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ABSTRACT 

The purpose of this thesis is to determine the range of radius to thickness 

ratios RIt for which a beam on an elastic foundation solution is feasible for end 

loadings on cylindrical shells Using the finite element method a Saint-Venant's 

length, as defined in Chapter 1, is determined for several cylindrical geometries 

by loading one end of each cylinder with a shear load in six different ways The 

standard deviation of the stress values is then computed to determine the 

distance from the load the stresses from each loading converge along the length 

of the cylinder on the inner and outer radii A Saint-Venant's length is also 

determined in the same manner for the same cylindrical geometries for an end 

moment loading The Saint-Venant's length for a cylinder geometry is then taken 

to be the more conservative ofthe two lengths Taking this Saint-Venants length 

into account the maximum circumferential or longitudinal stress is found and a 

percent error is computed between the results of a finite element solution and the 

analytical model based on a beam on an elastic foundation solution This 

procedure is repeated for each cylinder geometry for both the end shear and end 

momentloads 

When the Saint-Venant's length is plotted against the ratio Kit for each 

cylinder geometry it is shown that the influence of the Saint-Venant's length 

decreases as cylinder walls get thinner This allows the maximum stress to be 

taken closer to the end of the cylinder where the load is applied. The percent 

error between the finite element solution and the beam on an elastic foundation 



solution IS plotted against the ratio RIt for each cylindrical geometry allowing a 

range of ratios RIt to be determined for a given percent error. In this way, it can 

be determined whether or not a beam on an elastic foundation solution is 

satisfactory for a given geometry and required percent error. 
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NOMENCLATURE 

a Denotes distance between two shear loads, in 

c 

E Modulus of Elasticity, psi 

I 

k 

I 

m 

M 

Moment of Inertia, in^/m 

Beam modulus, lb/ in^ 

Length,in 

Root ofexponential equation 

Moment,Ib-in/in 

N 

n 

Moment load, Ib-in/in 

Compressive hoop force, Ib/in 

Number of data points 

P,Ei 

P 

Shear load, Ib/in 

Radial force on a longitudinal beam element, Ib/in-in 

p 

q 

Q 

Intensity, psi 

Distributed loading on a beam,Ib/in 

Shear,Ib/in 

R Radius, in 

Ri Inside radius of cylinder, in 

Rm Mean radius of cylinder, in 

Rq Outside radius of cylinder, in 
Vll 



 

 

 

 

 

 

 

 

 

t Thickness, in 

X Distancefrom end of beam to point of interest, in 

X Arithmetic mean 

x' /-X,in 

X, Data point when finding x 

X Denotes circumferential axis on longitudinal beam element of 
cylinder 

y Deflection, in 

Y Denotes radial axis on longitudinal beam element of cylinder 

Z Denotes longitudinal axis on longitudinal beam element of cylinder 

(p Sector angle,degrees 

?i Characteristic, in"1 

A Poisson's ratio 

6 Slope 

Longitudinal stress, psi 

cTc Circumferential stress, psi 

Vlll 



CHAPTER 1 

INTRODUCTION 

Purpose. 

This thesis deals with the problem of edge loading of cylindrical shells 

For certain radius to thickness ratios RIt,the shell can be modeled as a beam 

on an elastic foundation. The problem can then be solved analytically without 

significant loss of accuracy 

The purpose of this thesis is to determine the range of ratios RIt for 

which a beam on an elastic foundation solution is acceptable. This is done by 

comparing beam on elastic foundation solutions for selected cylindrical shells to 

their corresponding solutions obtained by the finite element method, using the 

finite element method as a near exact solution. In this application the ratio Rit 

IS defined asthe mean radius R divided by the wall thickness t ofthe cylinder 

Scope. 

In Dohrmann's and Ives' paper, 'Experimental Investigation of Edge 

Loading of Thick Cylindrical Shells'[1], an epoxy-plastic cylinder, 10.0" ID, 150" 

OD and 150"long, was mechanically loaded with two different end loadings and 

strain measurements were taken on each cylinder. The first load case consisted 

of an inward shear load on the top end of the cylinder while the second was an 

inward momentload on the top end ofthe cylinder. Both load configurations are 

shown in Figure 1. The cylinder was then cut to 7.5" long and the procedure 

1 



a Shear load b Moment load 

Figure 1. Load configurations for thick and thin cylindrical shells. 

was repeated using the same loads The longitudinal and circumferential 

stresses were examined for these cylinder geometries 

A finite element analysis and a beam on an elastic foundation analysis 

were performed by the author of the present study using the same cylinder 

geometries and types of loading as were used in Dohrmann's and Ives' 

experiment The epoxy-plastic cylinder had a measured Modulus of Elasticity 

{E)of 500,000 psi and a Poisson's Ratio (//) of 0375 [1] The experimental 

data [1] is shown in Chapter 4 compared with the corresponding finite element 

and beam on elastic foundation data Data was also obtained and compared for 

several other cylinder geometries using both analysis techniques in the present 

study. The percent error between the finite element results and the beam on an 

elastic foundation results for the longitudinal and circumferential stresses as 



related to the ratio RIt are presented in Chapter4 and discussed in Chapter 5. 

This data wiii be used to determine an Kit ratio interval for which the analytical 

beam on an elasticfoundation solution can be readily used satisfactorily 

The finite element data was also used to determine a Saint-Venant's 

length for each cylinder geometry The principle of Saint-Venant is defined as 

follows. 

if the forces acting on a small portion of the surface of an elastic body 

are replaced by another statically equivalentsystem offorces acting on the same 

portion of the surface, this redistribution of loading produces substantial changes 

in the stresses locally but has a negligible effect on the stresses at distances 

which are large in comparison with the linear dimensions of the surface on which 

the forces are changed"[2] 

The Saint-Venant's length is defined as the distance away from the load 

where the method of loading no longer substantially effects the stresses. This 

Saint-Venant's length is taken into account in the comparison ofthe two analysis 

techniques The influence of the Saint-Venant's length in relation to the ratio 

RIt IS also presented and discussed in Chapters4and 5 



CHAPTER2 

BEAM ON AN ELASTIC FOUNDATION 

Description of method. 

The first analysis technique applied to the loaded cylinders was that of a 

beam on an elastic foundation. A straight beam is supported continuously along 

its length by the'foundation' which is considered to be elastic. For a beam on an 

elastic foundation analysis the 'foundation' is provided by a load-bearing medium 

distributed continuously along the length of the beam When the beam is loaded 

and deflects, continuously distributed reaction forces appear in the foundation. 

The fundamental assumption of a beam on an elastic foundation analysis 

IS that at any point, the intensity, p,ofthese reaction forces is proportional to the 

deflection ofthe beam, y,atthat point Therefore, 

p=ky (1) 

where k is the proportionality factor The reaction forces act vertically in the 

foundation and oppose the deflection of the beam. Downward deflection is 

assumed to be positive causing compression in the foundation while upward 

deflection is negative causing tension [3]. 

There are two basic types of elastic foundations For the first type, the 

pressure in the foundation is proportional at every point to the deflection in the 

beam at that point and is independent of other pressures or deflections 
4 



elsewhere in the foundation This independence between pressures and 

deflections suggests a lack of continuity in the foundation,"just as if it were made 

up of rows of closely spaced but independent elastic springs"[4] The second 

type of elastic foundation is an elastic solid which represents the case of 

complete continuity in the foundation. Most common problems can be reduced 

to elastic supporting conditions of the first type Therefore, the problem dealt 

with in this thesis assumes a supporting medium ofthe discontinuous type[4] 

The beam on an elastic foundation method may also be adapted for use 

with cylindrical bodies [5] For cylindrical bodies under axially symmetrical 

loading the elastic foundation is supplied by the support of the adjacent sections 

of a continuous elastic structure Because of the symmetry of the loading, every 

cross section perpendicular to the axis of the cylinder will remain circular while 

the radius R will experience a change. This change, AR=y, will be different for 

each cross section along the length of the cylinder and may be regarded as a 

deflection for a longitudinal element which has a width of unity as seen in Figure 

2 The loading will produce bending stresses in the longitudinal element The 

strain y/R which accompanies the radial displacement y will cause 

compressive hoopforces N such that 

N=^y (2)
R 

per unit length of the longitudinal element, where E is the Modulus of Elasticity 



 

N 

lU P=N-

0 

B 
R1.0 

/ N 

Figure 2. Longitudinal beam element A thin-walled cylindrical 
tube subjected to radial forces uniformly distributed along an 
arbitrary circle on the tube[5] 

and t IS the wall thickness. The resultant of these forces P will be in the 

outward radial direction and have the value 

P= = (3)
R R^ 

This force P opposesthe deflection and will also be proportional to the deflection 

with Et/R^ as the proportionality factor Therefore, we may conclude that a 

longitudinal element of a cylindrical body loaded symmetrically with respect to its 

axis can be regarded as a beam on an elasticfoundation 

A detailed account of this method can be found in Reference 3 and its 

thick cylinder adaptation can be found in Reference6 MacGregor and Coffin [6] 

develop approximations of the beam on an elastic foundation equations to be 
6 



used with thick cylinders. However,for our purposes, Hetenyi's[7]equations for 

beams are used with the beam modulus k appropriate for cylinders as discussed 

in the next section (ref equations 111-114) 

Equations. 

Equations may be derived for a number of different load cases Hetenyi 

[14]suggests the method of superposition when deriving the beam on an elastic 

foundation equations because the determination of the integration constants is 

greatly simplified in comparison to other methods The general procedure for this 

method begins by finding the equation for the deflection line of an infinitely long 

beam with a given loading. Theformulas for the infinitely long beam are obtained 

in symmetrical and antisymmetrical parts and then superposed to obtain 

solutions for a beam ofany length and with any loading and end conditions Any 

frictional forces along the surface of the beam that is in contact with the 

foundation will be ignored since they are provided by second order equations 

The load cases examined in this thesis are a shear loading on the end of a 

cylinder and a moment loading on the end of a cylinder, shown respectively in 

Figures 3and 4as applied to a beam on an elastic foundation. For these cases, 

the cylinder is assumed to have free ends 

Take an infinitely small element enclosed between two vertical cross 

sections from a part of a beam on an elastic foundation which is loaded by a 

distributed loading q [15] These cross sections are a distance dx apart and it is 

assumed that the slope is negligible so that the cross sections, 

7 



p 

Pinwp 

Figure 3. Shear loading on the end ofa beam [7]. 

M 

4 

Figure 4. Momentloading on the end ofa beam[7] 



which are normal to the elastic line, can be replaced by vertical sections The 

forces acting on this element and their positive directions are shown in Figure 5 

The shearing force Q,and the bending moment M,on the left side ofthe 

element are considered to be positive Summing the forces on the element in the 

vertical direction gives 

dQ ,-f.=ky-q. (4) 
ax 

Since 

Q 

qdx 

lllllli 

\ 
dx 

M+dMM 

pdx=kydx 

Q+dQ 

Figure 5. Forces exerted on a differential elementfrom a 
beam on an elasticfoundation[15] 



e=^ (5)
ax 

equation4can be rewritten as 

-^=—rr=^-^ (6)
dx ax 

The equation offundamental beam theory[12]is 

EI^=-M (7)
dx 

Differentiating this equation twice and substituting into equation6gives 

EI^=-ky+q (8)
dx 

Equation 8 is the differential equation for the deflection curve of a beam 

supported on an elastic foundation. For portions of the beam where no 

distributed load is acting, q=Q,and the equation becomes 

(9) 

10 



It is necessary to find the general solution of equation 9 For cases involving a 

distributed load an integral corresponding to q is added to this general solution 

For the purposes ofthis thesis, a distributed loading is not explored. 

Assuming a solution as 

y=e'^ (10) 

and substituting into equation 9gives 

(11) 
El 

Using De Moivre's Theorem [13],the roots of equation 11 arefound to be 

mj =-m^ =2(1+i) (12) 

/Wj=-m^ =A{-1+z) (13) 

where 

1=1— (14)
\4E! 

11 



 

 

The general solution ofthe fundamental beam equation takes theform 

(15) 

where 4,A^, A^,and A^ are unknown constants Using 

e =cosAx:+isin/ix, (16) 

e =cosAx-ismAx, (17) 

gZ -gz+i;- =e''e'^ =e^lcosy+isiny), (18) 

and introducing new constants Q,Cj, C3,and C4 where 

(A,+aJ=C,, (19) 

i(4-Aj=Q, (20) 

(A,+A,)=C,, (21) 

z(^2""-^3)-C4, (22) 

12 



the general solution for the equation for the deflection curve for a beam on an 

elasticfoundation can be written as 

y=e^{C^cosAx+C2Sin2x)+e '^(C^cosAx+C^sinAx) [15] (23) 

For an infinite beam subjected to a single concentrated force at point O 

[16] as shown in Figure 6, symmetry allows consideration of x>0 while 

everything to the left of the load is ignored Since the beam is infinite it is 

assumed that x —> oo, 3;-> 0. For this to be true, Q and Cj must be zero in 

equation 23 Therefore, the equation for the deflection curve for the part of the 

beam for which x >0 will be 

Irn 11 /n!I)n 1111111111111)11'11II n7^ 
O 

Figure 6. An infinite beam subjected to a single concentrated force 
at point O [16] 

13 



y=e~ (̂C3 cosAx:+C4sin Ax:) (24) 

Because ofsymmetry,the slope at x=0 on the beam will be zero,or 

=0 (25)
dx 

x=0 

and,therefore, 

C3=C4=C. (26) 

The equation for the deflection curve now becomes 

y=Ce (cosAc+sin Ax:). (27) 

The constant C is found by using the assumption that the sum of the reaction 

forces will be in equilibrium with the load P,or, as previously stated 

P=ky. (28) 

Therefore, to find the load over the length of the beam the integration, making 

use ofsymmetry, is 

14 



2 
w

^kydx=P. (29) 

Substituting equation 27 into equation 29, 

IkC^e ̂ {posXx+sm.h:)dx=P (30) 

from which 

C=— (31) 
2k 

Substituting equation 31 into equation 27, the equation for the deflection curve 

for X>0 becomes 

y=—e"'''(cos^+sin/U)[16] (32) 
2k 

The slope 0, moment M,and shear Q, can be found by taking successive 

derivatives ofthe equation for the deflection y Theseformulasfor x >0 are 

2 

6= PA: ^sinAx (33) 

15 



M=—e (cosAx;-sin/be) (34)
4A ^ 

Q=-^e ^cosAc [16] (35) 

To simplify the equations,the symbols 

=e (̂cosAc+sinAx) (36) 

B^=e-''sm^x (^7) 

C;i^ =e ̂ (cosAc-sin Ac) (38) 

=e (̂cosAc) (39) 

are substituted for ^,M,and g so thatfor a single concentrated force P 

PPi 
(40) 

^= (41)
k 

16 



p 
(42)M=— 

4A 

(43) 

Now it IS necessary to examine the case for a single concentrated 

moment, Mo, applied at point O [16] as shown in Figure 7a Figure 7b shows 

the moment force as it is represented by two point forces on each side of point 

O The assumption is made that while a approaches zero(a->0), Pxa will 

a) rrrTTTTTTTTTinYTTTTTTl'rTTTTTTTTTTT'n 
O 

a 

n 1111111III/111!n' 

O 

b) rrrTTTTTTTTTTTl n \ 

3^ 

Figure 7. An infinite beam with a single concentrated 
momentloading at point O [16] 

17 



approach the value of Mq(Pxa^Mo) Using equation 40,the formula for the 

deflection curve for a single concentrated force P,the equation for the deflection 

line for the loading situation shown in Figure 7b for x>0 can be written as 

PX( . . \ Pa^( H(x+a)~A ^ 
>"=^1"A(x+a)+ j-- (44)

2k' 2k a 

Using the definition of a derivative[19]and the assumption that =M^,it 

can be shown that , 

(45) 

This is the equation for thp deflection line due to a clockwise moment at point 

O as Indicated in Figure 7a As before with the single concentrated force, taking 

consecutive derivatives ofthe deflection y gives 

9= (46) 

M= (47) 

18 



[161 ("8) 

To obtain equations for a finite beam,the required loading is applied to an 

infinite beam and then resolved into a symmetrical and an antisymmetrical part 

Forces which create the required conditions at the endpolnts of the finite beam, 

called end-conditioning forces, are found for both parts The purpose of these 

end-conditioning forces is to make the moments and shears vanish at the 

endpoints of the finite beam The symmetrical and antisymmetrical parts are 

then added together at the endpolnts to obtain the solution[17] 

Consider the Infinite beam shown in Figure 8a M^, Q^, M^,and Qg are 

the moments and shears at points A and B due to the actual loading on the 

beam In Figure 8b, and Q'^ are the moment and shear at A due to the 

symmetrical loading and M'^ and -Q'^ are the values at 5. In Figure 8c, M'^ 

and Q"^ representthe momentand shear at A due to the antisymmetrical loading 

and -M'^ and are the values at B Since adding the symmetrical and the 

antisymmetrical parts together gives the end forces for the original given loading 

it follows that 

M,=M',+M: (49) 

(50) 
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(54) 

a=|(e.-a) (55) 

a=|(!2.+a) (56) 

Next, the moment and shear forces at end points A and B will be 

removed by applying the end-conditioning forces PJ and M'^ at these points in 

the symmetrical case and and Ml for the antisymmetrical case as shown in 

Figure 9b-c Adding the symmetrical and antisymmetrical cases together gives 

the end-conditioning forces for the infinite beam with the original loading shown 

in Figure 9a as 

P =P'+P" (57)0/1 0 ̂ ^0 ^ ' 

Pob'PS-K (58) 

(59) 

(60) 

21 



 

 

OA 

OA 

a) rniYTT TTTTTTTTTTTTTTJTTTTTlmnrrn 
B 

p: p: 

b) rrnyrr I I I I I I t!I/ 11 I / I/// I I r-7T7\rrn 

\ A B 

P Pp: p:
A/2 2 i 

m: m: 

c) rrnvTi TTTTl TTTTTTTTTin^WTl mrrrn 

A 

Figure 9. An infinite beam shown with end-conditioning forces[17]. 

These forces are required to remove the moments and shears at points / and 

B. This means that P^^, Pq^, and M^g must produce and -Q^ at 

point A and -Mg and -Qg at point B It is seen from examination of Figures 8 

and 9 that PJ and M'^ must produce -M\ and -Q\ at point / and -M\ and 

at point B for the symmetrical beam. On the antisymmetrical beam, 

Po" and Ml must produce -M\ and -Q\ at point A and M\ and -Q"^ at point 

B. 

Using the conditions stated above and the moment and shearformulas for 

a single concentrated point force, equations 42 and 43, and a single 

22 



concentrated moment, equations 47 and 48,found earlier, the end-conditioning 

forces for the symmetrical and antisymmetrical parts ofthe beam arefound to be 

Pi='iE,\Q'A\*D„)*m',(\-A^)] (61) 

K=-jE,\S^(\+C^)*2m\(l-D„)] 

p;='^E„\e:{i-Dj-i-m:{i+A^)] 

K''-jE„\ffAi-C„)+2m:(\+D„)] 

(62) 

(as) 

(64) 

where Ej is 

E = ! (65) 

and Eji is 

These formulas will give the solution for a beam of finite length with free 

23 



ends subjected to any lateral loading since any value can be assigned to 

and Q^. 

For the end shear load of interest for this thesis, the original loading will 

give =0, Q^=+P^, =0,and =0 From this and from equations 53-

56, the forces on the symmetrical and antisymmetrical portions of the beam will 

be 

(67) 

(68)a=f 

(69)m;;=0 

(70) 

The end-conditioning forces for the symmetrical part of the beam are then found 

from equations61-64 to be 

Po'=4£, (71) 

24 



^o=-jEj (72) 

and for the antisymmetrical part ofthe beam 

P''=4E (73) 

(74) 

Adding the symmetrical and antisymmetrical parts of the beam together as 

shown in equations 57-60 gives 

-^0^ ~ [^/ ■*" ^11 0 ^Xl )] (75) 

P„=2PXEfy*D^)-E„(\-D^)] (76) 

(77) 

=-^{E,(\ + C„)-E,(\-C„)\ (78) 

25 



Next,the deflection and moment must be found for each end-conditioning 

force since these are the quantities used to determine the stresses along the 

surface of the cylinder The end-conditioning forces in equations 75-78 are 

substituted into the deflection and moment formulas for a single concentrated 

point force, equations 40 and 42, and a single concentrated moment, equations 

45 and 47,found earlier. The deflections for the end-conditioning forces are 

PX 

y{P>A)= (1+ )+ (1-Dm)K (79)
k 

P2 

Xn.)= (i*D„)-E„(1- )K (80) 
k 

P2i 

J=-- (1+ )+E„(1- )]B,, (81) 

P2lAMj=—^iE,(i+Cj-E„{i-C;„)]B^ (82) 
k 

Adding the deflections in equations 79-82 together gives the deflection formula 

for a finite beam on an elasticfoundation with free ends,loaded with a shear load 

on one end as 

=^£,[(1+I>„K-(1+C„)B„] (83) 
26 



where is the applied shear load. 

The momentsfor the end-conditioning forces arefound to be 

M(P,a)= (1+ )+E„(I-C„)]C^ (84) 

M(P„)=i[£,(1+ )-E„(1- )]C^ (85) 

M(Mj=-i[£,(1+ )+£„(1-C„)]p^ (86) 

M(M„)=-i[£,(1+C^)-E„(1-C^)K (87) 

Adding equations 84-87together,the momentformula is 

M=^£,[(l+£i^)C^-(l+C^)D„] (88) 

For the moment load of interest In this thesis applied to the end of a 

cylinder, =-M,, 0^ =0, =0, and 0^ =0. From equations 53-56, the 

forces on the symmetrical and antisymmetrical portions ofthe beam will be 
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(89) 
2 

(90)Q'a=^ 

(91) 
^ 2 

<3^=0. (92) 

The end-conditioning forces for the symmetrical part of the beam can then be 

found from equations61-64 to be 

(93) 

M, 
m;=2E, (1-^J (94) 

and for the antisymmetrical part ofthe beam 

/>;=-2£„l[Af,(l+^J] (95) 

(96) 
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Adding the symmetrical and antisymmetricai parts of the beam together as 

shown in equations 57-60 gives 

Pqa ~ \Ej(l-^^)+Ejj(l+A;^l)\ ^97j 

Pqb ~~2/LMi\Ej — Ejj(l+A (98) 

^oA ~2-^1\pj(l"" Pii P^xi)] (99) 

P^oA ~2-^1\P'i ~ )~Pii P^M)]• (100) 

Substituting into the deflection and moment formulas for a single concentrated 

point force, equations 40 and 42, and a single concentrated moment, equations 

45 and 47, found earlier, the deflections for the end-conditioning forces are 

shown to be 

yiPoA)=-^[e, (101) 

y{P«B)=-^[E,(1-A„)-E„(1+ )]A^ (102) 
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y{K.)= {e,(1- )+E„(1+D„)K (103)
k 

Am.,)=^^\E,(1-DJ-E„(1+ )]B^ (104) 

Adding the deflections in equations 101-104together gives the deflection formula 

for a finite beam on an elastic foundation with free ends, loaded with a moment 

load on one end as 

(105) 
k 

where M,is the applied moment load 

The momentsforthe end-conditioning forces arefound to be 

M(P.,)=-^[Efy-AA)*E„(1+ )]C^ (106) 

M(P.,)=-^[E,(1-4^)-E„(1+4^)]C^ (107) 

M(M„)=M,\E,(:-DJ+E„(1+ )]D^ (108) 
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M{M„)=M,[E,{\-DJ-E„{1+ )K (109) 

Adding equations 106-109 together,the momentformula is 

M=2M,E,[{i-D„)D^-(\-A„'Y:^\. (110) 

The use of trigonometric functions allows equations 83, 88, 105 and 110 

to be presented in another form. The notation for the applied loads will be 

changed from and M, to P and Mq. In the case of a shear loading on the 

end of the cylinder, shown in Figure 3 as applied to a beam on an elastic 

foundation,the deflection, y,and moment, M,respectively are[7] 

2PX sinhMcosXxcoshXx'-sinMcoshXxcosXx' 
nrvj—^7k sinh /l/-sin Xl 

_-P sinhXIsinXxsinh Xx'-sinXIsinhXxsinXx' (112) 
X sinh^ A/-sin^ A/ 

where P is the applied shear load 

In the case of a moment loading on the end of the cylinder, shown in 

Figure 4 as applied to a beam on an elastic foundation, the deflection, y, and 

moment, M,respectively are[7] 
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1 smh2/(cosh Ax'sin -sinhAx'cosAx) 
(113) 

k sinh /^-sin M +sinA?(sinh AxcosAx'-cosh Axsin Ax') 

1 sinh A/(sinh Ax'cosAx+coshAx'sinAx) 
(114)M=M, 

"sinh^ A/-sin'' A/ -sin Ax(sinh AxcosAx'+coshAxsin Ax') 

where is the applied moment. 

For cylindrical shell applications [5], a longitudinal element of the cylinder 

IS removed and treated as a beam on an elastic foundation In this type of 

application 

Et 
k= (115) 

R. 

IS the beam modulus k, where E is the modulus of elasticity, t is the shell 

thickness and is the mean radius. The characteristic, A,for the cylindrical 

body is 

(116)A=i 
4EI 

where the moment of inertia, I,is 
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/= / (117)
12(1-//') 

The mean radius is found by the equation 

Rr +Rf) 
(118) 

The conventional thin shell longitudinal [8] and circumferential [5] stresses, 

and C7c, respectively, are calculated using the formulas 

o-L=^ (119) 

Ey 
0-C=— (120)

R„ 

The plus and minus signs in the formula for give the fiber stresses at the 

inside and at the outside surface of the cylinder respectively Tensile stress is 

always regarded as positive 

Solutions using thick cyiinder corrections. 

Equations 117 and 118for the moment of inertia, I,and the mean radius, 

are intended for use with thin cylinders As shown in Figure 10, for thick 
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Sector of cylinder 

Figure 10. A sector removed from a cylinder that is to be 
analyzed using beam on elasticfoundation [6] 

cylinders, a sector is removed and analyzed as a beam on an elastic foundation 

The neutral axis location is shifted farther away from the thin cylinder mean 

radius and closer to the outside radius of the cylinder. A more accurate solution 

may be obtained for thicker cylinders if the moment of inertia and mean radius 

are corrected to account for this shift The thick cylinder formula for the area 

moment of inertia for the sector about the neutral axis, I,is 

1= -1 R"[6] (121) 

1
 

1 
li 1

1 
*—11
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where Rq and R, are the outside and inside radii respectively The radius at 

which the neutral axis is located on the sector is 

-1 

n . . \Rî J 
^ -Rj [6] (122) 

-1 

\Rij 

The characteristic A must be corrected for the stiffening effect due to the axial 

symmetry of the cylindrical shell by increasing the moment of inertia by a factor 

1 
of , or 

ikjl-M ) (123)A=i 
AEI 

The longitudinal stress is found by using the preceding thick shell modifications 

for the moment of inertia and the mean radius and is given by the formula 

Mc M(R-RJ [6] (124) 
=■ 

where R Is the radius at the point of interest, which in this case is either the inner 
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or outer radius This value is limited to the range of Rj to Rq The bending 

moment M in equation 124 is applied aboutthe neutral axis ofthe sector 

Classification of beams. 

It Is important to note that beams, based on their length and their X, may 

be classified into three categories[9]asfollows. 

I. Short beams' M <— \ 
4 

K 
II. Beams of medium length —<XI<k\ 

ni. Long beams ?d>n 

These classifications are based on stiffness and allow approximations to be 

made and certain terms may be neglected in the beam on an elastic foundation 

equations Beams in Category I can be assumed to be absolutely rigid so that 

the bending in the beam may be neglected, only rotation needs to be considered 

and simple statics will give a satisfactory solution Category II requires an 

accurate use of the beam on an elastic foundation equations 111-114 since the 

assumption is that a force acting on one end of the beam has an effect at the 

other end ofthe beam. Beams belonging to Category ill are assumed to be long, 

therefore, a force at one end of the beam is assumed to have a negligible effect 

on the other end of the beam Because of this assumption, certain terms in the 

equations may be taken as zero These assumptions can greatly simplify the 

calculations. For a long beam in Category III, C;j, and D;^J may be 
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taken as zero in the beam on elastic foundation equations 83,88, 105, and 110 

The simplified form of the equations for deflection and momentfor long beams in 

Category III for an end shear load asshown in Figure 3 in this chapter are 

IPX y=——cos>^Jc(cosh Ax-sinhAr) (125) 
k 

M =-—sin>^(cosh/Lx:-sinh>lx:) (126) 
A 

where is the applied shear load. Equations for the deflection and momentfor 

a moment load applied to the end of a beam as shown in Figure4 in this chapter 

are 

==-^^^^^(coshAx:-sinh/bi;Xsin/bi:-cos>^J£:) (127) 

M=Mj(coshAx-sinh-^jcXcosAx+sin/b:) (128) 

where M,is the applied moment load. 

For this study, the finite length equations 111-114 (formulas for medium 

length beams of Category II) are used for all calculations The deflections and 

moments are calculated for the inner and outer radii of the cylinder down the 

entire length. These values are then used to find the longitudinal and 
37 



circumferental stresses These stresses are then compared to the finite element 

solution 
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CHAPTER3 

FINITE ELEMENT ANALYSIS 

Description of method. 

Next, the cylinder geometries are analyzed using the finite element 

method The program used is Algor® The edge loads were applied in several 

different ways and the results were used to determine a Saint-Venant's length, as 

defined on page 3,for each cylinder Details of how this length was determined 

are presented at the end of this chapter Taking this Saint-Venant's length into 

account, the results are compared to the results obtained from the beam on an 

elasticfoundation analysis for the circumferential and longitudinal stresses. 

Elementtype and mesh density. 

Since the geometry of a cylinder is symmetrical and the loading situations 

are symmetrical around the top surfaces ofthe cylinders, axisymmetric elements 

were used The orientation of these elements is shown in Figure 11 Within 

Algor®, axisymmetric elements are classed as 2-dimensional solid elements 

Brick elements could also have been used, however,for the same mesh density, 

there are many fewer axisymmetric elements. This element also has fewer 

degreesforfreedom and a simpler formulation than the brick element All of this 

serves to drastically reduce the problem size "A reduction of two orders of 

magnitude in the problem run time with no reduction in accuracy of the result is 

typical."[10] 
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Figure 11. Axisymmetric elements and coordinate system 

Mesh density for each cylinder geometry analyzed is shown in Table 1 A 

measure within Algor® called Precision [18] was used to verify the accuracy of 

the mesh density. The Precision value is defined as 

Q.SiMaxvonMises-MinvonMises) (129) 
GlobalvonMisesMaxmum 

The Max von Mises and Mm von Mises stresses are the highest and lowest 

stress values computed by any element at a given node This quantity is 

computed at each node and may range from 0 to 05 with 0 indicating perfect 

agreement ofthe stress values and 05 indicating no agreement If the Precision 
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Table 1 Cylinder geometries and mesh densities Each cylinder was analyzed 
for two lengths, 15.0"and 75" 

MESH ClENSITY 
MESH 

VER1nCAL 
OD ID R/t DENSITY 

THICKNESS SIZE 150" 75" 

WALL ELEMENT 

HORIZONTAL 
Long Long 

150" 50" 50" 1 0 0 125" 40 120 60 

150" 875" 3125" 1 9 0 125" 25 120 60 

15.0" 100" 25 25 00625" 40 240 120 

15 0"^ 11 0" 20" 325 00625" 32 240 120 

15.0" 125" 1 25 55 003125" 40 480 240 

150" 135" 075" 9.5 0025" 30 600 300 

150" 14 0" 05" 145 0.0125" 40 1200 600 

150" 1425" 0375" 195 00125" 30 1200 600 

150" 14625" 0 1875" 395 000625" 30 2400 1200 

150" 14 75" 0 125" 595 000625" 20 2400 1200 

value IS less than 005, it is unlikely that refining the mesh density will 

significantly effect the stress values[18] The mesh densities used for this study 

were well within this range 

Loading and boundary conditions. 

Both the shear and moment loads were applied using point forces. The 

forces were applied to the nodes on the top surfaces of the cylinders in several 

different ways to provide a wide range of loading situations, as shown in Figure 

12for shear and Figure 13for moment 

The boundary condition applied to the model is a restriction from 

movement in the vertical direction The condition is applied near the neutral axis 

on the bottom surface ofthe cylinder model to minimize any constraint influence 
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t 
<czz> 

a)Side and top views of cylinder used for analysis 

CASE SHEAR LOAD CONFIGURATION 

P/8 P/4 P/8 P/8 P/4 P/8 

LOAD CASE 1 VIEW B-B OFTOP OF CYLINDER 

P/5 P/5 P/5 P/5 P/5 

LOAD CASE2 VIEW B-B OF TOP OF CYLINDER 

P/8 3P/8 3P/8 P/8 

LOAD CASE3 VIEW B-B OFTOP OF CYLINDER 

VIEW B-B OF TOP OF CYLINDERLOAD CASE4 

P/10 P/5 2P/5 P/5 P/10 

LOAD CASE5 VIEW B-B OFTOP OF CYLINDER 

p/4 P/8 P/16 P/16 P/16 P/16 P/8 P/4 

LOAD CASE6 VIEW B-B OFTOP OF CYLINDER 

b) Load cases. 

Figure 12. Load casesfor shear loading, P,for 150"and 75"cylinders 
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t 
c: 

a)Side and top views of cylinder used for analysis. 

CASE MOMENT LOAD CONFIGURATION 

I I I I I ttttt 
LOAD CASE 1 VIEW B-B OFTOP OF CYLINDER 

LOAD CASE2 VIEW B-B OFTOP OF CYLINDER 

III ±A± 
LOAD CASE3 

VIEW B-B OFTOP OF CYLINDER 

VIEW B-B OF TOP OF CYLINDERLOAD CASE4 

LOAD CASE5 VIEW B-B OFTOP OF CYLINDER 

i 

1 r 1I 1 4 i t 1
I 

LOAD CASE6 VIEW B-B OF TOP OF CYLINDER 

b)Load cases. 

Figure 13. Load casesfor moment loading, M,for 150"and 75"cylinders 
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other specifics used in the analysis. 

The vector stresses in the vertical (Z) and cylindrical (X) directions are 

computed and output to a file, representing the longitudinal and the 

circumferential stresses respectively These stresses are taken on the inner and 

outer radii starting at the load and continuing down the length of the cylinder 

The orientation of the coordinate system is shown in Figure 11 The stress 

values represent the average of the values computed by each element at each 

node and the cylinder material is assumed to be epoxy-plastic with a Modulus of 

Elasticity(£)of500,000 psi and a Poisson's Ratio(//)of0375 

Saint-Venant's length. 

The Saint-Venant's length wasfound for each cylinder geometry by taking 

the SIX different load cases for the shear and six moment load configurations 

applied to the cylinder and comparing them to see when the stresses converge to 

within a standard deviation of 0005 or less An example of the converging 

stresses is given in Figure 14 for an end moment load on a 150" OD,11 0" ID, 

150"long cylinder The stress divided by the load is plotted versus the distance 

from the load for the entire length of the cylinder It is plainly seen that the 

method of loading has an effect on the stresses at a distance close to where the 

load IS applied 

Theformula for standard deviation[11] 
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Ivxf -«(xT
S.D.=J^ ̂  (130) 

n-l 

is used to provide an estimate of the range of stress values at a single point on 

the surface of the cylinder given by the six cases In this formula x, represents 

the stress values, n Is the number of data points, and x Is the arithmetic mean as 

follows 

- +^2+ +X„ _ 
X= (131) 

n n 

A Saint-Venant's length was found for the shear and for the moment load 

cases and then the two lengths were combined into one Saint-Venant's length by 

taking the more conservative of the two The length was taken at a standard 

deviation of0.005 or less. This was done for each cylinder geometry 
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CHAPTER4 

COMPARISON OF DATA 

Comparison of results with experimental data. 

Figures 15-18 compare the beam on elastic foundation and finite element 

results with the experimental data obtained by Dohrmann and Ives' [1] The 

cylinder geometry is 15 0"OD and 100"ID Both shear and moment load cases 

are shown for the 150" and 75" long cylinders The material is epoxy-plastic 

with a moment of inertia I of 500,000 psi and a Poisson's Ratio // of 0375 

Stress divided by the load vs distance from the load for both longitudinal and 

circumferential stresses are compared 

Comparison ofanalysis techniques for 15.0"and 7.5" cylinders. 

This chapter also provides a comparison of a beam on an elastic 

foundation analysis and a finite element analysis shown in the form of percent 

error vs RIt The analyses provided values of the longitudinal and 

circumferential stresses on the surfaces of each cylinder. Also, the influence of 

the Saint-Venant's length as it relates to the R/t ratio is shown 

In order to find the percent error between the two analysis methods, the 

finite element method was assumed to be the correct solution The error 

between the finite element solution and the beam on an elastic foundation 

solution IS 
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FmiteElemntSolutiai-BeamOnAnEbsticFounditionSoluion /-ioo\ 
yoerror= ; — xlOO (132) 

FiniteElenentSolutim 

The maximum stress was found using the finite element solution at a distance 

from the load greater than the Saint-Venant's length for each cylinder geometry 

The percent error between the two solutions was then found at that point. The 

percent errors were then averaged for the six different loading cases for moment 

and shear 

Referto Table 1 in Chapter3for the cylinder geometries which have been 

analyzed along with their R/t ratios. For each geometry, two lengths were 

analyzed, 7.5" and 15.0" Figures 12 and 13 in Chapter 3 show the shear and 

moment load configurations used for each cylinder geometery Figures 19 and 

20 show the influence of the Saint-Venant's length and Figures 21 through 24 

show the behavior of the percent error between the finite element solution and 

the beam on elastic foundation solution using both thin shell formulas and thick 

shell corrections. 
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CHAPTER5 

CONCLUSIONS 

Experimental data. 

The stress divided by the load versus the distance from the load is shown 

in Figures 15-18 in Chapter4for Dohrmann's and Ives'experimental data [1], the 

finite element solution, and the beam on an elastic foundation solution for the 

150" CD, 100" ID cylinder geometry used in the experiment Both shear and 

momentloadings are represented for both 15.0"and 75"long cylinders 

Figures 15 and 16 show the comparisons for the shear loading. Both the 

150" and 75" long cylinders tend to show the same trend The experimental 

longitudinal stresses were slightly less than those predicted by the beam on an 

elastic foundation or the finite element methods on both the inside and outside 

radii The circumferential stresses measured experimentally on the inside radius 

agree well with the beam on elastic foundation solution while on the outside 

radius the agreement be^een the experimental data and the finite element 

solution is very good 

The comparison for the moment loading is shown in Figures 17 and 18 

Agreement was excellentfor the 150"cylinder Agreement wasgood for the75" 

cylinder as well except for the circumferential stresses on the inside where the 

experimental data predicted a stress less than that for beam on elastic 

foundation or finite elements. 

The influence of the loading fixture used in Dohrmann's and Ives' 
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experiment was not completely damped out close to the top of the cylinder [1] 

This will influence agreement in all cases near where the load was applied. 

Saint-Venant's length. 

The Saint-Venant's length divided by the length of the cylinder analyzed 

versus the radius to thickness ratio RIt is shown in Figures 19 and 20 in 

Chapter4for 150"long cylinders and for75"long cylinders respectively It is to 

be expected that as a cylinder gets thinner, or in other words as the radius to 

thickness ratio increases, the method of applying the load should have less 

influence on the outcome ofthe stress values For all six cases the stress values 

will converge closer to the top ofthe cylinder where the load is applied for thinner 

cylinders than for thicker cylinders As shown in the figures, the Saint-Venant's 

length does decrease as the cylinder geometry gets thinner 

Error. 

The percent error between the finite element solution and the beam on 

elastic foundation solution versus the radius to thickness ratio Kit is shown in 

Figures 21 and 22 in Chapter4for the shear loading for the 150" long cylinders 

and the 75" long cylinders respectively The moment loading results are shown 

in Figures 23 and 24 in Chapter4 for the 150" long cylinders and the 75" long 

cylinders. Using the thin cylinder formulas, equations 116-119, the plots show 

that the percent error, taken at the maximum stress after the Saint-Venant's 

length, decreases as the cylinder geometry gets thinner Using the thick cylinder 
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formulas, equations 121-124, which compute the correct neutral axis and 

moment of inertia for the sector ofa cylinder,the same general trend is shown for 

thinner cylinders and thicker cylinders for the moment loading, and as expected 

the percent error tends to be lower However, for very thick cylinders with an 

edge shear load, the percent error seems to behave out of the general trend of 

the rest of the data This aberration requires more investigation and was not 

pursued as the beam on an elastic foundation method appears to only be useful 

for RIt ratios higher than those in this range 

These plots may be used to determine the satisfactory use ofthe beam on 

an elastic foundation formulas. For a desired accuracy, the radius to thickness 

ratio may be read from the plots For example, if a percent error of5 is desired, 

the values shown in Table 2are read from the charts Satisfactory solutions tend 

to be governed on the shear loading for both 15.0" and 75" length cylinders 

since the shear loading tends to give a more conservative value of the Kit ratio 

than the momentloading for the same percent error If thin cylinderformulas are 

Table 2. Radius to thickness valuesfor5%error 

THIN OR THICK 
FIGURE DESCRIPTION 

EQUATIONS 
R/t 

Figure 21 
Shear Load on 15.0" 

long cylinders 
Thin 

Thick 

13 

12 

Figure 22 
Shear Load on 75" 

long cylinders 

Thin 

Thick 

13 

12 

Figure 23. 
Moment Load on 15.0" 

long cylinders 
Thin 

Thick 

6 

2 

Figure 24 
Moment Load on 75" 

long cylinders 

Thin 

Thick 

6 

2 
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to be used, a percent error of 5 or less may be obtained for cylinders with a 

radius to thickness ratio of 13 or higher for the 7.5" long cylinders and the 150" 

long cylinders. Use of the thick cylinder formulas will reduce this somewhat A 

percent error of5 or less may be obtained for cylinders with a radius to thickness 

ratio of 12or higherfor75"and 150"long cylinders 

Benefits. 

A number of benefits result from this study It is advantageous to know 

the influence of the Saint-Venant's length when performing a finite element 

analysis Care must be taken when examining stresses at a distance close to 

where the load is applied Also, knowledge of the accuracy of the beam on an 

elastic foundation solution can save time by providing prior knowledge of stress 

levels before a detailed finite element analysis is completed This knowledge 

also allows for quick estimating and speed of response in the preliminary stages 

of design 

Summary. 

The purpose of this thesis is to determine a range of ratios RIt for which 

a beam on an elasticfoundation solution is feasible for end loadings on thick and 

thin cylindrical shells. Using the finite element method a Saint-Venants length 

was determined for each cylindrical geometry analyzed by loading the cylinder 

with an end shear load in six different ways and computing the standard 

deviation to determine when the stress values converged along the length of the 
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cylinder This procedure was repeated for the moment loading and then the two 

lengths were combined into one Saint-Venant's length for the cylinder geometry. 

Taking this Saint-Venant's length into account the maximum stress is found and 

the percent error computed between the finite element solution and the beam on 

an elasticfoundation solution for each cylinder geometry As expected the Saint-

Venant's length influence decreases as the cylinder geometry became thinner 

Using the plots ofthe percent error versus the ratio RIt a range of ratios can be 

found for which a beam on an elasticfoundation solution is satisfactory 

Benefits result such as knowledge of the influence of the Saint-Venant's 

length when performing a finite element analysis, quick estimating and speed of 

response in the early stages of design, and prior knowledge of stress levels by 

use ofthe beam on an elasticfoundation equations 
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