
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2000

Design, implementation and testing of a digital baseband receiver Design, implementation and testing of a digital baseband receiver

for spread spectrum telesensing for spread spectrum telesensing

Brian Parker Chesney

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Chesney, Brian Parker, "Design, implementation and testing of a digital baseband receiver for spread
spectrum telesensing. " Master's Thesis, University of Tennessee, 2000.
https://trace.tennessee.edu/utk_gradthes/9296

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9296&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Brian Parker Chesney entitled "Design,

implementation and testing of a digital baseband receiver for spread spectrum telesensing." I

have examined the final electronic copy of this thesis for form and content and recommend that

it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with

a major in Electrical Engineering.

Danny Newport, Major Professor

We have read this thesis and recommend its acceptance:

Charles Britton, Daniel B. Koch

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council

I am submittmg herewith a thesis written by Brian Parker Chesney entitled"Design,
Implementation and Testmg ofa Digital Baseband Receiver for Spread Spectrum Telesensing"I
haveexamined thefinalcopy ofthis thesisforform and contentandrecommend that it be accepted
m partial fulfillment ofthe requirementsfor the degree ofMaster ofScience m Electrical
Engineering

Dr DdnnyNewport,h^jor Professor

We-have read this thesis

and recaSSSUMidjj^acGeptance

Dr Charles Brittom

^QaulA
Dr Daniel Koch

Accepted for the Council

Interim Vice Provost and!

Dean ofthe Graduate Scnb

Design,Implementation and Testing ofa Digital

Baseband Receiver for Spread Spectrum Telesensing

A Thesis Presented for the Degree of

Master ofScience

The University ofTennessee,Knoxville

Brian Parker Chesney

December,2000

Abstract

Telesensmg involves receiving data wirelessly from a remote sensor

Generally,the sensor node is fixed and configured to transmit only or perform very basic

reception Because oftheir low power consumption,telesensors can be powered by a

battery for long periods oftune withouta measurementortransmission interruption This

allows several nodes to be placed at strategic locations and creates a need to have all the

individual data collected and processed at a centralized location Frequency Division

Multiple Access(FDMA)provides robust data transmission from multiple telesensors to

the same receiver at the cost ofadded bandwidth.

This thesis focuses on the digital recovery ofspread spectrum data m an

FDMA system A general digital spread spectrum receiver architecture is given(without

transceivmg capability)and each component is designed,implemented and tested m the

receiver as a whole A sliding correlator with a threshold is used to synchronize the

pseudonoise(PN)code used to encode the data with the incoming data System clocks are

also recovered from the incoming data and distnbuted to the downstream modules The

design ISimplemented m anFPGA and tested with favorable packeterrorrate results m an

FDMA system The components ofthe digital receiver processor could be used m

conjunction with a Costas Loop demodulator to provide CDMA for multiple sensors and

Its functionality and robustness are confirmed m this thesis This would fitinto acomplete

CDMA,allowing the demodulator to discnminate between various sensors

Table ofContents

1.0Introduction 1

1.1 Telesensing 1

1.2 Scope ofThesis 3

2.0 Background 6

2.1 Wireiess Communication 4

2.2 Muitiple Access 7

2.3Spread Spectrum 10

2.4PN Codes 13

3.0 System Overview 25

3.1 Data Acquisition Chip 26

3.2Low-power Transmitter 27

3.3FSK Receiver 29

3.4 ComponentLimitations 29

4.0 Digital Receiver Architecture 31

4.1 Clock Recovery and Chip Resolution 31

4.2 Digital Despreader 34

4.3Embedded Protocol Removal 39

4.4PacketDetector 40

4.5 Acquisition Processor 43

5.0 Implementation 45

6.0 Testing and Results 47

ixi

7.0 Conclusions and Future Work 58

References 63

Appendix - VHDLCode 66

Vita 103

IV

5

10

15

20

25

30

List ofFigures

Figure 1 FSK m the Frequency Domain
Figure2 FDMA in the Frequency Domain
Figure 3 ATDMA Frame
Figure4 IdealFSK
Figure Spread Spectrum
Figure6 Code Division Multiple Access
Figure 7 Linear Feedback Shift Register
Figure 8 Autocorrelations
Figure 9 Cross-correlation between Code 1 and Code2
Figure Spreading with Code 1
Figure 11 Spreading with Code2
Figure 12 Properly Recovered Data
Figure 13. Improperly Decoded Data
Figure 14 Sensor Data Link
Figure ACQ2Block Diagram
Figure 16: RFMD 2510 Block Diagram
Figure 17' RFMD 2945 Block Diagram
Figure 18. Direct-Sequence Spread Spectrum Receiver
Figure 19 Digital Receiver Block Diagram
Figure Polanty Decoder Dither Conditions
Figure 21 Polarity Decoder Block Diagram
Figure 22 Despreader Correlator Block Diagram
Figure 23 Despreader Correlator Histogram
Figure 24 Packet Detector Block Diagram
Figure Acquisition Processor Block Diagram
Figure 26 Initial Wireless Testing
Figure 27 Repackaged Wireless Transmitter
Figure 28 Intemal Circuitry ofWireless Transmitter
Figure 29 Repackaged Wireless Receiver
Figure RF Front-End ofRepackaged Wireless Receiver
Figure 31 Digital Spread Spectrum Baseband Processing Board
Figure 32 Repackaged Wired Testing
Figure 33 Repackaged Wireless Testing

Acknowledgements

I would like to thank the following people for their help and support

throughout myeducation atthe University ofTennessee First,I would like to thank Jerry

Stoneking for his role in getting me accepted to the University ofTennessee Also,I

would like to thank CharlesBntton and James Rochellefor admitting meinto the UTJoint

Program. I would like to thank Charles Bntton for his guidance and supportin additional

capacities,that ofPrinciple Investigator on the research project thatfunded this work as

well as a member ofmy thesis committee I would also like to thank the rest ofmy

committee,Danny Newport,my Major Advisor,and Daniel Koch for their direction and

invaluable contributions to helping me finish my thesis

I would like to thank the researchers and staffofthe Monolithic Systems

Group ofORNL'sInstrumentation and Control Division,especially Gary Alley,Bill

Bryan,Lloyd Clonts,Nance Ericson,ShaneFrank,Gayle Jones,and GaryTurner. I would

also like to thank Gary Turner for his patience and sharing with me his immense technical

knowledge I would also like to thank all ofthe members ofthe Joint Program,

particularly,Derek Austin,Eric Bolton,Andrew Moor,Aaron Symko,and Stephen Terry

for their friendship and support. Also,I would like to thank JeffFalm for his pivotal role

in my acceptance into the Joint Program

I would like to thank my parents, Alan and Barbara Chesney,for their

patience and support I would also like to thank them forthe care and advice that has

always been plentiful and much appreciated. Similarly,I would like to thank my sister

^ and brother-m-law,Sara and Elliot Tuckerfor their love,support,and excellent advice,as

well I thank my grandparents,J Dukehart and Marjory Chesney for their tireless and

unconditional support. I would also like to thank Roger Borchers,Blair Brown and Greg

Holloran as well as Benji and Loma Wood,Alex Morris,Michael Ruff,Sheila

Smitherman,and Meredith Novyfor their continued supportthrough the years

This research wasfunded by a grantfrom Graviton,Inc. I thankthem for

their support and contribution,especially Larry Goldstein,Steve Tietsworth,and David

Fem The Principle Investigator for this research was Charles Britton. The majority of

the work was performed at the Oak Ridge National Laboratory,managed by UT-Battelle

for the US DepartmentofEnergy under contractNo DE-AC05-00OR22725

1.0 Introduction

Low-power wireless sensors can be used to efficiently report specific

conditions ataremote location Micromachmed cantilever sensors fabricated on a silicon

die can be used to provide the sensor data,providing a low-power solution to acquiring

certain data[1] Because these sensors can be so low-power that they could run offofa

battery,the parts used to transmit the data need to be similarly low-power Although,the

wireless link provided by this project is mdependentofthe data being transmitted on it, it

was designed for a telesensmg application. Thetransmitter aspectofthis wireless solution

IS provided by an m-house,ORNL-developed analog-to-digital converter(ADC)chip and

a commerciallow-power transmitter To provide data robustness and provide multiple

access m future generations,spread spectrum communication is employed This requires

a digital receiver to recover the spread spectrum signal,despread it and interface with a

Personal Computer(PC)to display the data This thesis focuses on the design ofthe

digital spread spectrum receiver to provide remote access for wireless data transfer

1.1 Telesensing

Wireless sensor data transmission isfreefrom certain limitations ofcellular

telephony Transmission bursts do not need to be carefully coordmated to appear as a

seamlessstream ofcontinuousspeechto the human ear. Therefore,data can betransferred

everyfew seconds or more as opposed to the millisecond increments required by cellular

telephony. Asan example,GSM,the Time Division Multiple Access(TDMA)cellular

standard used for wireless telephony m Europe,requires thatthe speechfor a given call be

transmitted every4msin 125 usframes Thisfrequency oftransmission would be

overkillfor a sensor that only needsto update its status onthe order ofseconds or minutes

or even once an hour

As a result ofthis long lag between transmission bursts,the REfront-end

circuitry can be turned offsince the period oftime between transmissions greatly dwarfs

the time required to tum it back on and transmit a burst ofdata Also,the digital

transmission processing core,responsible for relaying the sensor data to the RF circuitry,

can be put into sleep mode to save power. Both ofthese power down features greatly

reduce the power consumption ofthe system

Additional powerconservation can be attained ifthe transmitter is not

configured for reception as well The transmitter does nothave to interrupt its sleep mode

to spend power on receiving instructions from the host sensor data processor However,

even ifthis were a desired trait ofa potential wireless telesensor implementation,sensor

data does not require computationally-expensive and power-hungry digital signal

processing to restore synthesized human speech,as with digital cellular telephones

These three features oftelesensmg,RF and digital circuitry power

conservation and simplified or nonexistenttransceivmg in the transmitter allow

telesensmg to have tremendous power savings over digital cellular telephony Therefore,

the data transmission circuitry can run autonomouslyusmg a single compact battery,

instead ofa traditional cellular telephone battery. These wireless telesensor transmitters

can be left alone to transmit data reliably for months mstead ofneeding to be recharged

every couple ofdays as with a standard cellular telephone battery The telesensors

2

transmit data less frequently and atlower rates than cellular telephones,but this is usually

appropriate for their application to sensor data.

1.2 Scope ofThesis

The goal ofthis thesis is to move an analog voltage representing the output

from an analog sensor wirelesslyfrom the stand-alone sensor site to a hostPCfor display

Specifically,this thesis focuses on the design ofthe digital spread spectrum receiver used

to recover the transmitted data The architecture was designed for telesensing,but,since

the actual transmission and reception ofdata is independentofthe application,the

wireless link was not tested with sensors as inputs An appropriate background m digital

communications is developed so that design considerations m the digital receiver can be

appreciated Then,the system overview is given,detailing the specific components used

m the system and how this affects the design ofthe receiver Next,the architecture ofthe

digital spread spectrum receiver is detailed and its functionality explained Later,the

implementation ofthe design and the testing and results ofthe implementation are

discussed Finally,lessons learned from the project and conclusions on digital spread

spectrum design are presented.

2.0 Background

2.1 Wireless Communications

The purpose ofwireless communications is to transmit data through an

ambient physical medium,such as air,so that a physical channel does not need to be built

and maintained,such as a cable or twisted pair telephone line This requires couplmg the

intended transmitted signal to the medium,something easily done with tethered

communications since the channel is designed to support the transmitted signal For

wireless communications,this requires building an antenna to convertanincident voltage,

the medium ofthe signal to be sent,to a radio frequency(RF)wave,a different signal but

one that can propagate through the desired medium.

The size ofthe antenna required to couple a given signal to the air via RF

waves varies inversely with the frequency ofthat signal Lowerfrequency signals require

prohibitively large antennas and so mustbe converted to a higher frequency signal This

IS done by using a higher frequency earner that is modulated by the signal to be sent

The data to he sentcan be transmitted as offsetsfrom the carrierfrequency

This IS known as frequency shift keying(FSK)and is the method used to transmit the

infoiTnation m this system In this case,the receiver/transmitter pair employ a bmary

frequency shift keying(BFSK)alphabet to transmit data The general analytic expression

for the alphabet is

12 E,Equation 1: s^{t) = ^ ^" cos(27i:/,?+(p)

where tis time-limited between0and T,iisa memberofthe bmaryalphabet{0,1}and the

energy transmitted in one bit is Ei,. Different frequencies are used to transmit a0and a 1

usually a fixed frequency incrementcentered around the earnerfrequency

In order to ensure data fidelity at the receiver,the symbols ofthe BFSK

alphabet must be orthogonal to each other,so thatthey do not interfere with one another

Since the signals are time-hmited to Tseconds,they can be expressed as

Equation 2: s^{t) = cos{2%f^t+(S^) rect[^

where rect(r/7)= 1 when |r| is less than or equal to 772and0otherwise The Fourier

transform ofSi(t)is

sm(7i;r(/-/))
Equations: S^if) = 3(5,(0} = T

For signals separated by multiples ofl/THertz,

Equation 4: /[-/g =-
Tfl

where m is an integer greater than or equal to 1 The value of\ITis known as the

minimum frequency separationfor the two signals The frequency domain representation

ofthese signals evaluated at multiples ofthis minimum separation is nonzero for one

signal while the other is zero and vice versa This is evidenced by Figure 1 Therefore,

the two signals do notinterfere with each other at all and are orthogonal[2], [3], [4],[5]

ForFSK digital communication,anFM superheterodyne receiver is

usually employed It mixes the incoming signal with a local oscillator to an intermediate

frequency(IF) By downconvertmg to anIF instead ofbaseband,the receiver does not

have to match the frequency m the local oscillator exactly with the incoming signal This

creates images at other frequencies,butthese can be suppressed by appropriate filtering

before the signal is mixed down to IF

Smce it IS much easier to maintain a constant bandwidth in a fixed filter

than a tunable one,the channel filtering is done atIF Also,high-stable gam is more

difficult to provide m a tunable amplifier than a fixed-frequency amplifier This makes

covering a wide frequency band easier and is why superheterodyne receivers are standard

forFM radios[6]

 / \

Figure 1: FSK in the Frequency Domain

2.2 Multiple Access

To employ wireless communication effectively,especially for telesensing

applications, multiple users will need to be accommodated. For a sensor designed to

detect the presence ofa certain element,it usually would not be sufficient tojust have one

sensor in one place. Generally,an array ofsensors would be used to cover a larger area.

These results would need to be coordinated and analyzed at a central location. Ifthe

receiver is able to listen to all ofthese sensors,then only one PC is needed to display and

assimilate the information gathered Thisrequires multiple sensors having wireless access

to the receiver

There are three primary methods ofallowing multiple users access to

wireless RF communication FDMA,TDMA,CDMA Frequency Division Multiple

Access(FDMA)separates users by the carrier frequency they use to communicate The

separation between carriers must allow for the full spectrum ofthe signal to be

communicated so that signals from adjacent carriers do notoverlap as shown in Figure2

This requires a certain amountofbandwidth,BW,for a given number ofusers, n,wishing

to usefly amountofthe frequency spectrum,with signals separated byf^^ -fdi-i

Equation 5: ^̂ = X ^^di)
I = 1

There are multiple access schemes that allow more effective use ofthis

amountofbandwidth since each user gets theirown amountofbandwidth to occupy,even

when they are not using it A more efficient way ofallocating bandwidth would be

allowing users to share a carrier Time

fbl fd3-f32

r;\i7^ ^frequency

fcl fc2 fc3

Figure 2: FDMA in the Frequency Domain

Division Multiple Access(TDMA),lets a certain number ofusers share a carrier equally

Each user is assigned a time slot in aframe that is transmitted on the carrier,repeating

penodically In Figure 3,for example,the frame has a period, T,supports m users,and

each one transmits on the carrier for T/m seconds For the same amountofbandwidth as

above,m*n users can be supported instead ofn This works well for applications where

small delays in transmission bursts can go relatively unnoticed Anexample ofthis is the

GSM standard for cellular telephony,which specifies that a4-msframe accommodate 32

users for a transmission time of125-us each This4-mslag in speech is barely,ifat all,

perceptible by the human ear,so is adequate for relaying human voice[7]

Code Division Multiple Access(CDMA)allows multiple users to share the

same earner by encrypting each user's message This requires a code thatcan only be

decoded by the appropriate decryption key To reduce computational complexity,the

encoding algorithm should be easy to invert given the encoding key. The exclusive OR

(XOR)function is an easily invertible binary function and is used for encoding a message

for CDMA purposes Since the encoding and decoding functions are well-known,the

problem now reduces to finding a sufficiently strong encrypting code that does not give

away the message sent and keeping that key secret

1 2 3 4 m

T seconds

Figure3: A TDMA Frame

CDMA uses a code m the transmitter thatruns at an integer multiple ofthe

data rate to encode data,called spread data The rate ofthe code,called the chipping rate,

mustrun faster than the data rate because each data bit is being encoded before it is

transmitted It mustrun atan integer multiple so thatthe receiver canrecover the message

data from the spread data,since the receiver has prior knowledge ofthe code but no

knowledge ofthe timing(i e,is not passed a clockfrom the transmitter) Making these

encrypting codes,also called spreading codes,unique with respect to each other allows

multiple users to share the same carrier without interfering with each other's data The

strength ofCDMA lies m the generation ofstrong individual codes as well as a set of

codes that are unique to each other[2], [8], [9]

2.3 Spread Spectrum

The frequency spectrum ofa signal is spread when the signal is combined,

through modulo-2 addition with a pseudorandom or pseudonoise(PN)sequence As

shown mFigure4,the original data signal,m the case ofFSK modulation,consists ideally

-^frequency

fo fc fl

Figure 4: IdealFSK

10

ofnarrow signals at the carrier frequency and also atfixed frequency increments from the

earner The frequency spectrum ofthe ideal signal is limited to the bandwidth needed to

include the smallFSKincrements. The idea behind combining this signal with aPN

sequence is to create a signal that looks like noise when not properly decoded. This is

achieved by making the signal appear to be random A truly random signal contams all

possible frequency components equally

As a data signal is randomized,it's frequency spectrum must be spread to

include more ofthe frequency spectrum However,it is only spread to a certain extent

since thePN sequence is not trulylandom and repeats with some determined period

Figure 5 shows a broader spectrum than the signals m Figure4 CDMA is implemented

using spread spectrum at the cost ofadded bandwidth However,this cost is offset by the

gam m multiple access afforded bythe orthogonality ofthePN codes. Itis possible to use

thePN code in different ways to encrypt communication IfthePN sequence is used to

directly modulate the carrier,this is direct sequence spread spectrum On the other hand.

..frequency

Figure5: Spread Spectrum

11

ifit IS used to shiftthe earnerfrequencyin discrete increments,this is known asfrequency

hopping[8] Each user is given their ownPN code and mayenjoy secure communication

independent ofother users on that same carrier frequency as shown m Figure 6.

user 3

user2

user 1

^frequency

Figure 6: Code Division Multiple Access

12

2.4 PN Codes

Ifthe encrypting code is a suitably selected sequence,then onlythe exactly

aligned code reveals the message and a misaligned code reveals nothmg This can be

measured by the digital normalized autocorrelation function. The autocorrelation,RJn],

N-1

Equation 6: RJ.n] ̂ ^X x[n+i]
I = 1

measures the correlation betweenx[n]and a tune-shifted version ofitself This repeats at

least with period TV, since TV is the length ofthe code The ideal autocorrelation function

for an encrypting code then is the Kronecker delta function which only has a nonzero

value at0 Transforming white noise from the frequency spectrum to the time domain

also yields a similarfunction Imitating white noise m an encrypting sequence is desirable

because an improperly decoded signal will resemble white noise and give no useful

mfoimation abouthow to properly decode the signal

Since determimstic hardware is used to generate these codes,they cannot

be trulyrandom,butcan approximate random binarystrmgs There are three generalrules

for analyzing digital codes to determine ifthey sufficiently resemble random bits First,

the number ofones and zeros m the code must not differ by more than one Second,the

autocorrelation must not exceed 1/N,where TV is the length ofthe code,when not exactly

aligned with itself Finally,thePN sequence musthave balanced runs,i e,1/2ofthe runs

ofconsecutive similar digits are oflength 1, 1/4 length 2,1/8 length 3,and so on[2],[9]

13

Pseudorandom sequences are efficiently generated from linear feedback

shift registers(LFSR) These LFSRs are a stnng ofone-bit registers cascaded together

with connections to binary adders(XOR gates)at predetermined positions The

connections to the XOR gates are known collectively as the tap configuration and are

determined bya generator polynomial The outputofthe tap configuration isfedback into

the first register and the feedback loop contmues until the appropriate number ofbits are

shifted out ofthe output,which is the last register[10]

The generic k-stage LFSR m Figure7has Y(x)as the outputPN sequence

The seed,m(x),is k-bits long and initially loaded into the LFSR The tap configuration,

given by h(x), is a k-bit binary string ofcoefficients that determine which switches are

closed to contribute to the sum fedback into the register holding the least significant bit

Since the /c-stage shift register has 2^possible states, after 2^-1 transitions all have been

exhausted and the LFSR starts repeating states again Therefore the outputPN sequence

would start repeating again with a maximum periodicity of2^-1

mo m, mk-2 mic-i

hi■k-1

t

Figure 7: Linear Feedback Shift Register

14

Codes that repeat with maximum periodicity are maximal length(ML)

codes and are desirable because they demonstrate the autocorrelation property descnbed

earlier A code's periodicity is solely determined bythe tap configuration as the choice of

seed does notaffectthe length ofthePN sequence as long as it is not allzeros[2], [8], [9]

The coefficients ofthe tap configuration,bit stnng h(x),are determined expenmentally

The MLtap configurations for a given length can be found by exhausting all the

possibilities and checking the periodicity ofthe resulting codes Tables for tap

configurations that generate MLsequences can be found m[8]

To employ effective multiple access,the generated codes also mustnot

interfere with each other and there must be enough codes to accommodate several users

Fora ^-stage LFSR,the numberofMLsequencesthatcan be generated is Euler'sfunction

divided by the LFSR length.

Equation 7:

Euler's function gives the number ofnumbers that are coprime to, i e,have no common

factors with,and less than a certain number,including 1 Euler's function is maximized

for prime numbers since all ofthe numbers less than it are coprime to it Therefore,if2^-

1 IS a prime number,the corresponding ^-stage LFSR will generate the maximum number

ofusablePN sequences[8].

However,these sequences must not be mistaken for each other ifthey are

going to be a usable set This is determined by the digital cross-correlation function.

15

N-1

Equation 8: ^X
N

I = 1

R^y represents the cross-correlation between two codes,x[n]2iaAy[n][3],[11] This is

useful in examining the orthogonality oftwo codes,or the difficulty in mistaking one for

the other

Asan example,considertwo differentLFSRtap configurations thatuse the

same initial seed They are chosen to be[00 1 1]and[100 1]and happen to be the only

two configurations for a4-stage LFSRthat generate MLsequences The resulting

sequences for seed[1 0 0 0]are respectively,

000100110101111 and000111101011001

They meetthe criteria for number ofones and zeros and runs listed above

Both have eight ones and seven zeros Figure 8shows that their autocoirelations only

exceed 1/15 when they are exactly aligned with themselves Finally,they both have

balanced runs Each has8 runs ofconsecutive digits four one-bit runs,two two-bit runs,

a three-bitrun,and afour-bit run Their resulting autocorrelations are shownin the Figure

8 and are as close to an impulse function as a deterministic algorithm can be

16

File Windows Help
isSB

Autocorrelation for Code 1

Autocorrelation for Code2

Figure 8: Autocorrelations

To use these two codes on the same carrier,they must be minimally

correlated. The normalized cross-correlation is given in Equation5 and graphed in Figure

9. Ifwe are trying to send[0 1 0 1]as data using these codes,this would result in Figures

10 and 11,respectively. Since the chip length is 15,the code spreads the data by 15,i.e..

m

File Wndows Help

Spreading with Code2

Figure 11: Spreading with Code 2

every bit is turned into 15 bits by thePN code. The original data can be recovered again

by performing the XOR function again with the correct code,as shown in Figure 12.

However,ifthe wrongPN code is used,the data is not recovered and the result looks like

noise,as shown in Figure 13.

Figure9shows that the correlation between Codes 1 and 2never reaches

50%. Ifone ofthe codes is compared with the incoming spread data stream and 8or more

i

file Wndows Help

Figure 12: Properl

File wndows H^elp

Datadespread with the wrong PN Code

Datadespread with the wrong PN Code

Figure 13: Improperly Decoded Data

ofthe bits in a window of15 consecutive bits are positively or negatively correlated,then

the chosen code is probably the correct code for despreading the incoming data.

Therefore,a threshold of8 matches can be established for determining whether a code is

being properly despread or not. Iffewer then8 bits are positively or negatively correlated,

then either the wrong data is trying to be decoded for thatPN code or more ofthe data

needs to be acquired. Later,this will prove useful in the despreader module ofthe digital

receiver for decoding the spread data without a synchronous clock.

It IS possible to generate ML codes that are notthe output ofanLFSR but

still have alow cross-correlation with other codes ofthe same set A yt-stage LFSR

resulting m «-bit MLcodes can only produce a subset ofall the possible «-bit strings

Therefore as n and kincrease,more and more sequences are available thatcomply with the

randomness properties,but are not attainable with anLFSR One way ofgenerating these

codes IS by XORing two MLcodes together This results m anMLcodeknown as a Gold

code

Some research focuses solely on how to generate morePN sequences ofa

given length Lately,research has focused on using chaotic signals to generate newPN

sequences For a certain sequence length there are only a certain number,b,ofML

sequences that can be generated Gold codes create more sequences,butonly at the

most. For a 6-stage LFSR generating 63-bit codes,according to Equation 8,fewer than6

MLcodes can be generated They yield at most36 different possible Gold Codes There

are 2°fk'X possible bit strings and many ofthem could be ML sequences as well

The signals generated by a chaotic source inherently have minimal non

zero shift autocorrelation and generally have good cross-correlation properties This is

because a chaotic source is very sensitive to initial conditions and can produce a variety of

outputs Therefore,it intrinsically has a broad spectrum Heidari-Batem and McGillem

first proposed and studied chaotic sequences generated by alogistics map[12],[13], [14],

[15] Adler and Rivlin used Chebyshev polynomials to generatePN sequences and Chen

et al studied their performance[16],[17] Theyfound thatthe chaotic sequences slightly

outperformed the Gold Codes m terms oferror performance over signal to noise ratio

23

They also found that chaotic sequences allowed significantly more users similar bit error

rate compared to Gold Codes or conversely,that the bit error rate wasimproved for

chaotic sequences over Gold Codes forthe same number ofusers

24

3.0 System Overview

The goalofthis thesis is to design a digital receiver processor to reliably

transfer sensor data to aPC monitor display The digital receiver processor is integrated

with a receiver RFfront-end circuit(RF MicroDevice'sRFMD 2945)to receive signals

from a digital transmission processor(an ORNL-developed chip called ACQ2)and a

transmitter RFfront-end circuit(RF MicroDevice'sRFMD 2510). The ACQ2and 2510

chips generate a directsequence spread spectrum signal for reception and decoding by the

2945 chip and the digital receiver The sensor data link is shown m Figure 14

sensor data modulator
acquisition

\7

PC digital demodulator
receiver

Figure 14: Sensor Data Link

25

3.1 Data Acquisition Chip

The ACQ2chip was developed atthe Oak Ridge National Laboratory to

provide baseband digital data for wireless monitoring ofmouse vital signs It samples its

four sensor inputs,as shown in Figure 15,and creates a serial data packet and produces a

spread spectrum digital stream for wireless transmission in the digital controller It

employsa 10-bitsuccessive approximation analog-to-digital converter(ADC)and a25V

bandgap reference to digitize the sensor inputs The digital controller is responsible for

the front-end electronics,RAM,PN engine,packet builder,and spreading control It also

has a differential encoderto ensure arobust data stream and can choosefrom two maximal

length sequence 63-chipPN codes as well as a 63-chip Gold code to ensure secure spread

spectrum communication Off-chip RFfront-end circuitry can be put into sleep mode

between sampling penods to save power

sensors External
SAR ADC

Crystal
controller

I JEE
Digital

Controller
SAR ^.Spread

Data &

Clock

ADC bandgap

reference

Figure 15: ACQ2Block Diagram

26

3.2 Low-power Transmitter

TheRFMD2510is alow-power wirelesstransmitter thatean operate in the

US915 MHzband It has an on-chip voltage-controlled oscillator(VCO)consisting ofa

phase detector and charge pump as well as a programmable phase-locked loop for

frequency synthesis Theloop filter for the VCO is off-chip and included m the evaluation

board m addition to the reference crystal needed It also has power-down capability and

only consumes 1 uA when m sleep mode It is this low-powerfeature that made the 2510

attractive since wireless transmitters generally spend more time sleeping than

transmitting A basic diagram ofthe transmitter is given in Figure 16

Phase Phase

Osc ir
Detector Locked J X VCO out
&Charge Loop

Pump 1

Mod in

Figure 16: RFMD 2510Block Diagram

[18]

27

3.3 FSK Receiver

TheRFMD 2945 receiver converts an inputRF signal into a digital output

signal using a frequency modulated feedback demodulator A block diagram is shown m

Figure 17 The VCO output provides the RF carrier reference,which is mixed with the

incomingRF signal This tracks,through two filters,the incoming RF signal and holds it

at the discnmmator center frequency Ifthe inputfrequency falls below this earner

frequency then a0is output and ifit is above,then a 1 is output[8],[19]

IF IF
RF signal LNA X

filter Amp

1 1

VCO

ProgrammablePLL

IF

digital signal Discriminator filter

Figure 17: RFMD 2945Block Diagram

28

3.4 ComponentLimitations

Multiple access was required to allow more than one sensor node to

transmit data to a single digital receiver to be displayed on thePC. Since the ACQ chip

has aPN engine m it and can build spread packets,ongmally,the system was to have

multiple sensors chirpmg on the same frequency separated by differentPN codes --

CDMA However,due to the limitations oftheRFMD2945receiver,this wasnotpossible

and the sensors instead had to be separated by different carrier frequencies~FDMA The

2945 chip only allows,as inputs,an RF signal and a carrier frequency The2945

demodulates frequency-shift keyed(FSK)data from the given carrier frequency leaving a

digital signal However,to strip out thePN code and recover the data for a given

transmitter,the matched filter and correlation functions necessary to do this need to be

performed before the RF signal is demodulated Since this could not be done with the

components chosen to provide the RF link,anFDMA scheme wasemployed instead

Figure 18 shows the necessary components ofa direct sequence spread

spectrum receiver The correlation needs to be calculated before the IF mixing and

filtering, which is impossible given the constraint ofthe RFMD 2945 receiver ThePN

leference code needs to be discovered m the RF signal before it is demodulated and

broughtdown to baseband The clock generation and synchronicity decision need to be

made while demodulation is occurring and not segregated to a separate digital processor

because at baseband multiplePN codes will concatenate and their information will be

utterly unrecoverable

29

Rcvd_ Correlator IF Demod Tnfn

signal

local ref

code, f

eloek SyncPN Clock
decisiongen gen

Figure 18: Direct-Sequence Spread Spectrum Receiver

Tavo transmitters were built and tested,Tx101 and Tx104 They consisted

ofan evaluation board for the 2510 chip and ACQ chip Each transmits three data

channels,a temperature channel,and a sequential packet counter Each can use multiple

lengthPN codes,butfor this demonstration only 63-chip Gold codes were considered

when building the digital receiver In fact,since the transmitters were separated m

frequency,onePN code was shared by both transmitters. Even though it did not provide

multiple access,thePN code did provide data robustness and a measure ofconfidence m

the fidelity ofthe received data For display purposes only the temperature,the first two

data channels and the sequential packet counter were shown on the PC.However,all data

channels were analyzed and demonstrated reliable transmission ALABVIEW program

coordinated the results display on thePC

30

4.0 Digital Receiver Architecture

Once the RF signal has been demodulated and the baseband digital signal

has beenrecovered,the senal data stream is sentto the digital receiverfor despreadmg and

stacking for display on thePC The digital receiver has no prior knowledge ofthe phase

ofthe clocks used to generate the baseband digital data stream m the transmitter and so

must deduce this information from the inbound data stream Also,this clock recovery

must be done m real time so that received digital data can continue to stream through the

receiver To present stacked parallel words to thePCfrom the inbound digital bit stream,

the digital receiver must perform five mam functions,separated as design modules,chip

polarity decoding,despreadmg,protocol stnppmg,packet validation and packet

processing The partitioning ofthese functions is shown m Figure 19

4.1 Clock Recovery and Chip Resolution

Clock recovery and chip resolution are performed by the first module,the

polarity decoder First,the polarity ofeach inbound data chip must be resolved This first

module takes the demodulated data as input(DEMOD)as well as a reference clock

(SMPCLK). It uses an oversamplmg scheme to resolve the logic polarity ofeach chip

(SPDA),derive thePN clock(DPNCLK),and align thePN clock

Three consecutive five-sample windows ofthe input data are analyzed

early, middle,and late The windows are compared to each other and the derivedPN

clock(DPNCLK)is dithered accordmg to which one has the greatest magnitude The

31

DEMOD DPArti"
^PDA SMT)

Pol nspcT.Tir

SMPCLK
Dec

DPNCT T? ,
Desp
Cor

TPTiT Pro
SMR

Dec
MD

MR

SDATA

STPTC

Q
ACO ^

PKDA ̂ ^DRDY
Pack

Del .D0[90]PKDWR ̂ Acq
DSPCLK. Proc

PKwr ^ .OVR

PKWWR^

j JRD

Figure 19: Digital Receiver Block Diagram

clock IS dithered on the falling edge meaning that the time between the last falling edge

and the next rising edge is always the same The periodicity ofthe clock is determined by

the falling edge Figure 20shows the polarity decoder m the default state so no dithering

is performed Ifthe early window had the largestsampled magmtude ofthe three,the

falling edge would be advanced one sample clock(SMPCLK)cycle as indicated by the

dashed lines to the left ofthe defaultfalling edge Ifthe late window were largest,the

falling edge to the right ofthe defaultedge would be used to retard the clock

32

SMPCLK.

Rfirly winHnw

miHHlR winHnw

latR winHnw

DEMOD_

DPNCLK.

- Figure 20: Polarity Decoder Dither Conditions

Asshown in Figure 21,the polarity decoder consists ofa 7-bit shiftregister

to foim the three consecutive oversamplmg windows,a comparator to decode the polarity

ofthe oversampled bit and the dithering logic. The dithering logic compares the

magnitude ofthe three windows and adjusts the clock generation and synchronization

logic according to the method described above

33

SMPCLK.
Polarity SPDA7-bit shift

Detectorregister
RFDATA-

MAXPOLSMPB[60]

Sync logic
SMPCLK.

(A,B,C window)

retard default advance

V t' V

Segment Counter
.DPNCLK&Clock Generator

Figure 21: Polarity Decoder Block Diagram

4.2 Digital Despreader

The second module measures the coiTelation ofthe spread code to the
t

inbound data,compares it to a stored reference code and determines the polarity ofthe

despread data bit Also,track mode is determined and parameters for establishing it and

disengaging it are updated The despread clock is denved and aligned with the data The

despreader is shown m Figure 22

34

SPDA— 63-bit Right Bit Magnitude ^PRETRK
DPNCLK_ Shift Register Accum Subtracter

I
PNRef

magnitude and pnlarify

JDPACK
Reg C _^TRK

PRETRK

Magnitude
Comparator MAXMAG

Missed ^ MFl c Bit/Det ^MR
Reg B

DCUD

RF.T Dither
Reg A nP.F Control .DSPCLK

Any

Figure 22: Despreader Correlator Block Diagram

Earlier,correlation was presented as normalized,that is,as a fraction ofthe

maximum correlation However,this correlation calculation requires the computationally-

expensive operation ofdivision and is not used in the implementation ofthe digital

receiver,since it is not necessary The earlier derivation provides a way ofanalyzing

codes ofvarious lengths,but since the length ofthePN code for this design is known and

fixed,scaling the correlation is unnecessary Aslong as the comparison thresholds are

understood to be valid for 63-bitPN codes,then the absolute correlation calculation

withoutthe normalization suffices

The firstjob ofthe despreader correlator is to calculate the correlation of

the inbound data stream with the referencePN code This is done using three consecutive

35

63-bit windows ofthe inbound chips,a 63-bitright shift register and summing the bits m

each window Then,the inbound chip stream is analyzed using comparators to perform

two functions, dithering the derived despread data clock(DSPCLK)and deriving the

polarity ofthe serial despread data(SDATA)

Dithenng the derived despread data clock is accomplished by comparing

the correlation windows Like the polarity decoder dithering m Figure 20,the rising edge

ofthe derivedPN clock always stays the same,relative to the last falling edge and the

following falling edge is dithered according to the output ofthe slidmg correlator Ifthe

first window has the largest correlation,then the falling edge ofDSPCLK occurs 1 clock

cycle ofDPNCLK earlier with respectto the lastnsing edgethan it did the previous cycle

Ifthe last window has the largest correlation,then the falling edge ofDSPCLK occurs 1

clock cycle ofDPNCLK later with respect to the last rising edge than it did the previous

cycle Otherwise,the middle window is assumed to have the largest correlation and the

periodicity ofthe previous clock cycle is repeated.

The derivation ofthe polanty ofthe despread data involves analyzing the

inbound chip stream for correlation with the stored PN reference and periodicity ofthe

signal The correlation dimension statistics determine the polarity ofthe current bit, while

the temporal statistics indicate a measure ofconfidence ofhow well the inbound spread

data IS being despread Figure 23 shows a histogram ofhow this works

36

ile WinclDv^s -^elp

r
■'VA Ccr'ililion Hislccrson &

ID
-

£ ?D
.

'I
£

^ z
a. /
f 3
bf
c
c

DD
«_

L.

--4J

-=,1 -

DD 100 1:C
liibuuriil Chip

200
-r T

300

Ml I I I I iiii/imwini i

Figure 23: Despreader Correlator Histogram

The red, green, and black dashed lines represent thresholds for correlation

decisions. They are calculated with respect to a baseline of 0, which would indicate that

the inbound signal is not at all related to the stored reference. Positive values of

correlation indicate that the data bit is a zero, since XOR with 0 is a transparent operation.

Negative correlation values indicate that the data bit was a one since XOR with a one

results in inversion.

37

The red dashed lines indicate the maximum positive and negative value of

correlation possible for a 63-bit code This occurs when the inbound chips exactly match

the stored reference;and for this implementation,that value is 63 The green dashed lines

indicate the detection threshold(DSMDTH[50])set for the despreader correlator and are

set m Figure 23 at50 as an example The black dashed Imes indicate the bit threshold

(DSMBTH[5.0])set for the despreader correlator and are set m Figure 23 at 10 as an

example

Ifthe absolute value ofthe correlation calculated lies above the detect

threshold,the serial data is aligned closely enough with the referencePN code and the

despread data bit polarity is declared This is shown m Figure 23 as the blue peaks m

correlation The decoded data is01001 Ifthe absolute value ofthe calculated correlation

lies between the bit and detection thresholds,the inbound chips are not yet correctly

aligned withPN reference meaning there is a missing polarity detection but a data bit has

been detected Ifit falls below the bit threshold,it is assumed thatthe inbound data has no

correlation with thePN reference and that neither a data bit nor a polarity detection has

been detected This is shown m the two blue peaks near the baseline This can be caused

by one ofthe chips becoming corrupted m the transmission However,due to the

robustness ofthePN codes,this minor correlation is rejected and the data can still be

con-ectly decoded.

Correlation statistics mustbe tracked temporally,that is,over consecutive

PN chip length bit cycles(for this project,63 bits)to determine how well the sliding

correlator is performing These statistics are used to declare the pre-track and track

modes,which enable the downstream processing circuitry as well as provide the

38

acquisition processor information for determining the fidelity with which an entire packet

ofdata was decoded The number ofconsecutive detection cycles mustexceed DSTKTH

before track can be declared The key is that the detection cycles need to repeat with a

periodicity equalto thePN chip length. Ifconsecutive failures to repeatexceedDSNTTH,

then the track is disabled and establishmg a new track mustbegm again, However,iffor

instance,there is only one cycle where the maximum correlation failed to repeat with the

correct periodicity,then information indicating which thresholds it passed is sent to the

acquisition processor,as the missed detect(MD)and missed bit(MB)statistics,and the

track mode is keptenabled The acquisition processor comparesthese accumulated values

for a packet to a threshold(PKMDTH[50]and PKMBTH[5 0],respectively)and this

contributes to the decision ofwhetherthe packetis considered good and cached or bad and

discarded

4.3 Embedded Protocol Removal

The third module removes the embedded communications protocol from

the despread data stream The embedded protocol is differential encoding calculated

recursively as

Equation 9: e«c[/c] = in_k'\® enc{k-\'\

where enc[0]= 1 To decode

39

Equation 10: dec[k] = enc[k]@enc{k-

where enc[0]= 1

Equation 11: decik] = inikl ® enc[k- I]® enc[k-

Equation 12: decik] = in[k]

Therefore,the protocol remover is simply an exclusive OR gate with a clocked output.

However,this is notjust the encoder implemented in reverse Unlike the encoder where

the output IS fed back to encode the next bit,the decoder uses a sliding window oftwo

incoming encoded bits to determine the next decoded bit instead offeeding back the last

decoded bit.

4.4 Packet Detector

Now that the incident serial chip stream has matched the stored

pseudorandom reference to the satisfaction ofthe first two modules and the embedded

communications protocol has been removed,the despread bit stream is assumed to be a

serial data packet stream built m the manner configured in the data acquisition chip

(ACQ2) The fourth module validates the preamble words at the beginning ofthe

despread serial packet,measures the acquisition mode parameters,converts the serial

40

words to parallel,and counts the number ofwords m each packet For the Graviton proof-

of-concept demonstration the 8-word packetfollowed the form ofTable 1

The first two words,RFsync and Frame sync,are the preamble words and

are stripped out as the packet detector converts the serial data to 10-bit parallel words

Once these two words have been found,the packet detector skips the sequential counter.

Table 1:PacketFormat

Word# Function Hex Value

I RF Sync 333

2 Frame Sync OIF

3 Seq Counter 001

4 TxID 005

5 Temp IFD

6 Data 1 014

7 Data 2 019

8 Data3 02F

and validates the transmitter identification number,word four Ifthe two sync words and

the identification number all match,then the packet detectorenables the acquire mode and

sends the now 6-word packet(PKDA[90])to the acquisition processor with a data strobe

(PKDWR) The packet detector also counts the number ofwords m the packet

(PKWC[50])and sends that to the acquisition processor as well with a word count strobe

(PKWWR)

The values ofthe last six words m Table 1 are given only as examples and

represent the pmned-down settmgs used to test the digitalreceiver The sequential counter

41

increments between 1 and SFF^ex and indicates the order in which the packets were sent

The transmitter identification can be used to rotate through different transmitters and

identify which data came from which transmitter In a true CDMA scheme this would be

helpful,butnotso much so for anFDMA setup,so those values were pinned The

temperature channel ranges from 40°F to 120°Fand is sensed on the ACQ chip The

other three data channels range from0to25V with a precision ofabout0002V For

ease oftesting, all four data channels were pinned to the values given m Table 1

The Packet Detector is shown m Figure 24 The serial data from the

protocol decoder is converted to 10-bit parallel words The first two words ofthe packet

are verified and the third is skipped so that the fourth,the identification number can be

SDATA_ Serial to ^PKDWR

DSPCLK- Parallel -►PKDA[9 0]

f
Word count ^PKWWR
Accumulator -►PKWC[5 0]

XLACQ

PREAMBLK. compare

acq mode
logic

.ACQ

compare
UID_ I _DSPCLK

T sinp wnrH

Figure 24: Packet Detector Block Diagram

42

verified A word countis generated for the acquisition processor as well as strobes for the

parallel data and the packet word count.

4.5 Acquisition Processor

The fifth module validates the packetby evaluating the flags generated in

the previous modules These flags include numberofwords m the packet and number of

missed bits and detects This module is also responsible for stacking the good data and

interfacing with the host The acquisition processor uses two FIFOs to store the inbound

data The first is a temporaryFIFO to hold all the words m a packet together as the

packet error logic validates the packet The packet error logic will throw out a packetifit

has too few words or too many missed bits or missed detects from the despreader Ifthe

packet IS deemed good,it is transferred to the data FIFO,otherwise,it is cleared from the

temporary FIFO In either case the acquisition mode(ACQ)is cleared and the processor

waits for the next packet. Ifthe data FIFO is full,then the acquisition processor alerts the

hostPC via the data ready signal(DRDY)and awaits a clockfrom thePCto clock the data

out ofthe FIFO to the output port pins The data FIFO holds 166-word 10 bits/word

packets when it is full The acquisition processor is shown in Figure 25

When the acquisition processor is transitionmg a good packetfrom the

temporary FIFO to the data FIFO,it cannot accept an mcommg packet For this project,

the time between packets is about3-5 seconds,which is fastfor telesensmg Usually the

43

SPCLK_ PKD
Temp

KDWR. CT.K
FIFOFIFO

KWWR. _RD/WE_
Control

ACQ.

RD. _RDZWR

SPCT.K ^

KWWR ^

ACQ ^
Packet

Data

FIFO
D0[90]

KWCTH ^ Error

SMDKT ^

SMRTT ^

Figure 25: Acquisition Processor Block Diagram

sensorreadouts need only be updated afew timesan hour Thislimitation helped simplify

the processing logic and since there is no threat ofa packet arriving while the previous is

being processed,it is an appropriate design trade-off

44

5.0 Implementation

The digital receiver wasimplemented m an Altera FLEX 10K50RC240-3

Field Programmable Gate Array(FPGA)using the Altera Max+Plus II version93

software Modules 1 and 2,the polanty decoderand the despreader correlator,

respectively were written m a different VHDL environmentand so had to be converted to

the Max+Plus II environment,along with their simulation stimuli The changes to the

code were mostly semantic changes and did not affectthe structure or functionality ofthe

code

All ofthe modules were written in VHDLexceptfor the data cache FIFO

and the temporary packetFIFO,which were implemented usmg Altera's Library of

Parameterized Modules(LPM) LPMs are technology-independent modules thatconfonn

to industry-wide conventions for implementing common functions m gate arrays[20].

TheLPMsused were sections ofthe chip optimized to implementdata storage functions

The synthesis tool had control over the physical placement ofthe design,but with some

limitation In order to ensure accuracy m the polarity decoder's sample clock(SMPCLK)

and the derived PN clock(DPNCLK),these two clocks were placed on the device's two

clock trees Also,each module was assigned as a clique,which meantthat the fitting tool

would route each individual module in a physically confined area

The thresholds used to determme the dithering conditions were brought

off-chip to programmable pins on the test board along with other programmable

thresholds This allowed flexibility m determmmg the optimal settings for reliable

reception A LABVIEW program was written to clock the data out ofthe cache FIFO

45

when it was ready and display it on the screen as graphs ofindividual data channels A

digital receiver test board was built that allowed programming ofthe dithering thresholds

to test the device It had a socketed Electrically Erasable Programmable Read-Only

Memory(EEPROM)so that the design could be iterated withoutremoving the device.

46

6.0 Testing and Results

Initially, the design did not fit into the device chosen,meaning that the

compiler could notfind a way to implementthe design given the resources ofthe device

specified Originally,it contained a monitor multiplexer to allow analysis ofinternal

signals as testing wasperformed This wastaken outand the design fit The device could

be reprogrammed to bring different internal signals to the output pins as necessary,and

while this made analysis slower,it significantly reduced the amountofresources the

design required and allowed fit into the originally chosen part

The design was tested both cabled and wirelessly The cabled test was

performed with40dB ofsignal loss and allowed mitial functional testing ofthe device

without interference or multipath so that the primitive functionality ofthe device could be

confirmed. Wireless testing was then performed once basic functionality was confirmed.

Interference from other RFtransmitters was nota concern since the building m which the

testing was performed acted as anRF shield. Thethreshold settings were notimmediately

optimized functional settings were found and the testing was performed holding these

constant Figure26shows the results Occasionally,packet displayed on thePC would be

incorrect This wasconsidered a data drop outand its frequency is shown in Table2 The

results m Table2were taken over the 1024-sample window shown in Figure 26and are

typical for each device

The cause ofthe data dropouts was traced back to the downstream

processing ofthe despread serial packet The data(SPDA[90])out ofthe packet

47

EES^'K
II I i* tfVrfr-d^i

Ki

AWWr

TKf.»

Tliai

tJL

»*J.

r\Af

■SI

Ihr»»

mi'

}r

iB iUlAT
i-lai i

rhiQ

f

HI T-
(!«4

J*ito *

TIC-

mr
nsF

ll £W

r\m*

mi
J51L lo

i9

• •
irrl am

nsLiaf XLO*
4M2

aK3A^

ua

IV

0^

#!»»

tQ
iu s«

^ vaKse f^O
I «via<nrT4

IJ9DCI

ISBQO

F^l

kiifj
Tsao

WMI.

aoi
Om

*m

B"3|^
•fX ^

JT 3

Figure 26: Initial Wireless Testing

Table 2: Data Acquisition Error Rate

Channel TxlOl Txl04

Temp. 5.87E-3 1.466E-2

Data 1 5.87E-3 4.564E-2

Data 2 5.87E-3 1.662E-2

Counter 4.89E-3 1.075E-2

48

detection module going into the temporary storage buffer was notresembling the serial

data outofthe protocolremover It worsened the morethe despread clock(DSPCLK)had

to dither Therefore,the incorrect data was probably due to mcorrect values being latched

into the serial to parallel converter m the packet detector module as a result ofthe dithered

clock being routed mefficiently on the chip Asa result ofthe limitation ofresources

internal to the device,DSPCLK could not be puton a clock tree and had to be routed as a

regular signal

The test environment was shielded from outside RF signals,butincluded

several nearby solid objects These objects could reflectRF waves causing interference at

the receiver,a phenomenon known as multipath. This also degrades error rate

performance,but is notsomething that could have been easily measured Therefore,the

effect ofmultipath on the error performance has not been directly quantized These two

real world implementation issues, mtemalclock routing and RF multipath,probably

accountfor mostofthe data errors and explain why the system demonstrated worse error

performance than is generally predicted by digital commumcation theory

The transmitters were also tested for range They were able to range 16

yards non-lme-of-sight and still the receiver was able to decode the information This

setup was nottested for packet or word error rate This error rate testing wasperformed at

ranges of6to 10 feet.

The transmitter and the receiver were both repackaged for portability and

demonstration purposes The repackaged transmitter is shown m Figures 27and 28 and

the repackaged receiver is shown m Figures 29,30 and 31. The repackaging ofthe

transmitter caused shielding problems that degraded performance The design was

49

•"Vu^

.

r --9

M

a

•

diif*

A' ••> V"

I .I'
•<■ ••■ST
V fA

- .w.
ITT

P^-

it

* ii*

v«i

%

r->*«,.ii(r::.v

•■rt*

i;v

-•

1^ ^ > i»;. 5 ."^ 4-w

-V - *■ .5. 5
i--

V V
^' ■■

' ' '
" *■"' ^ w •

.ti -' ■ ■
-

• '■'"
' "^J •»
i. •■' ' ■ :-®

If:*

• ■.,.&
i J«

"-T. -. #' ■ ■
^i:y

- XaP^ .,

iiSiiai4,

Figure 27: Repackaged Wireless IVansmitter

50

�

r

Pr.vOfc-i

■Mv:

4.:'

K:

m

■M-^-
-^v

a: .s.

-\t

cv».
...V.1 -W.if

Hi My

Figure 28: Internal Circuitry of Repackaged Wireless IVansmitter

1^-:.

51

.HWW*

•51

■Jix

ki, a nArirV-j g>i^*

"■ z'm^svflekliif^..

Figure 29: Repackaged Wireless Receiver

i '1- ■rf'i'

tf.

■r

Hif

k ? \
^'1

£:>.•/ 1'^'••.■'-saK--:*.. ^ »%>

■ . >--;.»j' ■•

:
.A: ♦#

r.i
. -i*

»^-«-

-T

Figure 30: RF Front-End Circuitry of Repackaged Wireless Receiver

53

f

. ■>'' 'i

7Jt

i?»;

- • 1

«

»^V*'
V

^■,.1; v>., -

*rv ^.,,, , >
"•<5^ "• • • ■ • r

JL

• : M.:

-4 ^ \ -if
•# ■^- N«

v > 1 n
.4 ■■

C - Ji

Figure 31: Digital Spread Spectrum Baseband Processing Board

54

Iterated to try to alleviate theDSPCLK distnbution problem Instead ofclocking the logic

in the downstream modules on the falling edge ofDSPCLK,the edge that is being

dithered,the logic was clocked on the rising edge. This helped some butnot much and

only vindicated the notion that the clock distribution problem needs to addressed m an

ASIC environment where clock routing is well-defined or m a programmable part with

more clock trees to ensure the fidelity ofthe clock signal.

To further optimize the design,the thresholds were optimized and entered

into the design as constants to free up logic cells for more efficient routing The transfer

between the data storage FIFO and the temporary packetFIFO was cleaned up and

simplified The wired and wireless results are shown m Figures 32 and 33,respectively.

They do notshow performance comparable to the initial testing,but provide the design in

a a compact package that is portable.

55

♦tfij

CUMHIflKIMMM
nn A'Ainp bi D Mil

Tsam
mw

riu f. I 4 V11 o n HbmiUrgli
i

mnftrnt ■n(nn9% mm

no-
no
BQO

tai9

11.9

afa Ei:

D4.

03*

4^

10

Ca«9ii

m

ICM

Ml
nj

•*1

m

0

Qfr-

Kt

2g

m
«oc>-
sc>

a^msELt.
Mt>.»

aS>W,'S3SEK J

Figure 32: Repackaged Wired Testing

56

rLfluiiaBLH
arai^nAM

avIloru, i

I 3i-E3

9K.nH 9IHL71I0

f hvrt

Two't 1R10

llIi ,r iJl^jJ iiiilii1»o- wo-[iMi iii
liuo- BflUl-f

U£5_ sSM-fc.t2.aH**

<0 ^CCI

tf?
P*q*D

Tranif&aeqi..Lj._iJilkLi iii J j
»ar

jl.J .li%£h AO-

3cea 3s son

M>C2
QiqpAdtei^iB^ Ufa

u-

09 OS

u "firs:ais •■ ' am

[>ijr«a Cbo^ f¥9
t»*6' 1(»M^«D- WOO-
mo- wwo-
nsD-^ /^\

.f' 00-
3CBK join])»

Figure 33: Repackaged Wireless Testing

57

https://fc.t2.aH

7.0 Conclusions and Future Work

The monitor multiplexer was unnecessary It wasincluded m the original

design as a carryoverfrom a design m the ASIC environment where it was useful m

analyzmg devices whose designs could not be easily iterated. This was not necessary for

anFPGA implementation since the device can be easily reprogrammed to brmg out any

necessary signals. Additionally,setting the programmable thresholds as constants m the

VHDLcode helped free up logic cells While changing these constants is significantly

slower than changing dip switches on a test board,the free logic cells allowed easier and

more efficient routing ofthe design. This was especially important since the design was

done m VHDLand not hand-placed schematic capture,which would have allowed the

compiler less flexibility m fitting the design

There were notenough clock trees on the Altera part,which meantthat the

third clock(DSPCLK)had to be routed as a regular clock signal This proved costly since

this clock was already being dithered and occasionally caused problems in the

downstream modules latching data correctly Some ofthe data lines may have been

violating setup and hold times,but this was hard to determine due to the aperiodic nature

ofa dithered clock routed inefficiently This scenano is possible but not as likely as data

lines in the same parallel word being latched at differenttimes creating erroneous outputs

This is likely since the problem became much worse with the wireless testing as the clock

had to do more dithenng

There were some routmg problems with the software tool trying to

optimize the VHDLconversion by usmg internal chip resources called embedded array

58

blocks(EAB) These blocks were physically in the middle ofthe chips floor plan and

occasionally interfered with requiring each individual module to be routed tightly

together For mstance,a module may use an adder and beimplemented m one comer of

the chip,except for that adder, which is placed halfway across the chip m the EAB This

may not have been the mam routing problem,but did not help keep the design close

together This problem can also be solved by the three reasons given above for the next

generation design

These were limitations ofthe part chosen,but will not be a problem m

fiiture generations ofthe digital receiver design for three reasons First,the next-

generation is being composed offundamental modules that are bemg physically hand-

placed m the device Second,the choice ofFPGA has changed to a device that has more

clock trees and will ensure a tighter design with more predictable clock delays Third,

once the system specifications are decided for the wireless system,the digital receiver can

be implemented m an ASIC with well-defined timing for clocks

Sheng and Broderson's book on low-power wideband CDMA helped

illuminate the problems encountered on clock distribution They designed a system to

support asymmetrical multipoint transceivers transmitting to a centralized base station

receiver The book focuses mainly on the downlink(base station receiving from the

transceivers)design and shows how to build aCMOSimplementation ofthe transmitter

baseband modulator,RF transmitter,RF analog receiver,and the baseband digital signal

processor(DSP) They used a matched filter correlator for both the I and Q channels but

the DSP IS segmented from the RF frontend as in this system. They paid a significant

amountofattention to clock buffermg They minimized skew by balancing the capacitive

59

load seen by the buffers. With a knowledge ofthe process parameters,transistors were

sized appropnately and predictable clock distribution and propagation resulted[21].

The digital spread spectrum receiver worked well The receiver was able

to demonstrate reliable wireless spread spectrum transmission across a room. The imtial

testing showed low error rate for the unpackaged design and was able to show Graviton,

Inc how spread spectrum telesensmg can be achieved Repackaging made the receiver

look more like a viable product,butexacerbated some problems the receiver was having

with timing However,these are issues that will be addressed and remedied m the next

generation The current digital receiver was not able to demonstrate CDMA,but this was

due to componentlimitations m the rest ofthe system and not a result ofa flaw in the

design However,the receiver did demonstrate the fundamental digital circuitry needed to

implementCDMA and its reliable reception ofsensor data proves that it will be a

fundamental building block ofthe next-generation design

CDMA communication requires intricate interface between complex

digital and analog functions Therefore,to implement a CDMA receiver both have to be

considered The digital portion ofthe receiver mustbe able to adjust the analog front-end

circuitry responsible for demodulating the incident RF signal Also,the timing and

distribution ofthe clocks must be tightly controlled m the digital portion ofthe receiver

has this has a tremendous effect on the data being recovered by the receiver With

CDMA's sustained popularity and wide range ofdesign topics to explore,it will continue

to be a widely-researched topic

60

References

61

References

1]Bntton,C L etal "Battery-powered,wireless,MEMSsensors for high-sensitivity
chemical and biological sensing"Presented at The 1999 Conference on
AdvancedResearch in VLSI Atlanta,GA March 1999

2]Sklar,Bernard Digital Communications FundamentalsandApplications New Jer
sey Prentice-Hall, 1988.

3]Proakis,J andM Salehi Communication SystemsEngineering New Jersey Prentice
Hall,1994

4]Poor,H and G Womell Wireless Communications New Jersey Prentice-Hall, 1998

5]Ghsic,S andP Lappanen Wireless Communications TDMA vs CDMA Boston
Kluwer,1997

6]Rohde,U,J Whitaker and T Bucher CommunicationsReceivers Fnnicples and
Design,SecondEdition NewYork McGraw-Hill,1996

VJMehrotra,A GSMSystem Engineering. Boston Artech,1997

8]Dixon,Robert SpreadSpectrum Systems with CommercialApplications, ThirdEdi
tion New York Wiley and Sons,1994

9]Viterbi,A CDMA Principles ofSpreadSpectrum Reading,MA Addison-Wesley,
1995

10]Peterson,W andE Weldon Error-correcting Codes Cambridge MIT Press,1972

11]Yang,S CDMARFSystem Engineering Boston* Artech,1998

12]Heidan-Batem and C McGillem "Chaotic sequences for spread spectrum An alter
native to PN-sequences," ProceedingsoftheIEEEInternational Confer
ence on Selected Topics in Wireless Communications p 437-440,1992

13]Heidari-Batem and C McGillem "A chaotic direct-sequence spread spectrum com
munication system," IEEE Transactions on Communication vol 422
num 2/3/4,p 1524-1527,1994

14]Chen,C et al "Design ofchaotic spread spectrum sequences using ergodic theory"

62

[15]Shaw,R "Strange Attractors, Chaotic Behavior,and Information Flow"Zeitschrift
furNaturforschung. 36a, 1981. p 80-112.

[16]Adler,R.andT Rivlin "Ergodicand mixing properties ofChebyshev polynomials,"
Proceedings ofthe American MathematicsSociety vol 15,p 794-796,
1964

[17]Chen,C and K.Yao. "Basic issues m chaotic communication systems"

[18]http //wwwrfmd com/DataBooks/db97/2510 pdf

[19]http //wwwrfmd com/DataBooks/db97/2945 pdf

[20]http //www altera com

[21]Sheng,S andR Broderson Low-powerCMOS Wireless Communication'A Wide
band CDMA SystemsDesign Boston'Kluwer,1998

[22]Otte,R,L deJong,A vanRoermund Low-power WirelessInfared Communication
Boston Kluwer,1999

63

Appendix

64

8.0 VHDL Code

8.1 Clock Divider

library leee,
use leee std_Iogic_1164 all,
use leee std_logic_anth all;
use leee std_logic_unsigned.all,

entity clk_div is
port

(
signal smpclkxS in std_logic,
signal smpclk out std_logic

),
end clk_div,

architecture behavior ofclk_div is

signal smpclk_l std_logic,
signal smpclk_2 std_logic,
signal smpclk_3 std_logic,

begin

div_by_8 process(snipclkx8)
begin
ifnsing_edge(snipclkx8)then

smpclk_l <= not(smpclk_l),
else

smpclk_l <=smpclk_l;
end if,
ifrising_edge(smpclk_l)then

smpclk_2<= not(smpclk_2),
else

smpclk_2<=smpclk_2,
end if,

ifrising_edge(smpclk_2)then
smpclk_3 <= not(smpclk_3),

else

smpclk_3 <=smpclk_3;
end if,
smpclk<=smpclk_3,
end process div_by_8.

65

end behavior,

8.2 Polarity Decoder

library leee,
use leee std_logic_l164 all,
use leee std_logic_anth all,
use leee std_logic_unsigned all,

entity poldec_alt2 is
port

(

~Declare I/O interface

signal rfdata in std_logic,
signal smpclk in std_logic,
signal mrstb in std_logic,

signal sysclrb out std_logic,
signal Idvar out std_logic,
signal dpnclk_o out std_logic,
signal bitdith' out std_logic_vector(l downto 0),
signal bitsmp out std_logic_vector(6 downto 0),
signal spda out std_logic,
signal Apol_o out std_logic,
signal Bpol_o out std_logic,
signal Cpol_o out std_logic,
signal bitseg out std_logic_vector(2 downto0)
),
end poldec_alt2,

~ Declare architecture behavior body

architecture behavior ofpoldec_alt2 is

66

~Declare the internal signals

signal ldvar_sigl,ldvar_sig2,sysclrb_sig std_logic,
signal bitsmp_d,bitsmp_q std_logic_vector(6 downto 0),
signal bitseg_d,bitseg_q std_logic_vector(2 downto 0),
signal bitdith_d,bitdith_q std_logic_vector(l downto 0),
signal dpnclk_d,dpnclk_q std_logic;
signal spda_d,spda_q std_logic,

signal Amagh std_logic_vector(2 downto 0),
signal Bmagh std_logic_vector(2 downto 0),
signal Cmagh std_logic_vector(2 downto 0),
signal Amagl std_logic_vector(2 downto 0),
signal Bmagl std_logic_vector(2 downto 0),
signal Cmagl std_logic_vector(2 downto 0),
signal Amag std_logic_vector(2 downto 0),
signal Bmag std_logic_vector(2 downto 0),
signal Cmag std_logic_vector(2 downto 0),
signal Apol std_logic,
signal Bpol std_logic,
signal Cpol.std_logic,
signal temp std_logic_vector(2 downto 0),

~ Declare the required constants

constantDEFAULT.std_logic_vector(l downto 0) ="00",
constant RETARD.std_logic_vector(l downto0) ="01",
constant ADVANCE std_logic_vector(l downto0) ="10",

constantRETARDPT std_logic_vector(2 downto0) ="011",
constantDEFAULTPT std_logic_vector(2 downto0) ="100",
constant ADyANCEFT"std_logic_vector(2 downto 0) ="101",
constant MAXPT std_logic_vector(2 downto0).="101",

constant GND std_logic_vector(l downto0) ="00", ^

-Ifin DEFAULT BITHD1T=0,BITSEG roll point=4,SPDA=Bpol.

-- Ifin RETARD B1THDIT=1,BITSEG roll point=3,SPDA=Cpol

67

— Ifin ADVANCE BITHDIT=2,BITSEG roll pomt=5,SPDA=Apol

j

~ Declare the operational sequence definitions(text only)

— This module is used to recover an accurate and robust data stream

~ with a flexible data clock The recovered input(RFDATA)data
~ stream is oversampled(5 to 1 ratio)to enable an accurate and
~flexible data sample window Because ofthe times five oversample
~ five bits are sampled plus to enable a slidmg(Tau-dither)scheme
~two additional bits are sampled The seven sampled bits are divided
— into three windows(A,B,C)each with five bits Magnitudes are
~ detected and compared for optimum sampling decisions,bit polarity
~ alignment,and to recover an accurate data clockfrom the data stream

~ Begin architecture behavior application

begin
—The operation controller sets the system reset(sysclrb)and programmable
—settings load(Idvar)
opcon process(smpclk,mrstb)
begin
ifmrstb ='0'then

sysclrb_sig <='0',
ldvar_sigl <= '0',
ldvar_sig2 <='0',

elsiffallmg_edge(smpclk)then
sysclrb_sig <='1',
ldvar_sigl <=ldvar_sig2,
ldvar_sig2 <='1',

end if,
sysclrb <= sysclrb_sig,
Idvar<=ldvar_sigl,
end process opcon;

flops. process(smpclk,sysclrb_sig)
begin

ifsysclrb_sig='0'then
bitsmp_q <="0000000",

68

bitseg_q <="000",
bitdith_q<="00",
dpnclk_q <='0',
spda_q <='0',
elsiffalling_edge(smpclk)then I
bitsmp_q <= bitsmp_d, i
bitseg_q <= bitseg_d,
bitdith_q <= bitdith_d,
dpnclk_q <= dpnclk_d,
spda_q <=spda_d,
else

bitsmp_q <= bitsmp_q,
bitseg_q <= bitseg_q,
bitdith_q <= bitdith_q,
dpnclk_q <= dpnclk_q;
spda_q <=spda_q,
end if,

~ Declare the port outputs for test outputs only,remove later '
!(:***

Apol_o <= Apol,
Bpol_o <=Bpol,
Cpol_o <= Cpol,

~Declare the port outputs from a flip flop
__H:**************l!**

spda <=spda_q,
dpnclk_o <= dpnclk_q,
bitsmp <= bitsmp_q,
bitseg <= bitseg_q,
bitdith <= bitdith_q,

end process flops.

**

~ Declare the process sensitivity list(inputs to the process)
**

process(bitsmp_q)

69

I

~ Begin the process

~ This process is used to detectthe magnitude oflogical low's
~ and the magnitude oflogical high's for each ofthe three sample
~ windows(A,B,C)which are set to contain sampled bits 0-4, 1-5,
~2-6 respectively A magnitude value for each ofthe six signals
~(Amagh,Amagl,Bmagh,Bmagl,Cmagh,Cmagl)is output m 3 bit fields

**

begin

**

~ Declare the flip flops which require feedback
**

~ no flip flops m this particuliar process

__**,|:*^,|-,j.^.,|.,j5

~ Declare the default states for the flip flops m this process
**

Amagh <=(GND&bitsmp_q(0))+(GND&bitsmp_q(l)) (GND&bitsmp_q(2))
+(GND&bitsmp_q(3))+(GND&bitsmp_q(4)).

Amagl<=(GND¬(bitsmp_q(0)))-I-(GND¬(bitsmp_q(l)))+(GND&
not(bitsmp_q(2)))

+(GND¬(bitsmp_q(3)))-i-(GND¬(bitsmp_q(4))),

Bmagh <=(GND&bitsmp_q(l))-h(GND&bitsmp_q(2))+(GND&bitsmp_q(3))
+(GND&bitsmp_q(4))+(GND&bitsmp_q(5)),

Bmagl<=(GND¬(bitsmp_q(l)))-t-(GND¬(bitsmp_q(2)))+(GND&
not(bitsmp_q(3)))

+(GND¬(bitsmp_q(4)))+(GND¬(bitsmp_q(5))),

Cmagh <=(GND&bitsmp_q(2))+(GND&bitsmp_q(3))+(GND&bitsmp_q(4))
+(GND&bitsmp_q(5))+(GND&bitsmp_q(6));

70

Cmagl<=(GND¬(bitsmp_q(2)))+(GND¬(bitsmp_q(3)))+(GND&
not(bitsmp_q(4))) ^

+(GND¬(bitsmp_q(5)))+(GND¬(bitsmp_q(6))),

end process,

~End process
1j ^^^ ̂ ̂ ̂ ̂ ̂̂ ^ ̂ ̂ ̂ ̂ ̂^^^^^ ̂ ̂^ ̂ ̂^^^ ̂ ̂ ̂ ̂ ̂ ̂^^^^^^^ ̂ ̂ ̂ ^^ ̂ ̂ 4^ 4!^ 4^ 4«^^4«4 4!^ 4(4 4«^^ ̂ ̂ ̂ ̂ ̂ ̂̂ ̂ ̂̂ ^ ̂ ^^ •J ^ ̂ ̂ ̂ ^^^ ̂ ̂^ ̂ ̂ ̂ ^^^^^gfi^yfi^SP0^^0^^ ̂ ̂

1^ «1^ ̂ ̂ ̂ ^ ̂ *1*^^•!*^ ̂ •!*^•!*^ ̂ ̂ ̂ ̂^ ̂ •!»^ ̂ ̂ ̂ •X> "X*^^L»^*1# «1^ ,1# »1# ^1« 4*^ *l4 kl^ kl* k!* klk kl>^kl« klk kik ktk klk kik k!k ktk klk kik kik
r k^k k^ kfk k^ k^ kfk «fk kyk kjk kjk k|k kfk k^ k^ kfk kjk kjk k^ kfk »|k k|k T* #Jk kjk k^ k|k kfk^^^k^^^^ ̂ ̂ ̂ ̂ ̂ ̂9fi^^^kjk 0^^^^^ ̂ ^kfk kfk k|? ?Jk kj5 #1? kjk

~ Declare the process sensitivity list(inputs to the process)
kjk kik ktk kik kik kjk kik ktk klk ktk klk kik^klk^^ ̂ ̂̂ ilf ^ ̂ ^ ̂ ̂^^^ ̂ ̂ ̂ ktk^^^kik klk k^ kik kik kU klk kt« *5^ kl* kik klk klk klk kik klk klk klk kik kik klk klk klk ktk klk
kjk kJk kJk kJk kJk kfk kfk k|* kJk kJk k|k kJk kj* kfk k|k kJk k^k kJk k^ kfk kJk kJk kJk^k^k^kfk^ ̂ kfk ̂ ^k^^^^^Sp^k^k^k^k^ kJk^^ ̂ ̂ ̂ Sfi^7|k k|k^k|k ?|k kJk kJk kJk k|k kfk k|k

process(Ainagh,Bmagh,Cmagh,Amagl,BmagI,Cmagl)

__ ^^ ̂ ^ ̂ ^^ ^^>i<^ ̂ ̂ ̂ ^ ̂ Hi ^ ̂ ̂Hi^ ̂ ̂ ̂Hi :{(:{«4:̂ ^^ ̂ ̂ Hi H« ^ ^^ Hi^ ̂

Hi

~ Begin the process

~ This process is used to resolve the maximum magnitude ofthe
~ logical low's and the magnitude oflogical high's for each of
~the three sampled windows(A,B,C) The results are output as
~ Amag,Bmag,Cmag and are represented in three bit fields The data
~ polarity(logic low or logic high)is also resolved and is output
~ as Apol,Bpol,Cpol with each represented by a single bit.

begin

~ Declare the flip flops which require feedback
_^:]«^^s)$HiH<Hi

~ no flip flops m this particuliar process

^^Hi

~ Declare the default states for the flip flops in this process
^ ̂ Hi

71

Amag <=Amagh,
Bmag <=Bmagh,
Cmag <= Cmagh,
Apol<='r,
Bpol<='1',
Cpol<='1',

~ Begin body ofprocess arguments

if(Amagh < Amagl)then
Amag <= Amagl,
Apol<='0',
end if;

if(Bmagh <Bmagl)then
Bmag <=Bmagl,
Bpol<='0',
end if,

if(Cmagh<CmagI)then
Cmag <=Cmagl,
Cpol <='0',
end if,

end process,

— End process
**

**

~ Declare the process sensitivity list(inputs to the process)

process(rfdata,bitsmp_q,bitseg_q,bitdith_q,dpnclk_q,spda_q,Amag,
Bmag,Cmag,Apol,Bpol,Cpol)

**

**

~ Begin the process

72

~This process is used to resolve which 5 bit window(A 0-4,
~B 1-5,C 2-6)ofdata has the best ratio ofmatching bits
~ This decision(bitdith)is used in a Tau-dither scheme to
~ determine where the sample window needs to be placed(RETARD,
~DEFAULT,ADVANCE)for the next cycle This decision is also
~ used to slide the trigger pomt(RETARDPT,DEFAULTPT,ADVANCEPT)
~for the outbound denved(DPNCLK)PN clock

begin

^ ̂ ^HiH:̂ ^ ̂ ̂ ^ Hi^ ̂ H:Hi Hi ^ ^ Hi Hi Hi Hi^ ̂ Hi ^ ̂ ^^

~ Declare the flip flops which require feedback
**

spda_d <=spda_q;
dpnclk_d <=dpnclk_q,
bitdith_d <= bitdith_q,

**

~ Declare the default states for the flip flops m this process
**

dpnclk_d <='0',

hitseg_d <=bitseg_q+l,

bitsmp_d(6 downto 1)<=bitsmp_q(5 downto 0),
bitsmp_d(0)<=rfdata,

**

~ Begin body ofprocess arguments
**

if(bitseg_q=MAXPT)OR
((bitdith_q=DEFAULT)AND(bitseg_q=DEFAULTPT))OR
((bitdith_q=RETARD)AND(bitseg_q=RETARDPT))OR
((bitdith_q=ADVANCE)AND(bitseg_q=ADVANCEPT))then
bitseg_d <="000",
dpnclk_d <='1',

73

if(Amag>Bmag)AND(Bmag>=Cmag)then
spda_d <= Apol,
bitdith_d <=ADVANCE;
elsif(Cmag>Bmag)AND(Bmag>=Amag)then
spda_d <= Cpol;
bitdith_d <=RETARD;
else

spda_d <=Bpol,
bitdith_d <=DEFAULT,
end if,
end if;

ifbitseg_q <"001"then
dpnclk_d <='1',

end if,
end process;

~End process
„**

end behavior.

8.3 Despreader Correlator

library leee,
use ieee.std_logic_1164 all,
use leee std_logic_arith.all,
use leee std_logic_unsigned all,

entity desprd2_alt is
port

(

„**

~ Declare I/O interface
__****************************:|5**s|s-fc-l::ic*********************:i-!l.**:|;,|j

Signal spda- m std_logic,

74

signal dpnclk in std_logic,
signal Idvar in std_logic,
signal sysclrb in std_logic,

signal dpack out std_logic,
signal dspclk out std_logic,
signal pretrk out std_logic,
signal trk out std_logic,
signal mbit' out std_logic,
signal mdet out std_logic,
signal dsretard_o out std_logic,
signal dsdefault_o out std_logic,
signal dsadvance_o out std_logic,
signal niaxpol_o out std_logic,

signal niaxmag_o out std_logic_vector(5 downto 0),
signal dsseg out std_logic_vector(6 downto 0),
signal dstkacc out std_logic_vector(l downto 0),
signal dsntacc out std_logic_vector(3 downto 0)

),
end desprd2_alt,

**********************sis***************************************

~ Declare architecture behavior body
s|s*****

architecture behavior ofdesprd2_alt is

__******H:********************************:j!*:i!sl!j|:******************

~ Declare the internal signals
__*********************************!!::|!*:|;************************H!

Signal dpack_d,dpack_q std_logic,
signal dspclk_d,dspclk_q std_logic,
signal pretrk_d,pretrk_q std_logic,
signal trk_d,trk_q std_logic,
signal mbit_d,nibit_q std_logic,
signal mdet_d,mdet_q std_logic,
signal dsCpol_d,dsCpol_q std_logic,
signal dsBpol_d,dsBpol_q std_logic,
signal dsApol_d,dsApol_q.std_logic,
signal dsretard std_logic;
signal dsdefault std_logic;
signal dsadvance std_logic,
signal dsretard_d,dsretard_q std_logic;

75

signal dsdefault_d,dsdefault_q std_logic,
signal dsadvance_d,dsadvance_q std_logic,
signal maxpol std_logic,

signal dsseg_d,dsseg_q std_logic_vector(6 downto 0),
,signal dsmbth_d,dsmbth_q-std_logic_vector(5 downto 0),
signal dsmdth_d,dsmdth_q std_logic_vector(5 downto 0),
signal dstkth_d,dstktli_q.std_logic_vector(1 downto 0),
signal dsntth_d,dsntth_q*std_logic_vector(3 downto 0);
signal dsmdacc_d,dsmdacc_q std_logic_vector(5 downto 0),
signal dstkacc_d,dstkacc_q std_logic_vector(1 downto 0),
signal dsntacc_d,dsntacc_q std_logic_vector(3 downto 0),
signal xor_array std_logic_vector(62downto 0),
signal suml,sum2,sum3,sum4 std_logic_vector(5 downto 0),
signal dsshf_d,dsshf_q std_logic_vector(62downto 0),
signal dspn_d std_logic_vector(62downto 0),
signal dspn_q std_logic_vector(62downto 0);
signal dsCniag_d,dsCmag_q std_logic_vector(5 downto 0),
signal dsBmag_d,dsBmag_q std_logic_vector(5downto 0),
signal dsAniag_d,dsAmag_q std_logic_vector(5downto 0),
signal compmag.std_logic_vecfor(5 downto 0);
signal maxmag std_logic_vector(5 downto 0),

**

~ Declare the required constants
**

constantDSRETARDPT std_logic_vector(6 downto0).="0111101
constantDSDEFAULTPT std_logic_vector(6 downto 0).="0111110",
constantDSADVANCEPT std_logic_vector(6 downto0) ="0111111",
constantDSMAXPT std_logic_vector(6 downto0) ="1000000",

constantENCODE std_logic_vector(62 downto0)=
"101010110011011101101001001110001011110010100011000010000011111",
constantGND6 std_logic_vector(5 downto0)="000000";

—set programmable thresholds as constants to free up logic cells.
~dsmbth=50,dsmdth=62,dsntth=15,dstkth=2
constant dsmbth std_logic_vector(5 downto0) ="110010";
constant dsmdth'std_logic_vector(5 downto0) ="111110",
constant dstkth'std_logic_vector(l downto0)•="10";
constant dsntth std_logic_vector(3 downto0) ="1111",

— Declare the operational sequence definitions(text only)

76

__***********=(:**

~The despreader correlator is used to search,synch,and lock
~ to the expectedPN code A scheme is used to correlate and
~ optimize the recoveredPN pattern,dither the clock switching
~ points based on the pattern,derive the appropriate data bit
~ polarity,and derive a accurate despread data clock Operational
~flags are generated for pretrack and track modes to be used by
~ other modules,the search mode is the defaulted operation
~Programmable thresholds are available for tracking mode entry
-magnitude,and tracking mode exit magnitudes The module also
~ contains logic to measure missed bits and missed detection cycles
-once the pretrack or track modes are entered Programmable
~thresholds are also available for missed bit magnitude and missed
-detect magnitude A missed bitflag(above the magnitude threshold)
~ or missed detect cycle flag are sent to other modules

..St-!:*******:):*********«.**************!!!***************************

~ Begin architecture behavior application

begin

flops process(sysclrb,dpnclk,Idvar)
begin
ifsysclrb='0'then

dpack_q <='0',
dspclk_q <='0';
pretrk_q <='0',
trk_q <='0',
mbit_q <='0',
mdet_q <='0',
dsCpoLq <='0',
dsBpol_q <='0',
dsApol_q <='0';
dsadvance_q <='0',
dsretard_q <='0',
dsdefault_q <='0',
dsseg_q <="0000000";
dstkacc_q <="00",
dsntacc_q <="0000";
dsshf_q <=

"000"
dsCmag_q <="000000",
dsBmag_q <="000000",

77

dsAmag_q<="000000",
elsiffalling_edge(dpnclk)then

dpack_q <=dpack_d;
dspclk_q <=dspclk_d;
pretrk_q <= pretrk_d;
trk_q <=trk_d,
mbit_q <= mbit_d,
mdet_q <=mdet_d,
dsCpoLq <= dsCpol_d,
dsBpol_q <= dsBpol_d,
dsApol_q <=dsApoLd,
dsadvance_q <=dsadvance_d;
dsretard_q <= dsretard_d,
dsdefault_q <= dsdefault_d,
dsseg_q <= dsseg_d,
dstkacc_q <=dstkacc_d;
dsntacc_q <=dsntacc_d,
dsshf_q <=dsshf_d,
dsCmag_q <=dsCmag_d,
dsBmag_q <=dsBmag_d,
dsAmag_q <=dsAmag_d;

end if,

ifsysclrb='0'then
dspn_q <=

"000",
dsmbth_q <="000000";
dsmdth_q <="000000",
dstkth_q<="00",
dsntth_q <="0000",

elsifrising_edge(ldvar)then
dspn_q <=dspn_d,
dsmbth_q <= dsmbth_d,
dsmdth_q <= dsmdth_d,
dstkth_q <=dstkth_d,
dsntth_q <= dsntth_d,

end if,

~ Output assignments
~ With these statement here,the process block cannot overwrite them

!!!*********

dpack <= dpack_q,

78

dspclk <=dspclk_q;
pretrk <= pretrk_q,
trk <= trk_q,
mbit<= mbit_q;
mdet<= mdet_q,
dsseg <= dsseg_q,
dstkacc <=dstkacc_q,
dsntacc <= dsntacc_q,

dsretard_o <= dsretard_q,
dsdefault_o <= dsdefault_q,
dsadvance_o <= dsadvance_q,
maxpol_o <= maxpol,
maxmag_o <= maxmag,

end process flops,

— Declare the process sensitivity list(inputs to the process)
=1-*************

process(spda,dsshf_q,dspn_q)

:|!*H=*******

**

— Begin the PI process

~ This process is used to accummulate the input spread data stream
~The input spread data is right shifted into a63(PN spread ratio)
~ bit shift register The chip bits(spda)are clocked into this
~ shift register with the derived PN clock(dpnclk) The spda data
~ and the ddspnclk are sent to the despreader modulefrom the polarity
~ decoder(POLDEC)module.The results from this process are the
~ expectedPN(PNCODE)code and the accumulated(dsshf_q)inbound
— PN value

begin

~ Declare the flip flops which require feedback
**

79

^1* *1* C* ^1*^ ̂ ̂ ̂ •I?^ ^ ̂ ̂ ̂ ̂^ ̂ ̂^ ̂ •I*^«1«^ ̂ ̂ ̂ ̂ ̂ «I>^ ̂ ̂ «1> «1« »t« «lj ^»1« ^*(•̂ ̂ ̂tt*a kN^ «|^^^(. «(.
^^^ ̂ ̂■T* ^ 'T* ^ ̂ ^ ^ ^ "P I* ^ ̂ V ̂ 'P ^P ^P ^ ̂ ̂ ip ip ^ ip Sp ^ ip ^ ip ^ ̂ #p ^ ?p ^ Sp 5p ?p ;p ^ 7p 7p 7p ^ ̂

~ Declare the default states for the flip flops in this process.
1 *1* *1* Uf ^ ̂ ̂ ̂ ̂ ^ *1; ^ sS? ^ ̂ ̂ ̂ ?£? ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ *1* ^ ̂ ̂ ̂ ̂ «P •£« »1« *1* ^ «!• •S^ •!« «1# «!«#p *p »p #p rp rp wp •p #p •p #p »p -p wp rp *p »p rp »p rp #p 0J* •p »p •p ^ #p ^ ̂ *p tfp #p #p ^ ̂ «p rp »p ^ ̂ ̂ ̂ ̂ ̂ ̂ Jp ^p ^ ̂ ̂ ̂ ̂ ̂ ̂ rfi SJ% 5p Jp Sfi ^ ?p ?p

dsshf_d(62 downto 1) <= dsshf_q(61 downto 0);
dsshf_d(0) <= spda;

dspn_d <= PNCODE,

xor_array <= dsshf_q XOR dspn_q,

end process,

********** ***4:* ******** ********* ^sNH!********!!:*******

~ End process

~ Declare the piocess sensitivity list (inputs to the process)
*******=^**

process(xor_array)
begin

sum 1 <=(GND6&xor_array(0))+(GND6&xor_array(1))+(GND6&xor_array(2))+(GND6
&xor_array(3))+(GND6&xor_array(4))

+(GND6&xor_array(5))+(GND6&xor_array(6))+(GND6&xor_array(7))+(GND6&xor_a
rray(8))+(GND6&xor_array(9))

+(GND6&xor_array(10))+(GND6&xor_array(11))+(GND6&xor_array(12))+(GND6&xo
r_array(13))+(GND6&xor_array(14)),

sum2<=(GND6&xor_array(15))+(GND6&xor_array(16))+(GND6&xor_array(17))+(GN
D6&xor_array(18))+(GND6&xor_array(l 9))

+(GND6&xor_array(20))+(GND6&xor_array(21))+(GND6&xor_array(22))+(GND6&x
or_array(23))+(GND6&xor_array(24))

80

+(GND6&xor_array(25))+(GND6&xor_array(26))+(GND6&xor_array(27))+(GND6&x
or_array(28))+(GND6&xor_arTay(29))

+(GND6&xor_array(30));

sum3<=(GND6&xor_array(31))+(GND6&xor_array(32))+(GND6&xor_array(33))+(GN
D6&xor_array(34))+(GND6&xor_array(35))

+(GND6&xor_array(36))+(GND6&xor_array(37))+(GND6&xor_aiTay(38))+(GND6&x
or_array(39))+(GND6&xor_array(40))

+(GND6&xor_array(41))+(GND6&xor_array(42))+(GND6&xor_array(43))+(GND6&x
or_array(44))+(GND6&xor_array(45))

+(GND6&xor_array(46)),

sum4<=(GND6&xor_array(47))+(GND6&xor_array(48))+(GND6&xor_array(49))+(GN
D6«&xor_array(50))+(GND6&xor_array(51))

+(GND6&xor_array(52))+(GND6&xor_array(53))+(GND6&xor_array(54))+(GND6&x
or_array(55))+(GND6&xor_array(56))

+(GND6&xor_array(57))+(GND6&xor_array(58))+(GND6&xor_array(59))+(GND6&x
or_array(60))+(GND6&xor_array(61))

+(GND6&xor_array(62)),

end process,

P2 process(suml,sum2,sum3,sum4)

~ Begin theP2process

~ This process is used to perform an XOR and comparison ofthe
~expectedPN code and the inboundPN code The result is a zero
~ polarity magnitude,based on the 63 bit total magnitude field

begin

compmag <=suml+sum2+sum3+sum4.

81

end process P2,

~End process

^ ̂ ̂^^ ̂ ̂̂ ^^ ̂ ̂̂ ^^ ̂ ̂̂ ^^^^^ ̂ ̂^ ̂ ̂ ̂ ^ ̂ ^ ̂ ^^^^^^ ̂ ̂^^^ ^ ̂ ̂̂ ^^^^ ̂ ̂ ̂ ̂̂ ^

— Declare the process sensitivity list(inputs to the process)
^^ ̂ ̂̂ ^^^ ̂ ̂^^ ̂ ̂̂ ̂ ̂ ^^ ̂ ̂̂ ^ ̂ ̂^^ ̂ ̂̂ ^ ̂ ̂ ̂ ̂̂ ^ ̂ ^ ^^ ̂ ̂ ̂ ̂ ̂̂ ^ ^ ^^^^^ ̂ ̂

P3

process(compmag,dsAmag_q,dsBmag_q,dsCmag_q,dsApol_q,dsBpol_q,dsCpol_q,
dsmbth_q,dsmdth_q,dsntth_q,dstkth_q,dsmdacc_q,dsntacc_q,dstkacc_q)

^ ^Uf^ ̂ ̂̂ ^ ̂ ̂^^^ ̂ ̂^ ̂ ̂ ̂ ̂ ̂^ ̂ ̂^ ̂ ̂^ ̂ ̂^ ̂ ̂̂ ^^^^^^^^^^ ̂ ̂̂ ̂ ̂̂ ^ ̂ ̂^^^^^ ̂ ̂^ »1* cp •!» •T* ^'I* •*••P^ 'I* *T* 'T* •!• •*• •!• •!• V^^ ̂ ̂*7*^ ^ ̂ ̂̂ ^ ̂ ̂ ̂^ ̂ ̂^^^^^^ ̂ ̂ I*1« 1%^ ?J5 Sf« 5j5 Sf« 1*

_^̂ H::{:4: Hi Hi^Hi^4<^ ̂ ̂ ^ ^ ^ ̂ ̂H«^ ̂ ^H:Hi^ ̂ ^ ̂ ̂ ̂ ̂ ̂ Hi Hi^^:|:^:{:H:Hi ^^

~Begin the P3 process

~ This process is used to perform four essential and sequential
~ operations. The first operation is to subtract azero magnitude
~from the comparator(from theP2process)magnitude.The second
~ operation is to derive a bit polarity from thePN magnitude
~ The third operation stores and rotates threePN magnitudes and
~ their associated bit polarities The fourth operation is used
~ to compare the three magnitude values and decide ifthe dither
~ controller needs to be m default or retard or advance

~ retard mode dsretard=1,dsseq roll=61,maxmag=dsAmag maxpol=dsApol
— default mode dsdefault=l,dsseq roll=62,maxmag=dsBmag maxpol=dsBpol
~ advance mode dsadvance=l,dsseq roll=63,maxmag=dsCmag maxpol=dsCpol

Hi Hi Hi Hi Hi Hi H* Hi H* Hi

begin

~ Declare the flip flops which require feedback

~ Declare the default states for the flip flops m this process.

82

^^ ̂ ̂̂ ̂ ̂ ̂̂ ̂ ̂̂ ̂ ̂̂ ̂ ̂ ̂ ̂̂ ̂ ̂ ̂ ̂ ̂^^^^^^ ^«^ ̂ ̂ ̂ ̂ ̂ ̂̂ ̂ ̂ ̂̂ ̂ ̂ ̂̂ ̂ ̂ ̂ ̂̂ ^*^ ̂ ̂ ̂

dsBmag_d <=dsCmag_q,
dsBpoLd <= dsCpol_q,
dsAmag_d <=dsBmag_q,
dsApol_d <=dsBpoLq,

5J5 S|€ ^5 SjC^^Sfi^ ̂ 5|C SjC^5jC Jjc^jfff^5|5 5fc 5^^ ̂ S}C SjC^ ̂ 5|*^ jJC 5|C ^^ ̂ ̂ 5jc S|C^ ̂ ̂ ?jc^^^^^^^^s|c ■}« 5^ ^ SjC S|* 5jC ^

~ Begin body ofprocess arguments
•3* >1> ^ *1* ^ •l^ •Ia •Sa *1* »1* ^1* *1* ^ ̂ ̂ ^ ̂ *2' ^ ̂ 4a ^ ̂ ̂ ̂ 4a 4a ^ 4a «1« •!« ^ ̂ ̂ *1# %1«
•7* ^ •T* ^ T* ^ *1* 'T* ^ ̂ 'I* •!• 'T* •!• •!• •y* «!• »j« ^ »j» pp a^ pf^ ^ ̂ 5^ ^ ̂ ̂ p|? ?fp pf* 9|C pf* pj5

if (63 - compmag) > compmag then
dsCmag_d <= (63 - compmag),
dsCpoLd <= '0',
else dsCmag_d <= compmag,
dsCpol_d<='l',
end if,

if (dsAmag_q > dsBmag_q) AND (dsBmag_q >= dsCmag^q) then
maxmag <= dsAmag_q,
maxpol <= dsApoLq,
dsadvance <= '0';
dsdefault <= '0',
dsretard <= '1',
elsif (dsCmag_q > dsBmag_q) AND (dsBmag_q >= dsAmag_q) then
maxmag <= dsCmag_q,
maxpol <= dsCpol_q,
dsadvance <= ' 1',
dsdefault <= '0',
dsretard <= '0',
else
maxmag <= dsBmag_q,
maxpol <= dsBpol_q,
dsadvance <= '0',
dsdefault <= '1',
dsretard <= '0',
end if,

end process P3,

~ End process
■1* *1* pIp pIp pIp 4a 4a 4a pIp pjp pIp pjp pjp pIp pIp pt* pIp 4a pIp pIp pjp pjp pIp pIp pip pjp 4a pjp ^ 4a ^ 4a 4a pIp pIp pIp p2p pI« 4a 4a 4a 4a pIp pIp p£p pIp p2p pIp 4a aIa pIp pIp 4a 4a 4a pfp 4a 4a pIp pIp 4a pIppjp pfp pjp pfp pfp pfp pfp pfp pfp pfp pfp pfp pfp pfp pfp ^ p^ pfp p^ ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ pfp ^ pfp ^ ̂ ̂ ffp ff^ fff yfi fff 9ff ff; fff fff sff 5J5 jfc fff fff jf; fj; jjf jf;

83

~ Declare the process sensitivity list(inputs to the process)

P4

process(maxmag,maxpol,dsretard,dsdefault,dsadvance,dpack_q,dspclk_q,pretrk_q,
trk_q,dsmbth_q,dsmdth_q,dsntth_q,dstkth_q,dsmdacc_q,dstkacc_q,dsntacc_q,dsseg_q,
dsdefault_q,dsretard_q,dsadvance_q)

~ Begin the P4 process

~ This process is used to derive the spread(dspclk)clock This
~ clock IS generated by applying the DSRETARDPT orDSDEFAULTPT or
~DSADVANCEPT to slide the tngger pointfor the outbound derived
~ spread clock This process also resolves the the outbound desrpead
~(dpack)data This process also cotrols whether the despreader
~ correlator module is in search or pretrack or track mode This
— process also measures missed bit and missed detect thresholds

^ ̂ ̂ ̂ ^^^^^^^ ̂ ̂^ ̂ ̂^^^ ^ ̂ ̂ ^^ ̂ ̂ ̂^ ^ ̂ ^^ ^ ^ ̂ ̂ ̂ ^ ^^ ^ ^ ^^ ̂ ̂ ̂ ̂ ̂^^ ̂ ̂ ̂ SJm ^ ̂ ^ ̂ ̂ ̂ ^ ̂ ̂

begin

~ Declare the flip flops which require feedback

dpack_d <= dpack_q,
dspclk_d <=dspclk_q,
pretrk_d <= pretrk_q,
trk_d <=trk_q,
dstkacc_d <=dstkacc_q,
dsntacc_d <= dsntacc_q,
dsseg_d <= dsseg_q+l,

~ Declare the default states for the flip flops m this process.

dspclk_d <='0';
mbit_d <='0',

84

mdet_d <='0',
dsmbth_d <= dsmbth;
dsmdth_d <=dsmdth,
dstkth_d <= dstkth,
dsntth_d <= dsntth,
dsdefault_d <= dsdefault_q,
dsretard_d <= dsretard_q,
dsadvance_d <= dsadvance_q,

~ Begin body ofprocess arguments
**

if(dsseg_q=DSMAXPT)OR
((dsdefault_q='1')AND(dsseg_q=DSDEFAULTPT))OR
((dsretard_q='1')AND(dsseg_q=DSRETARDPT))OR
((dsadvance_q='1')AND(dsseg_q=DSADVANCEPT))then

dsdefault_d <= dsdefault,
dsretard_d <= dsretard,
dsadvance_d <= dsadvance,
dsseg_d <="0000000",
dspclk_d <='!',
dpack_d <= maxpol;

iftrk_q='0'then
ifmaxmag> dsmdth_q then
dstkacc_d <= dstkacc_q+l,
ifdstkacc_q> dstkth_q then
trk_d<='1',
end if,
else

pretrk_d <='0',
end if,
else

ifmaxmag<dsmdth_q then
dsntacc_d <=dsntacc_q+l;
ifdsntacc_q> dsntth_q then
trk_d <='0',
pretrk_d <='0',
dpack_d <='0',
end if,
else

dsntacc_d <="0000",
end if,
end if,

85

if(trk_q='r)AND(maxmag < dsmbth_q)then
mbit_d <='!',
end if,

if(trk_q='1')AND(maxmag<dsmdth_q)then
mdet_d <='1',
end if,

end if,

if(maxmag> dsmbth_q)AND(pretrk_q='0')then
pretrk_d <='!',
dsseg_d <="0000000",
dstkacc_d <="00",
dsntacc_d <="0000",
end if,

ifpretrk_q='0'then
dpack_d <='0',
end if,

ifdsseg_q <"0100000"then
dspclk_d <=T,
end if,

end processP4,

~End process
***:);

end behavior.

8.4 ProtocolRemover

library leee,
use leee std_logic_1164 all,
use leee std_logic_anth all,

86

use ieee.std_logic_unsigned.all,

*

~I/O Interface Declaration

Hi

entity protocol_alt is
port

(
~inputs

signal dpack in std_logic,
signal dspclk. in std_logic,
signal sysclrb in std_logic,
signal trk in std_logic,
signal mdet in std_logic,
signal mbit in std_logic,

~ outputs

signal strk. out std_logic,
signal smdet out std_logic;
signal smbit out std_logic,
signal sdata outstd_logic

),
end protocol_alt,

~ Architecture body

architecture behavior ofprotocol_alt is

signal ml,in2 std_logic,
signal sdata_sig. std_logic,
signal trk_q- std_logic,

87

signal mdet_q- std_Iogic,
signal mbit_q std_logic,

begin

process(sysclrb,dspclk)

begin
ifsysclrb='0'then

trk_q<='0',
mdet_q <='0',
mbit_q <='0',
ml <='1',
in2<='0',

elsifrising_edge(dspclk)then
trk_q <=trk,
mdet_q <= mdet,
mbit_q <= mbit,
in2<= ml;
ml <=dpack,

end if,

sdata_sig <= ml xor m2,
strk <=trk_q,
smdet<= mdet_q,
smbit<= mbit_q,
sdata <= sdata_sig,

end process,

end behavior.

8.5 Packet Detector

library leee,
use ieee.std_logic_1164.all;
use leee std_logic_arith all,
use leee std_logic_unsigned all.

ttttf «1« •!« kLi «!•^ ^ ^^1«^ ̂ ̂̂ *1^^^^^*!• *T-^kL« kj* %l» ^^ ̂ *1# ^«L>^«i"^ ̂ ̂^•!•̂ *1^^ *!■ ^ •!» ^ yu ^ *1^ •!•5ji 5|5 5|? 5|5 ?p 5|5 SJ* 5J? ^ ^ ̂ 5^ ^ ̂ ^ ^ 5p JJ5 5^ J|5 5Ji *|» ^ rp ^ rp ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ♦!• •p •p •p •p •p •p ^ 'p ^ ̂ ̂ ̂ ̂

~ I/O Interface Declaration

entity pack_det is
port(
—inputs

sdata m

dspclk m

— uid m

clacq in

rstb m

Idvar m

strk in

—outputs
wsclk buffer std_logic.
pkda_ec bufferstd_logic_vector(9 downto 0),
match buffer std_logic.
pkdwr out std_logic.
pkwc. buffer integer range 0 to 63;
pkwwr buffer std_logic.
acq out std_logic.
pkda out std_logic_vector(9 downto 0)

),
end pack_det;

~ Architecture Body

architecture behavior of pack_det is

—Constants for Graviton demo
—Packet words are transmitted from the ACQ LSB first
constant pklen.mteger.= 6,
constant pkwid integer .= 10,
constant frame_sync std_Iogic_vector(9 downto 0):="1I1I100000",
constant GNDA std_Iogic_vector(9 downto 0) ="0000000000",
constant GND7'std_logic_vector(6 downto 0) ="0000000";

—set programmable parameters as constants to free up logic cells
constant uid std_logic_vector(2 downto 0) •= "101",

signal id_cnt. integer range 0 to 20,
signal uid_sig std_logic_vector(2 downto 0),

89

signal pkwwr_sig std_Iogic,
signal pkdwr_sig std_logic,
signal pkdwr_sig_dl std_logic,
signal pkdwr_sig_d2:std_logic;
signal pkdwr_sig_d3 std_logic,
signal pkdwr_sig_d4 std_logic,
signal pkdwr_sig_d5 std_logic,
signal acq_sig std_logic;
signal ref_uid std_logic_vector(pkwid-l downto 0);
signal pkwc_sig.integer range0to 63;
signal ec_cnt' integer range0to 10,
signal pkda_sig.std_logic_vector(9 downto 0),
signal pkda_sigl std_logic_vector(pkwid-l downto 0),
signal pkda_sig2 std_logic_vector(pkwid-l downto 0),
signal pkda_int std_logic_vector(9 downto 0),

begin

acquisition process(rstb,clacq,dspclk)
begin
ifIdvar='1'then

uid_sig(0)<= uid(2),
uid_sig(l)<=uid(l),
uid_sig(2)<= uid(O),
ref_uid <=GND7&uid_sig,
else

ref_uid <=ref_uid,
end if,
ifrstb='0'or clacq='1'then
pkda_int<= GNDA,
match <='0',
acq_sig <='0',
ec_cnt <=0,
wsclk <='1',
id_cnt<=0,
elsiffalling_edge(dspclk)then
pkda_int(8 downto0)<=pkda_int(9 downto 1),
pkda_int(9)<=sdata,
if(match or acq_sig)='1'then
ifec_cnt=9then
pkda_ec <= pkda_int,
ec_cnt<=0,
wsclk <='0',
else

pkda_ec <=GNDA,

90

ec_cnt<=ec_cnt+ 1,
wsclk <='1',
end if,
else

ec_cnt<=ec_cnt,

wsclk <='1',
end if,
ifpkda_int=frame_sync then
match <='1',
else

match <= match,
end if,
ifmatch='1'and acq_sig='0'then
ifpkda_mt=ref_uid and id_cnt=19then
acq_sig <='1',
id_cnt<=0,
else

ifid_cnt=20then
acq_sig <='0',
id_cnt<=0,
match <='0',
else

acq_sig <=acq_sig,

id_cnt<=id_cnt+ 1,
end if,
end if,
else

acq_sig <=acq_sig;

id_cnt<=id_cnt,
end if,

end if,
acq <=acq_sig,

end process acquisition,

data_strobe'process(dspclk,rstb,acq_sig)
begm
ifrstb='0'or acq_sig='0'then
pkwwr_sig <='1',
pkdwr_sig <='1';
pkdwr_sig_dl <='1',
pkdwr_sig_d2<='1',
pkdwr_sig_d3 <='1',
pkdwr_sig_d4<='1',
elsiffallmg_edge(dspclk)then

91

ifacq_sig='1'then
pkdwr_sig_d4<= wsclk,
else

pkdwr_sig_d4<=pkdwr_sig_d4,
end if,
pkdwr_sig <=pkdwr_sig_dl;
pkdwr_sig_dl <=pkdwr_sig_d2,
pkdwr_sig_d2<=pkdwr_sig_d3,
pkdwr_sig_d3 <=pkdwr_sig_d4,
ifpkwc_sig=pklen then
pkwwr_sig <=pkdwr_sig;
else

pkwwr_sig <=pkwwr_sig,
end if,
ifstrk='0'then

pkwwr_sig <='0',
end if,
end if,
pkdwr <=pkdwr_sig,
pkwwr<=pkwwr_sig,
end process data_strobe,

data_out- process(dspclk,rstb)
begin
ifrstb='0'then

pkda_sig <=GNDA,
pkda_sigl <=GNDA,
elsifrising_edge(dspclk)then
ifwsclk='0'then

pkda_sigl <=pkda_sig,
pkda_sig <=pkda_ec,
else

pkda_sigl <=pkda_sigl,
pkda_sig <=pkda_sig,
end if,
end if,
pkda <= pkda_sigl,
end process data_out,

word_count process(wsclk,rstb,acq_sig)
begin
ifrstb='0'or acq_sig='0'then
pkwc_sig <=0,
elsifrising_edge(wsclk)then
ifpkwc_sig=pklen or strk='0'then

92

pkwc_sig <=pkwc_sig,
else

pkwc_sig <=pkwc_sig+ 1,
end if;
end if,
pkwc<=pkwc_sig,
end process word_count,

end behavior,

8.6 FIFO Controller

library leee,
use leee std_logic_l164 all,
use leee std_logic_arith.all;

~I/O Interface Declaration

entity fctrl is
port(
—inputs

signal dspclk in std_logic,
signal rstb in std_logic,
signal strk in std_logic,
signal rd in std_logic,
signal acq in std_logic,
signal pkst in std_logic,
signal pkdwr in std_logic;
signal pkwwr in std_logic,
signal full in std_logic,

-DataFIFO full

signal mty in std_logic,
—Data FIFO empty

signal temp_full in std_logic,

—outputs

signal ovr buffer std_logic,
signal temp_clrb buffer std_logic,

—temp_clrb is the asynchronous active low data FIFO clear
signaltempwr buffer std_logic,

93

—tempwr is the active high wnte to the data FIFO signal
signal tpclk buffer std_logic,
signal drdy. buffer std_logic,
signal xfer' buffer std_logic;

—xfer is the active high data FIFO write signal
signal dfclk. buffer std_logic,
signal dfrd' buffer std_logic,
signal clacq buffer std_logic

),
end fctrl.

~ Architecture Body

architecture behavior offctrl is

—The data FIFO is 96 by 10
—Expected word count is the expected packetlength minus2
—Forthe Graviton demo,pklen=6

constant pklen integer =6,
constant pkwid integer =10,

signal temp_clrb_d,temp_clrb_q std_logic,
signal tempwr_d,tempwr_q std_logic,
signal dfrd_d,dfrd_q.std_logic,
signal clacq_d,clacq_q std_logic,
signal drdy_d,drdy_q std_logic,
signal xfer_d,xfer_q std_logic,
signal xfer_d2,xfer_q2 std_logic,
signal ovr_d,ovr_q std_logic,
signal dfwrclk std_logic,
signal tprdclk std_logic,
signal clk_cnt integer range0to pkwid,
signal ovr_cnt integer range0to 7,
signal xfer_cnt integer range0to pklen,
signal dfclk_d std_logic,
signal dfclk_q std_logic,

begin

— Synchronicity

flops process(rstb,dspclk)

94

begin
ifrstb='0'then

temp_clrb_q <='!',
tenipwr_q<='0';
clacq_q <='0',
xfer_q <='0',
xfer_q2<='0',
drdy_q <='0',
ovr_q <='0';
dfclk_q <='!',

elsiffalling_edge(dspclk)then
temp_clrb_q <=temp_clrb_d,
tempwr_q <=tempwr_d,
clacq_q <=clacq_d,
xfer_q <=xfer_d;
xfer_q2 <=xfer_d2;
drdy_q <= drdy_d,
ovr_q <=ovr_d,
dfclk_q <= dfclk_d,

end if,

temp_clrb <=temp_clrb_q,
tempwr <=tempwr_q,

dfrd <=drdy_q,
clacq <= clacq_q,
xfer_d2 <=xfer_q;
xfer <=xfer_q2,
drdy <= drdy_q,
dfclk <= dfclk_q,
ovr <= ovr_q,

end process flops,

******!):****si:***

~ Clock Generation
__**************************Hc****************si:;is^:j:^^^.,l;:];:]c:|;s|.:|;^:j.,(;,|:,|.:j.,|.,|-

—Generate clocks for the single-clock FIFOs

clk_gen process(rstb, dspclk)
begin
ifrstb='0'then

clk_cnt <=0,
tprdclk<='1',
dfwrclk<='1',

elsiffalling_edge(dspclk)then
case clk_cnt is

95

when0=>

tprdclk <='0',
dfwrclk<='l',
clk_cnt <= clk_cnt+ 1;
when 1 =>

tprdclk <='1',
dfwrclk <='0',
clk_cnt<= clk_cnt+ 1,
when pkwid - 1 =>
clk_cnt<=0,
tprdclk <='1',
dfwrclk <=T;
when others=>

tprdclk <='1',
dfwrclk <='1',
clk_cnt <= clk_cnt+ 1,
end case,

end if,
end process clk_gen,

~ Clock Selection
Sj* rfs ^^ ̂ 5|c^5jS 5|c rfc ^ ̂ rfS *|c^ ̂ ^ ̂ ̂ ̂ ^ Sj?^^5}c^ ̂ ?jS^^ ^^^^ jjC »}• 5|C SjC jj*^^ ̂ 5|S^r|C SjC

—Generate the data ready signal(drdy)and switch clocks

clk_sel process(rstb,dspclk)
begin
ifrstb='0' or mty='1'then

drdy_d <='0',
elsifrising_edge(flill)then

drdy_d <=T,
end if,
ifdrdy='1'then

dfclk_d <=rd,
elsifxfer='1'then

dfclk_d <=dfwrclk,
else

dfclk_d<='l',
end if,
ifxfer='0'then

tpclk <= pkdwr,
else

tpclk <=tprdclk,
end if,

96

end process clk_sel;

~ Data FIFO and Temporary Packet Buffer Control

—Write to the temporary packet buffer is disabled iftracking is
—lost(strk:=0),the packetis bad(pkst=l),or the data FIFO has
—overflowed(temp_full=l). Ifthe packetis good then it is wntten to
—the temporary packet buffer

temp_ctrl process(rstb,dspclk)
begin
ifrstb='0' or acq='0' or drdy='1'or temp_full='1'then

tempwr_d <='0',
elsiffalhng_edge(dspclk)then

tempwr_d<='1',
end if,
clacq_d <=pkst or not(pkwwr)or drdy,
temp_clrb_d <=rstb and not(pkst)and not(full),
end process temp_ctrl;

—Ifthe data m the temporary packet buffer is ready to
—be sent to the data FIFO,then writing to the data FIFO and reading
—from the temporary packet buffer(xfer)is enabled

data_ctrl process(rstb,dfclk)
begin
ifrstb ='0'then

xfer_cnt<=0,
xfer_d <='0',

elsifrismg_edge(dfwrclk)then
case xfer_cnt is

when0=>

iftemp_full='r then
xfer_cnt<= I,
end if,
when6=>

xfer_cnt<=0,
when others=>

xfer_cnt<= xfer_cnt+ 1;
end case,
ifxfer_cnt=0then
xfer_d <='0',
else

97

xfer_d <='!',
end if,

end if,
end process data_ctrl,

1 ^•Xr^ ̂ ^ ^^ ̂ ̂ ̂ ^■!- ^ ̂ ̂ ̂ ̂ »!• ^ ,X> "J* ■!* ^ •i# ^ ̂ ̂ ^ ̂ «1« ■!« »1> ^ ^ ̂ ^ ^ ̂ ^ -i.
•T* ^ ^ ̂ ̂ ̂ •P ^ ^ ̂ 'T* ^ ̂ ^ ̂ ̂ ^ »X* •T" V ̂ ̂ ^ ̂ ̂ ̂ ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ * 1* ^ ̂ ^ 'p 1*

~ Overflow

00 process(rstb, mty, dspclk)
begin
if rstb = '0' or mty = ' 1' then

ovr_cnt <= 0,
elsif falling_edge(dspclk) then

iffiill= '1' then
ovr_cnt <= ovr_cnt + 1,
else
ovr_cnt <= ovr_cnt,
end if,
if ovr_cnt =100 then
ovr_d<='l',
else
ovr_d <= '0';
end if.

end if,
end process oc,

end behavior.

8.7 Packet Error Logic

library leee,
use leee std_logic_1164 all,
use leee std_logic_arith all;

~ I/O Interface Declaration

entity pack_err is

98

port

(
~inputs

signal elk. in std_logic,
signal pkwwrnn std_logic,
signal pkwc in integer range0to 63,
~ signal pkwcth in integer range0to 63,
signal mbit m std_logic,
~ signal pkmbth in integer range0to 63,
signal mdet in std_logic,
~ signal pkmdth in integer range0to 63,
signal acq- in std_logic,
signal sysclrb in std_logic,
signal Idvar in std_logic,

~ outputs

signal ambit buffer integer range0to 63,
signal amdet buffer integer range0to 63;
signal pkst buffer std_logic

),
end pack_err,

~ Architecture body

architecture behavior ofpack_err is

signal mbabove std_logic,
signal mdabove.std_logic;
signal wcbelow std_logic,
signal mbth integer range0to 63,
signal mdth integer range0to 63,
signal wcth integer range0to 63,

-set programmable thresholds as constants to free up logic cells
constant pkwcth integer =6,
constant pkmdth integer =3,
constant pkmbth integer =3,

begin

~Load Programmable Settings

99

load process(Idvar)
begin
ifrising_edge(ldvar)then

-Load externally programmable settings
mbth <=pkmbth,
mdth <=pkmdth;
wcth <= pkwcth,

else

mbth <= mbth,
mdth <= mdth,
wcth <= wcth,

end if,
end process load,

~ Missed Bit and Missed Detect Accumulators
********************************* **********:!!*:(:*****

acc process(mbit,mdet,sysclrb,acq)
begin
ifsysclrb='0'or acq='0'then

ambit<=0,
elsiffallmg_edge(mbit)then

ambit<=ambit+ 1,
end if,
ifsysclrb='0'or acq='0'then

amdet<=0;
elsiffalhng_edge(mdet)then

amdet<=amdet+ 1,
end if,
end process acc,

~ Packet Status Check

psc process(elk,pkwwr,sysclrb,acq)
begin
ifsysclrb='0'then

mbabove <='0',
mdabove <='0',
wcbelow <='0',

elsiffalhng_edge(clk)then
—Compare missed detect and missed bit counts to thresholds
if(ambit> mbth)then
mbabove <='1',
else

100

mbabove <='0',

end if;
if(amdet> mdth)then
mdabove <='1',
else

mdabove <='0',

end if,
-Checkincommg packet word countto see ifit is below the threshold
if(pkwc< wcth)then
wcbelow <='r,

else

wcbelow <='0',
end if,

end if,
ifacq='0'then

pkst<='0';
elsiffalling_edge(pkwwr)then

--Check for packet errors and set pkst flag high ifpacket is bad
pkst<= mdabove OR mbabove OR wcbelow,

end if,
end process psc,
end behavior.

101

Vita

Brian Parker Chesney

Received Bachelor's ofScience in Electrical Engineering from Rice University m 1998

TheBSEE had a systems emphasis with course work concentrated m VLSIdesign,digital

communications and digital signal processing Have been worlang at the Oak Ridge

National Laboratory under Dr Charles Britton m the Monolithic Systems Group m the

Instrumentation and Control Division Work has focused on telesensmg using digital

communication Interests include VLSI design,mformation theory,digital signal

processing and digital communications

102

	Design, implementation and testing of a digital baseband receiver for spread spectrum telesensing
	Recommended Citation

	Design, implementation and testing of a digital baseband receiver for spread spectrum telesensing

