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ABSTRACT

The purpose of this thesis I1s to determine the range of radius to thickness
ratios R/¢ for which a beam on an elastic foundation solution is feasible for end
loadings on cylindrical shells Using the finite element method a Saint-Venant's
length, as defined in Chapter 1, Is determined for several cylindrical geometries
by loading one end of each cylinder with a shear load In six different ways The
standard deviation of the stress values Is then computed to determine the
distance from the load the stresses from each loading converge along the length
of the cylinder on the inner and outer radi A Saint-Venant's length s also
determined in the same manner for the same cylindrical geometries for an end
moment loading The Saint-Venant's length for a cylinder geometry is then taken
to be the more conservative of the two lengths Taking this Saint-Venant’s length
into account the maximum circumferential or longitudinal stress Is found and a
percent error I1s computed between the results of a finite element solution and the
analytical model based on a beam on an elastic foundation solution  This
procedure Is repeated for each cylinder geometry for both the end shear and end
moment loads

When the Samnt-Venant's length Is plotted against the ratio R/¢ for each
cylinder geometry it 1s shown that the influence of the Saint-Venant's length
decreases as cylinder walls get thinner This allows the maximum stress to be
taken closer to the end of the cylinder where the load is applied. The percent
error between the finite element solution and the beam on an elastic foundation
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solution 1s plotted against the ratio R/t for each cylindrical geometry allowing a
range of ratios R/t to be determined for a given percent error. In this way, it can
be determined whether or not a beam on an elastic foundation solution is

satisfactory for a given geometry and required percent error.
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NOMENCLATURE

Denotes distance between two shear loads, In
R-R,,In

Modulus of Elasticity, psi

Moment of Inertia, n4/in

Beam modulus, Ib/ in3

Length, in

Root of exponential equation

Moment, |b-in/in

Moment load, Ib-in/in
Compressive hoop force, Ib/in

Number of data points

Shear load, Ib/In

Radial force on a longitudinal beam element, Ib/in-in

Intensity, psi

Distributed loading on a beam, Ib/in
Shear, Ib/in

Radius, in

Inside radius of cylinder, in

Mean radius of cylinder, in

Outside radius of cylinder, in
vil




Thickness, In

Distance from end of beam to point of interest, In
Arithmetic mean

[-x,in

Data point when finding x

Denotes circumferential axis on longitudinal beam element of
cylinder

Deflection, in
Denotes radial axis on longitudinal beam element of cylinder
Denotes longitudinal axis on longitudinal beam element of cylinder

Sector angle, degrees

Characteristic, in-1
Poisson’s ratio
Slope

Longitudinal stress, psi

Circumferential stress, psi




CHAPTER 1

INTRODUCTION

Purpose.

This thesis deals with the problem of edge loading of cylindrical shells
For certain radius to thickness ratios R/t, the shell can be modeled as a beam
on an elastic foundation. The problem can then be solved analytically without
significant loss of accuracy

The purpose of this thesis Is to determine the range of ratios R/r for
which a beam on an elastic foundation solution 1s acceptable. This is done by
comparing beam on elastic foundation solutions for selected cylindrical shells to
their corresponding solutions obtained by the finite element method, using the
finite element method as a near exact solution. In this application the ratio R/¢

Is defined as the mean radius R divided by the wall thickness ¢ of the cylinder

Scope.

In Dohrmann’s and lIves' paper, ‘Experimental Investigation of Edge
Loading of Thick Cylindrical Shells’ [1], an epoxy-plastic cylinder, 10.0" ID, 15 0"
OD and 15 0” long, was mechanically loaded with two different end loadings and
strain measurements were taken on each cylinder. The first load case consisted
of an inward shear load on the top end of the cylinder while the second was an
inward moment load on the top end of the cylinder. Both load configurations are

shown in Figure 1. The cylinder was then cut to 7.5" long and the procedure

1
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St =3
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a Shear load b Moment load

Figure 1. Load configurations for thick and thin cylindrical shells.

was repeated using the same loads The longitudinal and circumferential
stresses were examined for these cylinder geometries

A finite element analysis and a beam on an elastic foundation analysis
were performed by the author of the present study using the same cylinder
geometries and types of loading as were used in Dohrmann’s and Ives’
experiment The epoxy-plastic cylinder had a measured Modulus of Elasticity
(E) of 500,000 psi and a Poisson’s Ratio () of 0375 [1] The experimental
data [1] is shown in Chapter 4 compared with the corresponding finite element
and beam on elastic foundation data Data was also obtained and compared for
several other cylinder geometries using both analysis techniques In the present
study. The percent error between the finite element results and the beam on an

elastic foundation results for the longitudinal and circumferential stresses as




related to the ratio R/¢ are presented in Chapter 4 and discussed in Chapter 5.
This data will be used to determine an R/¢ ratio interval for which the analytical
beam on an elastic foundation solution can be readily used satisfactorily

The finite element data was also used to determine a Saint-Venant's
length for each cylinder geometry The principle of Saint-Venant is defined as

follows.

“. if the forces acting on a small portion of the surface of an elastic body
are replaced by another statically equivalent system of forces acting on the same
portion of the surface, this redistribution of loading produces substantial changes
in the stresses locally but has a negligible effect on the stresses at distances
which are large in comparison with the linear dlmens‘lons of the surface on which

the forces are changed " [2]

The Saint-Venant’s length I1s defined as the distance away from the load
where the method of loading no longer substantially effects the stresses. This
Saint-Venant's length is taken into account in the comparison of the two analysis
techniques The influence of the Saint-Venant's length Iin relation to the ratio

R/t 1s also presented and discussed in Chapters 4 and



CHAPTER 2

BEAM ON AN ELASTIC FOUNDATION

Description of method.

The first analysis technique applied to the loaded cylinders was that of a
beam on an elastic foundation. A straight beam i1s supported continuously along
its length by the ‘foundation’ which is considered to be elastic. For a beam on an
elastic foundation analysis the ‘foundation’ i1s provided by a load-bearing medium
distributed continuously along the length of the beam When the beam Is loaded
and deflects, continuously distributed reaction forces appear in the foundation.

The fundamental assumption of a beam on an elastic foundation analysis

is that at any point, the intensity, p, of these reaction forces is proportional to the

deflection of the beam, y, at that point Therefore,

p=h (1)

where k 1s the proportionality factor The reaction forces act vertically in the
foundation and oppose the deflection of the beam. Downward deflection is
assumed to be positive causing compression in the foundation while upward
deflection 1s negative causing tension [3].

There are two basic types of elastic foundations For the first type, the
pressure In the foundation is proportional at every point to the deflection in the

beam at that point and 1s independent of other pressures or deflections
4



elsewhere In the foundation This independence between pressures and
deflections suggests a lack of continuity in the foundation, “just as If it were made
up of rows of closely spaced but independent elastic springs” [4] The second
type of elastic foundation is an elastic solild which represents the case of
complete continuity in the foundation. Most common problems can be reduced
to elastic supporting conditions qf the first type Therefore, the problem dealt
with In this thesis assumes a supporting medium of the discontinuous type [4]
The beam on an elastic foundation method may also be adapted for use
with cylindrical bodies [5] For cylindrical bodies under axially symmetrical
loading the elastic foundation 1s supplied by the support of the adjacent sections
of a continuous elastic structure Because of the symmetry of the loading, every
cross section perpendicular to the axis of the cylinder will remain circular while

the radius R will experience a change. This change, AR =y, will be different for

each cross section along the length of the cylinder and may be regarded as a
deflection for a longitudinal element which has a width of unity as seen in Figure
2 The loading will produce bending stresses in the longitudinal element The

stran y/R which accompanies the radial displacement y will cause

compressive hoop forces N such that

N==—y (2)

per untt length of the longitudinal element, where E 1s the Modulus of Elasticity



Figure 2. Longitudinal beam element A thin-walled cylindrical
tube subjected to radial forces uniformly distributed along an
arbitrary circle on the tube [5]

and ¢ is the wall thickness. The resultant of these forces P will be in the

outward radial direction and have the value

1 Et
N—=—y 3)

P
R R’

This force P opposes the deflection and will also be proportional to the deflection
with Et/R? as the proportionality factor Therefore, we may conclude that a
longitudinal element of a cylindncal body loaded symmetrically with respect to its
axis can be regarded as a beam on an elastic foundation

A detalled account of this method can be found in Reference 3 and its
thick cylinder adaptation can be found in Reference 6 MacGregor and Coffin [6]

develop approximations of the beam on an elastic foundation equations to be
6




used with thick cylinders. However, for our purposes, Hetenyr's [7] equations for
beams are used with the beam modulus k appropriate for cylinders as discussed

in the next section (ref equations 111-114)

Equations.

Equations may be derived for a number of different load cases Hetenyi
[14] suggests the method of superposition when dernving the beam on an elastic
foundation equations because the determination of the integration constants s
greatly simplified in comparison to other met.hods The general procedure for this
method begins by finding the equation for the deflection line of an Infinitely long
beam with a given loading. The formulas for the infinitely long beam are obtained
in symmetrical and antisymmetrical parts and then superposed to obtain
solutions for a beam of any length and with any loading and end conditions Any
frictional forces along the surface of the beam that 1s in contact with the
foundation will be ignored since they are provided by second order equations
The load cases examined In this thesis are a shear loading on the end of a
cylinder and a moment loading on the end of a cylinder, shown respectively in
Figures 3 and 4 as applied to a beam on an elastic foundation. For these cases,
the cyhinder is assumed to have free ends

Take an infinitely small element enclosed between two vertical cross
sections from a part of a beam on an elastic foundation which is loaded by a
distributed loading ¢ [15] These cross sections are a distance dx apart and it is

assumed that the slope is negligible so that the cross sections,

7
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Figure 3. Shear loading on the end of a beam [7].
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Figure 4. Moment loading on the end of a beam [7]




which are normal to the elastic line, can be replaced by vertical sections The
forces acting on this element and their positive directions are shown in Figure 5

The shearing force Q, and the bending moment M , on the left side of the

element are considered to be positive Summing the forces on the element in the

vertical direction gives

L o b-q. @)

Since

M M +dM

pae=ipae [T

' o+do

Figure 5. Forces exerted on a differential element from a
beam on an elastic foundation [15]




Q=— (5)
equation 4 can be rewritten as
dQ d*M
L b ©)

The equation of fundamental beam theory [12] Is

d2y

=M 7)

EI

Differentiating this equation twice and substituting into equation 6 gives

d'y

EI— =-ky+q (8)

Equation 8 is the differential equation for the deflection curve of a beam
supported on an elastic foundation. For portions of the beam where no

distributed load 1s acting, ¢ =0, and the equation becomes

El—-=-ky 9)

10



It is necessary to find the general solution of equation 9 For cases involving a

distributed load an integral corresponding to ¢ 1s added to this general solution

For the purposes of this thesis, a distributed loading 1s not explored.

Assuming a solution as

and substituting into equation 9 gives

Using De Moivre’s Theorem [13], the roots of equation 11 are found to be

where

m, = —m, =/l(1+i)

m, =—m, =’1('"1+’)

P
Il

N

Al’*
=

(10)

(11)

(12)

(13)

(14)

11



The general solution of the fundamental beam equation takes the form

y =A™ + A,e™ + 4,e™ + 4,e" (15)

where 4,, 4,, 4,,and 4, are unknown constants Using

e =cosAx+i1smAx, (16)
e™™ =cosAx —1sm Ax, (17)
ez =ex+ly =exely = ex(cosy'l'lSiny)l (18)

and introducing new constants C,, C,, C,, and C, where

(4,+4,)=C,, (19)
i(4,-4,)=C,, (20)
(4, + 4,)=C,, (21)
14, — 4,)=C,, (22)

12



the general solution for the equation for the deflection curve for a beam on an

elastic foundation can be written as

y = e*(C, cos x+ C, sin Ax)+ e (C, cos Ax + C, sin Ax) [15] (23)

For an infinite beam subjected to a single concentrated force at pont O
[16] as shown In Figure 6, symmetry allows consideration of x>0 while
everything to the left of the load Is ignored Since the beam is infinite it I1s

assumed that x —>«, y—0. For this to be true, C; and C, must be zero In

equation 23 Therefore, the equation for the deflection curve for the part of the

beam for which x >0 will be

/_/_'/////////////////////////////////77>

° x

Figure 6. An infinite beam subjected to a single concentrated force
at point O [16]
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y=e*(C, cos Ax + C, sin Ax) (24)

Because of symmetry, the slope at x =0 on the beam will be zero, or

L
dx o - (25)
and, therefore,
C,=C,=C. (26)

The equation for the deflection curve now becomes

y = Ce™*(cos Ax + s Ax). (27)

The constant C 1s found by using the assumption that the sum of the reaction

forces will be in equilibrium with the load P, or, as previously stated

P=ky. (28)

Therefore, to find the load over the length of the beam the integration, making

use of symmetry, is

14



2?kydx= P. (29)

Substituting equation 27 into equation 29,

2kC _[ ¢ (cos Ax +sin Ax)dx = P (30)
0
from which
c=P4 (31)
2k

Substituting equation 31 into equation 27, the equation for the deflection curve

for x >0 becomes
= ]2’_2“(;-” (cos Ax + sin Ax) [16] (32)

The slope 6, moment M, and shear Q, can be found by taking successive

derivatives of the equation for the deflection y These formulas for x >0 are

Pk e sin Ax (33)

15




M= % ¢~ (cos Ax — sin Ax) (34)

Q=——§e“" cosx [16] (35)

To simplify the equations, the symbols

A, =e ™ (cos Ax +sin Ax) (36)
B, =esinix (37)

C,, = e *(cos Ax —sin Ax) (38)
D,, =e*(cos Ax) (39)

are substituted for y, 8, M, and Q so that for a single concentrated force P

y=—74xu (40)

6=-—"-B, (41)

16



P
M=—C 42
45 " (“2)

Q=—§Dkﬁﬂ (43)

Now it Is necessary to examine the case for a single concentrated
moment, M,, applied at point O [16] as shown in Figure 7a Figure 7b shows

the moment force as it is represented by two point forces on each side of point

O The assumption is made that while a approaches zero (a —0), Pxa will

M,

a) /'/'/7//////////\//////////////////////7>

|’ "
y
*P P
- g
b) [T/ 77777777777 /////////////////////7>

€ :

y

Figure 7. An infinite beam with a single concentrated
moment loading at point O [16]
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approach the value of M, (Pxa—> M,) Using equation 40, the formula for the

deflection curve for a single concentrated force P, the equation for the deflection

line for the loading situation shown in Figure 7b for x >0 can be wnitten as

PA

Y= _2?(— Al(x+a) + Aﬂx ) =

(44)

_ Paﬂ, Aﬂ.(x+a) - Aﬂ.x
2k a

Using the definition of a denvative [19] and the assumption that [Px a](,_,0 =M, it

can be shown that

Mo o 116). (45)

Yy=-
This is the equation for the deflection line due to a clockwise moment M, at point

O as indicated Iin Figure 7a As before with the single concentrated force, taking

consecutive derivatives of the deflection y gives

C, (46)

D, (47)

18



0=-22 4, [16] (48)

To obtain equations for a finite beam, the required loading Is applied to an
infinite beam and then resolved Into a symmetrical and an antisymmetrical part
Forces which create the required conditions at the endpoints of the finite beam,
called end-conditioning forces, are found for both parts The purpose of these
end-conditioning forces 1s to make the moments and shears vanish at the
endpoints of the finite beam The symmetrical and antisymmetrical parts are
then added together at the endpoints to obtain the solution [17]

Consider the infinite beam shown in Figure 8a M ,, Q,, M, and Q, are
the moments and shears at points 4 and B due to the actual loading on the
beam In Figure 8b, M’ and Q) are the moment and shear at 4 due to the
symmetrical loading and M/, and —(Q’, are the values at B. In Figure 8c, M}
and Q' represent the moment and shear at 4 due to the antisymmetrical loading
and - M’ and Q) are the values at B Since adding the symmetrical and the
antisymmetrical parts together gives the end forces for the original given loading

it follows that

M,=M,+M, (49)

M, = M- M, (50)

19



M, - M,
) O

a) r777777 //////////////////////7'7-/—/77
4| - »| B

P P
M)|le ¢ A A - M,
Q) -0,

by 7T I I T T T I T 77

Ale » B
M’ | c—>—-M:;
n
) 0y
c) /'/‘/77777T//////////////////////7'7'/‘/77
A »| B

o

Figure 8. An infinite beam shown divided into symmetric
and antisymmetric parts [17]

0,=0,+0; (51)
Op =—0, + 0, (52)

Solving equations 49-52 for the separate symmetrical and antisymmetrical parts

of the end forces

M =2 (M, +M,) (53)

20



1

My =~(M,~M,) (54)
0, =2(0,-0,) (55)
0% =7(0,+05) (56)

Next, the moment and shear forces at end points 4 and B will be
removed by applying the end-conditioning forces P, and M; at these points In
the symmetrical case and P; and M, for the antisymmetrical case as shown in

Figure 9b-c Adding the symmetrical and antisymmetrical cases together gives
the end-conditioning forces for the infinite beam with the original loading shown

in Figure 9a as

P,,=P+PF (57)
Pp=F -1y (68)
My, =M+ Mg (59)

My, =M} -M] (60)

21
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a) 777 7//L////////////////////]I7 177
MI% ‘ l
////f/7 /777
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T AN
c
My

C) rrr7 7//I//7///////////////\/// 77777777

Figure 9. An infinite beam shown with end-conditioning forces [17].

These forces are required to remove the moments and shears at points 4 and
B. This means that P,,, M,,, P, and M,; must produce —M, and —-Q, at
point 4 and — M, and —-Q, atpoint B It is seen from examination of Figures 8
and 9 that P, and M; must produce —~ M) and —Q) at point 4 and - M and
Q, at point B for the symmetrical beam. On the antisymmetrical beam,
P; and M, must produce — M) and —Q7 at point 4 and M} and —Qj at point
B.

Using the conditions stated above and the moment and shear formulas for

a single concentrated point force, equations 42 and 43, and a single

22



concentrated moment, equations 47 and 48, found earlier, the end-conditioning

forces for the symmetrical and antisymmetrical parts of the beam are found to be

B, =4E,[0,(+ D, )+ M (1-4,)]
My == E[0,(1+C, )+ 22,1~ D, )]
By =4E, 01— D, )+ AM 1+ 4,)]
My =-2 £, [03(1-C, )+ 22051+ D, )]

where E, is

1
E =
T 20+D,J1-D,)-(1-4,)1+Cy)

and E; 1s

1
E, =
T 20+ D, 1-D,)-(1+ 4, N1-C

171.
ﬂ)[ ]

(61)

(62)

(64)

(65)

(66)

These formulas will give the solution for a beam of finite length with free

23




ends subjected to any lateral loading since any value can be assigned to M,

and Q,.

For the end shear load of interest for this thests, the onginal loading will
gve M,=0, Q,=+P, M;=0,and Q, =0 From this and from equations 33-
56, the forces on the symmetrical and antisymmetrical portions of the beam will

be

M, =0 (67)
P
P21 68
Q=" (68)
M" =0 (69)
il
Q=" (70)

The end-conditioning forces for the symmetrical part of the beam are then found

from equations 61-64 to be

P; =4E,|:€‘—(1+Dﬂ)j| (71)

24



,_ 2. |A
M = —IE, [7 (1+C, )} (72)

and for the antisymmetrical part of the beam

&"=4E,,[%(1—Dﬂ)} (73)
o 2B
Mg=-25,20-c,) (74)

Adding the symmetrical and antisymmetrical parts of the beam together as

shown In equations 57-60 gives

F,=2A [E] (1+D,u)+E11 (I_D/u )] (75)
Fop =2H [El (1 + D,u)" E, (1 —-D, )] (76)
MOA =“%[E1 (1+Cu)+E11 (l_c,u)] (77)
Moy ==2E,(1+C,)-E,1-C,)] 78)

25



Next, the deflection and moment must be found for each end-conditioning
force since these are the quantities used to determine the stresses along the
surface of the cylinder The end-conditioning forces In equations 75-78 are
substituted into the deflection and moment formulas for a single concentrated
point force, equations 40 and 42, and a single concentrated moment, equations

45 and 47, found earlier. The deflections for the end-conditioning forces are

AB) =225, (4 D,)+ B, (- D, ), (79)
$Pu)=22[E, (14 D,)- B, (1- D, A, 80)
y@Wm)=—%;UZO+C&)+EHG—Cuﬂ&X (81)
H43p) =S5 [E, 1+ C)- By (1-C, B 2)

Adding the deflections in equations 79-82 together gives the deflection formula
for a finite beam on an elastic foundation with free ends, loaded with a shear load

on one end as

_2PA

y= E, [(1 +D, )Azx - (1 +Cy )Bzx] (83)

26




where P, is the applied shear load.

The moments for the end-conditioning forces are found to be

M) =5+ [E (4 D)+ Ey (- Ca ) 84)
M(Py)= 2B, 1+ D) B, (- C, ) )
MMy, )==2HE, (4.C, )+ By (- C, ), 6)
M(MOB)=-%tE,<1+cﬂ)-E,,<1-cﬂ>1Dk @)

Adding equations 84-87 together, the moment formula is
A
M=7EI[(1+D,U)CM—(1+CAI)DM] (88)

For the moment load of interest in this thesis applied to the end of a
cylinder, M, =-M,, ,=0, M, =0, and Q, =0. From equations 53-56, the

forces on the symmetrical and antisymmetrical portions of the beam will be
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M, = _% (89)

Q,=0 (90)
M
n_ _ "1 1
My=-— (91)
a=0. (92)

The end-conditioning forces for the symmetncal part of the beam can then be

found from equations 61-64 to be

By = "2E1’1[M1 (1 — Ay )] (93)

M
M} =2E, [71 (1-D, )} (94)
and for the antisymmetrical part of the beam
Po” = —2E111[M1 (1 +4y )] (95)

M! =2E,[M,(1+D,)]. (96)
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Adding the symmetrical and antisymmetrical parts of the beam together as

shown In equations 57-60 gives

P, =-2/M,[E,(1-4,)+E,(1+4,)] 97)
Py ==22M,[E, (1~ 4,)~ E, (1+ 4,,)] (98)
M,, =2M,[E,(1-D,)+E,(1+D,)| (99)
Mo, =2M[E,(1- D)~ E, (1+ Dy)]. (100)

Substituting into the deflection and moment formulas for a single concentrated
point force, equations 40 and 42, and a single concentrated moment, equations
45 and 47, found earlier, the deflections for the end-conditioning forces are

shown to be

y(PoA)=_M;:12 [El(l_Au)'*'Ell(l'*'Au)]Azx (101)
J’(Poa)=_%’@[El(l_Au)"Eu(l'*'Aﬂ)]A;.x (102)
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0, = 245 [5,1- D, )+ B, (14 D, B,

2M A

y(MOB) [E (1-Dy)- E11(1+Dﬂ)]B;.x

(103)

(104)

Adding the deflections in equations 101-104 together gives the deflection formula

for a finite beam on an elastic foundation with free ends, loaded with a moment

load on one end as

2M1

y= 2E,(1-D,)B,. ~ E, (1 - 4,)4;]

where M, is the applied moment load

The moments for the end-conditioning forces are found to be

M(POA)= -%[EI(I_AM)"'EH (1+A/u)]czx

M

M(P03)="_21‘ EJ(I_AM)_EH(I'*'AM)]CM

M(MOA)=M1[E1(1_D;J)+E11(1+D;J)1sz

(105)

(1086)

(107)

(108)
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M(M03)=M1[E1(1‘D,11)“E11(1+D/u)]sz (109)

Adding equations 106-109 together, the moment formula 1s

M=2M1E1[(1“D,U)sz—(I“A,u)czx]- (110)

The use of tngonometric functions allows equations 83, 88, 105 and 110
to be presented in another form. The notation for the applied loads will be
changed from P, and M, to P and M,. In the case of a shear loading on the

end of the cylinder, shown In Figure 3 as applied to a beam on an elastic

foundation, the deflection, y, and moment, M , respectively are [7]

_2PA sinh A cos Ax cosh Ax' — sin Al cosh Ax cos Ax'

k sinh? Al —sm?* A (111)

_ — P sinh A/'sin Axsinh Ax' — sin Al sinh Ax sin Ax’

M ) <2
A sinh” Al —sin“ Al

(112)

where P Is the applied shear load
In the case of a moment loading on the end of the cylinder, shown In

Figure 4 as applied to a beam on an elastic foundation, the deflection, y, and

moment, M , respectively are [7]
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_2MA 1 sinh Al(cosh Ax’ s Ax — sinh Ax’ cos Ax) 113
k  sinh® A -sin® A + s Al(sinh Ax cos Ax’ — cosh Axsm Ax’) (13)

nh Al(sinh Ax' cos Ax + cosh Ax'sin Ax
Mol 1 [51 (st cos Ax + cosh Ax' sin Ax) jl (114)

® smh? Al —sin* Al — sin Ax(sinh Ax cos Ax’ + cosh Ax sm Ax’)

where M, 1s the applied moment.

For cylindrical shell applications [5], a longitudinal element of the cylinder
1s removed and treated as a beam on an elastic foundation In this type of

application

(115)

is the beam modulus k, where E 1s the modulus of elasticity, ¢ 1s the shell

thickness and R Is the mean radius. The characteristic, 4, for the cylindrical

body is

,1=41/4—’;7 (116)

where the moment of inertia, 7, Is
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t3

1=1_2(1_7) (117)

The mean radius R, I1s found by the equation

R, = (118)

The conventional thin shell longitudinal [8] and circumferential [5] stresses, o,

and o, respectively, are calculated using the formulas

o, = (119)

oc =-Lto,u (120)

The plus and minus signs in the formula for o, give the fiber stresses at the

inside and at the outside surface of the cylinder respectively Tensile stress Is

always regarded as positive

Solutions using thick cylinder corrections.
Equations 117 and 118 for the moment of inertia, 7, and the mean radius,

R, are intended for use with thin cylinders As shown in Figure 10, for thick
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Sector of cylinder

Figure 10. A sector removed from a cylinder that 1s to be
analyzed using beam on elastic foundation [6]

cylinders, a sector Is removed and analyzed as a beam on an elastic foundation

The neutral axis location I1s shifted farther away from the thin cylinder mean

radius and closer to the outside radius of the cylinder. A more accurate solution

may be obtained for thicker cylinders If the moment of inertia and mean radius

are corrected to account for this shit The thick cylinder formula for the area

moment of inertia for the sector about the neutral axis, I, is

148, 6]

(121)
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where R, and R, are the outside and inside radu respectively The radius at

which the neutral axis is located on the sector is

3]
—R;’—Z—R, [6] (122)

The characteristic 4 must be corrected for the stiffening effect due to the axial
symmetry of the cylindrical shell by increasing the moment of inertia by a factor

]
1-u

of

—, or

a=g/FA=sD) (123)
4E1

The longitudinal stress is found by using the preceding thick shell modifications

for the moment of inertia and the mean radius and 1s given by the formula

=_]\£=M(R—Rm) 6 124
oL I _—_I [6] (124)

where R is the radius at the point of interest, which in this case is either the inner
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or outer radius This value is limited to the range of R, to R, The bending

moment M in equation 124 i1s applied about the neutral axis of the sector

Classification of beams.
It is important to note that beams, based on their length and theirr 2, may

be classified into three categories [9] as follows.

L Short beams® A/ <%;

II. Beams of medium length % <A<,

IIL Long beams Al>nx

These classifications are based on stiffness and allow approximations to be
made and certain terms may be neglected in the beam on an elastic foundation
equations Beams In Category | can be assumed to be absolutely rigid so that
the bending in the beam may be neglected, only rotation needs to be considered
and simple statics will give a satisfactory solution Category Il requires an
accurate use of the beam on an elastic foundation equations 111-114 since the
assumption Is that a force acting on one end of the beam has an effect at the
other end of the beam. Beams belonging to Category Ill are assumed to be long,
therefore, a force at one end of the beam 1s assumed to have a negligible effect
on the other end of the beam Because of this assumption, certain terms in the
equations may be taken as zero These assumptions can greatly simplify the

calculations. For a long beam in Category Ill, 4,,, B,, C,, and D, may be

36



taken as zero in the beam on elastic foundation equations 83, 88, 105, and 110
The simplified form of the equations for deflection and moment for long beams In

Category il for an end shear load as shown in Figure 3 in this chapter are

y= 2%%os Jx(cosh Ax — smh Jx) (125)

M= —g‘—sm Jx(cosh Ax —smh 2x) (126)

where P, 1s the applied shear load. Equations for the deflection and moment for

a moment load applied to the end of a beam as shown in Figure 4 in this chapter

are

2
y= 2M\4 (cosh Ax — sinh AxYsin Ax — cos Ax) (127)

M = M, (cosh Ax —sinh Ax }(cos Ax +sin Ax) (128)

where M, is the applied moment load.

For this study, the finite length equations 111-114 (formulas for medium
length beams of Category II) are used for all calculations The deflections and
moments are calculated for the inner and outer radii of the cylinder down the

entire length. These values are then used to find the longitudinal and
37



circumferental stresses These stresses are then compared to the finite element

solution
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CHAPTER 3

FINITE ELEMENT ANALYSIS

Description of method.

Ne)gt, the cylinder geometries are analyzed using the finite element
method The program used is Algor® The edge loads were applied In several
different ways and the results were used to determine a Saint-Venant’s length, as
defined on page 3, for each cylinder Detalls of how this length was determined
are presented at the end of this chapter Taking this Saint-Venant's length into
account, the results are compared to the results obtained from the beam on an

elastic foundation analysis for the circumferential and longrtudinal stresses.

Element type and mesh density.

Since the geometry of a cylinder 1s symmetrical and the loading situations
are symmetrical around the top surfaces of the cylinders, axisymmetric elements
were used The orientation of these elements i1s shown in Figure 11 Within
Algor®, axisymmetric elements are classed as 2-dimensional solid elements
Brick elements could also have been used, however, for the same mesh density,
there are many fewer axisymmetric elements. This element also has fewer
degrees for freedom and a simpler formulation than the brick element All of this
serves to drastically reduce the problem size “A reduction of two orders of
magnitude in the problem run time with no reduction in accuracy of the result 1s

typical.” [10]
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Figure 11. Axisymmetric elements and coordinate system

Mesh density for each cylinder geometry analyzed 1s shown in Table 1 A
measure within Algor® called Precision [18] was used to verify the accuracy of

the mesh density. The Precision value is defined as

0.5(MaxvonMises — MinvonMises) (129)
GlobalvonMisesMaximum

The Max von Mises and Min von Mises stresses are the highest and lowest
stress values computed by any element at a given node This quantity is
computed at each node and may range from 0 to 0 5 with 0 indicating perfect

agreement of the stress values and 0 5 indicating no agreement  If the Precision
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Table 1 Cylinder geometries and mesh densities Each cylinder was analyzed
for two lengths, 15.0" and 7 5”

T
oD | D |hycknEss| Rt SLSiZE | DENSITY =
HORIZONTAL

Long | Long
150" 507 50" 10 0 125" 40 120 60
150"| 8 75" 3125” 19 0 125" 25 120 60
15.0"1 100’ 25 25 | 00625 40 240 120
150" 110" 20 325 | 00625 32 240 120
15.0"1 12 5 125 55 | 003125" 40 480 240
150”| 135" 075" 9.5 0 025" 30 600 300
150" 140" 05" 14 5| 0.0125” 40 1200 600
150"| 14 25” 0 375 195 | 00125” 30 1200 600
150" 14 625" 0 1875" 3951000625 30 2400 1200
150”14 75" 0 125 59 5 | 0 00625” 20 2400 1200

value 1s less than 005, it i1s unlikely that refining the mesh density will
significantly effect the stress values [18] The mesh densities used for this study

were well within this range

Loading and boundary conditions. -

Both the shear and moment loads were applied using point forces. The
forces were applied to the nodes on the top surfaces of the cylinders in several
different ways to provide a wide range of loading situations, as shown in Figure
12 for shear and Figure 13 for moment

The boundary condition applied to the model is a restnction from
movement in the vertical direction The condition Is applied near the neutral axis

on the bottom surface of the cylinder model to minimize any constraint influence
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a) Side and top views of cylinder used for analysis

CASE SHEAR LOAD CONFIGURATION
P/8 P/4 P8 P/8 Pl4 P8
<« < <+~ 4 4 <
LOAD CASE 1 VIEW B-B OF TOP OF CYLINDER
P/5 P/5 P/5 P/5 P/5
<« <« < P <«
LOAD CASE 2 VIEW B-B OF TOP OF CYLINDER
P/8 3P/8 3P/8 P/8
< < < <«
LOAD CASE 3 VIEW B-B OF TOP OF CYLINDER
P
<
LOAD CASE 4 VIEW B-B OF TOP OF CYLINDER
P10 P/5 2P/5 P/5 P10
< 4+~ < < <

LOAD CASE 5 VIEW B-B OF TOP OF CYLINDER

P/4 P/s P16 P16 P16 P16 P/8  Pl4
e = 4 4 <4 4 <4+ <+ <

LOAD CASE 6 VIEW B-B OF TOP OF CYLINDER

b) Load cases.

Figure 12. Load cases for shear loading, P, for 15 0" and 7 5” cylinders
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a) Side and top views of cylinder used for analysis.

CASE_ MOMENT LOAD CONFIGURATION

VYVVY 444414
LOAD CASE 1 VIEW B-B OF TOP OF CYLINDER

v v 4 4
LOAD CASE 2 VIEW B-B OF TOP OF CYLINDER

vyy 444
LOAD CASE 3 VIEW B-B OF TOP OF CYLINDER
v 4
LOAD CASE 4 VIEW B-B OF TOP OF CYLINDER
! : N !

LOAD CASE 5 w

Ly, NS
LOAD CASE 6 VIEW B-B OF TOP OF CYLINDER

b) Load cases.

Figure 13. Load cases for moment loading, M, for 15 0” and 7 5" cylinders
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Other specifics used in the analysis.

The vector stresses in the vertical (Z) and cylindrical (X) directions are
computed and output to a file, representing the longitudinal and the
circumferential stresses respectively These stresses are taken on the inner and
outer radi starting at the load and continuing down the length of the cylinder
The orientation of the coordinate system is shown in Figure 11 The stress
values represent the average of the values computed by each element at each
node and the cylinder material 1s assumed to be epoxy-plastic with a Modulus of

Elasticity (E) of 500,000 pst and a Poisson’s Ratio (x) of 0 375

Saint-Venant’s length.

The Saint-Venant’s length was found for each cylinder geometry by taking
the six different load cases for the shear and six moment load configurations
applied to the cylinder and comparing them to see when the stresses converge to
within a standard deviation of 0 005 or less An example of the converging
stresses Is given In Figure 14 for an end moment load on a 150" OD, 11 0” ID,
15 0” long cylinder The stress divided by the load 1s plotted versus the distance
from the load for the entire length of the cylinder It 1s plainly seen that the
method of loading has an effect on the stresses at a distance close to where the
load 1s applied

The formula for standard deviation [11]
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5.0 23 ) (130)

n-1

is used to provide an estimate of the range of stress values at a single point on

the surface of the cylinder given by the six cases In this formula x, represents

the stress values, n is the number of data points, and x is the arthmetic mean as

follows

HHx X, D, (131)
n n

X =

A Saint-Venant's length was found for the shear and for the moment load
cases and then the two lengths were combined into one Saint-Venant's length by
taking the more conservative of the two The length was taken at a standard

deviation of 0.005 or less. This was done for each cylinder geometry
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CHAPTER 4

COMPARISON OF DATA

Comparison of results with experimental data.

Figures 15-18 compare the beam on elastic foundation and finite element
results with the experimental data obtained by Dohrmann and lves’ [1] The
cylinder geometry 1s 15 0" OD and 10 0” ID Both shear and moment load cases
are shown for the 15 0” and 7 5” long cylinders The material 1s epoxy-plastic

with a moment of inertia I of 500,000 psi and a Poisson’s Ratio x of 0375

Stress divided by the load vs distance from the load for both longitudinal and

circumferential stresses are compared

Comparison of analysis techniques for 15.0” and 7.5” cylinders.

This chapter also provides a comparison of a beam on an elastic
foundation analysis and a finite element analysis shown in the form of percent
error vs R/t The analyses provided values of the longitudinal and
circumferential stresses on the surfaces of each cylinder. Also, the influence of
the Saint-Venant's length as it relates to the R/t ratio is shown

In order to find the percent error between the two analysis methods, the
finte element method was assumed to be the correct solution The error
between the finite element solution and the beam on an elastic foundation

solution I1s
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_F imiteElenentSolution — BeamOnAnEhsticFounditionSoluion

. x100 (132)
FiniteElenentSolutin

Y%eerror

The maximum stress was found using the finite element solution at a distance
from the load greater than the Saint-Venant's length for each cylinder geometry
The percent error between the two solutions was then found at that point. The
percent errors were then averaged for the six different loading cases for moment
and shear

Refer to Table 1 in Chapter 3 for the cylinder geometries which have been
analyzed along with theirr R/¢ ratios. For each geometry, two lengths were
analyzed, 7.5" and 15.0" Figures 12 and 13 in Chapter 3 show the shear and
moment load configurations used for each cylinder geometery Figures 19 and
20 show the Iinfluence of the Saint-Venant's length and Figures 21 through 24
show the behavior of the percent error between the finite element solution and
the beam on elastic foundation solution using both thin shell formulas and thick

shell corrections.
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CHAPTER &

CONCLUSIONS

Experimental data.

The stress divided by the load versus the distance from the load is shown
In Figures 15-18 in Chapter 4 for Dohrmann’s and Ives’ experimental data [1], the
finite element solution, and the beam on an elastic foundation solution for the
15 0" OD, 10 0" ID cylinder geometry used In the experiment Both shear and
moment loadings are represented for both 15.0” and 7 5” long cylinders

Figures 15 and 16 show the comparisons for the shear loading. Both the
15 0” and 7 5" long cylinders tend to show the same‘trénd The experimental
longitudinal stresses were slightly less than those predicted by the beam on an
elastic foundation or the finite element methods on both the inside and outside
radi The circumferential stresses measured experimentally on the inside radius
agree well with the beam on elastic foundation solution while on the outside
radius the agreement between the experimental data and the finite element
solution is very good

The comparison for the moment loading is shown In Figures 17 and 18
Agreement was excellent for the 15 0” cylinder Agreement was good for the 7 5"
cylinder as well except for the circumferential stresses on the inside where the
experimental data predicted a stress less than that for beam on elastic
foundation or finite elements.

The influence of the loading fixture used in Dohrmann’'s and Ives’
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experiment was not completely damped out close to the top of the cylinder [1]

This will influence agreement in all cases near where the load was applied.

Saint-Venant’s length.

The Saint-Venant's length divided by the length of the cylinder analyzed
versus the radius to thickness ratio R/t 1s shown in Figures 19 and 20 In
Chapter 4 for 15 0" long cylinders and for 7 5” long cylinders respectively It s to
be expected that as a cylinder gets thinner, or in other words as the radius to
thickness ratio increases, the method of applying the load should have less
influence on the outcome of the stress values For all six cases the stress values
will converge closer to the top of the cylinder where the load I1s applied for thinner
cylinders than for thicker cylinders As shown in the figures, the Saint-Venant's

length does decrease as the cylinder geometry gets thinner

Error.

The percent error between the finite element solution and the beam on
elastic foundation solution versus the radius to thickness ratio R/t 1s shown in
Figures 21 and 22 in Chapter 4 for the shear loading for the 15 0" long cylinders
and the 7 5" long cylinders respectively The moment loading results are shown
in Figures 23 and 24 in Chapter 4 for the 15 0” long cylinders and the 7 5” long
cylinders. Using the thin cylinder formulas, equations 116-119, the plots show
that the percent error, taken at the maximum stress after the Saint-Venant's

length, decreases as the cylinder geometry gets thinner Using the thick cylinder
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formulas, equations 121-124, which compute the correct neutral axis and
moment of inertia for the sector of a cylinder, the same general trend is shown for
thinner cylinders and thicker cylinders for the moment loading, and as expected
the percent error tends to be lower However, for very thick cylinders with an
edge shear load, the percent error seems to behave out of the general trend of
the rest of the data This aberration requires more investigation and was not
pursued as the beam on an elastic foundation method appears to only be useful
for R/t ratios higher than those in this range

These plots may be used to determine the satisfactory use of the beam on
an elastic foundation formulas. For a desired accuracy, the radius to thickness
ratio may be read from the plots For example, If a percent error of 5 ts desired,
the values shown in Table 2 are read from the charts Satisfactory solutions tend
to be governed on the shear loading for both 15.0" and 7 5" length cylinders
since the shear loading tends to give a more conservative value of the R/t ratio

than the moment loading for the same percent error If thin cylinder formulas are

Table 2. Radius to thickness values for 5% error

THIN OR THICK
FIGURE DESCRIPTION EQUATIONS R/t
. Shear Load on 15.0” Thin 13
Figure 21 long cylinders Thick 12
Fiqure 22 ShearLoad on 7 5" Thin 13
9 long cylinders Thick 12
. Moment Load on 15.0” Thin 6
Figure 23. long cylinders Thick 2
: Moment Load on 7 5" Thin 6
Figure 24 long cylinders Thick 2

61



to be used, a percent error of 5 or less may be obtained for cylinders with a
radius to thickness ratio of 13 or higher for the 7.5” long cylinders and the 15 0"
long cylinders. Use of the thick cylinder formulas will reduce this somewhat A
percent error of 5 or less may be obtained for cyhinders with a radius to thickness

ratio of 12 or higher for 7 5” and 15 0” long cylinders

Benefits.

A number of benefits result from this study It 1s advantageous to know
the influence of the Saint-Venant's length when performing a finite element
analysis Care must be taken when examining stresses at a distance close to
where the load Is applied Also; knowledge of the accuracy of the beam on an
elastic foundation solution can save time by providing prior knowledge of stress
levels before a detailed finite element analysis 1s completed This knowledge
also allows for quick estimating and speed of response In the preliminary stages

of design

Summary.

The purpose of this thesis is to determine a range of ratios R/t for which
a beam on an elastic foundation solution Is feasible for end loadings on thick and
thin cylindrical shells. Using the finite element method a Saint-Venant's length
was determined for each cylindrical geometry analyzed by loading the cylinder
with an end shear load in six different ways and computing the standard

deviation to determine when the stress values converged along the length of the
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cylinder This procedure was repeated for the moment loading and then the two
lengths were combined into one Saint-Venant's length for the cylinder geometry.
Taking this Saint-Venant's length into account the maximum stress Is found and
the percent error computed between the finte element solution and the beam on
an elastic foundation solution for each cylinder geometry As expected the Saint-
Venant's length influence decreases as the cylinder geometry became thinner
Using the plots of the percent error versus the ratio R/¢ arange of ratios can be
found for which a beam on an elastic foundation solution Is satisfactory

Benefits result such as knowledge of the influence of the Saint-Venant's
length when performing a finite element analysis, quick estimating and speed of
response In the early stages of design, and prior knowledge of stress levels by

use of the beam on an elastic foundation equations
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