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Abstract

Commercial air travel has become extremely commonplace in the last 20 to 30 years especially

as the world has moved towards new heights of globalization. Though air travel has greatly

reduced transit times allowing people to cover thousand of miles within hours, it comes with

its fair share of issues. jet-lag can be regarded to be at the top of those list of problems; jet-

lag typically results from rapid travel through multiple time zones which causes a significant

misalignment between the person’s internal circadian clock and the external time. A person’s

circadian clock is governed by a population of coupled neurons entrained to a 24-hour light

and dark cycle and thus after rapid air travel, the neuron population needs a certain time

to get accustomed to the new time zone. This misalignment can result in a variety of health

problems including, but not limited to, lethargy, insomnia and adverse effects to the sleep

cycle.

Various techniques have been proposed and are currently in use for jet-lag treatment

like melatonin ingestion or making drastic changes to one’s own routine prior to air travel.

However, these treatment strategies are normally accompanied with long re-entrainment

times or following a strict schedule to help with correcting the sleep cycle. The presented

work explores an alternate strategy for jet-lag treatment using the notion of operational

phase and isostable coordinates for model reduction and then, applying optimal control to

derive inputs which can be applied directly to the model. To show the framework’s efficacy,

results are presented by applying the strategy to a 2-d model; preliminary results show that

the proposed approach greatly reduces the reentrainment time required to acclimatize to the

new time zone.
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Chapter 1

Introduction

Before the 20th century, travel by road and by sea were the conventional ways of travel used

by the common masses to travel around the world; this involved long journey times typically

around a few days to months depending upon the destination. It was not until commercial

flights became popular and relatively inexpensive in the 20th century that these long travel

times just got reduced to hours. This not only brought a much needed ease in travel but also

exponentially enhanced connectivity and drastically saved time; a person living in UK can

now hop on a flight and land in US for a business meeting within a span of a few hours where

as the same journey by sea can take weeks on end. However, air travel was accompanied

with its own set of problems mainly jet-lag.

Jet-lag generally results when multiple time zones are covered consecutively during

air travel; this results in a mismatch between one’s own internal circadian clock and the

associated environmental time [3], [53]. This internal circadian clock is governed by a set

of roughly 20,000 coupled neurons located in the suprachiasmatic nucleus (SCN) [50], [44];

these neurons comprise the master circadian pacemaker within the mammalian brain and

their collective oscillation yields a robust endogenous circadian cycle with a near 24-hour

period. Normally, these circadian rhythms are entrained to daily time cues such as a 24-hour

light-dark cycle [22], [77]; such circadian rhythms are evolutionarily advantageous, allowing

for the anticipation of and subsequent response to daily environmental changes [45], [79].

However, as depicted in Fig 1.1, circadian misalignment can arise during air travel resulting

in jet-lag accompanied with many health problems. Primarily a sleep disorder, the primary
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symptoms of jet-lag are insomnia, daytime fatigue, and a general feeling of malaise [24], [53].

However, additional accumulating evidence suggests that chronic jet-lag could be associated

with long term cognitive deficits and accelerated tumor growth [20], [12], [14], [33], [21], [60].

To decrease the reentrainment time following rapid travel across multiple time zones,

recent years have seen a surge in interest pertaining to development of jet-lag mitigation

strategies. For instance, modeling studies have identified optimal schedules for rapidly

acclimating to a new time zone through light avoidance and exposure [4], [80], [17], [55];

some of these strategies have been implemented successfully in real-time using smartphone

apps and features [6]. However, all these aforementioned strategies generally require people

to strictly follow the prescribed routines for days in advance requiring non-trivial effort. From

a dynamical systems perspective, various works in literature often employ phase-based model

reduction as an initial approach in order to simplify the circadian models and ultimately,

derive applicable jet-lag mitigation strategies.

Phase-only model reduction techniques of the form (2.2) are often employed to study

behaviors such as entrainment, circadian misalignment, and jet-lag recovery [72], [25], [59],

[37], [47], [71], [81]. PRCs that capture the response to light and melatonin have been

measured experimentally in humans [41], [30], [10], [38]. Based on this information, practical

jet-lag recovery treatments have been developed such as carefully timed combinations of

light exposure and light avoidance [11], [63], evening ingestion of melatonin after eastward

travel [46], [58], [5], and combinations of both [51]. Other strategies for jet-lag prevention

have been suggested which seek to shift one’s circadian rhythm pre-flight [52], [16], [9] as

would be useful when peak-level performance is necessary immediately in the new time zone

(e.g., for professional athletes [54]).

It is to be noted that a significant limitation of these phase-only reduced models is that

they require the oscillator’s state to remain close to the nominal limit cycle xγ(t). As such,

these models neglect important information about the amplitude dynamics, often referred

to as adaptation or memory, that characterizes how the system adapts in response to large

magnitude inputs. It is well-established that measured phase response curves to light depend

on the history of light stimulation [48], [61], [27], [56], [15] and preliminary evidence suggests

that related memory-based effects could have a profound impact on jet-lag recovery. For
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instance, the authors of [2] found that desynchronizing the phases of neurons within the

SCN greatly reduced the time required to recover from subsequent time shifts in the light

schedule. Additionally, [78] showed that blocking vasopressin signaling in mouse SCN allowed

for faster recovery to subsequent shifts in a 24-hour light-dark cycle.

Therefore, the primary purpose of the work presented in this thesis is to investigate the

influence of circadian memory (i.e., the notion that past inputs have a lingering effect on

the dynamics) in the context of recovery from circadian misalignment. In order to capture

memory effects that are neglected by the standard phase reduction (2.1), the proposed

framework employs an operational phase and isostable coordinate based approach suggested

by [69] in which phase is defined with respect to a distinct feature of a given limit cycle.

Unlike reduction techniques that use an asymptotic definition of phase, to leading order, the

operational phase dynamics depend on the amplitude coordinates allowing us to consider

circadian memory. Furthermore, using a calculus of variation framework, an optimal control

based jet-lag pretreatment strategy is explored that exploits circadian memory to prime

one’s circadian cycle to recover quickly in response to an anticipated time-zone shift. This

strategy is fundamentally different than those suggested in [52], [16], [9] (which exchange

circadian misalignment in one’s destination time zone for misalignment in one’s home time

zone).

The layout of the thesis is as follows: Chapter 2 gives a detailed theoretical background of

the techniques and the coordinate transformations used for model reduction in the work along

with a detailed literature review on other jet-lag treatment strategies. Meanwhile, Chapter

3 illustrates the importance of incorporating amplitude coordinates in model reduction

strategies for jet-lag treatment. The mathematical approach behind the proposed optimal

control strategy is presented in Chapter 4 including how the cost functional is derived and

how the calculus of variations approach is used as a baseline for formulating the optimal

control strategy. The overall methodology and application of the optimal control strategy is

illustrated through a 2-d model in Chapter 5 followed by the conclusion in Chapter 6.
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Figure 1.1: How jet-lag is caused [26]
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Chapter 2

Background and Literature Review

This chapter starts by a detailed section based upon introducing other jet-lag treatment

strategies found in literature and elaborating on each of them briefly. Furthermore, as

mentioned in the Introduction chapter, operational phase and isostable reduction framework

[69] is used in this work. Therefore, necessary background needs to be provided in order

to help understand how these operational phase-amplitude coordinates are derived. Phase-

based model reduction is often an initial step in the analysis of many circadian models as they

are generally high-dimensional and non-linear in nature. Therefore, the next section in this

chapter gives a brief introduction on the phase-only reduction to summarize how exactly the

model can be represented in terms of the phase coordinate. The following section touches

on the notion of phase amplitude coordinates and how the idea of isostable coordinates

is augmented with the phase-only reduction. Finally, the last section illustrates how the

standard phase amplitude coordinates can be transformed into operational phase amplitude

coordinates to be used in the jet-leg treatment strategy.

2.1 Literature Review

As mentioned in the introductory chapter, a wide variety of methods have already been

proposed and used in previous works for jet-lag treatment. Authors in [18] do an extensive

study on how rapid level through multiple time zones cause jet-lag and construct one-

dimensional entrainment maps to explain several properties and characteristics of jet-lag
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including the reason for people experiencing worse implications through jet-lag during

eastward travel. Finally, they propose some techniques in order to minimize these deleterious

effects by using the insights gained from their analysis. Meanwhile, a study conducted in

[29] proposes the use of Argonne diet as a safe and low-cost treatment for jet-lag by advising

to follow a strict feasting pattern before and after travel. The preliminary results presented

in the paper indicates more frequent instances of jet-lag for non-dieters as compared to those

on a diet. Research conducted by the authors in [78] concludes that vasopressin hormone

signalling in the Suprachiasmatic nucleus (SCN) can hinder reentrainment to changes in

the environmental time. This is supported by an experiment conducted by them on mice

that had their vasopressin receptors inhibited; the study shows that these mice have an

accelerated recovery from jet-lag.

The work in [17] employs mathematical models derived for the circadian pacemaker to

design and alter sleep schedules and other countermeasures in order to accelerate recovery

from circadian misalignment and improve performance. This scheduling typically involves

factors including, but not limited to, light exposure and sleep-wake schedule; the authors

propose that their presented strategies can be utilized for designing optimal schedules to

avoid the harmful effects of jet-lag in extreme environments. Another work [19] suggests

strategies to minimize jet-lag occurrences by utilizing treatments based on melatonin

ingestion, exposure to light and sleep schedules in conjunction with the flight times one

has and their overall itinerary. Researchers in [62] explore similar techniques by suggesting

appropriate schedules for using conventional jet-lag treatment strategies based on melatonin

and light exposure so that the efficacy of these methods can be maximized and the overall

health can be improved.

On the other hand, phase-based techniques have been gaining prominence in recent years

to tackle issues like jet-lag. For example, [37] utilizes a detailed computational model

that predicts the presence of a threshold separating the orthodromic from antidromic re-

entrainment. Using the notion of phase response curves, their proposed strategy then predicts

the exact location of the aforementioned threshold after advanced or delayed phase shifts

of the light-dark cycle. Another work [43] presents an algorithm involving the concepts of

isostables and isochrons to represent the model and then use it in conjunction with spike
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timing control in order to deal with issues associated with jet-lag among other applications.

Finally, authors in [39] do model reduction for the forced Kuramoto model and use biological

experiments to estimate its parameters before examining the phase dynamics of the model

and study the mechanism for jet-lag resulting from both eastward and westward travel along

with differences between the two.

It is pertinent to note here that all of the previous methods either rely on following

complex schedules for rapid reentrainment to the new time zone or rely on phase dynamics

alone which usually do not consider dynamics far from the periodic orbit. The following

sections describe the phase reduction in more detail as well as the ideas behind the standard

and operational phase amplitude coordinates.

2.2 Phase-only Reduction

As described previously, given the complexity and high-dimensionality of many circadian

models, phase-based model reduction is often a necessary first step in the analysis and

identification of jet-lag mitigation strategies. From a mathematical perspective, many models

used to study circadian physiology can be written as a set of differential equations of the

form

ẋ = F (x, p(t)), (2.1)

where x ∈ RN is the system state, F represents the nominal dynamics, and p ∈ R is a

(potentially) time-varying parameter that can be used to incorporate features such as a

24-hour light-dark cycle. When p(t) = p0 where p0 is some nominal, constant parameter,

circadian models of the general form (2.1) usually admit a stable, T -periodic limit cycle

xγ(t). Letting the phase, θ, be defined according to the notion of isochrons [23], [76] which is

also presented in Fig 2.1 so that initial conditions with the same asymptotic convergence to

the periodic orbit have the same phase. The dynamics can be analyzed in a phase reduced

form [34], [76], [59]

θ̇ = ω + ZE(θ)u(t), (2.2)
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where ZE(θ) = ∂θ
∂x
· ∂F
∂p

is the effective phase response curve (PRC) with all partials evaluated

at xγ(θ) on the limit cycle, and u(t) = p(t)− p0 is an effective input.

2.3 Asymptotic Phase and Isostable Reduction

The operational phase coordinate framework [69] is based on the phase-isostable coordinate

framework proposed in [75] (cf., [68], [57]). A brief description of this phase-isostable

coordinate framework is presented here. To begin, consider a general dynamical system

of the form (2.1) with a T -periodic limit cycle xγ(t) that emerges taking p(t) = p0. When

p(t) is held constant at this nominal value, one can define a phase θ ∈ [0, 2π) valid for all

locations on the limit cycle and scaled so that dθ/dt = 2π/T = ω. One can define phase

in the entire basin of attraction of the limit cycle using the notion of isochrons as shown in

Fig 2.1 [23],[76]. Isochrons are defined such that when p(t) = p0, for any initial condition

a(0) ∈ xγ(t), the isochron associated with a(0) is defined to be the set of all b(0) such that

lim
t→∞
||a(t)− b(t)|| = 0, (2.3)

where || · || can be any vector norm. The isochron-based definition of phase encodes for the

infinite time behavior of solutions that have been perturbed from the limit cycle. In many

situations, it is also useful to consider the amplitude dynamics that capture the transient

decay of solutions towards the periodic orbit. In order to leverage Floquet theory [28], one

can first define ∆x(t) = x(t) − xγ(t) so that to a linear approximation, the dynamics of

Equation (2.1) are

∆ẋ = J∆x, (2.4)

where J is the time-varying Jacobian of F evaluated at both xγ(t) and p = p0. Letting Φ

be the fundimental matrix defined such that ∆x(T ) = Φ∆x(0), consider the eigenvalues and

associated left and right eigenvectors of Φ denoted by λj, wj, and vj, respectively. Letting

λ1 be the nonunity eigenvalue (i.e., Floquet multiplier) of largest magnitude, it is possible

to define a set of isostable coordinates valid in the basin of attraction of the limit cycle

according to [68]; this is also illustrated in Fig 2.2.

8



V

n

 

 

−100 −50 0 50
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

θ

1

2

3

4

5

6

Figure 2.1: Defining phase through isochrons [73]
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ψ1(x) = lim
k→∞

[
wT1 (ν(tkΓ, x)− x0) exp(−κ1t

k
Γ)
]
, (2.5)

where tkΓ denotes time of the kth transversal of the θ = 0 isochron, ν(t, x) gives the

unperturbed flow of Equation (2.1), x0 is the intersection of the periodic orbit and the

θ = 0 isochron, and κ1 = log(λ1)/T is the associated Floquet exponent. Intuitively, the term

wT1 (ν(tkΓ, x) − x0) captures the exponential decay toward the periodic orbit and the term

exp(−κ1t
k
Γ) grows at a corresponding rate. In the limit as time approaches infinity, the term

inside the brackets of (2.5) converges to the isostable coordinate associated with the state x.

In general, a collection of isostable coordinates can be defined for the N -dimensional system

(2.1), however, it is not always possible to provide an explicit definition like the one from

(2.5). Instead, one can define a collection of isostable coordinates ψ1, . . . , ψM−1 implicitly

as level sets of Koopman eigenfunctions associated with the nonunity Floquet multipliers

of the linearized dynamics. More details about the relationship of isostable coordinates to

the Koopman operator can be found in [35], [40]. In the basin of attraction of the limit

cycle, all isostable coordinates decay exponentially according to ψ̇j = κjψj in the absence of

perturbation where κj = log(λj)/T .

In the absence of other assumptions, the use of isochrons and isostable coordinates on

its own does not yield any meaningful simplification of the system dynamics since the phase

still depends on the state. However, by assuming that both p(t)− p0 and x−xγ(t) are order

ε terms at all times where 0 < ε� 1, one can asymptotically expand Equation (2.1) about

xγ(t) to yield

ẋ = F (x, p0) +
∂F

∂p
(p(t)− p0) +O(ε2)

= F (x, p0) + U(t) +O(ε2), (2.6)
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where the partial derivative is evaluated at both xγ(t) and p0 and U(t) ∈ RN = ∂F
∂p

(p(t)−p0).

Changing to phase and isostable coordinates via the chain rule as in [75], [68] gives

θ̇ = ω + Z(θ)TU(t) +O(ε2), (2.7)

ψ̇j = κjψj + Ij(θ)
TU(t) +O(ε2), (2.8)

j = 1, . . . , N − 1,

where Z(θ) and Ij(θ) are the gradients of θ and ψj, respectively, (i.e., the phase and

isostable response curves). Numerical techniques based on the adjoint method of solution

for computing these response curves are described in [75], [7]. It is often possible to ignore

isostable coordinates ψj for which the corresponding Floquet exponents κj are large in

magnitude so that they decay rapidly [43], [70], [67]; in this case, the resulting set of equations

is of lower order than the original set of equations. Note that to leading order accuracy, the

phase dynamics are uncoupled from the isostable dynamics; however, this is not generally

true for higher order accuracy phase-amplitude reductions as explored and evaluated in detail

in [65] and [68].

In this thesis, a slightly different construction for the phase and isostable equations of

the form (2.7) and (2.8) is used:

θ̇ = ω + z(θ)u(t), (2.9)

ψ̇j = κjψj + ij(θ)u(t), (2.10)

j = 1, . . . , N − 1,

where z(θ) ∈ R = Z(θ)T ∂F
∂p

, each ij(θ) ∈ C = Ij(θ)
T ∂F
∂p

, and u(t) = p(t) − p0 with partial

derivatives evaluated at xγ(θ) and p0. Considering the definition of U(t) given directly

below (2.6), one can verify that the phase and isostable dynamics from (2.9) and (2.10) are

equivalent to those from (2.7) and (2.8).
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Figure 2.2: Idea of isostable coordinates [74]
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2.4 Operational Phase Reduction

Defining phase in terms of the isochrons (2.3) encodes for asymptotic behavior, i.e., the

oscillation timing after the state relaxes to the limit cycle. In many applications, however,

including those that involve entrainment of circadian oscillators, external inputs are

constantly applied and the state never reaches to the limit cycle. In these cases, standard

phase-amplitude reduction may not adequately capture the behavior of the full system.

With this in mind, as in [69], an operational phase coordinate, θ∗ ∈ [0, 2π), can be used

that explicitly defines θ∗ = 0 to correspond to some feature of interest near the limit cycle;

this idea is portrayed in Fig 2.3. For example, θ∗ = 0 can be defined as the time that a

periodically spiking neuron fires an action potential, elevating its transmembrane voltage

beyond its resting level. Intuitively, such a threshold can be represented as Poincaré section

[64], with the time required to start at and return to θ∗ = 0 corresponding to the return

time. When using operational phase coordinates, θ∗ = 0 can be distinctly measured on each

cycle, even when the state is far from the periodic orbit. By contrast, the asymptotic phase,

θ, can generally only be measured after an oscillator is allowed to relax to the limit cycle in

the absence of any exogenous inputs.

The operational phase coordinate, θ∗(x), can be directly related to the phase and isostable

coordinates from Equations (2.7) and (2.8). Following the construction from [69], let xγ(θ) be

a limit cycle where θ is the asymptotic phase. Letting xγk and xk be the kth element of xγ(θ)

and x, respectively, the θ∗(x) = 0 level set can be defined as all states in the neighborhood

of xγ(0) for which both xk = xγk(0) and sign
(
dxk
dt
|x
)

= sign
(
dxk
dt
|xγ(0)

)
. As discussed in [69],

by leveraging the isostable coordinate framework, the definition of operational phase can

be extended to a neighborhood of the limit cycle. The subsequent operational phase and

isostable coordinate dynamics of Equation (2.6) are of the form

θ̇∗ = ω +
N−1∑
j=1

(αjψj) + Z∗(θ∗)TU(t) +O(ε2),

ψ̇i = κiψi + I∗i (θ∗)TU(t) +O(ε2),

i = 1, . . . , N − 1, (2.11)
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where constants αj ∈ C characterize how θ̇∗ changes as the state is perturbed from the limit

cycle, and Z∗(θ∗) (resp., I∗(θ∗)) give the gradient of the operational phase and isostable

coordinate evaluated at θ∗ on the limit cycle. Rewriting (2.11) in a similar form as (2.9) and

(2.10) to emphasize the parameter perturbations yields

θ̇∗ = ω +
N−1∑
j=1

(αjψj) + z∗(θ∗)u(t),

ψ̇i = κiψi + i∗i (θ
∗)u(t),

i = 1, . . . , N − 1, (2.12)

where z∗(θ∗) ∈ R = Z∗(θ∗)T ∂F
∂p

, each i∗j(θ
∗) ∈ C = I∗j (θ∗)T ∂F

∂p
, and u(t) = p(t) − p0 with

partial derivatives evaluated at xγ(θ) and p0.

As shown in [69], the phase and isostable response curves from (2.11) are related to those

from the phase-isostable reduced equations from (2.7) and (2.8) according to

Z∗(θ∗) = Z(θ∗) +
N−1∑
j=1

(
αjIj(θ

∗)

κj

)
,

I∗i (θ∗) = Ii(θ
∗), (2.13)

for each i = 1, . . . , N − 1. Furthermore,

αi =
ωκjp

xk
i (0)

ẋk(0)
, (2.14)

for each i = 1, . . . , N − 1 where pxkj (0) is kth element of the Floquet eigenfunction

associated with ψi evaluated at θ = 0 and ẋk(0) is the time derivative of the kth component

of x evaluated at θ = 0 on the limit cycle. To leading order accuracy, an explicit relationship

between the operational and asymptotic phase can also be obtained:

θ = θ∗ −
N−1∑
j=1

αjψj
κj

. (2.15)
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Figure 2.3: Concept of operational phase [69]
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Chapter 3

Motivation Behind Considering

Amplitude Coordinates

In order to illustrate the fundamental importance of amplitude coordinates in applications

involving reentrainment, a modified version of the radial isochron clock from [76] is

considered.

ẋ =
2π

T

[
σx(1− x2 − y2)− y(1 + ρ(x2 + y2 − 1))

]
+ fe(t),

ẏ =
2π

T

[
σy(1− x2 − y2) + x(1 + ρ(x2 + y2 − 1))

]
, (3.1)

where x and y are spatial coordinates and fe(t) is an entraining stimulus. When fe(t) = 0

and ρ > 0, Equation (3.1) has a stable limit cycle that traces out a unit circle with period

T . The constant ρ = 0.12 determines how the radial distance from the periodic orbit

influences the rate of revolution and σ = 0.04 sets the relaxation rate to the periodic orbit.

For this specific example, the time period and the entraining stimulus are T = 24.2 hours

and fe(t) = 0.025 sin(2πt/24 + 0.58). These values are chosen to reflect the relationship

between the free-running period of a circadian oscillator (slightly longer than 24 hours [13],

[8]) and an exogenous 24-hour signal (such as a light-dark cycle) to which the oscillator can

entrain. Under the application of fe(t), all initial conditions converge to an entrained solution

shown as a solid black line in panel A of Figure 3.1. When the oscillator is entrained and

mod(t, 24) = 0, (x, y) = (1.12, 0) (green dot). Colored dots represent initial conditions on the
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entrained solution for which the external time has been shifted by ∆t hours (e.g., as a result

of a flight across one or more time zone). Open and closed circles correspond to positive and

negative values of ∆t, respectively. Subsequent reentrainment to the time-shifted stimulus is

illustrated in panels B and C. In general, reentrainment time increases as ∆t becomes larger

in magnitude.

In panel A of Fig 3.1, the unperturbed periodic orbit (i.e., with fe(t) = 0) is shown as a

dashed line. Under the application of fe(t), the resulting fully entrained solution is shown

in black. Colored dots represent initial conditions on the periodic orbit for which time (and

the resulting perturbation fe(t)) has suddenly been shifted to mod(t, 24) = 0, mimicking a

time zone change due to rapid travel. Open and closed circles represent initial conditions on

the entrained solution which have been shifted forward or backwards in time, respectively.

Panel B shows x(t) during subsequent reentrainment for each initial condition. In panel C,

µ(t) is the angle in a radial coordinate system, and µref(t) is the angle of the fully entrained

solution.

Figure 3.1 illustrates how reentrainment time depends strongly on the magnitude of the

time shift and corresponding misalignment in the angular direction. However, the radial

direction also has a strong influence on reentrainment as can be seen in the colormap in

panel A of Figure 2. Panels B and C in Fig. 2 show corresponding simulations illustrating

how the radial coordinate influences reentrainment: a larger radial coordinate results in more

rapid reentrainment following a +6 hour time shift while the same increased radial coordinate

delays reentrainment after a -6 hour shift. This discrepancy exists despite the fact that each

oscillator receives the same input fe(t) in each trial.

Meanwhile in Fig 3.2, Panel A shows the time for various initial conditions required to

achieve entrainment to the input fe(t) starting at t = 0. In polar coordinates, taking µref(t)

to be the angular coordinate associated with the fully entrained solution, the recovery time

trec is defined to be the largest t for which |µ(t)− µref (t)| > 0.26, corresponding to a 1 hour

time difference. Open and closed circles represent initial conditions on the entrained solution

which have been shifted forward or backwards in time, respectively. Panel B (resp., C) shows

the recovery of initial conditions which are initially −π/2 (resp., π/2) radians out of phase
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Figure 3.1: Effect of time shift on the entrained solution [1]

Figure 3.2: How varying radial coordinates influences recovery times [1]
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due to a +6 (resp., −6) hour time shift. In each example, the radial direction significantly

influences the recovery time.

As explained above, by shifting the state in the radial direction only, it is possible to

either hasten or delay recovery times. Motivated by this fact, in the chapter to follow, a

jet-lag pretreatment strategy is proposed and evaluated that seeks to optimally shift the

amplitude coordinate in order to hasten circadian reentrainment following an expected time

shift. In contrast to many jet-lag recovery strategies that just consider the phase dynamics

of reduced order models, the use of the operational phase-amplitude coordinate framework

allows to exploit circadian memory to achieve this goal.

19



Chapter 4

Proposed Optimal Control Method

for Shifting Amplitude Coordinates

As stated in the Introduction, an optimal control strategy for optimally shifting only the

amplitude coordinates associated with a periodic orbit is presented in this chapter. As

mentioned earlier in the thesis, when larger magnitude amplitude coordinates are considered,

the asymptotic phase from (2.9) does not, in general, accurately capture salient system

behaviors. For this reason, the operational phase and isostable framework from Equation

(2.12) is employed.

4.1 Identifying an Appropriate Cost Functional

Here, an optimal control problem for a general model of the form (2.1) is posed that can be

represented in terms of its operational phase and isostable dynamics using a model of the

form (2.12). In the derivation to follow, it is assumed that there are β < N−1 non-truncated

isostable coordinates yielding the reduced order model

θ̇∗ = ω +

β∑
i=1

(αiψi) + εz∗(θ∗)(u(t) + ue(t)),

ψ̇i = κiψi + εi∗i (θ
∗)(u(t) + ue(t)),

i = 1, . . . , β. (4.1)
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Above, the overall input is comprised of the control input, u(t), and a nominal entraining

stimulus, ue(t), (for instance, a 24-hour light-dark cycle). Also, it is explicitly assumed that

the overall input is an order ε term where 0 < ε� 1. Furthermore, the entraining stimulus

ue is assumed to be Te-periodic. Letting ωe = 2π/Te, it is also assumed that ω − ωe is

an order ε term, i.e. so that the entrained period is close to the natural period. Finally,

as illustrated in Appendix C of [70], provided the input is an order ε term and sufficiently

small relative to each Floquet exponent, each isostable coordinate is also an order ε term.

Consider for the moment the stable, fully entrained solution of (4.1) that results in the limit

as time approaches infinity when u(t) = 0. The associated operational phase and isostable

dynamics on this fully entrained solution, θ∗e(t) and ψi,e(t), respectively, follow

θ̇∗e = ω +

β∑
i=1

(αiψi,e) + εue(t)z
∗(θ∗e),

ψ̇i,e = κiψi,e + εi∗i (θ
∗
e)ue(t),

i = 1, . . . , β. (4.2)

To proceed, for any initial condition θ(0)∗ = θ∗e , letting ∆θ∗ = θ∗ − θ∗e and ∆ψi = ψi − ψi,e,

one finds

∆θ̇∗ = θ̇∗ − θ̇∗e

=

β∑
i=1

αi∆ψi + εz∗(θ∗)u(t) + εue(t)[z
∗(θ∗)− z∗(θ∗e)] +O(ε2)

=

β∑
i=1

αi∆ψi + εz∗(θ∗)u(t) + εue(t)z
∗′(θ∗e)∆θ

∗ +O(∆θ∗2) +O(ε2), (4.3)

where ′ ≡ d
dθ∗

. Noticing that all terms of ∆θ̇∗ are order ε terms, ∆θ∗ is an order ε term on

t ∼ O(1/ε). As such, we can rewrite (4.3) as

∆θ̇∗ =

β∑
i=1

αi∆ψi + εz∗(θ∗)u(t) +O(ε2). (4.4)
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In a similar manner, considering Equations (4.1) and (4.2), the dynamics of each isostable

coordinate follow

∆ψ̇i = κi∆ψi + εi∗i (θ
∗)u(t) + ε[i∗i (θ

∗)− i∗i (θ∗e)]ue(t) +O(ε2)

= κi∆ψi + εi∗i (θ
∗)u(t) + εue(t)i

∗′(θ∗e)∆θ
∗ +O(∆θ∗2) +O(ε2)

= κi∆ψi + εi∗i (θ
∗)u(t) +O(ε2), (4.5)

for i = 1, . . . , β.

Equations (4.4) and (4.5) will be used as a foundation in the following optimal control

formulation. For the formulation, the initial condition is considered such that it is fully

entrained to ue(t) at t = 0 with associated operational phase and isostable coordinates

θ∗(0) = ∆θ∗(0) = 0 and ∆ψ(0) = 0. Suppose that at t = Te (i.e., after the entraining

stimulus has been applied for one cycle), the external timing of the entraining stimulus

suddenly shifts by ∆t, more precisely,

ue(t) = ue(t+ h(Te)∆t), (4.6)

where h is the unit step function. An input u(t) needs to be obtained, applied over t ∈ [0, Te],

that will prime the system for recovery from the resulting misalignment by appropriately

influencing the isostable coordinates. To this end, all inputs u(t) that yield ∆θ∗(Te) = 0 are

considered, in other words, the set of all inputs that have no net influence on the operational

phase. Depending on whether ∆t is positive or negative, an optimal stimulus is derived that

minimizes the cost functional

C =


∫ Te

0
Xε2u2(t)dt− (1−X)

∑β
i=1

(
−αi∆ψi(Te)

κi

)
, if ∆t > 0,∫ Te

0
Xε2u2(t)dt+ (1−X)

∑β
i=1

(
−αi∆ψi(Te)

κi

)
, if ∆t < 0.

(4.7)

Here, the term
∫ Te

0
ε2u2(t)dt is the L2 norm of the input εu(t), which gives a sense of the

control effort. Terms of the form −αj∆ψj(Te)

κj
appropriately reward a latent phase shift that

can be used to hasten resynchronization. To see this, considering Equation (4.5) to leading

order ε, ∆ψj(t) = ∆ψj(Te) exp(κj(t − Te)) in the absence of input. As such, the total
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operational phase shift once the state relaxes back to the limit cycle will be

lim
t→∞

∆θ∗(t) =

∫ ∞
Te

[
β∑
i=1

αi∆ψi(Te) exp(κi(t− Te))

]
dt

=

β∑
i=1

−αi∆ψi(Te)
κi

. (4.8)

As such, shifting the isostable coordinates can prime the underlying system (2.1) to

respond appropriately to an expected shift in the environmental time. For instance, taking

∆t > 0, the overall cost is decreased when the latent phase is positive, ultimately hastening

resynchronization. Finally, X ∈ (0, 1] is a weighting term that sets the relative importance

of minimizing energy versus shifting the isostable coordinate.

4.2 A Calculus of Variations Approach for Minimizing

the Cost Functional

Following a calculus of variations approach [32], the Hamiltonian function associated with

the cost functional (4.7) is

H(y(t), u(t), p(t), t) = Xε2u2(t) + λ0

[ β∑
i=1

(αi∆ψi) + εz∗(θ∗)u(t)
]

+

β∑
i=1

λi[κi∆ψi + εi∗i (θ
∗)u(t)], (4.9)

where y ≡
[
∆θ∗ ∆ψ1 . . . ∆ψβ

]T
, and p ≡

[
λ0 . . . λβ

]T
are Lagrange multipliers. The

associated Euler-Lagrange equations are

ẏ =
∂H

∂p
, (4.10)

ṗ = −∂H
∂y

, (4.11)

0 =
∂H

∂u
. (4.12)
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The evaluation of (4.10) yields the state equations (4.4) and (4.5). Evaluation of (4.11)

yields

λ̇0 = −εz∗′(θ∗)u(t)λ0 −
β∑
i=1

(
εi∗′i (θ∗)u(t)λi

)
,

λ̇i = −λiκi − αiλ0. (4.13)

Finally, evaluation of (4.12) yields

u(t) =
−λ0z

∗(θ∗)−
∑β

i=1 λii
∗
i (θ
∗)

2εX
. (4.14)

Equations (4.4), (4.5), (4.13), and (4.14) comprise a set of 2(β + 1) Euler-Lagrange

equations that must be satisfied along extremal solutions. β + 2 of the required boundary

conditions, ∆θ∗(0) = ∆θ∗(Te) = ∆ψ1(0) = · · · = ∆ψβ(0) = 0, have already been specified

by the problem formulation. Noting that the final states of the isostable coordinates

∆ψ1(Te), . . . ,∆ψβ(Te) are free, the remaining boundary conditions can be specified by

requiring [32]
∂g

∂∆ψi

∣∣∣∣
t=Te

− λi(Te) = 0, (4.15)

for i = 1, . . . , β, where g = −sign(∆t)(1 − X)
∑β

i=1

(
−αi∆ψi

κi

)
is used to determine the

endpoint cost from (4.7). Evaluating (4.15) yields the remaining boundary conditions

λi(Te) = sign(∆t)(1−X)
αi
κi
, (4.16)

for i = 1, . . . , β.

As a matter of practical implementation, obtaining a solution to the above system

of Euler-Lagrange equations involves identifying a set of initial values for the Lagrange

multipliers, λ0(0), . . . , λβ(0), that yield the required final conditions at time Te under the

evolution of the Euler-Lagrange equations (4.10)-(4.12). This can be accomplished by first

noting that when X = 1 in the cost functional (4.7), u(t) = 0 is the minimal solution with

corresponding λi(0) = 0 for i = 0, 1, . . . , β. Subsequently, X can be incrementally decreased
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and the required Lagrange multipliers at each increment can be obtained using a Newton

iteration until the extremal solution for the desired value of X identified.

4.3 An Explicit Formulation of an Approximate Solu-

tion to the Optimal Control Problem

The process of finding solutions of the Euler-Lagrange equations (4.10)-(4.12) with the

required boundary conditions becomes unwieldy as the number of isostable coordinates, and

subsequently the dimensions of the Euler-Lagrange equations, increases. Additionally, it can

be difficult to know if the resulting extremal solutions represent globally optimal solutions,

or merely locally optimal solutions. Here, an explicit strategy is provided to compute an

approximate solution that minimizes the cost functional (4.7) that is valid in the limit that

the magnitude of the input is small.

To begin, notice from (4.1) that one can write θ̇∗ = ω+O(ε), and recalling that θ∗(0) = 0,

one finds

θ∗(t) = ωt+O(ε). (4.17)

With this in mind, considering the leading order ε dynamics of each ∆ψi, by first defining

ri ≡ ∆ψi(t)e
−κit and substituting this into Equation (4.5) one finds

∆ψ̇i = ṙie
κit + κirie

κit = κirie
κit + εi∗i (ωt)u(t). (4.18)

Hence,

ṙi = εe−κiti∗i (ωt)u(t)

ri(t) = r(t0) + ε

∫ t

0

e−κsi∗i (ωs)u(s)ds. (4.19)

Substituting ∆ψi = rie
κit into the above equation and recalling that ∆ψi(0) = 0 yields

∆ψi(Te) = ε

∫ Te

0

eκi(Te−s)i∗i (ωs)u(s)ds. (4.20)
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Substituting the above result into the cost functional from (4.7) gives

C =

∫ Te

0

[
Xε2u2(t)− εsign(∆t)(1−X)

β∑
i=1

(
− αi
κi
eκi(Te−t)i∗i (ωt)u(t)

)]
dt. (4.21)

The goal of the optimization is to find the input u(t) that minimizes (4.21) subject to the

constraint ∆θ∗(Te) = 0. This constraint can be written in a form similar to (4.21) by

considering the asymptotic phase dynamics using an equation of the form (2.9)

θ̇ = ω + εz(θ)(u(t) + ue(t)), (4.22)

as well as the asymptotic phase dynamics of the fully entrained solution θe(t) which follows

θ̇ = ω + εz(θe)ue(t). (4.23)

One can define ∆θ ≡ θ − θe and also note θ = θ∗ + O(ε). Using a similar asymptotic

expansion used to obtain (4.4), one can show

∆θ̇ = εz(ωt)u(t) +O(ε2). (4.24)

Noting that at t = 0, the system is fully entrained so that ∆θ(0) = 0, direct integration of

(4.24) yields

∆θ(Te) =

∫ Te

0

εz(ωt)u(t)dt. (4.25)

Applying (2.15), it can be shown that ∆θ = ∆θ∗ −
∑β

i=1(αi∆ψi/κi). Using this result

to transform (4.25) to operational phase coordinates, the required constraint for the cost

functional optimization becomes

∆θ∗(Te) = 0 =

∫ Te

0

εz(ωt)u(t)dt+

β∑
i=1

αi∆ψi(Te)

κi

= ε

∫ Te

0

[
z(ωt)u(t) +

β∑
i=1

(αi
κi
eκi(Te−t)i∗i (ωt)u(t)

)]
dt, (4.26)
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where the second line is obtained by substituting the result from (4.20). Using an

optimization approach based on a calculus of variations formulation [32], the integral

constraint (4.26) can be rewritten as an ordinary differential equation

dQ

dt
= εz(ωt)u(t) + ε

β∑
i=1

(αi
κi
eκi(Te−t)i∗i (ωt)u(t)

)
, (4.27)

with boundary conditions Q(0) = Q(Te) = 0. As such, the Hamiltonian associated with the

cost functional (4.21) subject to the constraint from Equation (4.27) is

H(y, u(t), p, t) = Xε2u2(t)− εsign(∆t)(1−X)

β∑
i=1

(
− αi
κi
eκi(Te−t)i∗i (ωt)u(t)

)
+ λ1[εz(ωt)u(t) + ε

β∑
i=1

(αi
κi
eκi(Te−t)i∗i (ωt)

)
u(t)], (4.28)

where y = Q is the state and p = λ1 is a single Lagrange multiplier. The Euler-Lagrange

equations (4.10)-(4.12) once again can be used to identify extremal solutions. Evaluation of

(4.12) yields the input

u(t) =
1

2Xε

(
sign(∆t)(1−X)

β∑
i=1

(
− αi
κi
eκi(Te−t)i∗i (ωt)

)
− λ1[z(ωt) +

β∑
i=1

(αi
κi
eκi(Te−t)i∗i (ωt)

)
]
)

= λ1uλ(t) + u0(t), (4.29)

where uλ(t) and u0(t) are defined appropriately and are simply functions associated with the

operational and asymptotic phase reduced equations. Note that z(ωt) in the above equation

is the asymptotic phase response curve and not the operational phase response curve.

Continuing to consider the Euler-Lagrange equations for (4.28), evaluation of Equation (4.10)

returns (4.27) and evaluation of (4.11) yields

λ̇1 = 0. (4.30)
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As such, λ1 is a constant. With this information, substituting (4.29) into the constraint

(4.26) gives

0 = ε

∫ Te

0

[(
z(ωt) +

β∑
i=1

(αi
κi
eκi(Te−t)i∗i (ωt)

))(
uλ(t)λ1 + u0(t)

)]
dt,

= λ1cλ + c0, (4.31)

where cλ = ε
∫ Te

0

(
z(ωt) +

∑β
i=1

(
αi
κi
eκi(Te−t)i∗i (ωt)

))
uλ(t)dt and

c0 = ε
∫ Te

0

(
z(ωt) +

∑β
i=1

(
αi
κi
eκi(Te−t)i∗i (ωt)

))
u0(t)dt are both constants. Provided cλ 6= 0, the

unique choice of λ1 that satisfies the boundary conditions is

λ1 = −c0/cλ, (4.32)

and thus, an explicit approximation of the control input that minimizes the cost functional

is

u(t) = − c0

cλ
uλ(t) + u0(t), (4.33)

which is valid in the limit that the magnitude of the input is small.
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Chapter 5

Methodology and Results

5.1 Adjoint Method

The adjoint method is used in order to derive the Phase Response Curves and Isostable

Response Curves for the radial model to be used in conjunction with the optimal control

methodology. For the purpose of understanding how the method exactly works, detailed

derivation for the adjoint method (taken from [43]) in order to extract the phase response

curve is presented in this section. Initially, one considers an infinitesimal perturbation ∆x

to the limit cycle xγ(t) at time t = 0. Let x(t) be the trajectory evolving from the perturbed

initial condition. Thus, one can define x(t) according to x(t) = xγ(t) + ∆x(t) and,

d∆x(t)

dt
= DF (xγ(t))∆x(t) +O(||∆x||2), (5.1)

Similarly, one can define the phase shift as ∆θ = θ(x(t)) − θ(xγ(t)) which can also be

written as,

∆θ = 〈∇xγ(t)θ,∆x(t)〉+O(||∆x||2), (5.2)

where 〈., .〉 defines the standard inner product and5xγ(t)θ is the gradient of θ evaluated at

xγ(t). It can be inferred from the equations above that ∆θ is independent of time specifically

after the perturbation applied at t = 0 so taking the time derivative of (5.2) to first order

i.e. lowest order in ||∆x||,
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〈
d∇xγ(t)θ

dt
,∆x(t)

〉
= −

〈
∇xγ(t)θ,

d∆x(t)

dt

〉
,

= −
〈
∇xγ(t)θ,DF (xγ(t))∆x(t)

〉
,

= −
〈
DF T (xγ(t))∇xγ(t)θ,∆x(t)

〉
(5.3)

Here, the matrix DF T (xγ(t)) is the transpose (adjoint) of the original matrix DF (xγ(t)).

As the above equation can hold for any arbitrary infinitesimal perturbation ∆x(t), one can

write

d∇xγ(t)θ

dt
= −DF T (xγ(t))∇xγ(t)θ, (5.4)

The result shown above follows from the non-degeneracy property of the inner product,

which states that if < a, b >= 0 for all b, then a = 0. To emphasize this property, one can

rearrange (5.3) as,

〈
d∇xγ(t)θ

dt
+DF T (xγ(t))∇xγ(t)θ,∆x(t)

〉
= 0,

where
d∇xγ (t)θ

dt
+ DF T (xγ(t))∇xγ(t)θ can be defined as a(t). Now, if ∆x(t) is taken to be

a(t), the expression will be 〈a, a〉 = 0. and it can be inferred that a = 0 from the definite

positivity of the inner product, finally resulting in the form shown in (5.4). Note that

dθ

dt
= ∇xθ.

dx

dt
= ∇xθ.F (x) = ω,

which holds true especially at t = 0. Thus, (5.4) needs to be solved using the following

condition,

∇xγ(0)θ.F (xγ(0)) = ω, (5.5)

Since ∇xγ(t)θ exists in Rn, (5.5) gives only one of n required initial conditions; the rest

arise from requiring that the solution ∇xγ(t)θ to (5.4) be T -periodic.
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5.2 Method Summary

This section describes how the adjoint method is used to extract the response curves for the

non-radial isochron model before they are used to derive the optimal control inputs. As the

first step, the model equations are used in order to extract the periodic orbit with starting

threshold set at zero for the x component in (3.1). Once the periodic orbit is extracted, the

time period for the periodic orbit is calculated and then, the time period value T (24.2 hrs

in this case) is used to calculate the value of ω using 2π
T

. These computed values are then

used in order to generate the Jacobian matrix for the linearization process using numerical

integration.

In the next step, the Jacobian matrix is used in order to extract the eigen vectors and

eigen values for the linearized system; the eigen values are then sorted in descending order

and then used in order to extract the kappa (κ) values (or Floquet exponents). For the

non-radial isochron model, a 2 × 2 Jacobian matrix is obtained; the eigen values are of the

magnitude 0.6055 and 1. Similarly, the extracted floquet exponents values are 7.4314 ×

10−7 corresponding to the unit eigen value and −0.0207 value corresponding to the other

eigen value. Once all the necessary values have been extracted, the adjoint method is used

to extract the phase response curve (PRC) and the isostable response curve (IRC). The

equations for extracting both the PRC and IRC using numerical integration are given below:

Zd+1 = JkZddt+ Zd,

Id+1 = Jk ∗ Iddt− κjIIddt+ Id (5.6)

where Zd corresponds to the PRC, Id is the IRC, J is the Jacobian matrix and I is the identity

matrix. The computed PRC is then normalized in order to ensure that the PRC is accurate

for further computations; afterwards, the obtained IRC and PRC is then flipped and scaled

accordingly in order to get the final curves . For conversion of the standard PRC and IRC

to the operational ones, some additional parameters need to be calculated for getting the

value of α as shown in (2.14). The value of pj comes from the scaled down right eigen vector

specifically the first component of the eigen vector corresponding to the isostable coordinate,

the value ẋk represents the time derivative of the first point of the periodic orbit while ω
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and κ values are already computed. The computed alpha value comes out to be −0.0014 in

this case; using the alpha value, the operational PRC and IRC are computed by:

I∗i (θ∗) = Ii(θ),

Z∗(θ∗) = Z(θ) +
N∑
j=1

(
αjIj(θ

∗)

κj

)
(5.7)

As can be seen from the (5.7), the isostable response curve remains as it is even after

conversion to operational phase-amplitude coordinates; meanwhile, the operational PRC

is different from the standard PRC. Now, in order to compute the optimal control input,

the obtained operational PRC and IRC are interpolated and shifted in order to fulfil the

requirement for using the optimal control derivation presented in the previous chapter i.e.

the θ∗ = 0 should correspond to the mod(t, 2π) = 0. After shifting is done, the equations for

the entrained solution as shown in (4.2) are implemented and solved using numerical ordinary

differential equations method; these equations utilize the operational IRC and PRC obtained

previously.

The shifted PRC and IRC are then utilized for computing the optimal control input

according to the process highlighted in chapter 4. As an initial step, the operational PRC

and IRC need to be converted back to the standard ones because the standard response

curves are used for computing the optimal control input before going through the steps

highlighted in section 4.3. In order to assess the usefulness and accuracy of the optimal

control inputs obtained, the inputs (20 in total in this case) are then applied to the first

component of the non-radial isochron model along with the entraining stimulus. Using the

procedure detailed in the previous chapter, the standard controlled solution (4.1) containing

both the optimal control input as well as entraining stimulus and the entrained solution

(4.2), incorporating just the entraining stimulus, are calculated. From both the solutions

mentioned before, phase and isostable coordinates are computed at k crossings of the initially

defined threshold using
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ψcross = W (x(t)− xγ)e−κt,

θcross = mod(
2π(T − t)

T
, 2π),

θ∗ = θcross +
αψcross
κ

, (5.8)

where xγ is the intial threshold defined for computing the phase-amplitude coordinates

and W represents the left eigen vectors. Through (5.8), ψcross, θcross and θ∗ are calculated and

the values at the fourth or fifth crossing are considered. Note that as the phase response curve

and the isostable response curve obtained through the adjoint method were scaled before, the

left eigen vectors W have to be scaled accordingly in order to get accurate coordinates. Then,

the difference between the phase-amplitude coordinates from the full/ standard controlled

solution utilizing the optimal inputs and the phase-amplitude coordinates extracted through

the entrained solution is taken.

The final section in this chapter describes the application of these obtained optimal

control inputs in more detail and showcases the results from the non-radial isochron clock

model by depicting the obtained PRC and IRC, the optimal control inputs and finally the

effect on the recovery times when a time shift is applied to the model.

5.3 Illustration through the Non-radial Isochron Clock

Model

Here, the proposed optimal control strategy is illustrated on the nonradial isochron clock

model from (3.1):

ẋ =
2π

T

[
σx(1− x2 − y2)− y(1 + ρ(x2 + y2 − 1))

]
+ fe(t+ h(Te)∆t) + u(t) +

√
2Dη(t),

ẏ =
2π

T

[
σy(1− x2 − y2) + x(1 + ρ(x2 + y2 − 1))

]
. (5.9)
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Equation (5.9) is identical to (3.1) except for the addition of the control input u(t)

and an independent and identically distributed, zero-mean white noise process
√

2Dη(t)

with intensity D. As in Equation (3.1), the entraining stimulus is taken to be fe(t) =

0.025 sin(2πt/24 + 0.58). In this example, the term h(Te) is the unit step function that

switches at time Te and is used to model sudden time shifts in the light-dark cycle to mimic

rapid travel across ∆t time zones. All other constants and functions of (5.9) are taken to

be the same as those from (3.1). For the moment, the noise strength is taken as D = 0 (the

influence of noise will be considered momentarily). As demonstrated in Figure 3.2, the time

required for reentrainment is directly related to the isostable (amplitude) coordinate directly

before the external time shift. By implementing the control strategies from the previous

chapter, it is possible to hasten recovery by applying a control designed to appropriately

shift the isostable coordinate.

Towards obtaining the model dynamics in terms of phase and isostable coordinates, for

the moment taking fe(t) = u(t) = 0, the resulting periodic orbit has a period of T = 24.2

hours with a single nonunity Floquet multiplier λ1 = 0.605 with corresponding Floquet

exponent κ1 = −0.021. The adjoint method [75], [7] is used to compute the asymptotic

phase and isostable response curves for the transformation to phase and isostable coordinates

(2.9) and (2.10) as discussed in the previous two sections. In this example, the input u(t)

is chosen to be the adjustable parameter with u(t) = 0 being the nominal value. When

considering operational phase and isostable coordinates of this system, the θ∗ = 0 level set

is defined to correspond to when x(t) crosses 0 with a positive slope. With this definition

of θ∗ = 0, α1 = −0.0014, computed according to Equation (2.14) indicating that increasing

the isostable coordinate will slow down the nominal rate of oscillation. The subsequent

operational phase response curves are computed from the asymptotic response curves using

the relations given in (2.13). Figure 5.1 shows the corresponding operational and asymptotic

phase and isostable response curves.

For the periodic orbit that results when fe(t) = 0 in (5.9), solid lines in the left and right

panels of Fig 5.1 show the asymptotic phase and isostable response curves, respectively,

associated with input u(t). Corresponding operational phase and isostable response curves

are plotted with dashed lines. Note that i1(θ) and i∗1(θ∗) are identical.
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Figure 5.1: Standard and operational IRC and PRC for the non-radial isochron model [1]
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The resulting operational phase and isostable reduced coordinate framework is used in

conjunction with the optimal control strategy from the previous chapter. The calculus of

variations approach is applied to minimize the cost functional (4.7) with resulting optimal

inputs shown as solid lines in the left panel of Figure 5.2 for various values of X and negative

values of ∆t. Each input is designed to begin when mod(t, 24) = 0 for an initial condition

that is fully entrained to the external input fe(t) and end 24 hours later, i.e., before a time

shift at Te = 24 hours.

Note that the fully entrained orbit has a period of 24 hours which is slightly faster than

the period of the unperturbed orbit. Minimizing the cost functional from (4.7) balances

the trade-off between maximizing the latent phase shift (to hasten recovery from a shift

in external time) and minimizing the L2 norm of the applied input. Smaller values of the

weighting term X penalize the L2 norm less thereby yielding larger magnitude inputs that

give a larger latent phase. The approximate control input that minimizes the cost functional

(4.33) is also shown using dashed lines of corresponding color. The resulting approximate

optimal inputs and the inputs obtained from the solution of the Euler-Lagrange equations

are nearly identical. Resulting optimal inputs are applied to the full model equations (5.9)

in order to assess their effectiveness. Starting from a fully entrained solution at t = 0, inputs

are applied on the interval t = [0, 24] and the resulting isostable and operational phase

coordinates are compared to θ∗e(24) and ψe(24), i.e., the values on the entrained solution;

resulting differences are shown in the right panel of Figure 5.2. For values of X near 1,

the resulting optimal inputs yield values of ∆θ∗ that are close to zero as desired. For large

magnitude inputs that result when taking smaller values of X, the validity of the operational

reduction starts to degrade due to nonlinear terms that are unaccounted for in the equations

for the phase and isostable dynamics. This subsequently yields larger (undesired) shifts in

the value of ∆θ∗. As such, only inputs that yield results with |∆ψ| < 10 will be considered

further.

The optimal control strategy is designed to shift the isostable coordinates while leaving

the operational phase coordinates unchanged. When considering the nonradial isochron

clock model from (5.9), optimal control inputs that minimize the cost functional (4.7) using

negative values of ∆t are obtained using the calculus of variations approach (solid lines) and
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Figure 5.2: Obtained optimal control inputs and the corresponding phase amplitude shifts
[1]
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shown in the left panel for various choices of X in Fig 5.2. Approximations of the optimal

inputs computed according to Equation (4.33) are shown as dashed lines. The right panel

shows resulting values of ∆ψ1 and ∆θ∗ when optimal inputs obtained for both positive and

negative values of ∆t are applied to the full model equations (5.9). The dashed red line

shows the target value of ∆θ = 0. The proposed method yields results that are close to this

target value when the input magnitudes are small. This effectiveness is degraded for smaller

values of X which yield larger magnitude inputs.

Finally, the recovery times of the resulting optimal stimuli are investigated with results

shown in Figure 5.3. In order to measure the recovery times following a given time shift, the

system (5.9) is first simulated with u(t) = 0 until it is fully entrained to fe(t). At this point,

for a given choice of X where X ranges from 0.9999 to 0.9099 with 0.01 decrements, the

corresponding optimal stimulus is applied over a 24-hour period to produce an associated

shift in the isostable coordinate ∆ψ1. Immediately after the conclusion of the application

of the optimal stimulus, at Te = 24 hours the external time is shifted by some amount ∆t,

representing rapid travel through multiple time zones. The subsequent recovery time is taken

to be the amount of time required for θ∗ to return to within one hour of the fully entrained

solution. The right panel of Figure 5.3 shows the resulting recovery times. For the curve

corresponding to ∆ψ1 = 0, i.e., that results when u(t) = 0, there is a two hour window

centered at ∆t = 0 within which the recovery time is zero since, by definition, the time

shift is so small that recovery happens immediately. By applying an optimal input before

the external time shift occurs, this window is shifted in response to the shifted isostable

coordinate. Positive (resp., negative) shifts in the isostable coordinate yield more rapid

recoveries for negative (resp., positive) shifts in time. The left panel of Figure 5.3 shows the

recovery in response to a time shift of ∆t = +5 hours illustrating that by first applying a

stimulus that yields a decrease in the isostable coordinate, subsequent recovery is hastened.
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Figure 5.3: Recovery times from different shifts in time based upon the shift in isostable
coordinates [1]
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Chapter 6

Conclusion

In this work, the influence of circadian memory was investigated in the context of recovery

from circadian misalignment. An operational phase and isostable reduced order modeling

framework was used to capture the behavior of slowly decaying amplitude coordinates

that depend on the past input history. By analyzing the operational phase and isostable

reduced equations, a latent phase shift was identified (highlighted in (4.8)) that is directly

proportional to the isostable coordinates and can be used to prime the underlying system to

recover more rapidly to an expected shift in the environmental time. A subsequent optimal

control formulation is proposed that balances the trade-off between control effort and the

resulting latent phase shift. Explicit, approximate solutions for this optimal control problem

are also derived that are valid in the limit that the magnitude of the input is small. Finally,

the resulting control strategy is validated on a simple model (5.9) that exhibits entrained

oscillations

The proposed control strategy to hasten recovery from circadian misalignment differs from

previously considered control frameworks in its explicit consideration of memory effects. In

contrast, many previously considered control strategies (e.g., [4], [80], [17], [55]) seek to

find inputs that will hasten realignment in response to a time shift when starting from

a nominally fully entrained state. Other pretreatment strategies [52], [16], [9] have been

proposed to shift the nominal phase prior to expected travel across multiple time zones, but

do not consider amplitude-based effects. The proposed strategy is designed to modify the

amplitude coordinates associated with a nominally entrained oscillation without changing the
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phase prior to the expected time shift; here, the associated latent phase shift influences the

subsequent recovery. In this work, in order to isolate the influence of the isostable coordinates

on the recovery from circadian misalignment, optimal solutions of the cost functional (4.7)

are required to satisfy ∆θ∗(Te) = 0, that is, optimal inputs are not allowed to modify θ∗.

It would be of interest in future work to consider solutions for which ∆θ∗(Te) could take

nonzero values. This would certainly allow for faster recovery from circadian misalignment

by both shifting the operational phase and the latent phase appropriately.

There are many limitations that the work in this thesis does not directly consider.

Foremost, the model used to represent coupled circadian oscillations does not accurately

capture the complicated physiologically relevant processes governing circadian rhythms.

More detailed models of gene regulation such as [49], [31], [36], [42] would be necessary

to investigate the influence of circadian memory on recovery from circadian misalignment.

Additionally, the operational phase and isostable reduced order models used in this work

are only valid to first order accuracy in the amplitude coordinates. As such the resulting

optimal control inputs are required to be sufficiently small so that the validity of the reduced

order model is not degraded. It would also be of interest to extend this control framework

for phase-isostable-based models that are valid to higher orders of accuracy such as those

from [67] or [66]. These and other practical considerations can potentially be investigated in

future work.
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[40] Mezić, I. (2019). Spectrum of the Koopman operator, spectral expansions in functional

spaces, and state-space geometry. Journal of Nonlinear Science, pages 1–55. 10

[41] Minors, D. S., Waterhouse, J. M., and Wirz-Justice, A. (1991). A human phase-response

curve to light. Neuroscience Letters, 133(1):36–40. 2

[42] Mirsky, H. P., Liu, A. C., Welsh, D. K., Kay, S. A., and Doyle, F. J. (2009). A model

of the cell-autonomous mammalian circadian clock. Proceedings of the National Academy

of Sciences, 106(27):11107–11112. 41

[43] Monga, B., Wilson, D., Matchen, T., and Moehlis, J. (2019). Phase reduction and

phase-based optimal control for biological systems: a tutorial. Biological Cybernetics,

113(1-2):11–46. 6, 11, 29

[44] Moore, R. Y., Speh, J. C., and Leak, R. K. (2002). Suprachiasmatic nucleus

organization. Cell and Tissue Research, 309(1):89–98. 1

[45] Panda, S., Hogenesch, J. B., and Kay, S. A. (2002). Circadian rhythms from flies to

human. Nature, 417(6886):329. 1

[46] Piérard, C., Beaumont, M., Enslen, M., Chauffard, F., Tan, D. X., Reiter, R. J.,

Fontan, A., French, J., Coste, O., and Lagarde, D. (2001). Resynchronization of hormonal

rhythms after an eastbound flight in humans: effects of slow-release caffeine and melatonin.

European Journal of Applied Physiology, 85(1-2):144–150. 2
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Appendix

A Detailed Derivation for the Presented Optimal Con-

trol Strategy

This Appendix provides the step by step details regarding how exactly the optimal control

methodology was derived.

A.1 Approximate Optimal Control Derivation for Multiple Isostable

Coordinates

First of all, for the derivation, the Cost functional needs to be defined. Recall that the

operational phase and isostable coordinates are given by

θ̇∗ = ω +

β∑
j=1

(αjψj) + Z∗(θ∗)Tu(t),

ψ̇i = κiψi + I∗i (θ∗)Tu(t),

i = 1, . . . , β. (1)

where β represents the total number of isostable coordinates. Now, it is known that the

relationship between standard and operational phase can be defined according to

θ = θ∗ − αjψj
κj

, (2)

If the input u(t) is taken to be zero in (1), the resulting equations are:

θ̇∗ = ω +
N−1∑
j=1

(αjψj),

ψi(t) = ψi(0)exp(κit). (3)
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Using (2), the latent phase difference between the standard and operational phase can

be written as
β∑
i=1

∫ ∞
0

ψi(0)exp(κit)dt =

β∑
i=1

−αjψj(0)

κj
, (4)

And finally, using (4), the cost functional can be written as

C =

∫ T

0

Xu2(t)dt+ (1−X)

β∑
i=1

(−αjψj(T )

κj
), (5)

where X ∈ [0, 1] is defined as the weighting coeffiecient in the cost functional. Furthermore,

considering (1), assume u(t) = O(ε) where 0 < ε� 1 and then the operational phase can be

written as

θ̇∗ = ω +O(ε), (6)

which can be integrated to

θ∗ = θ∗(0) + ωt, (7)

If the state is said to be on periodic orbit, then θ∗(0) = 0 and ψi(0) = 0 and moreover, let

= ψi(t)e
−κit. The isostable coordinate equation from (1) can be rewritten as

ψ̇i = ṙie
κit + κirie

κit = κirie
κit + Ii(ωt)u(t), (8)

which can be rearranged and integrated to get

ṙi = e−κitIi(ωt)u(t),

ri(t) = r(t0) +

∫ t

0

e−κsIi(ωs)u(s)ds. (9)

Substituting ψi = rie
κit into the equation above and utilizing the assumption that ψi(0) = 0

finally yields

ψi(T ) =

∫ T

t0=0

eκi(T−s)Ii(ωs)u(s)ds, (10)

By writing the isotable coordinates in the form depicted in (10), the dimensionality of the

resulting reduced order model framework can be greatly reduced as the dynamical equations
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governing each individual isostable coordinate ψi can be eliminated entirely. Furthermore,

if (10) is utilized in the cost functional in (5), one can get

C =

∫ T

0

[
Xu2(s) + (1−X)

β∑
j=1

−αj
κj
eκj(T−s)Ij(ωs)u(s)

]
ds, (11)

Another constraint, that needs to be incorporated into the derivation, is θ∗(T ) = 0. For

achieving that, it is known that

θ∗ = θ +

β∑
i=1

αjψj
κj

, (12)

Now, θ is equivalent to
∫ T

0
Z(ωt)u(t)dt to leading order ε; the ψi is already known from

(10). So, the final constraint equation can be written as

0 =

∫ T

0

[
Z(ωs)u(s) +

β∑
j=1

−αj
κj
eκj(T−s)Ij(ωs)u(s)

]
ds, (13)

(13) can be written as an ordinary differential equation with P1(0) = P1(T ) = 0 as:

d

ds
P1 = Z(ωs)u(s) +

β∑
j=1

−αj
κj
eκj(T−s)Ij(ωs)u(s), (14)

In order to find the optimal control input u(t), the cost functional as well as the constraint

equation in (11) and (13) respectively can be combined as shown below in order to find the

function M that needs to be minimized by u(t)

M =

∫ T

0

Xu2(s) + (1−X)

β∑
j=1

−αj
κj
eκj(T−s)Ij(ωs)u(s)

+ λ1

[
Z(ωs)u(s) +

β∑
j=1

−αj
κj
eκj(T−s)Ij(ωs)u(s)− Ṗ1

]
ds, (15)

where λ1 is the lagrange multiplier for positive isostable coordinates. The integrand of

function M is denoted by γ and is used for deriving the Euler Lagrange equations. Through

the Euler Lagrange equations, the optimal control input u(s) is found by using δγ
δu

= d
ds

(
δγ
δu̇

)
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as:

u(s) =

(
−1

2

)(α
κ

)
eκ(T−t)I(ωs)+

(
−1

2X

)
λ1Z(ωs)+

(
−1

2X

)
(λ1−1)

(α
κ

)
eκ(T−t)I(ωs)), (16)

Similarly, through δγ
δP1

= d
ds

(
δγ

δṖ1

)
, it can be found that d

ds
λ1 = 0 which clearly indicates

that λ1 is a constant. Finally, the value of λ1 is found by substituting (16) in (13) and the

resulting equations are

eq1 = −
(

1

2X

)
Z2(ωs)−

(
Z(ωs)

2X

)(α
κ

)
eκ(T−t)I(ωs)

−
(
Z(ωs)

2X

)(α
κ

)
eκ(T−t)I(ωs)−

(
1

2X

)((α
κ

)
eκ(T−t)I(ωs)

)2

,

eq2 =

(
Z(ωs)

2X

)(α
κ

)
eκ(T−t)I(ωs) +

(
1

2X

)((α
κ

)
eκ(T−t)I(ωs)

)2

−
(
Z(ωs)

2

)(α
κ

)
eκ(T−t)I(ωs)−

(
1

2

)
∗
((α

κ

)
eκ(T−t)I(ωs)

)2

. (17)

Using numerical integration, the equations above can be utilized in order to get the initial

value of lambda which can then be used in (16) to get the optimal control input. It is to be

noted that the same control derivation can be extended to negative isostable coordinates by

changing the sign in (4). The relevant optimal control input equation is given by

u(s) =

(
1

2

)(α
κ

)
eκ(T−t)I(ωs) +

(
−1

2X

)
λ2Z(ωs)−

(
1

2X

)
(λ2 + 1)

(α
κ

)
eκ(T−t)I(ωs)), (18)

and equations for finding λ2 or the lagrange multiplier for negative isostable coordinates

through numerical integration is

eq3 =

(
−1

2X

)
Z2(ωs)−

(
Z(ωs)

2X

)(α
κ

)
eκ(T−t)I(ωs)

−
(
Z(ωs)

2X

)(α
κ

)
eκ(T−t)I(ωs)−

(
1

2X

)((α
κ

)
eκ(T−t)I(ωs)

)2

,

eq4 =

(
−Z(ωs)

2X

)(α
κ

)
eκ(T−t)I(ωs)−

(
1

2X

)((α
κ

)
eκ(T−t)I(ωs)

)2

+

(
Z(ωs)

2

)(α
κ

)
eκ(T−t)I(ωs) +

(
1

2

)
∗
((α

κ

)
eκ(T−t)I(ωs)

)2

. (19)
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A.2 Revised Optimal Control Derivation for Multiple Isostable

Coordinates

In the previous derivation in Appendix A.1, it was noted that Z(ωs) turns out to be equal

to zero due to the presence of the entraining stimulus which, in turn, caused the optimal

control input to turn to zero. In order to overcome this issue, some changes were made to

the original derivation by rewriting the operational phase and isostable coordinates as shown

below:

θ̇∗ = ω +

β∑
i=1

(αiψi) + εZ∗(θ∗)u(t) + εue(t)Z
∗(θ∗),

ψ̇i = κiψi + εI∗i (θ∗)u(t) + εI∗i (θ∗)ue(t),

i = 1, . . . , β. (20)

Equation (20) above divides the original optimal control input into control input and

entraining stimulus input. It is assumed that each ψi, control and entraining stimulus are

O(ε) terms; furthermore, the entraining stimulus ue is periodic with time period Te and

ωe = 2π
Te

. Similarly, the difference between the nominal and entrained angular frequency i.e.

ω − ωe is of the order O(ε). On the other hand, the entrained reduced equations (i.e. when

u(t) = 0) is defined by

˙θE
∗

= ω +

β∑
i=1

(αiψi) + εue(t)Z
∗(θ∗),

ψ̇iE = κiψi + εI∗iE(θ∗)ue(t), (21)

where θ∗E(t) is the entrained solution and ψiE represents the associated isostable coordinates.

Now, consider ∆θ∗ = θ∗ − θ∗E and ∆ψi = ψi − ψiE i.e. the difference between the controlled

solution with u(t) 6= 0 and the entrained solution. The equation for ∆θ̇∗ is given by

∆θ̇∗ = θ̇∗ − θ̇E =

β∑
i=1

αi∆ψi + εZ∗(θ∗)u(t) + εue(t)[Z
∗(θ∗)− Z(θ∗E)], (22)
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The term εue(t)[Z
∗(θ∗) − Z(θ∗E)] is of the order O(ε2) and hence can be ignored according

to the O(ε) assumption made earlier. So, after simplification, one can get

θ̇∗ =

β∑
i=1

αi∆ψi + εZ∗(θ0 + ωet)u(t), (23)

An important point to note here is that Z∗(θ0 + ωet) is obtained from the non-entrained

limit cycle. Likewise, when considering ∆ψ̇i, one gets ε[Ii(θ
∗)− Ii(θ∗E)]u(t) which is again of

the order O(ε2) and hence, can be ignored one again. The resulting equation for ∆ψ̇i is

∆ψ̇i = κi∆ψi + εIi(θ0 + ωet)u, (24)

When u(t) = 0, equation (24) gets changed to ∆ψ̇i = κi∆ψi which means that the latent

phase difference used in (4) can still be used in the cost functional as

C =

∫ T

0

Xu2(t)dt+ (1−X)

β∑
i=1

(−αj∆ψj(T )

κj
), (25)

The rest of the procedure for computing the optimal control input, including the

constraint, is identical to the derivation presented in Appendix A.1 which means that the

(16), (17), (18) and (19) can be utilized here as well with no major difference except now,

the unentrained limit cycle is used for deriving the optimal control input. In order to make

use of this derivation properly, some things to note are:

• θ = 0 needs to be taken corresponding to mod(t, 2π) = 0.

• Instead of ω, ωe is used in (23) and (24); this is still accurate as ω = ωe + O(ε) which

means that making this switch only causes an error of O(ε). However, the optimal

control input must be derived considering the entrained time period Te, not the free

running/ unperturbed period.
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