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Abstract 

Telesensmg involves receiving data wirelessly from a remote sensor 

Generally,the sensor node is fixed and configured to transmit only or perform very basic 

reception Because oftheir low power consumption,telesensors can be powered by a 

battery for long periods oftune withouta measurementortransmission interruption This 

allows several nodes to be placed at strategic locations and creates a need to have all the 

individual data collected and processed at a centralized location Frequency Division 

Multiple Access(FDMA)provides robust data transmission from multiple telesensors to 

the same receiver at the cost ofadded bandwidth. 

This thesis focuses on the digital recovery ofspread spectrum data m an 

FDMA system A general digital spread spectrum receiver architecture is given(without 

transceivmg capability)and each component is designed,implemented and tested m the 

receiver as a whole A sliding correlator with a threshold is used to synchronize the 

pseudonoise(PN)code used to encode the data with the incoming data System clocks are 

also recovered from the incoming data and distnbuted to the downstream modules The 

design ISimplemented m anFPGA and tested with favorable packeterrorrate results m an 

FDMA system The components ofthe digital receiver processor could be used m 

conjunction with a Costas Loop demodulator to provide CDMA for multiple sensors and 

Its functionality and robustness are confirmed m this thesis This would fitinto acomplete 

CDMA,allowing the demodulator to discnminate between various sensors 
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1.0 Introduction 

Low-power wireless sensors can be used to efficiently report specific 

conditions ataremote location Micromachmed cantilever sensors fabricated on a silicon 

die can be used to provide the sensor data,providing a low-power solution to acquiring 

certain data[1] Because these sensors can be so low-power that they could run offofa 

battery,the parts used to transmit the data need to be similarly low-power Although,the 

wireless link provided by this project is mdependentofthe data being transmitted on it, it 

was designed for a telesensmg application. Thetransmitter aspectofthis wireless solution 

IS provided by an m-house,ORNL-developed analog-to-digital converter(ADC)chip and 

a commerciallow-power transmitter To provide data robustness and provide multiple 

access m future generations,spread spectrum communication is employed This requires 

a digital receiver to recover the spread spectrum signal,despread it and interface with a 

Personal Computer(PC)to display the data This thesis focuses on the design ofthe 

digital spread spectrum receiver to provide remote access for wireless data transfer 

1.1 Telesensing 

Wireless sensor data transmission isfreefrom certain limitations ofcellular 

telephony Transmission bursts do not need to be carefully coordmated to appear as a 

seamlessstream ofcontinuousspeechto the human ear. Therefore,data can betransferred 

everyfew seconds or more as opposed to the millisecond increments required by cellular 

telephony. Asan example,GSM,the Time Division Multiple Access(TDMA)cellular 



standard used for wireless telephony m Europe,requires thatthe speechfor a given call be 

transmitted every4msin 125 usframes Thisfrequency oftransmission would be 

overkillfor a sensor that only needsto update its status onthe order ofseconds or minutes 

or even once an hour 

As a result ofthis long lag between transmission bursts,the REfront-end 

circuitry can be turned offsince the period oftime between transmissions greatly dwarfs 

the time required to tum it back on and transmit a burst ofdata Also,the digital 

transmission processing core,responsible for relaying the sensor data to the RF circuitry, 

can be put into sleep mode to save power. Both ofthese power down features greatly 

reduce the power consumption ofthe system 

Additional powerconservation can be attained ifthe transmitter is not 

configured for reception as well The transmitter does nothave to interrupt its sleep mode 

to spend power on receiving instructions from the host sensor data processor However, 

even ifthis were a desired trait ofa potential wireless telesensor implementation,sensor 

data does not require computationally-expensive and power-hungry digital signal 

processing to restore synthesized human speech,as with digital cellular telephones 

These three features oftelesensmg,RF and digital circuitry power 

conservation and simplified or nonexistenttransceivmg in the transmitter allow 

telesensmg to have tremendous power savings over digital cellular telephony Therefore, 

the data transmission circuitry can run autonomouslyusmg a single compact battery, 

instead ofa traditional cellular telephone battery. These wireless telesensor transmitters 

can be left alone to transmit data reliably for months mstead ofneeding to be recharged 

every couple ofdays as with a standard cellular telephone battery The telesensors 
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transmit data less frequently and atlower rates than cellular telephones,but this is usually 

appropriate for their application to sensor data. 

1.2 Scope ofThesis 

The goal ofthis thesis is to move an analog voltage representing the output 

from an analog sensor wirelesslyfrom the stand-alone sensor site to a hostPCfor display 

Specifically,this thesis focuses on the design ofthe digital spread spectrum receiver used 

to recover the transmitted data The architecture was designed for telesensing,but,since 

the actual transmission and reception ofdata is independentofthe application,the 

wireless link was not tested with sensors as inputs An appropriate background m digital 

communications is developed so that design considerations m the digital receiver can be 

appreciated Then,the system overview is given,detailing the specific components used 

m the system and how this affects the design ofthe receiver Next,the architecture ofthe 

digital spread spectrum receiver is detailed and its functionality explained Later,the 

implementation ofthe design and the testing and results ofthe implementation are 

discussed Finally,lessons learned from the project and conclusions on digital spread 

spectrum design are presented. 



2.0 Background 

2.1 Wireless Communications 

The purpose ofwireless communications is to transmit data through an 

ambient physical medium,such as air,so that a physical channel does not need to be built 

and maintained,such as a cable or twisted pair telephone line This requires couplmg the 

intended transmitted signal to the medium,something easily done with tethered 

communications since the channel is designed to support the transmitted signal For 

wireless communications,this requires building an antenna to convertanincident voltage, 

the medium ofthe signal to be sent,to a radio frequency(RF)wave,a different signal but 

one that can propagate through the desired medium. 

The size ofthe antenna required to couple a given signal to the air via RF 

waves varies inversely with the frequency ofthat signal Lowerfrequency signals require 

prohibitively large antennas and so mustbe converted to a higher frequency signal This 

IS done by using a higher frequency earner that is modulated by the signal to be sent 

The data to he sentcan be transmitted as offsetsfrom the carrierfrequency 

This IS known as frequency shift keying(FSK)and is the method used to transmit the 

infoiTnation m this system In this case,the receiver/transmitter pair employ a bmary 

frequency shift keying(BFSK)alphabet to transmit data The general analytic expression 

for the alphabet is 



12 E,Equation 1: s^{t) = ^ ^" cos(27i:/,?+(p) 

where tis time-limited between0and T,iisa memberofthe bmaryalphabet{0,1}and the 

energy transmitted in one bit is Ei,. Different frequencies are used to transmit a0and a 1 

usually a fixed frequency incrementcentered around the earnerfrequency 

In order to ensure data fidelity at the receiver,the symbols ofthe BFSK 

alphabet must be orthogonal to each other,so thatthey do not interfere with one another 

Since the signals are time-hmited to Tseconds,they can be expressed as 

Equation 2: s^{t) = cos{2%f^t+(S^) rect[^ 

where rect(r/7)= 1 when |r| is less than or equal to 772and0otherwise The Fourier 

transform ofSi(t)is 

sm(7i;r(/-/))
Equations: S^if) = 3(5,(0} = T 

For signals separated by multiples ofl/THertz, 

Equation 4: /[-/g =-
Tfl 



where m is an integer greater than or equal to 1 The value of\ITis known as the 

minimum frequency separationfor the two signals The frequency domain representation 

ofthese signals evaluated at multiples ofthis minimum separation is nonzero for one 

signal while the other is zero and vice versa This is evidenced by Figure 1 Therefore, 

the two signals do notinterfere with each other at all and are orthogonal[2], [3], [4],[5] 

ForFSK digital communication,anFM superheterodyne receiver is 

usually employed It mixes the incoming signal with a local oscillator to an intermediate 

frequency(IF) By downconvertmg to anIF instead ofbaseband,the receiver does not 

have to match the frequency m the local oscillator exactly with the incoming signal This 

creates images at other frequencies,butthese can be suppressed by appropriate filtering 

before the signal is mixed down to IF 

Smce it IS much easier to maintain a constant bandwidth in a fixed filter 

than a tunable one,the channel filtering is done atIF Also,high-stable gam is more 

difficult to provide m a tunable amplifier than a fixed-frequency amplifier This makes 

covering a wide frequency band easier and is why superheterodyne receivers are standard 

forFM radios[6] 



 / \ 

Figure 1: FSK in the Frequency Domain 

2.2 Multiple Access 

To employ wireless communication effectively,especially for telesensing 

applications, multiple users will need to be accommodated. For a sensor designed to 

detect the presence ofa certain element,it usually would not be sufficient tojust have one 

sensor in one place. Generally,an array ofsensors would be used to cover a larger area. 

These results would need to be coordinated and analyzed at a central location. Ifthe 

receiver is able to listen to all ofthese sensors,then only one PC is needed to display and 



assimilate the information gathered Thisrequires multiple sensors having wireless access 

to the receiver 

There are three primary methods ofallowing multiple users access to 

wireless RF communication FDMA,TDMA,CDMA Frequency Division Multiple 

Access(FDMA)separates users by the carrier frequency they use to communicate The 

separation between carriers must allow for the full spectrum ofthe signal to be 

communicated so that signals from adjacent carriers do notoverlap as shown in Figure2 

This requires a certain amountofbandwidth,BW,for a given number ofusers, n,wishing 

to usefly amountofthe frequency spectrum,with signals separated byf^^ -fdi-i 

Equation 5: ^̂ = X ^^di) 
I = 1 

There are multiple access schemes that allow more effective use ofthis 

amountofbandwidth since each user gets theirown amountofbandwidth to occupy,even 

when they are not using it A more efficient way ofallocating bandwidth would be 

allowing users to share a carrier Time 

fbl fd3-f32 

r;\i7^ ^frequency 

fcl fc2 fc3 

Figure 2: FDMA in the Frequency Domain 



Division Multiple Access(TDMA),lets a certain number ofusers share a carrier equally 

Each user is assigned a time slot in aframe that is transmitted on the carrier,repeating 

penodically In Figure 3,for example,the frame has a period, T,supports m users,and 

each one transmits on the carrier for T/m seconds For the same amountofbandwidth as 

above,m*n users can be supported instead ofn This works well for applications where 

small delays in transmission bursts can go relatively unnoticed Anexample ofthis is the 

GSM standard for cellular telephony,which specifies that a4-msframe accommodate 32 

users for a transmission time of125-us each This4-mslag in speech is barely,ifat all, 

perceptible by the human ear,so is adequate for relaying human voice[7] 

Code Division Multiple Access(CDMA)allows multiple users to share the 

same earner by encrypting each user's message This requires a code thatcan only be 

decoded by the appropriate decryption key To reduce computational complexity,the 

encoding algorithm should be easy to invert given the encoding key. The exclusive OR 

(XOR)function is an easily invertible binary function and is used for encoding a message 

for CDMA purposes Since the encoding and decoding functions are well-known,the 

problem now reduces to finding a sufficiently strong encrypting code that does not give 

away the message sent and keeping that key secret 

1 2 3 4 m 

T seconds 

Figure3: A TDMA Frame 



CDMA uses a code m the transmitter thatruns at an integer multiple ofthe 

data rate to encode data,called spread data The rate ofthe code,called the chipping rate, 

mustrun faster than the data rate because each data bit is being encoded before it is 

transmitted It mustrun atan integer multiple so thatthe receiver canrecover the message 

data from the spread data,since the receiver has prior knowledge ofthe code but no 

knowledge ofthe timing(i e,is not passed a clockfrom the transmitter) Making these 

encrypting codes,also called spreading codes,unique with respect to each other allows 

multiple users to share the same carrier without interfering with each other's data The 

strength ofCDMA lies m the generation ofstrong individual codes as well as a set of 

codes that are unique to each other[2], [8], [9] 

2.3 Spread Spectrum 

The frequency spectrum ofa signal is spread when the signal is combined, 

through modulo-2 addition with a pseudorandom or pseudonoise(PN)sequence As 

shown mFigure4,the original data signal,m the case ofFSK modulation,consists ideally 

-^frequency 

fo fc fl 

Figure 4: IdealFSK 
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ofnarrow signals at the carrier frequency and also atfixed frequency increments from the 

earner The frequency spectrum ofthe ideal signal is limited to the bandwidth needed to 

include the smallFSKincrements. The idea behind combining this signal with aPN 

sequence is to create a signal that looks like noise when not properly decoded. This is 

achieved by making the signal appear to be random A truly random signal contams all 

possible frequency components equally 

As a data signal is randomized,it's frequency spectrum must be spread to 

include more ofthe frequency spectrum However,it is only spread to a certain extent 

since thePN sequence is not trulylandom and repeats with some determined period 

Figure 5 shows a broader spectrum than the signals m Figure4 CDMA is implemented 

using spread spectrum at the cost ofadded bandwidth However,this cost is offset by the 

gam m multiple access afforded bythe orthogonality ofthePN codes. Itis possible to use 

thePN code in different ways to encrypt communication IfthePN sequence is used to 

directly modulate the carrier,this is direct sequence spread spectrum On the other hand. 

..frequency 

Figure5: Spread Spectrum 
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ifit IS used to shiftthe earnerfrequencyin discrete increments,this is known asfrequency 

hopping[8] Each user is given their ownPN code and mayenjoy secure communication 

independent ofother users on that same carrier frequency as shown m Figure 6. 

user 3 

user2 

user 1 

^frequency 

Figure 6: Code Division Multiple Access 
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2.4 PN Codes 

Ifthe encrypting code is a suitably selected sequence,then onlythe exactly 

aligned code reveals the message and a misaligned code reveals nothmg This can be 

measured by the digital normalized autocorrelation function. The autocorrelation,RJn], 

N-1 

Equation 6: RJ.n] ̂ ^X x[n+i] 
I = 1 

measures the correlation betweenx[n]and a tune-shifted version ofitself This repeats at 

least with period TV, since TV is the length ofthe code The ideal autocorrelation function 

for an encrypting code then is the Kronecker delta function which only has a nonzero 

value at0 Transforming white noise from the frequency spectrum to the time domain 

also yields a similarfunction Imitating white noise m an encrypting sequence is desirable 

because an improperly decoded signal will resemble white noise and give no useful 

mfoimation abouthow to properly decode the signal 

Since determimstic hardware is used to generate these codes,they cannot 

be trulyrandom,butcan approximate random binarystrmgs There are three generalrules 

for analyzing digital codes to determine ifthey sufficiently resemble random bits First, 

the number ofones and zeros m the code must not differ by more than one Second,the 

autocorrelation must not exceed 1/N,where TV is the length ofthe code,when not exactly 

aligned with itself Finally,thePN sequence musthave balanced runs,i e,1/2ofthe runs 

ofconsecutive similar digits are oflength 1, 1/4 length 2,1/8 length 3,and so on[2],[9] 
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Pseudorandom sequences are efficiently generated from linear feedback 

shift registers(LFSR) These LFSRs are a stnng ofone-bit registers cascaded together 

with connections to binary adders(XOR gates)at predetermined positions The 

connections to the XOR gates are known collectively as the tap configuration and are 

determined bya generator polynomial The outputofthe tap configuration isfedback into 

the first register and the feedback loop contmues until the appropriate number ofbits are 

shifted out ofthe output,which is the last register[10] 

The generic k-stage LFSR m Figure7has Y(x)as the outputPN sequence 

The seed,m(x),is k-bits long and initially loaded into the LFSR The tap configuration, 

given by h(x), is a k-bit binary string ofcoefficients that determine which switches are 

closed to contribute to the sum fedback into the register holding the least significant bit 

Since the /c-stage shift register has 2^possible states, after 2^-1 transitions all have been 

exhausted and the LFSR starts repeating states again Therefore the outputPN sequence 

would start repeating again with a maximum periodicity of2^-1 

mo m, mk-2 mic-i 

hi■k-1 

t 

Figure 7: Linear Feedback Shift Register 
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Codes that repeat with maximum periodicity are maximal length(ML) 

codes and are desirable because they demonstrate the autocorrelation property descnbed 

earlier A code's periodicity is solely determined bythe tap configuration as the choice of 

seed does notaffectthe length ofthePN sequence as long as it is not allzeros[2], [8], [9] 

The coefficients ofthe tap configuration,bit stnng h(x),are determined expenmentally 

The MLtap configurations for a given length can be found by exhausting all the 

possibilities and checking the periodicity ofthe resulting codes Tables for tap 

configurations that generate MLsequences can be found m[8] 

To employ effective multiple access,the generated codes also mustnot 

interfere with each other and there must be enough codes to accommodate several users 

Fora ^-stage LFSR,the numberofMLsequencesthatcan be generated is Euler'sfunction 

divided by the LFSR length. 

Equation 7: 

Euler's function gives the number ofnumbers that are coprime to, i e,have no common 

factors with,and less than a certain number,including 1 Euler's function is maximized 

for prime numbers since all ofthe numbers less than it are coprime to it Therefore,if2^-

1 IS a prime number,the corresponding ^-stage LFSR will generate the maximum number 

ofusablePN sequences[8]. 

However,these sequences must not be mistaken for each other ifthey are 

going to be a usable set This is determined by the digital cross-correlation function. 
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N-1 

Equation 8: ^X 
N 

I = 1 

R^y represents the cross-correlation between two codes,x[n]2iaAy[n][3],[11] This is 

useful in examining the orthogonality oftwo codes,or the difficulty in mistaking one for 

the other 

Asan example,considertwo differentLFSRtap configurations thatuse the 

same initial seed They are chosen to be[00 1 1]and[100 1]and happen to be the only 

two configurations for a4-stage LFSRthat generate MLsequences The resulting 

sequences for seed[1 0 0 0]are respectively, 

000100110101111 and000111101011001 

They meetthe criteria for number ofones and zeros and runs listed above 

Both have eight ones and seven zeros Figure 8shows that their autocoirelations only 

exceed 1/15 when they are exactly aligned with themselves Finally,they both have 

balanced runs Each has8 runs ofconsecutive digits four one-bit runs,two two-bit runs, 

a three-bitrun,and afour-bit run Their resulting autocorrelations are shownin the Figure 

8 and are as close to an impulse function as a deterministic algorithm can be 

16 



File Windows Help 
isSB 

Autocorrelation for Code 1 

Autocorrelation for Code2 

Figure 8: Autocorrelations 

To use these two codes on the same carrier,they must be minimally 

correlated. The normalized cross-correlation is given in Equation5 and graphed in Figure 

9. Ifwe are trying to send[0 1 0 1]as data using these codes,this would result in Figures 

10 and 11,respectively. Since the chip length is 15,the code spreads the data by 15,i.e.. 





m 



File Wndows Help 

Spreading with Code2 

Figure 11: Spreading with Code 2 

every bit is turned into 15 bits by thePN code. The original data can be recovered again 

by performing the XOR function again with the correct code,as shown in Figure 12. 

However,ifthe wrongPN code is used,the data is not recovered and the result looks like 

noise,as shown in Figure 13. 

Figure9shows that the correlation between Codes 1 and 2never reaches 

50%. Ifone ofthe codes is compared with the incoming spread data stream and 8or more 



i 

file Wndows Help 

Figure 12: Properl 



File wndows H^elp 

Datadespread with the wrong PN Code 

Datadespread with the wrong PN Code 

Figure 13: Improperly Decoded Data 

ofthe bits in a window of15 consecutive bits are positively or negatively correlated,then 

the chosen code is probably the correct code for despreading the incoming data. 

Therefore,a threshold of8 matches can be established for determining whether a code is 

being properly despread or not. Iffewer then8 bits are positively or negatively correlated, 

then either the wrong data is trying to be decoded for thatPN code or more ofthe data 

needs to be acquired. Later,this will prove useful in the despreader module ofthe digital 

receiver for decoding the spread data without a synchronous clock. 



It IS possible to generate ML codes that are notthe output ofanLFSR but 

still have alow cross-correlation with other codes ofthe same set A yt-stage LFSR 

resulting m «-bit MLcodes can only produce a subset ofall the possible «-bit strings 

Therefore as n and kincrease,more and more sequences are available thatcomply with the 

randomness properties,but are not attainable with anLFSR One way ofgenerating these 

codes IS by XORing two MLcodes together This results m anMLcodeknown as a Gold 

code 

Some research focuses solely on how to generate morePN sequences ofa 

given length Lately,research has focused on using chaotic signals to generate newPN 

sequences For a certain sequence length there are only a certain number,b,ofML 

sequences that can be generated Gold codes create more sequences,butonly at the 

most. For a 6-stage LFSR generating 63-bit codes,according to Equation 8,fewer than6 

MLcodes can be generated They yield at most36 different possible Gold Codes There 

are 2°fk'X possible bit strings and many ofthem could be ML sequences as well 

The signals generated by a chaotic source inherently have minimal non 

zero shift autocorrelation and generally have good cross-correlation properties This is 

because a chaotic source is very sensitive to initial conditions and can produce a variety of 

outputs Therefore,it intrinsically has a broad spectrum Heidari-Batem and McGillem 

first proposed and studied chaotic sequences generated by alogistics map[12],[13], [14], 

[15] Adler and Rivlin used Chebyshev polynomials to generatePN sequences and Chen 

et al studied their performance[16],[17] Theyfound thatthe chaotic sequences slightly 

outperformed the Gold Codes m terms oferror performance over signal to noise ratio 
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They also found that chaotic sequences allowed significantly more users similar bit error 

rate compared to Gold Codes or conversely,that the bit error rate wasimproved for 

chaotic sequences over Gold Codes forthe same number ofusers 
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3.0 System Overview 

The goalofthis thesis is to design a digital receiver processor to reliably 

transfer sensor data to aPC monitor display The digital receiver processor is integrated 

with a receiver RFfront-end circuit(RF MicroDevice'sRFMD 2945)to receive signals 

from a digital transmission processor(an ORNL-developed chip called ACQ2)and a 

transmitter RFfront-end circuit(RF MicroDevice'sRFMD 2510). The ACQ2and 2510 

chips generate a directsequence spread spectrum signal for reception and decoding by the 

2945 chip and the digital receiver The sensor data link is shown m Figure 14 

sensor data modulator 
acquisition 

\7 

PC digital demodulator 
receiver 

Figure 14: Sensor Data Link 
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3.1 Data Acquisition Chip 

The ACQ2chip was developed atthe Oak Ridge National Laboratory to 

provide baseband digital data for wireless monitoring ofmouse vital signs It samples its 

four sensor inputs,as shown in Figure 15,and creates a serial data packet and produces a 

spread spectrum digital stream for wireless transmission in the digital controller It 

employsa 10-bitsuccessive approximation analog-to-digital converter(ADC)and a25V 

bandgap reference to digitize the sensor inputs The digital controller is responsible for 

the front-end electronics,RAM,PN engine,packet builder,and spreading control It also 

has a differential encoderto ensure arobust data stream and can choosefrom two maximal 

length sequence 63-chipPN codes as well as a 63-chip Gold code to ensure secure spread 

spectrum communication Off-chip RFfront-end circuitry can be put into sleep mode 

between sampling penods to save power 

sensors External 
SAR ADC 

Crystal 
controller 

I JEE 
Digital 

Controller 
SAR ^.Spread 

Data & 

Clock 

ADC bandgap 

reference 

Figure 15: ACQ2Block Diagram 
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3.2 Low-power Transmitter 

TheRFMD2510is alow-power wirelesstransmitter thatean operate in the 

US915 MHzband It has an on-chip voltage-controlled oscillator(VCO)consisting ofa 

phase detector and charge pump as well as a programmable phase-locked loop for 

frequency synthesis Theloop filter for the VCO is off-chip and included m the evaluation 

board m addition to the reference crystal needed It also has power-down capability and 

only consumes 1 uA when m sleep mode It is this low-powerfeature that made the 2510 

attractive since wireless transmitters generally spend more time sleeping than 

transmitting A basic diagram ofthe transmitter is given in Figure 16 

Phase Phase 

Osc ir 
Detector Locked J X VCO out 
&Charge Loop 

Pump 1 

Mod in 

Figure 16: RFMD 2510Block Diagram 

[18] 

27 



3.3 FSK Receiver 

TheRFMD 2945 receiver converts an inputRF signal into a digital output 

signal using a frequency modulated feedback demodulator A block diagram is shown m 

Figure 17 The VCO output provides the RF carrier reference,which is mixed with the 

incomingRF signal This tracks,through two filters,the incoming RF signal and holds it 

at the discnmmator center frequency Ifthe inputfrequency falls below this earner 

frequency then a0is output and ifit is above,then a 1 is output[8],[19] 

IF IF 
RF signal LNA X 

filter Amp 

1 1 

VCO 

ProgrammablePLL 

IF 

digital signal Discriminator filter 

Figure 17: RFMD 2945Block Diagram 
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3.4 ComponentLimitations 

Multiple access was required to allow more than one sensor node to 

transmit data to a single digital receiver to be displayed on thePC. Since the ACQ chip 

has aPN engine m it and can build spread packets,ongmally,the system was to have 

multiple sensors chirpmg on the same frequency separated by differentPN codes --

CDMA However,due to the limitations oftheRFMD2945receiver,this wasnotpossible 

and the sensors instead had to be separated by different carrier frequencies~FDMA The 

2945 chip only allows,as inputs,an RF signal and a carrier frequency The2945 

demodulates frequency-shift keyed(FSK)data from the given carrier frequency leaving a 

digital signal However,to strip out thePN code and recover the data for a given 

transmitter,the matched filter and correlation functions necessary to do this need to be 

performed before the RF signal is demodulated Since this could not be done with the 

components chosen to provide the RF link,anFDMA scheme wasemployed instead 

Figure 18 shows the necessary components ofa direct sequence spread 

spectrum receiver The correlation needs to be calculated before the IF mixing and 

filtering, which is impossible given the constraint ofthe RFMD 2945 receiver ThePN 

leference code needs to be discovered m the RF signal before it is demodulated and 

broughtdown to baseband The clock generation and synchronicity decision need to be 

made while demodulation is occurring and not segregated to a separate digital processor 

because at baseband multiplePN codes will concatenate and their information will be 

utterly unrecoverable 
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Figure 18: Direct-Sequence Spread Spectrum Receiver 

Tavo transmitters were built and tested,Tx101 and Tx104 They consisted 

ofan evaluation board for the 2510 chip and ACQ chip Each transmits three data 

channels,a temperature channel,and a sequential packet counter Each can use multiple 

lengthPN codes,butfor this demonstration only 63-chip Gold codes were considered 

when building the digital receiver In fact,since the transmitters were separated m 

frequency,onePN code was shared by both transmitters. Even though it did not provide 

multiple access,thePN code did provide data robustness and a measure ofconfidence m 

the fidelity ofthe received data For display purposes only the temperature,the first two 

data channels and the sequential packet counter were shown on the PC.However,all data 

channels were analyzed and demonstrated reliable transmission ALABVIEW program 

coordinated the results display on thePC 
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4.0 Digital Receiver Architecture 

Once the RF signal has been demodulated and the baseband digital signal 

has beenrecovered,the senal data stream is sentto the digital receiverfor despreadmg and 

stacking for display on thePC The digital receiver has no prior knowledge ofthe phase 

ofthe clocks used to generate the baseband digital data stream m the transmitter and so 

must deduce this information from the inbound data stream Also,this clock recovery 

must be done m real time so that received digital data can continue to stream through the 

receiver To present stacked parallel words to thePCfrom the inbound digital bit stream, 

the digital receiver must perform five mam functions,separated as design modules,chip 

polarity decoding,despreadmg,protocol stnppmg,packet validation and packet 

processing The partitioning ofthese functions is shown m Figure 19 

4.1 Clock Recovery and Chip Resolution 

Clock recovery and chip resolution are performed by the first module,the 

polarity decoder First,the polarity ofeach inbound data chip must be resolved This first 

module takes the demodulated data as input(DEMOD)as well as a reference clock 

(SMPCLK). It uses an oversamplmg scheme to resolve the logic polarity ofeach chip 

(SPDA),derive thePN clock(DPNCLK),and align thePN clock 

Three consecutive five-sample windows ofthe input data are analyzed 

early, middle,and late The windows are compared to each other and the derivedPN 

clock(DPNCLK)is dithered accordmg to which one has the greatest magnitude The 
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Figure 19: Digital Receiver Block Diagram 

clock IS dithered on the falling edge meaning that the time between the last falling edge 

and the next rising edge is always the same The periodicity ofthe clock is determined by 

the falling edge Figure 20shows the polarity decoder m the default state so no dithering 

is performed Ifthe early window had the largestsampled magmtude ofthe three,the 

falling edge would be advanced one sample clock(SMPCLK)cycle as indicated by the 

dashed lines to the left ofthe defaultfalling edge Ifthe late window were largest,the 

falling edge to the right ofthe defaultedge would be used to retard the clock 
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- Figure 20: Polarity Decoder Dither Conditions 

Asshown in Figure 21,the polarity decoder consists ofa 7-bit shiftregister 

to foim the three consecutive oversamplmg windows,a comparator to decode the polarity 

ofthe oversampled bit and the dithering logic. The dithering logic compares the 

magnitude ofthe three windows and adjusts the clock generation and synchronization 

logic according to the method described above 
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Figure 21: Polarity Decoder Block Diagram 

4.2 Digital Despreader 

The second module measures the coiTelation ofthe spread code to the 
t 

inbound data,compares it to a stored reference code and determines the polarity ofthe 

despread data bit Also,track mode is determined and parameters for establishing it and 

disengaging it are updated The despread clock is denved and aligned with the data The 

despreader is shown m Figure 22 
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Figure 22: Despreader Correlator Block Diagram 

Earlier,correlation was presented as normalized,that is,as a fraction ofthe 

maximum correlation However,this correlation calculation requires the computationally-

expensive operation ofdivision and is not used in the implementation ofthe digital 

receiver,since it is not necessary The earlier derivation provides a way ofanalyzing 

codes ofvarious lengths,but since the length ofthePN code for this design is known and 

fixed,scaling the correlation is unnecessary Aslong as the comparison thresholds are 

understood to be valid for 63-bitPN codes,then the absolute correlation calculation 

withoutthe normalization suffices 

The firstjob ofthe despreader correlator is to calculate the correlation of 

the inbound data stream with the referencePN code This is done using three consecutive 
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63-bit windows ofthe inbound chips,a 63-bitright shift register and summing the bits m 

each window Then,the inbound chip stream is analyzed using comparators to perform 

two functions, dithering the derived despread data clock(DSPCLK)and deriving the 

polarity ofthe serial despread data(SDATA) 

Dithenng the derived despread data clock is accomplished by comparing 

the correlation windows Like the polarity decoder dithering m Figure 20,the rising edge 

ofthe derivedPN clock always stays the same,relative to the last falling edge and the 

following falling edge is dithered according to the output ofthe slidmg correlator Ifthe 

first window has the largest correlation,then the falling edge ofDSPCLK occurs 1 clock 

cycle ofDPNCLK earlier with respectto the lastnsing edgethan it did the previous cycle 

Ifthe last window has the largest correlation,then the falling edge ofDSPCLK occurs 1 

clock cycle ofDPNCLK later with respect to the last rising edge than it did the previous 

cycle Otherwise,the middle window is assumed to have the largest correlation and the 

periodicity ofthe previous clock cycle is repeated. 

The derivation ofthe polanty ofthe despread data involves analyzing the 

inbound chip stream for correlation with the stored PN reference and periodicity ofthe 

signal The correlation dimension statistics determine the polarity ofthe current bit, while 

the temporal statistics indicate a measure ofconfidence ofhow well the inbound spread 

data IS being despread Figure 23 shows a histogram ofhow this works 
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Figure 23: Despreader Correlator Histogram 

The red, green, and black dashed lines represent thresholds for correlation 

decisions. They are calculated with respect to a baseline of 0, which would indicate that 

the inbound signal is not at all related to the stored reference. Positive values of 

correlation indicate that the data bit is a zero, since XOR with 0 is a transparent operation. 

Negative correlation values indicate that the data bit was a one since XOR with a one 

results in inversion. 

37 



The red dashed lines indicate the maximum positive and negative value of 

correlation possible for a 63-bit code This occurs when the inbound chips exactly match 

the stored reference;and for this implementation,that value is 63 The green dashed lines 

indicate the detection threshold(DSMDTH[50])set for the despreader correlator and are 

set m Figure 23 at50 as an example The black dashed Imes indicate the bit threshold 

(DSMBTH[5.0])set for the despreader correlator and are set m Figure 23 at 10 as an 

example 

Ifthe absolute value ofthe correlation calculated lies above the detect 

threshold,the serial data is aligned closely enough with the referencePN code and the 

despread data bit polarity is declared This is shown m Figure 23 as the blue peaks m 

correlation The decoded data is01001 Ifthe absolute value ofthe calculated correlation 

lies between the bit and detection thresholds,the inbound chips are not yet correctly 

aligned withPN reference meaning there is a missing polarity detection but a data bit has 

been detected Ifit falls below the bit threshold,it is assumed thatthe inbound data has no 

correlation with thePN reference and that neither a data bit nor a polarity detection has 

been detected This is shown m the two blue peaks near the baseline This can be caused 

by one ofthe chips becoming corrupted m the transmission However,due to the 

robustness ofthePN codes,this minor correlation is rejected and the data can still be 

con-ectly decoded. 

Correlation statistics mustbe tracked temporally,that is,over consecutive 

PN chip length bit cycles(for this project,63 bits)to determine how well the sliding 

correlator is performing These statistics are used to declare the pre-track and track 

modes,which enable the downstream processing circuitry as well as provide the 
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acquisition processor information for determining the fidelity with which an entire packet 

ofdata was decoded The number ofconsecutive detection cycles mustexceed DSTKTH 

before track can be declared The key is that the detection cycles need to repeat with a 

periodicity equalto thePN chip length. Ifconsecutive failures to repeatexceedDSNTTH, 

then the track is disabled and establishmg a new track mustbegm again, However,iffor 

instance,there is only one cycle where the maximum correlation failed to repeat with the 

correct periodicity,then information indicating which thresholds it passed is sent to the 

acquisition processor,as the missed detect(MD)and missed bit(MB)statistics,and the 

track mode is keptenabled The acquisition processor comparesthese accumulated values 

for a packet to a threshold(PKMDTH[50]and PKMBTH[5 0],respectively)and this 

contributes to the decision ofwhetherthe packetis considered good and cached or bad and 

discarded 

4.3 Embedded Protocol Removal 

The third module removes the embedded communications protocol from 

the despread data stream The embedded protocol is differential encoding calculated 

recursively as 

Equation 9: e«c[/c] = in\_k'\® enc{k-\'\ 

where enc[0]= 1 To decode 
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Equation 10: dec[k] = enc[k]@enc{k-

where enc[0]= 1 

Equation 11: decik] = inikl ® enc[k- I]® enc[k-

Equation 12: decik] = in[k] 

Therefore,the protocol remover is simply an exclusive OR gate with a clocked output. 

However,this is notjust the encoder implemented in reverse Unlike the encoder where 

the output IS fed back to encode the next bit,the decoder uses a sliding window oftwo 

incoming encoded bits to determine the next decoded bit instead offeeding back the last 

decoded bit. 

4.4 Packet Detector 

Now that the incident serial chip stream has matched the stored 

pseudorandom reference to the satisfaction ofthe first two modules and the embedded 

communications protocol has been removed,the despread bit stream is assumed to be a 

serial data packet stream built m the manner configured in the data acquisition chip 

(ACQ2) The fourth module validates the preamble words at the beginning ofthe 

despread serial packet,measures the acquisition mode parameters,converts the serial 
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words to parallel,and counts the number ofwords m each packet For the Graviton proof-

of-concept demonstration the 8-word packetfollowed the form ofTable 1 

The first two words,RFsync and Frame sync,are the preamble words and 

are stripped out as the packet detector converts the serial data to 10-bit parallel words 

Once these two words have been found,the packet detector skips the sequential counter. 

Table 1:PacketFormat 

Word# Function Hex Value 

I RF Sync 333 

2 Frame Sync OIF 

3 Seq Counter 001 

4 TxID 005 

5 Temp IFD 

6 Data 1 014 

7 Data 2 019 

8 Data3 02F 

and validates the transmitter identification number,word four Ifthe two sync words and 

the identification number all match,then the packet detectorenables the acquire mode and 

sends the now 6-word packet(PKDA[90])to the acquisition processor with a data strobe 

(PKDWR) The packet detector also counts the number ofwords m the packet 

(PKWC[50])and sends that to the acquisition processor as well with a word count strobe 

(PKWWR) 

The values ofthe last six words m Table 1 are given only as examples and 

represent the pmned-down settmgs used to test the digitalreceiver The sequential counter 
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increments between 1 and SFF^ex and indicates the order in which the packets were sent 

The transmitter identification can be used to rotate through different transmitters and 

identify which data came from which transmitter In a true CDMA scheme this would be 

helpful,butnotso much so for anFDMA setup,so those values were pinned The 

temperature channel ranges from 40°F to 120°Fand is sensed on the ACQ chip The 

other three data channels range from0to25V with a precision ofabout0002V For 

ease oftesting, all four data channels were pinned to the values given m Table 1 

The Packet Detector is shown m Figure 24 The serial data from the 

protocol decoder is converted to 10-bit parallel words The first two words ofthe packet 

are verified and the third is skipped so that the fourth,the identification number can be 
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Figure 24: Packet Detector Block Diagram 
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verified A word countis generated for the acquisition processor as well as strobes for the 

parallel data and the packet word count. 

4.5 Acquisition Processor 

The fifth module validates the packetby evaluating the flags generated in 

the previous modules These flags include numberofwords m the packet and number of 

missed bits and detects This module is also responsible for stacking the good data and 

interfacing with the host The acquisition processor uses two FIFOs to store the inbound 

data The first is a temporaryFIFO to hold all the words m a packet together as the 

packet error logic validates the packet The packet error logic will throw out a packetifit 

has too few words or too many missed bits or missed detects from the despreader Ifthe 

packet IS deemed good,it is transferred to the data FIFO,otherwise,it is cleared from the 

temporary FIFO In either case the acquisition mode(ACQ)is cleared and the processor 

waits for the next packet. Ifthe data FIFO is full,then the acquisition processor alerts the 

hostPC via the data ready signal(DRDY)and awaits a clockfrom thePCto clock the data 

out ofthe FIFO to the output port pins The data FIFO holds 166-word 10 bits/word 

packets when it is full The acquisition processor is shown in Figure 25 

When the acquisition processor is transitionmg a good packetfrom the 

temporary FIFO to the data FIFO,it cannot accept an mcommg packet For this project, 

the time between packets is about3-5 seconds,which is fastfor telesensmg Usually the 
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Figure 25: Acquisition Processor Block Diagram 

sensorreadouts need only be updated afew timesan hour Thislimitation helped simplify 

the processing logic and since there is no threat ofa packet arriving while the previous is 

being processed,it is an appropriate design trade-off 
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5.0 Implementation 

The digital receiver wasimplemented m an Altera FLEX 10K50RC240-3 

Field Programmable Gate Array(FPGA)using the Altera Max+Plus II version93 

software Modules 1 and 2,the polanty decoderand the despreader correlator, 

respectively were written m a different VHDL environmentand so had to be converted to 

the Max+Plus II environment,along with their simulation stimuli The changes to the 

code were mostly semantic changes and did not affectthe structure or functionality ofthe 

code 

All ofthe modules were written in VHDLexceptfor the data cache FIFO 

and the temporary packetFIFO,which were implemented usmg Altera's Library of 

Parameterized Modules(LPM) LPMs are technology-independent modules thatconfonn 

to industry-wide conventions for implementing common functions m gate arrays[20]. 

TheLPMsused were sections ofthe chip optimized to implementdata storage functions 

The synthesis tool had control over the physical placement ofthe design,but with some 

limitation In order to ensure accuracy m the polarity decoder's sample clock(SMPCLK) 

and the derived PN clock(DPNCLK),these two clocks were placed on the device's two 

clock trees Also,each module was assigned as a clique,which meantthat the fitting tool 

would route each individual module in a physically confined area 

The thresholds used to determme the dithering conditions were brought 

off-chip to programmable pins on the test board along with other programmable 

thresholds This allowed flexibility m determmmg the optimal settings for reliable 

reception A LABVIEW program was written to clock the data out ofthe cache FIFO 
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when it was ready and display it on the screen as graphs ofindividual data channels A 

digital receiver test board was built that allowed programming ofthe dithering thresholds 

to test the device It had a socketed Electrically Erasable Programmable Read-Only 

Memory(EEPROM)so that the design could be iterated withoutremoving the device. 
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6.0 Testing and Results 

Initially, the design did not fit into the device chosen,meaning that the 

compiler could notfind a way to implementthe design given the resources ofthe device 

specified Originally,it contained a monitor multiplexer to allow analysis ofinternal 

signals as testing wasperformed This wastaken outand the design fit The device could 

be reprogrammed to bring different internal signals to the output pins as necessary,and 

while this made analysis slower,it significantly reduced the amountofresources the 

design required and allowed fit into the originally chosen part 

The design was tested both cabled and wirelessly The cabled test was 

performed with40dB ofsignal loss and allowed mitial functional testing ofthe device 

without interference or multipath so that the primitive functionality ofthe device could be 

confirmed. Wireless testing was then performed once basic functionality was confirmed. 

Interference from other RFtransmitters was nota concern since the building m which the 

testing was performed acted as anRF shield. Thethreshold settings were notimmediately 

optimized functional settings were found and the testing was performed holding these 

constant Figure26shows the results Occasionally,packet displayed on thePC would be 

incorrect This wasconsidered a data drop outand its frequency is shown in Table2 The 

results m Table2were taken over the 1024-sample window shown in Figure 26and are 

typical for each device 

The cause ofthe data dropouts was traced back to the downstream 

processing ofthe despread serial packet The data(SPDA[90])out ofthe packet 
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Figure 26: Initial Wireless Testing 

Table 2: Data Acquisition Error Rate 

Channel TxlOl Txl04 

Temp. 5.87E-3 1.466E-2 

Data 1 5.87E-3 4.564E-2 

Data 2 5.87E-3 1.662E-2 

Counter 4.89E-3 1.075E-2 

48 



detection module going into the temporary storage buffer was notresembling the serial 

data outofthe protocolremover It worsened the morethe despread clock(DSPCLK)had 

to dither Therefore,the incorrect data was probably due to mcorrect values being latched 

into the serial to parallel converter m the packet detector module as a result ofthe dithered 

clock being routed mefficiently on the chip Asa result ofthe limitation ofresources 

internal to the device,DSPCLK could not be puton a clock tree and had to be routed as a 

regular signal 

The test environment was shielded from outside RF signals,butincluded 

several nearby solid objects These objects could reflectRF waves causing interference at 

the receiver,a phenomenon known as multipath. This also degrades error rate 

performance,but is notsomething that could have been easily measured Therefore,the 

effect ofmultipath on the error performance has not been directly quantized These two 

real world implementation issues, mtemalclock routing and RF multipath,probably 

accountfor mostofthe data errors and explain why the system demonstrated worse error 

performance than is generally predicted by digital commumcation theory 

The transmitters were also tested for range They were able to range 16 

yards non-lme-of-sight and still the receiver was able to decode the information This 

setup was nottested for packet or word error rate This error rate testing wasperformed at 

ranges of6to 10 feet. 

The transmitter and the receiver were both repackaged for portability and 

demonstration purposes The repackaged transmitter is shown m Figures 27and 28 and 

the repackaged receiver is shown m Figures 29,30 and 31. The repackaging ofthe 

transmitter caused shielding problems that degraded performance The design was 
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Iterated to try to alleviate theDSPCLK distnbution problem Instead ofclocking the logic 

in the downstream modules on the falling edge ofDSPCLK,the edge that is being 

dithered,the logic was clocked on the rising edge. This helped some butnot much and 

only vindicated the notion that the clock distribution problem needs to addressed m an 

ASIC environment where clock routing is well-defined or m a programmable part with 

more clock trees to ensure the fidelity ofthe clock signal. 

To further optimize the design,the thresholds were optimized and entered 

into the design as constants to free up logic cells for more efficient routing The transfer 

between the data storage FIFO and the temporary packetFIFO was cleaned up and 

simplified The wired and wireless results are shown m Figures 32 and 33,respectively. 

They do notshow performance comparable to the initial testing,but provide the design in 

a a compact package that is portable. 
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7.0 Conclusions and Future Work 

The monitor multiplexer was unnecessary It wasincluded m the original 

design as a carryoverfrom a design m the ASIC environment where it was useful m 

analyzmg devices whose designs could not be easily iterated. This was not necessary for 

anFPGA implementation since the device can be easily reprogrammed to brmg out any 

necessary signals. Additionally,setting the programmable thresholds as constants m the 

VHDLcode helped free up logic cells While changing these constants is significantly 

slower than changing dip switches on a test board,the free logic cells allowed easier and 

more efficient routing ofthe design. This was especially important since the design was 

done m VHDLand not hand-placed schematic capture,which would have allowed the 

compiler less flexibility m fitting the design 

There were notenough clock trees on the Altera part,which meantthat the 

third clock(DSPCLK)had to be routed as a regular clock signal This proved costly since 

this clock was already being dithered and occasionally caused problems in the 

downstream modules latching data correctly Some ofthe data lines may have been 

violating setup and hold times,but this was hard to determine due to the aperiodic nature 

ofa dithered clock routed inefficiently This scenano is possible but not as likely as data 

lines in the same parallel word being latched at differenttimes creating erroneous outputs 

This is likely since the problem became much worse with the wireless testing as the clock 

had to do more dithenng 

There were some routmg problems with the software tool trying to 

optimize the VHDLconversion by usmg internal chip resources called embedded array 
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blocks(EAB) These blocks were physically in the middle ofthe chips floor plan and 

occasionally interfered with requiring each individual module to be routed tightly 

together For mstance,a module may use an adder and beimplemented m one comer of 

the chip,except for that adder, which is placed halfway across the chip m the EAB This 

may not have been the mam routing problem,but did not help keep the design close 

together This problem can also be solved by the three reasons given above for the next 

generation design 

These were limitations ofthe part chosen,but will not be a problem m 

fiiture generations ofthe digital receiver design for three reasons First,the next-

generation is being composed offundamental modules that are bemg physically hand-

placed m the device Second,the choice ofFPGA has changed to a device that has more 

clock trees and will ensure a tighter design with more predictable clock delays Third, 

once the system specifications are decided for the wireless system,the digital receiver can 

be implemented m an ASIC with well-defined timing for clocks 

Sheng and Broderson's book on low-power wideband CDMA helped 

illuminate the problems encountered on clock distribution They designed a system to 

support asymmetrical multipoint transceivers transmitting to a centralized base station 

receiver The book focuses mainly on the downlink(base station receiving from the 

transceivers)design and shows how to build aCMOSimplementation ofthe transmitter 

baseband modulator,RF transmitter,RF analog receiver,and the baseband digital signal 

processor(DSP) They used a matched filter correlator for both the I and Q channels but 

the DSP IS segmented from the RF frontend as in this system. They paid a significant 

amountofattention to clock buffermg They minimized skew by balancing the capacitive 
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load seen by the buffers. With a knowledge ofthe process parameters,transistors were 

sized appropnately and predictable clock distribution and propagation resulted[21]. 

The digital spread spectrum receiver worked well The receiver was able 

to demonstrate reliable wireless spread spectrum transmission across a room. The imtial 

testing showed low error rate for the unpackaged design and was able to show Graviton, 

Inc how spread spectrum telesensmg can be achieved Repackaging made the receiver 

look more like a viable product,butexacerbated some problems the receiver was having 

with timing However,these are issues that will be addressed and remedied m the next 

generation The current digital receiver was not able to demonstrate CDMA,but this was 

due to componentlimitations m the rest ofthe system and not a result ofa flaw in the 

design However,the receiver did demonstrate the fundamental digital circuitry needed to 

implementCDMA and its reliable reception ofsensor data proves that it will be a 

fundamental building block ofthe next-generation design 

CDMA communication requires intricate interface between complex 

digital and analog functions Therefore,to implement a CDMA receiver both have to be 

considered The digital portion ofthe receiver mustbe able to adjust the analog front-end 

circuitry responsible for demodulating the incident RF signal Also,the timing and 

distribution ofthe clocks must be tightly controlled m the digital portion ofthe receiver 

has this has a tremendous effect on the data being recovered by the receiver With 

CDMA's sustained popularity and wide range ofdesign topics to explore,it will continue 

to be a widely-researched topic 
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8.0 VHDL Code 

8.1 Clock Divider 

library leee, 
use leee std_Iogic_1164 all, 
use leee std_logic_anth all; 
use leee std_logic_unsigned.all, 

entity clk_div is 
port 

( 
signal smpclkxS in std_logic, 
signal smpclk out std_logic 

), 
end clk_div, 

architecture behavior ofclk_div is 

signal smpclk_l std_logic, 
signal smpclk_2 std_logic, 
signal smpclk_3 std_logic, 

begin 

div_by_8 process(snipclkx8) 
begin 
ifnsing_edge(snipclkx8)then 

smpclk_l <= not(smpclk_l), 
else 

smpclk_l <=smpclk_l; 
end if, 
ifrising_edge(smpclk_l)then 

smpclk_2<= not(smpclk_2), 
else 

smpclk_2<=smpclk_2, 
end if, 

ifrising_edge(smpclk_2)then 
smpclk_3 <= not(smpclk_3), 

else 

smpclk_3 <=smpclk_3; 
end if, 
smpclk<=smpclk_3, 
end process div_by_8. 
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end behavior, 

8.2 Polarity Decoder 

library leee, 
use leee std_logic_l164 all, 
use leee std_logic_anth all, 
use leee std_logic_unsigned all, 

entity poldec_alt2 is 
port 

( 

~Declare I/O interface 

signal rfdata in std_logic, 
signal smpclk in std_logic, 
signal mrstb in std_logic, 

signal sysclrb out std_logic, 
signal Idvar out std_logic, 
signal dpnclk_o out std_logic, 
signal bitdith' out std_logic_vector(l downto 0), 
signal bitsmp out std_logic_vector(6 downto 0), 
signal spda out std_logic, 
signal Apol_o out std_logic, 
signal Bpol_o out std_logic, 
signal Cpol_o out std_logic, 
signal bitseg out std_logic_vector(2 downto0) 
), 
end poldec_alt2, 

~ Declare architecture behavior body 

architecture behavior ofpoldec_alt2 is 
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~Declare the internal signals 

signal ldvar_sigl,ldvar_sig2,sysclrb_sig std_logic, 
signal bitsmp_d,bitsmp_q std_logic_vector(6 downto 0), 
signal bitseg_d,bitseg_q std_logic_vector(2 downto 0), 
signal bitdith_d,bitdith_q std_logic_vector(l downto 0), 
signal dpnclk_d,dpnclk_q std_logic; 
signal spda_d,spda_q std_logic, 

signal Amagh std_logic_vector(2 downto 0), 
signal Bmagh std_logic_vector(2 downto 0), 
signal Cmagh std_logic_vector(2 downto 0), 
signal Amagl std_logic_vector(2 downto 0), 
signal Bmagl std_logic_vector(2 downto 0), 
signal Cmagl std_logic_vector(2 downto 0), 
signal Amag std_logic_vector(2 downto 0), 
signal Bmag std_logic_vector(2 downto 0), 
signal Cmag std_logic_vector(2 downto 0), 
signal Apol std_logic, 
signal Bpol std_logic, 
signal Cpol.std_logic, 
signal temp std_logic_vector(2 downto 0), 

~ Declare the required constants 

constantDEFAULT.std_logic_vector(l downto 0) ="00", 
constant RETARD.std_logic_vector(l downto0) ="01", 
constant ADVANCE std_logic_vector(l downto0) ="10", 

constantRETARDPT std_logic_vector(2 downto0) ="011", 
constantDEFAULTPT std_logic_vector(2 downto0) ="100", 
constant ADyANCEFT"std_logic_vector(2 downto 0) ="101", 
constant MAXPT std_logic_vector(2 downto0).="101", 

constant GND std_logic_vector(l downto0) ="00", ^ 

-Ifin DEFAULT BITHD1T=0,BITSEG roll point=4,SPDA=Bpol. 

-- Ifin RETARD B1THDIT=1,BITSEG roll point=3,SPDA=Cpol 
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— Ifin ADVANCE BITHDIT=2,BITSEG roll pomt=5,SPDA=Apol 

j 

~ Declare the operational sequence definitions(text only) 

— This module is used to recover an accurate and robust data stream 

~ with a flexible data clock The recovered input(RFDATA)data 
~ stream is oversampled(5 to 1 ratio)to enable an accurate and 
~flexible data sample window Because ofthe times five oversample 
~ five bits are sampled plus to enable a slidmg(Tau-dither)scheme 
~two additional bits are sampled The seven sampled bits are divided 
— into three windows(A,B,C)each with five bits Magnitudes are 
~ detected and compared for optimum sampling decisions,bit polarity 
~ alignment,and to recover an accurate data clockfrom the data stream 

~ Begin architecture behavior application 

begin 
—The operation controller sets the system reset(sysclrb)and programmable 
—settings load(Idvar) 
opcon process(smpclk,mrstb) 
begin 
ifmrstb ='0'then 

sysclrb_sig <='0', 
ldvar_sigl <= '0', 
ldvar_sig2 <='0', 

elsiffallmg_edge(smpclk)then 
sysclrb_sig <='1', 
ldvar_sigl <=ldvar_sig2, 
ldvar_sig2 <='1', 

end if, 
sysclrb <= sysclrb_sig, 
Idvar<=ldvar_sigl, 
end process opcon; 

flops. process(smpclk,sysclrb_sig) 
begin 

ifsysclrb_sig='0'then 
bitsmp_q <="0000000", 
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bitseg_q <="000", 
bitdith_q<="00", 
dpnclk_q <='0', 
spda_q <='0', 
elsiffalling_edge(smpclk)then I 
bitsmp_q <= bitsmp_d, i 
bitseg_q <= bitseg_d, 
bitdith_q <= bitdith_d, 
dpnclk_q <= dpnclk_d, 
spda_q <=spda_d, 
else 

bitsmp_q <= bitsmp_q, 
bitseg_q <= bitseg_q, 
bitdith_q <= bitdith_q, 
dpnclk_q <= dpnclk_q; 
spda_q <=spda_q, 
end if, 

~ Declare the port outputs for test outputs only,remove later ' 
********************************************************!(:***** 

Apol_o <= Apol, 
Bpol_o <=Bpol, 
Cpol_o <= Cpol, 

~Declare the port outputs from a flip flop 
__H:**************l!********************************************** 

spda <=spda_q, 
dpnclk_o <= dpnclk_q, 
bitsmp <= bitsmp_q, 
bitseg <= bitseg_q, 
bitdith <= bitdith_q, 

end process flops. 

************************************************************** 

~ Declare the process sensitivity list(inputs to the process) 
************************************************************** 

process(bitsmp_q) 
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I 

~ Begin the process 

~ This process is used to detectthe magnitude oflogical low's 
~ and the magnitude oflogical high's for each ofthe three sample 
~ windows(A,B,C)which are set to contain sampled bits 0-4, 1-5, 
~2-6 respectively A magnitude value for each ofthe six signals 
~(Amagh,Amagl,Bmagh,Bmagl,Cmagh,Cmagl)is output m 3 bit fields 

************************************************************** 

begin 

************************************************************** 

~ Declare the flip flops which require feedback 
************************************************************** 

~ no flip flops m this particuliar process 

__******************************************************,|:*^,|-,j.^.,|.,j5 

~ Declare the default states for the flip flops m this process 
************************************************************** 

Amagh <=(GND&bitsmp_q(0))+(GND&bitsmp_q(l)) (GND&bitsmp_q(2)) 
+(GND&bitsmp_q(3))+(GND&bitsmp_q(4)). 

Amagl<=(GND&not(bitsmp_q(0)))-I-(GND&not(bitsmp_q(l)))+(GND& 
not(bitsmp_q(2))) 

+(GND&not(bitsmp_q(3)))-i-(GND&not(bitsmp_q(4))), 

Bmagh <=(GND&bitsmp_q(l))-h(GND&bitsmp_q(2))+(GND&bitsmp_q(3)) 
+(GND&bitsmp_q(4))+(GND&bitsmp_q(5)), 

Bmagl<=(GND&not(bitsmp_q(l)))-t-(GND&not(bitsmp_q(2)))+(GND& 
not(bitsmp_q(3))) 

+(GND&not(bitsmp_q(4)))+(GND&not(bitsmp_q(5))), 

Cmagh <=(GND&bitsmp_q(2))+(GND&bitsmp_q(3))+(GND&bitsmp_q(4)) 
+(GND&bitsmp_q(5))+(GND&bitsmp_q(6)); 
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Cmagl<=(GND&not(bitsmp_q(2)))+(GND&not(bitsmp_q(3)))+(GND& 
not(bitsmp_q(4))) ^ 

+(GND&not(bitsmp_q(5)))+(GND&not(bitsmp_q(6))), 

end process, 

~End process 
*1j ^^^ ̂ ̂ ̂ ̂ ̂̂ ^ ̂ ̂ ̂ ̂ ̂^^^^^ ̂ ̂^ ̂ ̂^^^ ̂ ̂ ̂ ̂ ̂ ̂^^^^^^^ ̂ ̂ ̂ ^^ ̂  ̂ 4^ 4!^ 4^ 4«^^4«4 4!^ 4(4 4«^^ ̂ ̂ ̂ ̂ ̂ ̂̂  ̂ ̂̂ ^ ̂ ^^ •J* ^ ̂ ̂ ̂ ^^^ ̂ ̂^ ̂ ̂ ̂ ^^^^^gfi^yfi^SP0^^0^^ ̂ ̂ 

*1^ «1*^ ̂ ̂ ̂ ^ ̂ *1*^^•!*^ ̂ •!*^•!*^ ̂ ̂ ̂ ̂^ ̂ •!»^ ̂ ̂ ̂ •X> "X*^^L»^*1# «1^ ,1# »1# ^1« 4*^ *l4 kl^ kl* k!* klk kl>^kl« klk kik ktk klk kik k!k ktk klk kik kik
*r* k^k k^ kfk k^ k^ kfk «fk kyk kjk kjk k|k kfk k^ k^ kfk kjk kjk k^ kfk »|k k|k T* #Jk kjk k^ k|k kfk^^^k^^^^ ̂ ̂ ̂ ̂ ̂ ̂9fi^^^kjk 0^^^^^ ̂ ^kfk kfk k|? ?Jk kj5 #1? kjk 

~ Declare the process sensitivity list(inputs to the process) 
kjk kik ktk kik kik kjk kik ktk klk ktk klk kik^klk^^ ̂ ̂̂ ilf ^ ̂ ^ ̂ ̂^^^ ̂ ̂ ̂ ktk^^^kik klk k^ kik kik kU klk kt« *5^ kl* kik klk klk klk kik klk klk klk kik kik klk klk klk ktk klk
kjk kJk kJk kJk kJk kfk kfk k|* kJk kJk k|k kJk kj* kfk k|k kJk k^k kJk k^ kfk kJk kJk kJk^k^k^kfk^ ̂ kfk ̂ ^k^^^^^Sp^k^k^k^k^ kJk^^ ̂ ̂ ̂ Sfi^7|k k|k^k|k ?|k kJk kJk kJk k|k kfk k|k 

process(Ainagh,Bmagh,Cmagh,Amagl,BmagI,Cmagl) 

__ ^^ ̂ ^ ̂ ^^ ^^>i<^ ̂  ̂ ̂ ^ ̂ Hi ^ ̂ ̂Hi^ ̂ ̂ ̂Hi :{( :{«4:̂  ^^ ̂  ̂ Hi H« ^ ^^ Hi^ ̂ 

HiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHi 

~ Begin the process 

~ This process is used to resolve the maximum magnitude ofthe 
~ logical low's and the magnitude oflogical high's for each of 
~the three sampled windows(A,B,C) The results are output as 
~ Amag,Bmag,Cmag and are represented in three bit fields The data 
~ polarity(logic low or logic high)is also resolved and is output 
~ as Apol,Bpol,Cpol with each represented by a single bit. 

begin 

~ Declare the flip flops which require feedback 
_^:]«^^s)$HiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiH<HiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHi 

~ no flip flops m this particuliar process 

^^HiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHiHi 

~ Declare the default states for the flip flops in this process 
^ ̂ Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi 
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Amag <=Amagh, 
Bmag <=Bmagh, 
Cmag <= Cmagh, 
Apol<='r, 
Bpol<='1', 
Cpol<='1', 

~ Begin body ofprocess arguments 

if(Amagh < Amagl)then 
Amag <= Amagl, 
Apol<='0', 
end if; 

if(Bmagh <Bmagl)then 
Bmag <=Bmagl, 
Bpol<='0', 
end if, 

if(Cmagh<CmagI)then 
Cmag <=Cmagl, 
Cpol <='0', 
end if, 

end process, 

************************* 

— End process 
************************************************************** 

************************************************************** 

~ Declare the process sensitivity list(inputs to the process) 

process(rfdata,bitsmp_q,bitseg_q,bitdith_q,dpnclk_q,spda_q,Amag, 
Bmag,Cmag,Apol,Bpol,Cpol) 

************************************************************** 

************************************************************** 

~ Begin the process 
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~This process is used to resolve which 5 bit window(A 0-4, 
~B 1-5,C 2-6)ofdata has the best ratio ofmatching bits 
~ This decision(bitdith)is used in a Tau-dither scheme to 
~ determine where the sample window needs to be placed(RETARD, 
~DEFAULT,ADVANCE)for the next cycle This decision is also 
~ used to slide the trigger pomt(RETARDPT,DEFAULTPT,ADVANCEPT) 
~for the outbound denved(DPNCLK)PN clock 

begin 

^ ̂ ^HiH:̂  ^ ̂ ̂  ^ Hi^ ̂ H:Hi Hi ^ ^ Hi Hi Hi Hi^ ̂ Hi ^ ̂  ^^ 

~ Declare the flip flops which require feedback 
************************************************************** 

spda_d <=spda_q; 
dpnclk_d <=dpnclk_q, 
bitdith_d <= bitdith_q, 

************************************************************** 

~ Declare the default states for the flip flops m this process 
************************************************************** 

dpnclk_d <='0', 

hitseg_d <=bitseg_q+l, 

bitsmp_d(6 downto 1)<=bitsmp_q(5 downto 0), 
bitsmp_d(0)<=rfdata, 

************************************************************** 

~ Begin body ofprocess arguments 
************************************************************** 

if(bitseg_q=MAXPT)OR 
((bitdith_q=DEFAULT)AND(bitseg_q=DEFAULTPT))OR 
((bitdith_q=RETARD)AND(bitseg_q=RETARDPT))OR 
((bitdith_q=ADVANCE)AND(bitseg_q=ADVANCEPT))then 
bitseg_d <="000", 
dpnclk_d <='1', 
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if(Amag>Bmag)AND(Bmag>=Cmag)then 
spda_d <= Apol, 
bitdith_d <=ADVANCE; 
elsif(Cmag>Bmag)AND(Bmag>=Amag)then 
spda_d <= Cpol; 
bitdith_d <=RETARD; 
else 

spda_d <=Bpol, 
bitdith_d <=DEFAULT, 
end if, 
end if; 

ifbitseg_q <"001"then 
dpnclk_d <='1', 

end if, 
end process; 

*************** 

~End process 
„************************************************************** 

end behavior. 

8.3 Despreader Correlator 

library leee, 
use ieee.std_logic_1164 all, 
use leee std_logic_arith.all, 
use leee std_logic_unsigned all, 

entity desprd2_alt is 
port 

( 

„************************************************************** 

~ Declare I/O interface 
__****************************:|5**s|s-fc-l::ic*********************:i-!l.**:|;,|j 

Signal spda- m std_logic, 
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signal dpnclk in std_logic, 
signal Idvar in std_logic, 
signal sysclrb in std_logic, 

signal dpack out std_logic, 
signal dspclk out std_logic, 
signal pretrk out std_logic, 
signal trk out std_logic, 
signal mbit' out std_logic, 
signal mdet out std_logic, 
signal dsretard_o out std_logic, 
signal dsdefault_o out std_logic, 
signal dsadvance_o out std_logic, 
signal niaxpol_o out std_logic, 

signal niaxmag_o out std_logic_vector(5 downto 0), 
signal dsseg out std_logic_vector(6 downto 0), 
signal dstkacc out std_logic_vector(l downto 0), 
signal dsntacc out std_logic_vector(3 downto 0) 

), 
end desprd2_alt, 

**********************sis*************************************** 

~ Declare architecture behavior body 
*****************************************************s|s******** 

architecture behavior ofdesprd2_alt is 

__******H:********************************:j!*:i!sl!j|:****************** 

~ Declare the internal signals 
__*********************************!!::|!*:|;************************H! 

Signal dpack_d,dpack_q std_logic, 
signal dspclk_d,dspclk_q std_logic, 
signal pretrk_d,pretrk_q std_logic, 
signal trk_d,trk_q std_logic, 
signal mbit_d,nibit_q std_logic, 
signal mdet_d,mdet_q std_logic, 
signal dsCpol_d,dsCpol_q std_logic, 
signal dsBpol_d,dsBpol_q std_logic, 
signal dsApol_d,dsApol_q.std_logic, 
signal dsretard std_logic; 
signal dsdefault std_logic; 
signal dsadvance std_logic, 
signal dsretard_d,dsretard_q std_logic; 
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signal dsdefault_d,dsdefault_q std_logic, 
signal dsadvance_d,dsadvance_q std_logic, 
signal maxpol std_logic, 

signal dsseg_d,dsseg_q std_logic_vector(6 downto 0), 
,signal dsmbth_d,dsmbth_q-std_logic_vector(5 downto 0), 
signal dsmdth_d,dsmdth_q std_logic_vector(5 downto 0), 
signal dstkth_d,dstktli_q.std_logic_vector(1 downto 0), 
signal dsntth_d,dsntth_q*std_logic_vector(3 downto 0); 
signal dsmdacc_d,dsmdacc_q std_logic_vector(5 downto 0), 
signal dstkacc_d,dstkacc_q std_logic_vector(1 downto 0), 
signal dsntacc_d,dsntacc_q std_logic_vector(3 downto 0), 
signal xor_array std_logic_vector(62downto 0), 
signal suml,sum2,sum3,sum4 std_logic_vector(5 downto 0), 
signal dsshf_d,dsshf_q std_logic_vector(62downto 0), 
signal dspn_d std_logic_vector(62downto 0), 
signal dspn_q std_logic_vector(62downto 0); 
signal dsCniag_d,dsCmag_q std_logic_vector(5 downto 0), 
signal dsBmag_d,dsBmag_q std_logic_vector(5downto 0), 
signal dsAniag_d,dsAmag_q std_logic_vector(5downto 0), 
signal compmag.std_logic_vecfor(5 downto 0); 
signal maxmag std_logic_vector(5 downto 0), 

************************************************************** 

~ Declare the required constants 
************************************************************** 

constantDSRETARDPT std_logic_vector(6 downto0).="0111101 
constantDSDEFAULTPT std_logic_vector(6 downto 0).="0111110", 
constantDSADVANCEPT std_logic_vector(6 downto0) ="0111111", 
constantDSMAXPT std_logic_vector(6 downto0) ="1000000", 

constantENCODE std_logic_vector(62 downto0)= 
"101010110011011101101001001110001011110010100011000010000011111", 
constantGND6 std_logic_vector(5 downto0)="000000"; 

—set programmable thresholds as constants to free up logic cells. 
~dsmbth=50,dsmdth=62,dsntth=15,dstkth=2 
constant dsmbth std_logic_vector(5 downto0) ="110010"; 
constant dsmdth'std_logic_vector(5 downto0) ="111110", 
constant dstkth'std_logic_vector(l downto0)•="10"; 
constant dsntth std_logic_vector(3 downto0) ="1111", 

— Declare the operational sequence definitions(text only) 
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__***********=(:************************************************** 

~The despreader correlator is used to search,synch,and lock 
~ to the expectedPN code A scheme is used to correlate and 
~ optimize the recoveredPN pattern,dither the clock switching 
~ points based on the pattern,derive the appropriate data bit 
~ polarity,and derive a accurate despread data clock Operational 
~flags are generated for pretrack and track modes to be used by 
~ other modules,the search mode is the defaulted operation 
~Programmable thresholds are available for tracking mode entry 
-magnitude,and tracking mode exit magnitudes The module also 
~ contains logic to measure missed bits and missed detection cycles 
-once the pretrack or track modes are entered Programmable 
~thresholds are also available for missed bit magnitude and missed 
-detect magnitude A missed bitflag(above the magnitude threshold) 
~ or missed detect cycle flag are sent to other modules 

..St-!:*******:):*********«.**************!!!*************************** 

~ Begin architecture behavior application 

begin 

flops process(sysclrb,dpnclk,Idvar) 
begin 
ifsysclrb='0'then 

dpack_q <='0', 
dspclk_q <='0'; 
pretrk_q <='0', 
trk_q <='0', 
mbit_q <='0', 
mdet_q <='0', 
dsCpoLq <='0', 
dsBpol_q <='0', 
dsApol_q <='0'; 
dsadvance_q <='0', 
dsretard_q <='0', 
dsdefault_q <='0', 
dsseg_q <="0000000"; 
dstkacc_q <="00", 
dsntacc_q <="0000"; 
dsshf_q <= 

"000000000000000000000000000000000000000000000000000000000000000" 
dsCmag_q <="000000", 
dsBmag_q <="000000", 
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dsAmag_q<="000000", 
elsiffalling_edge(dpnclk)then 

dpack_q <=dpack_d; 
dspclk_q <=dspclk_d; 
pretrk_q <= pretrk_d; 
trk_q <=trk_d, 
mbit_q <= mbit_d, 
mdet_q <=mdet_d, 
dsCpoLq <= dsCpol_d, 
dsBpol_q <= dsBpol_d, 
dsApol_q <=dsApoLd, 
dsadvance_q <=dsadvance_d; 
dsretard_q <= dsretard_d, 
dsdefault_q <= dsdefault_d, 
dsseg_q <= dsseg_d, 
dstkacc_q <=dstkacc_d; 
dsntacc_q <=dsntacc_d, 
dsshf_q <=dsshf_d, 
dsCmag_q <=dsCmag_d, 
dsBmag_q <=dsBmag_d, 
dsAmag_q <=dsAmag_d; 

end if, 

ifsysclrb='0'then 
dspn_q <= 

"000000000000000000000000000000000000000000000000000000000000000", 
dsmbth_q <="000000"; 
dsmdth_q <="000000", 
dstkth_q<="00", 
dsntth_q <="0000", 

elsifrising_edge(ldvar)then 
dspn_q <=dspn_d, 
dsmbth_q <= dsmbth_d, 
dsmdth_q <= dsmdth_d, 
dstkth_q <=dstkth_d, 
dsntth_q <= dsntth_d, 

end if, 

~ Output assignments 
~ With these statement here,the process block cannot overwrite them 

**************************************************!!!*********** 

dpack <= dpack_q, 
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dspclk <=dspclk_q; 
pretrk <= pretrk_q, 
trk <= trk_q, 
mbit<= mbit_q; 
mdet<= mdet_q, 
dsseg <= dsseg_q, 
dstkacc <=dstkacc_q, 
dsntacc <= dsntacc_q, 

dsretard_o <= dsretard_q, 
dsdefault_o <= dsdefault_q, 
dsadvance_o <= dsadvance_q, 
maxpol_o <= maxpol, 
maxmag_o <= maxmag, 

end process flops, 

— Declare the process sensitivity list(inputs to the process) 
**********************************************=1-*************** 

process(spda,dsshf_q,dspn_q) 

**************************************************:|!*H=********* 

************************************************************** 

— Begin the PI process 

~ This process is used to accummulate the input spread data stream 
~The input spread data is right shifted into a63(PN spread ratio) 
~ bit shift register The chip bits(spda)are clocked into this 
~ shift register with the derived PN clock(dpnclk) The spda data 
~ and the ddspnclk are sent to the despreader modulefrom the polarity 
~ decoder(POLDEC)module.The results from this process are the 
~ expectedPN(PNCODE)code and the accumulated(dsshf_q)inbound 
— PN value 

begin 

~ Declare the flip flops which require feedback 
************************************************************** 
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^1* *1* C* ^1*^ ̂ ̂ ̂ •I?^ ^ ̂ ̂ ̂ ̂^ ̂ ̂^ ̂ •I*^«1«^ ̂ ̂ ̂ ̂ ̂ «I>^ ̂ ̂ «1> «1« »t« «lj ^»1« ^*(•̂  ̂ ̂tt*a kN^ «|^^^(. «(.
^^^ ̂ ̂■T* ^ 'T* ^ ̂  ^ ^ ^ "P I* ^ ̂  V ̂  'P ^P ^P ^ ̂  ̂  ip ip ^ ip Sp ^ ip ^ ip ^ ̂  #p ^ ?p ^ Sp 5p ?p ;p ^ 7p 7p 7p ^ ̂  

~ Declare the default states for the flip flops in this process. 
*1* *1* *1* Uf ^ ̂  ̂  ̂  ̂  ^ *1; ^ sS? ^ ̂  ̂  ̂  ?£? ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  *1* ^ ̂  ̂  ̂  ̂  «P •£« »1« *1* ^ «!• •S^ •!« «1# «!«#p *p »p #p rp rp wp •p #p •p #p »p -p wp rp *p »p rp »p rp #p 0J* •p »p •p ^ #p ^ ̂  *p tfp #p #p ^ ̂  «p rp »p ^ ̂  ̂  ̂  ̂  ̂  ̂  Jp ^p ^ ̂  ̂  ̂  ̂  ̂  ̂  rfi SJ% 5p Jp Sfi ^ ?p ?p 

dsshf_d(62 downto 1) <= dsshf_q(61 downto 0); 
dsshf_d(0) <= spda; 

dspn_d <= PNCODE, 

xor_array <= dsshf_q XOR dspn_q, 

end process, 

********** ***4:* ******** ********* ^sNH!********!!:******* 

~ End process 

~ Declare the piocess sensitivity list (inputs to the process) 
*******=^****************************************************** 

process(xor_array) 
begin 

sum 1 <=(GND6&xor_array(0))+(GND6&xor_array( 1 ))+(GND6&xor_array(2))+(GND6 
&xor_array(3))+(GND6&xor_array(4)) 

+(GND6&xor_array(5))+(GND6&xor_array(6))+(GND6&xor_array(7))+(GND6&xor_a 
rray(8))+(GND6&xor_array(9)) 

+(GND6&xor_array( 10))+(GND6&xor_array( 11 ))+(GND6&xor_array( 12))+(GND6&xo 
r_array( 13))+(GND6&xor_array(14)), 

sum2<=(GND6&xor_array( 15))+(GND6&xor_array( 16))+(GND6&xor_array( 17))+(GN 
D6&xor_array( 18))+(GND6&xor_array(l 9)) 

+(GND6&xor_array(20))+(GND6&xor_array(21))+(GND6&xor_array(22))+(GND6&x 
or_array(23))+(GND6&xor_array(24)) 
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+(GND6&xor_array(25))+(GND6&xor_array(26))+(GND6&xor_array(27))+(GND6&x 
or_array(28))+(GND6&xor_arTay(29)) 

+(GND6&xor_array(30)); 

sum3<=(GND6&xor_array(31))+(GND6&xor_array(32))+(GND6&xor_array(33))+(GN 
D6&xor_array(34))+(GND6&xor_array(35)) 

+(GND6&xor_array(36))+(GND6&xor_array(37))+(GND6&xor_aiTay(38))+(GND6&x 
or_array(39))+(GND6&xor_array(40)) 

+(GND6&xor_array(41))+(GND6&xor_array(42))+(GND6&xor_array(43))+(GND6&x 
or_array(44))+(GND6&xor_array(45)) 

+(GND6&xor_array(46)), 

sum4<=(GND6&xor_array(47))+(GND6&xor_array(48))+(GND6&xor_array(49))+(GN 
D6«&xor_array(50))+(GND6&xor_array(51)) 

+(GND6&xor_array(52))+(GND6&xor_array(53))+(GND6&xor_array(54))+(GND6&x 
or_array(55))+(GND6&xor_array(56)) 

+(GND6&xor_array(57))+(GND6&xor_array(58))+(GND6&xor_array(59))+(GND6&x 
or_array(60))+(GND6&xor_array(61)) 

+(GND6&xor_array(62)), 

end process, 

P2 process(suml,sum2,sum3,sum4) 

~ Begin theP2process 

~ This process is used to perform an XOR and comparison ofthe 
~expectedPN code and the inboundPN code The result is a zero 
~ polarity magnitude,based on the 63 bit total magnitude field 

begin 

compmag <=suml+sum2+sum3+sum4. 
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end process P2, 

~End process 

^ ̂ ̂^^ ̂ ̂̂ ^^ ̂ ̂̂ ^^ ̂ ̂̂ ^^^^^ ̂ ̂^ ̂ ̂ ̂ ^ ̂ ^ ̂ ^^^^^^ ̂ ̂^^^ ^ ̂ ̂̂ ^^^^ ̂ ̂ ̂ ̂̂ ^ 

— Declare the process sensitivity list(inputs to the process) 
^^ ̂ ̂̂ ^^^ ̂ ̂^^ ̂ ̂̂  ̂ ̂ ^^ ̂ ̂̂ ^ ̂ ̂^^ ̂ ̂̂ ^ ̂ ̂ ̂ ̂̂ ^ ̂ ^ ^^ ̂  ̂ ̂ ̂ ̂̂ ^ ^ ^^^^^ ̂ ̂ 

P3 

process(compmag,dsAmag_q,dsBmag_q,dsCmag_q,dsApol_q,dsBpol_q,dsCpol_q, 
dsmbth_q,dsmdth_q,dsntth_q,dstkth_q,dsmdacc_q,dsntacc_q,dstkacc_q) 

^ ^Uf^ ̂ ̂̂ ^ ̂ ̂^^^ ̂ ̂^ ̂ ̂ ̂ ̂ ̂^ ̂ ̂^ ̂ ̂^ ̂ ̂^ ̂ ̂̂ ^^^^^^^^^^ ̂ ̂̂  ̂ ̂̂ ^ ̂ ̂^^^^^ ̂ ̂^ »1* cp •!» •T* ^'I* •*••P^ 'I* *T* 'T* •!• •*• •!• •!• V^^ ̂ ̂*7*^ ^ ̂ ̂̂ ^ ̂ ̂ ̂^ ̂ ̂^^^^^^ ̂ ̂ I*1« 1%^ ?J5 Sf« 5j5 Sf« 1* 

_^̂ H::{:4: Hi Hi^Hi^4<^ ̂  ̂  ^ ^ ^ ̂ ̂H«^ ̂ ^H:Hi^ ̂ ^ ̂ ̂ ̂  ̂  ̂  Hi Hi^^:|:^:{:H:Hi ^^ 

~Begin the P3 process 

~ This process is used to perform four essential and sequential 
~ operations. The first operation is to subtract azero magnitude 
~from the comparator(from theP2process)magnitude.The second 
~ operation is to derive a bit polarity from thePN magnitude 
~ The third operation stores and rotates threePN magnitudes and 
~ their associated bit polarities The fourth operation is used 
~ to compare the three magnitude values and decide ifthe dither 
~ controller needs to be m default or retard or advance 

~ retard mode dsretard=1,dsseq roll=61,maxmag=dsAmag maxpol=dsApol 
— default mode dsdefault=l,dsseq roll=62,maxmag=dsBmag maxpol=dsBpol 
~ advance mode dsadvance=l,dsseq roll=63,maxmag=dsCmag maxpol=dsCpol 

Hi Hi Hi Hi Hi Hi H* Hi H* Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi 

begin 

~ Declare the flip flops which require feedback 

~ Declare the default states for the flip flops m this process. 
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^^ ̂ ̂̂  ̂ ̂ ̂̂  ̂ ̂̂  ̂ ̂̂  ̂ ̂ ̂ ̂̂  ̂ ̂ ̂ ̂ ̂^^^^^^ ^«^ ̂ ̂ ̂  ̂ ̂ ̂̂  ̂  ̂ ̂̂  ̂  ̂ ̂̂  ̂ ̂ ̂ ̂̂ ^*^ ̂ ̂ ̂ 

dsBmag_d <=dsCmag_q, 
dsBpoLd <= dsCpol_q, 
dsAmag_d <=dsBmag_q, 
dsApol_d <=dsBpoLq, 

5J5 S|€ ^5 SjC^^Sfi^ ̂ 5|C SjC^5jC Jjc^jfff^5|5 5fc 5^^ ̂ S}C SjC^ ̂ 5|*^ jJC 5|C ^^ ̂  ̂ 5jc S|C^ ̂ ̂ ?jc^^^^^^^^s|c ■}« 5^ ^ SjC S|* 5jC ^ 

~ Begin body ofprocess arguments 
•3* >1> ^ *1* ^ •l^ •Ia •Sa *1* »1* ^1* *1* ^ ̂  ̂  ^ ̂  *2' ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  4a ^ ̂  ̂  ̂  4a 4a ^ 4a «1« •!« ^ ̂  ̂  *1# %1«
•7* ^ •T* ^ T* ^ *1* 'T* ^ ̂  'I* •!• 'T* •!• •!• •y* «!• »j« ^ »j» pp a^ pf^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  5^ ^ ̂  ̂  p|? ?fp pf* 9|C pf* pj5 

if (63 - compmag) > compmag then 
dsCmag_d <= (63 - compmag), 
dsCpoLd <= '0', 
else dsCmag_d <= compmag, 
dsCpol_d<='l', 
end if, 

if (dsAmag_q > dsBmag_q) AND (dsBmag_q >= dsCmag^q) then 
maxmag <= dsAmag_q, 
maxpol <= dsApoLq, 
dsadvance <= '0'; 
dsdefault <= '0', 
dsretard <= '1', 
elsif (dsCmag_q > dsBmag_q) AND (dsBmag_q >= dsAmag_q) then 
maxmag <= dsCmag_q, 
maxpol <= dsCpol_q, 
dsadvance <= ' 1', 
dsdefault <= '0', 
dsretard <= '0', 
else 
maxmag <= dsBmag_q, 
maxpol <= dsBpol_q, 
dsadvance <= '0', 
dsdefault <= '1', 
dsretard <= '0', 
end if, 

end process P3, 

~ End process 
■1* *1* pIp pIp pIp 4a 4a 4a pIp pjp pIp pjp pjp pIp pIp pt* pIp 4a pIp pIp pjp pjp pIp pIp pip pjp 4a pjp ^ 4a ^ 4a 4a pIp pIp pIp p2p pI« 4a 4a 4a 4a pIp pIp p£p pIp p2p pIp 4a aIa pIp pIp 4a 4a 4a pfp 4a 4a pIp pIp 4a pIppjp pfp pjp pfp pfp pfp pfp pfp pfp pfp pfp pfp pfp pfp pfp ^ p^ pfp p^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  pfp ^ pfp ^ ̂  ̂  ffp ff^ fff yfi fff 9ff ff; fff fff sff 5J5 jfc fff fff jf; fj; jjf jf; 
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~ Declare the process sensitivity list(inputs to the process) 

P4 

process(maxmag,maxpol,dsretard,dsdefault,dsadvance,dpack_q,dspclk_q,pretrk_q, 
trk_q,dsmbth_q,dsmdth_q,dsntth_q,dstkth_q,dsmdacc_q,dstkacc_q,dsntacc_q,dsseg_q, 
dsdefault_q,dsretard_q,dsadvance_q) 

~ Begin the P4 process 

~ This process is used to derive the spread(dspclk)clock This 
~ clock IS generated by applying the DSRETARDPT orDSDEFAULTPT or 
~DSADVANCEPT to slide the tngger pointfor the outbound derived 
~ spread clock This process also resolves the the outbound desrpead 
~(dpack)data This process also cotrols whether the despreader 
~ correlator module is in search or pretrack or track mode This 
— process also measures missed bit and missed detect thresholds 

^ ̂ ̂ ̂ ^^^^^^^ ̂ ̂^ ̂ ̂^^^ ^ ̂ ̂ ^^ ̂ ̂ ̂^ ^ ̂ ^^ ^ ^ ̂ ̂ ̂ ^ ^^ ^ ^ ^^ ̂ ̂ ̂ ̂ ̂^^ ̂  ̂ ̂ SJm ^ ̂  ^ ̂ ̂  ̂ ^ ̂ ̂ 

begin 

~ Declare the flip flops which require feedback 

dpack_d <= dpack_q, 
dspclk_d <=dspclk_q, 
pretrk_d <= pretrk_q, 
trk_d <=trk_q, 
dstkacc_d <=dstkacc_q, 
dsntacc_d <= dsntacc_q, 
dsseg_d <= dsseg_q+l, 

~ Declare the default states for the flip flops m this process. 

dspclk_d <='0'; 
mbit_d <='0', 
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mdet_d <='0', 
dsmbth_d <= dsmbth; 
dsmdth_d <=dsmdth, 
dstkth_d <= dstkth, 
dsntth_d <= dsntth, 
dsdefault_d <= dsdefault_q, 
dsretard_d <= dsretard_q, 
dsadvance_d <= dsadvance_q, 

*************************** 

~ Begin body ofprocess arguments 
************************************************************** 

if(dsseg_q=DSMAXPT)OR 
((dsdefault_q='1')AND(dsseg_q=DSDEFAULTPT))OR 
((dsretard_q='1')AND(dsseg_q=DSRETARDPT))OR 
((dsadvance_q='1')AND(dsseg_q=DSADVANCEPT))then 

dsdefault_d <= dsdefault, 
dsretard_d <= dsretard, 
dsadvance_d <= dsadvance, 
dsseg_d <="0000000", 
dspclk_d <='!', 
dpack_d <= maxpol; 

iftrk_q='0'then 
ifmaxmag> dsmdth_q then 
dstkacc_d <= dstkacc_q+l, 
ifdstkacc_q> dstkth_q then 
trk_d<='1', 
end if, 
else 

pretrk_d <='0', 
end if, 
else 

ifmaxmag<dsmdth_q then 
dsntacc_d <=dsntacc_q+l; 
ifdsntacc_q> dsntth_q then 
trk_d <='0', 
pretrk_d <='0', 
dpack_d <='0', 
end if, 
else 

dsntacc_d <="0000", 
end if, 
end if, 
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if(trk_q='r)AND(maxmag < dsmbth_q)then 
mbit_d <='!', 
end if, 

if(trk_q='1')AND(maxmag<dsmdth_q)then 
mdet_d <='1', 
end if, 

end if, 

if(maxmag> dsmbth_q)AND(pretrk_q='0')then 
pretrk_d <='!', 
dsseg_d <="0000000", 
dstkacc_d <="00", 
dsntacc_d <="0000", 
end if, 

ifpretrk_q='0'then 
dpack_d <='0', 
end if, 

ifdsseg_q <"0100000"then 
dspclk_d <=T, 
end if, 

end processP4, 

~End process 
*************************************************************:); 

end behavior. 

8.4 ProtocolRemover 

library leee, 
use leee std_logic_1164 all, 
use leee std_logic_anth all, 
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use ieee.std_logic_unsigned.all, 

* 

~I/O Interface Declaration 

Hi 

entity protocol_alt is 
port 

( 
~inputs 

signal dpack in std_logic, 
signal dspclk. in std_logic, 
signal sysclrb in std_logic, 
signal trk in std_logic, 
signal mdet in std_logic, 
signal mbit in std_logic, 

~ outputs 

signal strk. out std_logic, 
signal smdet out std_logic; 
signal smbit out std_logic, 
signal sdata outstd_logic 

), 
end protocol_alt, 

~ Architecture body 

********************** 

architecture behavior ofprotocol_alt is 

signal ml,in2 std_logic, 
signal sdata_sig. std_logic, 
signal trk_q- std_logic, 
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signal mdet_q- std_Iogic, 
signal mbit_q std_logic, 

begin 

process(sysclrb,dspclk) 

begin 
ifsysclrb='0'then 

trk_q<='0', 
mdet_q <='0', 
mbit_q <='0', 
ml <='1', 
in2<='0', 

elsifrising_edge(dspclk)then 
trk_q <=trk, 
mdet_q <= mdet, 
mbit_q <= mbit, 
in2<= ml; 
ml <=dpack, 

end if, 

sdata_sig <= ml xor m2, 
strk <=trk_q, 
smdet<= mdet_q, 
smbit<= mbit_q, 
sdata <= sdata_sig, 

end process, 

end behavior. 

8.5 Packet Detector 

library leee, 
use ieee.std_logic_1164.all; 
use leee std_logic_arith all, 
use leee std_logic_unsigned all. 



ttttf «1« •!« kLi «!•^ ^ ^^1«^ ̂ ̂̂ *1^^^^^*!• *T-^kL« kj* %l» ^^ ̂ *1# ^«L>^«i"^ ̂ ̂^•!•̂ *1^^ *!■ ^ •!» ^ yu ^ *1^ •!•5ji 5|5 5|? 5|5 ?p 5|5 SJ* 5J? ^ ^ ̂  5^ ^ ̂  ^ ^ 5p JJ5 5^ J|5 5Ji *|» ^ rp ^ rp ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ♦!• •p •p •p •p •p •p ^ 'p ^ ̂  ̂  ̂  ̂  

~ I/O Interface Declaration 

entity pack_det is 
port( 
—inputs 

sdata m 

dspclk m 

— uid m 

clacq in 

rstb m 

Idvar m 

strk in 

—outputs 
wsclk buffer std_logic. 
pkda_ec bufferstd_logic_vector(9 downto 0), 
match buffer std_logic. 
pkdwr out std_logic. 
pkwc. buffer integer range 0 to 63; 
pkwwr buffer std_logic. 
acq out std_logic. 
pkda out std_logic_vector(9 downto 0) 

),
end pack_det; 

~ Architecture Body 

architecture behavior of pack_det is 

—Constants for Graviton demo 
—Packet words are transmitted from the ACQ LSB first 
constant pklen.mteger.= 6, 
constant pkwid integer .= 10, 
constant frame_sync std_Iogic_vector(9 downto 0):="1I1I100000", 
constant GNDA std_Iogic_vector(9 downto 0) ="0000000000", 
constant GND7'std_logic_vector(6 downto 0) ="0000000"; 

—set programmable parameters as constants to free up logic cells 
constant uid std_logic_vector(2 downto 0) •= "101", 

signal id_cnt. integer range 0 to 20, 
signal uid_sig std_logic_vector(2 downto 0), 
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signal pkwwr_sig std_Iogic, 
signal pkdwr_sig std_logic, 
signal pkdwr_sig_dl std_logic, 
signal pkdwr_sig_d2:std_logic; 
signal pkdwr_sig_d3 std_logic, 
signal pkdwr_sig_d4 std_logic, 
signal pkdwr_sig_d5 std_logic, 
signal acq_sig std_logic; 
signal ref_uid std_logic_vector(pkwid-l downto 0); 
signal pkwc_sig.integer range0to 63; 
signal ec_cnt' integer range0to 10, 
signal pkda_sig.std_logic_vector(9 downto 0), 
signal pkda_sigl std_logic_vector(pkwid-l downto 0), 
signal pkda_sig2 std_logic_vector(pkwid-l downto 0), 
signal pkda_int std_logic_vector(9 downto 0), 

begin 

acquisition process(rstb,clacq,dspclk) 
begin 
ifIdvar='1'then 

uid_sig(0)<= uid(2), 
uid_sig(l)<=uid(l), 
uid_sig(2)<= uid(O), 
ref_uid <=GND7&uid_sig, 
else 

ref_uid <=ref_uid, 
end if, 
ifrstb='0'or clacq='1'then 
pkda_int<= GNDA, 
match <='0', 
acq_sig <='0', 
ec_cnt <=0, 
wsclk <='1', 
id_cnt<=0, 
elsiffalling_edge(dspclk)then 
pkda_int(8 downto0)<=pkda_int(9 downto 1), 
pkda_int(9)<=sdata, 
if(match or acq_sig)='1'then 
ifec_cnt=9then 
pkda_ec <= pkda_int, 
ec_cnt<=0, 
wsclk <='0', 
else 

pkda_ec <=GNDA, 
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ec_cnt<=ec_cnt+ 1, 
wsclk <='1', 
end if, 
else 

ec_cnt<=ec_cnt, 

wsclk <='1', 
end if, 
ifpkda_int=frame_sync then 
match <='1', 
else 

match <= match, 
end if, 
ifmatch='1'and acq_sig='0'then 
ifpkda_mt=ref_uid and id_cnt=19then 
acq_sig <='1', 
id_cnt<=0, 
else 

ifid_cnt=20then 
acq_sig <='0', 
id_cnt<=0, 
match <='0', 
else 

acq_sig <=acq_sig, 

id_cnt<=id_cnt+ 1, 
end if, 
end if, 
else 

acq_sig <=acq_sig; 

id_cnt<=id_cnt, 
end if, 

end if, 
acq <=acq_sig, 

end process acquisition, 

data_strobe'process(dspclk,rstb,acq_sig) 
begm 
ifrstb='0'or acq_sig='0'then 
pkwwr_sig <='1', 
pkdwr_sig <='1'; 
pkdwr_sig_dl <='1', 
pkdwr_sig_d2<='1', 
pkdwr_sig_d3 <='1', 
pkdwr_sig_d4<='1', 
elsiffallmg_edge(dspclk)then 
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ifacq_sig='1'then 
pkdwr_sig_d4<= wsclk, 
else 

pkdwr_sig_d4<=pkdwr_sig_d4, 
end if, 
pkdwr_sig <=pkdwr_sig_dl; 
pkdwr_sig_dl <=pkdwr_sig_d2, 
pkdwr_sig_d2<=pkdwr_sig_d3, 
pkdwr_sig_d3 <=pkdwr_sig_d4, 
ifpkwc_sig=pklen then 
pkwwr_sig <=pkdwr_sig; 
else 

pkwwr_sig <=pkwwr_sig, 
end if, 
ifstrk='0'then 

pkwwr_sig <='0', 
end if, 
end if, 
pkdwr <=pkdwr_sig, 
pkwwr<=pkwwr_sig, 
end process data_strobe, 

data_out- process(dspclk,rstb) 
begin 
ifrstb='0'then 

pkda_sig <=GNDA, 
pkda_sigl <=GNDA, 
elsifrising_edge(dspclk)then 
ifwsclk='0'then 

pkda_sigl <=pkda_sig, 
pkda_sig <=pkda_ec, 
else 

pkda_sigl <=pkda_sigl, 
pkda_sig <=pkda_sig, 
end if, 
end if, 
pkda <= pkda_sigl, 
end process data_out, 

word_count process(wsclk,rstb,acq_sig) 
begin 
ifrstb='0'or acq_sig='0'then 
pkwc_sig <=0, 
elsifrising_edge(wsclk)then 
ifpkwc_sig=pklen or strk='0'then 
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pkwc_sig <=pkwc_sig, 
else 

pkwc_sig <=pkwc_sig+ 1, 
end if; 
end if, 
pkwc<=pkwc_sig, 
end process word_count, 

end behavior, 

8.6 FIFO Controller 

library leee, 
use leee std_logic_l164 all, 
use leee std_logic_arith.all; 

~I/O Interface Declaration 

entity fctrl is 
port( 
—inputs 

signal dspclk in std_logic, 
signal rstb in std_logic, 
signal strk in std_logic, 
signal rd in std_logic, 
signal acq in std_logic, 
signal pkst in std_logic, 
signal pkdwr in std_logic; 
signal pkwwr in std_logic, 
signal full in std_logic, 

-DataFIFO full 

signal mty in std_logic, 
—Data FIFO empty 

signal temp_full in std_logic, 

—outputs 

signal ovr buffer std_logic, 
signal temp_clrb buffer std_logic, 

—temp_clrb is the asynchronous active low data FIFO clear 
signaltempwr buffer std_logic, 
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—tempwr is the active high wnte to the data FIFO signal 
signal tpclk buffer std_logic, 
signal drdy. buffer std_logic, 
signal xfer' buffer std_logic; 

—xfer is the active high data FIFO write signal 
signal dfclk. buffer std_logic, 
signal dfrd' buffer std_logic, 
signal clacq buffer std_logic 

), 
end fctrl. 

~ Architecture Body 

architecture behavior offctrl is 

—The data FIFO is 96 by 10 
—Expected word count is the expected packetlength minus2 
—Forthe Graviton demo,pklen=6 

constant pklen integer =6, 
constant pkwid integer =10, 

signal temp_clrb_d,temp_clrb_q std_logic, 
signal tempwr_d,tempwr_q std_logic, 
signal dfrd_d,dfrd_q.std_logic, 
signal clacq_d,clacq_q std_logic, 
signal drdy_d,drdy_q std_logic, 
signal xfer_d,xfer_q std_logic, 
signal xfer_d2,xfer_q2 std_logic, 
signal ovr_d,ovr_q std_logic, 
signal dfwrclk std_logic, 
signal tprdclk std_logic, 
signal clk_cnt integer range0to pkwid, 
signal ovr_cnt integer range0to 7, 
signal xfer_cnt integer range0to pklen, 
signal dfclk_d std_logic, 
signal dfclk_q std_logic, 

begin 

— Synchronicity 

flops process(rstb,dspclk) 
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begin 
ifrstb='0'then 

temp_clrb_q <='!', 
tenipwr_q<='0'; 
clacq_q <='0', 
xfer_q <='0', 
xfer_q2<='0', 
drdy_q <='0', 
ovr_q <='0'; 
dfclk_q <='!', 

elsiffalling_edge(dspclk)then 
temp_clrb_q <=temp_clrb_d, 
tempwr_q <=tempwr_d, 
clacq_q <=clacq_d, 
xfer_q <=xfer_d; 
xfer_q2 <=xfer_d2; 
drdy_q <= drdy_d, 
ovr_q <=ovr_d, 
dfclk_q <= dfclk_d, 

end if, 

temp_clrb <=temp_clrb_q, 
tempwr <=tempwr_q, 

dfrd <=drdy_q, 
clacq <= clacq_q, 
xfer_d2 <=xfer_q; 
xfer <=xfer_q2, 
drdy <= drdy_q, 
dfclk <= dfclk_q, 
ovr <= ovr_q, 

end process flops, 

******!):****si:*************************************************** 

~ Clock Generation 
__**************************Hc****************si:;is^:j:^^^.,l;:];:]c:|;s|.:|;^:j.,(;,|:,|.:j.,|.,|-

—Generate clocks for the single-clock FIFOs 

clk_gen process(rstb, dspclk) 
begin 
ifrstb='0'then 

clk_cnt <=0, 
tprdclk<='1', 
dfwrclk<='1', 

elsiffalling_edge(dspclk)then 
case clk_cnt is 
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when0=> 

tprdclk <='0', 
dfwrclk<='l', 
clk_cnt <= clk_cnt+ 1; 
when 1 => 

tprdclk <='1', 
dfwrclk <='0', 
clk_cnt<= clk_cnt+ 1, 
when pkwid - 1 => 
clk_cnt<=0, 
tprdclk <='1', 
dfwrclk <=T; 
when others=> 

tprdclk <='1', 
dfwrclk <='1', 
clk_cnt <= clk_cnt+ 1, 
end case, 

end if, 
end process clk_gen, 

~ Clock Selection 
Sj* rfs ^^ ̂ 5|c^5jS 5|c rfc ^ ̂ rfS *|c^ ̂ ^ ̂ ̂ ̂ ^ Sj?^^5}c^ ̂ ?jS^^ ^^^^ jjC »}• 5|C SjC jj*^^ ̂ 5|S^r|C SjC 

—Generate the data ready signal(drdy)and switch clocks 

clk_sel process(rstb,dspclk) 
begin 
ifrstb='0' or mty='1'then 

drdy_d <='0', 
elsifrising_edge(flill)then 

drdy_d <=T, 
end if, 
ifdrdy='1'then 

dfclk_d <=rd, 
elsifxfer='1'then 

dfclk_d <=dfwrclk, 
else 

dfclk_d<='l', 
end if, 
ifxfer='0'then 

tpclk <= pkdwr, 
else 

tpclk <=tprdclk, 
end if, 
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end process clk_sel; 

~ Data FIFO and Temporary Packet Buffer Control 

—Write to the temporary packet buffer is disabled iftracking is 
—lost(strk:=0),the packetis bad(pkst=l),or the data FIFO has 
—overflowed(temp_full=l). Ifthe packetis good then it is wntten to 
—the temporary packet buffer 

temp_ctrl process(rstb,dspclk) 
begin 
ifrstb='0' or acq='0' or drdy='1'or temp_full='1'then 

tempwr_d <='0', 
elsiffalhng_edge(dspclk)then 

tempwr_d<='1', 
end if, 
clacq_d <=pkst or not(pkwwr)or drdy, 
temp_clrb_d <=rstb and not(pkst)and not(full), 
end process temp_ctrl; 

—Ifthe data m the temporary packet buffer is ready to 
—be sent to the data FIFO,then writing to the data FIFO and reading 
—from the temporary packet buffer(xfer)is enabled 

data_ctrl process(rstb,dfclk) 
begin 
ifrstb ='0'then 

xfer_cnt<=0, 
xfer_d <='0', 

elsifrismg_edge(dfwrclk)then 
case xfer_cnt is 

when0=> 

iftemp_full='r then 
xfer_cnt<= I, 
end if, 
when6=> 

xfer_cnt<=0, 
when others=> 

xfer_cnt<= xfer_cnt+ 1; 
end case, 
ifxfer_cnt=0then 
xfer_d <='0', 
else 
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xfer_d <='!', 
end if, 

end if, 
end process data_ctrl, 

*1* ^•Xr^ ̂ ^ ^^ ̂  ̂ ̂  ^■!- ^ ̂  ̂  ̂  ̂  »!• ^ ,X> "J* ■!* ^ •i# ^ ̂  ̂  ^ ̂  «1« ■!« »1> ^ ^ ̂  ^ ^ ̂  ^ -i.
•T* ^ ^ ̂  ̂  ̂  •P ^ ^ ̂  'T* ^ ̂  ^ ̂  ̂  ^ »X* •T" V ̂  ̂  ^ ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  * 1* ^ ̂  ^ 'p 1* 

~ Overflow 

00 process(rstb, mty, dspclk) 
begin 
if rstb = '0' or mty = ' 1' then 

ovr_cnt <= 0, 
elsif falling_edge(dspclk) then 

iffiill= '1' then 
ovr_cnt <= ovr_cnt + 1, 
else 
ovr_cnt <= ovr_cnt, 
end if, 
if ovr_cnt =100 then 
ovr_d<='l', 
else 
ovr_d <= '0'; 
end if. 

end if, 
end process oc, 

end behavior. 

8.7 Packet Error Logic 

library leee, 
use leee std_logic_1164 all, 
use leee std_logic_arith all; 

~ I/O Interface Declaration 

entity pack_err is 
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port 

( 
~inputs 

signal elk. in std_logic, 
signal pkwwrnn std_logic, 
signal pkwc in integer range0to 63, 
~ signal pkwcth in integer range0to 63, 
signal mbit m std_logic, 
~ signal pkmbth in integer range0to 63, 
signal mdet in std_logic, 
~ signal pkmdth in integer range0to 63, 
signal acq- in std_logic, 
signal sysclrb in std_logic, 
signal Idvar in std_logic, 

~ outputs 

signal ambit buffer integer range0to 63, 
signal amdet buffer integer range0to 63; 
signal pkst buffer std_logic 

), 
end pack_err, 

~ Architecture body 

architecture behavior ofpack_err is 

signal mbabove std_logic, 
signal mdabove.std_logic; 
signal wcbelow std_logic, 
signal mbth integer range0to 63, 
signal mdth integer range0to 63, 
signal wcth integer range0to 63, 

-set programmable thresholds as constants to free up logic cells 
constant pkwcth integer =6, 
constant pkmdth integer =3, 
constant pkmbth integer =3, 

begin 

~Load Programmable Settings 

99 



load process(Idvar) 
begin 
ifrising_edge(ldvar)then 

-Load externally programmable settings 
mbth <=pkmbth, 
mdth <=pkmdth; 
wcth <= pkwcth, 

else 

mbth <= mbth, 
mdth <= mdth, 
wcth <= wcth, 

end if, 
end process load, 

~ Missed Bit and Missed Detect Accumulators 
********************************* **********:!!*:(:***** 

acc process(mbit,mdet,sysclrb,acq) 
begin 
ifsysclrb='0'or acq='0'then 

ambit<=0, 
elsiffallmg_edge(mbit)then 

ambit<=ambit+ 1, 
end if, 
ifsysclrb='0'or acq='0'then 

amdet<=0; 
elsiffalhng_edge(mdet)then 

amdet<=amdet+ 1, 
end if, 
end process acc, 

***************************************************************** 

~ Packet Status Check 

psc process(elk,pkwwr,sysclrb,acq) 
begin 
ifsysclrb='0'then 

mbabove <='0', 
mdabove <='0', 
wcbelow <='0', 

elsiffalhng_edge(clk)then 
—Compare missed detect and missed bit counts to thresholds 
if(ambit> mbth)then 
mbabove <='1', 
else 
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mbabove <='0', 

end if; 
if(amdet> mdth)then 
mdabove <='1', 
else 

mdabove <='0', 

end if, 
-Checkincommg packet word countto see ifit is below the threshold 
if(pkwc< wcth)then 
wcbelow <='r, 

else 

wcbelow <='0', 
end if, 

end if, 
ifacq='0'then 

pkst<='0'; 
elsiffalling_edge(pkwwr)then 

--Check for packet errors and set pkst flag high ifpacket is bad 
pkst<= mdabove OR mbabove OR wcbelow, 

end if, 
end process psc, 
end behavior. 
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