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Abstract 

Air pollution has been a significant health risk factor at a regional and 

global scale. Although the present method can provide assessment indices 

like exposure risks or air pollutant concentrations for air quality management, 

the modeling estimations still remain non-negligible bias which could deviate 

from reality and limit the effectiveness of emission control strategies to reduce 

air pollution and derive health benefits. The current development in air quality 

management is still impeded by two major obstacles: (1) biased air quality 

concentrations from air quality models and (2) inaccurate exposure risk 

estimations  

Inspired by more available and overwhelming data, machine learning 

techniques provide promising opportunities to solve the above-mentioned 

obstacles and bridge the gap between model results and reality. This 

dissertation illustrates three machine learning applications to strengthen air 

quality management: (1) identifying heterogeneous exposure risk to air 

pollutants among diverse urbanization levels, (2) correcting modeled air 

pollutant concentrations and quantifying the bias of sources from model 

inputs, and (3) examine nonlinear air pollutant responses to local emissions. 

This dissertation uses Taiwan as a case study, due to its well-established 

hospital data, emission inventory, and air quality monitoring network. 

In conclusion, although ML models have become common in 

atmospheric and environmental health science in recent years, the modeling 

processes and output interpretation should rely on interdisciplinary 

professions and judgment. Except for meeting the basic modeling 
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performance, future ML applications in atmospheric and environmental health 

science should provide interpretability and explainability in terms of human-

environment interactions and interpretable physical/chemical 

mechanisms.  Such applications are expected to feedback to traditional 

methods and deepen our understanding of environmental science. 

Keywords:  

PM2.5, ozone, machine learning, measurement-model fusion, response 

surface modeling, disease burden, nonlinear response
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Chapter 1. Introduction 

1.1. Machine learning in atmospheric science 

The development of atmospheric science is closely related to 

human health, as many air pollutants such as fine particle matter (PM2.5, 

particles with aerodynamic diameters under 2.5 µm) and ozone (O3) have 

been identified to significantly link with acuter or chronic adverse health 

effects like premature death, cardiovascular disease (CVD), and 

respiratory disease (RD) [1–3]. Thus, predicting air pollutant 

concentrations is crucial for policymakers and personal daily living 

patterns. 

The atmospheric prediction models can be categorized into two 

main types: numerical models and statistical models. Numerical models 

such as chemical transport models (CTM), box models, 

Lagrangian/Eulerian dispersion models, and computational fluid dynamics 

(CFD) model estimate atmospheric constitutes based on scientific or 

empirical deterministic equations and physical and chemical mechanisms, 

so the applications of numerical models were convincing and popular in 

the past. However, the development of numerical models has been slow 

due to a limited understanding of the complex environment, and the high 

computational cost and long execution time cannot always provide timely 

support for policymakers. The bias between observations and predictions 

from numerical models also still remained significant but easily ignored.  

In recent years, due to the rapid development of computational 

hardware, computing algorithms, and more available 
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monitoring/measurement data, statistical models including machine 

learning (ML) models have aroused widespread applications in 

atmospheric science. The advantages of ML models including high 

efficiency and better nonlinear fitting capability provide an alternative 

option for time-limited support when numerical models cannot perform 

well and execute in time. The trend of ML model applications from 2000 

to 2020 in atmospheric science (Figure 1-1) shows that the trend of the 

number of publications significantly increase after 2015, and most studies 

focused on particulate matter (PM) and O3 pollution [4]. 

The types of ML models in atmospheric science applications 

depend on the task objectives, and generally, the basic algorithm of ML 

models can be classified into (1) linear regression (LR), (2) k-nearest 

neighbors’ regression (KNN), (3) tree models, and (4) deep-learning (DL) 

structure models.  

(1) Linear regression (LR) 

The LR model has been developed for a long history, and the major 

applications of LR model were used in land-use regression [5–7], which 

estimates air pollutant concentrations with relatively long-term periods 

such as annual or monthly scale. LR models such as Multiple Linear 

Regression (MLR), ridge regression, Least Absolute Shrinkage and 

Selection Operator (LASSO), and Elastic Net are based on the following 

basic equation: 

𝑦 = β0 + ∑ βi𝑥𝑖

𝑛

𝑖=1
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Figure 1-1. Time series of the number of literatures for ML applications in 

atmospheric science; The categories include traditional convex 

optimization-based (TCOB) models, tree models, linear regression (LR), 

and modern deep-learning (DL) structure models [4] 
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where 𝑥𝑖 is the selected variables that are used to predict 𝑦. Although 

the LR model applied in land-use regression studies can have an 

acceptable modeling performance, LR models still hardly predict air 

quality over a shorter period such as daily or hourly scale due to its 

inferiority to deal with the nonlinear relationship between air quality and 

input variables. 

 (2) k-nearest neighbors’ regression (KNN) 

The KNN model is a non-parametric method developed on the 

assumption that similar samples exist near each other, which is suitable 

to predict the nonlinear response of air quality without an assumption of 

parametric distribution. The algorithm of KNN is to memorize the training 

data and predict air pollutant concentrations based on the closest samples 

with similar patterns of input variables. Euclidean Distance is the most 

common method and is calculated as follows: 

D = √(a1 − b1)2 + (a2 − b2)2 + ⋯ + (ap − bp)
2
 

where a1, a2, … , an or b1, b2, … , bn represent the attribute values for two 

points, D is the Euclidean distance between two points, and p is the 

number of total input variables. The user needs to select a proper number 

of nearest neighbors (k < p), and the prediction is the average of the 

values of k nearest neighbors. Theoretically, a lower k value would be 

sensitive to noise and may lead to overfitting, and using a higher k value 

would include more irrelevant data points and increases the bias [8]. 

  



 

5 

 (3) Tree models 

Tree models including regression tree (RT) [9], random forest (RF) 

[10], and gradient-boosted tree models (GBM) [11] are commonly used to 

forecast air quality or downscale air quality concentration to a finer spatial 

resolution in the recent years.  

The basic idea of RT is recursively partitioning the input space into 

binary subsets where the output becomes successively more 

homogeneous. The RT model divides the input variables into several non-

overlapping spaces (tree construction) and optimizes the prediction with 

the greatest reduction in errors for each space (tree pruning). Following 

by RT model, the RF model fits a set of decision trees and uses averages 

from decision trees which are trained on a randomly selected subsample 

of the training data by the bagging approach [12]. The main algorithm to 

construct an RF regression model to predict air pollutant concentrations 

are based on the following equation [13]: 

D = {(xm, ym), m = 1, 2, … , n}, (X, Y) ∈ Ri ∗ R 

where Y is air pollutant concentration, and X is the input variable matrix. 

In each tree (ti), a random subspace Di must be generated through a 

random selection, and the variables were randomly selected for prediction 

with the number of variables ranging from 1 to √p, where p is the total 

number of variables. By repeated training, an ensemble of N trees (ti) is 

grown, and each tree is de-correlated because of the random selection of 

input variables in each tree. The predicted results are calculated from an 

average of N  trees ( hi ). RF regression is an ensemble non-linear 
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regression model. By using the idea of a double random selection of 

samples and variables, resulting in RF does not intend to overfit. 

GBM is an improved model based on decision trees which are 

grown sequentially using information from previously grown trees. The 

core idea of GBM uses a negative gradient of the loss function as the 

residual approximation during growing the trees and minimizes the loss 

function by reducing the residuals gradually, as shown in the following 

equation [14]: 

f̂(x) = ∑ λf̂ b(x)

B

b=1

 

where the prediction starts with the values  f̂(x) = 0 and the residual 

ri = yi, and GBM repeats updating f̂ by adding a shrunken version of the 

new tree, such as f̂(x) ← f̂(x) + λf̂ b(x) , where λ  is the shrinkage 

parameter that controls the learning rate of boosting until the least mean 

square error is the lowest. Therefore, GBM can build up consecutive trees 

that solve the net error of prior trees. 

(4) Deep-learning (DL) structure models 

DL models evolved from the development of Artificial Neural 

Network (ANN), which is based on a collection of parallel and 

interconnected neurons, and the training process uses synaptic weights 

to store the acquired information in each hidden layer. Modern DL models 

in atmospheric science applications mainly include Recurrent Neural 

Network (RNN) and Convolutional Neural Network (CNN). RNN is better 

to capture temporal information based on historic records, and advanced 
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techniques such as Long Short-Term Memory (LSTM) network are also 

commonly used to forecast air quality based on historic trends. 

CNN is mainly applied in the spatial prediction of air pollutants and 

their temporal trend [15–18]. Deep CNN consists of several neuron layers: 

a convolutional layer, a pooling layer, and fully connected layers, as 

shown in Figure 2. The convolutional layer captures different signals of 

the image by passing many filters over each image, which can reduce the 

size of the input without losing important information. Mathematically, 

convolution is the integral measure of the extent to which two functions 

overlap as one passes over the other [16,19]. The activation function, 

such as ReLU or softmax, embedded in the convolutional layer is used to 

provide nonlinear transformation for reducing input data. The pooling layer 

excludes features with similar attributes and can reduce the computational 

burden. Among several pooling operations, the max pooling operation and 

the average pooling operation are the most commonly used operations. 

The fully connected layer flattens input features into a column vector as 

output [16,19]. In atmospheric applications, the ReLU activation function, 

the max pooling operation, and the Adaptive Moment Estimation (Adam) 

optimizer are commonly employed to extract important features and 

preserve nonlinearity.  

1.2. Motivation of the dissertation 

In recent decades, air pollution has been intensively studied due to its 

significant impact on human health [20], climate [21], ecosystem [22], and 

regional air quality [23]. Ambient PM2.5 and O3 have been recognized as 
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major air pollutants that contributed to 2.94 million and 0.47 million 

premature deaths, respectively, in 2017 [20]. Significant association 

between exposure to ambient PM2.5 and increased risks of adverse health 

effects such as premature death, cardiovascular diseases (CVD), and 

respiratory diseases (RD) has been identified [2,24,25], while exposure to 

O3 is statistically significant related to premature death, decrease of lung 

function, and RD [26,27]. 

To protect public health and prevent air quality deterioration, air 

quality management plans are developed to implement emission control 

strategies and achieve desired air quality standards such as World Health 

Organization (WHO) air quality guidelines [28]. The effectiveness of 

emission control strategies to achieve the goals must rely on the accuracy 

of air quality concentrations and their derived health benefits. However, 

current researches in air quality management are still impeded by the two 

major obstacles: (1) inaccurate exposure risk estimations and (2) biased 

air quality concentrations from modeling. Owing to more available data 

such as hospital records, emission inventory, real-time monitoring data, 

and sampling measurements, machine learning (ML) has provided 

promising applications to bridge the gap between model results and reality 

and develop more accurate and effective air quality management methods. 

This thesis includes three major parts to investigate the potential 

applications of ML in air quality management. 
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Figure 1-2. Basic structure of convolutional neural network (CNN) [19] 
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1.3. Aim 1: Heterogeneous exposure risks and burden of the 

diseases (BD) 

The first part of this work presents in Chapter 2 and investigates 

the application of multiple datasets (e.g. hospital data) to evaluate local 

exposure risks to air pollutants and their spatial heterogeneities. To 

quantify the public health impact of air pollution or health benefits of 

emission control strategies, the burden of disease (BD) is a commonly 

used assessment tool to calculate the derived health indices such as 

premature deaths, emergency department (ED) visits, or hospital 

admissions after exposure to air pollution. Present BD estimation 

algorithms can provide reasonable estimations based on literature-based 

relative risks (RRs) and modeled/monitored PM2.5 or O3 concentrations, 

but the BD estimations still remain biased due to their algorithm 

assumptions. One potential concern is that most studies employed risk 

values from other literature or reports to estimate BD without assessing 

the representativeness of the study subjects or sampling bias of the 

reference, which could limit the application of the risk values or cause bias 

if the risk values were inappropriately applied. Another concern is that the 

spatial heterogeneity of risks among urban and rural areas was 

overlooked during the BD calculation. Most BD estimations at the country 

or regional level neglected the potential uncertainties derived from 

different vulnerabilities associated with living in diverse urbanization levels, 

for which differences in risk were related to neighboring land-use patterns 

and individual activity patterns [6,7,29,30] and have been identified in 

previous studies [5,31]. 
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Conceptually speaking, the value of PM2.5 exposure risks is 

decided by human-environment interactions, PM2.5 toxicity, and individual 

factors, as shown in Figure 1-3. First, human-environment interactions 

refer to personal exposure duration, frequency and level in an outdoor 

environment, individual daily living patterns, and land-use characteristics 

around the home. Second, PM2.5 toxicity relies on its size distribution and 

compositions. If particles contain more hazardous air pollutants (HAPs) 

such as diesel particles, heavy metals, or dioxins, the risks of related 

adverse health impacts or diseases would be higher. Third, individual 

factors such as demographic characteristics (gender and age), genes, 

habits, knowledge and awareness, social-economic status, and 

accessibility to the closest medical organizations can also bias the PM2.5 

exposure risk values. Thus, using a single risk value is not representative 

enough to illustrate people among various urbanization levels and 

exposure patterns. Failure to consider the spatial heterogeneity of risks 

among urban and rural areas could lead to a potential bias of the BD 

estimations, and its uncertainty should be quantified. 

1.4. Aim 2: Bias correction and quantification for numerical 

models 

The second part in Chapter 3 discusses the application of machine 

learning techniques in measurement-model fusion (MMF) to correct the 

modeling results and further quantify the bias sources. In order to assess 

the health impact of criteria air pollutants, either air quality monitoring 

stations (AQMS) or chemical transport models (CTMs) can provide air 

pollutant concentrations for further applications. AQMS can provide real-
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time measurements and alert the officials and neighboring residents in 

occurrence of air quality deterioration events such as haze or dust storms. 

However, due to their high maintenance and labor costs, most of AQMSs 

are usually located in populated areas or around pollutant emission 

sources such as industry complexes. Sparsely distributed AQMSs cannot 

monitor the air quality of areas without stations like suburban or rural areas, 

thus limiting their application in air quality management. Another 

challenge is the secondary formation of PM2.5 and O3 from chemical 

transformation. Monitoring data hardly link nonlinear relationships 

between PM2.5 and O3 and their precursors such as sulfur dioxide (SO2), 

nitrogen oxides (NOx), ammonia (NH3), and volatile organic compounds 

(VOCs).  

Meanwhile, CTMs such as U.S. EPA Community Multiscale Air 

Quality (CMAQ) model [32]. CMAQ model is a deterministic model that 

can simulate the behavior of air pollutants in the atmosphere based on the 

known mechanisms of emission, dispersion, wet/dry deposition, and 

chemical and physical recreations in the atmosphere, thus CMAQ model 

can provide temporally and spatially varying air pollutant concentrations 

in a three-dimension manner. Due to its numerical basis, the CMAQ model 

was widely applied to forecast air quality or develop emission control 

strategies under presumed scenarios [13,15]. However, the bias between 

CMAQ-modeled estimations and observations has been underestimated 

or even overlooked in previous studies which may limit further applications 

in air quality management [33]. Multiple reasons such as inaccurate 

modeling inputs, accumulation of input uncertainties during modeling, and 
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imperfect chemical and physical mechanisms of the model may contribute 

to considerable biases in air pollutant estimations [13,15].  

In recent years, an overwhelming amount of monitoring data provide 

promising opportunities for machine learning techniques to develop MMF 

approaches, bridging the gap between modeled estimations and 

observations and further enhancing predicting performance [13,15]. Such 

techniques can be employed to apportion the biases between modeled 

estimations and observations, to which limited studies did not pay 

attention. 

1.5. Aim 3: Examining nonlinear pollutant responses to local 

emissions 

The third part showed in Chapter 4 examines the applicability of 

machine learning to predict nonlinear responses to precursor emissions 

by using ambient O3 concentrations and NOx and VOC emission as an 

example.  

Quantifying the air quality impact of emission sources is necessary 

for air quality management. The direct evaluation method is comparing 

scenarios with and without a target emission source, and the difference of 

air pollutant concentrations is the contribution of that target emission 

source, which method is also called the brute-force method. Nevertheless, 

the brute-force method can only apply to one single source and emission 

reduction of one pollutant. If multiple emission sources and air pollutants 

are needed to be evaluated, it would use a tremendous amount of 

computing sources and time to execute CTM modeling under different 
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scenarios, which is a major challenge for policymakers in the before. In 

practical, to meet the prompt needs of emission analysis for policymakers, 

Response Surface Modeling (RSM) was developed to retrieve the 

nonlinear relationship between ambient air pollutant concentrations (e.g. 

O3) and multiple precursors emissions (e.g. NOx and VOCs) from multiple 

emission sources based on a series of CTM simulations such as CMAQ 

modeling and multidimensional kriging approach [34]. RSM can construct 

empirical kinetic modeling approach (EKMA) diagrams, as shown in 

Figure 1-4, which is the USEPA developed isopleth that illustrates the 

response of air pollutant concentrations (e.g. O3) to changes precursor 

emissions (e.g. NOx and VOC) and can be divided into NOx-limited (NOx-

sensitive) and VOC-limited (VOC-sensitive) areas and used to assist 

policy-makers determine whether NOx or VOC emissions should be 

controlled preferentially in emission control strategies [35]. 

One typical RSM example is shown in Figure 1-5. To assess the 

improved O3 of emission control strategies for industrial NOx emissions 

(NOx_INDUSTRY), NOx and VOC emissions from mobile sources 

(NOx_MOBILE and VOC_MOBILE), the Latin hypercube sampling (LHS) 

method would be employed to design a control matrix with different 

combination of emission ratios from 0.0 to 1.2 which sample size is large 

enough to meet the requirement of statistical power. Next, CMAQ 

modeling was executed based on the emission ratio settings of the control 

matrix. RSM can further construct the nonlinearity between ambient O3 

concentrations and individual emission sources (NOx_INDUSTRY, 

NOx_MOBILE, and VOC_MOBILE) based on CMAQ outputs.  
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Figure 1-3. Factors that influence PM2.5 exposure risk value 
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Figure 1-4. An example of typical EKMA O3 isopleth in terms of NOx and 

VOC emission ratio (modified from [36]) 
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Figure 1-5. Control matrix of industrial NOx emissions (NOx_INDUSTRY), 

NOx and VOC emissions from mobile sources (NOx_MOBILE and 

VOC_MOBILE) for RSM 
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Finally, RSM results can retrieve O3 concentrations instantly based 

on emission control strategies with any control ratio from 0% to 120%, 

thus providing improved O3 concentrations to policymakers in time. 

RSM technique has been successfully applied in several previous 

studies to optimize local emission control strategies [36,37], but these 

studies were still based on simulated results and neglected or 

underestimated the bias between the modeled estimations and 

observations of the benchmark case [38–40], which could largely affect 

the nonlinearity between pollutants and precursor emission changes. 

Without correction of observations in RSM, the improved air quality and 

derived health benefits such as avoided premature deaths may deviate 

from the real environment. 

Inspired by more available data, the ML technique has been 

intensively applied and can serve as a bias corrector to adjust modeling 

results. Several MMF techniques [41] in post-analysis have been 

developed in recent years to adjust CTM results based on observations 

[18,42–44]. ML model can also forecast air quality based on historical 

observations and other auxiliary data (e.g. meteorological and land-use 

data) without involving CTM results and still have good performance [45–

47]. However, whether ML either serves as a bias corrector or a forecaster, 

few ML studies examined pollutants’ sensitivity to their precursor 

emissions based on observation-corrected results. Without correction of 

observations, the improved air quality and environmental benefits may 

deviate from the real environment. 
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1.6. Study region 

In this thesis, Taiwan was chosen as our study region (Figure 1-6), 

because its well-established and high-availability hospital admission 

database, island geography, high-density air quality monitoring networks, 

and three-year-updated emission inventory can provide a supportive base 

to develop ML models. Also, Taiwan EPA has built up a computation-

intensive RSM database for assessing diverse emission control strategies 

under air pollution events [37], which can also facilitate developing data-

driven air quality management techniques. Furthermore, Taiwan has the 

17th highest population density in the world (660/km2), which magnifies the 

public health impact of air pollution exposure and illustrates the 

importance of fast and effective air quality policies. Also, the developed 

air quality management experience can be transformed to other 

developed and populated cities and countries. 
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Figure 1-6. Study region of this thesis, Taiwan 
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Chapter 2. Spatial Heterogeneity of Exposure 

Risk  
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2.1. Abstract 

The current estimations of burden of disease (BD) of PM2.5 

exposure is still potentially biased by two factors: ignorance of 

heterogeneous vulnerabilities at diverse urbanization levels and reliance 

on the risk estimates from existing literature, usually from different 

locations. Our objectives are (1) to build up a data fusion framework to 

estimate the burden of PM2.5 exposure while evaluating local risks 

simultaneously and (2) to quantify their spatial heterogeneity, relationship 

to land-use characteristics, and derived uncertainties when calculating the 

disease burdens. The feature of this study is applying six local databases 

to extract PM2.5 exposure risk and the BD information, including the risks 

of death, cardiovascular disease (CVD), and respiratory disease (RD), 

and their spatial heterogeneities through our data fusion framework. We 

applied the developed framework to Tainan City in Taiwan as a use case 

estimated the risks by using 2006-2016 emergency department visit data, 

air quality monitoring data, and land-use characteristics and further 

estimated the BD caused by daily PM2.5 exposure in 2013. Our results 

found that the risks of CVD and RD in highly urbanized areas and death 

in rural areas could reach 1.20-1.57 times higher than average. 

Furthermore, we performed a sensitivity analysis to assess the uncertainty 

of BD estimations from utilizing different data sources, and the results 

showed that the uncertainty of the BD estimations could be contributed by 

different PM2.5 exposure data (20-32%) and risk values (0-86%), 

especially for highly urbanized areas. In conclusion, our approach for 

estimating BD based on local databases has the potential to be 



 

23 

generalized to the developing and overpopulated countries and to support 

local air quality and health management plans.  

2.2. Introduction 

The associations between exposure to ambient PM2.5 and 

increased risks of adverse health effects such as premature death, 

cardiovascular disease (CVD), and respiratory disease (RD) has been 

intensively investigated for decades [2,3,25]. The burden of disease (BD) 

is a commonly used assessment tool to quantify the impact of ambient 

PM2.5 exposure to human health and provide references for air quality and 

health management. For example, the Global Burden of Disease (GBD) 

estimated that about 2.94 million deaths in 2017 could be attributed to 

particulate matter pollution [20].  

Technically, the BD can be estimated by either concentration-

response functions (CRFs) [48–50] or integrated exposure-response 

functions (IERs) [24,51]. While the applied risks in CRFs tend to be 

constant [48], IERs parameterize the dependence of risks on PM2.5 

concentration from meta-analysis of epidemiological studies [51]. Both of 

algorithms used literature-based RRs and modeled/monitored PM2.5 

concentrations to estimate disease burdens, but the BD estimations could 

still remain biased due to the algorithm assumptions. 

One potential concern is that most studies employed risk values 

from other literature or reports to estimate the burden without assessing 

the representativeness of the study subjects or sampling bias of the 

reference, which could limit the application of the risk values or cause bias 
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if the risk values were inappropriately applied. Another concern is that the 

spatial heterogeneity of risks among urban and rural areas were 

overlooked during the BD calculation. Most BD estimations at the country 

or regional level neglected the potential uncertainties derived from 

different vulnerabilities associated with living in diverse urbanization levels, 

for which differences in risk were related to neighboring land-use patterns 

and individual activity patterns [6,7,29,30] and have been identified in 

previous studies [5,31]. Among areas with diverse urbanization levels, 

PM2.5 mass concentration and compositions adjacent to emission sources 

such as main roads and industrial complexes have higher PM2.5 toxicity 

contributed by diesel particles, heavy metals, and oxidative potentials 

(Hao et al., 2020; Liu et al., 2017; Targino et al., 2016). In other words, 

PM2.5 toxicity adjacent to different emission sources and land-use patterns 

may cause heterogeneous exposure risks to populations both near and 

far. Failure to consider the spatial heterogeneity of risks among urban and 

rural areas could lead to a potential bias of the BD estimations, and its 

uncertainty should be quantified. 

Moreover, the data sources of PM2.5 exposure concentration varied 

within studies and also contributed to the uncertainty of BD estimations. 

The straightforward method to estimate PM2.5 exposure is to use 

measurements from the closest air quality monitoring sites, but using 

monitoring data alone to represent the whole region could bias short-term 

PM2.5 exposure for the distant areas [31]. In addition, using more 

sophisticated methods such as satellite data or air quality modeling data, 

which need further processing before application, can identify different 
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PM2.5 concentrations in urban and rural areas, but failing to validate 

modeled results with observations in most studies can mean overlooking 

important deviations from reality and increasing uncertainties of BD 

estimation. Even though the difference of PM2.5 exposure estimations 

between monitoring data, air quality modeled data, and satellite data had 

been identified [5,31], the derived uncertainty for the BD calculations 

among urban and rural areas was still not further investigated. 

Nonetheless, except for the heterogeneous risks in urban and rural areas, 

the uncertainties between these PM2.5 exposure assessment methods for 

the BD calculations need to be quantified as well. 

This study applied the developed framework to Tainan City (Figure 

2-2) in Taiwan as a use case, estimated the risks of death, CVD and RD 

by using 2006-2016 emergency department (ED) visit data, air quality 

monitoring data, and land-use characteristics, and further estimated the 

BD caused by daily PM2.5 exposure in 2013. Land use characteristics of 

areas neighboring subjects’ typical living activities were defined by 

neighboring PM2.5 emission and Heterogeneity of Land-Use Living (HLUL) 

patterns. Our objectives are (1) to build up a data fusion framework to 

estimate the disease burden of daily PM2.5 exposure while evaluating local 

risks and their spatial heterogeneities with hospital ED visit, land-use, 

emission, monitoring, modeling, and population data and (2) to quantify 

the spatial heterogeneity of risks and its relationship with land-use 

characteristics and derived uncertainty during BD calculation. This study 

systematically focused on the spatial heterogeneity of health risks at grid-
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level scale (1 km × 1 km) and quantified method uncertainties of the BD 

estimations. 

2.3. Methodology 

2.3.1. Data collection 

(1) Hospital ED Visit Data 

Study subjects were extracted from the hourly hospital ED visit 

database (2006-2016) maintained by Chi-Mei Hospital, a regional medical 

center located in Tainan City (Figure 2-2(a)). Patients with CVD 

(N=12,524), RD (N=18,891), and non-accidental death (N=37,846) were 

selected based on the International Classification of Diseases, 9th edition 

(ICD-9) codes (CVD: heart failure (428), cardiac dysrhythmia (426-427), 

cerebrovascular disease (430-437), ischemic heart disease (410-414), 

peripheral vascular disease (440-449); RD: chronic obstructive pulmonary 

disease (490-492), respiratory tract infection (464-466, 480-487)). If the 

subject was admitted more than once during the same month, the earlier 

record was used. This study was approved by the Institutional Review 

Board of Chi-Mei Medical Center (No. 10612-012) and was exempt from 

obtaining informed consent. 

(2) Air Quality and Meteorological Data 

Subject exposure data were collected from the nearest AQMS 

maintained by Taiwan EPA (Figure 2-2(a)). Hourly data of PM2.5, PM10 

(particulate matter ≤ 10 μm in aerodynamic diameter), NO2, nitric oxide 

(NO), SO2, carbon monoxide (CO), O3, ambient temperature, relative 

humidity, and wind speed were used for analysis. The arithmetical mean  
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Figure 2-1. Location of Tainan City and its urban and suburban area 
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of the 24 hourly concentrations (n=24, 1-24 hr as an abbreviation) 

before the visit of each subject for each abovementioned pollutant and 

each abovementioned meteorological variable was calculated to 

represent the daily exposure of residents. Subjects with exposure to 1-24 

hr PM2.5 mean concentration ≤ 25 μg/m3 before visit were excluded based 

on the daily PM2.5 standard of the WHO [28]. Detailed analysis to test 

exposure threshold and lag response of PM2.5 exposure is presented in 

Appendix I. 

(3) Land-use Data and population data 

Land-use data of 2011 were acquired from National Land Survey 

and Mapping Center. A total of 2406 grid cells with 1 km × 1 km horizontal 

resolution in Tainan City was created. Considering the daily living pattern 

of residents, nine (k=9) land-use types were included to represent areas 

visited frequently by subjects. These land-use types included high-density 

residential area (HDRA), low-density residential area (LDRA), agriculture 

(including livestock farming), industrial areas, retailing sites, recreation 

sites (including parks, recreation centers, and gyms), schools and 

education institutes, road areas, and undeveloped areas (including bare 

lands, forest, and water bodies). Each grid was further classified into six 

types: urban, suburban, industrial, urban-industrial, industrial-rural and 

and rural area as shown in Figure 2-2(a). Basically, area of four main land-

use types was calculated for each grid, including urban (including retailing 

sites, recreation sites and HDRA), industrial, residential (HDRA and LDRA) 

and rural (agricultural and other undeveloped area), and the grids and 

named the types of the grids by their first and second highest area. The 
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monotype pattern was named if the second highest area is 0 or the ratio 

of first and second highest area is over 5, while the combination-type 

pattern such as urban-industrial was named if (1) the first highest area 

over 0.3 km2 and the second highest area over 0.2 km2 or (2) the ratio of 

first and second highest area is over 1. The “suburban” replaced the 

“urban-rural” pattern, and the “urban” and “rural” replaced the “urban-

residential” and “rural-residential” pattern respectively. 

Population data of 2013 were obtained from the Department of 

Household Registration within the Ministry of the Interior and further 

spatially distributed by total residential area (HDRA and LDRA) of each 

grid cell. 

(4) Emission Data 

Primary PM2.5 emission data from Taiwan Emission Data System 

(TEDS) version 9.0 including industrial, mobile, area, and natural sources 

were utilized to evaluate the potential exposure of subjects to neighboring 

PM2.5 emissions. PM2.5 emission within a 1-km radius of the center of each 

grid cell was further summed up for analysis (Figure 2-2 (b)). 

(5) Quantification of neighboring land-use characteristics 

Land use characteristics of areas neighboring subjects’ typical 

living activities were defined by neighboring PM2.5 emission and 

Heterogeneity of Land-Use Living (HLUL) patterns. The reason to use 

neighboring emission is that it can represent the level of primary PM2.5 to 

which subjects are potentially exposed, and it does not need complicated 

and time-consuming modeling procedure to simulate ambient PM2.5. In 
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addition, HLUL patterns reflect the daily activities and exposure patterns 

which can enhance physical health by daily activities but also increase 

frequency and duration of PM2.5 exposure. The levels of HLUL patterns 

were quantified by Mean Entropy Index (MEI) for all grid cells. MEI, 

adapted from the Entropy Index (EI) [55–57], can represent the potential 

mobility of residents in an area. MEI varies between 0 and 1, where a 

value of 1 represents the highest diversity and heterogeneity in land-use, 

and considers the land-use types of neighboring grid cells by using the 

following equation [56]. 

Equation 1 

𝐌𝐄𝐈 = − ∑
∑

[𝐀𝐱𝐲 ∙ 𝐏𝐱𝐲 ∙ 𝐥𝐧(𝐏𝐱𝐲)]

𝐥𝐧(𝐤)
𝐤
𝐲=𝟏

𝐧

𝐧

𝐱=𝟏

 

where n is the number of surrounding grid cells (n=8) of the estimated 

grid cell. k is the number of the total used land-use types (k=9). Axy is 

the ratio of selected or surrounding grid cell to the area within a 1-km 

radius of each selected grid cell. Pxy is the proportion of land-use type y 

in the selected and surrounding xth grid cell. 

2.3.2. Developed framework 

Our data fusion framework is illustrated in Figure 2-3. The number 

of ED visits was used to evaluate the BD, and the ED visits were 

calculated from short-term PM2.5 exposure risk, daily PM2.5 concentration, 

and population data [58]. First, the hospital ED visit data, air quality 

monitoring data, emission data, and land-use data were fused by case- 
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Figure 2-2. Map of Tainan City with 1 km × 1 km resolution for (a) land-use 

pattern (b) neighboring PM2.5 emission (tons/year). 
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crossover study design and stratified analysis (Equation 2 and Equation 

3) to retrieve short-term (1-24 hr) PM2.5 exposure risk and its spatial  

heterogeneity. Technically, the overall short-term PM2.5 exposure 

risk was first assessed by case-crossover study design which involved 

hospital ED visit and air quality monitoring data, and then stratified 

analysis was executed to assess the heterogeneous risks for subjects 

living in different land-use characteristics. Second, we used daily PM2.5 

concentration data in 2013 as an example to illustrate the process to build 

up the BD map of CVD, RD, and death in 2013. The daily PM2.5 

concentration data were extracted from the fused estimations of modeled 

results and monitoring data by MMF approach [59]. The modeled results 

were firstly simulated by CMAQ [32] modeling and then fused with 

monitoring data from AQMS by applying the ratio of modeled PM2.5 to 

observed PM2.5 obtained from the nearest site (Equation 4). Overall, all 

parameters (PM2.5 exposure risk, daily PM2.5 concentration in 2013, and 

population) for calculating ED visits were resolved with 1 km × 1 km 

resolution and applied to build up the BD map in 2013 through CRFs 

(Equation 5). Also, a sensitivity analysis was conducted to quantify the 

uncertainties of the BD estimations under different scenarios. 

(1) Evaluating PM2.5 exposure risks and their spatial heterogeneity 

We employed a case-crossover study design to investigate the 

relationship between 1-24 hr PM2.5 exposure before the ED visit and 

health outcomes [60–62]. Detailed descriptions can be found in our 

previous publication [63]. Briefly, for each case, exposure before the visit  
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Figure 2-3. Data structure of the first study 
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is compared with exposure at the other control periods, and the 

controls were selected from the same time of ED visits on the other days, 

on the same day of the week in the same month and year [60–62,64]. 

Conditional logistic regressions were conducted to estimate adjusted odds 

ratios (ORs) and 95% confidence intervals (CIs) for the relationship 

between PM2.5 exposure and health outcomes. Our multi-pollutant model 

was described below: 

Equation 2 

logit P(Yi) = ln(OR̂i)

= β0 + β1PM2.5i
+ β2Ti + β3RHi + β4WSi + β5Pi1 + ⋯ + βpPip 

where P(Yi)  is the natural logarithm of the OR for case subjects i 

compared with individual controls, and β0 is the intercept. All predicting 

variables use 1-24 hr mean before the visit of subjects. For example, 

PM2.5i
 is 1-24 hr PM2.5 concentration before the visit of subjects i. PM2.5ii

, 

Ti  (temperature), RHi  (relative humidity), and WSi  (wind speed) were 

included as fixed variables in the model. Linear correlation between 1-24 

hr PM2.5 exposure and health outcomes were assumed based on previous 

findings (Linares and Díaz, 2010; Yorifuji et al., 2014a, 2014b). Natural 

cubic splines with three degrees of freedom (df) were used in all models 

to adjust the potential time-variant confounders including Ti , RHi , and 

WSi [60,64,66]. Pi1 ⋯ Pip are the selected pollutants p which served as 

adjusting variables (covariates) and were chosen by stepwise selection. 

The significant level (p-value) for stepwise selection to keep or discard the 

variable was 0.05. For each health outcome, the final model was chosen 
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to yield the minimum Akaike information criteria (AIC) statistic, and the 

collinearity of included variables was assessed by the variance inflation 

factor (VIF) (Table 2-1). 

In advance, we performed the stratified analysis [67] by applying 

the same model (Equation 2) to the subjects living in the different 

categories of land-use characteristics to assess the spatial heterogeneity 

of PM2.5 exposure risk. First, we equally categorized the subjects of death, 

CVD, and RD by their indices (MEI and neighboring PM2.5 emission, 

respectively) with low (< 33rd percentile), medium (33rd - 66th percentile) 

and high (> 66th percentile) level according to their residential address. 

Second, for each health outcome, multi-pollutant modeling (Equation 2) 

was first conducted to obtain the ORs for overall subjects, and the same 

model was then applied to the subjects of the low-, medium- and high-

level groups for MEI and neighboring PM2.5 emission, respectively. Third, 

the subjects were next grouped by MEI and PM2.5 emission categories to 

assess the interaction of MEI and neighboring PM2.5 emission to the health 

outcomes, and a total of nine groups (three by three categories) were 

assessed. The same model (Equation 2) for overall subjects was also 

applied for each group again, and the group-specific risk could be 

obtained. For each group, the specific risk was calculated as: 

Equation 3 

OR̂i,g = exp (β0 + β1PM2.5i,g
+ β2Ti,g + β3RHi,g + β4WSi,g + β5Pi1,g + ⋯

+ βpPip,g) 
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where OR̂i,g was the risk of a group g from one to nine, and the other 

included parameters were same as the Equation 2. By matching the 

group-specific risks with grid cells, the risk map can be built up. 

(2) Simulating PM2.5 concentration 

The daily PM2.5 concentration data in 2013 were modeled by 

CMAQ with 3 km × 3 km resolution and adjusted by using the monitoring 

data. The CMAQ modeling system was developed by the U.S. EPA and 

user’s community. CMAQ model can provide temporally and spatially 

varying air pollutant concentrations by calculating physical and chemical 

interactions between pollutants and meteorological factors in the 

atmosphere [32]. The modeled daily PM2.5 concentrations were further 

fused with monitoring data by the MMF method. For each grid cell at each 

day, the modeled daily PM2.5 means were adjusted by the ratio of modeled 

PM2.5 to observed PM2.5 obtained from the nearest site [59], which was 

calculated as:  

Equation 4 

Fused PM2.5d,g
=

Obseved PM2.5d,s

Modeled PM2.5d,s

∙ Modeled PM2.5d,g
 

where Fused PM2.5d,g
 and Modeled PM2.5d,g

 is CMAQ-fused and 

CMAQ-modeled PM2.5 in grid cell g at the dth day, respectively, and 

Obseved PM2.5d,s
 and Modeled PM2.5d,s

 is observed and CMAQ-

modeled PM2.5 at the dth day for the monitoring site s which is closest to 

the grid cell g. The 3 km × 3 km CMAQ-fused results were integrated with 

1 km × 1 km population data, and each 1 km × 1 km grid cell included the 
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closest CMAQ-fused data to calculate the number of daily excess ED 

visits or deaths for each grid cell. Because illustrating the different 

vulnerabilities in urban and rural areas and derived uncertainties from 

different sources is our objective, we only applied the basic MMF to fuse 

modeled data and monitoring data. 

(3) Estimating the BD of PM2.5 exposure 

The BD of PM2.5 exposure was calculated by CRFs, which can 

quantify the increased ED visits due to daily PM2.5 exposure in 2013 [58]. 

The number of ED visits for each grid cell was calculated by the following 

equation: 

Equation 5 

Y = E0 ∙ P ∙ (1 − e−β∙(C−C0)) ∙ A 

where Y is the number of daily excess ED visits or deaths caused by daily 

PM2.5 exposure. E0  is the actual morbidity or mortality rate. P is the 

population of each grid cell. The coefficient β is derived from RR, and RR 

is approximated by using OR obtained from Equation 2 or Equation 3 [64]. 

A is a scalar of 1/365 to convert the annual rate to daily rate. C0 is the 

threshold concentration set as the WHO PM2.5 daily standard of 25 μg/m3. 

C is the daily PM2.5 concentration in each grid cell. 

2.3.3. Uncertainty analysis  

We considered the uncertainty of the BD (the number of daily 

excess ED visits or deaths) estimations mostly originated from the value 

of risk coefficient (𝛽) and daily PM2.5 concentration (C) in Equation 5. Thus, 
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we conducted a sensitivity analysis and compared the BD estimations 

from three nested scenarios, including (1) using non-local or local risk 

estimates to calculate the local BD. The non-local risk estimates were 

referred from U.S. EPA recommended values in Environmental Benefits 

Mapping and Analysis Program - Community Edition (BenMAP-CE, 

version 1.1.3) software package [68], which can be treated as the 

literature-based risks from other countries and regions, because U.S. EPA 

recommended risks were also referred from multiple well-designed 

studies. The local risk estimates were obtained by the conditional logistic 

regression (Equation 2) among overall subjects; (2) using averaged risk 

or heterogeneously distributed risks to calculate the burdens. The 

heterogeneously distributed risks were obtained by stratified analysis 

(Equation 3) for different land-use characteristics; (3) using monitoring 

data from the nearest AQMS or CMAQ-fused data to represent daily PM2.5 

exposure. SAS statistical software (SAS 9.4; SAS Institute Inc., Cary, NC, 

USA) was used to perform all analytical procedures. 

2.4. Results and discussion 

2.4.1. Descriptive analysis 

Descriptive analysis of subjects (Table 2-2) showed that the 

number of females comprising the BD was higher than that of males. More 

elderly subjects visited the ED with CVD, while more young subjects 

visited due to RD or death. All subjects with air-quality related health 

conditions visited the ED more frequently during the nighttime as 

compared with daytime. 
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Table 2-1. Final models for (a) death, (b) CVD and (c) RD 

(a) Death  

Variables* Unit OR (95% CI) p-value VIF 

PM2.5 10 μg/m3 1.25 (1.22, 1.27) < 0.01 3.09  

PM10 10 μg/m3 0.98 (0.97, 0.99) < 0.01 3.39  

NO2 10 ppb 1.25 (1.17, 1.34) < 0.01 3.88  

NO 10 ppb 1.15 (1.04, 1.26) < 0.01 1.60  

CO 0.1 ppm 1.02 (1.00, 1.05) 0.04 3.00  

O3 10 ppb 1.32 (1.29, 1.35) < 0.01 1.88  

     

(b) Cardiovascular Disease (CVD)  

Variables* Unit OR (95% CI) p-value VIF 

PM2.5 10 μg/m3 1.27 (1.24, 1.30) < 0.01 1.40  

NO2 10 ppb 1.35 (1.26, 1.46) < 0.01 1.79  

O3 10 ppb 1.31 (1.26, 1.35) < 0.01 1.46  

     

(c) Respiratory Disease (RD)  

Variable* Unit Odds Ratio (OR) p-value VIF 

PM2.5 10 μg/m3 1.26 (1.23, 1.29) < 0.01 1.66  

NO2 10 ppb 1.11 (1.02, 1.22) 0.02 4.87  

NO 10 ppb 0.82 (0.72, 0.93) < 0.01 1.63  

SO2 1 ppb 0.96 (0.93, 0.98) < 0.01 1.81  

CO 0.1 ppm 1.11 (1.08, 1.14) < 0.01 3.47  

O3 10 ppb 1.22 (1.19, 1.26) < 0.01 1.71  

* Temperature, relative humidity and wind speed were included with natural cubic splines 

with 3 degrees of freedom (df) and not present in the tables. 
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During the study period, the PM2.5 mean concentration from four 

AQMSs in Tainan City was 25.12±17.95 μg/m3 (Table 2-3). For HLUL 

patterns, MEI was normally distributed with a mean ± standard deviation 

of 0.350±0.136 (unitless) (Table 2-4 and Figure 2-4). The spatial 

distribution of MEI in Figure 2-5 showed that the most intensely 

heterogeneous areas (darker color) are located in the southern city, which 

consists of a mix of urban, suburban, and industrial-rural land-use types. 

Areas adjacent to the main roads also showed high heterogeneity. In 

contrast, the eastern areas of the city were less heterogeneous (lighter 

color) due to their mountainous terrain. 

2.4.2. Discussion of short-term PM2.5 exposure risks 

The odds ratios (ORs) of non-accidental death, CVD, and RD for 

1-24 hr PM2.5 exposure before the visit in this study were 1.25, 1.27, and 

1.26, respectively, which are higher than those of previous studies 

conducted in the other developed or developing countries/regions (Table 

2-5 - Table 2-7). Since the developed framework utilized local databases, 

it is not surprising that there is a potential difference between local risk 

estimations and risks from other regions or counties due to different 

environmental, demographic, and societal characteristics. This significant 

difference also implies the potential risk of using non-local risk values such 

as U.S. EPA recommended or literature-based risks for BD calculation. 
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Figure 2-4. Distribution of mean entropy index (MEI) for all grids (n=2,406) in 

Tainan City 
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Figure 2-5. MEI map of Tainan City with 1 km × 1 km resolution 
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Table 2-2. Characteristics of ED visits in Chi-Mei Hospital of death, CVD and 

RD for the subjects residing in Tainan City, Taiwan, 2006-2016 

(n=69,261) 

  

  

N (%) 

Death CVD RD 

Total 37,846 (100.0%) 12,524 (100.0%) 18,891 (100.0%) 

Gender 

 Male 17,869 (47.2%) 4,894 (39.1%) 9,047 (47.9%) 

 Female 19,977 (52.8%) 7,630 (60.9%) 9,844 (52.1%) 

Age 

 Youngers (Age<65) 23,436 (61.9%) 5,633 (45.0%) 10,901 (57.7%) 

 Elders (Age≥65) 14,410 (38.1%) 6,891 (55.0%) 7,990 (42.3%) 

Onset time 

 Daytime (8 am-7 pm) 13,073 (34.5%) 4,255 (34.0%) 8,352 (44.2%) 

  Nighttime (8 pm-7 am)  24,773 (65.5%) 8,269 (66.0%) 10,539 (55.8%) 
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Table 2-3. Statistics of air pollutants during 2006-2016 in Tainan City, Taiwan 

Variable Mean ± SD 
Percentile 

25th 50th 75th 

Temperature (°C) 24.63 ± 5.20 21.00 25.83 28.50 

Relative humidity (%) 75.61 ± 10.77 68.00 77.48 84.00 

Wind speed (m/s) 2.33 ± 1.14 1.45 2.20 3.04 

Rainfall (mm) 0.17 ± 1.42 0.00 0.00 0.00 

PM10 (μg/m3) 68.60 ± 41.10 39.00 60.00 89.00 

PM2.5 (μg/m3) 25.12 ± 17.95 11.23 21.48 34.28 

NO2 (ppb) 14.40 ± 7.55 8.70 13.00 19.00 

SO2 (ppb) 3.68 ± 1.72 2.45 3.35 4.50 

O3 (ppb) 30.31 ± 21.97 13.70 24.60 41.70 

NO (ppb) 3.15 ± 3.80 1.30 2.05 3.30 

CO (ppm) 0.39 ± 0.17 0.27 0.37 0.49 
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Table 2-4. Statistics of heterogeneity indices of land-use pattern, MEI and 

neighboring PM2.5 emission (tons/year) for all grids and subjects in 

Tainan City 

  Mean STD Median 
33rd  

Percentile 

66th  

Percentile 
Minimum Maximum 

All Grids (n=2406) 

 MEI 0.350  0.136  0.340  0.295  0.389  0.030  0.771  

 PM2.5 Emission 3.869  13.238  0.001  0.001  0.316  0.001  133.020  

Death (n=37846) 

 MEI 0.596  0.121  0.636  0.566  0.679  0.058  0.771  

 PM2.5 Emission 14.420  24.275  2.571  0.440  8.314  0.001  130.035  

CVD (n=12524) 

 MEI 0.593  0.124  0.636  0.559  0.679  0.058  0.771  

 PM2.5 Emission 13.268  22.999  2.475  0.439  7.734  0.001  129.933  

RD (n=18891) 

 MEI 0.603  0.117  0.642  0.573  0.684  0.058  0.771  

 PM2.5 Emission 16.056  25.483  2.850  0.794  9.827  0.001  130.035  
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One explanation for our higher OR estimations could be that the 

composition of PM2.5 in study region were more toxic than that of PM2.5 

measured in other countries or regions. For example, long-range 

transboundary air pollution transported from mainland China, which 

contains higher hazardous composition of PM2.5 and by-products of 

combustion (e.g. sulfate), exacerbates the health impact [69,70]. The risk 

of exposure to PM2.5 could be also amplified by the coexistence of NO2 

and O3 in urban areas [67]. In this study, the significant correlation 

between daily PM2.5 and daily NO2 (Pearson’s r=0.57, p-value<0.01) and 

O3 (Pearson’s r=0.30, p-value<0.01) magnified the health impact of PM2.5 

exposure. In addition, selection bias could also have contributed to the 

higher estimations. Because the subjects were selected from cases in the 

hospital and used as controls as well, the higher risk may have been due 

to subjects having been relatively more vulnerable to PM2.5 exposure 

compared with the general population. Furthermore, the full-coverage and 

complete national health insurance among all residents and lower medical 

expense in Taiwan may also increase the willingness of people to visit the 

ED even they have non-fatal diseases or symptoms.  

To exclude the possible bias from modeling, we excluded the 

possibility of modeling bias from multiple controls used for one case. In 

this study, the controls were the subjects themselves but on the other days, 

on the same day of the week in the same month and year. That is, in most 

cases, 3 controls were used for each case because the controls were 

selected from the same day of the week in that month. Using 1 control and 

3 controls for input were both examined in this study, and both estimated 
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ORs were close. Meanwhile, one study pointed out that overestimation 

could occur when using longer lagged averages [71], but in our sensitivity 

analysis, a similar level of ORs was obtained for shorter (1 hr) and longer 

lagged period (1-48 hr and 1-96 hr). 

2.4.3. Heterogeneous risks associated with HLUL patterns and PM2.5 

emission 

Estimated risks of 1-24 hr PM2.5 exposure (per 10 μg/m3 increase) 

for different levels of HLUL patterns are presented in Table 2-8 and Figure 

2-6(a). The average risk of CVD (OR=1.27, 95% CI: 1.24-1.30) is the 

highest compared with RD (OR=1.26, 95% CI: 1.23-1.29) and non-

accidental death (OR=1.25, 95% CI: 1.22-1.27) (Table 5).  

The risks of PM2.5 exposure also varied with the levels of HLUL 

patterns. For CVD and RD, the risk increased with the increase in HLUL 

patterns, and high HLUL patterns increased risk up to 59% (OR=1.59, 

95% CI: 1.46-1.73) and 36% (OR=1.36, 95% CI: 1.29-1.45), respectively. 

On the contrary, low-level HLUL patterns was correlated with a higher risk 

of death (OR=1.31, 95% CI: 1.25-1.37). Regarding neighboring PM2.5 

emission (Table 2-8 and Figure 2-6(b)), subjects in proximity to the 

medium level of PM2.5 emission had the highest risk for all selected BD 

outcomes. The highest risks for CVD, death, and RD were identified in 

subjects adjacent to the medium-level PM2.5 emission, for which ORs were 

1.52 (95% CI: 1.40-1.66), 1.51 (95% CI: 1.41-1.61) and 1.47 (95% CI: 

1.38-1.57), respectively. Furthermore, the reduced risk of death was 

observed for subjects in proximity to high-level PM2.5 emission (OR=0.95, 

95% CI: 0.89-1.01), although results were not statistically significant. 
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Table 2-5. Collected odd ratios of CVD of PM2.5 short-term exposure from 

literatures 

Reference Study design Health Outcomes Region Odds Ratio 

Taiwan      

This study Case-crossover design 

Cardiovascular disease 

Tainan, Taiwan 

1.266 (1.236-1.296)  

Heart failure  1.495 (1.088-2.054)  

Arrhythmia 1.370 (1.070-1.753)  

Cerebrovascular disease 1.216 (1.168-1.265)  

Ischemic heart disease 1.372 (1.219-1.545)  

[72] Case-crossover design Myocardial Infarction Taipei, Taiwan 1.089 (1.062-1.121)  

[73] Case-crossover design Cardiac arrhythmias Taipei, Taiwan 1.094 (1.062-1.126)  

[74] Case-crossover design Congestive heart failure Taipei, Taiwan 1.083 (1.056-1.110)  

[75] Case-crossover design 

Ischemic heart disease 

Kaohsiung, Taiwan 

1.140 (1.120-1.160)  

Congestive heart failure 1.140 (1.120-1.160)  

Stroke 1.140 (1.100-1.170)  

Arrhythmias 1.140 (1.100-1.180)  

[76] Case-crossover design Ischemic Heart disease Taipei, Taiwan 1.089 (1.073-1.099)  

[77] Case-crossover design 

Ischemic heart disease 

Kaohsiung, Taiwan 

1.134 (1.116-1.155)  

Stroke 1.138 (1.120-1.155)  

Congestive heart failure 1.136 (1.104-1.168)  

Arrhythmias 1.140 (1.101-1.183)  

[69] Case-crossover design Cardiovascular disease Taiwan 2.200 (1.220-5.080)  

[78] Case-crossover design Hypertension Kaohsiung, Taiwan 1.141 (1.023-1.270)  

Other Asia      

[62] Case-crossover design Cardiovascular disease Okayama, Japan 1.019 (1.005-1.029)  

[79] Time-series analysis 
Cardiovascular disease 

Japan 
1.004 (0.999-1.021) * 

Cerebrovascular disease 1.002 (0.994-1.011) * 

[80] Time-series analysis Cardiovascular disease Japan 1.013 (1.002-1.023) * 

[81] Case-crossover design Cardiovascular disease Beijing, China 1.005 (1.001-1.009)  

[82] Case-crossover design Hypertension Beijing, China 1.084 (1.028-1.139)  

[83] Case-crossover design 
Ischemic stroke 

Beijing, China 
1.093 (1.085-1.100)  

Hemorrhagic stroke 1.084 (1.064-1.105)  

[84] Case-crossover design Cardiovascular disease Beijing, China 1.015 (1.002-1.027) * 

[85] Case-crossover design Ischemic stroke China 1.000 (1.001-1.003) * 

[86] Case-crossover design Myocardial Infarction Beijing, China 1.050 (1.000-1.110)  

[87] Case-crossover design Myocardial Infarction Tehran, Iran 1.013 (1.002-1.024)  

Europe      

[88] Time-series analysis Cardiovascular mortality Barcelona, Spain 1.029 (1.014-1.044) * 

[89] Case-crossover design Cardiovascular disease Madrid, Spain 1.025 (1.003-1.047)  

[90] Time-series analysis 
Circulatory mortality 

Madrid, Spain 
1.022 (1.005-1.039)  

Circulatory mortality 1.025 (1.007-1.043)  

[91] Case-crossover design 
Acute coronary syndrome 

Rome, Italy 
1.023 (1.005-1.042) * 

Heart failure  1.024 (1.003-1.045) * 

[92] Case-crossover design Myocardial Infarction Belgian 1.028 (1.003-1.054)  

[93] Time-series analysis Cardiovascular mortality French 1.051 (1.018-1.084) * 

[94] Case-crossover design 
Out-of-hospital cardiac 

arrests 
Copenhagen, Denmark 1.107 (1.020-1.199) * 

[95] Time-series analysis Cardiovascular disease Netherlands 1.009 (1.001-1.018)  

* OR was approximated by relative risk (RR).     
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Table 2-5 continued. Collected odd ratios of CVD of PM2.5 short-term 

exposure from literatures 

Reference Study design Health Outcomes Region Odds Ratio 

Americas      

[96] Case-crossover design Myocardial Infarction Washington, U.S. 1.020 (0.980-1.070)  

[97] Time-series analysis 
Cardiovascular disease 

New-England, U.S. 
1.010 (1.007-1.005) * 

Stroke 1.002 (0.999-1.006) * 

[98] Case-crossover design Cardiovascular disease Mid-Atlantic, U.S. 1.008 (1.001-1.001) * 

[99] Case-crossover design Congestive heart failure  Maryland, U.S. 1.074 (0.925-1.242)  

[100] Time-series analysis Cardiovascular disease 
Connecticut and 

Massachusetts, U.S. 
1.018 (1.004-1.031) * 

[101] Case-crossover design Ischemic coronary disease Utah, U.S. 1.045 (1.011-1.080) * 

[102] Case-crossover design Congestive Heart Failure Texas, U.S. 1.041 (1.014-1.071)  

[103] Time-series analysis Deep vein thrombosis U.S. 1.006 (1.000-1.013) * 

[104] 
Time-series analysis 

Cardiac arrests  New York, U.S. 
1.060 (1.020-1.100)  

Case-crossover design 1.040 (0.990-1.080)  

[105] 
Bayesian hierarchical 

modeling 
Cardiovascular disease U.S. 1.007 (1.005-1.008) * 

[106] Case-crossover design 
Myocardial Infarction 

Colorado, U.S. 
1.020 (0.922-1.124)  

Ischemic heart disease 1.061 (1.000-1.166)  

[107] Case-crossover design Cardiovascular disease 

Massachusetts, U.S. 1.073 (1.062-1.084)  

New Jersey, U.S. 1.030 (1.022-1.037)  

New Hampshire, U.S. 1.067 (1.032-1.104)  

New York, U.S. 1.029 (1.024-1.034)  

[108] Case-crossover design 
Non-cardioembolic ischemic 

stroke 
Ontario, Canada 1.055 (0.994-1.120) * 

[67] Case-crossover design Myocardial Infarction Ontario, Canada 1.164 (1.084-1.254) * 

[109] Case-crossover design Stroke Edmonton, Canada 1.016 (0.937-1.097)  

[110] Time-series analysis 
Cerebrovascular diseases 

Santiago, Chile 
1.021 (1.002-1.041) * 

Heart Rhythm Disturbances  1.021 (1.002-1.042) * 

Australia      

[111] Case-crossover design Cardiovascular disease Australia 1.027 (1.002-1.053) * 

[112] Case-crossover design 
Pneumonia + acute 

bronchitis 
Australia and New Zealand 1.023 (1.000-1.046) * 

* OR was approximated by relative risk (RR).     
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Table 2-6. Collected odd ratios of respiratory disease of PM2.5 short-term 

exposure from literatures 

Reference Study design Health Outcomes Region Odds Ratio 

Taiwan      

This study Case-crossover design 

Respiratory disease 

Tainan, Taiwan 

1.260 (1.234-1.286)  

Acute exacerbation COPD  1.275 (1.247-1.304)  

Respiratory tract infection 1.361 (1.185-1.562)  

[113] Case-crossover design 

Pneumonia 

Kaohsiung, Taiwan 

1.142 (1.130-1.154)  

Asthma 1.120 (1.082-1.161)  

COPD 1.132 (1.108-1.157)  

[114] Case-crossover design Pneumonia Taipei, Taiwan 1.078 (1.062-1.089)  

[115] Case-crossover design Asthma Taipei, Taiwan 1.115 (1.078-1.152)  

[69] Case-crossover design Respiratory disease Taiwan 1.860 (1.300-2.910)  

Other Asia      

[61] Case-crossover design Respiratory disease Okayama, Japan 1.024 (1.005-1.043)  

[79] Time-series analysis Respiratory disease Japan 1.019 (1.000-1.028) * 

[116] Time-series analysis Asthma China 1.055 (1.043-1.069)  

[84] Case-crossover design Respiratory disease Beijing, China 1.020 (1.010-1.030) * 

[117] Time-series analysis 

Respiratory disease 

Beijing, China 

1.002 (1.001-1.003) * 

Upper respiratory tract 
infection 

1.002 (1.000-1.004) * 

Lower respiratory tract 
infection 

1.003 (1.001-1.005) * 

Acute exacerbation COPD  1.032 (1.014-1.049) * 

[118] Case-crossover design Respiratory disease Hanoi, Vietnam 1.022 (1.013-1.032)  

[119] Case-crossover design 
Asthma 

Zonguldak, Turkey 
1.150 (0.990-1.340)  

Allergic rhinitis with asthma 1.210 (1.100-1.330)  

Europe      

[89] Case-crossover design Respiratory disease Madrid, Spain 1.023 (1.003-1.039)  

[120] Time-series analysis Respiratory disease Madrid, Spain 1.028 (1.004-1.052)  

[91] Case-crossover design 
Lower respiratory tract 

infections 
Rome, Italy 1.028 (1.005-1.052) * 

[95] Time-series analysis Respiratory disease Netherlands 1.012 (0.997-1.014)  

America      

[121] Case-crossover design 
Asthma-related hospital 

admission 
Washington, U.S. 1.076 (1.019-1.136)  

[122] Time-series analysis Respiratory disease California, U.S. 1.050 (1.030-1.070)  

[97] Time-series analysis Respiratory disease New-England, U.S. 1.007 (1.004-1.005) * 

[98] Case-crossover design Respiratory disease Mid-Atlantic, U.S. 1.002 (1.002-1.003) * 

[100] Time-series analysis Respiratory disease 
Connecticut and 

Massachusetts, U.S. 
1.007 (1.005-1.008) * 

[106] Case-crossover design 
Respiratory disease 

Colorado, U.S. 
1.061 (1.040-1.103)  

Asthma & Wheeze 1.145 (1.082-1.210)  

[123] Case-crossover design Asthma Pittsburgh, U.S. 1.036 (1.001-1.073)  

[124] 

Bidirectional case-
crossover design 

Asthma Ontario, Canada 

1.097 (1.043-1.162)  

Unidirectional case-
crossover design 

1.011 (0.968-1.065)  

Time-series analysis 1.000 (0.968-1.043)  

Australia      

[111] Case-crossover design Respiratory disease Australia 1.004 (0.976-1.032) * 

[112] Case-crossover design 

Pneumonia + acute 
bronchitis 

Australia and New Zealand 

1.023 (1.000-1.046) * 

1.032 (1.001-1.063) * 

Respiratory disease 
1.032 (1.013-1.051) * 

1.023 (1.009-1.036) * 

* OR was approximated by relative risk (RR).     
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Table 2-7. Collected odd ratios of death of PM2.5 short-term exposure from 

literatures 

Reference Study design Health Outcomes Region Odds Ratio 

This study Case-crossover design Non-accidental mortality Tainan, Taiwan 1.245 (1.219-1.273)  

[88] Time-series analysis Cardiovascular mortality Barcelona, Spain 1.029 (1.014-1.044) * 

[90] Time-series analysis 

Circulatory mortality 

Madrid, Spain 

1.022 (1.005-1.039)  

Circulatory mortality 1.025 (1.007-1.043)  

[125] Case-crossover design Mortality Italy 1.011 (1.005-1.017) * 

[93] Time-series analysis 

Non-accidental mortality 

France 

1.007 (0.999-1.016) * 

Cardiovascular mortality 1.051 (1.018-1.084) * 

[95] Time-series analysis 

All-causes mortality 

Netherlands 

1.009 (1.004-1.014)  

Cardiovascular mortality 1.009 (1.001-1.018)  

Respiratory mortality 1.012 (0.997-1.014)   

* OR was approximated by relative risk (RR).     
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The risk estimations from different combinations of HLUL pattern 

levels and PM2.5 emission categories by applying stratified analysis is 

shown in Table 2-9. Generally, higher risks are observed for subjects in 

high HLUL pattern areas and proximity to a medium-level PM2.5 emission, 

and the highest risk is observed for CVD (OR=1.99, 95% CI: 1.50-2.64), 

followed by death (OR=1.74, 95% CI: 1.47-2.07), and RD (OR=1.52, 95% 

CI: 1.32-1.74). In addition, significant reduced risks (OR<1) are also 

observed in death subjects with low emission/medium HLUL pattern, 

medium emission/low HLUL pattern, and high emission/high HLUL pattern 

combinations. 

The increased risks of living in high HLUL patterns could be related 

to mixed land-use patterns. Residential areas neighboring high-emission 

areas like industrial areas or roads have shown higher risks of health 

impacts from air quality [6,7,126]. In addition, subjects close to a medium-

level PM2.5 emission suffered comparable risks which is higher than 

proximity to a higher-level PM2.5 emission. One explanation could be that 

the majority of PM2.5 mass concentration does not only originate from local 

regions. Secondary PM2.5 transported from other up-wind polluted regions 

may lead to subjects in these areas underestimating their exposure and 

reducing their awareness of air pollution. Previous studies in Taiwan found 

that secondary aerosol could contribute 25-60% of total PM2.5 mass, 

including 8-27% of total PM2.5 mass transported from mainland China and 

coastal cities in Taiwan [127–130]. 
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2.4.4. Risk mapping building 

The risk map of death (Figure 2-7(a)) illustrates that the risk of death in 

rural areas was 1.40 times higher than average, while the risks of CVD 

and RD (Figure 2-7(b) and Figure 2-7(c)) in the most urbanized areas 

were 1.57 and 1.20 times higher than average. The spatial heterogeneity 

of risks implies that even though the residents have similar PM2.5 exposure, 

those who lived in areas with diverse land-use characteristics would have 

different vulnerabilities to PM2.5 exposure. Based on the identified linkage 

between PM2.5 exposure risk and land-use characteristics, we considered 

this spatial heterogeneity of vulnerability could be associated with land-

use characteristics in our study region. Also, the separately quantified 

risks for each health outcome have similar spatial patterns, which 

indicates that the correlation between land-use patterns and vulnerability 

could exhibit a generalizable trend. Residents in the most urbanized areas 

have a higher vulnerability to PM2.5 exposure for CVD and RD; residents 

living along main roads and highways are also less vulnerable to death 

and RD. In addition, residents in rural areas are at higher risk of death due 

to PM2.5 exposure. While similar previous studies have ignored the land-

use related heterogeneity of PM2.5 exposure vulnerabilities and focused 

more on air pollutant concentrations, our results pointed out that subject 

vulnerability could potentially vary with the land-use characteristics of their 

activity spheres and those that neighbor them, and the spatial 

heterogeneity of those land-use characteristics and vulnerability could 

affect BD estimations. 
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Table 2-8. Adjusted ORs and 95% CIs per 10 μg/m3 increase of PM2.5 for 

different levels of neighboring heterogeneity of HLUL pattern and 

neighboring PM2.5 emission 

 Death CVD RD 

All 1.25 (1.22-1.27) 1.27 (1.24-1.30) 1.26 (1.23-1.29) 

HLUL 

Low 1.31 (1.25-1.37) 1.10 (1.05-1.15) 1.18 (1.13-1.24) 

Medium 1.14 (1.06-1.21) 1.30 (1.21-1.40) 1.21 (1.13-1.30) 

High 1.12 (1.05-1.19) 1.59 (1.46-1.73) 1.36 (1.29-1.45) 

PM2.5 Emission  

Low 1.07 (1.02-1.12) 1.07 (1.02-1.12) 1.08 (1.03-1.13) 

Medium 1.51 (1.41-1.61) 1.52 (1.40-1.66) 1.47 (1.38-1.57) 

High 0.95 (0.89-1.01) 1.18 (1.10-1.27) 1.11 (1.04-1.18) 
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Table 2-9. Adjusted ORs and 95% CIs per 10 μg/m3 increase of PM2.5 for 

diverse combinations of neighboring HLUL patterns and PM2.5 emission 

levels 

 Death CVD RD 

PM2.5 

Emission 
Low Medium High Low Medium High Low Medium High 

N           

HLUL 

Low 10,100 2,844 666 3,294 1,003 182 4,958 1,376 317 

Medium 3,130 4,753 4,330 1,056 1,487 1,516 1,377 2,295 2,447 

High 55 4,917 7,051 1 1,580 2,405 137 2,644 3,340 

OR (95% CI)          

HLUL 

Low 
1.39 

(1.31-1.49) 

0.48 

(0.36-0.64) 
-* 

1.09 

(1.04-1.16) 

1.40 

(1.10-1.79) 
-* 

1.17 

(1.10-1.24) 

1.08 

(0.84-1.38) 
-* 

Medium 
0.49 

(0.36-0.65) 

1.23 

(1.03-1.47) 

1.60 

(1.30-1.98) 

0.98 

(0.69-1.38) 

1.28 

(1.05-1.57) 

1.05 

(0.84-1.31) 

0.93 

(0.69-1.24) 

1.51 

(1.22-1.86) 

1.02 

(0.92-1.13) 

High -** 
1.74 

(1.47-2.07) 

0.82 

(0.73-0.91) 
-** 

1.99 

(1.50-2.64) 

1.32 

(1.16-1.50) 
-** 

1.52 

(1.32-1.74) 

1.20 

(1.06-1.35) 

* The group was combined to medium-level PM2.5 emission and low HLUL group because of limited sample size. 

** The group was combined to medium-level PM2.5 emission and high HLUL group because of limited sample size. 
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Figure 2-6. Adjusted ORs and 95% CIs per 10 μg/m3 increase of PM2.5 for 

different levels of neighboring (a) HLUL patterns and (b) PM2.5 emission 
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The disparate risks among rural and urban areas might be due to 

the factors including human-environment interactions, individual factors, 

and PM2.5 toxicity. First, concerning individual factors, one reason for the 

higher vulnerability in rural areas is lower accessibility of medical 

resources, which is attributable to longer distances to hospitals; lower 

abundance of medical professionals and reduced willingness to seek 

medical services [131,132]. Garcia et al. (2016) and Kloog et al. (2014) 

attributed this disparities to a “non-metropolitan penalty”, which refers to 

the difference in individual-level behaviors, medical accessibility, and the 

level of knowledge of diseases and their prevention [5,98] . Second, 

interaction between humans and their environment such as daily living 

pattern and exposure intensity, duration, and frequency could affect the 

level of the risk. Subjects in rural areas could have higher exposure 

frequency and longer exposure duration due to daily commuting and other 

outdoor activities [133]. Third, the difference in chemical and physical 

compositions between rural and urban PM2.5 could contribute to the risk 

difference. Higher risks of CVD and RD in more urbanized areas could be 

related to higher emissions from mobile and commercial sources (e.g. 

restaurants, street vendors) at breathing level [134]. Additionally, it should 

be noted that although residing in urban areas was found to enhance the 

risks of CVD and RD, the risk of death in rural areas was still higher than 

in urban areas, which suggests that the protective factors like high 

transportation and medical accessibility in the urban and suburban 

environments could lower the risk of death, and residents in rural areas 

could have a lower willingness and lack medical resources to receive 

medical treatment in time to prevent death.  
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In addition, a reduced risk of PM2.5 exposure for death was 

observed in suburban areas (Figure 2-7(a)), which could be associated 

with higher awareness to air pollution for residents in suburban areas. This 

finding is similar to that of Chan and Ng (2011), who speculated that 

vulnerable groups might be more aware of PM2.5 events and reduce their 

outdoor activities [135]. Eberhardt and Pamuk (2004) also found that the 

health status of suburban area residents was superior to those living in 

both the most-rural and the most-urban areas [136]. 

2.4.5. disease burden uncertainty analysis 

Concerning estimation uncertainties, we considered that the bias 

could originate from the following scenarios: (1) using non-local estimated 

risk for calculating the local BD, (2) using averaged risk to represent the 

whole study region without considering population distribution and 

heterogeneously distributed risks, and (3) using monitoring data to 

represent ambient PM2.5 concentration among large regions including 

areas far from the AQMS. Thus, we designed six scenarios using three 

sources of risk values and two sources of PM2.5 exposure data as shown 

in Table 2-10, including the estimated ED visits and the uncertainties 

between scenarios. Descriptive analysis of observed and CMAQ-fused 

PM2.5 data are presented in Table 2-11. The validation of CMAQ-modeled 

results is shown in Table 2-12. Spatial distribution of the annual mean of 

CMAQ-fused PM2.5 is shown in Figure 2-8. CMAQ-modeled results for all 

sites in this study region meet both of the performance criteria of Taiwan 

EPA and U.S. EPA [137]. 
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First, risks using estimated data, based on U.S. EPA 

recommended values, contributed the greatest uncertainty to the results 

as it underestimated the local ED visits by 16-86% compared with using 

gridded local risks. This high uncertainty also emphasized the potential 

bias when using U.S. EPA recommended values or literature-based risk 

estimates from other countries or regions to calculate the local BD. In this 

study, if local gridded risk estimates were used in our study region, the 

estimated ED visits increased substantially by 1.19-7.29 times. 

Moreover, when using monitoring data to calculate the BD, the 

results were lower than using CMAQ-fused data, primarily because using 

monitoring data could have a bias in distant areas far from the monitoring 

site.  

Therefore, using monitoring data to represent distant areas 

resulted in the underestimation of ED visits by 20-32% in our study region. 

Although uncertainties occasionally exhibited in the monitoring data, it 

was still useful in the study due to higher availability and shorter time to 

model execution. Additionally, while using CMAQ-fused data is a more 

appropriate method to represent exposure more accurately for subjects in 

distant areas where measurements are not directly available, the 

modeling results still need to be validated and require more time and 

resources to execute. Both techniques have advantages and 

disadvantages, and for calculating the BD, we quantified the estimation 

uncertainties between these two methods to be 20-32%. 
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Figure 2-7. Risk map of PM2.5 (per 10 μg/m3 increase) for (a) death, (b) CVD 

and (c) RD in Tainan City. 
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Additionally, concerning the spatial heterogeneity of risk, when 

using gridded risks other than averaged risks, the number of ED visits 

decreases by 0-38%. This is because the disaggregated calculation 

considered the distribution of population and their specific risks in urban, 

suburban, and rural areas. Figure 2-8 shows the spatial difference 

between these two scenarios, where red and blue grid cells represent the 

overestimation and underestimation, respectively, of the averaged-risk 

method compared with the gridded-risk method. Using averaged risks 

underestimates the ED visits in urban areas for all outcomes, and 

overestimates risk in suburban areas for death, rural areas for CVD, and 

suburban and rural areas for RD.  

Overall, concerning uncertainty from risk values and daily PM2.5 

concentration, using non-local risk estimates has the largest uncertainty 

(16-86%), followed by using monitoring data (20-32%) and applying the 

same averaged risks to represent the vulnerability of the population in 

rural and urban areas (0-38%), especially in most urbanized areas. The 

most biased estimation using non-local risk estimates and monitoring data 

underestimates the BD by 39-90% compared with using heterogeneously 

distributed local risks estimates and CMAQ-fused data. Thus, previous 

studies using nation-wide risk to estimate the BD or cost-benefit of air 

quality implementation could be potentially biased, because they 

overlooked the distribution of populations and their heterogeneous risks 

in areas with diverse levels of urbanization, and these risks could vary 

within a wide range (e.g. OR of death could be 39% higher than the 

average) [20,51,138]. When ignoring the spatial heterogeneity of risk, the 



 

62 

effectiveness of air quality control implementation could be limited and 

remain biased. 

2.5.6. Strengths of our framework 

Our framework to calculate the BD has several advantages over previous 

calculations. First, our framework can provide cities or countries with a 

framework to develop their own BD estimations by using local databases, 

since the uncertainties arising from lack of available administrative health 

data in smaller regions, cities, and communities has been gradually come 

to be recognized [20]. For those regions or countries without local land-

use or emission data, using satellite data can provide an alternative way 

to build up local land-use database [139], while emission data could be 

obtained from local government or a global emission database such as 

ECLIPSE that has been widely used for many international studies [140] 

and can be spatially distributed by population density, road lengths or 

other anthropogenic indices. Once regions or countries have the required 

databases, our developed framework can be applied in any location. 

Second, the risk map can identify the spatial heterogeneity of risks and 

identify areas with higher risks. Combined with the BD map, the maps can 

facilitate the allocation of public and medical resources by local 

governments to affected areas and reduce potential health impacts more 

effectively. 
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Figure 2-8. The difference of the number of ED visits (gridded-risk ED visits 

minus averaged-risk ED visits) for (a) death, (b) cardiovascular disease 

and (c) respiratory disease using monitoring data in 2013 
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Table 2-10. Number of increased ED visits under different scenarios in Tainan 

City, 2013 

Scenario 

Applied OR of 

daily PM2.5 

concentration 

(per 10 μg/m3) 

N (%) [1] 

Monitoring data CMAQ-Fused data Difference [2] 

Death     

Gridded Local Risk 1.000 [3] - 1.742 1699 (100%) 2137 (100%) -437 (-20%) 

Averaged Local Risk 1.245  1698 (100%) 2266 (106%) -568 (-25%) 

U.S. EPA Recommended 

Risk 
1.170 [4] 1309 (77%) 1790 (84%) -481 (-27%) 

CVD     

Gridded Local Risk 1.000 [3] - 1.992 1297 (100%) 1750 (100%) -453 (-26%) 

Averaged Local Risk 1.266  1790 (138%) 2375 (136%) -585 (-25%) 

U. S. EPA Recommended 

Risk 
1.002 [4] 178 (14%) 262 (15%) -85 (-32%) 

RD     

Gridded Local Risk 1.000 [3] - 1.518 1339 (100%) 1782 (100%) -443 (-25%) 

Averaged Local Risk 1.260  1763 (132%) 2343 (132%) -580 (-25%) 

U.S. EPA Recommended 

Risk 
1.002 [4] 241 (18%) 355 (20%) -113 (-32%) 

[1] The percentage present the portion of ED visits divided by ED visits of gridded local risk scenario. 

[2] Number of Monitoring data– Number of Fused data (% divided by fused estimation) 

[3] Grids with OR<1 were replaced by OR=1 to assure non-negative number of ED visits. 

[4] For each health outcome, the highest risk was used from U.S. EPA recommended risk in BenMAP-

CE (Version 1.1.3), http://www.epa.gov/air/benmap. 

 

Table 2-11. Descriptive analysis of observed and CMAQ-fused PM2.5 in 2013 

Location Variable Mean ± SD 
Percentile 

25th 50th 75th 

Tainan City 

(2406 Grids) 

Observed PM2.5 26.72 ± 3.44 23.93 25.82 31.79 

CMAQ-fused PM2.5 29.33 ± 8.37 23.29 25.82 37.52 

 

  

http://www.epa.gov/air/benmap


 

65 

Table 2-12. Validation of CMAQ-modeled PM2.5 in 2013 

Site # MFB[1] MFE[2] Pearson r 

S1 10.76% 49.27% 0.76 

S2 -42.55% 59.53% 0.69 

S3 -33.59% 55.50% 0.71 

S4 10.76% 55.66% 0.75 

All -2.90% 13.75% 0.75 

[1] Mean Fractional Bias (MFB) =
2

M∙N
∑ ∑ (

Pik−Oik

Pik+Oik
)N

i=1
M
k=1  

[2] Mean Fractional Error (MFE) =
2

M∙N
∑ ∑ |

Pik−Oik

Pik+Oik
|N

i=1
M
k=1  

M = number of sites  

N = number of values  

Pik = predicted PM2.5 of site k at day i 

Oik = observed PM2.5 of site k at day i 

[3] U.S. EPA performance criteria: MFB ≤ ±60%, MFE ≤ 75% 
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For example, in this study, we identified lower risks of CVD and RD 

but a higher risk of death in rural areas, and we suggested that one of the 

explanations for this tendency is the lower accessibility of residents in 

these areas to medical medical treatment and/or the lower willingness of 

residents to accept treatment. Third, with prior information about the 

spatial distribution of PM2.5 exposure risk, the health officials can more 

accurately estimate the number of potential ED visits based on timely air 

pollution forecasts, so that medical and emergency care systems can be 

better prepared for surges in emergency department care demand. 

2.5.7. Limitations 

Our study still has some limitations. First, our framework only 

partially captures individual-level exposure pattern. For instance, although 

we located subjects by their residential address, it is possible that these 

subjects travel to another area for school or work. During working or 

staying indoors, the variation in intensity of individual-level exposure could 

also confound the impact of ambient PM2.5. One potential strategy for 

solving this problem is collecting time-activity data, which would allow the 

duration of outdoor and indoor activities for individuals or group to be used 

to classify exposure level, but this method is time-consuming, costly, and 

its representativeness is easily limited by sample size and sampling 

methods. Second, we only applied the basic MMF techniques to fuse 

modeled data and monitoring data in this study. Advanced MMF 

techniques like machine learning techniques can be referred to the 

second study. Third, although we only applied the framework in one city, 

the impact of land-use characteristics on PM2.5 exposure risk could still 
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generally exist in the developing countries. The identified relationship 

between land-use characteristics and PM2.5 exposure risk in this study 

region may be different from that in other regions or countries. Thus, more 

hospital data from other cities and regions need to be considered in the 

future works. 

2.5. Conclusions 

The finer spatial resolution of risk and BD estimations are 

increasingly required for regional air quality and public health 

management. This study built up a data fusion framework that facilitates 

individual development of risk and BD estimates for cities or countries 

based on spatial heterogeneity among different land-use characteristics 

and urbanization levels to enhance the accuracy of the BD estimations. In 

this study, we discovered that living in areas with high HLUL patterns 

increases the risk of CVD and RD by 59% and 35%, and that living in 

areas with low HLUL patterns increases the risk of death by 31%. 

Residents in rural areas had 1.40 times higher death risk compared with 

the average risk, and residents in the most urbanized areas had 1.57 and 

1.20 times higher risk of CVD and RD than average. Our developed 

framework provides the exposure risk maps and BD map at the grid-level 

resolution, that visualize these risks and the BD. Such illustrations 

facilitate re-assessment of the potential risk of present urban planning 

strategies, and provide a quantified reference for air quality 

implementation plans and emergency episode-response plans. 
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Chapter 3. Quantifying Biases for Measurement-

model Fusion  
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3.1. Abstract 

Bias in chemical transport modeling (CTM) has impeded its 

applicability in environmental science for decades. Although emerging 

machine learning techniques can provide alternative and more accurate 

predictions, the remained bias and missing links with physical/chemical 

mechanisms still restrict our understanding of the real environment. The 

existing CTMs also hardly benefit from machine learning models. 

This study proposed a machine learning-measurement model 

fusion (ML-MMF) framework, using the Community Multiscale Air Quality 

(CMAQ) model as an exemplary CTM to illustrate the ML-MMF’s 

application in modeling improvement and bias quantification of the 

predicted air pollutants, PM2.5 and O3. The results show that the R-square 

of PM2.5 and O3 were improved from 0.41 and 0.48 to 0.86 and 0.82, 

respectively, in the study region. Bias quantification results showed the 

modeling bias is more affected by boundary conditions and local 

meteorology other than emission and land-use data in CMAQ modeling. 

The study illustrates exemplary cooperation between CTM and machine 

learning models, and the first developed ML-MMF framework can quantify 

the modeling bias structure and prioritize the improvement of CTM 

mechanisms and input data quality. 

3.2. Introduction 

Numerical models such as chemical transport models (CTMs) in 

environmental science have been intensively applied to simulate the 

environmental factors and atmospheric components based on known 
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chemical/physical mechanisms and knowledge-based inputs for 

decades[141,142]. However, current numerical models or databases such 

as the Coupled Model Intercomparison Project Phase 6 (CMIP6) [143] or 

the Model Inter-Comparison Study for Asia (MICS- Asia) [141,142] still 

remained significant bias compared with observations due to the highly 

unpredictable environment. Furthermore, the demanding computational 

resources and time to conduct a series of numerical-based sensitivity 

simulations significantly slow down the improvement of modeling [39,144]. 

Owing to the development of environmental monitoring techniques 

and increasingly available environmental data in recent years, machine 

learning (ML) has provided effective and promising applications to prevent 

human and ecosystem exposure to environmental stressors [145–147]. 

Continental or regional forecast, or response systems based on ML 

algorithms to alert the public and policymakers to the near-future 

environmental risks and pollution such as air pollution [148,149], wildland 

fires [150,151], floods [152], heat waves [153], and other extreme climate 

events [147] have been rapidly developed and intensively implemented in 

practice. However, although ML techniques have shown excellent 

capabilities to provide more accurate estimations than traditional 

numerical models [43,154,155], their “black-box” modeling processes and 

remaining bias between predictions and observations are not much 

debated and insufficiently investigated [41]. Furthermore, failing to provide 

interpretability and explainability in terms of physical/chemical 

mechanisms also limits their persuasion for researchers and our 

understanding of the real environment [41,156].  



 

71 

To enhance the accuracy of CTM predictions, measurement-model 

fusion (MMF) techniques in CTM post-analysis have been developed to 

correct numerical modeling results based on observations [41]. In MMF 

application, ML algorithms such as regression-based model [155,157], 

tree-based model [43,44], and neural networks [13,154] had been utilized 

to optimize modeling results. Nevertheless, employing ML techniques 

either as a bias corrector or as a pure forecaster, few studies further 

analyzed the potential confounders or input components that cause bias, 

and the numerical model and modeling inputs still remained unfixed and 

hardly benefit from ML modeling except for corrected estimations. 

Technically, the bias of numerical modeling is defined by the 

difference between modeling estimations and observations [158,159]. 

The biases between numerical estimations and in-situ monitoring 

observations are affected by modeling inputs including emission inventory, 

boundary conditions, meteorological factors, and land-use data [13,15]. 

Multiple reasons such as inaccurate modeling inputs [160,161], 

accumulation of input uncertainties during the modeling process, and 

imperfect chemical and physical mechanisms [162] in the model may 

contribute to considerable biases in air quality estimations. Although 

previous studies proved the capabilities of ML models in MMF or bias 

correction, the biases between modeled estimations and observations 

were not systematically investigated, and the bias originated from 

emissions, meteorology, boundary conditions, or geographical 

information data was not either quantified. 
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In this study, we used the CMAQ model [32] as an exemplary 

numerical model and selected Taiwan as the study region (Figure 3-1) 

due to its isolated geography, well-established air quality monitoring 

network, and routinely-updated emission inventory. The goal of this study 

is to illustrate the capability of ML techniques to quantify the potential 

sources of modeling bias from the prepared modeling inputs through the 

developed ML-MMF framework. The proposed ML-MMF framework was 

embedded with several basic ML techniques that can deal with non-

linearity, including the k-nearest neighbors’ regression (KNN) [163], 

regression tree (RT) [9], random forest (RF) [10], gradient-boosted tree 

models (GBM) [11], and convolutional neural network (CNN) [164]. 

Different modeling scenarios to include or exclude auxiliary data (emission 

inventory, boundary conditions, meteorological factors, and land-use data) 

for MMF were designed for further quantifying source-specific bias from 

modeling inputs. The target predictions were daily PM2.5 average and 

maximum daily 8-hour ozone average (MDA8), which are the major air 

pollutants causing adverse health effects [20]. The objectives of this study 

are to improve CMAQ modeling performance through the developed ML-

MMF framework, execute bias quantification for identifying the source-

specific bias from CMAQ modeling inputs (emission, meteorology, 

boundary condition, and land-use data), and use the premature deaths as 

an example to emphasize the potential derived uncertainty with and 

without MMF.  
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Figure 3-1. Air quality monitoring network (n=73) and air quality zones in 

Taiwan 
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3.3. Methodology 

3.3.1. Dataset preparation 

CMAQ model (version 5.2)[32] was used to simulate air pollutant 

concentrations with the Carbon Bond 6[165] and AERO6 [166] 

mechanisms which represent gas-phase and particulate matter chemistry, 

respectively. The weather research and forecasting model (WRF) [167], 

version 3.8, was used to simulate meteorological fields. The CMAQ and 

WRF modeling nested four layers from East Asia (81 km × 81 km) to 

Taiwan island (3 km × 3 km) which covers 90 (row) × 135 (column) 

horizontal grid cells. The configurations are the same as in our previous 

studies [129,168], as shown in Figure 3-2. Emissions are from Taiwan 

Emission Data System (TEDS) version 10.0 which is developed by 

Taiwan EPA and include industrial, mobile, area, and natural sources with 

1 km × 1 km resolution. 

All ML-MMF input variables are retrieved from CMAQ input data 

which include emission data, boundary condition data, meteorological 

data, and land-use data as listed in Table 3-1. Hourly observation data of 

PM2.5 and O3 in January, April, July, and October 2016 from 73 air quality 

monitoring stations (Figure 3-1) were used. Daily PM2.5 and MDA8 O3 

were calculated based on the standards of WHO and Taiwan EPA [28] 

and used as the target datasets for ML algorithms. The chosen 

independent variables are related to the emission of precursors (PM2.5, 

NOx, SOx, NH3, and VOCs), the secondary formation process of PM2.5 

and O3, and meteorological conditions that can have a significant impact 

on pollutant concentrations. Meteorological factors on 850 and 690 hPa 
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layers were selected to represent the weather conditions of the mixing 

layer and low troposphere layer [13]. Four-day averages of boundary 

conditions were applied to represent the initial conditions of the modeling 

domain. The dominant land use category was based on MODIS 

classification and converted to dummy variables as inputs. 

 3.3.2. ML-MMF flowchart 

The flowchart of the ML-MMF framework is presented in Figure 3-3. 

First, all inputs served as predictors including CMAQ output, emissions 

data, boundary condition data, meteorological data, and land-use data 

were compiled to the same resolution, 3 km × 3 km; Observation data from 

73 air quality monitoring stations were further combined to predictor 

datasets, and the grid cells with observation data were used for the 

learning process. A random selection was employed on the complied 

datasets; 60% of the data set was selected as the training dataset, and 

the remaining 40% was used as the testing dataset. Second, five ML 

techniques including KNN, RT, RF, GBM, and CNN were trained with the 

training dataset to predict daily PM2.5 and MDA8 O3 the best schemes. 

Detailed introduction of each ML technique can be found in Appendix II. 

To assure modeling accuracy, for each algorithm, a 10-fold cross-

validation was conducted to quantify the uncertainty of modeling 

performance. Finally, the testing dataset was applied to all models to 

validate the predictions, and the best algorithm was used for further bias 

quantification and assessment. Model performance was evaluated by R-

square (R2). 
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Figure 3-2. Overview of the simulated 4 nested domains from domain 1 (81 

km) to domain 4 (3 km) 
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Table 3-1. Input variables selected to construct the machine learning (ML) 

model 

Dataset Source Variables 

Observation 
Monitoring 

stations 

Daily PM2.5 and MDA8 O3 

Emission 

(n=24) 
TEDS 10 

PM2.5, NOx, SOx, CO, NH3, and VOCs emissions 

from point, mobile, area, and biomass sources. 

Boundary 

conditions 

(n=15) 

WRF 

air temperature (850 and 690 hPa), relative 

humidity (850 and 690 hPa), aerosol, NO3, HNO3, 

N2O5, NO, NO2, sulfate, SO2, VOCs, CO and O3 at 

surface level  

Meteorological 

variables 

(n=21) 

WRF 

Surface 

(n=11) 

surface pressure, PBL height, 

temperature at 2 m, mixing 

ratio at 2 m, wind speed, U 

wind component and V wind 

component, solar radiation 

reaching ground, precipitation, 

total cloud fraction, average 

liquid water content of cloud 

Pressure level 

(850 and 690 

hPa) 

(n=10) 

air temperature, potential 

vorticity, vertical velocity, U 

wind component and V wind 

component 

Land-use 

(n=10) 
CMAQ 

evaluation, urban percent, dominant land use 

category based on MODIS (dummy variables) 
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Figure 3-3. Technical flowchart of deep learning algorithm for PM2.5 and O3 

prediction 
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3.3.3. Bias quantification 

The bias quantification technique utilized PM2.5 and O3 estimations 

from each scenario. For each air quality zone, total bias (∆CTotal) was 

defined by the changing population-weighted concentrations of PM2.5 and 

O3 concentrations between CMAQ raw output and S1_BASE (∆CTotal =

CCMAQ − CS1_BASE). The modeling capability of each component (emission, 

boundary condition, meteorology, and land-use data) was defined by 

either the including scenarios or the excluding scenarios. For example, 

the modeling capability of emission data was defined by the changing 

concentration between CMAQ raw output and S2_EM ( ∆C1,EM =

CCMAQ−CS2_EM ) or the changing concentration between S1_BASE and 

S6_nEM (∆C2,EM = CS1_BASE − CS6_nEM). For all components, the calculated 

biases were further used to apportion their contributions to total bias 

through the following multiple linear regression (MLR) equation:  

∆CTotal = β0 + β1∆Ci,EM + β2∆Ci,BC + β3∆Ci,MT + β4∆Ci,LU + 𝜀 

where i represent the application of either including scenarios (∆C1,EM, 

∆C1,BC , ∆C1,MT , and ∆C1,LU ) or excluding scenarios ( ∆C2,EM , ∆C2,BC , 

∆C2,MT, and ∆C2,LU) for each component; β0 is the intercept; β1 to β4 

represents contributed bias with a unit increase of delta PM2.5 or O3 

concentration. The products including β1∆Ci,EM, β2∆Ci,BC, β3∆Ci,MT, and 

β4∆Ci,LU  are the changed concentrations from emission, boundary 

condition, meteorology, and land-use data respectively. 𝜀 are residuals 

and represent biases from other unidentified factors. 
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3.3.4. Sensitivity analysis of burden estimation 

the number of premature deaths was used as a case study to 

illustrate the potential uncertainty if the CMAQ-modeled results were 

directly applied without MMF. Technically, premature deaths are 

calculated from concentration-response functions (CRFs) [48–50]. The 

number of premature deaths was calculated by the following equation: 

Y = E0 ∙ P ∙ (1 − e−β∙(C−C0)) ∙ A 

where Y is the number of premature deaths caused by daily PM2.5 or O3 

exposure; E0  is the actual mortality rate; P  is the population; The 

coefficient β is derived from the risk ratio from our previous study [33], 

The developed grid-level exposure risk values of daily PM2.5 and 8-hour 

O3 maximum are shown in Figure 3-4; A is a scalar of 1/365 to convert 

the annual rate to daily rate. C0  is the threshold concentration. The 

threshold concentration was set as 25 μg/m3 for daily PM2.5 or 60 ppb for 

MDA8 O3 exposure due to the WHO [28] and Taiwan EPA. 

3.4. Results and discussion 

3.4.1. Improved modeling performance 

The improved modeling performance by selected ML techniques 

and designed scenarios is shown in Table 3-2. The R2 of CMAQ raw data 

is merely 0.41 and 0.48 for PM2.5 and O3 respectively. When including all 

the auxiliary data (emission, boundary condition, meteorology, and land-

use data), the modeling performance of S1_BASE can be enhanced to 

0.68-0.95 and 0.62-0.93 for PM2.5 and O3, respectively in terms of different 

techniques, which CNN has the highest R2, followed by RF and GBM.  
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Figure 3-4. Employed risk value of each grid for premature death calculation 

for (a) daily PM2.5 and (b) daily 8-hour O3 maximum 
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Considering the performance of each ML technique, the R2 (0.95 

and 0.93 for PM2.5 and O3) of CNN for training data is much higher than 

the R2 of testing data (0.83 and 0.78 for PM2.5 and O3), which implies its 

overfitting tendency when applied in MMF. Even though different split 

portions of training and testing data were modeled, the overfitting 

tendency of CNN still persisted. Thus, the results of CNN were not 

considered for our further analysis and application in this study. Next, both 

RF and GBM have comparable higher performance because of their 

training R2 (RF: 0.87 and 0.84 for PM2.5 and O3; GBM: 0.86 and 0.82 for 

PM2.5 and O3). By comparing the spatial distribution of PM2.5 and O3 

estimations from CMAQ, RF, and GBM outputs, as shown in Figure 3-9. 

PM2.5 and O3 estimations significantly approximate closer to observations 

by fusing with the other auxiliary data. After MMF, PM2.5 concentrations 

are evaluated to the observed levels, especially in the CT and YCN 

regions, which implied using CMAQ modeled output alone could 

underestimate overall PM2.5 exposure. The modeled O3 concentrations 

are lowered to the observed levels, revealing the CMAQ tends to 

overestimate O3 exposure, especially in western Taiwan. Additionally, by 

comparing CMAQ (Figure 3-9(a) and (d)) and GBM output (Figure 3-9(c) 

and (f)), RF (Figure 3-9(b) and (e)) showed relatively homogenous spatial 

patterns of PM2.5 and O3 concentrations and higher PM2.5 concentrations 

in the central mountainous areas, which deviate from the real 

observations. The homogenous spatial patterns of RF imply its inferior 

performance in mountainous areas and could be due to its lower variable 

importance priorities of elevation and land-use characteristics, of which 

stiff terrain slopes in Taiwan could have much impact on air pollutants’ 
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concentrations. Because most monitoring stations are located in plains or 

basins, thus its modeling process prioritizes the other auxiliary variables 

other than land-use data for MMF. On the other hand, GBM presents a 

more reasonable spatial distribution of PM2.5 and O3 and is with closer 

concentration levels to observations. The significantly lower concentration 

in the central mountainous areas and the eastern valley and the higher 

concentration in the western plain are elaborated by GBM. In summary, 

GBM outputs were used for further MMF assessment and bias 

quantification. 

3.4.2. Improved spatial distribution of air pollutants by MMF 

For six air quality zones (NT, CM, CT, YCN, KP, and ET), the 

scatter plots between MMF-PM2.5 and observed PM2.5 and between MMF-

MDA8 O3 and observed MDA8 O3 maximum at the daily scale are showed 

in Figure 3-5 and Figure 3-6. MMF-PM2.5 and MMF-O3 in each air quality 

zones have high correlations (R2=0.67-0.90 and R2=0.76-0.97) with 

observations, implying the MMF technique has no spatial specificity and 

can be generalized to any air quality zones, which results are similar to 

Sayeed et al. (2022) who figured out that the generalized model based on 

all monitoring stations can provide more stable enhancement other than 

on the basis of a single site [17]. For MMF-PM2.5, The regression lines 

show only mild overestimations would occur in NT, YCN, and KP when 

PM2.5 concentrations are higher, while PM2.5 concentrations could be 

slightly underestimated in ET. For MMF-O3, the regression lines in NT, CT, 

YCN, and KP imply MMF may slightly overestimate O3 when the MDA8 

O3 maximum is over 60 ppb. 
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Compared with CMAQ output, MMF estimations showed different 

monthly spatial patterns (January, April, July, and October) for PM2.5 and 

O3, as shown in Figure 3-7 and Figure 3-8, respectively. First, MMF 

significantly increases the spatial heterogeneity of PM2.5 and O3 

concentrations, which emphasizes the impact of the complexity of 

topography and land-use patterns on CMAQ modeling. The imperfection 

of physical or chemical mechanisms such as heterogeneous dust 

chemistry in the urbanized areas had been pointed out in the previous 

studies [162]. More homogenous concentrations from CMAQ output may 

misinterpret the real spatial distribution of PM2.5 and O3 and their 

concentrations in urbanized or populated areas. For PM2.5, MMF elevates 

modeled PM2.5 concentrations, which are closer to the observations, 

especially in YCN and KP in January and the whole of western Taiwan in 

April and July. The elevated PM2.5 implies that directly using CMAQ output 

may potentially underestimate the health impact of PM2.5 exposure in 

these months, especially around monitoring stations. On the contrary, 

PM2.5 concentrations of CT, YCN, and KP in October are adjusted to the 

observed level, revealing that CMAQ tends to overestimate PM2.5 in these 

regions in October. In addition, O3 concentrations in all months and air 

quality regions are overestimated by CMAQ modeling, and MMF uses 

auxiliary data to adjust O3 concentrations to the observed levels, 

especially in western Taiwan, revealing that direct using CMAQ-modeled 

O3 outputs would overestimate the health impact of O3 exposure. 
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Figure 3-5. Scatter plots for six air quality zones (NT, CM, CT, YCN, KP, and 

ET) between MMF-daily PM2.5 and observed daily PM2.5 
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Figure 3-6. Scatter plots for six air quality zones (NT, CM, CT, YCN, KP, and 

ET) between MMF-MDA8 O3 maximum and observed MDA8 O3  
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Figure 3-7. Spatial distribution of CMAQ- and MMF-PM2.5 in January, April, 

July, and October, 2016 
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Figure 3-8. Spatial distribution of CMAQ- and MMF-O3 in January, April, July, 

and October, 2016 
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Table 3-2. Modeling performance evaluation (R2) of PM2.5 and O3 for different 

ML techniques and scenarios 

Scenario Input data 

KNN RT RF GBM CNN 

Train Test Train Test Train Test Train Test Train Test 

PM2.5                       

S1_BASE CMAQ + Emis + BC + Met+ LU 0.68 0.68 0.76 0.77 0.87 0.87 0.86 0.86 0.95 0.83 

S2_EM CMAQ + Emis 0.51 0.54 0.47 0.48 0.59 0.59 0.58 0.59 0.62 0.57 

S3_BC CMAQ + BC 0.75 0.76 0.74 0.74 0.77 0.77 0.76 0.77 0.79 0.77 

S4_MT CMAQ + Met 0.71 0.73 0.63 0.65 0.81 0.82 0.76 0.77 0.84 0.68 

S5_LU CMAQ + LU 0.48 0.49 0.46 0.48 0.5 0.51 0.51 0.52 0.52 0.49 

S6_nEM CMAQ + BC + Met + LU 0.72 0.74 0.77 0.78 0.87 0.87 0.85 0.85 0.94 0.82 

S7_nBC CMAQ + Emis + Met + LU 0.53 0.54 0.62 0.67 0.8 0.81 0.79 0.79 0.91 0.69 

S8_nMT CMAQ + Emis + BC + LU 0.64 0.65 0.74 0.72 0.83 0.83 0.83 0.83 0.93 0.84 

S9_nLU CMAQ + Emis + BC + Met 0.7 0.7 0.77 0.77 0.87 0.87 0.86 0.86 0.94 0.83 

O3                       

S1_BASE CMAQ + Emis + BC + Met+ LU 0.62 0.63 0.73 0.73 0.84 0.85 0.82 0.81 0.93 0.78 

S2_EM CMAQ + Emis 0.51 0.49 0.49 0.48 0.53 0.52 0.56 0.55 0.58 0.51 

S3_BC CMAQ + BC 0.78 0.77 0.75 0.74 0.78 0.78 0.77 0.77 0.79 0.76 

S4_MT CMAQ + Met 0.7 0.69 0.62 0.61 0.78 0.79 0.74 0.73 0.78 0.63 

S5_LU CMAQ + LU 0.51 0.47 0.49 0.48 0.52 0.49 0.53 0.51 0.54 0.5 

S6_nEM CMAQ + BC + Met + LU 0.71 0.71 0.72 0.74 0.84 0.85 0.81 0.81 0.9 0.79 

S7_nBC CMAQ + Emis + Met + LU 0.51 0.5 0.61 0.6 0.77 0.77 0.75 0.74 0.85 0.66 

S8_nMT CMAQ + Emis + BC + LU 0.59 0.6 0.73 0.73 0.81 0.81 0.79 0.79 0.88 0.78 

S9_nLU CMAQ + Emis + BC + Met 0.67 0.68 0.71 0.72 0.84 0.85 0.82 0.81 0.89 0.78 
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Figure 3-9. Observations (circles) and modeled estimations (grids) for PM2.5 

(a-c) and O3 (d-f) from CMAQ, RF, and GBM outputs 

 

  



 

91 

3.4.3. Scenario design for prioritizing the importance of auxiliary data 

Different scenarios were designed to assess the sources of bias 

between CMAQ raw output and observations, as shown in Table 3-2. 

S1_BASE is the base model that uses all inputs for prediction and serves 

as a baseline to compare with the other scenarios, and the following 

scenarios can be classified into two categories: including scenarios 

(S2_EM, S3_BC, S4_MT, S5_LU) and excluding scenarios (S6_nEM, 

S7_nBC, S8_nMT, S9_nLU). Compared with CMAQ raw output, including 

scenarios (S2_EM, S3_BC, S4_MT, S5_LU) assess the individual 

improved performance by individually including emission, boundary 

condition, meteorological, and land-use data individually and illustrate 

individual capability for MMF. Additionally, compared with the S1_BASE, 

excluding scenarios (S6_nEM, S7_nBC, S8_nMT, S9_nLU) exclude 

emission, boundary condition, meteorological, and land-use data, 

respectively, and the modeling results of excluding scenarios can show 

the decreased modeling performance and interpretability due to the lack 

of individual dataset in each scenario. 

The modeling performance for the designed scenarios is also 

shown in Table 3-2. Compared with CMAQ raw output (r=0.41 for PM2.5 

and 0.48 for O3), the R2 suggests adding boundary conditions (S3_BC) 

and meteorological factors (S4_MT) for MMF would largely increase MMF 

modeling performance. On the other hand, when compared with 

S1_BASE, the lack of boundary conditions decreases most modeling 

capability, which is from 0.68-0.95 to 0.53-0.91 (S7_nBC) for PM2.5 and 

from 0.62-0.93 to 0.51-0.85 (S7_nBC) for O3, while excluding local 



 

92 

meteorological factors would decrease R2 from 0.68-0.95 to 0.64-0.93 

(S8_nMT) for PM2.5 and from 0.62-0.93 to 0.59-0.88 (S8_nMT) for O3. In 

summary, the results implied that the CMAQ model could still has 

imperfection to well simulate PM2.5 and O3 with boundary conditions and 

local meteorology, and boundary conditions contribute to the most of 

explained variance for MMF modeling. One possible explanation for 

higher contribution from boundary conditions is frequent long-range 

transboundary air pollutants transported from mainland China in fall and 

winter [169,170], which carry primary PM and precursors of secondary PM 

and O3 to Taiwan [69,70], but such hourly- and daily-scale weather 

conditions and air pollutant concentrations from boundary conditions are 

difficult to be accurately captured by global or regional emission inventory 

and verified by ground-level observations. Another explanation is the high 

sensitivity of the CMAQ model to boundary conditions around Taiwan, 

which suggested the CMAQ model improves the dust emission treatment 

for a better simulation of dust aerosol transport and deposition 

mechanisms over the marine boundary layer [171]. In addition, the inferior 

importance of local meteorology could be due to the confounding effect of 

its collinearity with boundary conditions. Another possible reason could be 

that the current meteorological models still have limitations to predict over 

complex terrain and under extremely stable boundary layers [28,172]. 

Compared with boundary conditions and local meteorology, emission 

inventory and land-use data only have relatively minor contributions to 

MMF modeling, but it does not mean emission inventory and land-use 

data are not essential and not sensitive for CMAQ modeling. On the 

contrary, it reveals the input emission and land-use data can better explain 
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the variance of PM2.5 and O3 in the most of modeling periods, so their 

derived uncertainties are relatively lower than the uncertainty from 

boundary conditions and local meteorology, which dominate the modeling 

bias in the modeling period. 

3.4.4. Bias quantification and potential impact 

For both PM2.5 and O3, the results of bias quantification models 

showed that using including scenarios (R2=0.96 for PM2.5; R2=0.98 for O3) 

had a higher explained variance compared with using excluding scenarios 

(R2=0.44 for PM2.5; R2=0.32 for O3), so the further bias quantification 

analysis was based on including scenarios. The spatial distributions of 

daily PM2.5 and MDA8 O3 estimation biases and their apportioned biases 

from emission, boundary condition, local meteorology, land-use data, and 

other unidentified factors are shown in Figure 3-10, and the monthly 

averages of population-weighted PM2.5 and O3 estimation biases from 

each component are listed in Table 3-3 and Table 3-4, respectively. In 

Figure 3-10, the bias is defined by the subtraction of MMF estimations 

from CMAQ outputs, and the biases showed in the histograms are based 

on population-weighted concentrations, which can emphasize the 

exposure of the major population.  

In Figure 3-10(a), compared with MMF results, the CMAQ model 

underestimates PM2.5 concentrations for all air quality zones by 0.99-4.56 

μg/m3 (2-23%), by which YCN is most underestimated and KP is least 

underestimated. Although the CMAQ model overestimates coastal areas 

in KP, the population-weighted PM2.5 concentrations were still 

underestimated. It is because the regions with overestimated PM2.5 have 
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lower population densities in coastal areas. Moreover, the spatial 

distribution of total bias showed that the CMAQ model tends to 

overestimate (red) PM2.5 concentrations under hills and mountains and to 

underestimate (blue) then in plains and basins, especially around coastal 

areas. The monthly patterns of bias showed that April had more 

underestimated PM2.5 while October’s PM2.5 concentrations in western 

regions (CM, CT, YCN, and KP) were overestimated. Additionally, the bias 

quantification results showed that boundary conditions and local 

meteorology are the main driving forces to cause underestimation in 

January and April and overestimation in October. On the contrary, land-

use data contributes a positive driving force in YCN, KP, and ET and 

cause overestimations on the edge of hills or mountains, implying that the 

evaluation factors such as elevation could cause positive biases of CMAQ 

modeling when the pollutants accumulate under hills or mountains. 

In Figure 3-10(b), the CMAQ model overestimates O3 

concentrations for all air quality zones by 5.13-10.96 ppb (17-29%), and 

almost O3 concentrations in western regions are overestimated. Although 

CT has higher O3 overestimation (9.81 ppb, 23%), due to its lower 

population density and fewer observation sites in these regions, O3 

concentrations in CT are still slightly lower than in NT (10.96 ppb, 29%). 

The monthly patterns showed July and October have more overestimated 

O3. NT, CM, and ET regions are more overestimated in July, while CT, 

YCN, and KP regions are more overestimated in October. Only O3 

concentrations of KP in April are underestimated by 1.70 ppb. Similar to 

PM2.5, the bias quantification results of O3 showed that boundary 
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conditions and local meteorology are the main driving forces causing 

overestimation. 

Further sensitivity analysis was conducted to emphasize the impact 

of applying CMAQ-modeled output without MMF for calculating premature 

deaths. For six air quality zones, the derived premature deaths calculated 

from CMAQ and MMF outputs due to PM2.5 and O3 exposure are shown 

in Figure 3-11. For PM2.5, compared with the MMF-derived total deaths 

(n=3641), using CMAQ output would underestimate deaths by 18% (3000 

deaths). Among six air quality zones, premature deaths in NT, CT, YCN, 

and ET are underestimated by 6-78% with the highest underestimated 

premature deaths in YCN (306 deaths (35%)). Besides, premature deaths 

in KP are slightly overestimated by 4% when applying CMAQ-modeled 

PM2.5, even though the CMAQ model underestimates PM2.5 

concentrations by 2%. The reason for this conflict is that the CMAQ model 

seriously overestimates PM2.5 concentrations in KP in October but mildly 

underestimates PM2.5 concentrations in the other months. For O3, 

compared with the total MMF-derived deaths (n=3831), applying CMAQ 

output for burden calculation would highly overestimate total death by 

171% (10331 deaths). The estimated premature deaths in all air quality 

zones are overestimated by 114-303%, and the trend of overestimation in 

deaths in all air quality is similar to the trend of O3 concentrations. NT has 

the highest overestimated premature deaths (3016 deaths (303%)) due to 

its highest overestimated O3 concentrations and dense population. 
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Figure 3-10. Spatial distributions of (a) daily PM2.5 and (b) MDA8 O3 

maximum estimation biases and their apportioned biases from emissions, 

boundary conditions, local meteorology, land-use data, and other 

unidentified factors. 
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Table 3-3. Monthly average of population-weighted PM2.5 concentration 

biases from emission data, boundary conditions, local meteorology, land-

use data, and other unidentified factors 

Air quality 

zone 
Period 

PM2.5 Bias Source (μg/m3) 

Total Emis BC Met Landuse Others 

NT 

4-month -2.25 1.11 -1.50 -1.07 -0.66 -0.21 

Jan -2.68 1.38 -2.59 -1.48 -0.64 0.44 

Apr -6.98 1.14 -4.16 -3.13 -0.45 -0.55 

Jul 1.46 0.77 1.17 0.64 -0.80 -0.32 

Oct -0.95 1.19 -0.73 -0.37 -0.76 -0.42 

CM 

4-month -2.31 0.94 -1.91 -1.45 -0.30 0.25 

Jan -1.60 1.18 -2.07 -1.15 -0.28 0.63 

Apr -8.82 1.43 -5.91 -4.16 -0.36 -0.24 

Jul -1.17 0.84 -0.81 -1.20 -0.52 0.40 

Oct 2.14 0.30 0.98 0.63 -0.05 0.23 

CT 

4-month -2.99 0.77 -2.00 -1.40 -0.24 -0.21 

Jan -2.88 1.30 -3.02 -1.13 -0.28 0.07 

Apr -10.45 1.25 -6.58 -4.29 -0.33 -0.60 

Jul -1.76 0.82 -1.04 -0.94 -0.44 -0.16 

Oct 2.91 -0.30 2.59 0.74 0.11 -0.13 

YCN 

4-month -4.56 -1.15 -2.71 -1.78 0.93 -0.02 

Jan -6.36 -1.52 -3.31 -2.71 0.99 -0.31 

Apr -10.89 -1.48 -6.88 -3.99 1.11 0.36 

Jul -2.65 -0.85 -1.99 -1.13 1.27 -0.08 

Oct 1.46 -0.75 1.36 0.57 0.39 -0.06 

KP 

4-month -0.99 -0.50 -0.77 -0.62 0.52 0.34 

Jan -2.23 -0.62 -0.67 -1.63 0.15 0.43 

Apr -6.18 -0.70 -4.83 -2.86 1.03 0.82 

Jul 0.22 -0.69 -0.41 -0.21 1.58 0.18 

Oct 4.09 0.01 2.61 2.11 -0.44 -0.05 

ET 

4-month -3.72 0.77 -4.30 -1.37 5.60 -5.03 

Jan -4.53 0.87 -4.98 -1.73 5.59 -5.23 

Apr -7.15 0.81 -7.49 -2.08 5.87 -4.41 

Jul -1.45 0.61 -2.02 -0.70 5.29 -5.23 

Oct -1.86 0.77 -2.10 -0.99 5.26 -5.95 
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Table 3-4. Monthly average of population-weighted O3 concentration biases 

from emission data, boundary conditions, local meteorology, land-use 

data, and other unidentified factors 

Air quality 

zone 
Period 

O3 Bias Source (ppb) 

Total Emis BC Met Landuse Others 

NT 

4-month 10.96 -1.71 7.47 5.06 0.74 -0.17 

Jan 3.30 -0.38 1.92 1.43 0.22 0.27 

Apr 8.56 -1.91 5.80 4.65 0.89 -0.23 

Jul 23.10 -3.05 15.28 9.91 1.23 -0.27 

Oct 8.79 -1.43 6.33 4.06 0.59 -0.47 

CM 

4-month 7.99 0.90 5.61 3.92 -1.88 -0.26 

Jan 2.50 0.14 2.14 1.44 -0.71 -0.33 

Apr 4.81 0.84 3.22 2.99 -2.02 -0.06 

Jul 14.62 1.36 9.47 6.35 -2.28 -0.28 

Oct 9.90 1.25 7.17 4.69 -2.51 -0.34 

CT 

4-month 9.81 -0.28 7.28 3.33 -0.38 0.18 

Jan 4.94 -0.10 3.77 1.71 -0.17 0.20 

Apr 4.85 -0.24 3.91 1.67 -0.37 0.06 

Jul 13.66 -0.33 9.73 4.31 -0.37 0.31 

Oct 15.65 -0.44 11.28 5.27 -0.60 0.13 

YCN 

4-month 8.40 1.70 6.39 2.76 -1.66 -0.61 

Jan 4.59 0.82 4.56 1.36 -0.94 -0.96 

Apr 1.87 1.37 2.25 0.60 -1.50 -0.77 

Jul 12.15 1.96 8.23 3.92 -1.41 -0.55 

Oct 14.77 2.58 10.16 4.98 -2.75 -0.20 

KP 

4-month 7.21 -1.24 5.74 3.60 0.43 -0.59 

Jan 7.36 -0.98 6.24 3.38 0.34 -1.22 

Apr -1.70 -0.86 -1.35 -0.14 0.32 -0.50 

Jul 10.69 -1.22 7.50 5.00 0.34 -0.15 

Oct 12.20 -1.83 8.72 5.65 0.71 -0.50 

ET 

4-month 5.13 2.28 4.03 2.47 -2.02 -1.27 

Jan 3.16 1.24 3.04 1.81 -1.45 -1.22 

Apr 1.62 2.72 1.15 2.01 -2.69 -1.39 

Jul 12.48 3.62 8.49 4.26 -2.59 -1.30 

Oct 3.14 1.45 2.94 1.54 -1.30 -1.18 
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Figure 3-11. Premature deaths for six air quality zones calculated from 

CMAQ and MMF output due to (a) daily PM2.5 and (b) MDA8 O3 

maximum exposure 

 

  



 

100 

3.4.5. Discussion 

The proposed ML-MMF framework has several merits. First, the 

framework can serve as a post-processing procedure to improve CMAQ 

modeling performance, and the users can select the optimal ML 

algorithms as the MMF technique based on the improved performance 

and spatial distribution. In this study, the overall modeling performance of 

daily PM2.5 and MDA8 O3 was improved from 0.41 and 0.48 to 0.86 and 

0.82, respectively, based on the GBM algorithm, which showed more 

reasonable PM2.5 and O3 concentrations and spatial distributions 

compared with CMAQ raw output and reflected the impact of complex 

topography on PM2.5 and O3 concentrations in the finer scale. 

Second, the developed ML-based bias quantification technique 

provides details about the bias sources of numerical estimations. By 

employing the bias quantification technique, the model developer can 

have priority to optimize algorithms in the numerical model, or the users 

can know the bias structure and have a priority to improve their modeling 

input data quality in their study region. In our study region, the biases 

mainly originated from boundary conditions and local meteorology, and 

most of the overestimations occur under hills and mountains, implying the 

CMAQ model may have inferiority to model the air pollutants trapped in 

valleys or foothills of mountains.  

Third, this study highlights the potential concern if the modeled 

results from numerical models were directly applied to air quality 

management and public health policies without correcting or fusing with 

observations that are commonly used for the current policymaking. In this 
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study, we used the number of premature deaths as an example to 

illustrate the deviations with and without MMF by ML techniques. For all 

air quality zones, compared with MMF results, the CMAQ model 

underestimates population-weighted PM2.5 concentrations by 0.99-4.56 

μg/m3 (2-23%) and overestimates population-weighted O3 concentrations 

for all air quality zones by 5.13-10.96 ppb (17-29%). The biased PM2.5 and 

O3 estimation would cause the underestimation of premature death due 

to PM2.5 exposure by 18% and the overestimation of death due to O3 

exposure by 171%, which may mislead the emission control strategies 

and air quality policies. 

This study still has some limitations. First, the applicability of the 

ML model highly depends on geological characteristics around monitoring 

stations and study regions. In this study, because most monitoring 

stations are located in populated areas such as coastal, basins, and plains, 

and there are very little monitoring data in mountainous areas, some ML 

techniques such as RF cannot properly utilize land-use variables for MMF 

modeling. Even though satellite data may serve as an alternative source 

of observations, satellite data are still easily biased by clouds and columns 

of atmospheric layers. Second, although the proposed bias quantification 

can quantify the bias contributions from each input component (emissions, 

boundary conditions, meteorological variables, and land-use data), the 

bias of each component is still the combined uncertainty of inaccuracy of 

input data and imperfect mechanisms in the model, which cannot be easily 

differentiated. For example, in this study, the meteorology-contributed 
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bias could be from the inaccurate estimations of WRF modeling or 

imperfect physical and chemical mechanisms in the CMAQ model. 

3.5. Conclusion 

Bias in numerical models has impeded their applicability for 

decades. Although ML may serve as an alternative tool to forecast 

environmental trends and prevent human and ecosystem exposure to 

environmental stressors and pollutions, its “black-box” modeling 

processes, modeling bias, and missing links with physical/chemical 

mechanisms limit its persuasion and our understanding of the real 

environment. The existing numerical models also hardly benefit from ML 

models except for use for bias correction. 

This study proposed an ML-MMF framework, using the CMAQ 

model as an exemplary CTM to illustrate its application in model 

improvement and further attribute the bias to the prepared model inputs. 

the R2 of daily PM2.5 and O3 exposure were significantly improved from 

0.41 and 0.48 to 0.86 and 0.82 by learning from auxiliary data including 

emission, boundary condition, meteorology, and land-use data. The 

proposed ML-MMF framework can not only adjust PM2.5 and O3 

concentrations to the observed levels but also improve the spatial 

heterogeneity of PM2.5 and O3 concentrations, which emphasizes the 

impact of the complexity of topography and land-use patterns on CMAQ 

modeling. Bias quantification results showed that the bias is more affected 

by boundary conditions and local meteorology than other inputs in the 

study region, implying that the CMAQ model still has imperfect 
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mechanisms to well simulate PM2.5 and O3 with boundary conditions and 

local meteorology.  

The study illustrates exemplary cooperation between CTM and 

machine learning methods. The firstly developed bias quantification 

technique can provide a bias structure for numerical modeling and serve 

as an assessment tool to improve embedded algorithms and input data 

quality. 
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Chapter 4. Examining Ozone Response 

Modeling to NOx and VOC Emissions 
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4.1. Abstract 

Current machine learning (ML) applications in atmospheric science 

focus on forecasting and bias correction for numerical modeling 

estimations, but few studies examined the nonlinear response of their 

predictions to precursor emissions. This study uses ground-level 

maximum daily 8-hour ozone average (MDA8 O3) as an example to 

examine O3 responses to local anthropogenic NOx and VOC emissions in 

Taiwan by Response Surface Modeling (RSM). Three different datasets 

for RSM were examined, including the Community Multiscale Air Quality 

(CMAQ) model data, ML-measurement-model fusion (ML-MMF) data, and 

ML data, which respectively represent direct numerical model predictions, 

numerical predictions adjusted by observations and other auxiliary data, 

and ML predictions based on observations and other auxiliary data. 

 The results show that both ML-MMF (R=0.93-0.94) and ML 

predictions (R=0.89-0.94) present significantly improved performance in 

the benchmark case compared with CMAQ predictions (R=0.41-0.80). 

While ML-MMF isopleths exhibit O3 nonlinearity close to actual responses 

due to their numerical base and observation-based correction, ML 

isopleths present biased predictions concerning their different controlled 

ranges of O3 and distorted O3 responses to NOx and VOC emission ratios 

compared with ML-MMF isopleths, which implies that using data without 

support from CMAQ modeling to predict the air quality could mislead the 

controlled targets and future trends. Meanwhile, the observation-

corrected ML-MMF isopleths also emphasize the impact of transboundary 

pollution from mainland China on the regional O3 sensitivity to local NOx 
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and VOC emissions, which transboundary NOx would make all air quality 

regions in April more sensitive to local VOC emissions and limit the 

potential effort by reducing local emissions. 

Future ML applications in atmospheric science like forecasting or 

bias correction should provide interpretability and explainability, except for 

meeting statistical performance and providing variable importance. 

Assessment with interpretable physical and chemical mechanisms and 

constructing a statistically robust ML model should be equally important. 

4.2. Introduction 

Air pollution has gained great attention owing to its adverse effects 

on human health [3,33], climate [170], agriculture (Tai and Martin, 2017), 

ecosystems [174], and visibility [175]. In regional air quality management, 

controlling local anthropogenic emissions is a common way to improve 

regional air quality. Predicting air quality under designed emission control 

scenarios by using chemical transport models (CTMs) like the Community 

Multiscale Air Quality (CMAQ) model has been much studied (Arnold and 

Dennis, 2006; Che et al., 2011).  

Moreover, to meet the prompt and various needs of policymakers, 

response surface modeling (RSM) was developed to assess the improved 

or changed air quality based on designed emission control strategies 

without extra CTM simulations. That is, RSM can retrieve the nonlinear 

equation between ambient air pollutant concentrations (e.g. O3) and 

multiple precursors emissions (e.g. NOx and VOCs) from multiple 

emission sources based on a series of CTM simulations [178–180], and 
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the user can apply the retrieved nonlinear equation to timely estimate the 

changed air pollutant concentrations based on input emission ratios and 

support emission control strategies. For example, RSM has been 

intensively applied to assess the NOx and VOC emission control 

strategies of O3 pollution [40,180,181]. RSM can identify ambient O3 

sensitivity to NOx and VOC emission by O3 isopleth and further classify 

the isopleth regimes into two chemical regimes, NOx-limited and VOC-

limited. In the NOx-limited regimes, O3 increases with increased NOx 

emissions and exhibits limited response to VOC emissions, and vice versa. 

Classification of O3 formation regime in the isopleth can assist 

policymakers determine whether NOx or VOC emissions should be 

controlled preferentially in emission control strategies [35]. However, 

although RSM was employed to improve regional air quality in several 

previous studies, these studies were still based on simulated results and 

neglected the bias between the modeled estimations and observations in 

the benchmark case [38–40], which could largely affect the nonlinearity 

between pollutants and precursor emission changes.  

To forecast air quality and support air quality policies, machine 

learning (ML) or machine intelligence has been rapidly developed and 

intensively implemented in environmental science and air quality 

management [4,145]. Technically, ML is driven by monitoring and/or 

measurement data, so it is relatively easy to execute and can provide 

more accurate predictions compared with CTMs, which still need 

complicated data-preparing processes and computationally-intensive time 

and resources, and have a larger modeling bias. However, ML is also 
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debated and remains low persuasiveness due to its black-box modeling 

process and failure to provide interpretability and 

explainability concerning physical/chemical mechanisms [4,41]. 

In previous applications, ML can serve as a bias corrector to adjust 

modeling results. Several measurement-model fusion (MMF) [41] 

techniques in post-analysis have been developed in recent years to adjust 

CTM results based on observations [18,42–44]. Air pollutant estimations 

without correction by observations could underestimate or overestimate 

improved air quality and derived environmental benefits [41]. In addition, 

ML can also forecast air quality based on historical observations and other 

auxiliary data (e.g. meteorological and land-use data) without involving 

CTM results and still have good performance (Ausati and Amanollahi, 

2016; Song et al., 2015; Zhou et al., 2019). However, whether ML either 

serves as a bias corrector or a forecaster, few ML studies examined 

pollutants’ sensitivity to their precursor emissions based on observation-

corrected results.  

In this study, we used the maximum daily 8-hour O3 average 

(MDA8 O3) as the target index and selected Taiwan as the study region 

due to its island geography, high-density air quality monitoring stations 

(n=73), and three-year-updated emission inventory. The goal of this study 

is to (1) verify the capability of ML to correct CMAQ modeling results 

(denoted as ML-MMF data) and predict MDA O3 without CMAQ-modeled 

results (denoted as ML data) in the benchmark-case modeling 

performance and (2) examine O3 nonlinear responses to all anthropogenic 
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NOx and VOC emission ratios by O3 isopleths by using CMAQ, ML-MMF, 

and ML modeling results. 

4.3. Methodology 

The technical work is illustrated in Figure 4-1. Three types of data 

(CMAQ, ML-MMF, and ML) were prepared for RSM; CMAQ data were 

direct outputs from CMAQ-modeled results; ML-MMF data are the 

corrected estimates by observation and CMAQ inputs (emissions, 

boundary conditions, meteorology, and land-use), and the constructed 

model was employed to predict O3 concerning the changed CMAQ 

outputs, the other CMAQ inputs and changed emissions (kg/day) under 

different emission scenarios; ML outputs are predictions constructed by 

using O3 observations and CMAQ inputs, and the constructed model was 

utilized to predict O3 concerning the changed emissions (kg/day) and the 

other CMAQ inputs under different emission scenarios. Second, RSM was 

executed for each dataset to predict O3 under different NOx and VOC 

emission ratios in proportion to the baseline emissions (ratio=1) in the 

benchmark case. O3 isopleths were finally constructed for each dataset 

and were validated by out-of-samples and observations.  

4.3.1. Data preparation 

Air quality zones in this study were categorized into six regions: 

Northern (NT), Chu-Miao (CM), Central (CT), Yun-Chia-Nan (YCN), Kao-

Ping (KP), and Eastern (ET). A total of 73 air quality monitoring stations 

with hourly O3 measurements were included (Figure 4-2). Modeling period 

included January, April, July, and October 2016 to represent different 
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seasons. Meteorological fields were firstly simulated by WRF (version 3.8), 

and hourly O3 concentrations were simulated by the CMAQ model 

(version 5.2) with the gas-phase chemistry module, Carbon Bond 6, [165] 

and aerosol module, AERO6 [166] mechanisms. The configurations of the 

simulation domain nested four layers from East Asia (81 km × 81 km) to 

Taiwan island (3 km × 3 km) which covers 90 (row) × 135 (column) 

horizontal grid cells (Lai and Lin, 2020). Daily emission data from Taiwan 

Emission Data System (TEDS) version 10.0 with 3 km × 3 km resolution 

developed by Taiwan EPA including industrial, mobile, fugitive, and 

biogenic sources were used. Before CMAQ modeling, emission 

distribution and speciation were processed by the USEPA SMOKE 

program [182], which can apply temporal and spatial allocation and 

chemical speciation for industrial, mobile, and fugitive sources from TEDS. 

The modeling performance assessment of meteorology factors and 

CAMQ-modeled O3 are shown in Table 4-1 and Table 4-2, respectively. 

The details of developed ML-MMF and ML framework were 

illustrated in Chapter 3, and the major difference between ML-MMF and 

ML framework is predicting O3 with and without CMAQ direct outputs for 

prediction, as shown in the following conceptual equations: 

MLMMF O3 predictions = f(CMAQ, Emis, BC, Met, Land) 

ML O3 predictions = f(Emis, BC, Met, Land) 

where CMAQ is CAMQ output; Emis are emission data (kg/day); BC are 

boundary conditions; Met are meteorological variables; Land are land-

use variables. Basically, Both of ML-MMF and ML models employed five 
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techniques including the k-nearest neighbors’ regression (KNN) [163], 

regression tree (RT) [9], random forest (RF) [10], gradient boosted tree 

models (GBM) (Natekin and Knoll, 2013), and convolutional neural 

network (CNN) [164], which can construct the nonlinearity between input 

variables (emissions, boundary conditions, meteorology, and land-use 

data) and observed O3 concentrations in the benchmark case. The best 

model with higher accuracy, reasonable spatial predictions, and no 

overfitting tendency was selected to predict O3 concentrations (Appendix 

I); 60% and 40% of the data set were selected as the training dataset and 

the testing dataset, respectively; The 10-fold cross-validation was also 

conducted to optimize hyperparameters based on the uncertainty of 

modeling performance. The selected model for ML-MMF and ML would 

be further utilized to predict O3 based on CMAQ outputs (not for the ML 

model), the changed emissions (kg/day), and the other fixed auxiliary data 

(boundary conditions, meteorology, and land-use data) under different 

emission scenarios. 

The variables selected for ML-MMF and ML were related to 

emissions of precursor species including NOx and VOCs, boundary 

conditions that affect the background level of O3, NOx, and VOCs, 

meteorological factors involved with photochemical reactions and 

transport fluxes of air, and time-independent land-use geographical 

information (Table 4-3). Meteorological factors on 850 hPa and 690 hPa 

represent the weather conditions of the mixing layer and lower 

troposphere layer [13]. MDA8 O3 would be the dependent variable 

because O3 concentrations usually are higher during the daytime due to 
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the existence of ultraviolet energy [183]. For each month, the modeling 

performance was evaluated by correlation coefficient (r), mean absolute 

error (MAE), and root mean square error (RMSE) as shown in the 

following equation. 

r = √
[∑ ∑ (𝑀𝑖𝑗 − �̅�)(𝑂𝑖𝑗 − �̅�)𝑚

𝑗=1
𝑛
𝑖=1 ]

∑ ∑ (𝑀𝑖𝑗 − �̅�)
2𝑚

𝑗=1
𝑛
𝑖=1 ∑ ∑ (𝑂𝑖𝑗 − �̅�)

2𝑚
𝑗=1

𝑛
𝑖=1

 

MAE =
|𝑀𝑖𝑗 − 𝑂𝑖𝑗|

𝑁 × 𝑀
 

RMSE = √
∑ ∑ (𝑀𝑖𝑗 − 𝑂𝑖𝑗)

2𝑚
𝑗=1

𝑛
𝑖=1

𝑁 × 𝑀
 

where 𝑀𝑖𝑗 is the modeled O3 for 𝑖th station in 𝑗th day; 𝑂𝑖𝑗 the observed 

O3 for 𝑖th station in 𝑗th day; �̅� is the average of modeled O3 for all 

stations; �̅�  is the average of observed O3 for all stations; 𝑁  is the 

number of stations; 𝑀 is the number of days. 

4.3.2. Response surface modeling (RSM) 

RSM can retrieve non-linear O3 responses to anthropogenic NOx 

and VOC emission ratios, which are changed ratios of emission compared 

with baseline emission in the benchmark case (emission ratio=1). First, to 

generate the control matrix of anthropogenic NOx and VOC emission 

ratios for each air quality region, the Latin hypercube sampling (LHS) 

method was utilized to estimate enough sample size of the number of 

CMAQ simulations for RSM while providing enough statistical power and 

saving computing resources. 
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Figure 4-1. Technical flowchart of this study 
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Figure 4-2. Air quality monitoring stations (n=73) and six air quality zones in 

Taiwan 
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Table 4-1. Modeling performance assessment of temperature, wind speed, 

and wind direction in 2016 

Region/Month 
Temperature Wind speed Wind direction 

MB[1] MAGE[2] MB[1] RMSE[3] NMB[4] NME[5] 

Northen/ 

Chu-Miao/ 

Yilan 

January 0.17 0.64 0.40 1.19 1% 16% 

April 0.30 0.89 0.43 1.09 -1% 18% 

July 0.38 0.84 0.54 1.28 1% 17% 

October 0.01 0.65 0.48 1.42 -2% 15% 

Central 

January 0.50 0.78 0.36 1.03 2% 7% 

April 0.91 1.53 0.24 1.04 3% 13% 

July 0.30 1.20 0.23 0.84 5% 12% 

October 0.22 0.89 0.24 0.87 0% 13% 

Yun-Chia 

January 0.36 1.22 0.27 0.86 -3% 6% 

April 1.07 1.76 0.31 1.13 -2% 15% 

July 0.18 0.83 0.01 1.01 2% 14% 

October -0.31 0.97 0.27 0.82 2% 14% 

Southern 

(Tainan/Kao-Ping) 

January 0.32 1.09 -0.14 1.06 -2% 7% 

April 0.42 1.14 0.12 0.96 -3% 12% 

July 0.12 0.98 0.19 1.08 -3% 12% 

October -0.08 1.01 -0.04 0.98 -2% 11% 

Hua-Tung 

January 0.28 0.64 0.41 1.09 7% 13% 

April 0.06 0.58 0.31 1.09 4% 18% 

July -0.26 0.56 0.33 1.15 -1% 14% 

October 0.04 0.52 0.27 0.87 4% 13% 

[1] Mean Bias, MB 

MB =
1

𝑀 × 𝑁
∑ ∑(𝑃𝑖,𝑘 − 𝑂𝑖,𝑘)

𝑁

𝑖=1

𝑀

𝑘=1

 

[2] Mean Absolute Gross Error, MAGE 

MB =
1

𝑀 × 𝑁
∑ ∑|𝑃𝑖,𝑘 − 𝑂𝑖,𝑘|

𝑁

𝑖=1

𝑀

𝑘=1

 

[3] Root Mean Square Error, RMSE 

MB = [
1

𝑀 × 𝑁
∑ ∑(𝑃𝑖,𝑘 − 𝑂𝑖,𝑘)

2
𝑁

𝑖=1

𝑀

𝑘=1

]

1/2

 

[4] Normalized Mean Bias, NMB 

NMB =
∑ ∑ (𝑃𝑖,𝑘 − 𝑂𝑖,𝑘)𝑁

𝑖=1
𝑀
𝑘=1

𝑀 × 𝑁 × 360°
× 100% 

[5] Normalized Mean Error, NME 

NME =
∑ ∑ |𝑃𝑖,𝑘 − 𝑂𝑖,𝑘|𝑁

𝑖=1
𝑀
𝑘=1

𝑀 × 𝑁 × 360°
× 100% 

 

where 𝑃𝑖,𝑘 is the modeled temperature or wind speed of 𝑖th hour for 𝑘 stations; 𝑂𝑖,𝑘 is 

the observed temperature or wind speed of 𝑖th hour for 𝑘 stations; 𝑁 is the number of 

total hours; 𝑀 is the number of monitoring sites. 

* Taiwan EPA and U.S. EPA performance criteria: 

 MB (K) ±1.5, RMSE (K) <3.0, MB (m/s) ±1.5, RMSE (m/s) <3, NMB (%) ±10, NME(%) <30 
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Table 4-2. Modeling performance assessment of CMAQ-modeled O3 in 2016 

Air Quality Region 
O3 

MB[1] MNB[2] MNE[3] r[4] 

Northern -9% -11% 11% 0.38 

Chu-Miao -4% -9% 11% 0.64 

Central 7% 1% 9% 0.79 

Yun-Chia-Nan -1% -5% 9% 0.76 

Kao-Ping 4% -1% 10% 0.78 

Yilan -4% -6% 6% 0.50 

Hua-Tung 2% -3% 6% 0.38 

All regions -36% 3% 4% 0.77  

[1] Mean bias, MB 

MB =
1

𝑀 × 𝑁
∑ ∑ (

𝑀𝑎𝑥𝑖=1
24 (𝑃𝑖,𝑗,𝑘) − 𝑀𝑎𝑥𝑖=1

24 (𝑂𝑖,𝑗,𝑘)

𝑀𝑎𝑥𝑖=1
24 (𝑂𝑖,𝑗,𝑘)

)

𝑁

𝑗=1

𝑀

𝑘=1

 

where 𝑃𝑖,𝑗,𝑘 is the modeled estimates of 𝑖th hour in the 𝑗th day for 𝑘 stations; 𝑂𝑖,𝑗,𝑘 is 

the observations of 𝑖th hour in the 𝑗 day for 𝑘 stations; 𝑁 is the number of total hours 

(or days); 𝑀 is the number of monitoring sites. 

[2] Mean Normalized Bias, MNB 

MNB =
1

𝑀 × 𝑁
∑ ∑ (

𝑃𝑖,𝑘 − 𝑂𝑖,𝑘

𝑂𝑖,𝑘

)

𝑁

𝑖=1

𝑀

𝑘=1

 

[3] Mean Normalized Error, MNE 

MNE =
1

𝑀 × 𝑁
∑ ∑ |

𝑃𝑖,𝑘 − 𝑂𝑖,𝑘

𝑂𝑖,𝑘

|

𝑁

𝑖=1

𝑀

𝑘=1

 

where 𝑃𝑖,𝑘 is the modeled estimates of 𝑗th day for 𝑘 station; 𝑂𝑖,𝑘 is the observations of 

𝑗th day for 𝑘 station. 

[4] Correlation coefficient, r 

r =
1

𝑀 × 𝑁
∑ ∑ [

(𝑃𝑖,𝑘 − �̅�)(𝑂𝑖,𝑘 − �̅�)

𝑆𝑃𝑆𝑂

]

𝑁

𝑗=1

𝑀

𝑘=1

 

where �̅� is the averaged predictions of all sites in the modeling region; �̅� is the 

averaged observations of all sites in the modeling region; 𝑆𝑃 is the standard deviation of 

hourly predictions from all sites in the modeling region; 𝑆𝑂 is the standard deviation of 

hourly observations from all sites in the modeling region 

* Taiwan EPA and U.S. EPA performance criteria: MB ± 10%, MFB ± 15%, MFE ± 35%, r 

> 0.45 
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Table 4-3. Selected variables for ML-MMF and ML model 

Dataset Source Variables 

Emission TEDS 10 
NOx and VOCs emissions from point, mobile, fugitive, 

and biogenic sources. 

Boundary 

conditions 
WRF 

air temperature (850 and 690 hPa), relative humidity 

(850 and 690 hPa), NO3, HNO3, N2O5, NO, NO2, VOCs 

and O3 at surface level  

Meteorological 

variables 
WRF 

Surface 

surface pressure, PBL height, 

temperature at 2 m, mixing ratio at 

2 m, wind speed, U wind 

component and V wind 

component, solar radiation 

reaching ground, precipitation, total 

cloud fraction, average liquid water 

content of cloud 

Pressure level 

(850 and 690 hPa) 

air temperature, potential vorticity, 

vertical velocity, U wind component 

and V wind component 

Land-use CMAQ evaluation, urban percent 
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The LHS design can provide flexibility, which selects a number of runs 

based on limited computing resources [34], and also can capture the 

nonlinearity of ozone. The number of CMAQ runs for RSM was decided by 

the emission ratio range (0%-200%), the accuracy of O3 response to NOx 

and VOC emissions, and the available computing resources. Typically, the 

number of CMAQ runs for RSM around 50 simulations is enough for 

constructing a statistically robust model [40]. Extra simulations for 

individual air quality regions were also conducted due to higher O3 

concentrations in spring, fall, and winter. Emission ratios of NOx and VOC 

are designed from 0% to 200%, and the number of CMAQ runs for six air 

quality regions is shown in Table 4-4. 

In each air quality region, RSM involves multiple precursor 

emissions (NOx and VOC) and anthropogenic emission sectors (industrial, 

mobile, and fugitive sources) from multiple cities and counties, as shown 

in Figure 4-3 and Table 4-5. Multiple city/county-level NOx and VOC 

emission sectors (Table 4-5) were used for each air quality region. Self-

adaptive RSM (SA-RSM) based on regression method and stepwise 

selection was employed to predict O3 based on designed emission ratios 

of NOx and VOC, and the followed multidimensional kriging method was 

used to illustrate O3 isopleths to show O3 nonlinear response to NOx and 

VOC emission ratios [34,40,180,184]. In each air quality region, the 

averages of grid cells with daily MDA8 O3 higher than 60 ppb were used 

for RSM based on WHO and Taiwan EPA standards [28]. Also, higher O3 

concentrations were identified to be more sensitive to anthropogenic 

emissions of NOx and VOC [36]. In each region, the following equation 
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linking the O3 concentration (∆Conc) in each grid to city/county-level NOx 

or VOC emission ratios of the emission sectors and stepwise selection that 

can automatically select polynomial variables for all grid cells with 0.15 of 

the entering level and the leaving level were utilized [40]: 

∆Conc(𝑚, 𝑛) = ∑ 𝑋𝑖 ∙ (∆𝐸𝑖)
𝑎𝑖

𝑘

𝑖=1

+ ∑ ∑ 𝑋𝑖𝑗 ∙ (∆𝐸𝑖)
𝑏𝑖(∆𝐸𝑗)

𝑐𝑗

𝑘−1

𝑗=1

𝑘

𝑖=1

 

where ∆Conc is the changed daily MDA8 O3 concentration (response) 

from the baseline scenario (the benchmark case, emission ratio=1) in the 

grid(𝑚, 𝑛); ∆𝐸𝑖  is the changed emission ratios from 1 of 𝑘 city/county-

level NOx or VOC emission sectors; ∆𝐸𝑗 is the other changed emission 

ratios from 1 of emission sector other than ∆𝐸𝑖 ; 𝑎𝑖 , 𝑏𝑖 , and 𝑐𝑗  are the 

nonnegative integer powers of ∆𝐸𝑖 and interaction terms of ∆𝐸𝑖 and ∆𝐸𝑗. 

We set 𝑎𝑖 from 1 to 3 and 𝑏𝑖 and 𝑐𝑗 from 1 to 2, respectively. A total of 

2782 CMAQ simulations were used for RSM. To assure the performance 

of RSM, a total of 107 CMAQ simulations were used for out-of-sample 

validation (Table 4-4). The RSM performance was evaluated by correlation 

coefficient (r), Mean normalized error (Mean NE), and Maximum NE (Max 

NE) [180] as shown in the following equations. 

r = √
[∑ (𝑀𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑁

𝑖=1 ]

∑ (𝑀𝑖 − �̅�)2𝑁
𝑖=1 ∑ (𝑂𝑖 − �̅�)2𝑁

𝑖=1

 

Mean NE =
1

𝑁
∑

|𝑀𝑖 − 𝑂𝑖|

𝑂𝑖

𝑁

𝑖=1
 

Max NE = max (
|𝑀𝑖 − 𝑂𝑖|

𝑂𝑖
) 
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where 𝑀𝑖 and 𝑂𝑖 are the average of grid cells for RSM predictions and 

CAMQ, ML-MMF, or ML predictions in the 𝑖th simulation over different 

emission scenarios ; 𝑁 is the number of scenarios; �̅� and �̅� are the 

average of the RSM predictions and CAMQ, ML-MMF, or ML predictions 

in the 𝑖 th simulation over different emission scenarios. Finally, the 

response of O3 concentrations to changes in anthropogenic NOx and VOC 

emission ratios from all sources and all cities and counties in each air 

quality region was illustrated by O3 isopleths, which can be divided into 

NOx-limited (NOx-sensitive and VOC-rich) and VOC-limited (VOC-

sensitive and NOx-rich) regimes and used to help determine whether NOx 

or VOC emissions should be controlled more aggressively in strategies to 

alleviate ground-level O3 concentrations [35]. 

4.4. Results and discussion 

4.4.1. Benchmark case modeling performance 

The performance of CMAQ, ML-MMF, and ML modeling compared 

with observations is shown in Table 4-6Table 4-6. Compared with ML-MMF 

and ML predictions, the CMAQ predictions have lower performance for all 

months (R=0.41-0.80, RMSE=13.45-21.19). After CMAQ data were adjusted 

by the auxiliary data (emission, meteorology, boundary condition, and land-

use data) and corrected by observations, ML-MMF modeling presents 

significantly better performance for all months (R=0.93-0.94, RMSE=4.49-

7.43). The improved performance highlights the benefits of adding auxiliary 

data in ML-MMF applications. Even though excluding CMAQ output and 

purely using auxiliary data for ML modeling, the ML model still maintains 

comparable modeling performance (R=0.89-0.94, RMSE=4.62-8.94).  
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Figure 4-3. City-level and county-level subcategories in air quality regions. 
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Table 4-4. Finished CMAQ simulations for six air quality zones 

Zone 
Training samples Out of  

samples 
Total 

Jan April July October 

NT 200 200 62 200 21 683 

CM 150 150 47 150 21 518 

CT 150 47 47 47 15 306 

YCN 200 62 62 62 15 401 

KP 120 98 62 62 14 356 

ET 150 150 47 150 21 518 

Total 970 707 327 671 107 2782 
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Table 4-5 Types and Number of emission sectors in six air quality regions 

Region City/County Species Source # Emission sector 

Northern (NT) KLI NOx industrial 24 

 TPI VOC mobile  

 NNI  fugitive  

 TYI    

Chu-Miao (CM) HCC NOx industrial 18 

 HCI VOC mobile  

 MLC  fugitive  

Central (CT) TCI NOx industrial 18 

 CHC VOC mobile  

 NTC  fugitive  

Yun-Chia-Nan (YCN) YLC NOx industrial 24 

 CYI VOC mobile  

 CYC  fugitive  

 TNI    

Kao-Ping (KP) KHI NOx industrial 12 

 PTC VOC mobile  

   fugitive  

Eastern (ET) ILC NOx industrial 24 

 HLC VOC mobile  

 TTC  fugitive  
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Both ML-MMF and ML have no overfitting tendency considering 

their similar performance in training and testing data. Averages of observed 

and modeled MDA8 O3 for CMAQ, ML-MMF, and ML in selected months 

are presented in Figure 4-4. Figure 4-4(a) shows obvious overestimations 

of CMAQ compared with observations, especially in the regions along with 

the west side of the mountains and the central basin. Figure 4-4(b)(c) 

shows the ML-MMF and ML estimations are much close to observations 

and have lower modeling bias (RMSE and MAE) compared with CMAQ.  

Monthly concentrations of CMAQ, MMF, and ML are presented in 

Figure 4-5. Among all selected months, Figure 4-5(a) shows CMAQ remain 

overestimated in all months and has spatial specificity in each month, in 

which CT, YCN, and KP region are overestimated in January, NT, CM, and 

CT regions are overestimated in April, and whole west regions 

overestimated in July and October. On the other hand, Figure 4-5(b)(c) 

shows the ML-MMF model and ML model present similar spatial 

distributions for all months except for the ET region in July and October. 

The different estimations in the ET region are due to fewer air quality 

monitoring stations in the region, so the ML model needs to learn the data 

from the monitoring sites in the western regions. 

4.4.2. Adjusted O3 seasonal patterns 

In Taiwan, frequent long-range transboundary pollution events from 

mainland China with higher air pollutant concentrations occur in spring, fall, 

and winter when northeast monsoon prevails [169,170]. Our method to 

classify event and non-event days is illustrated in Appendix III. In the 

modeling period, there were 14, 13, and 3 event days in January, April, 
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and October, respectively, and no event days occurred in July. Figure 4-6 

presents the monthly MDA8 O3 average of event and non-event days 

based on ML-MMF estimations. In January, transboundary plumes mostly 

contained higher PM, NOx, and CO, so there is no significant O3 

concentration difference between the event and non-event days. In April, 

the MDA8 O3 averages of 13 event days show a significant impact on the 

whole island. Compared with event days, O3 exceedances on non-event 

days mostly occur in central mountainous areas, which may result from 

higher biogenic VOC emissions in spring [185]. In July, higher O3 level in 

northern Taiwan is due to the prevalence of southwest and south monsoon, 

and NOx, VOC, and formatted O3 transport from southern regions 

accumulated in northern regions. In October, both event days and non- 

event days show similar distribution, but event days present higher O3 

concentration in western areas, especially in the NT region. 

4.4.3. RSM performance 

Because higher O3 concentrations are more sensitive to 

anthropogenic NOx and VOC emissions [36], we performed RSM for O3 

exceedance days (MDA8 O3 > 60ppb) for April, July, and October and 

excluded January due to no O3 exceedance days. RSM performances by 

using CMAQ, ML-MMF, and ML data for six air quality regions (NT, CM, 

CT, YCN, KP, and ET) of the event and non-event days in April, July, and 

October are illustrated in Table 4-7. Most of the RSM results meet the 

statistical requirement of mean NE < 3% and max NE <10% considering r 

(0.855-1.000), mean NE (0.02%-2.62%), and max NE (0.08%-9.88%), 

except for the CM region’s October (max NE=11.48%) and the YCN 
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Table 4-6. Modeling performance of CMAQ, ML-MMF, and ML of benchmark 

case in selected months in 2016 

Data source Index 
Month 

January April July October 

CMAQ 

R 0.41 0.53 0.79 0.80 

RMSE 13.45 17.87 21.19 19.09 

MAE 9.72 13.61 17.33 14.54 

ML-MMF 

Train 

R 0.93 0.93 0.93 0.93 

RMSE 4.54 6.83 5.94 7.43 

MAE 3.36 5.14 4.26 5.34 

Test 

R 0.93 0.93 0.93 0.94 

RMSE 4.49 6.74 6.19 7.19 

MAE 3.41 5.08 4.51 5.11 

ML 

Train 

R 0.92 0.92 0.90 0.90 

RMSE 4.66 7.18 7.04 8.94 

MAE 3.49 5.35 5.14 6.58 

Test 

R 0.93 0.92 0.89 0.90 

RMSE 4.62 7.10 7.35 8.94 

MAE 3.49 5.41 5.41 6.40 
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Figure 4-4. Observed MDA8 O3 (circles) and modeled estimations of (a) 

CMAQ, (b) ML-MMF, and (c) ML 
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Figure 4-5. Monthly observed MDA8 O3 (circles) and modeled estimations of 

(a) CMAQ, (b) ML-MMF, and (c) ML 

 

 



 

129 

region’s April (max NE=11.38%) and October (max NE=12.04%) of CMAQ 

data and KP’s April (R=0.759) of ML-MMF data. Good RSM performance 

represents that RSM can reproduce CMAQ, ML-MMF, or ML outputs by 

only using county/city-level NOx and VOC emission ratios without extra 

CMAQ simulations or ML-MMF/ML modeling. The higher max NE may be 

due to unstable RSM performance when NOx and VOC emission ratios 

are very low (0%) or very high (200%) [186]. Although the limited 

performance could be improved by adding more simulations under these 

extreme emission ratios, these scenarios are still impractical and hardly 

verified by observations. For example, it is almost impossible to measure 

pollutant concentrations without any anthropogenic emissions in urban 

areas. Furthermore, the validation of the baseline emission ratio (emission 

ratio=1, Figure 4-7) compared with observations shows a satisfactory 

performance (Mean NE=2%-6%). Second, the higher bias may imply the 

high impact of non-local emissions, which means air pollutants or their 

precursors from upwind countries or other air quality zones dominate 

downwind local air quality, so local emissions only have a limited impact 

on local air quality and hardly explain the temporal variation of observed 

concentrations. As previously mentioned, in April and October, long-range 

transboundary air pollution transported from mainland China and plumes 

from upwind regions frequently accumulate and deteriorate air quality in 

southern air quality regions. 
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Figure 4-6. Monthly MDA8 O3 concentrations for event and non-event days in 

selected months by ML-MMF data. No event days occurred in July. 
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4.4.4. O3 sensitivity to local NOx/VOC emissions 

Monthly combined O3 isopleths of all air quality regions in April, July, 

and October for the event and non-event days by using CMAQ, ML-MMF, 

and ML data are presented in Figure 4-8, and the O3 isopleths for the 

individual region are shown in Figure 4-9 - Figure 4-13. All isopleths for 

each air quality region show the averages of grid cells having MDA8 O3 

concentrations higher than 60 ppb in the region, and the x-axis and y-axis 

represent the NOx and VOCs emission ratios for all sources in all cities 

and counties in the region. 

First, ML-MMF isopleths are closer to the real O3 nonlinear responses to 

anthropogenic NOx and VOC emissions due to its observation-based 

adjustment, and ML-MMF isopleths show the real improved effort by 

reducing local emissions should be less than what CMAQ model simulated. 

For example, the CMAQ isopleth in July ranges from 72 ppb to 90 ppb 

concerning different emission ratios, but the ML-MMF isopleth presents a 

narrower range, which is from 62 ppb to 68 ppb. The reduced range of 

isopleths emphasizes the importance of adjustment by observations, and 

CMAQ-based RSM results may bias the improved air quality by emission 

control strategies. 

Second, the ML-MMF O3 isopleths show changed O3 sensitivity 

after fusing with observations. For example, CMAQ isopleths in April with 

a combined regime of NOx-limited and VOC-limited trends (Figure 4-8 (a)) 

are corrected to VOC-limited in ML-MMF isopleths (Figure 4-8 (b)) for the 

event and non-event days. If further comparing CMAQ modeled NOx and 

VOCs with observations (Figure 4-17), CMAQ modeled estimations in the  
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Table 4-7. RSM performance of event and non-event days in selected months 

by CMAQ, ML-MMF, and ML data for six air quality regions  

Region Month 

CMAQ ML-MMF ML 

R 
Mean 

NE 

Max  

NE 
R 

Mean 

NE 

Max  

NE 
R 

Mean 

NE 

Max  

NE 

Event days          

NT 
April 0.999 0.65% 2.98% 0.999 0.34% 3.82% 1.000 0.27% 1.11% 

October 0.994 1.94% 6.74% 0.998 0.93% 2.88% 0.992 0.46% 1.01% 

CM 
April 0.999 0.48% 2.41% 1.000 0.17% 0.72% 1.000 0.11% 0.35% 

October 0.949 2.20% 8.14% 0.962 1.18% 3.60% 0.929 1.29% 4.79% 

CT 
April 0.997 0.36% 1.87% 1.000 0.25% 1.07% 1.000 0.16% 0.33% 

October 0.997 0.65% 1.26% 0.995 0.62% 0.98% 0.891 0.83% 1.33% 

YCN 
April 0.990 1.15% 7.01% 0.999 0.57% 4.19% 1.000 0.17% 0.52% 

October 0.991 2.24% 4.88% 0.997 0.56% 1.75% 0.962 0.51% 1.52% 

KP 
April 0.984 2.42% 8.79% 0.993 1.22% 9.53% 1.000 0.06% 0.24% 

October 0.996 0.49% 0.82% 0.984 0.91% 1.72% 0.938 0.76% 1.66% 

ET 
April 1.000 0.20% 3.58% 1.000 0.17% 1.79% 1.000 0.07% 0.20% 

October 0.999 0.34% 2.59% 0.992 1.04% 7.43% 0.981 0.85% 1.82% 

Non-event days          

NT 

April 1.000 0.43% 1.85% 0.984 0.29% 2.76% 0.993 0.19% 0.73% 

July 0.982 1.61% 9.21% 0.950 1.38% 9.88% 0.855 1.29% 6.26% 

October 0.997 1.28% 4.62% 0.993 1.01% 4.92% 0.987 0.53% 2.88% 

CM 

April 1.000 0.30% 3.11% 0.958 0.21% 1.69% 1.000 0.03% 0.24% 

July 0.999 0.29% 1.07% 0.975 0.58% 4.71% 0.979 0.68% 1.97% 

October 0.990 1.53% 11.48% 0.997 0.85% 3.45% 0.999 0.17% 0.75% 

CT 

April 1.000 0.12% 0.62% 0.867 0.30% 2.24% 1.000 0.05% 0.16% 

July 0.998 0.45% 2.18% 0.919 1.11% 7.82% 0.940 1.06% 2.60% 

October 0.998 0.61% 3.12% 0.992 0.81% 5.04% 0.999 0.20% 0.71% 

YCN 

April 0.991 1.52% 11.38% 0.997 0.36% 0.99% 1.000 0.02% 0.08% 

July 0.990 1.70% 8.15% 0.930 1.61% 9.31% 0.964 0.22% 0.49% 

October 0.987 2.62% 12.04% 0.992 0.97% 8.60% 1.000 0.11% 0.40% 

KP 

April 0.996 2.19% 8.73% 0.712 1.19% 4.15% 1.000 0.03% 0.19% 

July 0.998 0.48% 3.04% 0.924 0.84% 2.57% -* -* -* 

October 0.991 0.52% 5.57% 0.991 0.80% 5.62% 0.999 0.20% 1.55% 

ET 

April 1.000 0.11% 0.98% 0.885 0.40% 5.05% 1.000 0.05% 0.22% 

July 0.999 0.42% 1.32% 0.950 0.52% 3.36% -* -* -* 

October 0.992 0.81% 2.66% 0.999 0.64% 1.75% 0.928 0.75% 2.28% 

* No exceedance (>60 ppb) occurred based on the used data sources.  
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Figure 4-7. Comparison between RSM prediction based on ML-MMF data 

and observations and mean normalize errors (Mean NE) in each region 

for the event day and non-event days in selected months 
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benchmark case were found to overestimate NOx in the NT region and 

underestimate VOCs compared with observations for all regions, which 

means the real O3-NOx-VOC system should be more VOC-limited and 

NOx-rich.  

Third, ML O3 isopleths present diverse O3 ranges and distorted NOx 

and VOC regimes compared with ML-MMF O3 isopleths, which implies ML 

without the support from CMAQ output could provide biased air quality 

predictions concerning its different O3 response to emissions, although ML 

model performances well in the benchmark case. For example, for the non-

event days of the NT region in April (Figure 4-9), the ML isopleth identifies 

an obvious VOC-limited trend, but the ML-MMF isopleth shows a combined 

NOx-limited and VOC-limited trend. For the other months, the ML O3 

isopleths also present a lower O3 concentration level and narrower range, 

even though the trend may be similar to the ML-MMF O3 isopleths. Even 

different ML techniques were performed, the ML-O3 response to emissions 

still remained distorted (Figure 4-16). 

The disparity between ML-MMF and ML O3 isopleths implies that 

previous air quality forecasting studies [45–47] without involving CTM 

results and only using historical observations or other auxiliary data to 

predict future air quality may be potentially biased, even though the ML 

models met statistical requirements. Because the ML model could deviate 

the pollutant’s responses to its precursor emissions from the real 

responses of air pollutant concentrations. One major explanation is the 

lower variable importance priority of emission variables in the ML model. 

The variable importance priority of emission variables is relatively lower 
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than other variables like meteorological variables (Figure 4-14), so the 

model missed the link between O3 responses with NOx and VOC 

emissions. The lower variable importance priority is because most 

emission inventories are constructed by top-down methodology with 

routine monthly and weekly variation, the regular temporal variation of 

emission data has limited capability to explain dramatically varied 

pollutants. On the contrary, CMAQ-modeled O3 has a higher importance 

priority in the ML-MMF model (Figure 4-14), so its nonlinear information to 

NOx and VOC emissions still remains in ML-MMF outputs. Another 

potential reason is that the ML model only learns grid-level information 

without considering the air pollutants transported and reacted between 

grids, so the ML predictions are unable to reflect the accumulated 

pollutants from the upwind grids or air quality zones, even adding zonal 

emissions as independent variables cannot improve the performance. 

Moreover, the limited sample size from observations could be not large 

enough for the ML model, because O3 exceedance (>60 ppb) does not 

always occur around the monitoring stations within limited exceedance 

days (Figure 4-15). Therefore, the ML model under certain seasons (e.g. 

non-event days in April) has limited data to construct a robust model. In 

summary, we suggest not using ML O3 isopleths for emission control 

strategies. 

Fourth, transboundary pollution from upwind may change O3 

sensitivity to local NOx and VOC emissions. In the NT region, which is the 

first region suffering from transboundary pollution from mainland China, 

the ML-MMF isopleths (Figure 4-9) of non-event days in April remain a 
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combined regime of NOx-limited and VOC-limited, but for event days in 

April, the isopleth changes to serious VOC-limited. Because the northeast 

monsoon carries high NOx concentrations from the upwind, the NT region 

turns to a NOx-rich atmosphere and local O3 response becomes more 

sensitive to VOC emissions. Even though there is no local NOx emission 

(emission ratio=0), transboundary NOx still can support local O3 formation. 

Moreover, if taking out boundary conditions and local meteorology during 

the fusion process (Figure 4-18), boundary conditions and local 

meteorology play a significant role that changing O3 sensitivity, which also 

proves the significant impact of transboundary pollution. The changed O3 

sensitivity affected by outside pollution from the upwind was also reported 

in California, where wildfires in the late summer would emit large amounts 

of VOCs that can be transported to urban areas and significantly change 

the urban O3 sensitivity [187]. 

4.4.5. Suggested emission control preference 

Monthly O3 isopleths for the event and non-event days based on 

ML-MMF data are shown in Figure 4-19. The O3 isopleths in April show 

VOC-limited trends for both the event and non-event days for all western 

regions, but the range reveals a limited improved effort by reducing VOC 

emission, which is around 0.25 ppb to 4.5 ppb. Transboundary NOx could 

also accumulate for days and affect O3 sensitivity to local emissions on 

non-event days. In July, controlling NOx emissions is a more effective 

way to lower O3 concentrations in the CM, CT, YCN, and ET regions, and 

the NT and KP regions present a combined NOx-limited and VOC-limited  
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Figure 4-8. Monthly combined O3 isopleths from all air quality regions (NT, 

CM, CT, YCN, KP, and ET) for the event and non-event days in selected 

months by using CMAQ, ML-MMF, and ML data 
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Figure 4-9. Monthly combined O3 isopleths from the NT region for the event 

and non-event days in selected months by using CMAQ, ML-MMF, and 

ML data 
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Figure 4-10. Monthly combined O3 isopleths from the CM region for the event 

and non-event days in selected months by using CMAQ, ML-MMF, and 

ML data 
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Figure 4-11. Monthly combined O3 isopleths from the CT region for the event 

and non-event days in selected months by using CMAQ, ML-MMF, and 

ML data 
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Figure 4-12. Monthly combined O3 isopleths from the YCN region for the 

event and non-event days in selected months by using CMAQ, ML-MMF, 

and ML data 
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Figure 4-13. Monthly combined O3 isopleths from the KP region for the event 

and non-event days in selected months by using CMAQ, ML-MMF, and 

ML data 
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Figure 4-14. Variable importance plots of ML-MMF and ML model for 

January, April, July, and October in 2016. 
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Figure 4-15. Number of MDA8 O3 exceedance days (>60 ppb) in the selected 

months 
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Figure 4-16. O3 isopleths in NT region of selected months for different ML 

techniques (GBM, RF, and CNN) 
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Figure 4-17. Comparison between CAMQ modeled estimations and 

observations of (a) NOx and (b) VOCs  
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Figure 4-18. O3 isopleths for different inputs: (a) ML-MMF (boundary 

conditions, meteorology, emission, and land-use data); (b) ML-MMF 

(meteorology, emission, and land-use data); (c) ML-MMF (emission and 

land-use data); (d) CMAQ data  
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regimes. The more VOC-limited trend in the NT and KP regions may be 

due to more population and vehicle emissions in these regions. 

In October, O3 isopleths are similar between the event and non-

event days, because transboundary pollution in October mostly carries 

PM and SO2, which are not related to the formation of O3. NT, CT, and 

YCN regions have a combined NOx-limited and VOC-limited trend, and 

the potential improvement can be significant (58-76 ppb) in the NT region. 

The more VOC-limited trend in the CM and KP regions could be due to 

the impact of local geography. Because of many plateaus and hills in the 

CM and KP region, which higher terrain roughness would slow down the 

wind and cause accumulation of pollutants like NOx from the upwind 

regions. In the ET region, the O3 isopleths suggest an obvious NOx-limited 

trend for all months. In summary, most of the regions are VOC-limited in 

April and October but NOx-limited in July. The suggestion of controlling 

VOC emissions in fall and winter is also coherent with the other study in 

Taiwan [188]. 

3.6. Limitations and future works 

This study still has some limitations. First, the ML-MMF model 

needs to rely on enough monitoring stations (sample size) and good-

quality of emission inventory to build a robust model. Multiple monitoring 

stations can explain the variance of space-related variables like emissions, 

meteorology, and land uses between sites and provide enough statistical 

power, and the emission inventory should reflect the various emissions 

around the monitoring stations. In our case, the employed TEDS emission 

inventory is updated every three years with finer to 1 km spatial resolution, 
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thus it can reflect emissions around stations within space and time. For 

those regions or countries without enough monitoring stations, using 

remote sensing data from satellites may be an alternative way to obtain 

observations, but satellite data could be still biased by cloud and vertical 

column densities [187]. For regions or countries without proper emission 

inventory, using a global emission database like ECLIPSE [140] could be 

a potential solution to provide emission data around stations, but the 

spatial distribution method from national emissions needs careful 

assessment.  

Second, the ML-MMF RSM results or O3 isopleths are hardly validated by 

observations. Even though the ML-MMF O3 isopleths with baseline 

emission ratio (emission ratio=1) were validated by observations and have 

a satisfactory performance (Figure 4-7, Mean NE=2%-6%), O3 responses 

under extreme emission scenarios are hardly validated by observations. 

Because there are no observations to validate the estimations under 

extreme emission scenarios like zero (emission ratio=0) or double 

(emission ratio=2) anthropogenic emissions. Thus, the margins of O3 

isopleths still remained potential uncertainty. Further study to assess the 

uncertainty of O3 isopleths should be investigated in the future. 

4.5. Conclusion 

ML models become mainstream in atmospheric science because 

of more available real-time monitoring data and measurements. But its 

black-box modeling process, failure to involve physical and chemical 

mechanisms, and weak cooperation with the existing numerical models 

lower its stringency and persuasion. Except for developing more  
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Figure 4-19. Monthly O3 isopleths for event and non-event days in selected 

months based on ML-MMF data 
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sophisticated model designs to increase predicting accuracy, the 

interpretability and explainability of predictions should be evaluated as 

well. In this study, the capability of the ML model to serve as a bias 

corrector (ML-MMF output) based on CMAQ modeled results and a 

forecaster (ML output) was examined and applied to predict O3 nonlinear 

responses to anthropogenic NOx and VOC emissions. Three types of data 

were examined for constructing O3 isopleths by RSM: CMAQ data, ML-

MMF data (a bias corrector), and ML data (a forecaster). 

Compared with CMAQ predictions (r=0.41-0.80), both ML-MMF 

(r=0.93-0.94) and ML predictions (r=0.89-0.94) showed significantly 

improved performance in the benchmark case. While ML-MMF isopleths 

exhibit O3 nonlinearity close to actual responses due to their numerical 

base and observation-based correction, ML isopleths present different O3 

ranges and distorted NOx and VOC-limited regimes compared with ML-

MMF O3 isopleths even though the ML model meets the statistical 

requirement in the benchmark case,. Without involving CMAQ results, the 

ML model presents biased predictions concerning its different O3 

responses to NOx and VOC emission ratios. It also implies that only using 

historical observations or other auxiliary data without support from CMAQ 

or other CTMs to forecast the air quality could mislead the future trend. 

Meanwhile, after being corrected by observations, ML-MMF data present 

changed O3 sensitivity compared with CMAQ data. The corrected O3 

isopleths emphasize the impact of transboundary pollution from mainland 

China on the local O3 sensitivity, which transboundary NOx in April would 
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make all air quality regions in Taiwan more sensitive to local VOC 

emissions and limit the potential effort by reducing local VOC emissions. 

It is advisable for future ML applications in atmospheric science like 

forecasting or bias correction to provide interpretability and explainability 

while requiring modeling performance. Failing to interpret the interaction 

between predicted air quality, emissions, and environmental factors may 

mislead controlled targets and air quality policies. Assessment with 

interpretable physical and chemical mechanisms and constructing a 

statistically robust ML model should be equally important. 
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Chapter 5. Conclusions and Future Prospects 

Owing to the increasing population, more developed countries, and 

arising public health perceptions, community-level air quality 

management and exposure risk assessment are increasingly required in 

the near future. Inspired by more available and overwhelming data, 

machine learning techniques provide promising opportunities to develop 

more accurate and effective air quality management methods. This thesis 

attempts to resolve two major obstacles in air quality management: (1) 

inaccurate exposure risk estimations and (2) biased air quality 

concentrations from air quality models and illustrates three machine 

learning solutions, trying to bridge the present gaps between models and 

the real environment. 

The first study identified the local exposure risk of PM2.5 exposure 

and the spatial heterogeneity among different urbanization levels. 

Residents in rural areas had 1.40 times higher death risk compared with 

the average risk, and residents in the most urbanized areas had 1.57 and 

1.20 times higher risk of CVD and RD than average. The imbalance 

exposure risk would also significantly affect the estimations of the burden 

of the diseases, contributing 0-86% of uncertainty, especially for highly 

urbanized areas. 

The second study illustrated the capability of machine learning for 

MMF and bias quantification. The MMF results showed the R2 of daily 

PM2.5 and O3 concentrations were significantly improved from 0.41 and 

0.48 to 0.86 and 0.82 and also emphasized the impact of the complexity 
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of topography and land-use patterns on CMAQ modeling. Bias 

quantification results revealed that the bias is more affected by boundary 

conditions and local meteorology than emission and land-use data, 

implying that the CMAQ model still has imperfect mechanisms to well 

simulate PM2.5 and O3 with boundary conditions and local meteorology, 

especially under hills or mountains where pollutants easily accumulate. 

The third study examined the capability of the ML model to serve 

as a bias corrector and a forecaster to predict O3 nonlinear responses to 

NOx and VOC emissions. Although the ML predictions (R=0.89-0.94) 

showed significantly improved performance in the benchmark case, the 

ML predictions still present different O3 ranges and distorted NOx/VOC-

limited regimes compared with the ML-MMF predictions, implying that 

using historical observations or other auxiliary data without support from 

CMAQ to forecast the air quality could mislead the future air quality trend 

and derived health benefits concerning diverse NOx and VOC emission 

control ratios. In addition, after being corrected by observations, ML-MMF 

predictions emphasize the significant impact of transboundary pollution 

from mainland China on the local O3 sensitivity, which transboundary NOx 

would make Taiwan more sensitive to local VOC emissions and limit the 

potential effort by reducing local VOC emissions. 

In the recent years, ML models have become mainstream in 

atmospheric and environmental health science, but model design, 

parameter settings, data input pretreatment, variable selection, and output 

interpretation still need interdisciplinary professions. While meeting the 

basic statistical modeling requirements, future ML applications in 
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atmospheric and environmental health science should provide 

interpretability and explainability in terms of human-environment 

interactions and interpretable physical and chemical mechanisms. Such 

applications are expected to feedback to traditional methods, construct 

finer resolution of exposure scenarios, and deepen our understanding of 

environmental science. 
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Appendix 

I. Threshold and lag response analysis of PM2.5 exposure risk  

The odds ratio (OR) of vascular disease events and PM2.5 was first 

assessed by a single-pollutant model (Figure 1). ORs of cardiovascular 

emergency visits with 10 μg/m3 increases in PM2.5 at 0 to 48 hours before 

disease onset were all statistically significant when including all cases in 

the model. 

The lag-response relationship increased slightly with cumulative 

exposure before the case event from 0 to 48 hours in all cases. When I 

only include cases occurring with PM2.5 >10 μg/m3 and PM2.5 >25 μg/m3, 

very significant ORs could be observed for 10 μg/m3 increases in PM2.5 at 

0 and 1 hours, implying fine particulate exposure could promptly trigger 

vascular disease events. Moreover, a very clear increased risk level could 

be observed with cumulative exposure from 0 to 48 hours, especially in 

those cases identified when PM2.5 >25 μg/m3. 
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Figure 1. Odds ratio (OR) of cardiovascular emergency visits for 10 μg/m3 

increase in PM2.5 exposure 
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II. Employed machine learning methods 

(1) k-nearest neighbors (KNN) regression  

KNN model is a non-parametric method developed on the 

assumption that similar samples exist near each other. That is, KNN 

memorizes the training data and predicts the PM2.5 or O3 concentrations 

based on the closest samples with similar patterns of input variables. 

Technically, KNN includes the following steps [8]: 

Step 1: Compute the distance from other data points to the desired 

point and sort the points in increasing order of distance. Euclidean 

Distance is the most common method and is calculated as follows: 

D = √(a1 − b1)2 + (a2 − b2)2 + ⋯ + (ap − bp)
2
 

where a1, a2, … , an or b1, b2, … , bn represent the attribute values for two 

points, D is the Euclidean distance between two points, and p is the 

number of total input variables. 

Step 2: Select the number of nearest neighbors (k < p). The PM2.5 

or O3 prediction is the average of the values of k nearest neighbors. 

Since a lower k  value would be sensitive to noise and may lead to 

overfitting, while using a higher k value would include more irrelevant 

data points and increases the bias [8], the number of k ranging from 1 to 

25 was tested to obtain the best-tuned KNN model. 

 (2) regression tree (RT)  

The basic idea of RT is recursively partitioning the input space into 

binary subsets where the output becomes successively more 
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homogeneous. RT model divides the input variables into several non-

overlapping spaces (tree construction) and optimizes the prediction with 

the greatest reduction in errors for each space (tree pruning). The 

modeling steps are detailed as follows: 

Step 1: RT begins with the root node, which represents the whole 

input space and contains all training samples. First, we select the predictor 

Xj and the cutpoint s such that splitting the predictor space into region 

R1(j, s) = {X|Xj < s}  and R2(j, s) = {X|Xj ≥ s}  leads to minimizing the 

expected sum of square errors (SSE) for two subsets. That is [189]: 

min [ ∑ (yi − ŷR1
)

2

i:xi∈R1(j,s)

+ ∑ (yi − ŷR2
)

2

i:xi∈R2(j,s)

] 

Next, RT repeats the process to find the best predictor and best 

cutpoint in order to split the data so as to minimize the SSE. 

Step 2: After repeating the splitting process, considering a very 

large tree T0 with no splits, we prune it back in order to obtain the optimal 

subtree. The pruning approach is based on the error-complexity measure, 

which considers the accuracy of subtrees and that of complexity (given by 

the number of terminal nodes of a tree). The error-complexity measure R 

is defined for any node t and its branch Tt as [190,191]: 

Rα(Tt) = R(Tt) + α|T̅t| 

where |T̅t| is the number of the terminal nodes (or leaves) or complexity 

of T, α is the threshold complexity parameter (cp) which is used for the 

control of tree growth and served as a penalty term for each new added 

split in the tree. The idea is to prune the branch Tt if its error-complexity 
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measure is not lower than the error-complexity measure of its root t. To 

obtain the optimized subtree, we tuned the complexity parameter from 10-

5 to 100. 

(3) random forest (RF) regression 

RF model fits a set of decision trees and uses averages from 

decision trees which is trained on a randomly selected subsample of the 

training data by the bagging approach. Due to its higher robustness to 

noise and less tendency of overfitting, RF has been applied in various 

fields of ML [12]. The main steps to construct an RF regression model for 

predicting PM2.5 or O3 concentration are described as follows [13]: 

Step 1: The basis feature data can be formulated as follows: 

D = {(xm, ym), m = 1, 2, … , n}, (X, Y) ∈ Ri ∗ R 

where Y is PM2.5 or O3 observations, and X is input variable matrix. 

Step 2: To grow each tree (ti), a random subspace Di must be 

generated through a random selection with replacement from D, among 

which the variables were randomly selected for prediction with the number 

of variables ranging from 1 to √p , where p  is the total number of 

variables. By repeated training, an ensemble of N trees (ti) is grown, and 

each tree are de-correlated because of the random selection of input 

variables in each tree. 

Step 3: The predicted results are calculated from an average of N 

trees (hi). RF regression is an ensemble non-linear regression model. By 

using the idea of a double random selection of samples and variables, 

resulting in RF does not intend to overfit. 
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 (4) gradient boosting model (GBM) 

GBM is an improved model based on decision trees which are 

grown sequentially using information from previously grown trees. The 

core idea of GBM uses a negative gradient of the loss function as the 

residual approximation during growing the trees and minimizes the loss 

function by reducing the residuals gradually. The details steps include [14]: 

Step 1: Set the predicted values f̂(x) = 0 and the residual ri = yi 

for all samples i in the training data. 

Step 2: For each number of tree b = 1,2, … , B, repeat updating f̂ 

by adding a shrunken version of the new tree, such as f̂(x) ← f̂(x) +

λf̂ b(x), where λ is the shrinkage parameter that controls the learning rate 

of boosting, and updating the residuals like ri ← ri − λf̂ b(x), until the least 

mean square error is the lowest. The final output of the model is: 

f̂(x) = ∑ λf̂ b(x)

B

b=1

 

Therefore, GBM will build up consecutive trees that solve the net 

error of prior trees. We tuned the number of trees (B) from 0 to 2500 with 

a learning rate (λ) of 0.01 or 0.001. 

(5) convolutional neural network (CNN) 

CNN is generally applied for image classification and has been 

intensively used in air quality forecasting [15–18]. Deep CNN consists of 

several neuron layers: a convolutional layer, a pooling layer, and fully 

connected layers, as shown in Figure 2. The convolutional layer captures 

different signals of the image by passing many filters over each image, 
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which can reduce the size of the input without losing important information. 

Mathematically, convolution is the integral measure of the extent to which 

two functions overlap as one passes over the other [16,19]. The activation 

function, such as ReLU or softmax, embedded in the convolutional layer 

is used to provide nonlinear transformation for reducing input data. The 

rectifier linear unit (ReLU) is one of the common activation functions, 

which is defined by:  

f(x) = max (0, x) 

The ReLU activates a node only if the input is higher than a 

threshold, as shown in Figure 3. The pooling layer excludes features with 

similar attributes and can reduce the computational burden. Among 

several pooling operations, the max pooling operation and the average 

pooling operation are the most commonly used operations. The fully 

connected layer flattens input features into a column vector as output 

[16,19].  

We implemented two-layer CNN in the Keras environment [192] 

with the TensorFlow [193] backend with the Adaptive Moment Estimation 

(Adam) optimizer. Each layer consists of 40 filters and is convolved 

through a kernel of size 2 × 1. The ReLU activation function and the max 

pooling operation were employed to extract important features and 

preserve nonlinearity. The loss function used in this study is based on 

mean squared error (MSE). 
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Figure 2. Basic structure of convolutional neural network (CNN) [19] 
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Figure 3. Example of the ReLU activation function [19] 
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III. Definition of long-range transboundary pollution event day 

The days with long-range transboundary pollution were defined by 

the following two criteria:  

(1) For each site, the exceedance threshold of the criteria pollutants (NOx, 

SO2, CO, PM2.5, PM10, and NMHC) was defined by the daily concentration 

higher than the 75th quantile of daily concentrations of each pollutant in 

2016. 

(2) Transboundary day is defined as the day having over 50% of monitoring 

stations received exceedance on the same day for any of three criteria 

pollutants. 
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IV. Academic records 

Table 1. Milestones for publications and conferences related to this proposal 

Time Title 
Conferences / 

Journals 
Note 

01/2023 

Ozone Response Modeling to NOx 

and VOC Emissions: Examining 

Machine Learning Models 

(submitted) 1st author 

12/2022 

Apply Learning Intelligence to Quantify 

Biases for Measurement-model Fusion 

of Environmental Pollution 

(in manuscript) 1st author 

11/2021 

Uncertainty Analysis of CMAQ-derived 

Burden Estimation of PM2.5 Exposure 

with Bias Correction Technique 

2021 CMAS Oral 

04/2021 

Quantifying spatial heterogeneity of 

vulnerability to short-term PM2.5 

exposure with data fusion framework. 

Environmental 

Pollution 
1st author 

10/2020 

Assessing heterogeneity of the burden 

of disease of PM2.5 exposure at diverse 

urbanization levels with CMAQ-fused 

data 

2020 CMAS Oral 

08/2020 

Transient risk of ambient fine 

particulate matter on hourly 

cardiovascular events in Tainan City, 

Taiwan 

Plos One Coauthor 

06/2020 

Quantifying potential uncertainty of 

burden of disease with spatial 

heterogeneity of PM2.5 exposure risk 

2020 A&WMA 

2nd Place Doctoral 

Student Poster 

Competition 

12/2019 

Assessing relationship between 

heterogeneity of land-use pattern and 

vulnerability of residents exposing to 

PM2.5: A Case Study in Taiwan 

2019 AGU Poster 
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Table 2. Publications and conferences for the other research topics 

Time Title 
Conferences / 

Journals 
Note 

04/2022 Localized energy burden, concentrated 

disadvantage, and the feminization of 

energy poverty 

Iscience Coauthor 

01/2020 Evaluating the impact of mobility on 

COVID-19 pandemic with machine 

learning hybrid predictions. Science of 

The Total Environment 

Science of The 

Total 

Environment 

1st author 

06/2020 An artificial intelligence framework to 

forecast air quality. 

2020 A&WMA Coauthor 

04/2021 How limitations in energy access, 

poverty, and socioeconomic disparities 

compromise health interventions for 

outbreaks in urban settings 

Iscience Coauthor 

06/2021 Predicting the near future county-level 

COVID-19 pandemic trend under 

lockdown and reopen scenarios 

2021 A&WMA Poster 

06/2021 Present and Future Wildfire Impacts on 

Dryness in a Changing Climate 

2021 A&WMA Oral 

07/2021 A Hybrid Machine Learning Framework 

to Identify Driving Forces at Early 

Stage of COVID-19 Pandemic 

2021 GAW 

Symposium 

Oral 

11/2021 Projections of Wildfire Impacts on Air 

Toxics in the Western US. 

2021 CMAS Oral 

12/2021 Trend of Wildfire Impacts in Present 

and Future Climate 

2021 A&WMA 

Climate 

Change 

Oral 
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