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ABSTRACT

Several recent reports frc;m this laboratory demonstrate a regulatory role for
intracellular Ca** ([Ca®*],) in modulating lipid metabolism in both human and murine
adipocytes, with mcreased [Ca®*], coordinately stimulating lipogenesis and inhibiting
lipolysis, thereby expanding lipid mass. Further, we have recently demonstrated that
1,25-dihydroxyvitamin-Dj [1,25-(OH),-Ds] stimulates adipocyte membrane vitamin D
receptor (mVDR)-mediated rapid Ca>* nflux into adipocytes, resulting in the stimulation
of lipogenesis and inhibition of l'ipolysis. However, increasing [Ca®*], in the early stages
of differentiation inbits human adipocyte differentiation, whereas increasing [Ca*], in
the late stage promotes human a(iipocyte differentiation Accordingly, we have
investigated the role of 1,25-(OH|)2-D3 in the differentiation of 3T3-L1 preadipocytes,
using triglyceride (T'G) accumulation and glycerol-3-phosphate dehydrogenase (GPDH)
as markers. 3T3-L1 preadipocytes were placed in differentiation media upon confluence,
and exposed to varying amounts (0, 1nM, and 10nM) of 1,25-(OH),-Ds for either one-
hour pulses or for sustained (24 hrs or 48 hrs) amounts of time throughout the
differentiation process Exposure to one-hour pulses of 1nM 1,25-(OH),-D3 throughout
differentiation caused modest decreases (31%-38%) in TG accumulation (p<0.0001),
with one-hour pulse exposure to 10nM 1,25-(OH),-Dj3 having little to no effect on TG
accumulation. One-hour pulse exposure to both 1nM and 10nM 1,25-(OH),-D3
suppressed GPDH activity early, but not late in differentiation. Sustained (24-hour)
exposure to 1,25-(OH),-Ds (1nM and 10nM) inhibited differentiation at 0-24 hrs, with

decreases in both TG and GPDH of 41-81% (p<0.0001). Similarly, sustained exposure
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of 1,25-(OH),-D; resulted in marked inhibition of GPDH activity and TG accumulation
early in differentiation. In contrast, sustained exposure late in differentiation exerted no
significant effects on either marker of differentiation PPAR-y and pref-1 expression
were also used as markers of differentiation. One-hour pulses of 10nM 1,25-(OH),-Ds
did not cause any changes in PPAR-y expression compared to control. Sustained
exposure to 1,25-(OH),-D; throughout differentiation decreased PPAR~y expression,
with a 92% decrease from 0-48h (p<0.0001). One-hour pulses of 1,25-(OH);-D3 had no
effect on Pref-1 expression, with the exception of an increase in expression at 47-48 hr
(p<0.0001). Sustained exposure to 10nM 1,25-(OH),-D; at 0-48 hrs, 24-48 hrs and 47-
48 hrs all caused significant increases (125%-146%) in the expression of Pref-1
(p<0.001). Thus, although 1,25-(OH),-Ds stimulates lipogenesis, inhibits lipolysis and
increases TG accumulation in mature human and murine adipocytes, it also modestly

1nhibits the differentiation of preadipocytes into mature adipocytes.
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INTRODUCTION



INTRODUCTION

Intracellular calcium ([Ca*'],) plays a key role in the metabolic modifications
associated with obesity (1). Studies involving the mechanisms of agouti gene-induced
obesity found that [Ca?*], modulates de novo lipogenesis in both human and murine
adipocytes. Previous studies show that an increase in [Ca**], via receptor or voltage-
mediated calcium channels stimulates the expression and activity of fatty acid synthase
(FAS), a key enzyme in de novo lipogenesis, thereby causing an increase 1n lipogenesis
and a decrease in lipolysis The resulting triglyceride accumulation leads to adipocyte
hypertrophy (2).

[Ca?"), also appears to play a role in the regulation of adipogenesis, a contributing
factor to both human and murine obesity (3). In order to investigate the specific role of
calcium, both thapsigargin, a Ca**-ATPase inhibitor, and A23187, a calcium ionophore,
were used as calcium agonists to stimulate an increase in [Ca?"), in human preadipocytes.
Exposure early in differentiation suppressed triglyceride accumulation greatly. However,
increasing [Ca®"], late in differentiation mcreased triglyceride accumulation. Simlar
results were also seen using KCl and agouti protein as [Ca?*], agonists (2, 3). Therefore,
increasing [Ca®*], has a biphasic effect on human adipocyte differentiation, with an
increase early inhibiting differentiation and an increase in the late stages stimulating
adipocyte differentiation and lipid filling (3).

Recent studies have introduced a paradox by showing that a decrease in the
expression of genes normally involved 1n adipogenesis is associated with obesity and

diabetes mellitus. White adipose tissue from obese mice exhibited decreased expression




of genes important in adipocyte differentiation, as compared to the lean controls. Sterol
responsive element binding protein (SREBP), responsible for positively regulating
multiple genes coding for lipogenic enzymes, demonstrated a 2.7-fold decrease in
expression. Several mRNAs that encode proteins involved in lipid metabolism were
decreased, including glycerol 3-phosphate dehydrogenase and stearoyl CoA desaturase.
A dedifferentiation was observed in 3T3-L1 adipocytes including a suppression of
PPARy and C/EBPa, as well as other lipogenic enzymes in response to tumor necrosis
factor a and transforming growth factor B (4).

1,25-dihydroxyvitamin Dj [1,25-(OH),-D;] acts as a calcium agonist (5) Further,
we have recently demonstrated that 1,25-(OH),-Dj stimulates adipocyte membrane
vitamin D receptor (mVDR)-mediated rapid Ca*" influx into adipocytes, resulting in the
stimulation of lipogenesis and inhibition of lipolysis (5). This effect was mimicked by
10,25-(OH)2-lumisterols, an agonist for the mVDR. These effects were not seen when
the human adipocytes were pretreated with 1B,25-dihydroxyvitamin D3, a specific
antagonist for mVDR. 1,25-(OH),-D3 was also shown to increase adipocyte fatty acid
synthase (FAS), with 1¢,25-(OH),-lumisterol; having a greater stimulatory effect on FAS
activity. Pretreatment with 1B,25-dihydroxyvitamin Dj also prevented the stimulation of
FAS. 1,25-(OH),-D; and 10,25-(OH),-lumisterol; also reduced adipocyte basal lipolysis,
with 1p,25-dihydroxyvitamin D3 preventing any mhibition of lipolysis (5) In addition,
Norman et al. (6) demonstrated that 1a,25-dihydroxylumisterol; acts on the mVDR solely
to generate non-genomic action 1n adipocytes, while 1,25-(OH),-D3 may target both the
mVDR and the nuclear vitamin D receptor (nVDR) to mediate genomic and non-genomic

actions which may interact with each other in signal response and, thereby compromise



the modulation of lipid metabolism. Accordingly, we have investigated the role of 1,25-

(OH),-D; in adipogenesis.
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I. Adipocyte Differentiation

A. Models of adipocyte differentiation

While the developmental origins of adipocytes are poorly understood, it is known
that the transformation of a fertilized egg to the determination and conversion of
precursor cells into mature adipocytes occurs in a series of stages. Pluripotent fibroblasts
(stem cells) differentiate into multipotential mesenchymal precursors which may become
preadipocytes, chondroblasts, osteoblasts, or myoblasts (1, 2). In a human model,
preadipocytes begin to differentiate into adipose tissue during late embryonic
development, with the majority of the conversion taking place shortly after birth (3). The
preadipocytes i rodent and murine models do not begin to differentiate into adipose
tissue until after birth (4) Depending on energy needs, all species have the ability to

differentiate preadipocytes throughout their lives.

1. In vivo models of adipocyte differentiation

In vivo study of adipocyte differentiation is difficult due to the complexity of
adipose tissue. Adipocytes account for only one third of fat tissue, with the remaining
two thirds consisting of blood vessels, nerve tissue, fibroblasts, and preadipocytes in
various stages of development (2). Comprehensive in vivo studies are confounded by the
difficulty distinguishing preadipocytes from fibroblasts and the inability to coordinate

preadipocytes at similar stages of development.



2. In vitro models of adipocyte differentiation |

a. Primary cultures of preadipocytes

Primary preadipocytes have been successfully obtained from muitiple species
including rats, mice, rabbits, pigs, and humans. Because the stage of differentiation and
the lineage of preadipocyte cell lines have not been well established, primary cultures can
be useful for validating results from preadipose cell lines. The use of primary culture has
several advantages over preadipocyte cell lines. While cell lines are aneuploid, the
diploid primary cells are a better representation of an in vivo situation. Another
advantage is the ability of primary cultures to be derived from fat tissue obtained from
various species at different postnatal stages of development and from multiple adipose
depots Primary cultures can come from subcutaneous, epididymal, and perirenal fat
stores (1). There are also several drawbacks of primary cultures. First, large amounts of
adipose tissue are required due to the small amount of preadipocytes that make up the
total fat tissue Second, it 1s difficult to 1solate preadipocytes from other fibroblast-like
cells that are found in adipose tissue. Finally, i)rimary cultures have a limited life span in

culture (2).

b. Cell lines of preadipocytes

There are advantages and disadvantages to using a cell line to study preadipocyte
differentiation. It can be advantageous to uses a cell line which is homogenous in cells
that are all at the same stage of differentiation. This allows for detailed responses to
treatments during differentiation. Another advantage is the ability of cell lines to provide

a consistent source of preadipocytes because of their ability to be passaged indefinitely.
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There is some variation in the differentiation requirements of each cell line depending on
the developmental stage at which the cells were arrested and derived (2,5) A major
disadvantage to using a cell line is the lack of multiple factors that are seen in whole
tissue in vivo. Cell lines are unable to give a realistic view of true physiological

conditions.

(1) Pluripotent fibroblasts

Pluripotent fibroblasts (10T1/2, Balb/c 3T3, 1246, RCJ3.1 and CHEF/18
fibroblasts) can be converted into several cell types. 10T1/2 fibroblasts, derived from
C3H mouse embryos (6), may be converted to preadipose, premuscle, and precartilage
tissue. Pluripotent fibroblasts are good models for understanding the events that lead to

cellular determination.

(2) Unipotent preadipocytes
Unipotent preadipocytes (3T3-L1, 3T3-F422A, 1246, Ob17, TA1, and 30A5) are

committed and can either remain as preadipocytes or differentiate into adipocytes. These
cell lines are useful when studying the conversion of preadipocytes to adipocytes. The
most widely used cell lines are 3T3-L1 and 3T3-F422A, which were isolated from Swiss
3T3 cells derived from disaggregated 17 to 19 day mouse embryos (7). Ob17 cells were
derived from the epididymal fat pads of genetically obese (0b/0b) adult mice and are used

to explore differentiation resulting from genetic obesity (8).




B. Process of differentiation of 3T3-L.1 preadipocytes

The 3T3-L1 cell line is one the most well studied models of adipocyte
differentiation. When injected into mice, 3T3-L1 preadipocytes form fat pads that are
indiscernible from the normal fat tissue (9) The development of fat droplets mimics the
actions of live adipose tissue (10).

3T3-L1 cells spontaneously differentiate into fat-cell clusters over a period of
several weeks when cultured in fetal calf serum. This process can be accelerated when
confluent 3T3-L1 preadipocytes are exposed to an adipogenic cocktail. This cocktail
contains a glucocorticoid, a phosphodiesterase inhibitor, and fetal bovine serum Insulin
has also been used in combination with the above and works via the insulin-like growth
factor 1 (IGF-1) receptor. Dexamethasone (DEX) 1s a synthetic glucocoticoid agonist
commonly used in a differentiation cocktail. Methylisobutylxanthine (MIX) is a
phosphodiesterase inhibitor used to increase the intracellular cAMP levels in the
adipogenic cocktail (1).

Twenty-four hours after the introduction of a differentiation cocktail, the
preadipocytes experience a postconfluent mitosis and an ensuing growth arrest (11). The
preadipocytes go through at least one round of DNA replication and cell division. The
mitosis 1s believed to be needed to unwind DNA and allow the transcription factors
access to transactivate adipocyte specific genes (5). Day 2 marks the end of the
postconfluent mitosis and the beginning of a growth arrest called Gp (12). After growth
arrest, the preadipocytes are ready for differentiation and are committed to the formation
of adipocytes. On day 3, growth-arrested cells begin to express late markers of

differentiation such as multiple proteins that modulate adipocyte metabolism as well as
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lipogenic and lipolytic enzymes. 3T3-L1 cells accumulate fat droplets and become

spherical in appearance by day 5 to 7.

C. Changes during the differentiation of preadipocytes

While the 3T3-L1 cells have been heavily analyzed, the exact chronology of the
earliest stages of adipocyte differentiation is still unknown. Growth arrest triggers the
expression of lipoprotein lipase (LPL) mRNA in 3T3-L1 preadipocytes (2,5). While the
presence of LPL has been thought to be an early sign of adipocyte differentiation, the
expression of LPL occurs upon confluence independent of the addition of a
differentiation cocktail. LPL is also found in other mesenchymal cell types and is
therefore not adipocyte specific. These two properties leave LPL’s role as an early
marker of adipocyte differentiation ambiguous (1).

Within the first hour of differentiation, the expression of c-fos, c-jun, junB, and c-
myc is seen (5). Fos and jun proteins have not been linked to any differentiation-specific
events, but are believed to have mitogenic properties. c-myc has been shown to initiate
mitogenesis in differentiating preadipocytes (5). The expression of the above proteins
depletes 2-6 h after the initial exposure to the differentiation cocktail (2).

There are at least two families of transcription factors, CCAAT/enhancer binding
proteins (C/EBP) and peroxisome proliferator-activated receptors (PPAR), which are
induced early during adipocyte differentiation. C/EBP-B and C/EBP-8 are the first
transcription factors induced 1n the differentiation process. The expression of these
factors, controlled by exogenous differentiation promoters, induces and increases

adipogenesis in response to hormones. C/EBP-B is responsive to DEX, while C/EBP-8
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responds to MIX (13). The activity of C/EBP-p and C/EBP- is thought to mediate the

expression of PPAR-y (14). PPAR-y is largely adipocyte specific and is expressed at
low, but detectable levels in preadipocytes. Its expression quickly increases once
exposed to hormonal induction of differentiation It is transcriptionally induced on day 2
of differentiation with maximum levels of expression seen 1n mature adipocytes (1, 15).
The decrease of C/EBP-B and C/EBP-3 expression in the early to mid stages of
differentiation is followed by an increase in the expression of C/EBP-a which occurs

directly before the expression of adipocyte-specific genes (15) (Fig.1).

Stem Cell
Preadipocyte
Pref-1
C/EBPp
Early | PPARY
C/EBPa
dipocyte Genes
Lipogenic Enzymes
Late F A Binding Proteins
/Jr ST
{ Mature Adipopyte>
AN e

—

e cmeremsen 8

Figure 1. The process of differentiation from a multipotential stem cell to a mature, lipid
filled adipocyte. Selected molecular events accompanying this process are indicated to
the right, with their duration reflected by a solid line. Pref-1, preadipocyte factor-1;
C/EBP, CCAT/enhancer ~binding protein, PPAR-y, peroxisome proliferator-activated
receptor-y; FA, fatty acid.
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It appears PPAR-y and C/EBP-« alone or in cooperation induce the transcription

of many adipocyte genes encoding proteins and enzymes involved in creating the
adipocyte phenotype. Once induced, PPAR-y and C/EBP-a appear to cross-regulate each
other to maintain their gene expression levels, although C/EBP-B and C/EBP-6 levels
decrease after early transient expression (16). It is thought that an adipocyte-specific
control of terminal differentiation might be found in PPAR~y and C/EBP-a. While both
are important for the late stages of differentiation mn a synergistic manner, neither factor
is expressed at high levels in preadipocytes, and therefore cannot be involved in early
development. While coexpression promotes the differentiation process, ectopic
expression of either factor does not promote differentiation to the same extent (15).

Sterol regulatory element binding protein-1/adipocyte determination and
differentiation factor-1 (SREBP-1/ADD1) is another transcriptional factor that 1s induced
early in adipocyte differentiation. This factor appears to up-regulate PPAR-y expression
(17).

Preadipocyte factor-1 (pref-1) is an inhibitor of adipocyte differentiation. It is
thought to play a role in maintaining preadipocyte phenotype A decrease in pref-1
expression is seen during adipocyte differentiation. It is abundant in preadipocytes, but is
undetectable in adipocytes. It is the only known gene whose expression is completely
down-regulated during adipocyte differentiation (1).

As adipocytes enter the terminal phases of differentiation, they express an
increase in lipogenesis and become sensitive to insulin. The activity, protemn, and mRNA
levels of enzymes found during triacylglycerol (TAG) metabolism increase 10 to 100

fold. These enzymes include ATP citrate lyase, malic enzyme, acetyl-CoA carboxylase,
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stearoyl-CoA desaturase-1 (SCD-1), glycerol-3-phosphate acyltransferase, glycerol-3-
phosphate dehydrogenase, fatty acid synthase, and glyceraldehyde-3-phosphate

dehydrogenase (1)

1. Transcriptional control of adipocyte differentiation

a. Peroxisome proliferator-activated receptor (PPAR) family

The PPARSs belong to a type II nuclear hormone receptor family and form
heterodimers with the retinoid X receptor (RXR) (18). The PPARSs regulate transcription
through binding of PPAR-RXR heterodimers to a response element consisting of a direct
repeat of the nuclear receptor hexameric DNA recognition motif spaced by one
nucleotide (19). There are three known members of the PPAR family, including PPAR-
o, PPAR-3, and PPAR-y. PPAR-a 1s weakly expressed 1n adipocytes. While PPAR-9 is
not adipocyte specific, it is highly expressed in adipose tissue. Unfortunately, its role in
adipose tissue development has not yet been demonstrated. PPAR-y 1s the most adipose-
specific of the PPARs, and it is induced before transcriptional activation of most
adipocyte genes. Low but detectable expression of PPAR-y 1s also seen in the liver and
hematopoietic cells (20). The PPAR-y gene gives rise to two isoforms, y1 and y2
PPAR- y2 is highly enriched in adipose tissue and mediates gene expression regarding
fatty acid metabolism (21). PPAR-y plays a key role in the transcriptional control of
adipocyte-specific gene expression, including aP2, PEPCK, LPL, GLUT-4, and leptin
(1).

The binding of ligands to PPAR-y enhances its transcriptional activity.
Thiazolidinediones (TZDs) are synthetic ligands used to increase insulin sensitivity
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clinically. These compounds bind to PPAR-y with high affinity and increase its

transcriptional activity (22). 15-deoxy-p-PGJ is an endogenous ligand for PPAR-y ¢))

PPAR-y plays an important role in the transcriptional control of adipogenesis.
PPAR-y is expressed at low, but detectable levels in preadipocytes, with its expression
increasing early in adipocyte differentiation (19). Retroviral expression of PPAR-y in
fibroblasts causes an adipocyte phenotype to appear, including morphological changes,
lipid accumulation, and adipocyte-specific gene expression. However, a point mutation
1 the zinc finger of PPAR-y required for DNA binding ablated its ability to induce
differentition (23).

The role of PPAR-y 1n adipogenesis has been demonstrated in PPAR-y knockout
mice. The homozygous null mutation is lethal in gestation, resulting from a placental
dysfunction (24, 25). Chimeric embryos were created using a combination of wild-type
tetraploid cells which contribute to the development of extraembryonic tissues. One
PPAR-y-null homozygous mutant developed to term, but died by postnatal day 5 from a
variety of metabolic disorders. This animal lacked adipose tissue, suggesting that PPAR-
v is required for adipose tissue development in vivo (24). Chimeric mice were also
created from both wild-type embryonic stem (ES) cells and PPAR-y” ES cells (26) In
these mice, PPAR-y null ES cells do not contribute to the formation of adipose tissue, but
do participate in the development of the other tissues This study shows that PPAR-y is
required for the in vitro differentiation of adipocytes from ES cells in addition to its

adipogenic role in vivo.

15



b. CCAAT/enhancer binding protein (C/EBP) famil

C/EBP proteins were the first transcription factors demonstrated to play an
important role in adipocyte differentiation These transcription factors contain a basic
transcriptional activation domain and a leucine zipper motif, which allows for homo- and
heterodimerization. C/EBPs are not limited to adipose tissue, but rather are also found in
other tissues, such as the liver, that metabolize lipids at high rates (1, 27).

The expression of C/EBPs during adipocyte differentiation exhibits a distinct
pattern, with C/EBP-B and C/EBP-3 expressed early in response to hormone stimulation
and C/EBP-a expressed immediately before the induction of most adipocyte-specific
genes (15). In fact, several adipocyte-specific genes, such as SCD-1, GLUT-4, aP2,
PEPCK, leptin, and the insulin receptor, contain C/EBP-a binding sites in their promoter
regions (1, 28).

Ectopic expression of C/EBP- is sufficient to induce differentiation of 3T3-L1
cells in the absence of hormone stimulation, while hormonal stimulation is required to
induce differentiation in 3T3-L1 cells that over express C/EBP-9, but adipogenesis in
these cells is accelerated (29). Constitutive expression of C/EBP-a is sufficient to induce
differentiation of 3T3-L1 cells in the absence of hormonal agents, and the expression of
antisense C/EBP-o. mRNA 1nhibits differentiation of cultured preadipocytes (21, 30).
C/EBP-0 has been shown to promote adipogenesis in a variety of mouse fibroblasts,
including those that have little or no spontaneous capacity to develop into adipocytes
(31). The autoactivation of the C/EBP-a gene seems to play a role in the maintenance of

the adipocyte phenotype.
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Mouse models lacking C/EBPs demonstrate the importance of these transcription

factors 1n adipose tissue development. Mice lacking either C/EBP-B or C/EBP-3 usually
survive without significant developmental of physiological defects. They develop normal
white adipose tissue (WAT), but their brown adipose tissue (BAT) has a reduction in TG
accumulation and UCP-1 expression. The double knockout mice have a very low
survival rate (15%), but they exhibit a reduction in both WAT and BAT. The reduction
in BAT is a result of decreased lipid accumulation, while decreased cell number causes
the reduction in WAT (32). C/EBP-a knockout mice do not develop subcutaneous
inguinal WAT (33) A high percentage of C/EBP-a deficient mice die from
hypoglycemia that results from a failure to perform hepatic gluconeogenesis. The
deficiency of C/EBP-a in the liver prevents it from regulating the genes involved in
energy metabolism including glucose (33) All of these models illustrate the importance

role the C/EBP family plays in adipogenesis.

c._Sterol regulatory element binding protein-1/adipocyte determination and

differentiation factor-1 (SREBP1/ADD1)
SREBP1/ADDI is a group of basic helix-loop-helix (bHLH) leucine zipper

transcriptional factors (1). The SREBP family consists of three members, SREBP-1a, 1c,
and 2. SREBP-1a and 1c are generated from the same gene in both human and murine
models (34). ADDI, cloned from a rat cDNA library, is a homologue of human SREBP-
le (35).

SREBP1/ADDI has been shown to regulate a number of genes involved
cholesterol and fatty acid metabohism (1, 21). SREBP1/ADD1 1s an inactive molecule
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bound to the membrane of the endoplasmic reticulum. Once cells sense a decrease in

cholesterol, SREBP1/ADDI undergoes proteolytic cleavage and translocates to the
nucleus to regulate the expression of target genes (36). While all of the SREBPs are
capable of regulating similar gene expression, regulation of fatty acid biosynthesis 1s
mediated primarily by SREBP-1a and SREBP-1¢/ADDI. In vivo, adipose tissue
expresses predominantly SREBP-1¢/ADD]1 over other forms of SREBP (21). Expression
of a dominant negative form of SREBP-1c/ADD1 suppresses the expression of adipocyte
marker genes and represses 3T3-L1 preadipocyte differentiation (37) Overexpression of
SREBP-1¢/ADDI in preadipocytes increases the transcriptional activity of PPAR-y by

increasing the endogenous ligands (38).

2 Hormonal control of adipocyte differentiation

a. Insulin and insulin-like growth factor-1 (IGF-1)

Addition of insulin to differentiation media can promote adipogenesis and
increase lipid accumulation in adipocytes (39). While preadipocytes express few insulin
receptors, insulin may act by binding to the IGF-1 receptor (1). This may explain why
pharmacological doses of insulin are required to achieve stimulatory effects on
adipogenesis

IGF-1 is an essential factor for 3T3-L1 adipocyte differentiation. It is a critical
component of fetal bovine serum for adipocyte differentiation, or it can be supplemented
to enable differentiation to occur in a serum free environment. IGF-1 has a dose-
dependent action on 3T3-L1 preadipocyte differentiation under both serum-containing
and serum-free conditions (40).

18



Insulin and IGF-1 may stimulate adipogenesis by activating downstream signal

tranduction. Activation of ras by insulin or IGF-1 has been shown to mediate the
stimulatory effects on adipogenesis. This was confirmed when it was shown that ectopic
expression of ras promotes adipogenesis in the absence of hormonal stimulation (41). In
addition, inactivation of ras inhibits adipogenesis. The timing of ras activation during
differentiation is important in determining whether it will exhibit a stimulatory or
inhibitory effect on differentiation. Ras is a small G protein that is also a mediator of the
mitogen-activated protein kinase (MAPK) pathway, whose activation inhibats
differentiation (42). IGF-1 and insulin also activate another down-stream signal, a
serine/threonine kinase Akt (PKB) which is involved in adipocyte differentiation.
Expression of constitutively active Akt/PKB in 3T3-L1 cells induces spontaneous

differentiation (1).

b. Tumor necrosis factor-o. (TNF-o)

TNF-o is a potent inhibitor of adipocyte differentiation. It also suppresses the
expression of some adipocyte-specific gene expression and decreases lipid accumulation
in newly differentiated adipocytes, serving to dedifferentiate these cells (43, 44) This
inhibitory effect on adipogenesis is mediated by down-regulation of C/EBP-0. and PPAR-
v. This may explain the down-regulation of those adipocyte-specific genes, such as aP2
and GLUT4, both of which contain binding sites for C/EBP-o and PPAR-y 1n their
promoters While these “dedifferentiated” cells may appear similar to preadipocytes, the

expression of pref-1 is not restored in TNF-a treated adipocytes. Pref-1 expression is
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therefore a fundamental difference between naive preadipocytes and those that result

from TNF-a treatment (43).

c. Nuclear hormone superfamily

The members of the nuclear hormone superfamily that influence adipocyte
differentiation include glucocorticoids, 3,3°,5-triiodothyronine (T3), and retinoic acid
(RA) It is believed that these hormones act on differentiation via activating nuclear
hormone receptors, including PPAR-y.

DEX, a synthetic glucocorticoid, is used to mnduce differentiation in 3T3-L1 cells
The addition of DEX to a differentiation cocktail is either required for differentiation or 1s
used to accelerate the differentiation procees, depending on the origin of the cells. DEX
has been shown to induce C/EBP-3 expression in 3T3-L1 cells. This increase may
contribute to the formation of C/EBP-86/C/EBP-p heterodimers, which may lead to PPAR-
v expression (1). DEX has also been shown to promote adipogenesis by inhibiting pref-1
expression (45).

RA inhibits adipocyte differentiation when administered in pharmacological
doses The inhibitory effect of RA on adipogenesis is mediated by the inhibition of the
expression of C/EBP-B, C/EBP-a0, and PPAR-y. Physiological doses of RA 1ncreases
adipogenesis The addition of RA either before or after treatment of inducing agents does

not affect differentiation, suggesting that RA acts early in differentiation (1).



d. Prostaglandins

Both mature adipocytes and cultured preadipocytes produce large amounts of
prostaglandins (PGs), including PGFa,, PGE;, PGD,, amd PGl,. PGE; is a potent
antilipolytic compound, suggesting that it may contribute to lipid accumulation in
terminal adipogenesis. PGD; and 1ts derivative, PGJ,, are endogenous ligands for PPAR-
v and therefore act as adipogenic signals (46). Prostanoid FP receptor agonists have been
shown to be potent inhibitors of the differentiation of 3T3-L1 cells. FP receptor
stimulation causes a transient increase in intracellular Ca?*, activation of
calcium/calmodulin dependent protein kinase (CaM), and an increase in DNA synthesis
that is associated with the inhibition of differentiation. The addition of a CaM kinase
inhibitor in the presence of an FP receptor agonist reverses the inhibition of
differentiation and suggests an important role for CaM kinase in adipocyte differentiation
(47) PGI, is an agomst for PPAR-a, PPAR-9, and PPAR-y, suggesting that it may exert
its adipogenic effect by the activation of the PPARs (48). The role of PGE; and PGD; in

adipocyte differentiation is not clear at this time.

e. Intracellular secondary messengers

cAMP, G proteins, and intracellular Ca?* ([Ca®"],) are all important in adipocyte
differentiation. The role of cAMP in adipogenesis has been demonstrated by the use of
MIX in adipocyte differentiation. MIX has been shown to increase the expression of
C/EBP-B. MIX causes intracellular cAMP accumulation by inhibiting phosphodiesterase
and stimulating adenylyl cyclase activity by blocking protein G, (1). Studies have shown
that synthetic cAMP analogs can replace MIX in differentiation cocktail, and increasing
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cAMP through activation of adenylyl cyclase by forskolin can induce differentiation

without MIX (49).

The G proteins, Gy, and G,q, have been shown to play an important role in the
differentiation of 3T3-L1 cells independently of adenylyl cyclase. Either suppression of
Gsq by Gy, antisense knockout or ectopic expression of constitutively active G,q
dramatically accelerated adipogenesis. These effects were exerted at ambient or elevated
levels of cAMP, confirming that their effects on adipogenesis were independent of
adenylyl cyclase (50). Further evidence confirmed this idea by demonstrating that the
specific domains of Gy and G,q responsible for adipogenesis are distinct from those
interacting with adenylyl cyclase (51).

[Ca®"], is also important in cellular signaling and adipogenesis. Increasing [Ca®‘],
by either inhibiting Ca>*-ATPase or stimulating Ca*‘influx, inhibits the early stages of
murine adipocyte differentiation. [Ca®"), exerted this inhibitory effect by blocking the
postconfluent mitotic phase and mediating sustained levels of c-myc expression (52). As
mentioned earlier, the stimulation of the FP receptor by PGF», causes an increase in
[Ca®*],, activating CaM and causing an inhibiton of adipocyte differentiation. This anti-
adipogenic effect can be reversed by the addition of a CaM kinase inhibitor (47). Recent
data confirm that increasing [Ca®"], exerts a biphasic regulatory role in human adipocyte
differentiation, serving to inhibit the early stages of differentiation, while promoting the
later stages of differentiation and lipid accumulation (53). The exact mechanism
whereby [Ca2+], undergoes this transition is unknown. Increasing cAMP promotes
adipocyte differentiation, while it inhibits the expression and activity of fatty acid
synthase, a key enzyme 1n de novo lipogenesis, and stimulates lipolysis in mature
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adipocytes (54). There is a significant interaction between calcium and cAMP signaling

pathways. Studies have shown that adenylyl cyclases are associated with the site of Ca®*

entry into the cell, and Ca®* influx causes an inhibition of type V and VI adenylyl

cyclases. This results in a reduction of cAMP levels (55) Alternatively, other data has
demonstrated that increasing adipocyte [Ca?*], stimulates phosphodiesterase 3B activity,
resulting in a reduction of cAMP levels (56) Accordingly, increasing [Ca**], in the early
stages of differentiation may suppress preadipocyte cAMP levels and thereby inhibit
differentiation In contrast, a [Ca>*],-induced decrease in cAMP late in differentiation up-
regulates lipogenesis and down-regulates lipolysis, promoting late adipocyte

development and lipid accumulation.

3. Preadipocyte factor-1 (pref-1) control of adipocyte differentiation

Pref-1 is an inhibitor of adipogenesis. It is an EGF repeat-containing
transmembrane protein that may link extracellular adipocyte differentiation signals to the
interior cell (57). Expression of pref-1 in 3T3-L1 preadipocytes decreases to
undetectable levels during differentiation. Down-regulation of pref-1 1s required for
adipogenic conversion, while constitutive expression of pref-1 mhibits differentiation
This was confirmed by demonstrating that the exposure of antisense pref-1 to
preadipocytes markedly increases adipogenesis (45). Wnt signaling maintains
preadipocytes in an undifferentiated state through the inhibition of the expression of
PPAR-y and C/EBP-a. Correspondingly, disruption of Wnt signaling increases

adipogenesis (58).
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II. Regulation of Metabolism in Adipocytes

Adipose tissue is a specialized connective tissue designed for synthesis, storage,
and hydrolysis of triacylglycerols (TAGs). Triglycerides are stored as liquid droplets in
the cytoplasm with an average half-life of only a few days. Thus, in a homeostatic
situation, there is a continuous synthesis and breakdown of TAG in adipose tissue. The
triglycerides found in adipocytes are derived from circulating lipoproteins or synthesized
via de novo lipogenesis. De novo lipogenesis refers to the conversion of glucose to TAG.

When energy is needed, TAG can also undergo lipolysis to release these fatty acids.

A. De novo lipogenesis

There are several steps involved in de novo lipogenesis. First, glucose undergoes
glycolysis to produce pyruvate, which can then be oxidized by glycolytic enzymes to
form acetyl-CoA. Citrate synthase converts acetyl-CoA into citrate which can then be
transported from the mitochondria to the cytosol. ATP-citrate lyase converts citrate back
into acetyl-CoA which is converted into malonyl-CoA by acetyl-CoA carboxylase
(ACC). The formation of malonyl-CoA is the rate limiting step of fatty acid synthesis.
Fatty acid synthase (FAS) catalyzes the subsequent synthesis of palmitate from acetyl-
CoA and malonyl-CoA using nicotinamide adenine dinucleotide phosphate (NADPH) as
a reducing equivalent. NADPH is derived from malic enzyme converting malate to
pyruvate, or by the pentose phosphate pathway where glucose-6-phosphate is converted
by glucose-6-phosphate dehydrogenase and 6-phosphogluconate is converted by 6-
phosphogluconate dehydrogenase. ACC and FAS are two key enzymes in de novo
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lipogenesis. ACC catalyzes the rate-limiting reaction in fatty acid synthesis, while FAS
catalyzes the subsequent synthesis of palmitate. The activity of ACC is regulated by
short-term allosteric modification or covalent phosphorylation. FAS, however, is
regulated at the transcriptional level, resulting in changes in FAS protein amount (59, 60).
Humans exhibit lower FAS activity in both liver and adipose tissue compared to
rodents. This may be attributed to the lower metabolic rate in humans compared to
rodents (61). Human adipocytes contain substantial levels of FAS expression and
activity which 1s sensitive to both nutritional and hormonal modulation (62, 63). Studies
in humans given a high carbohydrate diet demonstrate that adipose tissue plays an
important role in fat synthesis under these diets (64, 65). Adipocyte FAS expression and
activity are elevated in genetic obesity (66). Thus, up-regulation of adipocyte de novo

lipogenesis may contribute to obesity

1. Fatty acid synthase (FAS)

The FAS found in E col: and higher plants consists of seven separate
polypeptides that are tightly associated in a single, organized complex (67) However,
FAS found in vertebrates is comprised of a single, large peptide. From its N-terminus to
its C-terminus, the amino acids encoding B-ketoacyl synthatase, acetyl-CoA trnsacylase,
molonyl-CoA transacylase, dehygratase, enoyl reductase, ketoacyl reductase, acyl carrier
protein, and thioesterase are organized into discrete domains Active FAS is a

homodimer with two identical 250 kDa subunits (68).
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2. Nutritional, hormonal, and transcriptional regulation of fatty acid synthase

FAS is very sensitive to changes in nutritional status. In rats, the fasting state
exhibits a decrease in the synthesis of FAS, while refeeding a high carbohydrate/low fat
diet after fasting increases FAS synthesis by 20-25 fold (69). Using the same starvation
and refeeding approach in mice produced an increase in FAS expression by up to 39 fold
(70). This fasting/refeeding model alters the circulating glucose level, which induces the
secretion of hormones mediating de novo lipogenesis. These hormones will be discussed
later.

Carbohydrates play an important role in regulating FAS. Experiments in
hepatocytes and adipocytes demonstrate that glucose stimulates the transcription of
lipogenic genes including FAS (60). However, 3-O-methylglucose, a glucose analogue
transported into the cell but not phosphorylated by hexokinases, does not induce FAS
expression in adipose tissue. 2-deoxyglucose, a glucose analogue transported into the
cell and phosphorylated to 2-deoxyglucose-6-phosphate, mimics the effect of glucose on
FAS expression. This suggests that glucose-6-phosphate and 1ts metabolites may be the
signal that mediates the effect of glucose in its regulation of FAS (71).

Dietary polyunsaturated fatty acids (PUFAs) potently inhibit FAS activity and
expression, Dietary supplement of 2% 18:2 (n-6) to a high carbohydrate/fat free diet
results in a suppression of hepatic fatty acid synthesis and FAS activity There was no
effect when saturated or monounsaturated fatty acids were used (71). Thus inhibitory
effect has been extended to include all PUFAs of the n-3 and n-6 families (72).

Growth hormone (GH) and thyroid hormone (T3) also mediate the regulation of
FAS. GH appears to antagonize the effect of insulin on FAS stimulation It decreases
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FAS expression in rats and in cultured pig adipose tissue (73, 74). Thyroid hormone
stimulates FAS expression. Injection of T into rats for seven days increased FAS
activity in the liver (75). Moreover, both liver and WAT FAS expression is increased in
hyperthyroid rats and decreased in hypothyroid rats (76).

Insulin and glucagon are both involved in the regulation of FAS. FAS expression
is very low 1n streptozotocin-diabetic mice, but increases by 2 fold within 1 hr after the
administration of insulin and 19 fold within 6 hrs after insulin administration (70). In
contrast, administration of glucagon or dibutyryl cAMP during the refeeding of animals
previously fasting blocked the elevation of FAS expression (70). These data suggest that
glucagon, via the elevation of cAMP, antagonizes the stimulation of FAS expression by
insulin.

Insulin’s stimulatory effect on FAS activity is mediated by a cis-acting insulin
response element (IRE). The IRE has been identified in the region from —67 to -52 on
the FAS promoter (77). Additional studies demonstrate that the minimal region (-67/-52)
that responds to insulin contains an E box (-65/-60) essential for transcriptional factor
binding, suggesting that the transcriptional factors that are able to bind to the E box (-65/-
60) may mediate insulin stimulation of FAS expression (78).

The cellular signaling pathway mediating insulin regulation of FAS is constantly
being studied A phosphatidylinositol-3 kinase (PI-3 kinase) mhibitor, wortmannin, has
been shown to block insulin stimulation of FAS (79). Ectopic expression of constitutive
"active p110 subunit of PI-3 kinase increased insulin stimulation of FAS, while
overexpression of dominant negative p85 subunit suppressed insulin stimulation of FAS

transcription. Moreover, overexpression of Akt/PKB, a downstream signal of PI-3
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kinase, stimulated FAS transcription in the absence of insulin (79). These data suggest
that PI-3 kinase and Akt/PKB are both mediators of insulin stimulation of FAS.

SREBP1 mediates insulin stimulation of FAS. FAS promoter contains two
tandem SREBP1 binding sites split by the E box (-65/-60). These sites were first shown
to mediate sterol modulation of FAS expression (80), but SREBP1 has also been shown
to bind to this E box region and activate FAS transcription (81). In addition, SREBP1
levels decreased during fasting and increased with refeeding of a high carbohydrate diet.
These observations suggest that SREBP1 may mediate insulin stimulation of FAS via the
E box region.

Angiotensin II, which has been shown to be synthesized and secreted by
adipocytes, stimulates FAS activity in both 3T3-L1 adipocytes and human adipose tissue
(82). This effect is mediated by activation of SREBP1c and IRE (83).

The human homologue of agouti, which is expressed in human adipose tissue, has
been shown to upregulate adipocyte FAS activity and expression in both 3T3-L1 and
human adipocytes in a Ca’*-dependent mechanism (84). Agouti stimulation of FAS is
exerted at the transcriptional level. The effects of agouti and insulin on FAS expression
are independent and additive. Studies have demonstrated an agouti/Ca”" response

element mediating agouti stimulation of FAS transcription in FAS promoter (85).

B. Lipolysis

Lipolysis allows for fatty acids stored as TGs to be released and used for energy
during the fasting state. Released free fatty acids (FFA) are transported in the
bloodstream bound to albumin and taken up by other tissues. Fatty acids and their
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derivatives also participate in many events involved in cell signaling and membrane
biosynthesis.

Adipocyte lipolysis involves three reactions. The first reaction is the hydrolysis
of a TAG to a diacylglycerol (DAG). Hormone-sensitive lipase (HSL) catalyzes this
rate-limiting step. HSL also catalyzes the next step in lipolysis, the hydrolysis of a DAG
to a monoacylglycerol (MAG). The last reaction of lipolysis, the conversion of a MAG
into glycerol and FFA, is catalyzed by monoglyceride lipase (MGL). While there is no
evidence of any regulation of MGL, HSL is recognized to be regulated by nutrition and

hormones (86) Therefore, HSL is a key enzyme in adipocyte metabolism.

1. Hormone-sensitive lipase (HSL)

c¢DNA for HSL has been obtained from both rats and humans (87). The human
HSL gene is composed of 9 exons, encoding a 775-amino acid protein. In addition to
adipose tissue, HSL 1s also present in steroidogenic tissues such as the heart, muscle,
adrenal cortex, pancreas, and ovary and testis (88, 89, 90, 91, 92). Regions upstream of
exon 1 are expressed in a tissue-specific manner, which are either noncoding in adipose
tissue or encode an N-terminal extension of the enzyme, as in the testis (92) and in the
pancreas (91), leading to a relatively larger species in these tissues. HSL also has a
significant activity against long chain esters of cholesterol (89).

HSL protein is composed of an N-terminal domain and a C-terminal catalytic
domain. The catalytic domain includes a catalytic site, a regulatory module, and a
putative lipid binding domain (93). The active catalytic triad of HSL consists of Ser-423,
Asp-703, and His-733 (94). The N-terminal domain is thought to be involved in the
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interaction of HSL with other cellular proteins, such as fatty acid binding protein (FABP)

(95).

Adipocyte lipolysis is under acute hormonal control. Lipolytic hormones, such as
catecholamines, act through B-adrenergic receptors, resulting in increases in cAMP The
increases in cAMP then activate cAMP dependent protein kinase A (PKA). The
activation of PKA phosphorylates and activates HSL. Insulin, on the other hand,
phosphorylates and activates Akt/PKB via the insulin receptor and downstream PI-3
kinase. PKB phosphorylates and activates phosphodiesterase 3B, an isoform expressed
in adipose tissue, which in turn catalyzes the degradation of cAMP. The decrease 1n
cAMP and PKA activity leads to the inhibition of lipolysis (96, 97).

HSL is regulated by reversible phosphorylation. It is phosphorylated at two
distinct serine residues, the regulatory and basal site. PKA phosphorylates HSL at the
regulatory site (Ser-551 in humans), leading to the activation of HSL (98). The basal site
(Ser-553 in humans) 1s phosphorylated by glycogen synthase kinase-4, Ca®*/calmodulin
dependent kinase II, and 5’~AMP-dependent protein kianse (AMPK) (99).
Phosphorylation of the basal site prevents the phosphorylation of the regulatory site, thus
exerting an anti-lipolytic effect (100). Two more serine sites, Ser-659 and Ser-660 in
rats, have been identified to be phosphorylated by PKA. Site-directed mutagenesis has
demonstrated that these two sites are critical in regulating HSL activity (101). The above
suggests that HSL 1s subject to phosphorylation regulation at multiple serine sites.

The mechanism of HSL activation remains unclear. HSL is decreased 2 to 3 fold
by PKA in vitro, while a more than 20 fold increase in lipolytic rate occurred in intact fat

cells in response to hormonal stimulation (96) This may be explained by the
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translocation of HSL from cytosol to lipid droplets upon isoproterenol stimulation (102,
103). Inresting cells, HSL is localized in the cytosol Upon lipolytic stimulation, HSL
translocates from the cytosol to the lipid droplets. This is seen in both 3T3-L1 and rat
adipocytes (102, 103).

Perilipins are proteins found exclusively on the TAG-rich lipid droplets in
adipocytes and the cholesterol ester-rich droplets in steroidogenic cells (104). They are
phosphorylated by PKA upon lipolytic stimulation. In addition, it is believed that non-
phosphorylated perilipins impose a barrier to HSL actions that is attenuated by PKA
phosphorylation (104). When perlipin constructs were transfected to cells normally
having small amounts of lipid droplets, perilipins localized to the lipid droplets and the
intracellular TAG content increased as a result of decreased hydrolysis of lipids (104).
This data suggests a protective role of perilipins against lipid hydrolysis. Moreover,
TNF-q exerts a potent lipolytic effect via the inhibition of perilipin expression, leading to
a reduction of perilipin immunostaining at the droplet surface (104). Overexpression of
perilipin blocked TNF-a’s effect (105), confirming the inhibitory role of non-
phosphorylated perilipin on lipolysis Phosphorylation of perilipin by PKA results in the
redistribution of perilipin on lipid droplets. This redistribution altered the structure of the
lipid droplets surface, allowing HSL to interact with the core TAG 1n the lipid droplets
(104). Another protein that is involved in HSL translocation and its interaction with lipid
droplets is lipotransin. Lipotansin is an HSL-docking protein that may mediate the
hormonally regulated redistribution of HSL (106).

Overexpression of HSL in 3T3-L1 adipocytes results in a diminished
accumulation of TAG (107), confirming HSL’s role as a key enzyme in lipolysis. HSL
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knockout mice exhibit normal body weight, fat mass, and cold sensitivity (108). The
male mice, however, are sterile because of oligospermia. They have normal gonadal and
adrenal function, but the neutral cholesterol esterhydrolase activity is completely lost in
the testis. WAT remained unchanged 1n these amimals, and retained 40% of TAG lipase

activity (108).

2. Nutritional and hormonal regulation of hormone-sensitive lipase

a. Nutritional regulation

Nutritional status regulates lipolysis Prolonged fasting for 3 to 5 days increases
basal lipolysis rate, HSL activity, protein, and mRNA level in rat adipocytes (109). In
addition, long-chain fatty acyl CoA and intermediary lipid metabolites, such as palmitoyl
CoA and oleic acid exert an inhibitory effect on HSL activity (110), reflecting a feed-
back inhibitory mechanism. Studies have shown that FABP may serve to hmit the
inhibitory effect of intermediary lipid metabolites on HSL activity (95). Ketone bodies
produced during fasting, vigorous exercise, and uncontrolled diabetes act as potent
inhibitors of lipolysis (111). Thus, ketone bodies, such as acetoacetate and B-

hydroxybutyrate, may be important modulators of lipolysis under the above conditions.

b. Hormonal regulation

Catecholamines are powerful regulators of lipolysis that are mediated by four
adrenergic receptors: $1, B2, B3, and a2 (112). Signals through P receptors result in
increases in cAMP and stimulation of lipolysis, a2 receptors have the opposite effect on

lipolysis. It is believed that a2 receptors predominate in the regulation of adipose tissue
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lipolysis at rest, and p receptors assume a more important role during stress (113). Each
receptor subtype may have a different signaling role.

Growth hormone (GH) stimulates lipolysis in vitro and at physiological
concentrations in vivo (114, 115). Glucagon and the synthetic glucocorticoid
dexamethasone also exert potent lipolytic effects in rat adipocytes (114). GH and
glucagon exert lipolytic effects by stimulating acute HSL activity, while glucocorticoids
increase lipolysis by stimulating both HSL activity and expression (114).

Tumor necrosis factor-o. (TNF-a) 1s produced and secreted by adipose tissue, with
its production increased in obesity (116). Studies have demonstrated TNF-a as a potent
lipolytic factor. It stimulates lipolysis by inhibiting perilipin expression. This action was
confirmed when overexpression of perilipin blocked TNF-o stimulation of lipolysis
(117).

Insulin is by far the most potent anti-lipolytic hormone and has been extensively
studied. Recent studies demonstrated that lipolysis in normal subjects is sensitive to
insulin with a half-maximal effect (EDsq) occurring at a concentration of 12 pM (118).
However, while insulin acutely inhibits hormone-stimulated lipolysis, chromc exposure
of rat adipocytes to insulin resulted in stimulated lipolysis and activation of HSL (119).
This long-term effect of insulin may also contribute the elevation of plasma FFAs in
obesity and diabetes, which are frequently accompanied with hyperinsulinemia and
insulin resistance.

Adenosine is also a potent anti-lipolytic factor. Intracellular cAMP 1s constantly
exported from adipocytes to extracellular space where it is then converted to adenosine

by phosphodiesterase and 5’-nucleotidase. Adenosine acts on the A; adenosine receptor,
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which inhibits adenylyl cyclase via coupling G,, This results in a reduction of cAMP

levels (120). This may represent a transmembrane negative feedback mechanism which
would limit excess cAMP production, and inhibit lipolysis.
The major prostaglandins, PGI, and PGE,, also exert effects on lipolysis. PGE; is

an anti-lipolytic agent, while PGI; stimulates lipolysis in rat adipocytes (121).

1. The Role of Intracellular Ca®* in Obesity

A. The role of intracellular Ca*' in syndrome X

Obesity is closely related to other metabolic disorders, including insulin
resistance/hyperinsulinemia, hypertension, and dyslipidemia. These diseases have been
integrated into a metabolic syndrome referred to as “Syndrome X” (122). Obesity,
hypertriglyceridemia, hypertension, and insulin resistance/hyperinsulinemia has also been
termed the “deadly quartet ” There is much evidence to demonstrate that all of these
disorders are characterized by an underlying impairment in intracellular ca?* ([Ca®™"])
levels Draznin et al. first reported that obese patients exhibited an elevation in basal
adipocyte [Ca?*], (123). Sustained elevations of [Ca’*], have been observed in
cardiomyocytes in patients with left ventricular hypertrophy (124), vascular smooth
muscle cells, platelets, and erythrocytes in patients with hypertension (124-128), and
skeletal muscle cells and adipocytes in patients with insulin resistance (123, 128, 129).
To explain these tightly interacting abnormalities a unifying “ionic hypothesis” was
proposed. This hypothesis suggests a common cell lesion underlying these disorders in
different tissues characterized, in part, by elevations in steady-state intracellular [Ca2+"_|l

levels (124). Consistent with this hypothesis, antagonism of Ca®* influx results in clinical
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improvements in blood pressure, insulin resistance, platelet aggregation, and left
ventricular hypertrophy (124). Studies of the mechanisms of agouti-induced obesity also

indicate that obesity may be partly a manifestation of a lesion in [Ca?!), regulation (130)

B. Calcium homeostasis and obesity

Obesity is associated with alterations 1n calcium homeostasis. Of the calcium
found in plasma, 50% of the calcium is 10omzed, 35% 1s bound to albumin, and the
remaining 15% is complexed with anions. Over half of the calctum found in serum is
ionized calcium. Only the ionized calcium is biologically active and can be regulated by
calcium-homeostatic hormones, including PTH, 1,25-(OH),-D3, and calcitonin.
Decreased serum ionized calcium, increased urinary calcium excretion, and increased
calcitrophic hormones PTH and 1,25-(OH),-D; have been observed in obese humans
(131-134). While serum calcium levels remain relatively stable, serum albumin,
phosphate, and bicarbonate levels are decreased in obesity. In addition, serum citrate,
lactate, fatty acids, and urate levels are increased (132). This causes the concentration of
less readily resorbable anion in the renal ultrafiltrate, increasing urinary calcium
excretion, and consequently decreasing serum ionized calcium (135). A decrease in the
ionized calcium found in the serum stimulates the synthesis and release of calcitrophic
hormones (132). An inverse correlation has been identified between serum ionized
calcium levels and BMI (132). However, weight reduction does result in the
normalization of serum phosphate, bicarbonate, lactate, and fatty acid levels, as well as

an increase in serum ionized calcium and a decrease in calcitrophic hormone levels (136).
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C. Intracellular Ca** and adipocyte metabolism

[Ca?*], plays an important role in the regulation of adipocyte metabolism. Obese
patients exhibit an elevation in basal adipocyte [Ca®], (123) This elevation in [Ca™],
has some physiological consequences that affect lipogenesis and lipolysis. Rat
adipocytes were treated with A23187, a calcium ionophore, which caused an increase in
both basal and insulin-stimulated lipogenesis. This action was completely blocked by the
calcium channel antagonist verapamil and by the calmodulin inhibitor calmidazolium
(137). [Ca2 , has also had an inhibitory effect on adipocyte lipolysis. [Ca**], modulation
plays a role in the regulation of both lipolytic and anti-lipolytic actions of hormones in
adipocytes (138-140). The anitlipolytic effect of epidermal growth factor (EGF) is
mediated by an increase in [Ca®>*]. The interaction between EGF and [Ca®"], increases
the interaction between G, and adenylyl cyclase, thereby reducing cAMP and inhibiting
lipolysis (139, 140). Thyroid hormone modulates lipolysis by increasing [Ca?*], via
alterations in phosphodiesterase activity (141). In addition, increasing [Ca®], by the
calcium ionophore A23187 in hamster adipocytes stimulates phosphodiesterase activity

and decreases cCAMP levels, resulting in an inhibition of lipolysis (142).

D. Regulation of adipocyte intracellular Ca**

There are many nutritional, hormonal, and pharmacological factors that regulate
[Ca**],. Some of these factors include agouti, calcitrophic hormones PTH and 1,25-

(OH),-Ds, sulfonylureas, angiotensin II, as well as many others.
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1. Agouti regulation of intracellular Ca®*

Agouti was the first obesity gene cloned (143). [Ca®*], mediated increases in
lipogenesis and decreases in lipolysis have also been studied in agouti. 4” mice exhibit
increases in both steady-state [Ca’*), and Ca*" influx in several tissues (144, 145). The
increase in [Ca®*], 1s correlated with the degree of ectopic agouti expression and body
weight (144). A” mice also exhibit elevated adipocyte fatty acid synthase expression,
suggesting that adipocyte de novo lipogenesis is increased in this model (146). In
addition, in vitro studies demonstrate that recombinant agouti protein stimulates dose-
responsive increases 1n Ca®" influx and steady-state [Ca*'], in a varety of cell types,
including both murine and human adipocytes (144, 145) The physiological
consequence of this increased [Ca®"], was explored by studying adipocyte lipogenic genes
and their activity. Agouti stimulates FAS expression and activity in a Ca’*-dependent
manner. This action can be mimicked by Ca®* channel activation and reversed by Ca®*
channel antagonism (146). These actions are mediated by an agouti/Ca”" response
element on the FAS promoter region (85). Moreover, agouti expression is highly
correlated with in vivo FAS expression and activity, suggesting that agouti protein, which
is normally expressed in human adipose tissue, may play a role in human obesity (147).

In addition to the effect of agouti on lipogenesis, agouti protein inhibits basal and
agonist-stimulated lipolysis in human adipocytes via a Ca?*-dependent mechanism (130).
The mechanism of the anti-lipolytic effect of [Ca®"], was recently shown to be increased
[Ca**], activation of phosphodiesterase 3B, reducing cAMP levels, and thereby inhibiting

HSL activity (148). Moreover, agouti regulation of adipocyte [Ca®*], appears to promote
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triglyceride accumulation in adipocytes by stimulating lipogenesis and inhibiting

lipolysis.

Agouti acts upon Ca?" channels through a homology between the carboxyl
terminus of agouti and w-conotoxins and plectoxins (149). The antagonism of [Ca®*], by
either blocking Ca®* channels or inhubiting Ca®* agonists would seem to be a possible
therapeutic treatment for obesity. Calcium channel blockade has been shown to reduce
body weight and fat pad mass effectively in several animal models. Treating transgenic
mice overexpressing agouti with the Ca®* channel antagonist mfedipine resulted n

decreases in adipocyte lipogenesis and reduction in fat pad mass (150).

2. Sulfonylurea receptor regulation of intracellular Ca**

Sulfonylureas, such as glibenclamide, are insulin secretagogues used to stimulate
insulin secretion for the treatment of non-insulin-dependent diabetes mellitus. They bind
to the sulfonylurea receptor (SUR) of pancreatic f-cells and then block the conductance
of an ATP-dependent potassium channel (Kare channel) (151). The attenuation of
potassium current by blocking this channel depolarizes the B-cells and induces Ca® entry
via L-type calcium channels, causing increased insulin secretion (152, 153).

Patients treated with glibenclamide frequently experience weight gain.
Conversely, diazoxide, which inhibits SUR by activating Katp channels, exerts an
antiobesity effect in obese Zucker rats and hyperinsulinemic, obese humans (154-156).
The effects of glibenclamide and diazoxide on body weight have been attributed to their

effect on circulating insulin rather than any direct effect on adipocytes (154-156).
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However, it has been demonstrated that human adipocytes express a SUR that mediates
adipocyte [Ca?"], signaling (157).

Adipocytes exhibit a corresponding glibenclamide dose-responsive increase in
[Ca*], Glibenclamide exerts lipogenic and antilipolytic effects in human adipocytes,
with significant increases in FAS and GPDH activity and a decrease in glycerol release
(157). Diazoxide blunted each of the above effects (157). These data suggest that the
SUR found in human adipocytes regulates [Ca®*], and thereby mediates lipogenesis and
lipolysis. Consistent with these findings, glibenclamide increased [Ca®"], in 1solated rat
adipocytes in a dose-dependent manner by stimulating Ca** influx through voltage-
dependent Ca®* channels, with this effect blocked by nitrendipine (123). While more
studies are needed, these data suggest a potential role for the human SUR in modulating

energy storage, and therefore obesity.

3. 1,25-dihydroxyvitamin D regulation of intracellular Ca**

The active form of vitamin D, 1,25-(OH),-D3, generates biological responses via
genomic and non-genomic pathways. 1,25-(OH),-D3 was originally believed to solely
function via a nuclear receptor in a manner similar to other members of the steroid
hormone superfamily (158). 1,25-(OH),-D3 binds to and activates a specific nuclear
hormone receptor, n'VDR. The activated nVDR interacts with another nuclear receptor,
RXR, and forms a heterodimer complex This complex functions as a transcriptional
factor to act on the direct repeat response element named DR-3 in the promoter region of
certain genes. It either stimulates or suppresses the transcription of these genes (158).

nVDR knockout mice exhibit impaired bone formation and growth retardation (159,
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160). A high calcium, phosphorous and lactose diet fed at 16 days of age in nVDR
knockout mice allows normal mineral ion homeostasis, reversing the vitamin D deficient
phenotype, and suggesting that an alternate pathway may act to preserve intestinal
calcium absorption and subsequent bone modeling in the absence of a functional nVDR
(161). It has been shown that 1,25-(OH),-D; stimulates intestinal transcaltachia, the
rapid stimulation of Ca®* transport into intestinal epithelium, which may contribute to the
intestinal calcium absorption in these nVDR ablated mice, although might not be
sufficient to prevent the phenotype of vitamin D deficiency in these mice fed normal
calcium diets(162)

1,25-(OH),-Ds also generates rapid, non-genomic signal transduction via a
membrane vitamin D receptor (nVDR) in a variety of cells (163). It is responsible for
the modulation of calcium channels, activation of phospholipase and subsequent
production of DAG and inositol triphosphate, activation of protein kinase C, and
stimulation of MAP kinase. 1a,25-dihydroxylumisterols, a 6-s-cis-locked analog of 1,25-
(OH),-D3, exerts a non-genomic action, including stimulation of Ca*' influx, via the
mVDR (164, 165) An A-ring diasteromer analog of 1,25-(OH),-Ds, 1B,25-
dihydroxyvitamin Ds, antagonizes the before mentioned action, but has no effects on the
nVDR (166)

1,25-(OH),-D; elicits both genomic and non-genomic actions in adipocytes,
resulting in modulation of lipid and energy metabolism (167-170). It was recently
demonstrated that 1,25-(OH),-Ds stimulates adipocyte [Ca®"],, promotes lipogenesis, and

inhibits lipolysis in human adipocytes via a rapid non-genomic action (168, 169). These
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actions were mimicked by 10,25-dihydroxylumisterols, a specific mVDR agonist, and
can be prevented by 1p,25-dihydroxyvitamin Dj, a specific mVDR antagonist.

In contrast, 1,25-(OH),-Ds, exerts an inhibitory effect on adipocyte uncoupling
protein-2 (UCP2) expression in human adipocytes independently of the mVDR via
genomic action (170). mVDR agonists and antagonists failed to affect 1,25-(OH),-D3’s
inhibitory effect on adipocyte UCP2 expression, while nVDR knockout by antisense
oligodeoxynucleotide (ODN) prevents the inhibitory effect of 1,25-(OH),-D3 on
adipocyte UCP2 expression, demonstrating that the nVDR mediates 1,25-(OH),-Ds
inhibition of human adipocyte UCP2 expression (170).

The role of 1,25-(OH),-D; in human obesity is still being explored. nVDR gene
polymorphism 1s associated with the susceptibility to obesity in humans with type 2
diabetes (171). Circulating levels of 1,25-(OH),-D; are elevated in obese humans (132).
1,25-(OH),-D3 has been shown to stimulate Ca®" and insulin release in pancreatic B-cells,
indicating that 1,25-(OH),-D3, elevated with the disruption of calcium homeostasis
commonly seen in obese humans, may contribute to the development of hypennsulinemia
via non-genomic action (172-174). Antagonism of 1,25-(OH),-D3; may offer new
interventions for obesity. Suppression of 1,25-(OH),-D; levels by increasing dietary
calcium decreased adipocyte intracellular Ca?*, stimulated lipolysis, inhibited
lipogenesis, increased adipocyte UCP2 expression and core temperatures in aP2-agouti
transgenic mice (167-169). The dietary calcium not only attenuated diet-induced obesity,
but also accelerated weight loss and fat mass reduction secondary to caloric restriction

(167-169).
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Recent data have demonstrated that this mechanism 1s relevant to humans.
Population-based observation of the NHANES III survey revealed that the odds ratio of
being in the highest body fat quartile was significantly reduced to 0.16 if they were in the
highest calcium intake quartile (167) In an earlier clinical trial involving the
antihypertensive effects of dairy products in African-Americans, it was noted that adding
calcium-rich dairy foods (yogurt) to the diet resulted in a loss of body fat, decreased
circulating insulin, decreasc.:d intracellular calcium, and antihypertensive effects (168).
More recently, a 6-month clinical trial in obese adults showed that those who consumed a
calcium-rich (either from dairy or supplement), hypocaloric diet had greater loss in
weight and fat mass as compared to those who consumed a low calcium, hypocaloric diet
(168). Interestingly, increasing dietary calcium caused more fat loss from the abdominal
region of the body (50% of total fat loss with supplement and 66% loss with dairy) as
compared to the low calcium diet (19% of total fat loss) (168). Davies et al. (175)
reported that a significant negative association between calcium intake and body weight
was observed in two cross-sectional and two longitudinal studies. The odds ratio of
being overweight was 2.25 for women in the lower half of calcium intakes (175) They
also found a significant weight loss in subjects maintained on a calcium supplement in a
double-blinded, placebo-controlled, randomized clinical trial (175). Another study
exploring the dietary intakes of 53 children showed that the higher the dietary intake of
calcium, the lower the body fat mass (176). All of these studies support the relationship
between increased calcium intake and reductions in body weight specific to fat mass in

both genders, over a wide range of ages, and in many races.
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PART 3

EFFECTS OF 1,25-DIHYDROXYVITAMIN D; ON ADIPOCYTE
DIFFERENTIATION
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I. Abstract

Several recent reports from this laboratory demonstrate a regulatory role for
intracellular Ca®* ([Ca®*],) in modulating lipid metabolism 1 both human and murine
adipocytes, with increased [Ca?*], coordinately stimulating lipogenesis and inhibiting
lipolysis, thereby expanding lipid mass. Further, we have recently demonstrated that
1,25-dihydroxyvitamin-Dj; [1,25-(OH),-Dj3] stimulates adipocyte membrane vitamim D
receptor (mVDR)-mediated rapid Ca®* influx into adipocytes, resulting in the stimulation
of lipogenesis and inhibition of lipolysis. However, increasing [Ca®"], in the early stages
of differentiation 1nhibits human adipocyte differentiation, whereas increasing [Ca], in
the late stage promotes human adipocyte differentiation. Accordingly, we have
investigated the role of 1,25-(OH),-Dj3 in the differentiation of 3T3-L1 preadipocytes,
using triglyceride (TG) accumulation and glycerol-3-phosphate dehydrogenase (GPDH)
as markers 3T3-L1 preadipocytes were placed in differentiation media upon confluence,
and exposed to varying amounts (0, 1nM, and 10nM) of 1,25-(OH),-D; for either one-
hour pulses or for sustained (24 hrs or 48 hrs) amounts of time throughout the
differentiation process. Exposure to one-hour pulses of 1nM 1,25-(OH),-D; throughout
differentiation caused modest decreases (31%-38%) in TG accumulation (p<0 0001),
with one-hour pulse exposure to10nM 1,25-(OH),-Dj3 having little to no effect on TG
accumulation. One-hour pulse exposure to both 1nM and 10nM 1,25-(OH),-D;
suppressed GPDH activity early, but not late in differentiation. Sustained (24-hour)
exposure to 1,25-(OH),-D; (1nM and 10nM) inhibited differentiation at 0-24 hrs, with
decreases in both TG and GPDH of 41-81% (p<0 0001). Similarly, sustained exposure

of 1,25-(OH),-D; resulted in marked inhibition of GPDH activity and TG accumulation
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early in differentiation. In contrast, sustained exposure late in differentiation exerted no
significant effects on either marker of differentiation PPAR-y and pref-1 expression
were also used as markers of differentiation. One-hour pulses of 10nM 1,25-(OH),-Ds
did not cause any changes in PPAR-y expression compared to control. Sustained
exposure to 1,25-(OH)>-D3 throughout differentiation decreased PPAR~y expression,
with a 92% decrease from 0-48h (p<0.0001). One-hour pulses of 1,25-(OH),-D; had no
effect on Pref-1 expression, with the exception of an increase in expression at 47-48 hr
(p<0.0001). Sustained exposure to 10nM 1,25-(OH),-D3 at 0-48 hrs, 24-48 hrs and 47-
48 hrs all caused significant increases (125%-146%) 1n the expression of Pref-1
(p<0.001). Thus, although 1,25-(OH),-D; stimulates lipogenesis, inhibits lipolysis and
increases TG accumulation in mature human and murine adipocytes, it also modestly

inhibits the differentiation of preadipocytes into mature adipocytes.

I1. Introduction

Intracellular calcium ([Ca®*'],) plays a key role in the metabolic modifications
associated with obesity (1). Studies involving the mechanisms of agout: gene-induced
obesity found that [Ca®"], modulates de novo lipogenesis in both human and murine
adipocytes. Previous studies show that an increase in [Ca®], via receptor or voltage-
mediated calcium channels stimulates the expression and activity of fatty acid synthase
(FAS), a key enzyme in de novo lipogenesis, thereby causing an increase in lipogenesis
and a decrease in lipolysis The resulting triglyceride accumulation leads to adipocyte

hypertrophy (2).
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[Ca®"], also appears to play a role in the regulation of adipogenesis, a contributing
factor to both human and murine obesity (3). In order to investigate the specific role of
calcium, both thapsigargin, a Ca>*-ATPase inhibitor, and A23187, a calcium 10nophore,
were used as calcium agonists to stimulate an increase in [Ca®*), in human preadipocytes.
Exposure early in differentiation suppressed triglyceride accumulation greatly. However,
ncreasing [Ca®*], late in differentiation increased triglyceride accumulation. Similar
results were also seen using KCl and agouti protein as [Ca®*}, agonists (2, 3) Therefore,
increasing [Ca®*], has a biphasic effect on human adipocyte differentiation, with an
increase early inhibiting differentiation and an increase in the late stages stimulating
adipocyte differentiation and lipid filling (3).

Recent studies have introduced a paradox by showing that a decrease in the
expression of genes normally involved in adipogenesis 1s associated with obesity and
diabetes mellitus. White adipose tissue from obese mice exhibited decreased expression
of genes important in adipocyte differentiation, as compared to the lean controls. Sterol
responsive element binding protein (SREBP), responsible for positively regulating
multiple genes coding for lipogenic enzymes, demonstrated a 2 7-fold decrease in
expression. Several mRNAs that encode proteins involved in lipid metabolism were
decreased, including glycerol 3-phosphate dehydrogenase and stearoyl CoA desaturase
A dedifferentiation was observed in 3T3-L1 adipocytes including a suppression of
PPARy and C/EBPaq, as well as other lipogenic enzymes in response to tumor necrosis
factor a and transforming growth factor B (4).

1,25-dihydroxyvitamin D3 [1,25-(OH),-Ds] acts as a calcium agonist (5). Further,

we have recently demonstrated that 1,25-(OH),-D3 stimulates adipocyte membrane
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vitamin D receptor (mVDR)-mediated rapid Ca®" influx into adipocytes, resulting in the
stimulation of lipogenesis and inhibition of lipolysis (5). This effect was mimicked by
10,25-(OH)2-lumisterols, an agonist for the mVDR These effects were not seen when
the human adipocytes were pretreated with 1pB,25-dihydroxyvitamin Ds, a specific
antagonist for mVDR. 1,25-(OH),-D; was also shown to increase adipocyte fatty acid
synthase (FAS), with 10,25-(OH),-lumisterol; having a greater stimulatory effect on FAS
activity. Pretreatment with 1pB,25-dihydroxyvitamin Ds also prevented the stimulation of
FAS. 1,25-(OH);-Ds and 10,25-(OH),-lumisterol; also reduced adipocyte basal lipolysis,
with 1B,25-dihydroxyvitamin D preventing any inhibition of lipolysis (5). In addition,
Norman et al. (6) demonstrated that 1¢,25-dihydroxylumisterols acts on the mVDR solely
to generate non-genomic action in adipocytes, while 1,25-(OH),-D; may target both the
mVDR and the nuclear vitamin D receptor (nVDR) to mediate genomic and non-genomic
actions which may interact with each other in signal response and, thereby compromise
the modulation of lipid metabolism Accordingly, we have investigated the role of 1,25-

(OH),-Ds in adipogenesis.

III. Materials and Methods

A. Culture and differentiation of murine preadipocytes

3T3-L1 preadipocytes obtained from ATCC were grown in Dulbecco’s Modified Eagle
Medium (DMEM) containing 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin. Confluent cells were differentiated 1n a standard differentiation
medium consisting of DMEM supplemented with 10% FBS, 1% penicillin/streptomycin,

isobutylmethylxanthine (IBMX), dexamethasone, and varying amounts of 1,25-(OH),-Ds
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(0, 1nM, 10nM) in ethanol. Eight of the treatment groups were subjected to one hour
pulse exposures to 1,25-(OH),-D3 (1nM or 10nM). These exposures occurred at 0-1hour
(h), 23-24 h, 47-48 h, and 71-72 h. Six of the treatment groups were subjected to
sustained (24 hour) exposures to 1,25-(OH),;-D; (1nM or 10nM) at 0-24 h, 24-48 h, and
48-72 h. Cells used for gene expression analysis were exposed to 0 or 10nM 1,25-(OH),-
Dj at the intervals stated above, with the addition of an exposure from 0 to 48 h of
differentiation. The cells were allowed to differentiate for 72 hours. The differentiation
cocktail was changed everyday for every sample to control for pH The cells incubated
for 24 hours in DMEM containing 10% FBS and 1% penicillin/streptomycin before they

were collected.

B. Triglyceride content

The medium was removed from the 3T3-L1 cells. 250ul of homogenization buffer were
added to each well. The cells were scraped and collected for subsequent sonication.
Triglyceride accumulation was measured spectrophotometrically at 500nm using a

triglyceride assay kit (Sigma procedure 336, St.Louis MO).

C. Glycerol-3-phosphate dehydrogenase (GPDH) activity

GPDH activity was measured spectrophotometrically. The GPDH buffer solution
consisted of 1M triethanolamine, ImM B-mercaptoethanol, 25mM
ethylenediaminetetraacticacid (EDTA), and water. A combination of the GPDH buffer,

NADH, and the sample/homogenization buffer was allowed to incubate at 37°C for 5
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minutes. DHAP was added, and the oxidation rate of NADH was read

spectrophotometrically at 340nm for 5 minutes

D. Protein content
Total protein content was measured for correction purposes by a modified Bradford

method using Coomassie Blue dye (Pierce, Rockford, IL).

E. RNA isolation

Total RNA from 3T3-L1 adipocytes was extracted using a Totally RNA™ total RNA
isolation kit (Ambion, Austin, TX). Purity and quantity was measured

spectrophotometrically at 800nm and 200nm and RNA was stored in formamide.

F. Gene expression

Gene expression was measured using real time reverse transcription-polymerase chain
reaction (RT-PCR). Reverse transcriptase occured at 48° C for 30 minutes. Initial
denaturation occured at 95° C for 10 minutes. It was followed by 40 cycles of
denaturation at 95° C for 15 seconds and re-annealing and elongation at 60° C for 1
minute. The PPAR-y forward primer, reverse primer, and probe had the following
sequences. forward primer~(5’-GCCTATGAGCACTTCACAAGAAATT-3%), reverse
primer-(5’-TGCGAGTGGTCTTCCATCAC-3’), and probe-(5’ CAL Red-
TCTGGCCCACCAACTTCGGAATCAG-BHQ-2 3°). The sequences for the Pref-1
forward primer, reverse primer, and probe were as follows: forward primer-(5’-

TTCGGCCACAGCACCTATG-3"), reverse primer-(5’-
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ACATTGTCAGCCTCGCAGAA-3’), and probe (5’CAL Red-
CCACCCTGCGACCCCCAGTATG-BHQ-2 3%). The 18s forward primer, reverse
primer, and probe had the following sequences: forward primer-(5’-
AGTCCCTGCCCTTTGTACACA-3’), reverse primer-(5’-
GATCCGAGGGCCTCACTAAAC-3’), and probe-(5° 6-FAM-
CGCCCGTCGCTACTACCGATTGG-BHQ-1 3’)(Biosearch Technologies, Inc., Novato,

CA).

G. DNA content

Cell density in culture was determined by measuring DNA using CyQuant® cell

proliferation assay kit (Molecular Probes, Eugene,OR).

H. Statistical analysis

SPSS was used for statistical analysis. After normality of distribution was verified,
analysis of variance (ANOVA) was used to evaluate statistical significance, with
significantly different group means separated using the least significant different (LSD)

or Tukey test. All data are expressed as mean * SE.

IV. Results

Triglyceride (TG) accumulation and glycerol-3-phosphate dehydrogenase
(GPDH) activity were used as markers of differentiation. The data showing exposure to
one-hour pulses of 1nM and 10nM 1,25-(OH),-D; throughout differentiation was

inconclusive (Fig. 2, Fig. 3). Sustained (24-hour) exposure to 1,25-(OH),-D3 (1nM and
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Figure 2. Effect of treatment with 1nM and 10nM 1,25-(OH),-Dj3 for one-hour pulses on
triglyceride accumulation throughout 3T3-L1 preadipocyte differentiation Data are

expressed as % of control + SE.
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Figure 3. Effect of treatment with 1nM and 10nM 1,25-(OH)-D3 for one-hour pulses on
GPDH activity throughout 3T3-L1 preadipocyte differentiation. Data are expressed as %

of control + SE.
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10nM) inhibited differentiation at 0-24 hrs, with decreases in both TG and GPDH of 41-
81% (p<0.0001) (Fig. 4 and Fig. 5). Similarly, sustained exposure of 1,25-(OH),-D;
resulted in marked inhibition of GPDH activity and TG accumulation early, but not late,
in differentiation (Fig. 4 and Fig. 5). In contrast, sustained exposure late in
differentiation exerted no significant effects on either marker of differentiation (Fig. 4
and Fig. 5).

PPAR-y and pref-1 expression were also used as markers of differentiation. One-
hour pulses of 10nM 1,25-(OH),-D3 did not cause any changes in PPAR-~y expression
compared to control (Fig. 6). Sustained exposure to 1,25-(OH),-D; throughout
differentiation decreased PPAR-y expression, with a 92% decrease from 0-48h
(p<0.0001, Fig. 6). One-hour pulses of 1,25-(OH),-Dj3 had no effect on pref-1
expression, with the exception of an increase in expression at 47-48 hr (p<0.0001, Fig.
7). Sustained exposure to 10nM 1,25-(OH),-Ds at 0-48 hrs, 24-48 hrs and 48-72 hrs all
caused significant increases (125%-146%) in the expression of Pref-1 (p<0.001, Fig. 7).

The DNA measurement data demonstrate that there were similar concentrations of
cells in both types of plates used for the experiments While there are some differences
in the amount of DNA found in the 24-well plates (Table 1), none of the amounts are
significantly different from control, and there are no significant differences among the

treatments in the 6-well plates (Table 2).
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Figure 4. Effect of treatment with 1nM and 10nM 1,25-(OH),-D; for a sustained
exposure time on triglyceride accumulation throughout 3T3-L1 preadipocyte
differentiation. Data are expressed as % of control + SE.
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Figure 5. Effect of treatment with 1nM and 10nM 1,25-(OH),-Ds for one-hour pulses on
GPDH activity throughout 3T3-L1 preadipocyte differentiation. Data are expressed as %

of control + SE.
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Figure 6. Effect of treatment with 10nM 1,25-(OH),-D3 on PPAR-y expression
throughout 3T3-L1 preadipocyte differentiation. Data are expressed as % of control +
SE.
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Figure 7. Effect of treatment with 10nM 1,25-(OH),-Ds on Pref-1 expression throughout
3T3-L1 preadipocyte differentiation. Data are expressed as % of control + SE.
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Table 1. DNA Measurement Data for 24-well Plates

Concentration of 1,25-(OH);-D; and

24-well plates (TG and GPDH)

Time of Treatment DNA ug/sample
Control .090 + .003%5¢
InM 0-1h 099 + .003"°
10nM 0-1 h 098 + .003*>>°
1nM 0-24 h 093 + .005%>°
10nM 0-24 h 104 +.004°
1nM 23-24 h 094 + .003%%¢
10nM 23-24 h .101 % .002°
1nM 24-48 h .102 +.002°
10nM 24-48 h .088 + .003*"°
1nM 47-48 h .088 + .002*%°
10nM 47-48 h 089 + .003*>°
1nM 48-72 h .092 £ .005%5¢
10nM 48-72 h .084 £ .002*°
InM 71-72 h 082 + .004%
10nM 71-72 h 081 +.004?

a,b,c Non-similar superscripts within columns indicate significant differences at p<0.05.

Values are Mean =+ SE.

Table 2. DNA Measurement Data for 6-well Plates

Concentration of D3 and Time of

6-well plates (Gene Expression)

Treatment DNA ug/sample*
Control 173 £ 008
10nM 0-1 h 191 +.021
10nM 0-24 h 228 £.013
10nM 0-48 h 223 £.012
10nM 23-24 h 211 £.011
10nM 24-48 h 217 £.008
10nM 47-48 h 217 +£.015
10nM 48-72 h 216 £.003
10nM 71-72 h 182 +.007

*No significant differences among groups at p<0.05.

Values are Mean =+ SE.
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V. Discussion

We have recently demonstrated that increasing [Ca®*], has a biphasic effect on
adipogenesis, inhibiting the early stages and accelerating late differentiation and lipid
filling (3). We have also reported that 1,25-(OH),-D; stimulates rapid adipocyte [Ca®"],
influx via a membrane vitamin D receptor (mVDR) (5) Accordingly, it may be
anticipated that 1,25-(OH),-D3 will have similar effects on markers of differentiation as
other Ca®* agonists. However, although our data does demonstrate an inhibitory effect of
early exposure to 1,25-(OH);-D3, late exposure to 1,25-(OH),-D;3 did not stimulate
differentiation or lipid filling. Accordingly, it is likely that in addition to mVDR-
mediated [Ca2+], influx affecting adipogenesis, nuclear vitamin D receptor (nVDR)
signaling may modify these effects.

1,25-(OH),-D; was originally believed to solely function via a nuclear receptor in
a manner similar to the other members of the steroid hormone superfamily (8). However,
1,25-(OH),-D3 may target both mVDRs and nVDRs to mediate genomic and non-
genomic actions which may interact with each other 1n signal response and, thereby affect
the modulation of lipid metabolism. For example, 1,25-(OH),-Ds generates rapid, non-
genomic signal transduction, including modulation of calcium channels, viaa mVDR (5,
9). 1,25-(OH),-Dj; stimulates adipocyte [Ca2+],, promotes lipogenesis, and inhibits
lipolysis via this non-genomic action (5). However, 1,25-(OH),-D3 generates genomic
actions via binding to a specific nVDR (10). 1,25-(OH),-Ds exerts an inhibitory effect on

adipocyte uncoupling protein 2 (UCP2) expression via nVDR-mediated genomic action

(10).
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1,25-(OH),-D3 binds to and activates a specific nuclear hormone receptor, nVDR.
The activated nVDR then interacts with another nuclear receptor, retinoid X receptor
(RXR), and forms a heterodimer complex This complex functions as a transcriptional

factor to act on the direct repeat response element, DR-3, in the promoter region of target

genes, thereby stimulating or suppressing transcription of those genes encoding for
proteins that carry out a variety of functions (5) The ablation of the (RXR) gene in
adipocytes of transgenic mice caused a delay in the formation of fat depots and a
resistance to dietary and chemically induced obesity (11). In addition, multiple studies
(12, 13) suggest that retinoic acid inhibits adipogenesis by blocking the induction of/
inhibiting the expression of PPAR-y. Sato et al. (14) also demonstrated an inhibitory
effect of 1,25-(OH),;-D; on the differentiation of 3T3-L1 cells by demonstrating an
inhibition of triacylglycerol accumulation. Accordingly, our data suggest that early
exposure to lower doses of 1,25-(OH),-D3 may result in mVDR-mediated inhibition of
differentiation, while higher doses and/or later exposure may result in nVDR-mediated
events.

Alternatively, the discrepancy between the findings may be due to the source of
the cells. Ntambi et al. (15) also did not find a stimulatory effect of increasing [Ca®*], n
the late stages of differentiation in 3T3-L1 cells. 3T3-L1 cells are derived from mouse
embryos (16), while the human preadipocytes used by Shi et al. (3) originated from
human stromal-vascular cells in the subcutaneous fat depot. Cell models derived from
different species and of different developmental stages may exhibit distinct

differentiation properties
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The normal physiological level of 1,25-(OH),-Dj3 is <0.1nM, but past studies
demonstrated that differentiation of 3T3-L1 preadipocytes is not affected at this
concentration of 1,25-(OH),-Dj; (14). The reason why preadipocytes require a high dose
of 1,25-(OH),-Djs to exert its inhibitory effect on differentiation is unclear. However, in
addition to the differences between cell lines and adipose tissue, one possible reason
could be the presence of serum in the culture media causing a reduction in the affinity of
the receptor for 1,25-(OH),;-Ds.

In summary, the TG and GPDH data suggest that 1,25-(OH),-D3; may modestly
inhibit adipocyte differentiation when exposed early in differentiation, but has no effect
late in differentiation. Sustained exposure to 1,25-(OH),-D; throughout differentiation
decreased PPAR-y expression, and increased pref-1 expression However, one-hour

pulses had no effect on the expression of PPAR-y or pref-1.
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SUMMARY AND CONCLUSIONS

Regulation of adipocyte differentiation and metabolism via 1,25-(OH),-D3
signaling pathways may play an important role in the development of obesity in vivo.
Several lines of evidence demonstrate that the circulating level of 1,25-(OH),-D; is
elevated in obese humans. Suppression of 1,25-(OH);-Ds by increasing dietary calcium
decreases adipocyte intracellular Ca®*, stimulates lipolysis, inhibits lipogenesis, and
increases UCP2 expression in transgenic mice, thereby reducing body weight and fat
mass in these animals Similar effects have also been observed in recent clinical trials.
Accordingly, 1t is important to understand the role of 1,25-(OH),-D; both in adipocyte
metabolism as well as the differentiation of preadipocytes to adipocytes.

Previous data demonstrate that agents which increase adipocyte cytosolic Ca?t
stimulate lipogenesis, inhibit lipolysis, and increase triglycenide accumulation. Our data
demonstrate that 1,25-(OH),-Dj; has a similar effect as other Ca? agonists when used 1n
low doses early in differentiation, while higher doses and late exposure do not mimic
these effects. Accordingly, we propose that the effects of low doses early 1n
differentiation are mediated via the membrane vitamin D receptor (nVDR) and increases
in [Ca?"],. However, higher doses of 1,25-(OH),-Ds and/or late exposure during
differentiation may exert a counter-regulatory effect which is mediated via the nuclear
vitamin D receptor (nVDR). More research is needed to fully understand the role of

1,25-(OH),-Ds and its various receptors on adipocyte differentiation and metabolism.
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