

bitseg_q <= “000”,
bitdith_q <= “00”,
dpnclk_q <= ‘0,
spda_q <= ‘0’,
elsif falling_edge(smpclk) then ‘

bitsmp_q <= bitsmp_d,
bitseg_q <= bitseg_d,
bitdith_q <= bitdith_d,
dpnclk_q <= dpnclk_d,
spda_q <=spda_d,
else

bitsmp_q <= bitsmp_gq,
bitseg_q <= bitseg_q,
bitdith_q <= bitdith_gq,
dpnclk_q <= dpnclk_g;
spda_q <=spda_q,

end 1f,

Apol_o <= Apol,
Bpol_o <= Bpol,
Cpol_o <= Cpol,

e sk o e ok ok steokk ook s sl sk shesie she e st she s sk s s sle sk sk she st sk sk sk ok sheske sk sfe s sk sfe ke st sl sk st sl sl sk ek sk e sk ke s sk s sk e ke

-- Declare the port outputs from a flip flop
o 3 Bl 3 e sk sk ofe sfe st she sl s ste sk e sfe e sk st she sk sk sfe ok ok sk ok sk sk ok ok ik ok ok o st e st ke skl sl o she sk ok o sk e ok st ok ok sfe sk sk sfe sk sk sk ok

spda <= spda_gq,
dpnclk_o <=dpnclk_gq,
bitsmp <= bitsmp_q,
bitseg <= bitseg_q,
bitdith <= bitdith_gq,

end process flops,

3 o ek s ok s sk ok sk e s i s ke s sk s she e s sk s sfe ok sk sfe s sk st ok sk ook st ok s sk sk ok s sk sk sk st sk sk sk sk sk koo sk skl sk sk ke

{
-- Declare the process sensitivity list (inputs to the process)
o sk ok i sl sk sfe ol s sfe sk ohe sk sfe ke shesfe s she st s ke sk ok ok sk she sk sk sk sk e skook sk ook st e sl sk s s sk sl sk s slese sk ok sk skeok skokoke sk

process(bitsmp_q)

69

. 6 3l sl 3 2k s e ok s e ok ok sk ok she s ofe she e sk sk e sfe e she ok ke sfe ok sk s sk s sk sk sk sk sk ok sk sk sk st sk sk sk oo sk sk ok sk ok sfe st sk sfe ke she sk e ke sk
“************************************T*************************

-- Begin the process

-- This process 1s used to detect the magnitude of logical low’s

-- and the magnitude of logical high’s for each of the three sample

-- windows (A,B,C) which are set to contain sampled bits 0-4, 1-5,

-- 2-6 respectively A magnitude value for each of the six signals

-- (Amagh,Amagl,Bmagh,Bmagl,Cmagh,Cmagl) 1s output 1n 3 bat fields

- 3 286 2k ok sfe sl ok sk sk afe ok ok ofe ok sie sk she ok sk s ke ok sk sfe sk sfe sk ok sk sk she e sk she sk ok sk sk sk ke ok s sk sk ok sk sk sk sk sk sk sheske sk e ok sk ke ok sk sk ok
oo S 3R 3l s ok ok e ok she sk ok s sk sk st ok sk s ke sl st sie s ke sk ok sk sk sk s ke s st sk sk ke sfe sk ofe sk sk sk sk sk sk sk she sk sfe she sk sk e sk sk st skesk ks kg

begin

o SFe s e e skl she e sk ol s she sk sl ke sfe ke s sl sk ok e st sfe s s she sk sk st st sk sk stk skt sk ek sk slok ok kol ek sk ok ks koskok

-- Declare the flip flops which require feedback

. sk sk sk ok sl sk ok sk ke ok sk sk ok sk ok ok she sk she sk sk sheofe she sk s s she s s sfe s ofe sk e ok sk ok sk ofe sk ok sk sk ok sfe ke ske sfe ok sk e sk sk sk sk sk ke sk sk ok

-- no flip flops n this particuliar process

oo 7ok 3k s ok sk s ok sl o ok sk ik ok s ok ok sk ok sk sfe ke shesie s sk sfe sk she sk ofe she s e sk e sl sk sk sk ok s sk sk ok sk sfeoke sk sk sk ke s sk sk ek skok sk ok

-- Declare the default states for the flip flops 1n this process
skl ok sk ke she s ok ok sk ok sfe s ok she st sk sfe K sk sk ske st e sk sk sk sk ofe sde ok ok sk sk sk sk sk steske st ke she ke ok sk o st sfe ok s ok ok sk sk ok ok sk sk sk sk sk sk

Amagh <= (GND & bitsmp_q(0)) + (GND & baitsmp_q(1)) + (GND & bitsmp_q(2))
+ (GND & bitsmp_g(3)) + (GND & bitsmp_q(4)),

Amagl <= (GND & not(bitsmp_q(0))) + (GND & not(bitsmp_q(1))) + (GND &
not(bitsmp_q(2)))
+ (GND & not(bitsmp_gq(3))) + (GND & not(bitsmp_q(4))),

Bmagh <= (GND & bitsmp_g(1)) + (GND & bitsmp_q(2)) + (GND & bitsmp_q(3))
+ (GND & bitsmp_q(4)) + (GND & bitsmp_q(5)),

Bmagl <= (GND & not(bitsmp_q(1))) + (GND & not(bitsmp_q(2))) + (GND &
not(bitsmp_q(3)))
+ (GND & not(bitsmp_q(4))) + (GND & not(bitsmp_q(5))),

Cmagh <= (GND & bitsmp_q(2)) + (GND & bitsmp_q(3)) + (GND & bitsmp_q(4))
+ (GND & bitsmp_q(5)) + (GND & bitsmp_q(6));

70

Cmagl <= (GND & not(bitsmp_q(2))) + (GND & not(bitsmp_q(3))) + (GND &
not(bitsmp_q(4))) '
+ (GND & not(bitsmp_q(5))) + (GND & not(bitsmp_gq(6))),

end process,

o ok s s ke sk sk o ofe ok ok ok ik ok ok ok sk ok sk ok ok ok ok ok ok ok ok o sk o ol ok sk stesie sie st skl e sk s sfe ske sk sk sfe sk she sie sk sl sk sk ok s sk s sk sk ok k

-- End process
_ e s sk sfe s ol ofe ofe ok o s ok sk sie sk sk ofe o st sl e sfe ok s sfe s sfe o e e e she she she st e she ske st e sk she sk sfe sk kool sk sk sk sk st sk ok sk sk sl ke ke sk ke sk

e sk st ek ok ok o s ol sk s ok ofe ok ofe s sk she ok ok o she she e she o s sk sk ofe ok oo sheofe sk she sheote ohe she st sfesfe sk sk sie e sk sk e sk sk sk sk skok sk sk ok

-- Declare the process sensitivity list (inputs to the process)
o S 3 ok e s oo s ok ofe ok sfe sfe sk ok ok ok ok sk sk sk she she ofe ok sk ok ok ok sk sk ok sk ol e sk ol s ke ofe sk sie e s o ok sk ok e s sk sk ok sk sk skl ke ke ke sl sk sk

process(Amagh,Bmagh,Cmagh,Amag],Bmagl,Cmagl)

.3 ok ok ok sk ok sk sk ok ok ok ok ok ok e s sk sk sk sk ofe sk ok she sfe ok ok ok ok sk ofe ok ol skeske e e e she she ok she ke e ok e ok ke s sk sk sk sk ke sk ke sk e sfe e s sk
e sk st ok ofe ofe sfe v she s ik ofe ofe o she sfe sfe e e ofe sfe she sk sk sfe oo sk e sk sfe she e she e she sk sk steske st sk stk sk sk sk ke ske sk sk sk s ok ke ke sksk sk ok sleok

-- Begin the process

-- This process 1s used to resolve the maximum magnitude of the

-- logical low’s and the magnitude of logical high’s for each of

-- the three sampled windows (A,B,C) The results are output as

-- Amag,Bmag,Cmag and are represented 1n three bit fields The data
-- polanity (logic low or logic high) 1s also resolved and 1s output

-- as Apol,Bpol,Cpol with each represented by a single bat.

s sk sk ok ofe ok sk oo o s e ok she ok s s she sk ok sk sfe s s s ske sfe sk st e ok sk sk ok stesfe sk st st s ok sk sh ok ok sfe sfe e ke sl sk e sk s sk s s kel sk sk ook
o 3K o st ok sl sk o sk s ok ok sk ok sk e sk ok s ok sfe ok s s s sheske sk s sfe sk ske sk s she sk she sk sk sk sk ok sk ok sk sk ok stk sk sk sk ke sk sfe sk sk skeskeskeosfeok

begin

% ok o s sk e st ke st ok sk ofe sk sk sk s sk sk ok skeoske sk stk sk sl sk e sk sheshe sk steske stk koo sk st skt sl sk sk sk ok stk sk kol ok

-- Declare the flip flops which require feedback
o B 2R ok e e sfe sk ok ok sk ok ok ok ke s st sk she sk s o sfe sfe she sk oo she sk ok 2he o ske ofe ke sk ok e sk ok ok o ok ok e ofe ofe sk e ofe s sfe oo sfe she s sk ste e ofe e s sk

-- no flip flops 1n this particuliar process

e st e s she sk st ok o ook ok ok ok ook sk sk sk sk ok o ok o sk o ke ok o e s ok sk ol ok s o ook s o sk e sk o s s e s e s s s o s sk ol ok ke sk sk sk

-- Declare the default states for the flip flops in this process
1o 2K 9K 3R e 2k s e sk sfe ke sfe sheofe sk sk ke sk s sk sk e sk sheofe s ke she st ke she sk sk sfesfe sk ke ok sk e e ok sk ok ok e o sk ok ok sk ok ofe she sk ofe sfe sk sk skeske sk ok

71

Amag <= Amagh,
Bmag <= Bmagh,
Cmag <= Cmagh,

Apol <= ‘1",
Bpol <= ‘1",
Cpol <= ‘1",

_ 3t sk e e sk sfe ofe sk she s she i sfe ofe sfe sk she s sk sfe s she sk sk sfe s she sk sk she sfe e sl sfeoke ok s sk sl ok e e o sk sk sk sk sk sk sk ke sk sk ke sk sk s ke ok

-- Begin body of process arguments
3 s e ofe sfe sfe sfe sfe s s sfe sie ofe o she she s s e sk s sk ke e sk s s ofe ofe s sfe e ofe e she st s ook sk ofe e ok sk sk she sk ke sk sl sk s sle sk sk sk s sk sk s ke ok

1f (Amagh < Amagl) then

Amag <= Amag],

Apol <=0,

end 1f; .

if (Bmagh < Bmag]) then
Bmag <= Bmagl,

Bpol <= “0’,

end if,

if (Cmagh < Cmag]l) then
Cmag <= Cmagl,

Cpol <= ‘0,

end 1f,

end process,

o R e s ol s ok e sl ok sk s sl sheske sk sfe ik s ke s sk sk sfesle sfe sk s e s sk st etk sk st sk skesk sk sk sk skl sk sk sk sk skokok

-- End process
3 sk sie s ok sfesfe sk sfeske she sk she sk e she sk s sk s sk ok s she sk e sk ok sfe sk ok sk sk ok sk ofe she sk s ok sfe ke sfe st she sk e sfe s ok sk ofe ok o sk ok sk e sk sk sk ok

- ok sk e ok s e sfe sk she sk sk sfe she sk sk e s sk sk sk sk sk ofe sfe ke skl sk st ok sk sk ok sk ok sk ke s ol sfe o sk sk ofe sfe e e she sk sfe ofesle e sk ok sk sk ke sk ke sk

-- Declare the process sensitivity list (nputs to the process)
3k sk sk e sk ok ke she sfe e sfe she ke sfe ofe ok sfe sfe ok sfe sk sk e she she sk e oo ohe sk o s she e st oo sk sl e sk s ok ok st sl s ok sfe sfe ok s sk sk e sk ke sk e s ok oh

process(rfdata,bitsmp_gq,bitseg_q,bitdith_q,dpnclk_q,spda_g,Amag,
Bmag,Cmag,Apol,Bpol,Cpol)
ek ke st s oo sk s ok ofe ok sie ok ok ok sk sk sfe sk sfe oo sk ske sk she ok ok oo ok ok sk sk sl e o ok 3k sk ok of ok s ok sk sie sk s sk sfe sfe s sl sksk sk ok ke sk sk sl sl sk

o sk e s sfe s oo ok ole sk sl e sfe sl sfe sk s ok s ok s stesie s et sk st sk st she ke steske sk sk e ok ok sk ek s ok skeok sk skeoeske sk ek sk ek ok

-- Begin the process

72

-- This process 1s used to resolve which 5 bit window (A 0-4,

-- B 1-5,C 2-6) of data has the best ratio of matching bits

-- This decision (bitdith) 1s used n a Tau-dither scheme to

-- determine where the sample window needs to be placed (RETARD,

-- DEFAULT, ADVANCE) for the next cycle This decision is also

-- used to shide the trigger point (RETARDPT,DEFAULTPT,ADVANCEPT)
-- for the outbound derived (DPNCLK) PN clock

. S she sl e ofe ofe ofe sk o she s e ik ofe sl ol s sfe sk ik ofe sk s sie o ofe s ok s sfe sk ofe ofe sfesle ofe she shesie ofe she sk sk ok oo ske s ofe sk sk sk sk sk sk sl e sk s sk ok
_ Sk sie ok 3k 2k ok ok ok ofe ok ok ok 3k ke sk ok sk sk ok ok ofe ok sfe sfe of ok 246 3k ok ok 3i¢ sk 2k e ok e sk sfe ok 3k sk s Sk sk e sk sk sk sk sk ofe o ok ok e ke ke e s sk shesfe

begin

o 320 Sl e ofe ofe s ok s ok ok she ok ok sk ok she she ik ok ok ok sk she ke sfe she sk ook sk sfoofe sk s sk sfeshe st sk s ke ok sk sk sk ok ok sl koo sk sk sk sk sk ke sk skok

-- Declare the flip flops which require feedback

. 3 sk sk e ofe ofe ofe o sfe s s ik ofe ok s o sfe she o ofe ok s sk e sfe sk sk s sie she s sfe s s ske s ste shoske sk sk sk e sk sk ok sk ske sk ke s sl sk o sl ek sk sk sk ke ok

spda_d <= spda_g;
dpnclk_d <= dpnclk_g,
bitdith_d <= bitdith_gq,

ke sk o ook oo e s ke sk o s o o sk ke s ke sk s ok o o ke o e s o e s o sk o e s s e s e sk st e s fe s st ok ok s o sk S e sk sk sl skl ok

-- Declare the default states for the flip flops 1n this process
o 0 7R 2 S e e o ofe o ofe s s ik ke ofe ofe ok sk she 3k e o 3 s e sfe v sfe e ofe ok sfe sk she ke ofe sk skl e sk sk ok sk sk sk ok sk s ke ke o s sk s sk sfe sk sk ok sk ok

dpnclk_d <=°0’,
bitseg_d <= bitseg_q+1,

bitsmp_d(6 downto 1) <= bitsmp_q(5 downto 0),
bitsmp_d(0) <= rfdata,

= sk sk sk sk ok ok st ok sk sk ok sk s ok ok s ok st ok sfe sk sk sheshe s s she s she sk sk she sk ke sfe s s she ok s ok sk o ok ok ok ok sk ok sk skoske sk st sk sfe sk sk ek

-- Begin body of process arguments
= st sk sk ok s s o ok e o ok sk sk ke ool sfesfe st sk sk steoke s st sk stesle sk sl ok sk ok stttk stk sk shok sk ek ok skl ko

if (bitseg_q = MAXPT) OR

((batdith_q = DEFAULT) AND (bitseg_q = DEFAULTPT)) OR
((bitdith_q = RETARD) AND (bitseg_q = RETARDPT)) OR
((bitdith_q = ADVANCE) AND (bitseg_q = ADVANCEPT)) then
bitseg_d <= “000”,
dpnclk_d <= *1’,

73

if (Amag > Bmag) AND (Bmag >= Cmag) then
spda_d <= Apol,

bitdith_d <= ADVANCE;

elsif (Cmag > Bmag) AND (Bmag >= Amag) then
spda_d <= Cpol;

bitdith_d <= RETARD;

else

spda_d <= Bpol,

bitdith_d <= DEFAULT,

end 1f,

end 1f;

if bitseg_q < “001” then
dpnelk_d <= ‘1",

end 1f,
end process;

P e ek s ke ok ok ok s sk she sk sk she she ok st sfe ok s ke e sle s s she s sfe sk st s ok sheske s ofe sk sk ook sfe s sk sk sk sk sfe sk sk s sk ok sk sk sk sk sk skok ok

-- End process
. 3R ok sk ok st ok ok sk ke ok sk ke sfe sk ok sfe ok sfe sfe ke sfe sk ke s sk s ofe sk s ke sk sk ok sk ok sheofe sk e sfe sk sfe sfe sk she s sfe sfe ofe sk ok sk o ok ok ok o sk sk s

end behavior,

8.3 Despreader Correlator

library 1eee,

use reee.std_logic_1164 all,

use 1eee std_logic_arnth.all,

use 1eee std_logic_unsigned all,

entity desprd2_alt 1s
port
(

o K sk sk sk sk ke ok sheoke ke ok sk sk sk st st sk ke sk st sk sk ke sl st ok e ok s ok skl ik s s sfesfesfe sl st sfe s ke o ok sfe e sk she e sk ok sl sk ok sk sk skl ok

-- Declare I/O mterface
oo st sk ke i ok ok sk s sk s e sk ok o sk she ok ok ok sk sk ok ofe ofe sk s sk ik o ok sfe sfe s ke sk o ok e sl ok sk o o ok ok sk o o ok ok ok ofe o sfe sk e e sk sk sk ok

signal spda® 1 std_logic,

74

signal dpnclk 1n std_logic,
signal Idvar 1n std_logic,
signal sysclrb 1n std_logic,

signal dpack out std_logic,
signal dspclk out std_logic,
signal pretrk out std_logic,
signal trk out std_logic,
signal mbit: out std_logic,
signal mdet out std_logic,
signal dsretard_o out std_logic,
signal dsdefault_o out std_logic,
signal dsadvance_o out std_logic,
signal maxpol_o out std_logic,

signal maxmag_o out std_logic_vector(5 downto 0),
signal dsseg out std_logic_vector(6 downto 0),
signal dstkacc out std_logic_vector(1 downto 0),
signal dsntacc out std_logic_vector(3 downto 0)

);
end desprd2_alt,

waan 3 30 38 3 2k ok sk ok she sk ok sfe e she s s sl she i sk sk ke ok ok she st sk sk ofe ok s o sk sk sk sk ok sk ok sk ok sfe sk sfe she sk sfe s sk ok o ofe ofe ok ok ok ofe ok sk sk ok ok

-- Declare architecture behavior body
. sk she e s s ofe ofe ofe s sfe sk sk ofe ofe she she sfe s s e ofe s s ookt o oo sk sk e ok ok ok s e ofe ofe s ok ofe sfe st s e sk sde oo sfe ofe oo ok ok sl sk ok ok e o sk sk ok

architecture behavior of desprd2_alt 1s

o S s st ol st ok st ok sk ok ok sheofe st sk she sk s sfeoie st e siesfe sl st sfe s sfe e st e sk sk ke st sk e ok s o s ok s ek st sk sk st sk s sk sk slesk ok ek ok

-- Declare the internal signals
. e sk e sk sk ste ke sfe sfe i sk sk she sk sk sfe she ok ke sfe sk she s she sk ke she ok sk s ok sk sk sfe st sk sk sk sfe sk sfe sk ke s sk sfe ok e she ol sk s sk sk sk ke sk sk sk sk sk sk

signal dpack_d,dpack_q std_logic,
signal dspclk_d,dspclk_q std_logic,
signal pretrk_d,pretrk_q std_logic,
signal trk_d,trk_q std_logic,

signal mbit_d,mbit_q std_logic,
signal mdet_d,mdet_q std_logic,
signal dsCpol_d,dsCpol_g std_logic,
signal dsBpol_d,dsBpol_q std_logic,
signal dsApol_d,dsApol_g.std_logic,
signal dsretard std_logic;

signal dsdefault std_logic;

signal dsadvance std_logic,

signal dsretard_d,dsretard_q std_logic;

75

signal dsdefault_d,dsdefault_q std_logic,
signal dsadvance_d,dsadvance_q std_logic,
signal maxpol std_logic,

signal dsseg_d,dsseg_q std_logic_vector (6 downto 0),

,signal dsmbth_d,dsmbth_gq-std_logic_vector (5 downto 0),

signal dsmdth_d,dsmdth_gq std_logic_vector (5 downto 0),
signal dstkth_d,dstkth_g.std_logic_vector (1 downto 0),
signal dsntth_d,dsntth_g'std_logic_vector (3 downto 0);
signal dsmdacc_d,dsmdacc_q std_logic_vector (5 downto 0),
signal dstkacc_d,dstkacc_q std_logic_vector (1 downto 0),
signal dsntacc_d,dsntacc_q std_logic_vector (3 downto 0),
signal xor_array std_logic_vector (62 downto 0),

signal suml,sum2,sum3,sum4 std_logic_vector (5 downto 0),
signal dsshf_d,dsshf q std_logic_vector (62 downto 0),
signal dspn_d std_logic_vector (62 downto 0),

signal dspn_q std_logic_vector (62 downto 0);

signal dsCmag_d,dsCmag_gq std_logic_vector (5 downto 0),
signal dsBmag_d,dsBmag_q std_logic_vector (5 downto 0),
signal dsAmag_d,dsAmag_q std_logic_vector (5 downto 0),
signal compmag.std_logic_vector (5 downto 0);

signal maxmag std_logic_vector (5 downto 0),

o ol ok e ok sk e ok sfe i sk sk o sk sk ik sk sfe sk sfe ke she s she sheshe sk sl sk s she sk s sfe sk e s sk ok ke she o ok sk sfe ok ok ok sfe e sfe she sk sk sk ke ke sk sk ke ok

-- Declare the required constants
sk e st e sk sfe s st s s e ok ok e s e o sk sk ok sk s e sk st ke ok ok s ok s ok o e s e sl s e sk e sk sl e o ol ok e sk s sk o sk o e sk e sk ok

constant DSRETARDPT std_logic_vector(6 downto 0) .= “0111101>,
constant DSDEFAULTPT std_logic_vector(6 downto 0) .= “0111110”,
constant DSADVANCEPT std_logic_vector(6 downto 0) =“0111111>,
constant DSMAXPT std_logic_vector(6 downto 0) = “10000007,

constant PNCODE std_logic_vector(62 downto 0) =
“101010110011011101101001001110001011110010100011000010000011111”,
constant GND6 std_logic_vector(5 downto 0) = “000000”;

--set programmable thresholds as constants to free up logic cells.
--dsmbth=50, dsmdth=62, dsntth=15, dstkth=2

constant dsmbth std_logic_vector(5 downto 0) =“110010”;
constant dsmdth-std_logic_vector(5 downto 0) =“111110",
constant dstkth-std_logic_vector(1 downto 0) = “10”;

constant dsntth std_logic_vector(3 downto 0) = “1111”,

o e s e e ofe ofe ok o sfe s ik ofe ok ofe s she sk e sfe sk sfe sk ke e o sfe o e she sfe sfe s oo e ohe she o sk e sfe s e e she she sk ok ofe e sk sk sk sk ke sk sk ke sk sk s ok

-- Declare the operational sequence definitions (text only)

76

o ok st ok ok sk i ok sk sk o ok sk ok s sk sk s sk 3k sk o s ok ok s e ok sk ok sk sk sk o s ke sk e sk sk ok sk ke sk ok ok st sk ok sk ke ok ok e s sk ok R skeok o

-- The despreader correlator 1s used to search,synch, and lock

-- to the expected PN code A scheme 1s used to correlate and

-- optimize the recovered PN pattern, dither the clock switching

-- points based on the pattern, derive the appropriate data bit

-- polarity, and derive a accurate despread data clock Operational
-- flags are generated for pretrack and track modes to be used by

-- other modules, the search mode 1s the defaulted operation

-- Programmable thresholds are available for tracking mode entry

-- magnitude, and tracking mode exit magmitudes The module also
-~ contains logic to measure missed bits and missed detection cycles
-- once the pretrack or track modes are entered Programmable

-- thresholds are also available for missed bit magnitude and missed
-- detect magnitude A mussed bit flag (above the magnitude threshold)
-- or missed detect cycle flag are sent to other modules

P e s ool sk st ok sk st ste skt sk ek ok sk o sk ke sk sk s ok sk ok sk st sfeoke sk s sfesfe e st ok st s skl sk s e ek sfe ke ok sk sk sk ok sk e sk sk ke e ok

-- Begin architecture behavior application
P sk st e s e she ok s sl sk sfe e sfeofe sk sk she ok sk sk sk ke sk s ke s ok sk sk sk ook e sk st s sl ok sfe sk stk ok sk s ook sk e sk e sl sk s sk ek o

begin

flops process(sysclrb, dpnclk, 1dvar)

begin

if sysclrb = ‘0’ then
dpack_q <=°0’,
dspclk_q <= “0’;
pretrk_q <= 0’,
trk_q<=°0’,
mbit_q <= ‘0’,

- mdet_q <= ‘0’,

dsCpol_q <= ‘0,
dsBpol_q <= ‘0’,
dsApol_q <= ‘0’;
dsadvance_q <= ‘0,
dsretard_q <= ‘0°,
dsdefault_q <= “0’,
dsseg_q <= “0000000”;
dstkacc_q <= “007,
dsntacc_q <= “00007;
dsshf g <=

“000”,
dsCmag_q <= “000000”,
dsBmag_q <= “000000”,

77

dsAmag_q <= “0000007,
elsif falling_edge(dpnclk) then
dpack_q <=dpack_d;
dspclk_q <= dspclk_d;
pretrk_q <= pretrk_d;
trk_q<=trk_d,
mbit_q <=mbat_d,
mdet_q <= mdet_d,
dsCpol_q <= dsCpol_d,
dsBpol_q <= dsBpol_d,
dsApol_q <=dsApol_d,
dsadvance_q <= dsadvance_d;
dsretard_q <= dsretard_d,
dsdefault_q <= dsdefault_d,
dsseg_q <=dsseg_d,
dstkacc_q <= dstkacc_d;
dsntacc_q <= dsntacc_d,
dsshf_q <=dsshf_d,
dsCmag_q <= dsCmag_d,
dsBmag_q <= dsBmag_d,
dsAmag_q <= dsAmag_d;
end 1f,

1f sysclrb = ‘0’ then
dspn_q <=
“000”,
dsmbth_q <= “000000”;
dsmdth_q <= “000000”,
dstkth_q <=“00",
dsntth_q <= “00007,
elsif rising_edge(ldvar) then
dspn_q <=dspn_d,
dsmbth_q <= dsmbth_d,
dsmdth_q <= dsmdth_d,
dstkth_q <= dstkth_d,
dsntth_q <= dsntth_d,
end 1f,

—— Rk skeok ok skosleok sk s ool sk sk steske s sk s sfeske sk sk sfe ke s st sk e s ok ot sl sheoke sk st st st skesfe e st sfesfe ok sk sfe ook ol e e ke ke skeoke ke sk ok

-~ Output assignments
-- With these statement here, the process block cannot overwrite them

oo kst ok sk sk ok sk ok ook e sk sheofeshe sk st st she ke o st sk e s sk sfe ke sk s sfe sk sk ok e st sk st ofe ok ok s sfesle s stesfe ek sk e sfe sk ke e ke sesfe ki ok

dpack <= dpack_q,
78

dspclk <=dspclk_q;
pretrk <= pretrk_q,
trk <=trk_q,

mbit <= mbit_q;

mdet <= mdet_q,
dsseg <= dsseg_q,
dstkacc <= dstkacc_q,
dsntacc <= dsntacc_q,

dsretard_o <= dsretard_gq,
dsdefault_o <= dsdefault_qg,
dsadvance_o <= dsadvance_g,
maxpol_o <= maxpol,
maxmag_o <= maxmag,

end process flops,

o e st sl sk ofe ok s ofe ofe s ke sk sie ok sk sk sk sfe sk sfe s e sle sk sk s e sk s ofe ok she sk sk sk e sheofe ok sk ok ok ok sk sk ok sk ik ok sk e ohe st sk s sk sfe sk sl

-- Declare the process sensitivity list (inputs to the process)
o e st sk e it ok ofe o s s sk i ok sfe ok sfe st s sie ok oo oo sfe s sfe she sk sk s o sk sk ok s ohe ok sk s ok e ok oo o s s sk ofe sl e sk s e sk st ke ok ke sk ok

process(spda,dsshf_q,dspn_q)

. 3 ok sk ok ok ool ok sk e ok sfe s ok sk sk ske sk ok sk e ofe sk sk s sfe sfe sk sk s sk ok s ok sk ok sk ke sk sk ok sk ok sk sk sk sk e sk sk sl ok ofe sk ok st ok s e ok ok
. 3ok ok s ok ok s ok ok sk o ok sk ok ok sk ke she sk ske s ke o sk sk she sk she e s st ode sk sk e sk ke ok ke sk sk o sk ok st e ofe sk sk ok ok ke sfe ok e ofe st o s sk ok ok

-- Begin the P1 process

-- This process 1s used to accummulate the mput spread data stream

-- The nput spread data 1s right shifted into a 63 (PN spread ratio)

-- bt shift register The chip bits (spda) are clocked nto this

-- shuft register with the derived PN clock (dpnclk) The spda data

-- and the ddspnclk are sent to the despreader module from the polarity
-- decoder (POLDEC) module. The results from this process are the

-- expected PN (PNCODE) code and the accumulated (dsshf_q) inbound
-- PN value

P s s o e o oft ok ok ok ok sk sk ok ok she sk sfe sk ok s sk s sk sie ohe ok s sk s sk sk sk s sk ofe ok sk s ke ok o sk sk ok sk ok sk o s st s ok sk sfe sfe sfe sk sl ke s ok
3 ok ok s ofe sk ok ok ok s e she e sk she st sk she ok sk sk sk s e sk sk sk she ke sk ok ok ok sk sk sk sfe sk ol st s she sk ok sk sk ok st 3k ofe sk ke o 3k ok ok sk ok s ke sk

begin

2% sk e sk ok ol st ok sk ok ot ofe sk sfe e sk e ok e s ok ke ot ohe sk she ke st sk ok she ok s sk st e ok st sk ke sk ode sk st ok o sk sk sk s sk stk ok sk skeosk ok ok

-- Declare the flip flops which require feedback

K ok s ok ok st ok sk sk ok ok sk oke ofe sk ok sk sk sk s ik she sl sk s ok sfe sk she sk e oo sk s sk sk ok sk sk sk ok sk ok ok sk ok she ok ok sfe sk sk sfe sk sfe sk sk sk sk sk skok

79

o S8 e s e ok ok R ok sk ok sk sie sk ok ok ol ok sk st ok sl ok she sk sk ohe s se o ofe ol sfe sfe st sfe sle s sfe sk ofe s sheofe ohe sk she sie sk e st sk sl sk sk sk ke skl sk ok

-- Declare the default states for the flip flops in this process.
. S st e e sfe sfe sk ok sfe s s e ok sfe ok ok ok sk sk ol she ok s she ok sk sfe e sfe ofe sk sk sk sheste ofe ok sk ok sk sk sk o ok sk sk sk sk stk sk s sk sl sl etk sk ek

dsshf_d(62 downto 1) <= dsshf_q(61 downto 0);
dsshf_d(0) <= spda;

dspn_d <= PNCODE,
xor_array <= dsshf_q XOR dspn_g,

end process,

o ok s sk ok sl e ok sfe e sk she ok ok sk ok ofe sk sk sk ok sk s sk sl sk sk s sk sk ske sk sk ok sk ok s ok sk e sk st sk sk s ok ok o ok sk sk ok ok ok skeok sk sk sk ok

-- End process
o SR s ok sfe o ok she s s ol ofe ok sk she sk s sk sfe she ok sfe s e ok sk o e ofe ok st sk skl sk sk sk sk sk sk sk ok ofe o ok ek ok sl sl ok sk sk sk sl ske sk sk sk feok

o 3RS0 B B o ok e ok ok s ok s sk ok sk sk ok she ik sk sk ok she sk sk sk sk sheoke sk s she s sk sk s sk st sk sk she s ok ok ok ok st ke ok st sk ok she sk sfe sk sk sk sk ke skeok

-- Declare the piocess sensitivity list (inputs to the process)
. 3k sk s e ok she sfe op s s sk ok sk she s sk s sk e e ohe she sk sk sk ok sk skl sk s s sk sl sk ok ok s ofe ok ok ok ik ok ok sfe sk ok ol ok ofe ohe sk ke sk ke sk s sk sk ok ok

process(xor_array)
begin

sum1<=(GND6&xor_array(0))+(GND6&xor_array(1))+(GND6&xor_array(2))+(GND6
&xor_array(3))+(GND6&xor_array(4))

+(GND6&xor_array(5))+(GND6&xor_array(6))+(GND6&xor_array(7))+(GND6&xor_a
rray(8))+(GND6&xor_array(9))

+(GND6&xor_array(10))+(GND6&xor_array(11))+(GND6&xor_array(12))+(GND6&x0
r_array(13))+(GND6&xor_array(14)),

sum2<=(GND6&xor_array(15))+(GND6&xor_array(16))+(GND6&xor_array(17))+(GN
D6&xor_array(18))+(GND6&xor_array(19))

+ GND6&xor_array(20))+(GND6&xor_array(21))+(GND6&xor_array(22))+(GND6&x
or_array(23))+(GND6&xor_array(24))

80

+(GND6&xor_array(25))+(GND6&xor_array(26))+(GND6&xor_array(27))+(GND6&x
or_array(28))+(GND6&xor_array(29))
+(GND6&xor_array(30));

sum3<=(GND6&xor_array(31)+(GND6&xor_array(32))+(GND6&xor_array(33))+(GN
D6&xor_array(34))+(GND6&xor_array(35))

+(GND6&xor_array(36))+(GND6&xor_array(37))+(GND6&xor_array(38))+(GND6&x
or_array(39))+(GND6&xor_array(40))

+(GND6&xor_array(41))+(GND6&xor_array(42))+(GND6&xor_array(43))+(GND6&x
or_array(44))+(GND6&xor_array(45))
+(GND6&xor_array(46)),

sum4<=(GND6&xor_array(47))+(GND6&xor_array(48))+(GND6&xor_array(49))+(GN
D6&xor_array(50))+(GND6&xor_array(51))

+(GND6&xor_array(52))+(GND6&xor_array(53))+(GND6&xor_array(54))+H(GND6&x
or_array(55))+(GND6&xor_array(56))

+(GND6&xor_array(57))+(GND6&xor_array(58))+(GND6&xor_array(59))+(GND6&x

or_array(60))+(GND6&xor_array(61))
+(GND6&xor_array(62)),

end process,

P2 process(suml,sum2,sum3,sum4)

ks sk o ok s e sk sk ok ok sk ok sk ok sk sk sl sk sk sl sfe s ke sk sk ok sk s sk s she sk e sk sk sk ok sk sk ok sk ok ok sk ok ok stk sk sk sk kiR sk sk
e P e el o sl s s s she o sfe e sheohe s ke st sk st she s she sk steshe sk sheske st o skoskeoke sk shok sk skook st ok sk sk stk ek stk sk ok skolok sk skeosk ok

-~ Begin the P2 process

-- This process 1s used to perform an XOR and comparison of the
-- expected PN code and the inbound PN code The result 1s a zero
-- polarity magnitude, based on the 63 bit total magnitude field

. 7 ke sk ok o ok ok ok vk ok ok s s ok sk sk ok she sk ok sk ok sfesie sk sk sk skeoie sk sk ok ok sk sk sk sk sheske sk sk sk sk ok sk ok sk ok ok sk sk ok sk sk ok ok skeok sk sk sk
. 3 sk ok o ok ske s sfe she e sfe she sk ok sk sk ok ske ke ok sk sk sk ke sk e sk sk sk ske s ke sk sk sfe s sk sheshe sk ok she ok ok s ok s ok ok sfe sk sfe sfe sk ofe sk sk sfe sk sk sk sk

begin

compmag <= suml + sum2 + sum3 + sum4,

81

end process P2,

stk sie ot sfe sfe sk sfe sfe sk ol sk sk sk s sk she ofe s ok sk ok sk ok sk sk ok sk of ok s ok sfe sk sk sk sk sk sk st sk sk sk ske sk sk sk sk sk skesie sk sk sk sk sk s skosk sk ook

-- End process
_ 3ok oo sk o sk she s sk she sie ok ok s o ok v sk ok ok sk sk she she ok ok sk sk ok 2ie sie ok ok sfe sk sk sfe sk e ofe s sk sk ok ok st sk sk sfe ok ofe ok ke ok ok ok dle sk sl s sl sk

o sk st sk s sk sfe ofe ok ofe ok sk sk 2k ofe ok ok sk ok sk o ok sk ol ok ok ok sk sk ol ol sk s shesie sk ske sk sk sk ke sk sk ok sk sfe ke sk sk sk ok sk sk ke sk sk sk sk sk sk skok

-- Declare the process sensitivity list (inputs to the process)

e st ste sfe she o sfe she e she sk s oo sfe sfe sfe she o st sfe ofe e sfe ofe ofe o sfe sfe sk e she sk ke sk sk sk ok sk sk she ol ok sfe sk sk s sk sk sheosk sk sk sk ok sk sk sk ke koo sk sk

P3
process(compmag,dsAmag_q,dsBmag_q,dsCmag_q,dsApol_g,dsBpol_q,dsCpol_gq,
dsmbth_g,dsmdth_gq,dsntth_q,dstkth_q,dsmdacc_q,dsntacc_q,dstkacc_q)

o S st st sl e ofe ofe ofe ok ol she sk sk sk oo ofe oo s o e ofe sfe s sk ofe sfe s she s o sfe ofe ofe sfeofe sk she sfeofe sk she sk sk s e ofe sbe o sfe e ok sde ofe sk sk ke skl sk sk sl ok
_ e sk st e s ofe sfe ofe ok sfe st sk e ofe ofe sfe sk sfe st s ofe ofe s sfe e sfe sfe sk e s she sfe s sfeshe ohe she sfeste she sfe sk st sl sk sfe ok sl steseoeske s sk ke ke sk sk sk sk ok

N

-- Begin the P3 process

-- This process 1s used to perform four essential and sequential

-- operations. The first operation 1s to subtract a zero magnitude

-- from the comparator (from the P2 process) magnitude. The second

-- operation 1s to derive a bat polarity from the PN magnitude

-- The third operation stores and rotates three PN magnitudes and

-- their associated bit polanities The fourth operation 1s used

-- to compare the three magmitude values and decide 1f the dither

-- controller needs to be in default or retard or advance

-- retard mode dsretard=1,dsseq roll=61,maxmag=dsAmag maxpol=dsApol
-- default mode dsdefault=1,dsseq roll=62,maxmag=dsBmag maxpol=dsBpol
-- advance mode dsadvance=1,dsseq roll=63,maxmag=dsCmag maxpol=dsCpol

_ stk st ok she ok o sfe s stesie sl sfe sk s sk she sk sfe sk st sk e ok she s sk she sk she sk st sk she s sfe steshe sfe she ok ok ske sk oo sk ok oo ofe ok sk sk ok sk sk sk sk e sk
= e she ok ofe sl v oo s e ofe ok sfe sk s she sk e ofe ofe s s sk o sk s skesie sk ok she sk stesle sk sfe she e sk sfe sfesfe e s sk sk sk ok o sk kst sk e sk ke ke sk ke ok

begin

oo e 3l 3k e 3 3fe sk ok ok ok ok ik ok ok o sk ok sk ok ok ok sie sk ok o ok sk sk sk sk sk ok sk sk sk st sk sk sk sk sk ok sk s sk sk sk sk sk sk sk st ok sk sk s sl sk ske sk

-- Declare the flip flops which require feedback

_ st sk ofe sfe ok sfe she sfe s s sfe ohe sfe sk she sk sk sfe sk s sfesie ske ok she st e ofe sk sfe s s e sfe oo sfe e sk sfe s sfe sk she she s e sk s she s sl sk sk ek sk sk sk sk skeok

o st sk sl ol ok ofe sk sk sk e sk ok ofe ok s she sk sie ofe ok ok 3 sk sfe ok she sk sk sk ok s sk sk skoske sk st skesk ok skl sk ok s ke skl ook sk sl sk sl e ke sfeske s sk

-- Declare the default states for the flip flops 1n this process.
82

_ 3 s e e e sfe sie ofe ok ok ok sfe s sk o e ofe she sk sfe sk s ofe sk sk sfe o s she s stk s sk sfe sk sk sk she sk s o s sk sk s sk sk sk sk ke sk sk sk ek ook

dsBmag_d <= dsCmag_q,
dsBpol_d <= dsCpol_gq,
dsAmag_d <= dsBmag_q,
dsApol_d <= dsBpol_gq,

3 sk sk s sk ok sk ok ok ok ok ok ok sk ok sk ok ok sk ok ok sk ok o o ol ol sk ok ke i ste sk sk she sfe sk sk sk sk sk sk sk oo st she sk ook ke sk sk sk e sk s s sk skl ok

-- Begin body of process arguments
_ sk st ke st s ok sk v sk ok ofe sk 3k s sk sk s ofe ok ok sfe ok ok sie ok sk sk o sk sk ok sk s she sk s sfe sk ske ok sk sk sk ke oo ofe sk s ok sk ok e ok ke ok sk ke sk sk ok ok

if (63 - compmag) > compmag then
dsCmag_d <= (63 - compmag),
dsCpol_d <= ‘0’,

else dsCmag_d <= compmag,
dsCpol_d <=1,

end 1f,

if (dsAmag_q > dsBmag_q) AND (dsBmag_q >= dsCmag_q) then
maxmag <= dsAmag_q,

maxpol <= dsApol_gq,

dsadvance <= ‘0’;

dsdefault <= ‘0,

dsretard <= “1°,

elsif (dsCmag_q > dsBmag_q) AND (dsBmag_q >= dsAmag_q) then
maxmag <= dsCmag_q,

maxpol <= dsCpol_gq,

dsadvance <= ‘1’,

dsdefault <= “0’,

dsretard <= “0’,

else

maxmag <= dsBmag_g,

maxpol <= dsBpol_q,

dsadvance <= ‘0,

dsdefault <= ‘1’,

dsretard <= ‘0’,

end 1f,

end process P3,

o 3f e sk st e sk ot e s oo s sk ok sk sk ook e sk st o sk ske s o ke s st s e o ok e e oo o o e e s s e oo s ke ook ke o s s s ok e e ok ok o ok

-- End process
7 sk s ok o ok ok ofe sk s sje e ofe ofe ofe sk sk st ok sfe sk sfe s o e sk ok oo s e she sk ok sk o ok o ok ok sk sk ok ok sfe sk sk sk sk sk ke ok ok ok sk s e ke sk ok R ok

83

_ 3k sk ok ofe ske e sk sfe sk s sfe sk ok ok ok ok sk sk sk sfe sk s sk sk she sk ok ske sk sk oke sk ok e sk sk ofe sk sk sie ok ofe sk sie sk iRk st sk sk sk skoskok skokeskokskosk sk

-- Declare the process sensitivity list (inputs to the process)

_ ke ste s ok ok sk sk ofe o ok e sk sk s sk sfe ok ok ok ok sk ok e ok sk o sk sk sk st ok s ok sk sk sk sk sk s sk sk ofe ok sk ok sk sk siok sk sk st e sk s sk sleskskesk ok

P4

process(maxmag,maxpol,dsretard,dsdefault,dsadvance,dpack_gq,dspclk_q,pretrk_q,
trk_q,dsmbth_q,dsmdth_g,dsntth_q,dstkth_q,dsmdacc_gq,dstkacc_g,dsntacc_q,dsseg_q,
dsdefault_q,dsretard_q,dsadvance_q)

_ 3ok st s sfe sfe she s s s s o ol sk ohe ok o she sk sk ok s sfe ke e o sk she i ok ofe s s she e ok ofe ofe sk ok she s sk ok ok sfe sk sfe sl e sl sk she sk sk koo sk sk ok
e ste sfe e ohe ofe she s sfe s s o ok sfe she sk she she e sie ofe she sfe e ohe ofe s she e sfe she s she she o sfe she s s sfe she st s ol sfe sfe sk sk e stk sk sl sk sk ook sk sk ok

-- Begin the P4 process

-- This process 1s used to derive the spread (dspclk) clock This

-- clock 1s generated by applying the DSRETARDPT or DSDEFAULTPT or
-- DSADVANCEPT to slide the trigger pont for the outbound derived

-- spread clock This process also resolves the the outbound desrpead

-- (dpack) data This process also cotrols whether the despreader

-- correlator module 1s 1n search or pretrack or track mode This

-- process also measures missed bit and missed detect thresholds

o SRR i o sk o o sk ok sk ok ofc ok sk sk s sk sk ok sk ok ofe sk ofe sk sl ok sk ok ok sk ok ok sl sk ok sk ok ok she ok sk sk sk ok o ok ke st skeskesk sk skl ok sk sk sk sk sk ok
_ e sk sk sk e sfe ofe s s sie ik ke sie o sfe o she ste o ofe ofe s sfe s sfe ofe she st sie sfe sfe sk s s ofe she sfe sheshe sk sk e sl sk sk sfe sk ok e sfe sk sk sk sk sk ke kol sk ok

begin

o stk sk ofe ok sfe sfe s e sie ske ofe ok s s she s sk ofe sk s s o ofe sk she e sk sk she s sfe ofe sfe sfe sfe sk shesfe she e e ok sfe sk kel ske ok sk ke sk ke sk e sk sk sk e sk sk

-- Declare the flip flops which require feedback

. e 3k s o o ok sk sk o s e ofe ofe ok she s sl e sl ofe sfe st sie sl sfe sk s seofe ofe s sk s e she s sfe sheshe sk sk sl ofe sk she sk ok oke e sk ok sl sk sl sieskok sk sk e ke ok

dpack_d <= dpack_gq,
dspclk_d <=dspclk_gq,
pretrk_d <= pretrk_q,
trk_d <=trk_q,
dstkacc_d <= dstkacc_q,
dsntacc_d <= dsntacc_q,
dsseg_d <= dsseg_q+1,

o B ok sk e e ok ofe sl sk s s e ik ofe sk ofe sk sk sk e ok 3 s sk ok she ok s st sfe ofe ok sfe sfesie ske sk sheste she sk sfe sk e sk s s e sk ke s sk sk sk ok skeoske ke ke sk

-- Declare the default states for the flip flops 1n this process.
kst sk st sfe ok o oke ofe ok sk ok sfe sk sk sk sk ok sk sk ok sk ok ok ofe ok ofe sk ofe ole sfe ok sk sk ke sk ook s sk sk sk sk oo ok ok ol sk sk sk sk sk ke ke sk sl sk sk ok

dspclk_d <= “0’;
mbit_d <= ‘0’,

84

mdet_d <= ‘0,

dsmbth_d <= dsmbth;
dsmdth_d <= dsmdth,
dstkth_d <= dstkth,

dsntth_d <= dsntth,
dsdefault_d <= dsdefault_q,
dsretard_d <= dsretard_q,
dsadvance_d <= dsadvance_q,

. e e e i ofe ok ofe ok she she sk ofe ofk sk ofe oo s she sk sk ok o sfe sk ok ok ofe s s e ske ok s oo ok ok ok she sk ok sk ok sk sk ol o ook ok sk sk sl sk sk sk sk kol sk sk ik

-- Begin body of process arguments
o S0 3E e ke she s ok ok e ok ok sk ok s she ol ofe sk she she ke sk sk sk sk sk sfe e ok s ke she ok ok s sk ok ke ok sk ok sk o she sk she st st ofe sk sk she o sk she sk ok sk ke sk ok

if (dsseg_q = DSMAXPT) OR
((dsdefault_q = ‘1") AND (dsseg_q = DSDEFAULTPT)) OR
((dsretard_q = “1") AND (dsseg_q = DSRETARDPT)) OR
((dsadvance_q = ‘1) AND (dsseg_q = DSADVANCEPT)) then

dsdefault_d <= dsdefault,

dsretard_d <= dsretard,

dsadvance_d <= dsadvance,

dsseg_d <= “0000000",

dspclk_d <=1,

dpack_d <= maxpol;

if trk_q = ‘0’ then

if maxmag > dsmdth_q then
dstkacc_d <= dstkacc_q+1,
if dstkacc_q > dstkth_q then
trk d<=‘1’,

end 1f,

else

pretrk_d <= ‘0’,

end 1f,

else

if maxmag < dsmdth_q then
dsntacc_d <= dsntacc_g+1;
if dsntacc_q > dsntth_q then
trk_d <=°0’,

pretrk_d <=0’

dpack_d <="‘0’,

end 1f,

else

dsntacc_d <= “0000”,

end i1f,

end if,

85

if (trk_g =*1") AND (maxmag < dsmbth_q) then
mbit_d <= ‘1",

end 1f,

if (trk_q = “1’) AND (maxmag < dsmdth_q) then
mdet_d <= ‘1",

end 1f,

end 1f,

if (maxmag > dsmbth_q) AND (pretrk_q = ‘0’) then
pretrk d <=1,

dsseg_d <= “0000000",

dstkacc_d <= “00”,

dsntacc_d <= “0000”,

end 1f,

if pretrk_q = ‘0’ then
dpack_d <= 07,
end 1f,

if dsseg_q < “0100000” then
dspclk_d <=°1,
end 1f,

end process P4,

oaan S 2K e ok s e ok s e sfe s ofe she s ofe she s e ok sk sk she ok sk sk sfe ok ok s e sk sk s sk ok ok sk ok sk ok s sk sk sl ok she sk sk she sk sfe ke sk ske sk ke sk ke sk sk ok

-- End process
o st stk ke ofe she s s sk st ke sfe ske s sfe st sfe o ofe sk sk she st ke she sfe s s ofe sk st ok s sk sk ok she sfe sk o sfe ke sk sle sfe st sk oot sk sk e ke e skl sk sk ek ok

end behavior,

8.4 Protocol Remover

library 1eee,
use 1eee std_logic_1164 all,
use 1eee std_logic_anth all,

86

use 1eee.std_logic_unsigned.all,

3k s s ok ok st sk ok sk ok ok oo ke ook sbe ke sk sfe e s ofe 3 oo i she ke s she sk she s st sk st sfe s sfe ok sk ook o i o she e s ofe sk she sk sfe sk st e of e st ok e sl ke s e s sl sk e e sk ok

*

-- I/O Interface Declaration

s e ok e e s ke e sk sfe e s s e s st s e s st e s sk ot e s s st e s s o ke s o o sl sk s o o e s o e s st s s st st e sk o ke sk s ok o s e e s e o o ok s s sk ok

*

entity protocol_alt 1s

port
(

-- Inputs

signal dpack
signal dspclk.
signal sysclrb
signal trk
signal mdet
signal mbat

-- outputs

signal strk.
signal smdet
signal smbit
signal sdata

)s

end protocol_alt,

e sk she e o s ke ok sk ook sk st she sk sk sk sfeshe e sk st ok ke ok sk sk ke ok sbe st ok ke ok st s she sk s sk st she e sk st sheshe e sl o e e o o ook sk o sk s s ook sk ek sk sk kol sk

sk

1 std_logic,
1 std_logic,
1n std_logic,
m std_logic,
mn std_logic,
1n std_logic,

out std_logic,
out std_logic;
out std_logic,
out std_logic

-- Architecture body

e st e o e sfe sk s e sfe ke s ke sk ofe o s e s she sk sfe e s sfe st sfe i s ok st e sk o s s she s sk ok st s ok sk ke st sk s st ok sheske st sfe o s sk sfe sk sk sk skl s sk ok ok sk s sk ok

*

architecture behavior of protocol_alt 1s

signal 11, 2 std_logic,
signal sdata_sig. std_logic,

signal trk_q-
87

std_logic,

signal mdet_q- std_logic,
signal mbit_q std_logic,

begin

process(sysclrb, dspclk)

begin

1f sysclrb = ‘0’ then
trk_q <=0,
mdet_q <= ‘0’,
mbit_q <= ‘0’,
ml <=°1",
m2 <= ‘0’

elsif nising_edge(dspclk) then
trk_q <= trk,
mdet_q <= mdet,
mbit_q <= mbiut,
m2 <=1ml;
il <= dpack,

end 1f,

sdata_si1g <=1nl xor 12,
strk <=trk_q,

smdet <= mdet_g,

smbit <= mbat_q,

sdata <= sdata_sig,

end process,

end behavior,

8.5 Packet Detector

library 1cee,

use 1eee.std_logic_1164.all;

use 1eee std_logic_arnth all,

use 1eee std_logic_unsigned all,

88

s s sk s sk e se s o s st ok s s ok ke s st ke s s o ok e sk o ke sk sk o ke s sl sk s st s o ke sk s o ke s st ke s sfe e sk ok sfe sk ok ke

-- I/O Interface Declaration
_ sk s sk sk ke e ol ofe ofe ok sk sk sk sk e s b sk s s s ofe ok ok sk sk 2o e ok sfe oo s ofe ofe sfe sfe ok sfe she sfe el s sfe sfe sk e e sfe sk sl e ke sl sk ke sk ok

entity pack_det 1s

port(
--1nputs
sdata 1 std_logic,
dspclk n std_logic,
-- md 1 std_logic_vector(2 downto 0),
clacq 1 std_logic;
rstb m std_logic,
ldvar 1n std_logic,
strk n std_logic;
--outputs
wsclk buffer std_logic,
pkda_ec bufferstd_logic_vector(9 downto 0),
match buffer std_logic,
pkdwr out std_logic,
pkwec. buffer integer range 0 to 63;
pkwwr buffer std_logic,
acq out std_logic,
pkda out std_logic_vector(9 downto 0)
L

end pack_det;

S s e e e ofe sl ohe sfe st s e sfe sfe ofe ok o s skeosfe sl ok she s e ofe sk s st ofe sk sl sfe st ohe she skt sl she sk ke ook sk s sk st sk ke skeskeskesk sk ok

-~ Architecture Body
o e sle ok e ofe sk e sfe ofe e sfe ole s she ok sfe sfe sfe oo sfe sfe e s she sfe e sfe sk sk ok sk She e s s she ok st sk she she ke sk sk sk sk sheske ok sk e sk e sl sk

architecture behavior of pack_det 1s

--Constants for Graviton demo

--Packet words are transmitted from the ACQ LSB first

constant pklen.integer.= 6,

constant pkwid mteger .= 10,

constant frame_sync std_logic_vector(9 downto 0):=1111100000”,
constant GNDA std_logic_vector(9 downto 0) ="0000000000”,
constant GND7'std_logic_vector(6 downto 0) ="00000007;

--set programmable parameters as constants to free up logic cells
constant uid std_logic_vector(2 downto 0) ‘= “101",

signal 1d_cnt. 1nteger range 0 to 20,
signal md_sig std_logic_vector(2 downto 0),

89

signal pkwwr_sig std_logic,

signal pkdwr_sig std_logic,

signal pkdwr_sig_d1 std_logic,

signal pkdwr_sig_d2:std_logic;

signal pkdwr_sig_d3 std_logic,

signal pkdwr_sig_d4 std_logic,

signal pkdwr_si1g_d5 std_logic,

signal acq_sig std_logic;

signal ref_wd std_logic_vector(pkwid-1 downto 0);
signal pkwc_sig.integer range 0 to 63;

signal ec_cnt' mnteger range 0 to 10,

signal pkda_sig.std_logic_vector(9 downto 0),

signal pkda_sigl std_logic_vector(pkwid-1 downto 0),
signal pkda_s1g2 std_logic_vector(pkwid-1 downto 0),
signal pkda_nt std_logic_vector(9 downto 0),

begin

acqusition process(rstb, clacq, dspclk)
begin
if Idvar = ‘1’ then
wd_s1g(0) <= wd(2),
wd_s1g(1) <=wd(1),
wd_s1g(2) <= wd(0),
ref_uid <= GND7 & uid_sig,
else
ref_wid <= ref wd,
end 1f,
1f rstb = ‘0’ or clacq = ‘1’ then
pkda_int <= GNDA,
match <= ‘0,
acq_sig <= ‘0’,
ec_cnt <=0,
wsclk <= “1°,
1d_cnt <=0,
elsif falling_edge(dspclk) then
pkda_int(8 downto 0) <= pkda_int(9 downto 1),
pkda_int(9) <= sdata,
if (match or acq_sig) = ‘1’ then
if ec_cnt = 9 then
pkda_ec <= pkda_int,

ec_cnt <=0,
wsclk <= ‘0,
else

pkda_ec <= GNDA,
90

ec_cnt<=ec_cnt+ 1,

wsclk <= ‘1,
end 1f,

else

ec_cnt <= ec_cnt,
wsclk <= ‘1",
end 1f,

if pkda_int = frame_sync then
match <= ‘1’,
else

match <= match,
end 1f,

if match = ‘1’ and acq_sig = ‘0’ then
if pkda_int = ref_wid and 1d_cnt = 19 then
acq_sig <= ‘1",

1d_cnt <=0,

else

1f 1d_cnt = 20 then
acq_sig <= ‘0’,
1d_cnt <=0,
match <= ‘0’,

else

acq_sig <= acq_sig,
1d_cnt<=1d_cnt + 1,
end 1f,

end 1f,

else

acq_sig <= acq_sig;
1d_cnt <=1d_cnt,
end 1f,

end if,
acq <= acq_s1g,
end process acquisition,

data_strobe’ process(dspclk, rstb, acq_sig)

91

begin '
1f rstb = ‘0’ or acq_sig = °0’ then
pkwwr_sig <= ‘1’,

pkdwr_sig <= ‘1’;
pkdwr_sig_dl <=°1°,
pkdwr_sig d2 <=°1",
pkdwr_sig_d3 <= 1",
pkdwr_sig_d4 <= ‘1",

elsif falling_edge(dspclk) then

P!

if acq_sig = ‘1’ then
pkdwr_sig_d4 <= wsclk,

else

pkdwr_sig_d4 <= pkdwr_sig_d4,
end 1f,

pkdwr_sig <= pkdwr_sig_d1;
pkdwr_sig_d1 <= pkdwr_sig_d2,
pkdwr_sig_d2 <= pkdwr_sig_d3,
pkdwr_sig_d3 <= pkdwr_sig_d4,
if pkwe_sig = pklen then
pkwwr_s1g <= pkdwr_s1g;

else

pkwwr_sig <= pkwwr_sig,

end if,

if strk = 0’ then

pkwwr_sig <= ‘0’,

end 1f,

end 1f,

pkdwr <= pkdwr_sig,

pkwwr <= pkwwr_sig,

end process data_strobe,

data_out' process(dspclk, rstb)

word_count

92

begin

1f rstb = ‘0’ then
pkda_sig <= GNDA,
pkda_sigl <= GNDA,
elsif rising_edge(dspclk) then
if wsclk = ‘0 then
pkda_sigl <=pkda_sig,
pkda_sig <= pkda_ec,
else

pkda_sigl <=pkda_sigl,
pkda_sig <= pkda_sig,
end 1if,

end 1f,

pkda <= pkda_sigl,

. end process data_out,

process(wsclk, rstb, acq_sig)

begin

if rstb = ‘0’ or acq_sig = ‘0’ then
pkwc_sig <=0,

elsif nsing_edge(wsclk) then

if pkwc_sig = pklen or strk = ‘0’ then

pkwc_sig <= pkwc_sig,
else

pkwc_sig <= pkwc_sig + 1,
end 1f;

end 1f,

pkwc <= pkwc_sig,

end process word_count,

end behavior,

8.6 FIFO Controller

library 1eee,
use 1eee std_logic_1164 all,
use 1eee std_logic_arith.all;

3 sk sk e sl ofe ohe she sfe sfe s sk ok e she sk she she st sk ofk sk o sbe ok sl sfe she st sk ofe she she s s ofe ofe ok s e sfe she sk sk stk sk ok sk sk ke ke sk ke sk sk skok

-- I/0O Interface Declaration
o sk sk e sle sl ke she sl s she sfe o she ofe sl she ofe sl she ok e she sfe o ok sk she ok sk sfesk ok shoske sk sk shoske sk ke e sheoske e e skeoske seske sk shoskskeoskosk sk ok

entity fetrl 1s
port(
--1nputs
signal dspclk n std_logic,
signal rstb 1n std_logic,
signal strk 1n std_logic,
signal rd m std_logic,
signal acq 1nstd_logic,
signal pkst 1 std_logic,
signal pkdwr 1n std_logic;
signal pkwwr 1n std_logic,
signal full nstd_logic,
--Data FIFO full
signal mty 1n std_logic,
--Data FIFO empty
signal temp_full in std_logic,

--outputs
signal ovr buffer std_logic,
signal temp_clrb buffer std_logic,
--temp_clrb 1s the asynchronous active low data FIFO clear
signal tempwr buffer std_logic,

93

--tempwr 1s the active high write to the data FIFO signal
signal tpclk buffer std_logic,
signal drdy. buffer std_logic,
signal xfer* buffer std_logic;
--xfer 1s the active high data FIFO write signal
signal dfclk. buffer std_logic,
signal dfrd* buffer std_logic,
signal clacq buffer std_logic
)’

end fotrl,

3k ok ok o e sk sk s ok ok ok sk ok 3k sk sk she sk ok she sl ok ok ok ok ok ofe ok sfe 3 ok ok ke sk sk sk sk shesie ke sk ok e sk sk ke sk sk sk e skeosk ke sk ke sk ok

-- Architecture Body
3K ke sk ok sk sk sk ofe sie sk sk sk sk sk ok o sk ok sk ol ol sk sl sk ok ok ok ok sk sk sk sk ok she sk s sk o st sk she sk ske she sk skeoskeskokoke ko ke e sk sk

architecture behavior of fetrl 1s

--The data FIFO 15 96 by 10
--Expected word count 1s the expected packet length minus 2
--For the Graviton demo, pklen = 6

constant pklen mteger = 6,
constant pkwid integer = 10,

signal temp_clrb_d, temp_clrb_q std_logic,
signal tempwr_d, tempwr_q std_logic,
signal dfrd_d, dfrd_q.std_logic,

signal clacq_d, clacq_q std_logic,
signal drdy_d, drdy_q std_logic,

signal xfer_d, xfer_q std_logic,

signal xfer_d2, xfer_q?2 std_logic,
signal ovr_d, ovr_q std_logic,

signal dfwrclk std_logic,

signal tprdelk std_logic,

signal clk_cnt integer range 0 to pkwid,
signal ovr_cnt integer range 0 to 7,
signal xfer_cnt integer range 0 to pklen,
signal dfclk_d std_logic,

signal dfclk_q std_logic,

begin

o e sl ke e ofe ofe ofe ok she s afe e ok ofe ok ok sfe s ke o ofe s s 3k ok sk ohe sk sk ok ofe ohe she ok 3 sk sfe ok s ik she ok sk sk e ofe sk ofe ok sk she skl ofe she sfe sk sk ket i sk s sk

-- Synchronicity

o St e e e e ofe ofe she e s sk ofe ofe ofe ofe s sfe s ik sk ok sfe sje e ofe oo sk s s ofe ohe ohe ofe s ofe ofe sk e s sfe sk s s sie s s sk sl sl sl ke ke sk sk sk sk sk sk ok ke e sk ok

flops process(rstb, dspclk)
94

begin

if rstb = ‘0” then
temp_clrtb_q <=“1",
tempwr_q <= ‘0’;
clacq_q <= ‘0’,
xfer_q <=°0’,
xfer_q2 <=0,
drdy_q <= ‘0,
ovr_q <= ‘0’;
dfclk_q<=°1’,

elsif falling_edge(dspclk) then
temp_clrb_q <=temp_clrb_d,
tempwr_q <= tempwr_d,
clacg_q <=clacq_d,
xfer_q <=xfer_d;
xfer_q2 <=xfer_d2;
drdy_q <= drdy_d,
ovr_q <=ovr_d,
dfclk_q <= dfclk_d,

end 1f,

temp_clrb <= temp_clrb_q,

tempwr <= tempwr_q,

dfrd <= drdy_q,

clacq <= clacq_g,

xfer_d2 <=xfer_q;

xfer <= xfer_q2,

drdy <= drdy_gq,

dfclk <= dfclk_gq,

ovr <=ovr_gq,

end process flops,

3k st she sk ofe o ok s ok e sk sk s ok st ol shesfe sk sfe ke s she s she ok steshe sl s ok st ofe s ok sk s sk sk sk ke s e st sfe sk sk st sk ke sk skosfeskesk sk ik skok skesk ok

-- Clock Generation
i sk sk e ske sk s sk s s sk sk ok sk o e she s sk ok sk sk sk ke sk s ok sk ok she sk ofe sfe sk sfe sk she s e o sfe ok ok s s ok ok sk ok ofe sk sk sk sfe sk Kook sieske sk sk e sk

--Generate clocks for the single-clock FIFOs

clk_gen process(rstb, dspclk)
begin
if rstb = ‘0’ then
clk_cnt <=0,
tprdelk <= ‘1°,
dfwrelk <= ‘1°,
elsif falling_edge(dspclk) then
case clk_cnt 1s

95

when 0 =>

tprdclk <= ‘0,

dfwrclk <= “1°,
clk_cnt <=clk_cnt + 1;
when 1 =>

tprdclk <= ‘1",

dfwrclk <= <07,

clk cnt<=clk_cnt+1,
when pkwid - 1 =>
clk_cnt <=0,

tprdclk <= ‘1’,

dfwrelk <= “17;

when others =>
tprdelk <= ‘1°,

dfwrclk <= “1°,
clk_cnt <=clk_cnt + 1,
end case,

end 1f,
end process clk_gen,

_ sk e e o e o o st ol s o ok s o o e o e sk o o st fe sk o o o o o s e s s o s s s o e s s e o s s sl s s sk st e sk ke el sk e sk e ok

-- Clock Selection
Lo keske oo skt sk sk ok s ok ok s ok ot she ok s she sk ok ook oo ok s ske ok ofe she s ok s sl sl sk sk stk st s sk sk sk sk ol sk sl sk ks ok ke sl s sfe s ke sl sk

--Generate the data ready signal (drdy) and switch clocks

clk_sel process(rstb, dspclk)

begin

if rstb = ‘0’ or mty = ‘1’ then
drdy_d <= ‘0,

elsif rising_edge(full) then
drdy_d <= ‘1",

end 1f,

if drdy = “1° then

dfclk_d <=rd,
elsif xfer= ‘1" then

dfclk_d <= dfwrclk,
else

dfclk_d <= 1",
end 1f,
if xfer = ‘0’ then

tpclk <= pkdwr,
else

tpclk <= tprdclk,
end 1f,

96

end process clk_sel;

_ 3k ok sk ok sk sfe sk sk ok ok ok o3k ot sk sk s ok sk ok ok o ok sk sk ok s sk sk sk sfe sk sk she she sk sfe sk sk s sk ok sk sk s o ok ok ok ok ke sk ok sk sk ook ksl sk ke ok

-- Data FIFO and Temporary Packet Buffer Control

__ sk sk s s s ot o s ke ook sk o oo ok st ok o s e s o oo ke s ok ok s ok ofe e e s ol st o s s o o ke s of ok s sk sk ke sk e s s ok s s ke

--Write to the temporary packet buffer 1s disabled if tracking 1s

--lost (strk=0), the packet 1s bad (pkst=1), or the data FIFO has
--overflowed (temp_full=1). If the packet 1s good then 1t 1s written to
--the temporary packet buffer

temp_ctrl process(rstb, dspclk)

begin

if rstb = ‘0’ or acq = ‘0’ or drdy = ‘1’ or temp_full = ‘1’ then
tempwr_d <= ‘0’,

elsif falling_edge(dspclk) then
tempwr_d <= ‘1",

end 1f,

clacq_d <= pkst or not (pkwwr) or drdy,

temp_clrb_d <= rstb and not(pkst) and not(full),

end process temp_ctrl;

--If the data 1n the temporary packet buffer 1s ready to
--be sent to the data FIFO, then writing to the data FIFO and reading
--from the temporary packet buffer (xfer) 1s enabled

data_ctrl process(rstb, dfclk)
begin
if rstb = ‘0’ then
xfer_cnt <=0,
xfer_d <= 07,
elsif rising_edge(dfwrclk) then
case xfer_cnt 1s
when 0 =>
if temp_full = “1” then
xfer_cnt <= |,
end 1f,
when 6 =>
xfer_cnt <=0,
when others =>
xfer_cnt <= xfer_cnt + 1;
end case,
if xfer_cnt =0 then
xfer d <=°0’,
else

97

xfer d <=°1",
end 1if,

end 1f,

end process data_ctrl,

__ e she st s e ok e ofe s s she st ik e ok ok ofe sk sk sk sk ok s s sk sk e ok sk st sk sfe sfe sk ofe ofe e ofe ok s sk ok ok s e e ofe ok sk sk sk e ke sk ke ok

-- Overflow
o hesk ok sk ok ok ok s o e o ok sk she ke sk sfe ok sfe sk ok ok sk ske e sk she sk ke sk sk ok sk skoskosk sokok sk sk sk sk sk sk sk sk sk skl sk sk R sk ok ok

oc process(rstb, mty, dspclk)

begin

if rstb = “0° or mty = ‘1’ then
ovr_cnt <=0,

elsif falling_edge(dspclk) then
if full = ‘1’ then
ovr_cnt<=ovr_cnt+ 1,
else
ovr_cnt <= ovr_cnt,
end 1f,
if ovr_cnt = 100 then
ovr_d<=°1",
else
ovr_d<="‘0’;
end 1f,

end 1f,

end process oc,

end behavior,

8.7 Packet Error Logic

Iibrary 1eee,
use 1eee std_logic_1164 all,
use 1eee std_logic_arith all;

o sk e e ok e she ok ook st ol s she sk ofe sk sfe ke she sk s sheofe sk sk s she st st sfe sk ke sk sk o ok ok sk st sk s st ke st ook skt sk b seokeostesk e sk sk sk ek b skt sk sk ook ok

-- I/0O Interface Declaration
oo 3B sk st sle ok st ohe she st she sk sfe o s o sle e s sk sk ok sk sk sk sk sk ok e s she s st she sk s s ofe she ot e sfe ofe o she she ofe s st s SR sfe ok oo she ok e ok ok e sk ok sk sk ke sk ko sk ke ok

entity pack_err 1s

98

port

(

-- Inputs
signal clk. 1 std_logic,
signal pkwwr:n std_logic,
signal pkwc 1n integer range 0 to 63,

-- signal pkwcth 1n integer range 0 to 63,
signal mbit 1n std_logic,

-- signal pkmbth n integer range 0 to 63,
signal mdet 1n std_logic,

-- signal pkmdth 1n integer range 0 to 63,
signal acq 1n std_logic,
signal sysclrb 1n std_logic,
signal ldvar 1n std_logic,

-- outputs
signal ambit buffer integer range 0 to 63,
signal amdet buffer integer range 0 to 63;
signal pkst buffer std_logic

),

end pack_err,

- st sk st she sk sk st sk sk o sk ke oheoke ok sbe sk sk sk sk s ek sk sk sk sk sk e ok sk sk sfe st s e sfesle st st s e sl ok o sk ok sk sk sk ok ke she e sk s sk sk st ok ok ok ok sk sk sk ek

-- Architecture body
"**1***

architecture behavior of pack_err 1s

signal mbabove std_logic,
signal mdabove.std_logic;
signal webelow std_logic,
signal mbth 1integer range 0 to 63,
signal mdth mteger range 0 to 63,
signal wcth teger range O to 63,

--set programmable thresholds as constants to free up logic cells
constant pkwcth mteger =6,
constant pkmdth integer = 3,
constant pkmbth integer = 3,

begin

3t s s st s s sfesfe ook ol e sk sk s s shesheshesfe ke sl ske skl ook sk ok sk ok sk sk st sk st ook sk sk sk sk sk sk ok st s sk sk ok skoR sk sk sk sk ol s skok skok sk

-- Load Programmable Settings
sk st o ok sk ok sk ok ok sk ok sk ste ke s sk sk ke sk sk st sk ok s st s sleole sk sk sfe sk i s s st s ok sk sl s sk sk sk s sk st s ok ok ok ook ok sk sk sk s ok ok

99

load process (Idvar)
begin
if nsing_edge(ldvar) then
--Load externally programmable settings
mbth <= pkmbth,
mdth <= pkmdth;
wecth <= pkwecth,

else
mbth <= mbth,
mdth <= mdth,
wcth <= wcth,
end 1f,

end process load,

R 2k e ok sk ok e sk ok ok sk ok ok sk ok ok s ok ok sk ok she ok sk sk sk st sfe she o sfe sk she s she sfeoke sk e s o sk sk sk ok ok e ok sk sk ok sk stk sfe st sfe sfe ke sk sk e ok

-- Missed Bit and Missed Detect Accumulators
5% ol o ke s sk sk sfe sk sk sk sl e sk st sk ok sk sk sk ok sk ske ol ke sk ot s e o sk ok sk sk ske sk sk sfe ke sk sk ok ok st sfe sfe she s sl sl ok sk sk e sk sk sk sk sk sk sk sk sk e sk
acc process (mbit, mdet, sysclrb, acq)
begin
1f sysclrb = ‘0’ or acq = ‘0’ then
ambit <= 0,
elsif falling_edge(mbat) then
ambit <= ambit + 1,
end 1f,
if sysclrb = ‘0’ or acq = ‘0’ then
amdet <= 0;
elsif falling_edge(mdet) then
amdet <= amdet + 1,
end 1f,
end process acc,

3k 3k s o ok ol e ok she ok ol she ke sk sfe e she s ke s sk ke she ke sfe s ske oo ke sk she ke ok sk s ok ofe sk ke s sk ofe s ok sk ok ok sk sk sfe sk sk sk sk sk sk sk skesk sk ke sk sk sk ok

-- Packet Status Check
S 3R 3 ok o ok s o sk e s ofe ok sfe sfe s e sfe sk she s s st sk ok sfe sk sk e she sk sk sl ofe sk s e oke sk sk sk ok ok sfe sk sfe sfe o st sie ke sk ofe sk sfe s s sk sk sk sk sk ok
psc process (clk, pkwwr, sysclrb, acq)
begin
1f sysclrb = ‘0’ then
mbabove <= ‘0’
mdabove <= ‘0,
wcbelow <= ‘0,
elsif falling_edge(clk) then
--Compare missed detect and missed bit counts to thresholds

1f (ambit > mbth) then
mbabove <= ‘1’,
else

100

mbabove <= ‘0’,
end 1f}
if (amdet > mdth) then
mdabove <= ‘1,
else
mdabove <= ‘0’,
end 1f,
-- Check mcoming packet word count to see 1f 1t 1s below the threshold
if (pkwe < weth) then
wcbelow <= ‘1’;
else
wcbelow <= ‘0’,
end 1f,
end 1f,
1if acq = ‘0’ then
pkst <= ‘0’;

elsif falling_edge(pkwwr) then
--Check for packet errors and set pkst flag high 1f packet 1s bad
pkst <= mdabove OR mbabove OR wcbelow,

end 1f,

end process psc,

end behavior,

101

Vita

Brian Parker Chesney

Recerved Bachelor’s of Science 1n Electrical Engmeering from Rice University in 1998
The BSEE had a systems emphasis with course work concentrated 1n VLSI design, digital
communications and digital signal processing Have been working at the Oak Ridge
National Laboratory under Dr Charles Britton m the Monolithic Systems Group 1n the
Instrumentation and Control Division Work has focused on telesensing using digital
communication Interests include VLSI design, information theory, digital signal

processing and digital communications

102

	Design, implementation and testing of a digital baseband receiver for spread spectrum telesensing
	Recommended Citation

	Design, implementation and testing of a digital baseband receiver for spread spectrum telesensing

