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Abstract 

A new system for x-ray cone-beam micro-tomography has been developed to screen 

mice for internal phenotypic abnormalities at the Oak Ridge National Laboratory Mam 

malian Genetics Facility. Currently this system uses an image reconstruction algorithm 

that is based on two-dimensional (fan-beam) reconstruction techniques The disparity 

between the actual scanner geometry and that assumed for reconstruction purposes in 

troduces artifacts into the reconstruction volume that become increasingly worse the 

further their axial distance from the midplane In order to reconcile this disparity and 

reduce axial distortion artifacts, a volumetric reconstruction algorithm based on cone-

beam geometry was implemented The volumetric algorithm is derived and its heuristic 

implementation is explained within the constraints of the system, which limit the ar-

clength of the scanning trajectory. Reconstructions using the volumetric algorithm are 

analyzed and compared to reconstructions from the current method We show that our 

implementation produces images of equivalent quality in the midplane, and a marked 

decrease in axial distortion elsewhere Volume reconstruction times are shown to be 

comparable to those currently achieved The theoretical foundations are given for fu 

ture work to optimize the implementation through parallelization and by overcoming 

the data sufficiency problem 
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Chapter 1 

Introduction 

A new system for x-ray computed tomography is under development at the Oak Ridge 

National Laboratory This system is designed to function for a specific research appli 

cation, but the current algorithmic implementation of that system needs improvement 

This thesis addresses that need This section will introduce the problem and propose a 

solution. 

The Mammalian Genetics Research Facility at the Oak Ridge National Laboratory 

(ORNL)conducts research into the genetic effects of mammalian exposure to radiation 

and to other mutagenic sources The facility houses over 70,000 mice comprised of 

around 400 mutant lines. Mutagenic experiments are conducted on the mice and the 

phenotypic manifestations of induced genetic abnormalities are studied Studies cur 

rently require a physical and behavioral screening process that is slow and costly. Many 

phenotypic abnormalities are internal and cannot be found without killing the mouse 



To reduce the time and cost ofinternal abnormality screening, a Laboratory-Directed 

Research and Development program was started at ORNL Under the scope of this 

program, a new x-ray computed tomography system was developed specifically for the 

phenotypic screening of the mice. This system is called the MicroCAT [9, 3] 

The MicroCAT instrument acquires images on a CCD/phosphor screen detector as 

projections through an object from a point x-ray source The detector is constructed of 

a 1024 X 1024 pixel CCD array bonded to a phosphor screen with a 2 1 fiber optic taper 

sandwiched in-between The phosphor screen provides sensitivity to x-ray energies The 

fiber optic taper doubles the imaging area and pixel size. The effective imaging area 

is approximately 50 x 50 mm^. The effective pixel size is approximately 50 x 50 /im^ 

The source and the detector move in tandem in a circular orbit around the object 

Data acquisition and the x-ray source trajectory are controlled by software running 

on a Windows NT workstation. A single 1024 x 1024 pixel projection is acquired in 2-3 

seconds. A typical low-resolution data set consisting of 195 projections over 34 radians 

at regular angular intervals can be acquired in about 7 minutes. Higher resolution scans 

of up to 500 projections are acquired in 15-25 minutes 

Currently, image reconstruction from MicroCAT-acquired data is done using two-

dimensional reconstruction techniques. In order to use two-dimensional algorithms, an 

(incorrect) assumption is made, namely, that projection data is acquired as fan-beam 

projections In fan-beam tomography,a collimator is placed in front of the x-ray source 

so that only a thin plane of x-rays passes through the object. Rays diverging from 



the source and passing through the collimator form a fan-shaped beam This beam 

produces a one-dimensional projection. A set of projections at angular intervals around 

the object (a sinogram) provide data for a single slice of the reconstructed volume A 

set of slices at intervals along the third dimension of the object can be stacked together 

to form a three-dimensional approximation of the object 

Fan-beam reconstruction is a well understood and straightforward approach to to-

mographic reconstruction [11] A common method for reconstructing fan-beam slices 

is filtered backprojection. Filtered backprojection is the iterative process of summing 

weighted and filtered values from the sinogram into their appropriate locations in the 

reconstructed image Each coordinate in the reconstruction matrix maps to some in 

terpolated location in every projection array in the sinogram This mapping is the 

backprojection step The filtering step removes blurring that results from the back-

projection. The mathematics behind filtered backprojection are described in the next 

section. 

The current MicroCAT reconstruction technique performs the extrastep ofrebinning 

the fan-beam data so that it appears to have originated from a parallel-beam geometry. 

The parallel-beam scanner geometry, though often impractical to implement in reality, 

has several algorithmic advantages over a fan-beam geometry The biggest advantage is 

that only tt reidians worth ofangular projections are needed in the filtered backprojection 

algorithm. True fan-beam reconstruction requires a full 27r radians of projections ̂  By 

'Heunstic methods have been developed to enable fan-beam reconstruction from pi radians plus one 
cone-cingle 



rebinning the data into this geometry,the MicroCAT system benefits from parallel-beam 

reconstruction advantages 

Major advantages of the current reconstruction technique are its ease ofimplementa 

tion and fast reconstruction times for individual slices. The process of three-dimensional 

(volumetric) reconstruction by stacking two-dimensional reconstructions is a standard 

approach to tomographic imaging of volumes The implementation of the reconstruc 

tion algorithm is therefore well understood. Scan-times and hardware costs are reduced 

by the additional step of rebinning to parallel data since source and detector only need 

to travel around half of the object's circumference 

The major problem with the current reconstruction technique is that it is based on 

the wrong scanner geometry Computed tomography systems using fan-beam geome 

tries are known as second-generation scanners [5] The MicroCAT system, however, 

is not a second-generation scanner In the MicroCAT system, two-dimensional pro-

\ 

jection data is acquired from an uncollimated point source. Removing the collimator 

from the point source results m a cone-shaped beam This cone-beam is centered at 

the middle of the object and moves along a circular trajectory around the object The 

source does not need to be translated along the third-dimension as in fan-beam because 

the third-dimension is captured by the spread of the cone. Thus the MicroCAT sys 

tem acquires data like a third-generation scanner, which are designed for volumetric 

(three-dimensional), as opposed to slice-by-slice (two-dimensional), tomography The 

MicroCAT system differs from a true third-generation scanner because it is currently 



only able to complete scans of about 3.85 radians This limitation hinders its ability to 

perform volumetric reconstructions, which are usually based on full-circle trajectories 

Fig. 1 1 illustrates the actual scanning geometry of the MicroCAT system. The sub 

set of rays from the cone-beam incident on the square detector array can be thought of 

as a fan of fan-beams. Each fan defines a plane at a particular inclination or declina 

tion from the midplane The midplane of the system is the plane perpendicular to the 

axis of rotation that contains a ray from the source to a point on the axis of rotation 

(the center of rotation). The specimen to be scanned sits on a bed within the cylinder 

described by the detector's rotation 

In the current reconstruction technique, distortion occurs in the backprojection step. 

Fig. 1 2 shows a top view of the two scanner geometries. The upper configuration 

represents the assumed geometry of the current reconstruction method and the bottom 

configuration is the actual geometry. From Fig 1.2 we can see that, with the exception 

of the center column, a ray-sum^ collected on a detector array coordinate has resulted 

from attenuation through an entirely different set of points in the object than is assumed. 

Therefore, when this ray-sum is backprojected according to the assumed geometry, it 

is backprojected into the wrong points. The effect is minimized by a narrow cone-

angle, since at narrow angles the difference between the real and assumed geometries 

is minimized. In fact, as the source-to-detector distance goes to infinity, the cone angle 

becomes infinitely small, and the cone-beam geometry degenerates into the parallel 

^Line integral ailong the path of a ray 
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Figure 1.1: Scanning geometry of the MicroCAT system.
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beam geometry. 

The cone angle of the MicroCAT system is 11 358 degrees and thus,in fact, relatively 

narrow. Also, in the midplane, the cone-beam geometry degenerates exactly to the fan-

beam geometry. Slices near the center of its reconstructed volumes are therefore not 

greatly affected by an assumption of a fan-beam geometry The current technique is 

therefore acceptable for many applications But, in reality, only the center slice is 

correct As one moves out from the center, slices show progressively more distortion. 

Because of the distortion that results using the current technique, there is a need 

in the MicroCAT system for a new, volumetric reconstruction algorithm. An algo 

rithm based on a three-dimensional geometry should eliminate much of the structural 

distortion towards the ends of the object. Ideally, such an algorithm should not signif 

icantly increase reconstruction time and should operate within the existing hardware 

constraints of the system. 

There are a number of approaches to cone-beam tomographic reconstruction. The 

most common technique is to perform an inversion of the mapping from the three-

dimensional space of the object to the two-dimensional projection space This amounts 

to inverting the Radon transform of the object's density function. The inverted Radon 

transform reconstruction technique results in a filtered backprojection of the data The 

Radon transform and filtered backprojection are discussed more fully in the next section 

There have been a number algorithms developed using this and other approaches Good 

reviews of these algorithms can be found in [13, 1, 10, 12] 



The choice of a cone-beam algorithm for the MicroCAT system is constrained some 

what by the design of the MicroCAT hardware Data is acquired in a circular tra 

jectory. Of the existing circular-trajectory algorithms for cone-beam reconstruction, 

that of Feldkamp et al [2] has become a standard The so called Feldkamp algorithm 

is based on filtered backprojection, which is computationally more efficient than most 

other cone-beam methods [10] The Feldkamp algorithm is widely used in practice, and 

IS considered to be among the most efficient of the filtered backprojection techniques 

[13] 

Aside from its computational efficiency, another reason for choosing the Feldkamp 

algorithm,is that it is easily extended to a more general family of cone-beam algorithms 

developed by Wang et al. [16]. Wang extends the Feldkamp algorithm from circular 

to arbitrary source trajectories under certain conditions, which can be used to acquire 

a more complete set of views of the object than a circular trajectory will allow. The 

dimensions of the MicroCAT system are such that to image the full length of a mouse 

requires up to three separate reconstructions, which is not an ideal situation because of 

artifacts that result in regions of overlap between the reconstructions Ideally, imaging 

an entire mouse specimen should be done using a helical orbit [1], which completely 

samples the object in a single scan. The Feldkamp algorithm can be easily extended to 

accommodate this type of orbit. 

The Feldkamp algorithm is not exact Artifacts result from the circular orbit (hence 

incomplete data) and from assumptions made in the derivation The relative ease of 



implementation and computational efficiency justify these artifacts for the MicroCAT 

application, especially since the present reconstruction method suffers from far worse 

approximations. 

A final reason for choosing the Feldkamp algorithm for the MicroCAT system,is the 

ease with which it can be parallelized to reduce reconstruction times Reconstruction 

speed is very important to the goal of reducing mouse screening times and cost. It 

will be apparent from the discussion of the implementation of the algorithm, that the 

convolution-backprojection operations of Feldkamp are readily parallelized to speed up 

the application in a linear fashion 

With the above rationale in mind,the logical choice for the MicroCAT system is the 

Feldkamp algorithm This work documents the theory and implementation of this volu 

metric reconstruction technique given the system's current configuration and limitations. 

It also discusses possible improvements to the system and the theoretical basis behind 

those improvements Experimental evidence is given to support theoretical claims, and 

conclusions are drawn about the effectiveness of the implementation 

This section has discussed the origins of the problem addresses in this thesis A 

possible solution to that problem was proposed and evidence was offered as to the 

plausibility of the solution The next section will outline the heuristic development of 

the Feldkamp algorithm and its underlying mathematical foundations 



Chapter 2 

The Feldkamp cone-beam 

reconstruction algorithm 

This section introduces some of the mathematical foundations of cone-beam tomogra 

phy and the Feldkamp reconstruction algorithm. First, the Radon transform, filtered 

backprojection, and the projection theorem are defined. These three concepts are nec 

essary for the development of the two-dimensional parallel-beam reconstruction case. 

Then,starting with the parallel-beam case, the necessary geometrical modifications are 

made to expand the parallel beam algorithm first into a fan-beam geometry, and then 

into fan-beam's three-dimensional analogue This three-dimensional analogue is the 

Feldkamp algorithm. This section also introduces the data completeness condition and 

talks about how the Feldkamp algorithm can be extended to satisfy it 

10 



 

2.1 Mathematical foundations of tomography 

Fundamental to the mathematics of tomography, and necessary for the understanding 

of the development of the Feldkamp algorithm, is the concept of the Radon transform. 

Let / represent the density function of the scanned object as in Fig. 2 1, which shows 

the parallel-beam geometry Projection data is the set of line integrals along the path 

of parallel rays emanating from the x-ray source and passing through / This set of line 

integrals for all projection angles 6 is known as the Radon transform of/. We represent 

the Radon transform operator, or projecUon operator, as TZ If (5 is the delta function. 

then for / in polar coordinates where x = rcos y = rsin4> and r = y/x^ +y^, the 

two-dimensional Radon transform m the parallel-beam geometry is. 

/OO rZTT 
/ r/(r,<j))S{rcos{9-4>)-l)d4>dr (2 1)

-OO Jo 

where g{l,6)represents the value of the line integral along a ray through /at a distance 

I and angle 6. 

The Radon transform allows us to define the next important concept, filtered back-

projection. Since scanning an object amounts to taking the Radon transform of its 

density function, it seems logical that to reconstruct the density function, we need to 

somehow invert the Radon transform Backprojection is an operation that maps afunc 

tion in the Radon transform domain into the spatial domain of / and it is therefore 

a logical place to start in the development of such an inverse. In backprojection, each 

11 
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point (/,6) in the Radon transform is mapped back to a line in the spatial domain. 

This means that a single point in the spatial domain corresponds to multiple points in 

the Radon transform (one for each 9) Values mapping from different ̂ 's in the Radon 

transform to the same point in the spatial domain are summed. 

But the backprojection operator B is not the inverse of the projection operator. In 

fact, it can be shown that backprojecting the Radon transform of /, 

\ 

/(r)= W(r) (2.2) 

is an approximation of / blurred by a point-spread function l/l|i^| [6], where fis of 

arbitrary dimension. To remove this blurring, we can introduce a filtering operation % 

before backprojecting and achieve the final form of the filtered backprojection equation, 

/(f)= (2.3) 

We now introduce the projection theorem. The projection theorem defines a rela 

tionship between the two-dimensional Fourier transform F of function / and the one-

dimensional Fourier transform of its Radon transform g{l,9) with respect to I Specif 

ically, if F is the Fourier transform operator and F{g}= q{uj,9), then the projection 

theorem states that the central slice F{u> cos6,usin 9) of F is equivalent to q{u!,9). The 

proof of this theorem can be shown by substituting Eqn 2 1 into the definition of the 

Fourier transform of g [6] 
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Using the projection theorem, we can write the inverse of the Radon transform of/ 

as [6, 4], 

= (2.4) 

Eqn. 24 contains a singular integral Note that 6)= 0)} or, 

1 f°° 
^) — 7:~ exp(«a;/)du; (2 5)27r J—oo 

Substituting Eqn. 25 into Eqn. 2.4 and performing principal-value integration on the 

inner integral removes the singular integral and the partial, reducing to the form (see 

Appendix), 

1 /•27r foo 
f{r,4>)= ~—^ / / \u\q{u),6)exp[iojr cos{0 — <^)]du)d9 (2.6)

OTT-^ Jo J-oo 

By inverting the Fourier transform q we arrive at the final Radon inversion equation 

for the parallel-beam geometry [2], 

/•27r
/(r,^)=/ Pg{l{r,cf>))dd (2.7)

^0 

1Pd{l{r,<p))=Re-^J J uPg{l{r,<j>))exp[iu>{rcos{6-4>)-l)]du>dl (2 8) 

14 



Projection data at a particular angle 9 is represented by Pg The symbol Pg represents 

filtered projection data. The taking of the real part of the integral is denoted by Re. 

2.2 Fan-beam reconstruction formula 

We will now modify Eqns. 2 7-2 8 for projections from a fan-beam geometry This is 

accomplished by a simple change in variables. Changing the scanner configuration from 

parallel-beam to fan-beam changes the geometry of the system. Fig. 2.2 represents 

the fan-beam geometry Rays diverge from a single source located at a distance d 

from the center of rotation. The rotation angle is represented by $. The line segment A 

represents the detector translated into the center of rotation In this and the derivations 

that follow, the detector is assumed to be located in the plane that contains the axis of 

rotation. The necessary scaling to correct for this assumption is described below when 

the focus IS on implementation issues 

The variables I and 9 m Fig 2.2 are as defined for the parallel-beam geometry 

Specifically, to switch geometries to fan-beam, we need to find (F,$)m terms of {1,9) 

so that (y)can be defined From Fig 2.2 it can be shown that. 

and 

^=9-^-a (2.10) 
Li 

15 
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Figure 2.2' Fan beam geometry 
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Substituting Eqn. 2.8 into 27 and a change in variables from {I,9) to (Y,$)such 

that, 

dOdl = ^d^dY (2 11)(d2+y2)| 

gives us, 

p2'jr2ir ^2 poo t-oo^co poo ^ 
47r2-^®yp [d+rcos(<?!)-$)]2/o ^J-<x> ^/d'i2 +y2 

P$(y(r,^))expia;[rcos(0 — $)— IjdYdojd^ (2.12) 

Scaling the frequency a; provides a further convenient change in variables. 

Vd^TY^ 

which leads to the final form, 

/"^TTr27r f]2 poo paroo ^ 1 poo

Jo [d+rcos(<;^> -$)]2 io J-oo y/W+Y^ 
P$(y(r,(j>)) exp dYdu'd^ (2.14)

d +r cos[q) — $) 

2.3 Cone-beam reconstruction formula 

We are now in a position to develop the Feldcamp algorithm for cone-beam reconstruc 

tions by a heuristic extension of Eqn. 2 14 to three-dimensions The development will 

proceed as follows. Starting with points in the midplane, we can determine the incre-

17 



 

 

mental contribution to /from g for a small rotation of 9 since its geometry reduces to 

that offan-beam Moving out from the midplane, we consider the diverging fan-beams 

as defining a set of tilted planes The Feldcamp algorithm is based on an assumption 

that if we treat the tilted planes as the midplanes of new coordinate systems, we can 

calculate their contributions to the reconstruction by using Eqn. 2.14 while correcting 

for the geometric differences. 

Consider an object centered at the origin of a three-dimensional coordinate system 

and along the z-axis. As we have seen in Chapter 1 (Figs 1.1-1.2), the geometry of 

the midplane, z = 0 of such a system reduces to that of the fan-beam case A point 

source located on the midplane and rotated around the z-axis at a fixed distance d will 

describe a set offans in the midplane whose projections through the object are sufficient 

to reconstruct the center slice of that object Therefore,from Eqn. 2 14 the center slice 

IS (dropping the prime from a;'). 

1 dp f°° df{x,y,z 0) {d+{x,y,z=0) x<^y Jq J-oo VdP^pY^ 
f d{{x,y,z=0) y$)P$(y,Z=0)exp — -7—— dYdud^ (2.15)liO 

. Vd4-(a;,y,z= 0)-2;$ 

We have switched to a vector notation in order to aid in the geometric interpretation 

of the derivation and to simplify the notation 

Now consider the tilted fan-beams that intersect points in the object not in the 

midplane as shown in Fig 2.3. Each fan-beam lies in a unique plane spanned by unit 

18 
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Figure 2.3: Cone-beam geometry. Note that in the derivation, Z) = 0.



vectors x'^ and where x'^ points along the ray from the source to the detector at 
I, 

(y =0, and points along the Y direction. The vectors and z'= x'^x 

define the axes of a new coordinate system This new coordinate system has its origin 

translated up the 2 axis and has been tilted with respect to Translating and tilting 

the coordinate system in this way changes the source to origin distance d and changes 

the magnitude of the incremental change in the angle of rotation S^. (The detector 

plane in Fig. 23 is shown translated distance D out of the center of rotation, which is 

its true location. The derivation assumes that D =0 so that the detector plane is in 

the center of rotation ) 

From Fig. 2.3, the source to origin distance of the new coordinate system is. 

d'= Vd^+2-2 (2.16) 

To find the corresponding incremental change 5^'for the new coordinate system note 

that since angular momentum in the system must be conserved, 

5^'d'=6M (2 17) 

It follows from Eqs 2 16 and 2 17 that. 

The contribution to the,reconstructed volume for a tilted coordinate system has now 

20 



been found. From Eqns. 2.15, 2.16, and 2.18, 

foo rc<d'2 d!
6f{p +Zz)= 

47r2 [d'+p- Jq 7_oo 
d'{p y$)(y,Z)exp lUl -Y dVdu (2 19)
d'+p-x% 

Vector p is in the plane defined by the tilted fan Vector p extends from the origin 

of the tilted coordinate system to the reconstruction point Zis the projected height of 

p on the detector array From Fig 2.3 

zd 
.Z = (2.20)

d +f-x^ 

where fis an arbitrary reconstruction point and can be written as. 

r =p+Zz (2.21) 

To change from p to fin Eqn. 2.19 observe that from Fig. 2.3 the component of 

p is equivalent to the component of fscaled by the cosine of the angle between 

and x'^, 

p x^ = —[r x^) (2.22) 

and because the tilt ofthe plane is on the axis, the components of the two vectors 

21 



 

 

 

are equivalent, 

P y^ = r-y^ (2 23) 

From Eqns 2.16-2.17 and 2 22-2.23, 

S^' 
d' 

= <5$ 
d 

(2 24)
Vd'2+y2 VdFTWT^ 

d'2 d'2 d?
X^= (2 25){d'+px%Y [d'+^{rx^)Y ^ (d +ff$) 

d'{p y$) _ d'{f y$) gr _ d(f y$) 
(2 26)- d. - - • ^ -d'+p-x'^ d'+f{r £$) 4 d +f £$d' 

Substituting Eqns. 2 24-2 26 into 219 gives the contribution for any reconstruction 

point f. 

POO POOd^'
5f{r)= 47r2 {d+r Jo/ J-oo Vd^ +Y^+x^^ Jo ^J-

d{f y$)
P$(y,Z)exp tU) -y dYduj (2 27)

d +fx^ 

Summing Eqn.2.27 over all projection angles gives us the final form ofthe Feldkamp 

algorithm. 

1 /•2'r d? 
f{f)= Pi[Y{r^,Z{f)]d^ (2.28)

47r2 do {d+f-x^y 

where. 

Y{r)= r md (2 29)
d +f-x<^ 

22 
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 . T*' d / ^ 

[■•k!
gy(Y) = Re u!exp{tijjY)du> (2.32)

Jo 

S.{Z) = P-33) 

Eqn.2.31 is the convolution filtering step Eqn.2 28 is the backprojection step. Because 

detector spacings AY and AZ are finite, bandlimiting is introduced in Y and Z. In 

tegration over cj is limited to 0 < w < n/AY because the frequency cannot exceed 

tt/AF. Bandlimiting in Z is modeled by convolving P^{Y{r},Z) with the sine function 

(Eqn 2.33). 

It is easy to show that the Feldkamp equations reduce to the parallel-beam case as 

d —>• GO. As in the fan-beam case, the reconstruction in the midplane is exact. Because 

the heuristic assumption on which the algorithm is based is only an approximation, off-

midplane distortions occur. An analysis of these distortions can be found in [2]. Any 

further inaccuracies in the Feldkamp algorithm are due to violation of the completeness 
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condition. 

2.4 Data completeness and the generalized Feldkamp for 

mula 

We will now talk about the completeness condition and explain how the Feldkamp al 

gorithm can be extended to satisfy it. In order to obtain an exact reconstruction, data 

must be measured from a sufficient number of perspectives The completeness condition 

for cone-beam tomography defines criteria for source trajectories that acquire sufficient 

(complete) data. The definition of complete data varies to some extent with the recon 

struction method used since the formula which inverts TZf specifies what information 

needs to be obtained to undo that inversion Here we will use the condition established 

by Tuy [14] since it is easily described and,like Feldkamp, is based on Radon inversion. 

Cone-beam methods developed by others have defined various restrictions and general 

izations of Tuy's condition. A good review of the history of data suflhciency theory can 

be found in [1] 

As defined by Tuy's Radon inversion technique, an orbit (source traj'ectory) for data 

suflSciency must satisfy the following condition: All planes intersecting some region of 

interest(ROI)must contain a point on the orbit in orderfor the ROIto be reconstructed 

exactly. Because the most common ROI in the MicroCAT scanner is the entire mouse, 

the condition becomes: All planes intersecting the object must contain a point on the 

orbit in order to have complete information about the object. This latter statement will 

24 



serve for the purposes of the following discussion, but it is important to note that it 

a more restrictive condition. 

The Feldkamp algorithm is for data collected from a circular source orbit But 

circular orbit clearly does not satisfy the completeness condition In fact, a circular orb t 

only provides complete data for those points on the midplane of the object. No plarie 

parallel to the midplane contains a point on the orbit, for example. If we can exten 

Feldkamp for data collected from an orbit that is sufficient (satisfies the completeness 

condition), then we can improve the accuracy of our reconstructions Wang et al [16] 

have proposed a generalized cone-beam algorithm based on the Feldkamp method that 

allows for arbitrary orbits by letting the parameters that describe the source location 

vary. 

The Wang method follows the same heuristic development as the Feldkamp algo 

rithm with two important differences. The first difference is that the midplane is no 

longer fixed at the center of the reconstruction area z = 0, but is allowed to move up 

and down the z axis The second change is that the source-to-origin distance d also 

becomes variable These two generalizations allow for arbitrary source trajectories 

To implement these generalizations we define a reference coordinate plane at z=0 

to be equivalent to what was formerly the midplane of our system. Then we redefine 

the locus of the x-ray source as, 

(d($),/i($),$) (2.34) 
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(d(#) + f 

where d($)is the source-to-origin distance at angle h(#) is the vertical distance from 

the source to the reference plane, and $ € [0,27r] as before. 

Substituting 2.34 into Eqn. 2.27 and summing over all projection angles we have, 

m=±.r ® r^r47r2 io (d(#)+f x$)2/ox$)2 Jo J-J-00 y/d{^)^+Y^+C 
fF$(y,C)exp 77^ I ^ dYdud^ (2.35)
\d($)-h r -

with. 

C= J*'. (2.36)
d($)-I- r 

^($)=2-d($) (2 37) 

which represents the generalized Feldkamp algorithm. 

We will now turn our focus from the theory behind volumetric reconstruction tech 

niques, to the actual implementation in the MicroCAT system of such a method This 

section has described the Feldkamp cone-beam algorithm and a logical extension of that 

algorithm to facilitate higher quality reconstructions through sufficient orbits. The next 

chapter will describe how the Feldkamp algorithm can be discretized and its implemen 

tation, including angular scanning limitations and the algorithmic attempts to overcome 

them. 
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Chapter 3 

Implementation issues 

This chapter will talk about how a volumetric algorithm was implemented in the Mi-

croCAT system and the issues that surround that implementation The discussion is 

organized as follows. First, a discrete approximation ofthe Feldkamp algorithm is made. 

Then, a computer implementation of the algorithm is described Next, compensation 

schemes are discussed to help overcome the angular scanning limitations of the Micro-

CAT system. This chapter concludes with a brief discussion of a future implementation 

for a helical scanning geometry and parallelization of the algorithm 

3.1 Discretized Feldkamp 

In practice, we can only record a finite number of projections and each projection can 

only be sampled at a finite number of points So we assume that sampling is at equally 

spaced intervals and average around those points The discretized data is represented 
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as Pqi^{Yj,Zk)i where A$= -$i-i, AY = Y:i -Yj-i, and AZ=Zk — Zk-i- From 

Eqn. 2.31, filtered data for projection ̂  becomes, 

P^,{Y„Zk) = ̂ p$.(yy,z,o ^ 
rY,,+AY/2 fZ,^,+AZ/2
/ gy{Y,-Y')dY' / g,{Zk -Z')dZ' (3 1)
Jy,,-AY/2 JZu-AZ/2 

The integrals in Eqn. 3.1 accomplish the averaging around the data points and 

describe the convolution filtering kernels. Note that the discrete convolution filtering 

separates into two,one-dimensional convolutions. Thus,filtering can be done separately 

in the Y and Zdirections. This is beneficial for the implementation because it reduces 

the computational complexity of the filtering process from an order process to order 

2n ^ 

To complete the reconstruction, Eqns 2.28-2 30 are used to backproject the filtered 

data into reconstruction pointsf The integral in Eqn 2.28 is replaced with asummation 

of values over all projection angles 

Though discretized, Eqn 3 1 is not yet in a form that is practical to implement. 

It is computationally expensive due to the integrals it contains (numerical integration 

would be required). Fortunately, we can find closed-form solutions to those integrals as 

follows. Performing the integration in Eqn 232 gives us, 
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tojy.Y +1
P3^(y)= Re -y2 (3 2) 

where tjy^ is the maximum frequency limitation w/AY due to the detector spacing 

Substituting = cos(a?j,(,y)+isin(u;j^(,y) and taking the real part of the result 

gives us, 

_ ^ypYsin(a;yoy)+cos(a;^oy)-1 
gyiY)= y2 (3.3) 

Using the result for gy{Y) we can solve the integral 

rY,,+AY/2
h(Y,)= / gy{Yj-Y')dY' (3.4)

JY,i-AY/2 

by changing variables so that a = Yj - Y' and da/dY' = -1 and integrating from 

a = Yj — Yji — AY/2 to 6= -1^/ +Ay/2 to produce 

^3/oQ'Sin(u;^3Qi) cosjuy^a) , , r I1h{Y,)=-f da+ —xda (3.5) 
Ja -/Ja Ja O!^ 

Substituting 

^ cos(u;3^oQ;) 'co&{u)y^a)' b sm{ujy^a)
da = da (3 6)/ -^yo /

a^ a a•J a a 
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column j

5 Projection

-4-l-j i-- I j ■j-j---

Figure 3.1: A matrix of projection data

into Eqn. 3.5 and integrating produces,

{Yj - Yj, + AF/2)) - 1 , 1 - cos(a,„ (Yj - Yj, - Ay/2))"'■'il- Yj-Yj.+AYft ^ y,-y,.-Ay/2 ^ '

Eqn. 3.7 describes the convolution kernel used to filter data in the Y direction.

Fig. 3.1 shows the arrangement of a matrix of projection data at some angle Rows

Yk of the matrix represent the one-dimensional arrays of data in the Y direction. For

each row in the matrix, convolution filtering is performed as P<inYk U) * h{j) where,

.. _ cosjujyaij + AY/2)) - 1 1 - cosjuy^jj - AY/2))
j + AY/2 j-AY/2

Analysis of the Z-directional (axial) filtering allows us to make a further reduction in



computational complexity If we disregard the averaging in the axial direction, replacing 

the last integral in Eqn.3 1 by gz{Zk — Zki)AZ has the net effect of convolving with the 

delta function. We can therefore drop the convolution in the Zdirection since it has no 

effect. 

To complete the discrete version of the Feldkamp algorithm, we observe that for a 

clockwise rotation, =(cos$,— sin$,0), =(sin $,cos$,0) and z=(0,0,1). The 

final form is now given by. 

d{xsm^,+ycos^,) 
d +X cos — y sin 

dz 
Z{x,y,z)= — (3 11)

d+X cos — y sin 

=E 1 ̂p^.(yy,^k')h(Y,-yy) (3.12)
J',k' yd +Yy +z^., 
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For all i

backp reject 3

Figure 3.2: Illustration of Feldkamp filtered backprojection algorithm

3.2 Computer implementation

Once the analysis of the algorithm has been done, coding it is a relatively straightforward

process. Fig. 3.2 outlines the algorithm. Reconstruction separates into several discrete

processes. Data is loaded projection by projection. Each projection is then weighted by

the factor djy/d'^ + filtered, and then its contribution is backprojected into a
0

reconstruction volume.

The weighting of the data is performed by point-wise multiplication with a pre-

calculated Y X Z matrix. The matrix is data-independent. It is based solely on the

scanning geometry. Elements of the matrix are the cosines of the angles between di

verging rays from the source to detector coordinates {Y ̂  0, Z ̂ 0) and the ray from

the source to (F = 0, Z = 0) (see Fig. 2.3). Points close to the center of the matrix have

values close to one, points at increasing distance from the center are diminished at a rate

proportional to the cone-angle. As d is increased, the cone-angle becomes smaller and

the weighting has less and less impact. As d ->• oo, the weighting disappears altogether

(parallel case).



The convolution filtering of the data in the Y direction is done with a pre-calculated 

filter kernel The filtering kernel, like the weight matrix, is based solely on the scanner 

geometry. The full width of the kernel is not used Using the full width of the kernel 

makes the filtering process much too slow The size of the kernel determines the degree 

of filtering. Thus there is a tradeoff between speed of reconstruction and the amount 

of detail that the filtering resolves Filtering using the full width of the kernel is more 

quickly done m the frequency domain. 

The filter is a derivative filter similar to the Shepp-Logan window [2] Low frequen 

cies in the image (background) are filtered out, leaving the high-frequencies (edges). 

There is a degree of roll-off at the extremes of the filtering window to minimize the 

effects of a sharp cutoff(Gibbs phenomena) 

Filtering was also implemented in the frequency domain using both a ramp filter 

with discrete impulse response. 

-1 
r, J,oddTT^ sm^(jAy)' 

h{j) - 0, j,even j7^0 (3.13) 
1 J =04AK2) 

and a Shepp-Logan window with discrete impulse response. 

7r2Ay2(l-4j2) 

Frequency domain filtering was accomplished by taking the discrete, fast Fourier trans-
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form of rows (y-direction) of projection data and multiplying by the filtering window. 

Frequency domain filtering has the advantage that the full width of the filtering kernel 

is used, but is slower than convolution filtering with small kernels The type of filter 

ing used will depend on the application and the desired reconstruction speed. Further 

analysis of filtering issues is undertaken in the next chapter. 

To hold the reconstruction, a volume of arbitrary dimensions is created into which 

all filtered projections are backprojected Backprojection is done by looping through 

the a;, y, and z coordinates of the volume and "pulling" the appropriate data into its 

voxels This is in contrast to looping through the Y", Z coordinates of the projection 

data and "pushing" data into the volume. The latter technique has the effect of aver 

aging neighboring data point values and so might seem advantageous in reducing noise 

and increasing effective detector counts But, pushing the data requires more com 

putations since each voxel is visited multiple times (versus only once for the pulling 

method). Additionally, a three-dimensional interpolation is required to locate the voxel 

in which to push the data, whereas pulling data only requires a two dimensional inter 

polation. Averaging of neighboring pixels can be done more eflBciently by downsampling 

the projection data prior to processing 

Pulling the data into the reconstruction volume is a process of projecting a recon 

struction point out into the detector plane and then interpolating among the four closest 

integer detector positions (grid-square). Because the derivation of the Feldkamp algo 

rithm assumes that the plane of the detector is translated to the center of rotation, the 
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projections of the reconstruction points onto the detector array must be scaled accord 

ingly. Specifically, if d is the source-to-center of rotation distance, and D is the source 

to center-of-detector distance, then Eqns 3 10 and 3 11 are scaled by the value D/d 

Two interpolation methods are used in this implementation. The first is to simply 

truncate the projected detector plane coordinates to integers and use the single value 

at that location. This method is fast, but sensitive to noise The second method imple 

mented IS bi-linear interpolation on the grid-square which produces a biased average of 

the points towards the grid-square values closest to the interpolating point. Bi-linear 

interpolation slows the backprojection down, but produces a better image because it 

introduces smoothing and noise cancelation by averaging neighboring pixels 

Another strategy for smoothing and noise reduction in lower-resolution reconstruc 

tions IS to first downsample the projection to average neighboring values. Downsampling 

also has other advantages of reducing filtering time and increasing detector counts. Fil 

tering time IS reduced exponentially since its computational complexity is a factor ofthe 

image size Detector counts are effectively increased when neighbor points are summed 

during downsampling, and may be important if detector counts have been sacrificed for 

speed during the scanning process. 

Downsampling was implemented using the heat diffusion equation given by [17] 

m = ̂ " 
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u{Y,Z,0) = P{Y,Z) (3.15) 

where represents the Laplacian operator The function u{Y,Z,t) describes the dif 

fusion ofP after t units of time Eqn 3 15 is solved by blurring P{Y,Z)with Gaussian 

functions of width proportional to t. Solving the equation for increments of t gives a 

multiscale representation of P where the resolution steps down as t increases Down-

sampling of the image is accomplished by convolving P with a Gaussian function 

G{Y,Z,t)= l/Ant exp[-(y2 -h Z^)/4:t], t > 0 (3.16) 

of standard deviation v^,and then resampling into an image of size Y/2^ x Z/2' by 

averaging neighbor points 

3.3 Compensation techniques for short-scans 

As first noted in Chapter 1, the MicroCAT system cannot rotate further than about 34 

radians. Because the scanning trajectory is less than 27r, and the Feldkamp algorithm 

is based on a full circular scan, we must seek a way to compensate for the missing view 

angles. Reconstruction with missing angles creates an imbalance in the weighting of 

the ray-sum data as it is backprojected into the image space, resulting in an image that 

IS too dark in those regions closest to the missing trajectory vertices and too bright 

elsewhere Other artifacts in the reconstruction result from the fact that some ray-sums 

are doubly sampled while others are only sampled once In this section we will discuss 
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several compensation schemes for scans less than '2-k radians (short-scans). 

There are many advantages of a using a short-scan Scanning and reconstruction 

times are both reduced, as well as the exposure tune of the specimen to radiation. A 

shortened scan time can reduce artifacts due to movement of specimen during the scan. 

Eliminating the need for a full circular trajectory cuts down on hardware cost and com 

plexity. Like the initial development of the Feldkamp algorithm itself, compensations 

for short-scan data sets are developed heuristically by extending the parallel and fan-

beam cases. We first determine the minimum number of views required to sample all 

possible ray-sums (minimally complete data set), from which we can use the rotational 

symmetry of the system to compensate for missing ray-sums in several ways 

In the parallel-beam case, a minimally complete data set consists of projections 

0 < 0 < 7r. It is easy to see that, because the beams are parallel, a full 27r scan in a 

parallel geometry records each ray-sum through the object exactly twice. Beams from 

projection 0 line up with those from projection tt, for example, producing the same 

projection image. This is true for any constant a at 0 ct and n +a. 

The situation is more complicated for the fan-beam geometry But fan-beam data 

can be rebinned into parallel beam data So to find the minimally complete data set for 

a fan-beam geometry, we need to find the minimum number of views required to rebin 

to a parallel geometry with a projection set from 0 < 0 < tt 

Rebinning maps a Radon transform g in fan-beam geometry to a Radon transform 

p in the parallel-beam geometry. If $and a are the projection angle and ray-angle of 
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the ray-sum in a fan-beam (Fig. 2.2), and 6 and I are the projection angle and offset of 

the ray-sum from a beam in a parallel projection (Fig 2 1), then 

g{l,e)=p{a,^) (3.17) 

when 

e =^+a (3.18) 

I =dsm a (3 19) 

where d is the source-to-center of rotation distance of the fan-beam 

From these relationships, with the additional requirement imposed by rotational 

symmetry, 

g{l,e)=gi-l,e+7t) (3.20) 

p(q;,$)=p(—o;,TT $-f 2a) (3.21) 

we can show that the minimally complete data set for a fan-beam geometry consists of 

views 0 < ̂  < TT -f 2J, where 25 is the fan-angle 

This result is illustrated in Fig 3 3 Fig 3.3(a) is the Radon transform p in a fan-

beam geometry. Fig 3.3(b-d) are mappings p into the parallel-beam geometry from 
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Figure 3.3. Symmetry of and relationship between the minimally complete data sets of 
the two dimensional Radon transforms of fan-beam acquired data g and parallel-beam 
data p. 
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successively more complete scans. The shaded regions between 0 and tt represent data 

that has been seen. Barred regions represent missing data in that range For a minimally 

complete data set p, we need to find boundaries for$such that all ofthe range 0 < 6 < tt 

is seen at least once. 

Fig 3.3(b) IS the mapping of data from a fan-beam scan of 0 < ̂  < tt. The 

mapping of the boundaries $= 0 and $= tt are shown It is clear that this range 

does not represent a minimally complete set. The rotational symmetry of the system 

IS such that the symmetric boundary projection angles produce redundant data instead 

of complementary data. Fig 3 3(c) shows the mapping of p when the scanning range is 

increased to tt +5 The missing region just below tt is covered by the additional angle, 

and part of the missing region near 0 is covered by symmetry. Fig. 3 3(d) shows that 

only when the range is extended to a full cone-angle past tt is all of the missing data 

seen. 

Theoretically, we should be able to reconstruct an image from a minimally complete 

fan-beam projection set since all possible ray-sums have been recorded. Several meth 

ods based on the rotational symmetry of the scanning geometry were explored for the 

MicroCAT system The first two involve pre-weighting the data to factor out the dou 

bly scanned regions. The third method constructs the missing projections from existing 

projections. 

Parker [8] and Wang et al. [15] propose similar pre-weighting schemes in which they 

attempt to optimize short-scan reconstructions by weighting existing data so that all 
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ray-sums are effectively seen only once. A weight function is applied prior to filtering 

and backprojection that removes redundant data in the doubly scanned regions 

Fig 3.4 shows the set of ray-sums as a function of the projection angle $ and the 

ray angle a over the minimally complete sampling region. By the rotational symmetry 

of the system (Eqn. 3.21), the upper triangle is a sampling of the same set of ray sums 

as the lower triangle Wang's compensation formula uses the simple approach of setting 

weights in the upper triangle to zero, and weights elsewhere to one This weight function 

is highly discontinuous at the triangle boundaries so an additional sampling region A 

past TT -t- 2(5 in which weights are transitioned smoothly to zero is required to reduce 

Gibbs phenomenon artifacts 

Parker's weight function is an earlier, but more sophisticated variation on the Wang 

function. Rays that are seen once (between the two triangles) are given a weight of one. 

Rays seen twice are weighted such that the sum of their weights is one Parker imposes 

constraints on the function so that discontinuities at the borders of the triangles are 

minimized, avoiding the need for the additional scan angle A. Parker's weight function 

is given by 

sin^(SA), 0<#<25-2a 
w{a,$)= -j 25-2a < $< TT -2a (3 22) 

7r-2a<$<7r+25 

MicroCAT cone-beam data is in violation of the completeness condition since it was 

acquired in a circular orbit So in order to extend the weighting functions into three-
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<I> = 25-2a

Figure 3.4: Symmetry of the Radon transform g in the range 0 < $ < 27r + 2S.



dimensions, we must use an approximation. We can never find a minimally complete 

set of ray-sums because, out of the midplane of the system, no two rays line up on 

rotation. We will therefore make an assumption that the rotational symmetry of the 

data is analogous to the fan beam system, 

P^{Y,Z)=P„{-Y,Z) (3 23) 

where 

TT-|-2 tan~^(y/d) (3.24) 

This assumption implies that points in the fan-beam data correspond to columns in the 

cone-beam data, which is not true, but for small cone-angles is a reasonable approxi 

mation. Extension to the Feldkamp algorithm is then an easy matter of applying the 

weight u;(aj,#j) to all elements of the corresponding column (—0!_,, A;) in the three 

dimensional system, where is calculated as tdbn~^{Yj/d) 

The preweighting schemes described above were easily implemented in the Micro-

CAT system as an additional processing step for each projection prior to its filtering 

and backprojection Additional processing time is minimal compared to filtering and 

backprojecting times and only applies to those projections containing rays from the 

triangle regions described m Fig 3.4. 

The problem with the methods just described is that they only focus on the back-

projection step of the reconstruction algorithm. The divergent beam algorithms are 
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not just a backprojection of ray-sums, they are weighted and filtered backprojections of 

ray-sums In practice, however, the Parker and Wang methods do provide significant 

improvement in image quality by creating more accurate backprojections 

To address the artifacts introduced by the short-scan during the weighting process, 

we note that the backprojection weighting in the fan-beam algorithm is a function 

of the projection angle and is independent of the data. Each ray-sum through the 

object is measured twice during a full rotation around the object, but the algorithm 

weights the same ray-sum differently as it is smeared across the image plane from 

the symmetric angle. The contribution of a ray-sum to a reconstruction point varies 

inversely with the reconstruction point's distance from the ray source A reconstruction 

of a minimally-complete data set, where the source sweeps around only half of the 

object, therefore results in an image whose intensities are imbalanced Specifically, an 

underweighting occurs over half of the image and an overweighting over the opposite 

half. The underweighting m the image/is m the regions spanned by the angles (j) ofthe 

missing projections, where /is in polar coordinates (r,4) The overweighting occurs in 

the remaining regions for which projections exist 

The weighting imbalance is illustrated by Fig 3.5 Fig 3 5(a) depicts the relative 

weights for $= 0.07 radians (an arbitrary angle) backprojected onto the image plane 

of the central slice (z=0) of the reconstruction volume The arrow shows the direction 

of the rotation of the source. Ray-sums backprojected into reconstruction points closest 

to the source are given the highest weights As$increases, the bright and dark regions 

44 



Figure 3.5: Weighting imbalance in the reconstructed image from backprojection over
a minimally complete set of angles

sweep around to produce Fig. 3.5(b), the relative weights backprojected over the full 27r

radius. When 0 < $ < 7r, 3.5(c) is obtained, which shows the relative underweighting of

the bottom half of the image and overweighting at the top half. The banding effect in

(b) is the result of quantizing a larger range of values than in (a,c) into a 256 graylevel

image. The black regions in (a-c) are areas outside the spread of the cone beam and

therefore have weight zero.

A simple heuristic correction for the weighting imbalance in the fan-beam case is to

weight each singly-sampled ray-sum twice as it is backprojected into a reconstruction

point. For a given point (»', <^), weight P^{Y{r, (p)) once with weights calculated from

angles and again with weights calculated from the symmetric angles $ -f 7r -1- 2a.

Using this method, redundant data does not need to be corrected for.

Using the approximate cone-beam symmetry from Eqn. 3.23, the symmetric-weighting



 

 

method applied to the Feldkamp algorithm is given as 

I rTr+2d d \ 
= ((rf+xcos#-!/sm«P 

P[Y{x,y,z),Z{x,y,z)]d^ (3 25) 

where 

w{x,y,^)=< (3.26) 
0, otherwise 

The symmetric-weighting technique was implemented for the MicroCAT by calcu 

lating and applying the second weight during the backprojection step, which does not 

cause a significant increase in processing time In practice, this method provides bet 

ter weighting compensation than the Parker and Wang techniques, but it introduces 

more artifacts in the filtering process and so does not necessarily yield a better image 

These artifacts come from an assumption that filtered data is symmetric But it can 

be seen from Fig. 3.4 that filtering in the a(F) direction destroys the symmetry given 

in Eqn. 3.21. Symmetric ray-sums are no longer guaranteed to have the same values 

once filtered because the filtered value at a point depends on the values of its neigh 

bors, which are different in the symmetric projection. This can be seen by noting that 

neighbor ray-sums in a single projection (a,#fc), k, constant, correspond by symmetry 

to ray-sums across multiple projections (-a,tt -f 2a) 

To compensate for a short-scan in all steps of the reconstruction, the missing projec 

tions can be created using the assumed symmetry ofthe system Once created, they can 
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be correctly filtered and a full backprojection over 2tv radians can be performed. This 

method is computationally much slower than the previous compensations described, but 

produces a more accurate image. 

In the MicroCAT system, this technique was implemented by again assuming the 

symmetry given by Eqn 3.23 and then copying columns from existing projections into 

their symmetric columns in the missing projections. Once the missing projections are 

created, the Feldkamp algorithm can be run without modification on the full data set. 

Creating the missing projections is a slow process because of the overhead required to 

repeatedly index into disparate areas of the large volume of data A more complete 

analysis of the effectiveness of all the compensation techniques just described, and a 

discussion of the trade-off between their reconstruction speed and quality is provided in 

the next chapter. 

3.4 Further enhancements 

As discussed m Chapter 2, the Feldkamp algorithm is extensible to geometries that 

satisfy the completeness condition For a rod-shaped specimen like a mouse, a helical 

trajectory is ideal [1] and relatively easy to implement in a third-generation scanner. 

It IS easy to see that all planes intersecting the specimen will intersect a vertex on a 

helical orbit. Thus Tuy's completeness condition is satisfied. A helical orbit has a fixed 

source-to-origin distance, d(^)=do The z translation is defined as 

47 



ft(4)=̂  (3.27) 

where hp is the pitch ofthe helix turn Substituting into Eqns 235-2 37 and accounting 

for bandlimiting as in Eqn.2.32-2.33 gives the modified Feldkamp cone-beam algorithm 

for a helical orbit 

For the MicroCAT system, a hardware implementation of a helical geometry would 

require a simultaneous rotation of the source around the object and translation of the 

object in the z direction. In the software, the filtering and weighting steps of the 

reconstruction algorithm are unaifected because the source-to-origin distance d($) is 

constant. Only a simple modification in the backprojection is needed to compensate for 

the translation of the origin up and down the 2 axis 

A final footnote to the implementation process is that because filtering, weighting, 

and backprojectmg proceed independently from projection to projection without regard 

to projection order, the algorithm is easily parallelized. From Eqn. 3.9, 

f=^ [F,^]+ ..+WnP^„[F,Z]) (3.28) 

with 

cP 
(3.29)w,= 

(d-f- a: cos$s — ysin 

and n the number of projections 
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Theoretically, a linear increase in speed could be achieved as the number of pro 

cessors used approaches n. Parallelizing the Feldkamp algorithm is a simple matter 

of independently processing each projection into a sub-volume and then summing the 

sub-volumes into a final image, as in Eqn. 3.28. 

While the Feldkamp algorithm was not parallelized for the MicroCAT system, Lau 

rent et al. [7] describe several parallel implementations of the Feldkamp algorithm that 

are not specific to any particular architecture. They report Feldkamp as the most efii-

cient parallel implementation over several other reconstruction techniques tested, and 

propose the use of a workstation network for practicing tomographic sites as giving the 

best price-to-performance tradeoff. 

In this chapter, the implementation of the Feldkamp algorithm in the MicroCAT 

system was explained. It was shown that the implementation requires choices as to 

the best filtering methods, the best data sampling methods, and the best way in which 

to compensate for scanning trajectory limitations of the MicroCAT system The next 

chapter will compare the effectiveness ofthe various methods using reconstructed images 

from MicroCAT data, and will compare Feldkamp reconstructed images with images 

obtained using the current method. 
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Chapter 4 

Experimental results 

This chapter presents an analysis of the Feldkamp algorithm implementation It begins 

with a comparison of the compensation weighting schemes for short-scan data sets The 

effectiveness of convolution filtering using different sized filter kernels is then demon 

strated and compared with the ramp and Shepp-Logan filters applied in the frequency 

domain Next, the effects of downsamplmg the projection data and of the bi-linear in 

terpolation method are shown Using the best combination of parameters, a Feldkamp 

reconstruction is compared at increasing axial distances to a reconstruction done with 

the current method A discussion of reconstruction times concludes this chapter. 

There were two different data sets used for the reconstructions. The first data set 

IS a low resolution (195 projections) scan of a phantom object. The phantom object 

is a Lucite cylinder with embedded aluminum pins running along the its long axis of 

the cylinder, one large pin at in the center and several smaller pins spaced at intervals 
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along an arc in the top half of the cylinder The cylinder also has two large holes 

drilled through its length. The x-ray attenuation coefficients of Lucite and aluminum 

are similar to those of soft tissue and bone, respectively The second data set is a 

high resolution (391 projections) scan of the mid-section of a mouse Both scans were 

made over an angular range of 0 to tt -t- one full cone-angle of 0 198 radians, the range 

previously defined as sampling a minimally complete data set The source-to-detector 

distance D was approximately 248 cm and the source-to-center-of-rotation distance d 

was approximately 181 cm 

In many ofthe images that follow there are distinctive, horizontal streaking artifacts 

across the middle of the reconstruction circle that resemble scratches. These artifacts 

are a direct result of the edge of the specimen bed passing in and out of the field of 

view as the source was rotated If part of an object is not consistently within the 

field of view, its contributions to the reconstruction volume from one angle are not 

appropriately balanced by those from other angles, which results in the streaking just 

described. Increasing d so that the entire bed remains m view as the source is rotated 

eliminates these artifacts entirely. 

All of the reconstructions shown are from volumes of dimension 256 x 256 x 256 

pixels, one quarter of the full projection resolution. For images in which histogram 

specification was used to spread the graylevels, the same graylevel map was used in 

each image to ensure an accurate comparison. 

Fig 4.1 compares the effectiveness ofthe various short-scan compensation techniques 
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Figure 4.1: A comparison of short-scan compensation techniques, (a) No compensation
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discussed in the previous chapter. All the images in the figure are of the center slice 

(z = 0) of the phantom object. The additional sampling region A required for the 

Wang technique was created the same way as for the full 27r reconstruction (e). Missing 

projections up to the desired angle were constructed from the existing data using the 

symmetry of the system For (c), a A of 0.35 radians was used, which is just under two 

full cone-angles. 

No compensation for the short-scan was used for Fig 4 1(a). Note the dark and 

bright "streaking" artifacts radiating from the aluminum pins, particularly the thick 

streaks in the horizontal directions^. These artifacts are greatly reduced in (b) by the 

Parker pre-weighting function. The Wang (c) and symmetric weighting (d) techniques 

provide similar results and an improvement m image quality over (a), but do not appear 

to be as effective as the Parker technique. The best image is obtained by creating the 

missing projections using the symmetry of the system and then reconstructing over the 

full circle (e). In this last image, the directional streaking is all but eliminated and there 

is better contrast between the drilled holes, the Lucite, and the aluminum which results 

in sharper object boundaries A comparison of(b)and (e)shows that the backprojection 

weighting imbalance (Fig.3.5)in (b)is not readily apparent in the filtered images except 

as a loss of contrast, which may not be important for most applications. 

Reconstruction times for (a-b, d) varied from each other by less than 6 percent 

Image (c) took over 50 percent longer than (a), the shortest reconstruction, due mostly 

'Note that some radial strealang is normal around objects of such relative high density as the 
aluminum pins 
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Figure 4.2: Comparison of mouse reconstruction using (a) Parker weighting and (b)
missing data recreation technique.

to the enormous overhead of generating the data for the A range. If the extra data

was available from the scan and did not need to be generated, the Wang technique

could be expected to slow the process down over the Parker technique only as a linear

function of the size of A, since both perform a preweighting step of similar computational

complexity. The longest reconstruction by far was image (e), which took over five times

as long to generate as (a) again due to the overhead required to fake missing data.

Fig. 4.2 is a comparison of slice 2 = 0 of a short-scan mouse reconstruction using

the Parker pre-weighting function (a) and a full 27r reconstruction (b) using the tech

nique of Fig. 4.1(e). The Shepp-Logan Fourier filtering technique was used for in both

reconstructions. It is apparent that image (b) is less grainy and resolves more internal

organ details. The cost of obtaining image (b), however, is again prohibitive, this time

at almost nine times the reconstruction time of image (a). The increased disparity in

reconstruction times from those for Fig. 4.1 is a result of the higher resolution of the



mouse scan, which requires a larger number of missing projections be created. 

Because ofthe excessive processing time it requires, generating a theoretically correct 

image as in Fig.4 1(e) and Fig 4.2(b)is not practical unless the implementation is made 

much more efficient by parallelization or some other means. The best choice given the 

above results is probably to use the Parker technique, which gives fairly good images in 

a reasonable time frame. 

Filtering techniques are contrasted in Fig 4.3 The images are from the mouse data 

set and are the slice z = —7 of the reconstruction volume, an arbitrary location close 

to the midplane Histogram specification was used to spread the graylevels so that 

internal details are more visible. The Parker short-scan weighting function was applied 

to projections prior to reconstruction. 

No filtering was performed on projections prior to reconstruction in the first image 

(a), which illustrates the l/l|fl| blurring that occurs by backprojecting the Radon trans 

form of an image Only the outline of mouse is apparent in image (a), and no internal 

details can be seen. In (b), convolution filtering with a convolution kernel (Eqn. 38) 

truncated to size k = 101 was performed. The haze covering the image is a result of 

underfiltering and obscures many of the finer details Fig. 4 3(c) shows how a much 

larger kernel k =501 removes most of the haziness to produce a better image 

Filtering in (d-e) was done in the frequency domain and so makes use of the full 

filter width (A; = 1024)^. A ramp filter as described by Eqn. 3 13 was used to create 

^Note that Fig 4 2(a) cind Fig 43(e) are equiveilent The difference in their appeirent contrast is 
due to the histogram specification performed on Fig 4 3(e) 
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image (d) and the Shepp-Logan window (Eqn 3 14) was used for image (e). Image 

(d) is a noisier image than (e), which is to be expected since the Shepp-Logan filter 

is designed to suppress high frequencies associated with noise and is equivalent to the 

ramp filter with a smoothing window applied. The ramp filtered image has a grainier 

appearance and less detail is visible. Both images compare favorably to (c), with (d) 

showing slightly less detail and (e) slightly more 

Reconstruction times were comparable (within 3 percent)for the convolution filtered 

image (b) and the two fast Fourier transform filtered images. By contrast, the larger 

convolution kernel used in (c) increased the reconstruction time by almost 400 percent 

Intermediately sized kernels produce a trade-off between speed and quality, and very 

small kernels k < 100 would save processing time if only the grossest ofdetail is required 

But it is clear that for most MicroCAT applications, Fourier filtering using a Shepp-

Logan window is the best of these options for both quality and speed of reconstruction. 

Fig. 4.4 compares the effects of downsampling and bi-linear interpolation on image 

quality All the images are of slice z = -27 of a reconstruction from -127 < z < 0 

using the mouse data set. The reconstructions were done using Fourier filtering with 

the Shepp-Logan window and projections were pre-weighted using the Parker weight 

function 

The first two images (a-b) were constructed without downsampling the data In (a), 

the truncation method of interpolation was used This image is somewhat grainier in 

appearance than (b), which was created using bi-linear interpolation, supporting the 
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Table 4.1 Reconstruction times from Fig 44 rounded to nearest minute. Backprojec-
tion was over the range —127 < 2 < 0, half of the volume depth. 

Reconstruction Total (min) Backprojection Filtering Other 

(a) t =0 truncation 134 71 51 12 

(b) t =0 bi-linear 196 133 51 12 

(c) i =1 truncation 112 70 13 29 

(d) t = 1 bi-linear 163 121 13 29 

(e) f =2 truncation 101 68 4 29 

(f) t =2 bi-linear 150 117 5 29 

theory that the averaging effects of the bi-linear interpolation act to suppress noise 

and smooth the image. A dramatic increase in image quality is obtained when the 

projection data is downsampled by a factor of two (c-d), by setting t = 1 m Eqn 3 15. 

The improvement gained by using bi-linear interpolation (d) over truncation (c) is less 

noticeable in this downsampled set of images because of the Gaussian blurring and 

detector summing that have already taken place before backprojection 

As the data resolution approaches that of the reconstruction, the reconstructed 

images start to blur. Images (e-f) were obtained by downsamplmg the data by a factor 

of four (t = 2) to produce 256 x 256 pixel projections, the same resolution as the 

reconstruction. This last set of images loses some of the finer details of the internal 

organs that can be seen m (c-d) Again, there is little discernible difference between 

bi-linear interpolation (f) and interpolation by truncation (e) 

Table 4 shows reconstruction times for the volumes in Fig 4 4 Times are rounded 

to the nearest minute A substantial increase in backprojection times when using bi-
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linear interpolation is apparent, almost 90 percent for the case t = 0^. The overhead 

processing penalty for downsampling the image shows up as an increase in the "other" 

category for reconstructions (c-f). Note that this fixed cost buys a non-linear speedup 

in the filtering step as t is increased. We can also see from this table that the best 

quality images do not require the most processing time. 

Fig 4.5 shows the axial distortion differences between the two algorithms using the 

mouse data set. The rebinned parallel reconstruction images are on the left (a,c,e) and 

the Feldkamp images are on the right (b,d,f) The Feldkamp reconstruction was done 

using Shepp-Logan Fourier filtering and Parker short-scan weighting. The center slices 

(a,b) compare favorably in quality, with (a) being slightly grainier in appearance and 

with some additional streaking around the spinal column near the top of the image, 

probably due to the use of the more noise-sensitive ramp filter Moving outward from 

the midplane, the rebinned parallel reconstruction is beginning to develop artifacts 

around the bones of the spine (c) that are not evident in the Feldkamp reconstruction 

(d) Towards the edge of the reconstruction, these artifacts become much worse (e). By 

comparison, the Feldkamp algorithm (f) is showing some smearing of the bones of the 

now-visible ribcage (ring of bright points) and spine, but not nearly to the extent seen 

in (e). 

Fig. 4.6 shows the z coordinates of the reconstruction slices in Fig 4.5 and the 

relative divergence of the fan-beams that were used to construct the slice Note that 

®The Feldkamp code implemented for the MicroCAT system is not necessanly optimized It is 
possible, for example, that the dispanty in backprojection times between bi-hnear and truncation in 
terpolations could be reduced 
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Figure 4.6: Relative distances along detector array of slices shown in Fig. 4.5. 
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this figure is not to scale, the cone-angle shown is much larger than the actual cone-angle 

It is difficult to make a fair comparison of Feldkamp reconstruction times with those 

of the current method. What constitute comparable reconstruction volumes between 

the two algorithms is not clear The rebinned fan-beam method creates a volume as a 

stack ofindividually reconstructed slices and without further study,it is not known what 

resolution in terms of number of these slices is required to emulate a Feldkamp volume 

of a particular z resolution Such a judgement would be largely subjective anyway. 

The only meaningful comparison of times would be to establish criteria as to what 

constitutes a quality reconstruction from researchers who conduct mouse screenings 

with the MicroCAT system,and then determine the minimal times to create appropriate 

reconstructions using both methods. 

Lacking such criteria, we will compare times for images judged to be of compara 

ble quality (disregarding axial distortion diflFerences) such as those in Fig. 4.5 Both 

the rebinned parallel-beam images and the Feldkamp images were obtained using a lin 

ear interpolation during the backprojection, and a Fourier based filtering method. No 

optimizing short-cuts were used in either reconstruction. 

A complete 256 x 256 x 256 reconstruction using the Feldkamp method, with all 

parameters as in Fig 4 5, requires a total processing time of about 200 minutes. This 

averages to about 47 seconds per slice, where a "slice" is the plane of the object at each 

increment ofz perpendicular to the axis of rotation, as depicted in the figures above A 

"slice" from the rebinned parallel-beam reconstruction method is defined as a similarly 
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oriented image plane, but having a width corresponding to a single detector on the 

detector array Thus a full reconstruction for comparison purpose consists of 1024, 256 

X 256 slices, takes around 180 minutes at about 11 seconds per slice. It is not clear 

what percentage of the total slices are needed to create a volume that does not suffer 

in axial-spatial resolution, so it is not possible to say whether a full reconstruction with 

the current method is faster or slower than the Feldkamp method. 

It is possible to compare the times required for the single images as seen in the above 

figures. Regardless oftheir "thickness",the slices depicted show a similar resolution and 

quality. The current method of reconstruction is about four times as fast when analyzed 

on a per-slice basis. Its greatest speed advantage is that because it is a two-dimensional 

reconstruction method,slices can be fully constructed one-at-a-time, whereas the three-

dimensional Feldkamp algorithm requires the full volume be constructed before any slices 

can be extracted. Note that reconstruction with the current method of a slice through 

the object not perpendicular to the z axis also requires a full volume reconstruction. 

The per-slice times of the Feldkamp volumes can be reduced using the techniques 

explored in Fig.4.4. From Table 4.1, we might expect a 46 percent decrease in backpro-

jection time by eliminating bi-linear interpolation and a 74 percent decrease in filtering 

times by downsampling the projection data to half its resolution. Adding in the fixed 

overhead required for downsampling, these optimizations would decrease the per-slice 

reconstruction time to around 28 seconds (and provide better images in the process). 

This chapter has provided evidence that the Feldkamp algorithm is a useful tool for 
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the MicroCAT,providing images of higher quality at an acceptable cost in reconstruction 

time The various techniques of short-scan compensation, downsampling, and bi-linear 

interpolation were compared and the best options among them analyzed. In particular, 

it was shown that by downsampling and pre-weighting the projection data with the 

Parker weight function, higher quality images can be obtained in shorter times than 

by using the data at full resolution. The Fourier filtering technique proved to be a 

more efficient filtering method than convolution filtering And bi-hnear interpolation 

was shown to come at a high cost in backprojection time, while giving only marginal 

improvement in image quality when applied to downsampled data 
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Chapter 5 

Conclusions 

This chapter presents some conclusions about the work completed for this thesis project, 

and suggests future work to address unresolved issues. It is organized as follows The 

main problem addressed and the hypothesized solution are first revisited. Some issues 

that came about in implementing that solution are next discussed, followed by a review 

ofits demonstrated effectiveness. The chapter concludes by suggesting a body offuture 

work to resolve pending questions and to build on the groundwork already in place. 

The MicroCAT tomography system under development for the Mammalian Genet 

ics Research Facility at ORNL suffers from an inadequate method of image reconstruc 

tion. The current method utilizes two-dimensional reconstruction techniques on three-

dimensionally acquired data,treating diverging fan-beams as a set of parallel fan-beams 

whose reconstructed image planes are stacked to form a volume. The result is an image 

volume that is only correct near the central plane (z = 0) of the image, where the 
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approximated geometry matches the true geometry, and becoming highly distored at 

more distal axial locations 

Because ofthe problems with the current reconstruction method, a new method that 

can perform a true three-dimensional volume reconstruction is desired for the MicroCAT 

system. Reconstruction speed is a high priority given its intended purpose of mass 

screenings of mice for phenotypic abnormalities, so, ideally, the volumetric algorithm 

chosen should be able to provide images in times comparable to those currently achieved. 

Another factor in the selection of a new algorithm is the hardware constraint that 

currently limits scans to a circular source trajectory 

The Feldkamp cone-beam tomographic reconstruction algorithm for circular source 

trajectories was chosen as a possible solution to the problem for several reasons It is 

widely recognized to be among the most computationally efficient ofthe filtered backpro-

jection algorithms, which, in turn, are the most efficient of the cone-beam tomography 

algorithms in general Other reasons to choose Feldkamp is that it is easily extended to 

accommodate other scanning geometries and is highly suited for parallelization. 

A disadvantage of the Feldkamp algorithm, is that it is an approximate algorithm, 

based on the assumption that the contribution to the reconstruction volume from di 

vergent fan-beams can be calculated analogously to the contribution in the midplane 

Additionally, it suffers from artifacts due to the circular source trajectory on which it 

is based. Such a trajectory violates the completeness condition for cone-beam tomogra 

phy, which requires that every possible plane through the object intersect at least one 
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point on the scanning trajectory. Violating this condition produces an incomplete set 

of ray-sums, making an exact reconstruction impossible But even with its approximate 

nature, it wasjudged that the Feldkamp algorithm would provide an improvement over 

the current method and produce the best speed/quality tradeoff over other cone-beam 

methods. 

Implementation of the algorithm was hindered by the MicroCAT system's inability 

to scan a full 360 degree set of data. Several methods of compensating for the missing 

scan angles were explored based on the approximate symmetry of the data. None of 

these methods is completely effective because they all rely on an incorrect assumption 

of rotational symmetry and a minimally complete set of ray-sums that cannot be found 

because ofthe circular source trajectory of the system The most effective compensation 

technique was to create the missing projections as symmetric mappings of existing ray-

sums, and then reconstruct over the full circle Unfortunately this method is much to 

slow to be practical It was shown that the Parker method, in which projections are 

preweighted to factor out redundant ray-sums in the minimally complete data set, gave 

only slightly less attractive results without any significant loss in speed. 

A dramatic decrease in the time required to filter the images was achieved by down-

sampling the projection data prior to processing. Downsampling also produced much 

clearer images by averaging out the effects of noise while effectively increasing detector 

counts. Only when the downsampled data approaches the resolution of the projection 

data does the resulting image begin to lose resolution 
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The Feldkamp implementation also explored the issue of the best method of in 

terpolation among detector positions during backprojection. Truncating the floating 

point projected value to an integer detector position proved to be much faster than 

performing bi-linear interpolation. Bi-hnear interpolation produced improved results, 

reducing noise and graininess of the image, but only slightly so in downsampled images 

where Gaussian blurring and detector summing have taken place In fact, downsam-

pling the data and using the truncation interpolation method was judged to give the 

best reconstruction speed /image quality tradeolf. 

Comparing images created from a mouse data set using the Feldkamp implemen 

tation with those using the current rebinned parallel-beam reconstruction method, we 

found that, in the midplane, comparable results were obtained But moving axially off 

ofthe midplane, the current method caused gross distortion of key anatomical features, 

while the Feldkamp images remained fairly accurate 

An analysis of reconstruction times showed that the Feldkamp algorithm is able to 

produce full volume reconstructions with a loss of only about ten percent in speed, 

although the average reconstruction time for a single "slice" of the volume is about four 

times longer. But it is not a straightforward matter to compare results from the two 

algorithms because they are not producing the same type of reconstruction. A volume 

created using stacked parallel-beam reconstructions is not necessarily comparable to a 

volume created using Feldkamp More work would be required to understand the degree 

of accuracy actually needed in practice, and how efficient each method is in achieving 
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that accuracy. 

In summary,a volumetric algorithm was successfully implemented for the MicroCAT 

system and is effective in overcoming the problem of axial distortion Theoretically, even 

better results are obtainable with the algorithm if it the MicroCAT can be reconfigured 

to allow a full 27r radian scan. As it stands, very good images are obtained using a set 

of techniques designed to overcome the lack of data and to sample the existing data to 

full effect. The Feldkamp algorithm is designed to reconstruct full volumes, and when 

used for this purpose does not present an increase in processing time over the current 

method. 

The analysis given of the Feldkamp implementation and its comparison with the 

current method satisfies the question of its probable effectiveness for mouse screening 

studies, but it is neither rigorous nor complete. For example, only slices perpendicular 

to the z axis were compared, whereas the current stacking method may create other 

artifacts which are not seen from true, volumetric reconstructions Note also that the 

best assessment of a reconstruction algorithm is a measurement of how accurately it 

reproduces the actual attenuation coefficients of the materials scanned, while the results 

given here are only subjective impressions of visual quality and do not necessarily have 

anything to do with reconstruction accuracy. Whether or not a more rigorous study of 

the implementation is warranted depends on the applications for which it is ultimately 
■5 

used. 

Future work is warranted in order to optimize the algorithm for speed We have 
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already seen that reconstruction quality is more sensitive to some steps in the Feldkamp 

algorithm than others. For example, the mis-weighting of the backprojected data when 

reconstructing from a short-scanned data set turned out not to be a significant problem 

as long as the effects ofdoubly sampled data were factored out The method ofinterpo 

lation became less critical when the projection data was smoothed and downsampled, 

saving considerable time during backprojection. There may be other processes in the 

algorithm that can be optimized for speed A thorough analysis ofthe various tradeoffs 

between reconstruction times and image quality requires the input of those researchers 

who use the MicroCAT system With their criteria as to what constitutes a "quality" 

image,the algorithm could be optimized to provide the fastest screening times yielding 

acceptable image quality 

Parallelization is the ultimate optimization for the Feldkamp algorithm and should 

prove to be afeasible solution in the context ofthe MicroCAT system The assembly-line 

nature of the reconstruction process is ideal for implementation in a parallel environ 

ment, such as a local network of inexpensive workstations. A parallelized Feldkamp 

algorithm has already been shown by other researchers to be a very efficient means of 

near real-time tomographic reconstruction 

If the MicroCAT can be reconfigured to accommodate a full circular scan, a simul 

taneous rotation of the source around the object while translating the object in the z 

direction on its bed would produce a helical scan. A helical scan satisfies the complete 

ness condition for cone-beam tomography and so provides the complete set of ray-sums 
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necessary for exact reconstruction. The Feldkamp algorithm is easily extended to a 

general form that will process helical data and provisions have already been made for 

that extension. Though an exact reconstruction would still not be possible, using helical 

data should eliminate any artifacts associated with the violation of the completeness 

condition. 

More work is needed on the Feldkamp implementation to desensitize it to inevitable 

miscalibrations in the scanner hardware Many scans suffer from a misalignment of 

the detector array with the center of the x-ray beam, which alters the geometry of the 

system by offsetting the true center of the detector array from the assumed center. The 

data sets used for experimental work on this project have a miscalibration of only a few 

hundredths of a percent, which does not appear to cause any significant disturbance in 

the reconstruction at the resolutions used. Other data sets have shown misalignments of 

over a tenth of a percent, which introduces considerable distortion of the reconstructed 

image. If the degree of misalignment can be determined, it is easy to correct for the 

offset problem in the backprojection by redefining the assumed center of the detector 

array to align with the actual center. Currently, however, the effects of misalignment 

on the weighting and rotational symmetry of projection data have not been examined 

Filtering is independent ofthe cone-beam orientation, but short-scan compensations and 

the Feldkamp cosine and backprojection weights are based on an assumed symmetry of 

the cone-beam across the two axes of the projection, which is invalid when the beam is 

not perfectly aligned More study is required to analyze the sensitivity of the algorithm 
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to changes in beam symmetry, and how to algorithmically correct for it. 

This thesis project has taken the first steps in realizing the MicroCAT'sfull potential 

as a true, third-generation scanner. The use of the Feldkamp algorithm for volumetric 

reconstructions has proven to be an efficient way to obtained higher quality images than 

the current method in use Its main strength is in preserving structural integrity of the 

image towards the distal ends of the reconstruction volume The implementation of 

the Feldkamp algorithm has a number of parameters that can be adjusted to improve 

the visual quality of the results and to shorten reconstruction times. Work is still 

needed to deal with the effects of scanner miscalibrations Further comparisons of 

reconstruction quality between the current method and the Feldkamp method may also 

be warranted, but require the establishment of working criteria to define "quality" in a 

reconstruction. Additional work to parallelize the Feldkamp implementation and convert 

to a helical scanning trajectory is recommended in order to optimize reconstruction times 

and minimize data-related artifacts 
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Appendix A 

In this appendix, we show the process of deriving Eqn. 26 from the inverse of the 

Radon transform The Fourier transform is introduced into Eqn 24, and the inner 

integral is evaluated Principal value integration is used for the evaluation because of 

the singularity at 1 =0. 

From Eqn. 2.5, 

^y 
roo 

exp(zw/)g(a;,9)du (A.l) 

Substituting Eqn A.l into Eqn. 25 and changing the order of integration gives 

«=8^r£ 
Isolating the inner integral, we perform the principal value integration as 
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exp(tu;l)°° ,dl= hm ["+ dl (A 3)LOO r cos(0-<p)-I A-^co,a-40+ I V ~A V CL rcos(0 — (j)) — I 

Changing variables so that c=r cos(^ — <j>) — I and k =c — I gives us, 

( exp{tu){c— k))limA-+0O,a-»'0+ \Jc+a Jc—A J k 
, . f rc+A\ exp(—tLjk)exp{tu;c) hm / + / — dk (A 4)

A—^00,a—>■0"'" yjc>_j4 Jc-\-a J ^ 

Suppose that a; > 0. Consider exp{^zu/z) ^here Fa,^ is given by, 

a .A 
JT 

-r' •'"a 
r-

such that. 

= +j ^ exp{^luk) j exp(-za;Aexp(z7)) ^7 
(A.5) 

Note that 

PIT pTT
lim / exp(—ta;a(cos7 +zsin7))i(i7= / tdj=—in (-^-6)

a-J-0+ J27r J2ir 
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and because sin7 > 0 on (7r,27r), 

rTT pi: 
lim / exp(—«wA(cos7+zsin7))zd7 < hm / exp(wA(sin7))c!7= 0 (A.ll)
A-J-oo JQ A-J-oo Jq 

From Eqns A.9-A.11 we conclude that 

exp(— 
dk =iTT, a; < 0 (A 12)rJ —c 

Substituting the results from Eqns. A 8 and A 12 into Eqns. A.4 and A.3 gives us 

the solution for the principle value integration, 

—Z7rexp(iu;rcos(0 — ̂ )), a; > 0exp(«ti;/) 
dl = (A 13)/.- — Ioo rcos{6 — (!>) 

Z7rexp(za;r cos(0 — (f)), a; < 0 

By substitution of this result into Eqn A.2 we arrive at Eqn 26 

1 r°°
f{r,4>)= —r TV \u\q{u,6)exp(twr cos(^ -4>)) dudO 

oTt^ Jo J-oo 
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