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Abstract

Multi-dimensional performance data analysis presents challenges for programmers, and users.

Developers have to choose library and compiler options for each platform, analyze raw

performance data, and keep up with new technologies. Users run codes on different platforms,

validate results with collaborators, and analyze performance data as applications scale up.

Site operators use multiple profiling tools to optimize performance, requiring the analysis

of multiple sources and data types. There is currently no comprehensive tool to support

the structured analysis of unstructured data, when, holistic performance data analysis can

offer actionable insights and improve performance. In this work, we present thicket, a tool

designed based on the experiences and insights of programmers, and users to address these

needs. Thicket is a Python-based data analysis toolkit that aims to make performance data

exploration more accessible and user-friendly for application code developers, users, and

site operators. It achieves this by providing a comprehensive interface that allows for the

easy manipulation, modeling, and visualization of data collected from multiple tools and

executions. The central element of Thicket is the ”thicket object,” which unifies data from

multiple sources and allows for various data manipulation and modeling operations, including

filtering, grouping, and querying, and statistical operations. Thicket also supports the use

of external libraries such as scikit-learn and Extra-P for data modeling and visualization

in an intuitive call tree context. Overall, Thicket aims to help users make better decisions

about their application’s performance by providing actionable insights from complex and

multi-dimensional performance data. Here, we present some capabilities extended by the

components of thicket and important use cases that have implications beyond the data

structure that provide these capabilities.
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Chapter 1

Thesis Overview

Optimizing performance is becoming increasingly difficult as the complexity of High Per-

formance Computing (HPC) simulations, software stacks, and heterogeneous architectures

grows. The intricacies involved often lead to missed opportunities for significant performance

improvements. These missed opportunities can have a considerable impact, particularly in

large-scale applications where even minor performance improvements can lead to substantial

gains in efficiency and cost-effectiveness.

To address this, new tools are required to uncover these hidden opportunities and

provide actionable insights from the massive amounts of multi-dimensional, multi-scale,

multi-architecture, and multi-tool performance data generated by modern applications. The

development of such tools is essential for maximizing performance.

Simply having access to performance data is not enough. It is also essential to have the

technologies to identify performance opportunities and provide meaningful insights from the

data. This requires the development of critical technologies that can enable rapid exploration

of performance data, as well as the ability to identify trends an d patterns across multiple

data sources.

Seeing the need for such a tool, we present a python based performance analysis tool that

can store multi-run performance data and allow Exploratory Data Analysis (EDA) on that

data. Our solution tool comes with a multitude of visualizationand analysis of peformance

data. We present a few examples of such capabilities extended by the tool in this thesis.

We present two helpful use cases to determine optimal performance setting for scientists
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to run their programs. Some of this work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract

DE-AC52-07NA27344 (LLNL-TH-848357), specifically LLNL’s Performance Analysis and

Visualization at Exascale (PAVE) team.

1.1 Thesis Statement

In this thesis, we claim that the increasing complexity of HPC simulations, software

environments, and diverse computing infrastructures presents challenges in optimizing

performance as applications with multiple parameters, complex software environments, and

running on various hardware configurations require multiple tools to collect and analyze

performance data. Exploring this data meaningfully is a significant bottleneck in identifying

actionable insights related to application performance issues.

Our contributions to the problem are as follows:

• We provide an overview of some popular performance analysis tools and introduce a

new tool, thicket, that support ensemble analysis of performance data.

• We design and integrate three new capabilities in the thicket tool: filtering metadata,

grouping metadata, and filtering stats.

• We demonstrate the use of these capabilities, their impact on the performance data,

and their flexibility in being integrated with other capabilities of thicket.

1.2 Organization

The upcoming layout of the thesis is as follows. Chapter 2 provides a brief overview of four

performance analysis tools. It includes a brief introduction and background of thicket and all

it’s components. In chapter 3, we present the structures of thicket components in detail and

provide a thorough example of the filtering and grouping capabilities of thicket. Chapter 4

consists of two use cases that expand on the capabilities from chapter 3 beyond the data

2



structures to the filtering and grouping are applied. Finally, chapter 5 provides an overall

conclusion on the thesis topic and possible future work for thicket.
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Chapter 2

Background:

Overview on Performance Tools

This chapter introduces a short overview of analysis tools for performance data. As part of

this thesis, we present the tool we have expanded with new capabilities.

2.1 Overview of Performance Tools

A wide range of performance analysis tools are available, developed by independent and for-

profit entities, that utilize various measurement methodologies and are suitable for different

use cases. Comprehensive performance analysis tools such as HPCToolkit [1, 8], Score-P [7],

TAU [9], Allinea MAP [6], and Caliper [3] collect detailed performance data of program

executions for thorough scrutiny.

2.1.1 HPCToolkit

HPCToolkit [1, 8] is a set of multi-platform tools designed for performance analysis of

optimized parallel programs. These tools use profile-based performance analysis techniques

to collect performance data during program execution and present it in a meaningful and

actionable way for developers. The tools are designed to work with various high-performance

computing architectures, including clusters, supercomputers, and GPUs.
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The HPCToolkit [1, 8] suite includes several tools for different stages of performance

analysis, including instrumentation, measurement, and analysis. These tools use static

and dynamic analysis techniques to collect performance data, including call-path profiling,

source-code annotation, and hardware performance counters. The collected data is presented

in various visualizations and reports, allowing developers to identify performance bottlenecks

and optimize code for improved performance.

The tool provides a comprehensive and flexible performance analysis of optimized parallel

programs, enabling developers to improve the performance of their applications and achieve

better scalability on HPC architectures.

2.1.2 Score-P

Score-P [7] is a joint performance measurement runtime infrastructure designed to support

multiple performance analysis tools. Score-P uses a modular and extensible architecture

to provide flexible and scalable performance measurement capabilities for various HPC

architectures.

Score-P [7] provides a unified interface for instrumenting and measuring performance data

during program execution, including call-path profiling, trace-based analysis, and hardware

performance counter measurements. The collected data is presented in various visualizations

and reports, allowing developers to identify performance bottlenecks and optimize code for

improved performance. This tool also includes online and offline analysis support, enabling

developers to perform performance analysis in real time or after program execution. The

tool supports various input and output formats, allowing users to integrate easily with other

performance analysis tools and workflows.

Score-P [7] provides a powerful and flexible platform for performance analysis of HPC

applications, enabling developers to optimize their code for improved performance and

scalability.
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2.1.3 TAU

The TAU [9] Parallel Performance System is a comprehensive tool for profiling and tracing

parallel applications. It provides a variety of performance analysis capabilities, including

function-level profiling, call-graph visualization, and trace-based analysis.

TAU [9] supports various programming languages, including C++, Fortran, and Java,

and can be used to analyze applications running on different parallel architectures, including

clusters, grids, and supercomputers. The tool provides several runtime options for

customizing data collection and analysis, allowing users to focus on specific regions of interest

and optimize their code for improved performance.

It is a powerful and flexible tool for analyzing the performance of parallel applications,

allowing developers to identify bottlenecks and optimize their code for improved performance

and scalability. This tool also includes a variety of visualization and reporting tools for

analyzing performance data, including graphical call-graph views, statistical summaries,

and source-code annotations. Additionally, TAU [9] supports several output formats for

integrating with other performance analysis tools and workflows.

2.1.4 Allinea MAP

Allinea MAP [6] is a software tool for analyzing the performance of parallel applications

running on HPC systems. It provides comprehensive profiling and analysis features, including

call-graph visualization, OpenMP profiling, and energy consumption analysis.

One of the tool’s key features is its low overhead, which allows developers to collect

detailed performance data without significantly impacting the runtime performance of their

applications. This is achieved through various techniques, such as sampling-based profiling

and lightweight instrumentation.

Allinea MAP [6] also provides visualization and reporting tools for analyzing performance

data, including graphical call-graph views, statistical summaries, and source-code annota-

tions. The tool supports various output formats for integrating with other performance

analysis workflows and tools. It is a powerful and user-friendly tool for analyzing parallel

application performance, helping developers identify performance bottlenecks and optimize
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their code for improved efficiency and scalability. Its ability to analyze performance and

energy consumption makes it a valuable tool for optimizing the performance of HPC systems.

2.1.5 Caliper

Caliper [3] is a performance measurement and analysis framework that provides a consistent

way to collect, store, and analyze performance data for high-performance computing (HPC)

applications. It enables users to measure and analyze the performance of their HPC

applications, identify bottlenecks and performance issues, and optimize the performance

of their applications. Caliper supports a variety of HPC platforms, including CPUs, GPUs,

and accelerators, and is designed to be easily integrated into existing applications and

workflows. Its primary goal is to provide insights into the performance characteristics of

HPC applications, which can then be used to improve the efficiency and scalability of these

applications.

Caliper’s analysis tools include call-path profiling, which allows users to see where their

application is spending its time, and identify bottlenecks and performance issues. It also

provides performance regression analysis, which can be used to compare the performance of

different runs of the same application, and identify performance trends and anomalies. In

this thesis work, we use profiles generated using caliper for examples and use cases.

2.2 Thicket

All the tools introduced above require the input to be a single profile and do not offer specific

capabilities for analyzing an ensemble of runs. A team of HPC experts at LLNL have been

targeting this limit by developing a new tool that generates a collection of multi-run data for

EDA. The tool is called thicket [5], and it differs from the above-described tools by allowing

users to store multi-run performance data in a single thicket object for further analysis. In

this thesis, we extend thicket and augment it with new capabilities.

Thicket [5] is a performance tool designed to help users study multi-dimensional per-

formance data after completing traditional performance analysis operations. It instantiates

a collection of performance profiles into a thicket object composed of performance data,

7



metadata, and aggregated statistics. The thicket tool allows built-in functionality to

aggregate, visualize, and export performance data from thicket objects.

A thicket object’s architecture is designed to link the different performance dimensions

through primary and foreign keys, providing a flexible data model. This architecture enables

the structured analysis of unstructured performance data. Fig. 2.1, borrowed from thicket [5],

presents the key factors that belong to a thicket object: a call tree, performance metrics,

multi-performance metrics, metadata, and aggregate statistics. Specifically, Fig. 2.1 shows

how the nodes of the call tree defines the structure of the multi-index performance data table

as one of the table index. Thicket uses a unique profile hash to identify each unique profile

read by the thicket tool. This profile is the other index in the multi-index performance

data table, and there can be multiple profile hashes for each node. For example, if the

node is a function that gets called several times during program execution, each row in the

table associated with that function will represent the performance metrics for one of those

executions. Therefore, each row in the performance data table corresponds to a unique call

tree node and profile index combination.

Profiles include metadata such as the program’s launch date, user, machine name, etc.

corresponding to each profile. The metadata table, a thicket object component, has the same

profile hashes as its performance data table. In the metadata table, the profile hash is the

only index.

Additional statistical computations can be conducted on the performance metrics of the

performance data table. A thicket object reserves a separate table to store each node’s

computational or statistical results. This component is called the aggregate statistics table

and by default, only contains the nodes from performance data as an index and an additional

column with the names of the nodes. In this thesis work, we use aggregate statistics table

and statistics table interchangeably.

This organization of the three main components of a thicket object replicates the

relational database model with the performance data table as the main table. By organizing

the performance data in this way, we can easily compare the performance of different program

executions and analyze the results.
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Figure 2.1: A diagram depicting the relationship between different components of thicket
and the structure of these components.
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All the table components of thicket are implemented by leveraging pandas DataFrame

API and the call tree component is an extension of Hatchet’s call tree structure [2, 4].

In the next chapter, we provide details of our contributions for the development of thicket

and how these contributions support different capabilities in thicket.
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Chapter 3

My Contributions:

The Metadata and Stats Capabilities

In this chapter, we discuss our two contributions. First, we describe our design of data

structures for performance data (i.e., metadata and statistics). Second, we discuss the

implementation of our three new ticket capabilities for grouping metadata, filtering metadata,

and filtering statistics.

3.1 Metadata

We designed the metadata table to store information about how the application was made

and run. Each row in this table represents one application run, and each row is given

a unique number called a ”profile hash” that helps keep track of it. This table helps us

understand important details about how the application was built and used. We structured

the metadata table to store a single record (or profile) that can be associated with several

rows in the performance data table. This is the case as the metadata is saved for each profile

run, meaning that only one set of metadata is connected to a single profile run. Therefore,

any node in the performance data table corresponding to the same profile run will have the

same metadata. This helps to keep track of the various executions of the application and

their associated metadata. Fig. 3.1 represents information corresponding to four distinct

profiles.
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Figure 3.1: An example of a metadata table with several application runs.
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The information in this example includes the compiler linked to each of the application

runs, the date and time that the application was initiated, and the user who requested the

execution of the application. We also designed the aggregate statistics component of thicket,

which stores the nodes present in the performance data, as we briefly explained in Fig. 2.1.

3.2 Aggregate Statistics

We store the aggregate statistics data as a table and a corresponding call tree. After

performing statistical calculations, we store the computational and statistical results in a

table for each row of a node index carried over from the performace data. Fig. 3.2 shows

an empty statistics table that contains multiple rows of node index along with a column

containing the name of each node. We provide this as the default form of the statistics table

when a new thicket object is instantiated.

We present our two new capabilities extended by thicket’s metadata table, that provides

filtering and grouping benefits. We focus on this chapter’s metadata and statistics table

structures to showcase these capabilities.

3.3 Filtering with Metadata

The first capability is the filtering of profiles based on metadata. We enable filtering specific

profiles (one or multiple rows in the metadata table) by applying a callable function. This

is implemented by leveraging pandas built-in .apply() attribute to use a function along a

column of the pandas DataFrame. The user specifies the callable function to apply on the

table. This ensures that the profiles in the metadata table should match profiles in the

performance data table and that no inconsistencies are present.

We first make a copy of the provided thicket. Then, the filter function is applied to

the thicket’s metadata table. The filtering of profiles is reflected on the thicket copy’s

performance data table (where the performance data is collected). This process resets the

aggregate statistics table to its default state, just an empty stats table containing the index

column with the nodes and a name column with the names of corresponding nodes.

13



Figure 3.2: An empty aggregate statistics table with multiple nodes stored in the table.
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An example of this is shown in the next chapter. Then, we return the thicket copy

with all these changes. An example of metadata filtering is seen in Fig. 3.3. The original

metadata table is from Fig. 3.1, and in this example, we filter the metadata table concerning

the compiler column, wherein we select all the profiles in Fig. 3.1 that correspond to the

clang compiler.

This capability can be applied to any one of the columns of the metadata table for a

specified value in the column. Next, we present the grouping capability of thicket’s metadata

table.

3.4 Grouping with Metadata

The second capability is the grouping of profiles based on unique column values. We

enable the grouping of profiles based on the unique values present in a column or a unique

combination of values in multiple columns of the metadata table. To this end, we bring the

intuition of Pandas groupby() semantics to a thicket. The user specifies the column(s) by

which the grouping is to occur. Several thickets are formed, specific to the user’s grouping

instructions. Similar to metadata filtering, the changes made to the metadata table are

propagated to the performance data and aggregate statistics table. As mentioned above, all

the thickets formed with this grouping function have the aggregate statistics reset to their

default state.

Similar to filtering, a copy of the provided thicket is created. And the grouping function

is applied to the thicket’s metadata table for specified column(s). For each subset of

the metadata table created, the grouping of profiles is reflected on the resulting thickets’

performance data table. Profiles in the metadata table of each resulting thicket should

match profiles in the performance data of the same thicket. As a result of this process, a list

containing the thickets is returned to the user.

Fig.3.4 shows an example of grouping with the metadata table with a similar approach

in Fig. 3.3. Here, we present a case where the group is conducted, again, concerning the

compiler column of the metadata table. The function looks for the compiler column, finds

all the unique values in that column, and creates a new thicket for each value.

15



Figure 3.3: Resulting metadata table after filtering Fig. 3.1 to select rows corresponding
to the clang compiler.
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Figure 3.4: Resulting metadata table after grouping metadata table from Fig. 3.1 with
respect to the unique values present in the compiler column.
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These new thickets only contain profiles that carry the unique value in their compiler

column. In Fig. 3.4, we show a grouping where two new thickets are created as the compiler

column has two unique values.

We then move on from the metadata component of a thicket and look at a capability

extended by the aggregate statistics table of a thicket.

3.5 Filtering with Aggregate Statistics

The last capability we implement is a transformation of the filtering on metadata to a

different data structure, the aggregate statistics table. We enable the filtering of nodes in

the statistics table based on columns and column values provided by the user. We implement

the filtering of specific nodes by applying a callable function similar to the metadata filter.

This is also implemented by leveraging pandas’ built-in .apply() attribute to use a function

along a table column.

We begin by creating a copy of the provided thicket object. Then, the filter function

is applied to the thicket copy’s statistics table. We ensure that the changes in nodes are

reflected on the thicket copy’s performance data table, and the new thicket is returned as

output.

In Fig. 3.5, we show an example of the statistical filter applied on the table from Fig. 3.2.

The filter is specified to select the Base CUDA, Algorithm MEMCPY, Apps MASS3DPA.default,

Apps NODAL ACCUMULATION 3D.default, Basic TRAP INT.default, Stream DOT.default

values from the name column of Fig. 3.2.

It is important to note that selecting rows from the statistics table based on the name of

the nodes isn’t the only possible selection. The filter allows the selection of rows based on

other columns and column values once they are appended to the table.

In the next chapter, we look at such an example, where we showcase how these filtering

and grouping capabilities affect the performance data. We also provide a use case where

these capabilities can be used creatively for EDA.
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Figure 3.5: A filtered empty statistics table with significantly less no. of nodes compared
to the original statistics table from Fig. 3.2.
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Chapter 4

Use Cases:

Impact of Metadata on Analysis

This chapter presents two use cases of our newly introduced ticket’s capabilities. We visualize

the implications of our capabilities on the performance data and how they can be used in

co-ordination with other capabilities of thicket.

4.1 Use Cases: Settings

To successfully present the use cases in this chapter, we refer to the examples of the metadata,

and aggregate statistics table seen in chapter 3. We demostrate how the filtering and

grouping functions on the metadata table propagate changes onto the performance data.

Then, we show how filtering the nodes of the aggregate statistics table can be a helpful step

for the EDA of performance data. Beyond filtering or grouping metadata and aggregate

statistics, the capabilities propagate their relevant changes onto the performance data. For

example, if the metadata table is filtered to select a subset of the original profiles, this change

is propagated to the performance data table. Therefore, only those selected profiles will be

present in the performance data of the filtered thicket object. This feature allows further

EDA on the thicket object without the need to carry out these analysis on irrelevant dataset.

We use Caliper [3] for our research purposes, and it is an instrumentation-based tool for

HPC performance profiling. It records performance data for every run as a call tree profile,
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where the collected performance metrics are assigned to nodes in the call tree. Each node

corresponds to a function or nested source code region executed during the program run.

4.2 Use Case 1: Propagation of metadata filter onto

performance data

We provide an example of filtering the metadata table to preserve profile rows corresponding

to the clang compiler. Fig. 4.1 shows the filter in effect, and it is important to note all the

profile hashes remaining in the filtered metadata table.

We observe the profile hashes in Fig. 4.1 to determine that the original performance data

table in Fig. 4.2 corresponding to the same thicket, has all the profiles as part of the multi-

dimensional index. Then, on the resulting performance data table, we see that the changes

in profiles made in Fig. 4.1 have propagated to the performance data table.

A small but significant observation is that as we filter the metadata table to only contain

profiles corresponding to the clang compiler, the corresponding performance data has one

less node index. We deduce that the profiles corresponding to the clang compiler do not

contain the Base CUDA function call, or no measurements are conducted for that specific

functional call for these profiles. Similarly to the metadata filter, the statistics filter also

propagates changes onto the performance data table. In the following example, we look at

an example that demonstrates the stats filter.

4.3 Use Case 2: Refinement of aggregate statistics heat

map using stats filter

The filtering capability for the aggregate statistics table is demonstrated in Fig. 3.5. In

addition to applying changes to the aggregate statistics table, the changes are also propagated

to the performance data table, similar to the first example in this chapter. These capabilities

can complement other thicket capabilities beyond filtering and grouping. Other statistical

functions of thicket can be applied to an instantiated thicket object.
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Figure 4.1: An example of filtering metadata to only contain profiles derived from clang

compiler.
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Figure 4.2: Propagation of metadata filter onto performance data.
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Then, after observing the results, we can use the statistical filter to manipulate the

performance data table. This helps provide a more focused visualization or application of

statistical functions on a selected number of nodes of the customized performance data.

Fig. 4.3 shows an example of a thicket aggregate statistics table. Compared to the empty

stats table from Fig. 3.2, this table has appended results. The appended results are the

mean, median, and percentile of the exclusive run-time for each node from the performance

data table.

We provide a range of statistical and visualization functionalities as part of the thicket

API. One of these, is the ability to generate heat maps using a column from the appended

aggregate statistics table. The table in Fig.4.3 has multiple rows of information, and we

can generate the heat map of all these rows for the median exclusive time column. Before

we perform any visualization on this table, we sort this table on the basis of the average

(median) exclusive run-time for each node. We then have a resulting table as can be seen in

Fig. 4.4.

We will now use this sorted table to generate a heat-map of all the nodes present, based

on the average exclusive run-time to get a proper understanding of how the run-times are

distributed for each of these nodes on average. The sorting of table based on the median

column help with this visualization technique by allowing us to easily separate the longer

and shorter run-times.

Fig. 4.5 represents the heat map with this setting. The heat map is color coded, where

the lighter the color, the higher the average run-time, and the darker the color, the lower

the average run-time. The capability of generating heat maps help visualize the overall

distribution of the nodes and their corresponding average run-time. However, the data is

too large at this scale for proper analysis. This figure is much more helpful in getting an

overview of the data and then determining what nodes to focus on.

This is a case where filtering the statistics table is complimentary in combination with

the visualization. In Fig. 4.6, we present a much shorter table than the table in Fig. 4.4

with a chosen set of nodes. We achieve this using the statistics filter to filter down to just

the Basic TRAP INT, Basic REDUCE3 INT, Basic PI REDUCE, Stream TRIAD, and the

Stream TRIAD.block 128 nodes.
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Figure 4.3: An aggregate statistics table with the inclusive time metrics mean, median,
and percentile values.
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Figure 4.4: The aggregate statistics table from Fig. 4.3 sorted on the basis of the average
(median) exclusive run-time, or the third column from the referenced table.
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Figure 4.5: The heat map generated with respect to the time(exc) median metric from
Fig. 4.4
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Figure 4.6: The stats filter applied to Fig. 4.4, reducing the number of nodes to six.
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The filtering of nodes for this specific example is done to take a more concentrated look

at the nodes with the highest three average run-times and the lowest two run-times. As a

result of the filtering, we end up with a much more readable and precise heat map in Fig. 4.7.

The figure truly enables the EDA of performance data as a combination of manipulation and

visualization of the performance data.

We provide users with the flexibility to manipulate data with either of the three

components of the thicket. In practice, a user can append several other statistical calculations

to the statistics table. Then, generate heat maps based on those calculations, using them as

the metric for this visualization. The thicket’s several statistical and visualization capabilities

make exploring thicket performance data non-linear, where a user can either manipulate

performance data, perform statistical calculations, or visualize data in any order and any

number of times.

And as demonstrated in the last example, it can be used in combination to make

conclusions about performance. The capabilities of the thicket are extendable and can

include a wide variety of implications in the future. In the next chapter, chapter 5, we

provide an overview of current improvements being implemented by the PAVE team and

possible future avenues for thicket.
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Figure 4.7: The heat map generated with respect to the time(exc) median metric from
Fig. 4.6
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Chapter 5

Conclusion and Future Work

In this chapter, we summarize our thesis and provide insight into future work that can extend

the capabilities of thicket.

5.1 Summary

We provided an overview of four performance tools, HPCToolkit [1, 8], Score-P [7], TAU [9],

and Allinea MAP [6], that generate profiles for different programs runs. These tools from

chapter 2 also allow the analysis of performance data contained within the profiles.

We introduced thicket [5], a performance analysis tool that enables the analysis of an

ensemble of the program runs together. We established that thicket differs from the rest of

the performance tools in chapter 2 as it allows multiple profiles to be read into a single object

for a thorough analysis instead of a single profile at a time. The three components of thicket

were also introduced, providing the background necessary to understand our contributions

to thicket.

We identified our contributions to thicket, which include extending the capabilities

of two out of the three components of thicket: the metadata and aggregate statistics.

The capabilities mentioned in chapter 3 is the filtering and grouping functions concerning

the metadata table and the filtering function concerning the statistics table. We also

demonstrated the effect of these functions with simple examples of the metadata and

statistics tables.
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We provided the use case settings for two cases demonstrated in chapter 4. These use

cases helped us expand on the effects of the filtering and grouping functions from chapter 3

beyond the metadata and statistics tables. We displayed the visual representation of both

use cases with the help of metadata and statistics table examples, the performance data

table, and a heat map of the corresponding statistics table.

We found that the filtering and grouping capabilities are essential to the post-processing of

performance data and can be combined with several other thicket capabilities for meaningful

EDA.

5.2 Future Work

In the future, we are considering leveraging deep learning neural networks to take data from

the tables of a thicket object and deduce optimal settings for running a program. An example

of this would be using neural networks to provide users with a suggestion on what compiler

will result in optimal performance while executing a program.

Another extension to thicket’s capabilities is to export data stored in thicket objects

directly onto pre-existing visualization tools like Tableau. This opens up the opportunity for

scientists to visualize these data directly without and extensive knowledge of the code base.

We are expanding the accessibility of thicket by providing an open-access suite of Jupyter

notebooks demonstrating additional capabilities of thicket beyond the work of this thesis.

Easy-to-follow tutorials will also be provided as part of extensive documentation for thicket

in the Read the Docs format. The suite of Jupyter notebooks will also be executable with

the help of the Binder platform.
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