

University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange

Masters Theses

Graduate School

6-1951

The effects of various levels of fluorine on the digestability of feeds

James Rex Allen

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

Allen, James Rex, "The effects of various levels of fluorine on the digestability of feeds. " Master's Thesis, University of Tennessee, 1951. https://trace.tennessee.edu/utk_gradthes/9054

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:

I am submitting herewith a thesis written by James Rex Allen entitled "The effects of various levels of fluorine on the digestability of feeds." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Animal Husbandry.

Charles S. Hobbs, Major Professor

We have read this thesis and recommend its acceptance:

S. A. Hinton, Harold J. Smith

Accepted for the Council: Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

May 12, 1951

To the Graduate Council:

I am submitting to you a thesis written by James Rex Allen, Jr. entitled "The Effect of Various Levels of Fluorine on the Digestibility of Feeds." I recommend that it be accepted for nine quarter hours credit in partial fulfillment of the requirements for the degree of Master of Science, with a major in Animal Husbandry.

North 1

Major Professor

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Dean of the Graduate School

THE EFFECTS OF VARIOUS LEVELS OF FLUORINE ON THE DIGESTIBILITY OF FEEDS

33

A THESIS

Submitted to The Graduate Council of The University of Tennessee in Partial Fulfillment of the Requirements for the degree of Master of Science

> by James Rex Allen, Jr.

> > June, 1951

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to Dr. C. S. Hobbs and Mr. C. C. Chamberlain for the guidance and encouragement they have given in the direction of this research; to Miss Hamdy Norman for able assistance in chemical analysis of the samples and calculations; and to Mr. Leon Hardin for his chemical work.

TABLE OF CONTENTS

CHAPTER	5 · •															 PAGE
INTR	ODUCTION			•			•						•	•	•	1
I.	REVIEW OF LITERATURE	•			•											2
11.	EXPERIMENTAL PROCEDURE.							*			•				•	10
III.	DISCUSSION OF RESULTS .	•								•			•			15
BIBL	10GRAPHY		•													46

LIST OF TABLES

TABLE

PAGE

I.	Comparison of Morrison's Requirements of Total Digestible Nutrients and Digestible Protein to Those Obtained in	
	This Department	16
AII	Dry Matter of Concentrate and Hay	17
IIB	Relationship of Total Concentrate Consumed to Total Hay Consumption per day	19
III.	Total Digestible Nutrients	21
IV.	Protein Consumption and Digestibility	23
٧.	Fat Consumption and Digestibility	27
VI.	Crude Fiber Consumption and Digestibility	31
VII.	Nitrogen Free Extract Consumption and Digestibility	35
VIII.	Average Digestibility of Nutrients	39

LIST OF FIGURES

FIGURE		PAGE
1.	The Relationship of Concentrate, Hay and Total Feed Consumption to the Levels of Fluorine Fed	20
2.	Average Consumption of Protein as Compared to the Levels of Fluorine Fed	26
3.	Average Consumption of Fat as Compared to the Levels of Fluorine Fed	30
4.	Average Consumption of Crude Fiber as Compared to the Levels of Fluorine Fed	34
5.	Average Consumption of Nitrogen Free Extract as Compared to the Levels of Fluorine Fed	38
6.	Average Digestibility of Nutrients as Compared to the Levels of Fluorine Fed	40

TOAR

INTRODUCTION

The fluorine problem in livestock feeding is one of increasing importance. Untold damage has been caused by the detrimental effects of fluorine. The first problem arose through the feeding of raw rock phosphate, containing from 3 to 4 percent fluorine, as a mineral supplement. The livestock fed raw rock phosphate at high levels of intake showed a decrease in appetite, and the animals gradually took on an emaciated look. The teeth of animals fed the rock phosphate become mottled and pitted.

The same symptoms were observed in cattle eating vegetation grown in the vicinity of aluminum and phosphate industries. It was found fluorine was given off from the manufacture of these materials and settled on the vegetation. This increased the fluorine problem considerably.

Work is being done at the Tennessee Experiment Station to determine at what level fluorine becomes toxic and how long it takes the toxic condition to arise. This phase of the experiment was set up to determine the effects of fluorine on the digestibility of the ration.

CHAPTER I

REVIEW OF LITERATURE

The poisonous effects of fluorine were recognized by Moissan in 1886. The first problem arose through the feeding of mineral mixtures containing rock phosphate which contains from 3 to 4 percent fluorine. Cristiania and Guatier (12) in 1926 found that vegetation, in the vicinity of industrial plants processing aluminum, had absorbed sufficient fluorine from the air to cause fluorine toxicity in grazing cattle.

Reed and Huffman (28) of Michigan have shown that rock phosphate when fed as high as 1.5 percent of the concentrate was injurious to dairy cattle when fed for long periods of time. The animals were placed on experiment at three months of age. From then until the time of the first lactation period, there was apparently no marked detrimental effect caused by feeding the raw rock phosphate at 1.5 percent of the concentrate. When the concentrate allowance was increased to meet the requirements of the animal for milk production, the results were different. Their appetites were affected. The heifers failed to consume a normal amount of roughage and later a portion of the concentrate allowance was not consumed. Their coats became roughened and they looked emaciated. Abnormal teeth developed which became so sensitive that warm water was necessary to get the animals to drink. Taylor (30) fed calcium fluo-silicate at the rate of 1.5 percent of the concentrate, and results were similar to those reported by Reed and Huffman.

Phillips, Hart and Bohstedt (26) fed raw rock phosphate at three different levels. All lots received a basal ration plus special steam bone meal at the level of 2.5 percent of the basal ration. Lot IV received the basal ration with 0.625 percent of steam bone meal being replaced by raw rock phosphate. Lot V received the basal ration and 1.25 percent of the steam bone meal being replaced by raw rock phosphate. Lot VI received the basal ration and all of the steam bone meal being replaced by raw rock phosphate.

Phillips et. al. (26) found that lots V and VI on the 1.25 and 2.50 percent rock phosphate respectively had a growth rate similar to the other lots up to the first lactation. Thereafter a decrease in body weight ocurred from which complete recovery did not take place. The 1.25 and 2.50 percent rock phosphate during lactation had a pronounced effect on the appetite. This drop in feed consumption, due to loss of appetite, caused a decreased milk production of 25 to 30 percent at the 2.5 percent rock phosphate level. The birth weight of calves on the 1.25 and 2.50 percent rock phosphate decreased 12 percent below the birth weights of the calves from the control animals.

Phillips et. al. (26) summarized their findings from the five year experiment by reporting fluorine intakes of 1-2 milligrams per kilogram of body weight did not materially retard growth. Should the intake level exceed 3 milligrams per kilogram of body weight throughout the growing period, growth is retarded. They state that the critical margin of fluorine tolerance in dairy cattle appears to be 2-3 milligrams per kilogram of body weight.

Elmslie (14) found by feeding cows a constant level of raw rock phosphate instead of varying it according to the concentrate fed, as was the procedure in the Wisconsin experiment, that the toxic level of fluorine for

dairy cows lies between 1.5 to 3 milligrams of fluorine per kilogram of body weight.

Chang et. al. (11) report that fluorine occurred in all normal tissues studied. The greatest quantity of fluorine was found to accompany calcium and phosphorus deposition. The bones and teeth contained large quantities of fluorine, while the active organs such as the liver, kidney, heart muscle, and other tissues studied showed only small quantities of fluorine. The quantity of fluorine present in normal dentine and normal bone of cows was found to lie between 42 and 63 p.p.m. per 100 grams of dried tissue. The fluorine content of the liver, kidneys, heart muscles, pancreas, thyroid, tendons, hair and hoof was found to be less than 1 p.p.m. per 100 grams of dried normal tissue. Chang et. al. found that the inclusion of 0.088 percent fluorine given in concentrate mixture as raw rock phosphate resulted in an increased storage of fluorine in the bones and teeth. This amounted from 16 to 25 times that found in the normal osseous structure. The internal organs, tendons, and hair doubled in fluorine content when the concentrate mixture contained 0.088 percent fluorine.

Maynard (21) states that bones are the first organ effected by fluorine. After teeth and bones become saturated, the organs and soft tissues are effected.

Lawrenz et. al. (16) fed cryolite as a source of fluorine to rats. At an intake equivalent of 13 p.p.m. of food consumed, 96 percent of fluorine was deposited in the skeleton, and remaining 4 percent was equally divided between teeth and soft tissue.

Pierce (25) reports that the fluorine content of the soft tissues will also increase on 22 and 52 p.p.m. fluorine fed as rock phosphate to sheep over a three year period. These minute accumulations may induce degenerative changes in the kidneys, liver, adrenal gland, heart and central nervous system. He states that the reproductive organs are among the tissues less sensitive to fluorine.

Phillips et. al. (26) found that the teeth of cattle are effected by feeding rock phosphate. Levels of 0.044 and 0.088 percent fluorine in the concentrate caused excessive abrasion of the 2nd and 3rd molars over a 5 year period.

Mitchell (24), in his review of work done on the fluorine problem in livestock feeding, found that normal ivory color of the bones are changed to a chalky white. The diameter of the cross-section of the long bones increased due in part to enlargement of the bone marrow cavity but mainly to an increase in thickness of the bone substance. Exotosis of the long bone of the jaw is a common feature. These take the form of either isolated outgrowth or of a complete superficial covering of porous, white bones of high fluorine content. The bones of animals given fluorine are, as a rule, much softer than normal, but owing to overgrowth, the breaking strength of the whole bone may be increased. The teeth, particularly the incisors, become pitted and eroded. The molars become broken and the uneven wear seriously hinders mastication. In some cases the pulp cavities are exposed. These conditions were caused by feeding rock phosphate to cattle by Elmslie (14), Reed and Huffman (28),

and Phillips et. al. (26) for periods ranging from 3 to 6 years at levels of 0.052, 0.022 - 0.052 and 0.022 - 0.088 percent fluorine respectively as mentioned previously.

Phillips et. al. (26) state that the effects of fluorine upon dairy cattle resulted in generalized systemic disturbances at levels of 0.022, 0.044 and 0.068 percent fluorine fed as raw rock phosphate. They reported that evidence indicated that tissue oxygen want was manifested in fluorosis and may account for the observed systemic reactions to fluorine. The pathological histology of fluorosis with the chief deviation from normal being the overgrowth of hyaline particularly of the blood vessals, and milder forms of cellular degeneration indicate incomplete cellular metabolism. Such a condition is probably the result of insufficient cellular respiration where degenerative changes have taken place. The causes of the development of parenchymatous and fatty degeneration is thought to be an accumulation of cellular material which cannot be metabolized in the normal manner. Thus the pathological evidence suggests inhibition of oxygen supply in many of the actively metabolizing organs of the body. This pathological evidence is supported by actual oxygen uptake measurements upon the suprarenal cortex and a deminutive of cellular respiration occurs. The interference of the normal suprarenal metabolism may be sufficient by itself to materially reduce normal cellular activity throughout the body.

Lawrenz et al (17) state that doses of fluorine in the food is retained to a less extent in bones, teeth and soft tissue than equal doses of fluorine in the drinking water. Considering the total retention of fluorine

in the carcass, the impairment in absorption amounts to about 20 percent. This seems to be the result entirely of an impairment in absorption from the alimentary tract.

Studies by Phillips and Stare (27) showed that fluorine toxicosis influenced the distribution of vitamin C in the tissue. Actively metabolizing cells were found to contain large quantities of vitamin C per unit weight. The vitamin C present in the kidney, liver, suprarenal, and the anterior lobe of the hypophysis was increased in fluorine fed cows.

It would seem that the levels of fluorine intake cause a stimulation of the enzymatic system or systems responsible for ossecus metabolism. It is believed that this is the likely cause of the generalized exostosis and skeletal changes found in chronic fluorine toxicosis. On the other hand the reduction in the oxygen intake of the cortex of the suprarenal gland and changes in ascorbic acid in the various organs of the fluorine poisoned animel indicates an inhibition of the enzymatic processes of actively metabolizing tissue (27). Thus fluorine toxicity seems to exert its deleterious effects through bone, respiration and inhibitation or acceleration of the enzymatic systems of the body. Undoubtedly the affinity of fluorine for calcium with the formation of relatively insoluble calcium fluoride enters into the syndrome of chronic fluorosis. (26)

No work has been reported on the effects of various levels of fluorine on consumption and digestibility of feeds. Burroughs et. al. (3, 4, 5, 6,

7, 8, 9, 10) have shown that the addition of ash of alfalfa extract, autoclaved rumen liquid, and autoclaved water extract of manure increased cellulose digestion in the rumen. The addition of these materials are of greater value when poor quality roughages are fed. They state that definite amounts of protein in the feed are necessary for maximum rumen digestion of roughages (4).

Maynard (20) states that the quantitative relations involved in the microbiotic decomposition of carbohydrates vary according to the kinds and number of the microorganisms present in the rumen which in turn are under the influence of the character of the food. The addition of easily digestible carbohydrates such as starch, cane sugar, or molasses to the ration of cattle reduces the digestibility of the fiber and thus, lowers the nutritive value of the ration. This has been explained on the grounds that the bacteria attack the simpler carbohydrates by preference. This would lower the nutritive value of the entire carbohydrate portion of the ration, in that less crude fiber would be digested and more of the absorbable sugars would be lost as gases.

Digestibility may be limited by a lack of time for complete digestive action on less easily digestible substances or by a lack of complete absorption. (20). Such an effect is heightened by a rapid passage of the food through the small intestine. On the other hand, food may move so slowly through the intestine as to be excessively subject to wasteful fermentations. Lack of time for digestion or absorption may explain why, as the level of food intake increases above a certain value the digestibility of all nutrients

tends to decrease.

From the previous statements it would seem that various nutritive factors have effected the consumption and digestibility of feeds. This phase of the experiment was run to determine the effects, if any, of different levels of fluorine on digestibility of a ration.

CHAPTER II

EXPERIMENTAL PROCEDURE

The cattle used in this experiment were purchased as yearlings in Texas and Oklahoma in the spring of 1948. They were checked for brucellosis and T. B. and after brucellosis vaccination they were placed in 11 lots of 3 animals per lot. Assignment of individuals animals to the different lots was made on the basis of type, weight, and source. Fluorine was added to the concentrate in the form of sodium fluoride to increase the fluorine content to the desired levels in total ration. The levels of fluorine are as follows:

Lot No.	Fluorine Added To Concentrate Above That In Control Ration	Fluorine In Hay
1	0 p.p.m. (Control)	Control (6 p.p.m.)
2	10 p.p.m.	Control
3	20 p.p.m.	Control
4	30 p.p.m.	Control
5	40 p.p.m.	Control
6	50 p.p.m.	Control
7	70 p.p.m.	Control
8	100 p.p.m.	Control
9	0 p.p.m.	Blount 1 (19 p.p.m.
10	0 p.p.m.	Blount 2 (32 p.p.m.
11	100 p.p.m. plus Defluorophos	Control

These animals were kept in barn or dry lot at all times and fed concentrate once daily. The concentrate consisted of 4 parts corn and 1 part cottonseed meal. Good quality lespedeza or alfalfa hay was fed all lots except 9 and 10 which received Blount 1 and Blount 2 hays respectively. The latter was grown in the vicinity of an aluminum plant where fluorine was given off and settled on the vegetation. This hay was analyzed for its fluorine content, and from these results was placed in the Blount 1 or the Blount 2 group. The cattle were weighed and their teeth examined for signs of fluorosis once per month. Photographs were taken of the teeth every three months.

The fluorine content of the ration was adjusted every 28 days. This was done to make sure the total concentrate consumed contained the amount of fluorine desired for that level.

The total amount of fluorine fed includes the fluorine added as sodium fluoride plus that in the control feeds. For example, this would mean that lot 2 would actually be getting approximately 10 p.p.m. fluorine added as sodium fluoride plus 6 p.p.m. in the control ration.

The experiment to determine the effects of fluorine on consumption and digestibility of a ration was started January 19, 1951, and continued until March 20, 1951. The three trials ran during this period consisted of 12, 11, and 10 animals respectively per trial. They were brought into the metabolism barn and placed in the metabolism crates. The next 4 days consisted of an adjustment period in which the animals became accustomed to the new environment. The concentrate fed was kept at a constant level of 4 pounds, but the hay was adjusted to the amount each animal would consume. On the average there was a 3 to 4 pound drop in hay consumption from what

they had been eating previously.

This drop in feed consumption would in turn cause an increase in the emount of fluorine consumed inasmuch as the fluorine was added to the grain. As mentioned before, the fluorine in the feed is determined by the feed consumption of the previous month. This, as well as the fluorine in the normal feed would cause a deviation from levels prescribed.

The cows were weighed just before being brought into the metabolism barn and immediately after the trial. They were taken by truck 7 to 8 miles, after weighing, to the metabolism barn and a like distance before being weighed after the trial. The time between weights included the preliminary period as well as the actual trial. Attempts were made prior to this experiment to weigh the animals at the beginning of the trial, but this proved unsatisfactory. The cows would go off feed when taken out to be weighed and this would make a new preliminary period necessary (31). The loss or gain in weight was computed as a fraction of the total period (preliminary and actual trial). It would be assumed that cows having a preliminary period of 5 days and a trial of 10 days would have two-thirds of the weight lost or gained during the actual trial with one-third lost or gained during the preliminary period.

During the preliminary period of the first trial cow 47 from lot 3 was removed because she refused to eat. Gow 58 from lot 7 was removed due to a ruptured cyst on the neck. Gow 47 from lot 3 was brought in again for the second trial, but was removed because she failed to eat an adequate amount. The third trial had cow 49 from lot 5 taken out during the preliminary period because she failed to eat.

Cows 58 and 21 from lot 7 were removed from the third trial on the fifth and eighth day respectively because blood and mucus appeared in the urine. These animals were removed because this abnormality effected the nitrogen content of the urine as determined by chemical analysis.

After the preliminary period, the animals were taped up in a manner described by Hobbs et al. (15). The tubes were observed for the next 12 to 24 hours to make sure no leaks developed, and that the harness was properly adjusted.

A pregnancy diagnosis was made on all the cows January 18, 1951, in order that the ones nearest parturition would be brought in for the first metabolism trial. Cows in early pregnancy and open cows were run last.

During the trial, the animals were fed their concentrate at 3 o'clock in the afternoon. They received their hay at 8 a.m. and h p.m. Two- thirds, by weight, of the hay was fed in the afternoon and one-third in the morning. The urine was weighed, the volume measured, and specific gravity taken each day. A ten percent sample of the urine, by volume, was taken once daily. The feces from each animal were weighed in the morning and afternoon. Three percent of the total weight of feces at each collection period was taken as a sample.

The urine and feces samples were kept under refrigeration at a temperature of 36° F. during the trial. One c.c. of toluene was added to each sample of urine at the beginning of the trial to act as a preservative.

An aliquot sample of the 10 day composite urine sample was taken for

analysis. A 900 gram sample was removed from the 10 day composite feces sample to be analyzed. The concentrate and hay not eaten by the animal was removed and weighed. Samples were taken from these weighbacks at the end of the 10 day trial.

The samples of hay and concentrate used, hay weighbacks and concentrate weighbacks, as well as the urine and feces samples were analyzed for calcium (1, 29), phosphorus (29, 11), fluorine (32, 22), moisture (1), fat (1), crude fiber (1), nitrogen free extract and nitrogen (1).

CHAPTER III

DISCUSSION OF RESULTS

In order to clarify the tables and figures these statements will hold true in all cases. They are as follows:

- 1. Sodium fluoride is added to the concentrate in sufficient quantity to bring the fluorine in the total feed intake in lots 2, 3, 4, 5, 6, 7, 8, and 11 to the amounts designated.
- Lots 9 and 10 have fluorine present in the hay at levels of 19 and 32 p.p.m. fluorine respectively.
- 3. The levels of fluorine used in the figures and tables are the amounts added plus that found in normal hay and grain.
- 4. Lot 3 contained only one animal.
- 5. Lot 11, had 100 p.p.m. sodium fluoride added to the ration plus 21 parts defluorophos per 1 part sodium fluoride. The defluorophos brings the level of fluorine in lot 11 up to 109 p.p.m. fluorine in the ration.
- 6. The digestibility data for cow 24 lot 1, and cow 2 lot 7, was not used in their respective lot averages because the values ran very low in comparison with other animals in their lot and the lots of higher and lower fluorine intake levels. These low values were probably due to the high per cent dry matter in the feces and the correspondingly high per cent of nutrients present. Relatively low nutrient values would have been expected since the total feed consumption in relation to the rest of the experimental data was about the same.
- 7. In lot 7 the consumption and digestibility of each nutrient was calculated on the basis of two animals. The trial period was 5 days for cow 58 and 8 days for cow 21. The total nutrients consumed per day were obtained by dividing the total nutrients consumed for the 13 day period by the total number of days the animals were on trial. In determining the average digestibility of nutrients, the total grams of nutrients retained was divided by the total nutrients consumed. Explanation for the 5 and 8 day trial was given in the preceding chapter.

TABLE I

COMPARISON OF MORRISON'S REQUIREMENTS OF TOTAL DIGESTIBLE NUTRIENTS AND DIGESTIBLE PROTEIN TO THOSE OBTAINED IN THIS EXPERIMENT

Lot No.	Average Weight Per Lot	Morrison's D. P.	Requirements T. D. N.	Amount Consumed D. P. T. D. N.				
1	1005	.7080	7.5-10.5	1.77*	9.59*			
2	928	.6570	6.9-9.7	1.71	9.54			
3	1036	.7080	7.5-10.5	1.33	6.46			
4	937	.6570	6.9-9.7	1.73	9.40			
5	992	.6570	6.9-9.7	1.53	8.41			
6	925	.6570	6.9-9.7	1.46	8.37			
7	924	.6570	6.9-9.7	1.52*	7.50*			
8 .	836	.6570	6.9-9.7	1.29	6.54			
9	983	.6570	6.9-9.7	1.68	8.69			
10	1012	.7080	7.5-10.5	1.34	7.96			
n	864	.6570	6.9-9.7	1.31	7.26			

* Average derived from Lot 1 and 7 by omitting animal 24 and 2 respectively. See page 15.

TABLE IIA

Lot No.	Cow No.	Fluorine Fed p.p.m.	Dry Matter Hay (gms)	Dry Matter Conc.(gms)	Total Dry Matter Consumed (gms)
1	42 24 13	6 6 6	5428 5901 5327 5552	1551 1582 1635 1589	6979 7483 6962 7141
2	46 16 11	16 16 16	5109 5815 5448 5457	1559 1550 1625 1578	6668 7365 7073 7035
3	32	26	<u>1,404</u> 1,404	1484 1484	<u>5888</u> 5888
Ļ	48 31 30	36 36 36	5166 1975 5131 5191	1552 1490 1638 1560	6718 6465 7069 6750
5	23 9	46 46	5105 4349 4727	1596 1549 1572	6701 5898 6300
6	50 1 6	56 56 56	4102 4889 4478 4490	1300 1534 1532 1455	5402 6423 6010 5945

DRY MATTER OF CONCENTRATE AND HAY

TABLE IIA

DRY MATTER OF CONCENTRATE AND HAY (CONTINUED)

Lot No.	Cow No.	Fluorine Fed p.p.m.	Dry Matter Hay (gms)	Dry Matter Conc.(gms)	Total Dry M Consumed (gms)
7	2 58 21	76 76 76	3814 3850 4572 4079	1512 1560 1116 1396	5326 5410 5688 5475	
8	61 28 29	106 106 106	4137 3293 3338 3589	1073 815 1148 1012	5210 4108 4486 4601	
9	27 63 26	16 16 16	4567 4922 5613 5034	1596 1553 1582 1577	6163 6475 7195 6611	
10	67 20 19	26 26 26	3945 5301 4030 4425	736 1342 1635 1238	4681 6643 5665 5663	
11	70 12 25	109 109 109	3972 3772 <u>3281</u> 3675	1417 1576 1400 1464	5389 5348 4681 5139	

TABLE IIB

RELATIONSHIP OF TOTAL CONCENTRATE CONSUMED TO TOTAL HAY CONSUMPTION PER DAY

Lot No.	Av. Wgt. Per Lot	Aver. Conc. Consumed Per Day (gms)	Aver. Hay Consumed Per Day (gms)	Total Amt. Consumed Per Day (gms)	% Conc. Consumed Per Day	Hay Consumed Per Day
1	1005	1777*	6218*	7995*	22.23*	77.70*
2	928	1780	6327	8107	21.95	78.04
3	1036	1707	5121	6828	25.00	75.00
4	937	1764	6042	7807	22.60	77.40
5	992	1792	5424	7216	24.83	75.17
6	925	1671	5230	6900	24.21	75.79
7	924	1396*	4948*	6344#	22.00*	77.99*
8	836	1068	4132	5199	20.53	79.47
9	983	1792	5740	7532	32.79	76.21
10	1012	1380	5025	6403	21.55	78.47
11	864	1630	4251	5881	27.72	72.28

* Average derived from Lot 1 and 7 by omitting animal 24 and 2 respectively. See page 15.

Relationship of Concentrate, Hay and Total Feed Consumed to the Levels of Fluorine Fed Per Day

TABLE III

TOTAL DIGESTIBLE NUTRIENTS

Lot No.	Cow No.	Fluorine Level Fed p.p.m.	Average Body wt/ Animal (lbs.)	T. D. N.	T. D. N./ cwt.
1	42 24 13	6 6 6	988 1080 <u>948</u> 1005	4206 2710 4483 4344*	425 251 <u>473</u> 449*
2	46 16 11	16 16 16	867 967 950 928	4239 4166 4565 4323	489 431 480 467
3	32	26	1036 1036	2937 2937	283 283
4	48 31 30	36 36 36	913 921 977 937	4136 4146 4544 4275	453 450 465 456
5	23 9	46 46	966 1019 992	4203 <u>3472</u> 3838	435 341 388
6	50 1 6	56 56 56	867 1026 882 925	3557 4028 3814 3800	410 392 4 <u>32</u> 411

TOTAL	DIGESTIBLE	NUTRIENTS	(CONTINUED)
the second se	the second	THE REPORT OF A REPORT	

Lot No.	Cow No.	Fluorine Level Fed p.p.m.	Average Body wt/ Animal (lbs.)	T. D. N.	T. D. N./ cwt.
7	2 58 21	76 76 76	890 880 <u>1003</u> 924	2693 3182 <u>3614</u> 3398*	302 362 360 361*
8	61 28 29	106 106 106	735 867 <u>907</u> 836	3142 2682 <u>3077</u> 2967	427 309 339 358
9	27 63 26	16 16 16	978 942 <u>1028</u> 983	4026 3581 4237 3948	412 380 412 401
10	67 20 19	26 26 26	871 1119 1045 1012	2868 3991 <u>3997</u> 3619	329 357 382 356
11	70 12 25	109 109 109	818 912 861 864	3444 3266 <u>3166</u> 3292	421 358 <u>368</u> 382

*Averages derived from lot 1 and 7 by omitting animal 24 and 2 respectively. See page 15.

Digestibility of Nitrogen Per cent	62.8	41.5	70.6	66.7*	66.1	8*19	69.6	66.8	59.2	59.2	63.0	67.3	71.9	1-19	63.2	91.6	63.2
Total Nitrogen Retained Per day (gms)	109.1	85.2	1.111	111.2	1.901	126.3	138.9	124.9	97.2	97.2	4.601	126.3	0*1111	126.6	113.8	1.001	110.2
Total Nitrogen In Feces Per day (gms)	64.5	119.9	58.8	1.18	56.2	68.8	60.6	<u>61.9</u>	67.0	67.0	64.2	61.3	56.2	9.00	66.1	58.6	F*29
Consumption of Protein Per day (gms)	1085	1261	1251	1168*	1037	1219	T246	1917	1026	1026	1085	2/11	1250	6911	1124	1033	<u>1078</u>

ONSUMPTION AND DIGESTIBIL	Mitrogen Total Nitroge a in Conc. Consumed Per day (gms) day (gms)	.2 173.6	.6 205.1	•3 200.2	<u>.7</u> 186.9*	.3 165.9	1,501 4.	•4 199•5	<u>.1</u> 186.8	.1 164.2	•1 104.2	*2 173.6	.8 187.6	•3 200•2	T*18T T*	*0 179*9	•3 165.3
	litrogen Total in Hay Intak (gms) Per	1 115	14	23	17	50	142	20	TH I	10	97	171	07	15	9	20	112
	e Total N Intake Per day	1.841	160.5	116.9	115.3	115.6	152.7	1.911	1.92.	1.421	124.1	126.4	146.8	6°811	140.7	129.9	123.0
	Fluorin Added P.p.m.	0	0	0		10	TO	10		20		30	30	30		10	07
	Cow No.	42	24	13		146	70	A		30 M		91	31	30		8	6
	Lot No.	H	-	4		01	2	es.		m		4	4	4		n	5
	Date of Trial	1/26/51	2/21/51	3/21/51		1/26/51	2/21/51	15/12/2		2/21/51		1/26/51	15/5/2	3/21/51		1/26/51	2/24/51

TABLE IV

PROTEIN CONSUMPTION AND DIGESTIBILITY (CONTINUED)

Date of Trial	Lot No.	Cow No.	Fluorine Added p.p.m.	Total Nitrogen Intake in Hay Per day (gms)	Total Nitrogen Intake in Conc. Per day (gms)	Total Nitrogen Consumed Per day (gms)
15/92/	9	20	50	96.3	36.0	132.3
12/21/51	9	4	20	135.1	42.4	177.5
15/21/21	0	0	8	126.1	42,1	168.3
				119.2	40.2	159.4
12/21/51	~	~	70	104.5	דידין	6.241
15/21/	2	R	10	105.0	48.7	153.7
15/81/	2	21	10	126.1	33.5	159.6
				111.9	ग्ग	157.4*
15/21/	00	19	100	105.1	34.9	0.041
15/12/	80	28	100	96.8	24.7	121.5
/21/51	8	29	100	94.0	37.0	131.0
				98.6	32.2	130.8

11

		1	1	1		1	1	1		1	1	1
Digestibility of Nitrogen Per Cent	63.8	68.3	67.6	<u>66.6</u>	52.6	71.3	72.2	71.8*	64.8	74.6	75.2	3772
Total Nitrogen Retained Per day (gms)	34.4	121.3	113.8	106.5	76.5	109.6	115.2	100.4	90.8	- 90°6	96.14	23.3
Total Nitrogen In Feces Per day (gms)	4.14	56.2	54.4	52.8	69.1	L.uu	4.44	52.5	49.2	30.9	32.6	37.6
Consumption of Protein Per day (gms)	827	1109	1052	996	910	961	998	983.8*	875	759	819	818

PROTEIN CONSUMPTION AND DIGESTIBILITY (CONTINUED)

Total Nitrogen Consumed Per day (gms)

Total Nitrogen Intake in Conc. Per day (gms)

Total Nitrogen Intake in Hay Per day (gms)

Fluorine Added p.p.m.

> Cow No.

> Lot.

Date of Trial 176.8

16.6

130.2

0

27

0

192.2

45.3

146.9

0

63

ON

1/26/51 2/2/51 2/26/51 3/5/51 3/5/51

213.9

14.6

169.3

0

26

0

125.3

21.2

1.401

0

10 67

194.3

45.5

148.8

176.0

38.1

137.9

0

20

9

1/26/51 2/1/51 3/5/51 3/11/51

153.2

53.3

6.66

0

51

3

9.141

11.8

103.1

100 4 def.

20

1

151.5

37.5

111.0

110.11

42.2

104.2

100 4 def

12

4

1/26/51 2/1/51 3/11/51 3/11/51

136.9

1.24

94.3

100 4 def

25

H

142.7

42.0

100.7

TABLE IV

1105 58.0 118.8 67.2 1201 80.2 112.0 58.2 1337 81.2 132.7 58.2 1337 81.2 132.7 58.2 1337 81.2 132.7 52.0 1337 81.2 132.7 52.0 1337 81.2 132.7 52.0 1100 62.0 114.0 61.7 1100 62.0 114.0 64.8 957 199.0 94.2 64.0 912 52.1 92.8 64.0 915 18.6 94.9 77.8 915 94.9 94.9 77.8 915 18.6 94.9 77.8 915 18.6 94.9 77.8 105.2 104.2 95.3 12.2 915 165.2 94.9 77.8 915 165.2 94.9 77.8 110.0 94.9 94.9 77.8 <th>Consumption of Protein Per day (gms)</th> <th>Total Nitrogen In Feces Per day (gms)</th> <th>Total Nitrogen Retained Per day (gms)</th> <th>Digestibil of Nitrog Per Cent</th>	Consumption of Protein Per day (gms)	Total Nitrogen In Feces Per day (gms)	Total Nitrogen Retained Per day (gms)	Digestibil of Nitrog Per Cent
1201 80.2 112.0 58.2 1337 81.2 132.7 62.0 1337 81.2 132.7 62.0 1211 121.2 122.1 62.5 1211 121.2 122.1 62.5 1100 62.0 114.0 61.7 1100 62.0 114.0 61.6 957 49.0 104.2 68.0 917 49.0 104.2 64.0 905 52.1 92.8 64.0 915 48.6 98.9 77.8 952 145.6 98.9 77.8 912 145.6 98.9 77.8 912 145.6 98.9 77.8 912 145.2 98.9 77.8 912 145.2 98.9 77.8 1100.2 98.9 98.9 77.8 1100.2 98.9 98.9 77.8 1100.2 98.9 98.9 77.8 <td>1105</td> <td>58.0</td> <td>8.811</td> <td>67.2</td>	1105	58.0	8.811	67.2
U37 B1.2 U32.7 62.0 1211 13.1 13.1 62.0 1211 13.1 121.2 62.0 183 47.9 77.4 61.7 183 47.9 114.0 64.0 957 49.0 104.2 68.0 915 52.1 92.8 64.0 915 48.6 97.8 64.0 915 48.6 97.8 64.0 915 46.2 98.9 77.8 915 46.2 98.9 98.9	1021	80.2	112.0	58.2
1211 13.1 121.2 62.5 783 47.9 77.4 61.7 783 47.9 77.4 61.7 1100 62.0 114.0 64.8 957 49.0 104.2 68.0 911 53.0 98.5 64.8 915 52.1 92.8 64.0 915 48.6 97.8 64.0 915 48.6 98.9 77.8 65.8 915 46.0 97.8 64.0 72.2 915 46.6 98.9 77.8 65.8 915 46.5 96.5 67.1 72.2	137	81.2	132.7	62.0
783 k7.9 77.4 61.7 1100 62.0 114.0 64.8 957 49.0 104.2 68.0 947 49.0 104.2 68.0 947 23.0 28.5 64.8 905 52.1 92.8 64.0 915 48.6 97.8 64.0 915 48.6 91.3 72.2 915 48.6 94.9 72.2 856 38.0 94.9 72.2 852 46.2 96.5 61.7	TET	13.1	121.2	62.5
1100 62.0 114.0 64.8 957 49.0 104.2 68.0 947 23.0 98.5 64.0 905 52.1 92.8 64.0 915 48.6 97.3 64.0 856 38.0 98.9 77.3 65.8 892 46.2 96.5 67.7	783	47.9	4-17	61.7
957 1.9.0 104.2 68.0 91/2 53.0 98.5 64.0 905 52.1 92.8 64.0 915 1.8.6 97.8 64.0 915 1.8.6 98.9 77.8 66.8 92 38.0 98.9 77.8 65.8 856 38.0 98.9 72.2	OOTT	62.0	0.411	64.18
947 53.0 98.5 64.8 905 52.1 92.8 64.0 915 48.6 97.8 66.8 856 38.0 98.9 72.2 892 46.2 96.5 67.7	156	19.0	104.2	68.0
905 52.1 92.8 64.0 915 48.6 97.8 66.8 856 38.0 98.9 72.2 892 46.2 96.5 67.1	<u>947</u>	53.0	98.5	64.8
915 148.6 97.8 66.8 856 38.0 98.5 72.2 892 16.2 96.5 67.7	305	52.1	92.8	64.0
856 38.0 98.5 72.2 892 46.2 96.5 67.7	915	4.8.6	97.8	66.8
<u>892</u> <u>16.2</u> <u>96.5</u> <u>67.7</u>	856	38.0	98.9	72.2
	892	16.2	26.5	1.10

"Averages derived from lot 1 and 7 by omitting animal 24 and 2 respectively."

2/21/51 3 32 20 3/5/51 4 48 30 2/1/51 4 31 30 3/5/51 4 31 30 3/11/51 4 30 30	96.2 95.4 93.3 96.3	86.2 86.2 81.7 81.7 82.4 79.7 77.6 77.6 79.2	171.5 190.5 204.8 169.3 169.3 167.3 196.8 196.8 164.4 104.4 104.4 104.4 106.8 167.8 167.8 167.8 167.8	14.8 17.1 1.61 1.61 1.61 1.61 1.61 1.61 1.61	(gms) 96.7 25.5 25.5 <u>127.7</u> <u>83.3</u> <u>103.8</u> <u>127.7</u> <u>83.3</u> <u>91.3</u> <u>91.3</u> <u>91.3</u> <u>91.2</u> <u>97.3</u> <u>95.8</u>	of Fat of Fat per cent 56.4 13.3 62.3 59.4 59.4 58.0 58.0 58.0 59.6 59.6 59.6
2/1/51 5 23 40 2/24/51 5 29 40	90.1 78.8	82.4	172.5	73.0	99.5 art 1.	57.7

FAT CONSUMPTION AND DIGESTIBILI

TABLE V

FAT CONSUMPTION AND DIGESTIBILITY (CONTINUED)

TABLE V

of Trial	Lot. No.	Cow No.	Fluorine Added	Total Fat Intake in Hay Per day (gms)	Total Fat Intake in Concentrate Per day (gms)	Total Fat Consumed Per day (gms)	Total Fat in feces per day (gms)	Total Fat Retained per day (gms)	Digestibility of Fat per cent
1/26/51	. 9	50	50	65.7	71.9	137.6	54.8	82.8	6A
2/24/51	9	1	50	85.8	81.4	167.2	88.1	1.67	47.3
3/5/51	9	9	50	80.8	80.9	161.7	1.61	82.0	50.7
				F-12	1.85	155.5	74.2	81.3	52.7
2/24/51 3/5/51	7	~	70	66.2	87.2	153.4	4.101	52.0	33.9
3/15/51	7	58	70	78.5	78.6	157.1	60.6	96.5	61.4
3/18/51	7	21	70	93.3	52.7	0.941	70.2	75.8	\$1.9
				5.92	72.8	150.2*	17.4	74.8	55.7*
1/26/51	8	61	100	71.6	61.9	13.5	59.9	3.6	55.1
3/22/52	8	28	100	63.8	44.5	13.3	51.8	61.5	54.3
3/21/51	8	29	100	69.8	62.h 62.h	132.2	50.6	81.6 20.6	61.7
					2	िल्ला		12:2	77.7
			the attraction of the ball of the			一日常田町ちどろうためた場の考察にお			

Ber	
100	
Sec. 1	
Tell	
1000	
Frend	
00	
Same	
-	
-	
and a	

FAT CONSUMPTION AND DIGESTIBILITY (CONTINUED)

Date of Trial	Lot No.	Cow No.	Fluorine Added	Total Fat Intake in Hay Per day (gms)	Total Fat Intake in Concentrate Per day (gms)	Total Fat Consumed Per day (gms)	feces per day (gms)	Total Fat Retained per day (gms)	Digestibility of Fat per cent
1/26/51	6	27	Blount 1	129.6	85.3	2.412	79.9	135.0	Ko R
12/02/1	6	63	Blount 1	2.641	83.3	226.8	87.3	139.5	61.5
3/5/51	6	26	Blount 1	4.911 8.011	87.0 86.0	206.4	118.3	88.1	42.7
1/26/51	9	67	Blount 2	75.9	2.01	D-012	72.42 2.47	6-02T	255.7
2/24/51	70	20	Blount 2	101.8	73.7	175.5	89.0	01.1 86.5	57.3
3/21/51	10	19	Blount 2	69.1 -	95.7	A. AA	£7.0	a sort	1.17
- 100 10-				82.3	70.5	152.8	65.5	<u>673</u>	57.3
2/14/51	П	70	100 4 def.	71.4	79.5	150.9	67.0	83.9	55.6
3/5/51	п	12	100 4 def.	1.99	83.9	150.0	71.7	78.3	52.2
3/21/51	п	25	100 / def.	66.5	74.9	ग-141	55.9	85.5	60.5
				0.00	19-4	7-277	64.9	82.6	1.32

Average Fat Consumption Por Day as Compared to the Levels of Fluorine Fed

E	P
E-C	
BL	
TA	

CRUDE FIBER CONSUMPTION AND DIGESTIBILITY

Indication Sector 2146.5 Lopino LOSC,5 Lopino <thlosc,5< th=""> <thlosc,5< th=""> <thlosc,5< th=""><th>e. 7</th><th>Lot No.</th><th>Cow No.</th><th>Fluorine</th><th>Total C. F. Intake in Hay per day (gms)</th><th>Total C. F. Intake in Concentrate per day (gms)</th><th>Total C. F. Consumed per day (gms)</th><th>Fotal C.F. in Feces per day (gms)</th><th>Total C.F. Retained per day (gms)</th><th>Digestibility of C.F. per cent</th></thlosc,5<></thlosc,5<></thlosc,5<>	e. 7	Lot No.	Cow No.	Fluorine	Total C. F. Intake in Hay per day (gms)	Total C. F. Intake in Concentrate per day (gms)	Total C. F. Consumed per day (gms)	Fotal C.F. in Feces per day (gms)	Total C.F. Retained per day (gms)	Digestibility of C.F. per cent
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S.	ч	1/2	0	2084.5	62.0	2.246.5	0.1001	1052.5	0.94
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	121	1	24	0	2002.0	55.6	2057.6	1773.5	284.1	13.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RR	-	R	0	1715.0	65.6 61.1	1780.6 1963.5*	964.8 1277.4	815.8 714.5	45.8 47.4*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	2	291	IO	2025.6	61.3	2086.9	960.9	1126.0	54.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d al	2	36	10	2051.2	53.5	2104.7	1211.7	893.0	42.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	75	~	п	10	<u>1772.44</u> <u>1949.7</u>	62.9 59.2	1835.3 2009	1018.4 1063.7	816.9 945.3	41.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	e	32	50	1459.1 1459.1	0.61 0.61	1508.1	1153.2	354.9 354.9	3.5 21.5
1 1 30 1568.8 51.0 1619.8 799.3 820.5 50.6 51 4 30 30 1764.9 65.1 1830.0 989.0 841.0 46.0 51 4 30 30 1755.3 56.4 1830.0 989.0 841.0 46.0 51 5 23 40 1814.9 62.3 1817.2 887.1 990.1 52.7 51 5 9 40 14.25.6 55.6 146.2 50.7 50.7 50.7 51 5 9 40 14.25.6 55.6 146.2 50.7 50.7 50.7	Ga	4	1,8	30	1932.1	59.1	1991.2	1007.6	983.6	4.64
1 1 30 30 1764.9 65.1 1830.0 989.0 841.0 46.0 51 1 53 9 1 1755.3 58.4 1830.1 999.0 841.0 46.0 51 5 23 40 18.14.9 62.3 18.77.2 887.1 990.1 52.7 51 5 23 40 1425.8 56.6 14682.6 901.9 580.7 390.2 51 5 9 40 1425.8 56.6 14682.6 901.9 580.7 390.2 392.2 51 50.6 1469.2 14682.6 901.9 580.7 392.2 392.2 51 52.0 1679.2 1679.2 1679.2 1650.7 392.2	1-2	4	31	30	1568.8	51.0	1619.8	799.3	820.5	50.6
51 5 23 40 1814.9 62.3 1877.2 887.1 990.1 52.7 51 5 9 40 1425.8 56.8 1482.6 901.9 580.7 39.2 51 5 9 40 1425.8 56.6 1482.6 901.9 580.7 39.2 51 5 9 40 1425.6 59.6 1482.6 901.5 580.7 39.2	75	4	30	30	1764.9 1755.3	1:59 1:82	1830.0	989.0 932.0	841.0 0.148	1.61
1 5 9 40 1425.8 56.8 1482.6 901.9 580.7 39.2 1 5 9 40 1620.4 59.6 1679.9 894.5 185.4 46.0	S-A	5	33	40	9.4181	62.3	1877.2	887.1	990.1	52.7
	1.5	2	6	lio	1425.8 1620.4	59.6	1482.6 1679.9	901.9	580.7 785.4	39.2 46.0

TABLE VI

CRUDE FIBER CONSUMPTION AND DIGESTIBILITY (CONTINUED)

. .

tal C.F. Retained Digesti per day of C (gms) per	977.2	871.2 51.	743.5 48.	864.0 53.	.06 Z.4L4	571.3 43.	777.Ju 51.	587.7 18.	758.9 49.	456.0 141.	617.3 54.
Fotal C.F. in To Feces per day (gms)	662.8	829.4	788.3	760.2	932.7	741.2	739.1	804.3	785.4	562.4	508.0
Total C. F. Consumed per day (gms)	1640.0	1700.6	1531.8	1024.1	1347.2	1312.5	1516.5	1438.1*	1544.3	1018.4	1125.3
Total C. F. Intake in Concentrate per day (gms)	1.64	52.5	52.2	रन्त	52.3	67.3	l46.8	55.5	9-14	28.9	47.9
Total C. F. Intake in Hay per day (gms)	1590.3	1.8481	1479.6	1-2167	1294.9	1245.2	1469.7	1336.6	1,99,1	989.5	1077.4
Fluorine Added	50	50	50		70	70	70		100	100	100
Gow No.	50	1	9		2	58	21		19	28	29
Lot No.	. 9	9	0		7	2	1		8	8	8

Date	Lot	Gow	Fluorine	Total C. F. Intake in Hay per day	Total C. F. Intake in Concentrate per	Total C. F. Consumed per	Total C.F. in Feces per day	Total C.F. Retained per day	Digestibilit
1/26/51						(ang) (on		(our9)	her cert
2/11/51	6	27	0	1137.0	64.9	1501.9	707.9	794.0	52.9
1/26/51	6	63.	0	1496.2	62.9	1559.1	1031.9	527.2	33.8
2/21/51	6	26	0	1868.8	55.6	192h.h	968.7	955.7	ho.7
				10001	1.10	1661.8	902.8	159.0	16:11
1/26/51	R	67	0	1211.0	30.2	2,1421	525.3	715.9	57.7
3/5/51	10	20	0	8-1211	1.74	1498.9	1035.2	163.7	30.9
3/21/51	TO	19	0	1283.5	65.6 17.6	1.9451	169.6	879.5	65.2
1/26/51							1.000	+•000	्र
2/11/52	11	70	100 / def.	1405.4	55.2	3.03µL	664.9	795.7	54.5
3/5/52	П	12	100 £ def.	1268.7	56.5	1325.3	750.2	575.1	4.54
3/22/51	ц	R	100 / def.	1066.5	36.6	1103.1	501.1	602.0	54.6
				1246.9	<u>म.</u> 94	1296.3	638.7	657.6	50.8

* Averages derived from Not 1 and 7 by omitting animal 24 and 2 respectively. See page 15.

TABLE VI

• Average per lot • Individual

TROEND

Animals

TABLE VII

NITROGEN FREE EXTRACT CONSUMPTION AND DIGESTIBILITY

Date				Total N. P. E. T.	ntole	Potel N B B Tatala				
of Trial	Lot No.	Cow No.	Fluorine Added	in Hay per d (gms)	av	in Concentrate per day (gms)	Total N.F.E. Consumed per day (gms)	Total N.F.E. in Feces per day (gms)	Total N.F.E. Retained. per day (gms)	Digestibility of N.F.E. per cent
1/26/51	ч	42	0	2061.2		1079.1	31h0.3	RAG. 0	99¢l. l.	a 12
15/5/2	-	24	0	2350.2		1120.2	3470.4	1633.0	A. A. A. A.	C0.0
3/21/51	ч	ก	0	2172.3		1089.9	3262.3	766 6	oloc a	74.07
				2194.6		1096.14	3201.3*	1095.1	2195.9	74.2*
1/26/51	N	16	10	1923.3		1045.5	2968.8	775.3	2.0014	0 66
2/21/51	2	16	10	2292.0	100 M	0.4211	0.91/18	1. 105	3257 0	600
3/21/51	2	я	D	2212.2		2.4111	0 yet	1.000A	6.160	0, 40
				5.242.5		1094.7	3237.2	852.7	2002.1 2384.5	73.7
2/24/51	m	32	20	1754.1		1,6901	D PORO		e upo	
				1.4211		1069.1	2823.5	1865.3	958.2	1.00
1/26/51	4	148	30	1974.4		1070.2	3044.6	704.3	2910 3	1 6
3/5/51	4	31	30	2005.8		1070.9	3076.7	723.6	2363.1	24.6
3/21/51	4	30	30	2204.9		1127.6	3339.5	781 5	SEEL A	7 74
				2061.7		1089.6	2121.2	166.8	2384.4	75.6
2/26/51	25	23	40	1998.9		1089.7	3088.6	1.418	227h. 5	9-52
3/5/51	25	6	140	1754.3		1100.5	2854.8	800.6	outly o	0.02
				1876.6		1095.1	2971.2	807.35	2164.3	72.8

TABLE VII

NITROGEN FREE EXTRACT CONSUMPTION AND DIGESTIBILITY (CONTINUED)

stibility N.F.E.	75.6	73.0	5 25	0.47	611.9	77.8	78.0	18.5*	4-12	78.6	78.4 76.2
F.E. Retained Dige day of of per	866.5	220,8	1. le.	2.780	683.0	050.7	080.3	0.140	6,949	521.6	660.8 610.8
Total N. per (g		2	C	101	-	2	~		7	1	77
Total N.F.E. in Feces per day (gms)	603.2	822.4	5 615	0.21L	0.909.0	584.5	558.2	683.9	661.0	ह.भाग	156.3 510.5
Total N.F.E. Consumed per day (gms)	2469.7	3043.2	2886.7	2800.0	2592.0	2635.2	2647.5	2642.8*	2310.9	1935.9	1.7112
Total N.F.E. Intake in Concentrate per day (gms)	923.0	1098.0	1097.6	1039.5	1078.4	1062.7	782.5	<u>974.5</u>	717.2	578.3	777.3 6909.3
Total N.F.E. Intake in Hay per day (gms)	1546.7	1945.2	1789.1	1760.3	1513.6	1572.5	1865.0	1020T	1593.7	1357.6	1339.8 1430.4
Fluorine Added	20	50	50		70	70	70		100	100	100
Cow No.	20	T	9		2	58	21		19	28	29
Lot No.	9	9	9		2	2	2		8	8	8
Date of Trial	1/26/51	15/5/	12/2/		12/24/51	12/21	/18/51	int tes	12/02/	12/57	15/12/

TABLE VII

NITROGEN FREE EXTRACT CONSUMPTION AND DIGESTIBILITY (CONTINUED)

L No	t Cow	Fluorine	Total N.F.E. Intake in Hay per day (gms)	Total N.F.E. Intake in Concentrate per day (gms)	Total N.F.E. Consumed per day (sms)	Total N.F.E. in Feces per day (gms)	Total N.F.E. Retained per day (gms)	Digestibility of N.F.E. per cent
1.	10	G	1870 J.	A BALL	c 0000			
1 9	63	0	2001.5	1079.5	3081.0	7*200	1.0012	73.2 66.9
6 1	26	0	2139.7	1120.2	3259.9	TONG	2261. I.	2000 Yo o
			2006.9	1102.5	3109.7	949.4	2160.3	69.5
1 PC	67	0	1676.9	522.7	2199.6	683.2	1,5151	68.9
F	20	0	24,91.3	955.5	3446.8	827.6	2619.2	76.0
T TO	19	0	1782.9	1689.9	2872.8	648.9	0.8929	77.4
			1983.7	856.0	2839.7	2.9.9	8.6115	1.47
1 II	02	100 / def.	1546.2	968.5	25214.7	635,5	1879.2	74.7
T T	12	100 / def.	1502.6	1,111	2613.7	7.907	1904.0	72.8
TTT	25.	100 / def.	1289.9	965.7	2255.6	502.22	1753.1	5.77
		the second second	1146.2	1015.1	2461.3	615.8	1845.5	15.1

* Averages derived from Lot 1 and 7 by omitting animal 24 and 2 respectively. See page 15. -

• Average per lot • Individual Animals

TABLE VIII

AVERACE DIGESTIBILITY OF NUTRIENTS

Lot No.	Fluorine Fed p.p.m.	% Digest Protein	% Digest. Fat	% Digest. Crude Fiber	% Digest. Nit. Free Ex.
1.0	6	66.7	59.4	47.4	74.2
2	16	66.8	52.5	47.0	73.7
3	26	59.2	29.4	23.5	66.1
4	36	67.4	54.8	48.7	75.6
5	46	63.9	51.4	46.0	72.8
6	56	66.6	52.7	53.1	74.6
7	76	71.8	55.7	48.5	78.5
8	106	71.5	57.1	49.6	76.2
9	16	62.5	55.7	45.4	69.5
10	26	64.8	57.3	51.3	74.1
11	109	67.7	56.1	50.8	75.1

A. COMPARISON OF MORRISON'S REQUIREMENTS OF TOTAL DIGESTIBLE NUTRIENTS AND DIGESTIBLE PROTEIN TO THOSE OBTAINED IN THIS EXPERIMENT

Table I is a comparison between the requirements of digestible protein and total digestible nutrients as given by Morrison (23) and the amount actually digested by the animal. It will be noted that the digestible protein in all cases greatly exceeds the maximum given by Morrison. The total digestible nutrients fall within Morrison's range with the exception of lots 3 and 11.

B. THE RELATIONSHIP OF TOTAL FEED CONSUMPTION, DRY MATTER AND TOTAL DIGESTIBLE NUTRIENTS TO THE LEVELS OF FLUORINE FED

The feed consumption was fairly constant from the control level to lots receiving around 46 p.p.m. fluorine as shown in Table II A, and Figure 1. There was a drop in consumption from lot 5 receiving 46 p.p.m. fluorine in the ration to lot 8 receiving 106 p.p.m. fluorine. Lot 11, receiving 106 p.p.m. fluorine plus 21 parts defluorophos per one part sodium fluoride added to the ration, showed an increase in consumption of feed over lot 8 receiving 106 p.p.m. fluorine. A probable reason for increased consumption by lot 11 may be due to the addition of defluorophos.

The effects of various levels of fluorine on total digestible nutrients consumed per 100 pounds body weight showed a slight variation from the trend of total feed consumption. The consumption of total digestible nutrients consumed per 100 pounds of body weight was fairly constant up

清楚 .

to lot 5 receiving 46 p.p.m. fluorine fed. There was a gradual drop in total digestible nutrients per 100 pounds body weight from the lot receiving 46 p.p.m. fluorine to a low in lot 7 receiving the 76 p.p.m. fluorine level. Lot 8 receiving 106 p.p.m. fluorine in the ration was about in line with lot 7, and there was very little increase shown by lot 11.

The consumption of hay and grain holds fairly constant up to around 40 to 50 p.p.m. fluorine in the ration. From these levels there is a gradual decline in consumption of hay and grain as shown in Table IIB and Figure 1, with the drop being more apparent in the grain. Lot 8 receiving 106 p.p.m. fluorine in the ration had the lowest consumption. Lot 11 showed a marked rise in grain consumption over lot 8. There was little effect on hay consumption by the addition of defluorophos.

Data on consumption of individual nutrients as shown in Tables IV, V, VI, and VII as well as Figures 2, 3, 4, and 5 seem to substantuate the above pattern shown by the total feed consumption tables and figures. There were no appreciable difference in consumption of any one nutrient. Consumption of nutrients hold fairly constant from the control level to around 40 to 50 p.p.m. fluorine in the ration. From the 40 to 50 p.p.m. fluorine level there was a gradual drop until a low point was reached at the 76 and 106 p.p.m. fluorine level as shown by lots 7 and 8 respectively. Lot 11 showed a slight increase over lot 8 in the consumption of individual nutrients.

C. DIGESTIBILITY OF NUTRIENTS AS COMPARED TO THE LEVELS OF FLUORINE FED

The effect of fluorine upon the digestibility of individual nutrients seems to be rather similar as shown by Tables IV, V, VI, VII and Figure 6. The digestibility of one nutrient appears to be neither accelerated nor retarded by fluorine more than any other nutrient.

In this experiment it appears that the effect of increasing the level of fluorine above the control ration decreases feed consumption rather than effecting the digestibility of individual nutrients.

CHAPTER IV

SUMMARY AND CONCLUSION

The ration fed during this metabolism trial consisted of 4 parts corn to 1 part cottonseed meal. Each cow received 4 pounds of the above concentrate. Good quality lespedeza and alfalfa hay was fed all lots with the exception of the two lots receiving Blount 1 and Blount 2 hay.

Sodium fluoride was added to the concentrate of each lot in the following amounts: Lot 1, 0 p.p.m.; lot 2, 10 p.p.m.; lot 3, 20 p.p.m.; lot 4, 30 p.p.m.; lot 5, 40 p.p.m.; lot 6, 50 p.p.m.; lot 7, 70 p.p.m.; lot 8, 100 p.p.m.; lot 9, no sodium fluoride added to the concentrate, but Blount 1 hay contains 19 p.p.m. fluorine; lot 10, no sodium fluoride in the concentrate, but Blount 2 hay contains 32 p.p.m. fluorine; lot 11, lo0 p.p.m. sodium fluoride, plus 21 parts defluorophos per 1 part of sodium fluoride added to the ration. It was found that control hay and concentrate ration contained 6 p.p.m. fluorine.

Feed consumption of each individual nutrient followed the same general pattern. Consumption from the control level to lot 5 receiving 46 p.p.m. fluorine in the ration was similar. There was a drop in consumption from lot 5 to lot 8 receiving 106 p.p.m. in the ration. Consumption of concentrate was increased considerably by the addition of deflucrophos to the ration, but no marked effect on hay consumption was apparent.

The effect of fluorine upon digestibility of individual nutrients

seems to be rather similar under conditions of this experiment. The digestibility of one nutrient appears to be neither accelerated nor retarded by fluorine more than any other nutrient.

In this experiment it appears that the effect of increasing the level of fluorine above the control level decreases feed consumption rather than effecting the digestibility of individual nutrients.

BIBLICORAPHY

BIBLIOGRAPHY

- 1. Association of Official Agricultural Chemist (Official Methods of Analysis) 7 Edit. 1950. pp. 13, 97, 342, 346
- Bohstedt, G., 1931. "Studies Being Made of Safe Limits for Rock Phosphate as a Mineral Feed". Wisc. Agr. Exp. Sta. Bulletin 421, An. Rept. 1930-1931, pp. 104-107.
- Burroughs, Wise, Gerlaugh, Paul, Edington, B. H. and Bethke, R. M. "The Influence of Corn Starch Upon Roughage Digestion in Cattle". Journal Animal Science. Vol. 8, No. 2, May, 1949. pp. 271-278.
- 4. Burroughs, Wise, Frank, Norma A, Gerlaugh, Paul and Bethke, R. M. "Preliminary Observations Upon Factors Influencing Cellulose Digestion by Rumen Microorganisma." Journal Nutrition, Vol. 40 No. 1, January 1946. pp. 9 - 24.
- Burroughs, Wise, Gerlaugh, Paul, Eddington, B. H., and Bethke, R. M. "Further Observations on the Effect of Protein Upon Roughage Digestion in Cattle". Journal Animal Science, Vol. 8, No. 1, February, 1949. pp. 9 - 18.
- Burroughs, Wise and Gerlaugh, Paul. "The Influence of Soybean Oil Meal Upon Roughage Digestion in Cattle". Journal Animal Science, Vol. 8, No. 1, February, 1949. pp. 5-8.
- Burroughs, Wise, Gerlaugh, Paul, Silver, E. A. and Shalk, A. F. "The Amount of Feeds and Nutrients the Rumen of Cattle Throughout a 24 Hour Period as Affected by Plane of Feeding and Character of Ration". Journal Animal Science. Vol. 5, No. 4, November, 1946. pp. 338-349.
- Burroughs, Wise, Gerlaugh, Paul and Bethke, R. M. "The Influence of Alfalfa Hay and Fractions of Alfalfa Hay Upon the Digestion of Ground Corncobs". Journal Animal Science, Vol. 9, No. 2, May, 1950.
- Burroughs, Wise, Headley, H. G., Bethke, R. M. and Gerlaugh, Paul. "Cellulose Digestion in Good and Poor Quality Roughages Using an Artificial Rumen". Journal Animal Science. Vol. 9, No. 4, November, 1950. pp. 513-522.
- Burroughs, Wise, Gall, L. S. Gerlaugh, Paul and Bethke, R. M. "The Influence of Casein Upon Roughage Digestion in Cattle with Ruman Bacteriological Studies". Journal Animal Science. Vol. 9, No. 2, May, 1950. pp. 214-220.
- Chang, C. Y., Phillips, P. H., Hart, E. B. and Bohstedt, G. "The Effects of Feeding Raw Rock Phosphate on Fluorine Content of Organs and Tissues of Dairy Cows". Journal Dairy Science. Vol. 17, 695 (1934).

- 12. Cristiani, H. and Gautier, R. American Medical Legale, 6, 336 (1926).
- 13. Eckles, C. H. "Nutrients Required for Milk Production", Mo. Agr. Exp. Sta. Research Bulletin 7, 1913.
- 14. Elmslie, W. P. "The Effects of Rock Phosphate on Dairy Cows". Proc. Amer. Soc. Animal Production, Vol 29, pp. 44-48 (1936).
- Hobbs, C. S., Hansard, Sam L. And Barrick, E. R. "Simplified Methods and Equipment Used in Separation of Urine from Feces Eliminated by Heifers and by Steers". Journal Animal Science. Vol 9, No. 4, November, 1950. pp. 566-570.
- 16. Lawrenz, Margaret, Mitchell, H. H. and Ruth, W. A. "A Comparison of the Toxicity of Fluorine in the Form of Cryolite Administered in Water and Food." Journal Nutrition. Vol. 8, July-December, 1939. pp. 127-141.
- Lawrenz, Margaret, Mitchell, H. H. and Ruth, W. A. "The Comparative Toxicity of Fluorine in Calcium Fluoride and in Cryolite". Journal Nutrition. Vol. 8, No. 12, July - December, 1939. pp. 115-125.
- 18. Madsen, Louis L. "Nutritional Decrease in Cattle". Yearbook of Agriculture. 1942. pp. 657-658.
- 19. Mangold, Ernest. "The Digestion and Utilization of Crude Fiber". Nutritional Abstracts and Revs. 3, 647-656. 1934.
- 20. Maynard, L. A. Animal Nutrition. 2d Edit. 1947. pp. 258-259.
- Maynard, L. A. and Tolle, C. "A Study of Phosphatic Limestone as a Mineral Supplement". Cornell Agr. Exp. Sta. Bulletin 530. 1931.
- McClure, F. J., "Micro Determination of Fluorine by Thorium Nitrate," Industrial and Engineering Chemistry, Vol. 11, No. 3, 1939. p. 171.
- 23. Morrison, F. B. Feeds and Feeding. 21st Edition. pp. 117-119. 1949.
- 24. Mitchell, H. H. "The Fluorine Problem in Livestock Feeding". National Research Council Reprint and Circular Series. No. 113. 1942-1-10.
- Pierce, A. W. "Chromic Fluorine Intoxication in Domestic Animals". Nutritional Abstracts and Revs. 9: 253-261. 1939.

- 26. Phillips, P. H., Hart, E. B. and Bohstedt, G. "Chronic Toxicosis in Dairy Cows Due to the Ingestion of Fluorine". Wisc. Exp. Sta. Research Bulletin 123. 1934, pp. 1-30.
- 27. Phillips, P. H. and Stare, F. J. "The Distribution of a Reducing Substance (Vitamin C) in the Tissues of Fluorine-Fed Cows". Journal Biological Chemistry, 104, pp. 351-358. (1934).
- Reed, O. E. and Huffman, C. F., 1930. "The Result of a Five-Year Mineral Feeding Investigation with Dairy Cattle". Mich. Agr. Exp. Sta. Tech. Bulletin 105, p. 63.
- 29. Sterges, A. J., Hardin, J. L., and MacIntire, W. H. "A Modification of the Official Micro Method for the Determination of Phosphorus Content of Plant Tissues," Journal of the Association of Official Agricultural Chemist. February, 1950, pp. 115-121.
- Taylor, G. E., 1927. "The Effects of Fluorine in the Dairy Cattle Ration". Mich. Agr. Exp. Sta. Quarterly Bulletin 11: 101-104.
- 31. Unpublished Data Tennessee Agr. Exp. Station.
- 32. Willard, H. H. and Winter, O. B. "Volumetric Methods for Determination of Fluorine". <u>Industrial and Engineering Chemistry, Analytical</u> <u>Edition</u>. Vol. 5, 1933, p. 7.

THE CONTENTS OF THIS THESIS CONTAINS CONFIDENTIAL INFORMATION AND IS NOT FOR PUBLICATION.