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Abstract

Since the discovery of the double helix of DNA in 1953 (74), modern molecular biology

has opened the door to a better understanding of how genes control chemical processes

within cells, including protein synthesis. Although we are still far from claiming

a complete understanding, recent advances in sequencing technologies, increased

computational capacity, and more sophisticated computational methods have allowed

the development of various new applications that provide further insight into DNA

sequence data and how the information they encode impacts living organisms and

their environment.

Sequencing data can now be used to start identifying the relationships between

microorganisms, where they live, and in some cases how they affect their host

organisms. We introduce and compare methods used for this bioinformatics

application, and develop a machine learning model that can be used to effectively

predict environmental factors associated with these microorganisms.

Codon Usage Bias (CUB), which refers to the highly non-uniform usage of codons

that code for the same amino acid has been known to reflect the expression level

of a protein-coding gene under the evolutionary theory that selection favors certain

synonymous codons. Traditional methods used to estimate CUB and its relation

with protein translation have been proven effective on single-celled organisms such as

yeast and E. coli, but their applications are limited when it comes to more complex

multi-cellular organisms such as plants and animals. To extend our abilities to further

understand the relations between codon usage patterns and the protein translation
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processes in these organisms, we develop a novel deep learning model that can discover

patterns in codon usage bias between different species using only their DNA sequences.
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Chapter 1

Introduction And Background

For over half of a century, studies centering around genetics have been an essential

piece to the formation and development of modern evolutionary theory (74). More

recently, and in large part facilitated by the global human genome sequencing efforts of

the 1990s (45), DNA sequencing costs have been decreasing exponentially as shown

in Figure 1.4. As a concrete example, the cost of whole genome sequencing for a

single human went down from 100 million to less than 1000 dollars in the past twenty

years. Such a rapid decrease in genome sequencing cost spawned by new sequencing

platforms has promoted a vast number of new applications of genomics data.

This dissertation considers the intersection between more traditional bioinfor-

matics modeling with emerging machine learning advances, specifically more deep-

learning-inspired approaches for biological data. On a more general level, the broader

field of bioinformatics is a scientific subdiscipline that leverages computational

techniques to process biological data. In this chapter, we provide background

information of relevance to later chapters with respect to both DNA and protein

sequences and conclude with a brief summary of overall and novel contributions in

the dissertation for the analysis of largely microbial sequence data.
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Figure 1.1: Double Helix Structure of DNA

Image credit: Sponk, Tryphon, Magnus Manske, User:Dietzel65, LadyofHats
(Mariana Ruiz), Radio89, CC BY 3.0, via Wikimedia Commons (Left)

NIH - DEOXYRIBONUCLEIC ACID (Right)

2

https://commons.wikimedia.org/wiki/File:Eukaryote_DNA-en.svg
https://commons.wikimedia.org/wiki/File:Eukaryote_DNA-en.svg
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid


1.1 Background

1.1.1 DNA Sequences

DNA is the hereditary material of all living organisms. Information within DNA

is represented by a code consisting of four nucleotides: Adenine (A), Guanine (G),

Cytosine (C), and Thymine (T).

1.1.2 Protein Translation

The coding region of a gene, also known as the coding DNA sequence (CDS), is the

portion of a gene that during a process called protein translation has the ”recipe” for

the sequence of amino acid residues that can build a protein.

1.1.3 Codons

A codon is a sequence of three DNA or RNA nucleotides that corresponds to a specific

amino acid or stop signal during protein translation. It follows that the genetic code

includes 43 = 64 possible permutations of three-letter nucleotide sequences that can

be made from the four nucleotides. Of the 64 codons, 61 represent amino acids, and

three are stop signals. For example, as shown in the cDNA codon table, the codon

TTT corresponds to the amino acid phenylalanine, and TAA is a stop codon.

1.1.4 Codon Usage Bias

Codon Usage Bias (CUB), which refers to the highly non-uniform usage of codons

that code for the same amino acid—which are called synonymous codons—has been

studied for decades. Many factors have been proposed to help explain this observation

including gene expression level, mutational preferences of a given organism, amino

acid conservation constraints, and protein hydropathy (5).

3



Figure 1.2: Visualization of the Translation Process
Image credit: Bioninja. 2022.Translation. Available at: https://ib.bioninja.com.au/.
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Figure 1.3: cDNA Tables For Codons Used to Translate into Amino
Acids

Image credit: Genomenon Codon Charts 2022
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1.1.5 Amplicon sequence variants

An amplicon sequence variant (ASV) is an inferred single DNA sequence high-

throughput marker gene analysis. In this de novo process, erroneous biological

sequences are removed during PCR and sequencing, under a denoising model that

assumes biological sequences are more likely to be repeatedly observed than error-

containing sequences. (17)

1.1.6 Operational Taxonomic Units

Another standard unit for marker-gene analysis is the operational taxonomic unit

(OTU), generated by clustering sequences based on a threshold of similarity.

Compared to ASVs, OTUs reflect a coarser notion of similarity. This can be a point

of contention between biologists given that OTUs have been shown to be slightly less

informative compared to ASVs; however, the difference is usually not significant (17).

1.2 Contributions in this dissertation

This dissertation is a collection of bioinformatics efforts that mostly fall into two

sub-disciplines – analysis of protein sequences and applications for use of microbial

sequence data, with an emphasis on microbial ecology. In Chapter 2, we develop new

applications of microbiome next-generation sequence data. We first describe a novel

method we developed to make inferences about multiple environmental conditions,

especially in the area of monitoring recent forest fires based on soil microbiome

data collected from nearby Smoky Mountain National Park. We then consider

additional microbiome data and consider multiple approaches to effectively build

machine learning classification frameworks for them. We ultimately focus on a recent

female microbiome data challenge whose data can be leveraged to better predict

preterm birth during pregnancy. Our ecological framework has been implemented

as a tool called “SelectMicro” and an Application note submission is planned for

6



Bioinformatics. Our prediction framework for preterm birth microbiome data has led

to new internal University of Tennessee (UT) funding and a new collaboration with

leading Women’s health researchers at the UT Medical Center starting at the end of

2022.

In Chapter 3, we describe the effects of codon usage bias on the process of

protein translation. Codon usage bias has been known to reflect the expression

level of a protein-coding gene under the evolutionary theory, that selection favors

certain synonymous codons. We extended a prior framework that incorporated

another evolutionary factor, namely mutation bias and its effect on codon usage.

We describe an improved method, which we call MLE-Phi, that has much greater

computation efficiency and a wider range of applications than the more basic modeling

framework on which it is based. This work received the best paper award at the 12th

International Conference on Bioinformatics and Computational Biology in 2021.

Although measuring the effect of functional codon bias in simple organisms such

as yeast and E. coli has proven to be effective and accurate, codon-based methods

perform less well in higher organisms such as plants and humans. Chapter 4 is

the first attempt that we know about that discovers potential patterns of codon

usage using natural language processing (NLP) approaches. We also include a brief

discussion of a similar community project that we took part in that uses NLP on

random promoter sequences with the goal of predicting gene expression. We conclude

that NLP has great potential to make improved inferences about gene expression in

higher organisms. Further, we speculate that transformer-based frameworks, such

as BERT (Bidirectional Encoder Representations from Transformers) can be used to

“learn” codon preferences of an organism and facilitate improved heterologous gene

expression, i.e., optimally producing protein from a gene from one species in a well-

characterized alternative species like E. coli (18) We leave building NLP models of

codons for this new application for future work.

7



Figure 1.4: Cost of Whole Human Genome Sequencing for Past 20 Years
(NIH)
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Chapter 2

Applications for Microbiome Next

Generation Sequence Data

Microbiomes, as a vital part of many environments, can interact with plants and

promote their growth. Moreover, the composition of soil microbiomes can reflect

multiple properties of a site from which a sample is taken (30). Most current

microbiome studies focus on clinical gut data to aid in disease prediction (30; 43).

An increasing number of scientific applications now rely on high-throughput

sequencing. For example, sequence-inferred microbial abundance data have been com-

bined with environmental factors to prioritize engineering strategies where technical

or financial resources are limited (12). In this chapter, we consider associating species

occurrence information with certain environments or clinical factors using statistical

learning methods. Rather than focusing solely on classification and prediction tasks,

we present a framework that aims to extract the most informative features that

will increase microbiome classification performance, reduce computational time, and

allow for biological interpretation. We show that our approach is capable of predicting

various factors with high accuracy and precision. Furthermore, with a novel multi-

label classification framework that we call “SelectMicro,” we show that this framework

can predict available environmental factors with high precision and accuracy.

9



Further, some of the selected sequence-based markers appear to also be promising

indicator species for microbial ecology applications. This will enable making future

insights about microbial data and how it can be associated with different types of

environments.

2.1 Associating microbiome information with en-

vironmental factors

2.1.1 Background

One somewhat common microbial ecology application of interest to biologists is

predicting indicator species (13; 70), which can reflect environmental changes over

time by associating observed microbiome members with existing environmental

data (9; 28; 66). We take this idea one step further: can we use microbiome

information to predict environmental factors? Our novel ensemble feature extraction

and classification framework is targeted towards sequenced microbiome data, using

different datasets with differing scales of external factors.

2.1.2 Available data

We initially tested our approach on three distinct microbiome datasets. We describe

these data below.

Smoky Mountain Forest Fire Data

Study site. During late November and early December 2016, the Chimney Tops 2

wildfire burned approximately 44.4 km2 within the Great Smoky Mountains National

Park (GSMNP). On November 28th, the fire moved into the city of Gatlinburg, TN,

and burned a further 28.2 km2. This wildfire was extremely heterogeneous, with

unburned sites adjacent to severely burned sites, often within meters of each other.

10



From within the burn matrix we randomly selected three sites from “high burn” areas,

three “low/medium burn” sites, and three “no burn” sites within natural areas of the

GSMNP as well as from the exurban area of Gatlinburg, TN.

Bioinformatics. AM fungal sequences are processed using the DADA2 pipeline

in R (54). First, primers are trimmed from all sequences and sequence error rates

are calculated. Sequences are then merged into unique amplicon sequence variants

(ASVs). Finally, chimeras are removed using a de novo chimera checker. Because

the NS31–AML2 primers may amplify some non-AM fungal fungi, we then BLAST

representative sequence reads from each ASV against the MaarjAM database(Opik et

al. 2010) and only retain reads that matched a known AM fungal virtual taxonomic

unit by at least 97%. Sequences are deposited in the NCBI Sequence Read Archive

(BioProject ID: PRJNA771625). All other data are available via the Environmental

Data Initiative (EDI), doi:10.6073/pasta/1cac7b2ccd2262773f92600205f1d812.

Rocky Mountains Data

Study sites. We sampled foliar fungal endophytes and root fungi (root endophytes

and AM fungi) in the Colorado Rockies at the Rocky Mountain Biological Laboratory,

Gunnison County, Colorado, USA (38°57’N, 106°59’W). This region has predictable

decreases in air temperature (c. 0.8 °C per 100m;(52)) and declines in soil nutrients

with altitude (24), but increases in precipitation, mainly as snow. ((38))

To capture environmental, spatial, and plant-host-specific variation in fungal

guilds, we sampled 66 sites encompassing 9 to 13 elevations from each of six elevational

gradients in July 2014. Elevational gradients represented separate mountains in the

Gunnison Basin and were located within 20 km of each other.

At each location, we sampled nine adult individuals from up to 13 grass species

representing five genera (Poaceae, subfamily Pooideae; Achnatherum lettermanni,

Achnatherum nelsonii, Elymus elymoides, Elymus scribneri, Elymus trachycaulis,

Festuca brachyphylla, Festuca saximontana, Festuca thurberi, Poa alpina, Poa

11



leptocoma, Poa pratensis, Poa stenantha, and Trisetum spicatum). Samples were

based on tissue type (leaves v. roots) and plant species within each site.

Bioinformatics. This dataset is processed to generate Operational Taxonomic

Units (or OTUs), which are clusters of closely related sequences and therefore slightly

different from the exact ASV-based approach used on the previous Smoky Mountains

data. Given that microbial ecologists use both types of features (17) we want to

consider at least one OTU study as well. We merge paired-end reads using the fastq-

mergepairs from USEARCH (v9.2.64) (25) with “fastq-maxdiffs” set to 20 and “fastq-

maxdiffpct” set to 10 to ensure proper merging at a low error rate. The merged reads

and the forward unmerged reads are then trimmed at the primer sites using cutadapt

with “e” set to 0.2, “m” set to 200, and untrimmed reads are discarded. Merged

reads are filtered using fastq-filter from USEARCH with “fastq-maxee” set to 1.0.

The forward reads are first trimmed to 230 using fastx-truncate from USEARCH with

“trunclen” set to 230 and then filtered by fastq-filter from USEARCH with “fastq-

maxee” set to 1.0. We then concatenate the merged and forward reads into one file and

de-replicate using fastx-uniques from USEARCH with “minuniquesize” set to 2. After

these steps, 11,357,274 sequences remain. We cluster these sequences to form OTUs at

97% similarity (Estensmo et al., 2021) using cluster-otus command from UPARSE.

All OTUs identified as “fungi” are retained, and OTUs labelled as “unknown” or

“unidentified” are manually inspected based on blast results to determine if they are

kept for further analysis.

Human Gut Metagenomic Data

Derived from the Human Microbiome Project (39), the human gut metagenomic

datasets considered here were generated from six different disease cohorts: inflam-

matory bowel disease (IBD), type 2 diabetes in European women (EW-T2D), type 2

diabetes in Chinese (C-T2D), obesity, liver cirrhosis (Cirrhosis), and colorectal cancer

(Colorectal). These data have been widely used by prior applications of machine

learning to microbial communities including metAML (48) and deep-Micro (47). We
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note that a direct comparison of our framework with these two specific alternatives

is not possible because we do not prioritize single-label predictions. We include these

data to assess our model.

2.1.3 Prior approaches and methods

Statistical approaches for analyzing microbiome data are diverse and often involve

principal component analysis (PCA), linear regression, or hierarchical clustering (46).

Unfortunately, the “species” matrices derived from ecological microbiome data (either

ASV or Operational Taxonomic Unit (OTU)-based) are large, usually sparse, and

often exhibit a great deal of variation between samples.

One of the biggest challenges of analyzing microbiome data is their high

dimensionality: it’s common to have millions of OTUs/ASVs and only dozens of

samples to analyze. This introduces the so-called “curse of dimensionality,” which

refers to the high sparsity induced by high dimensionality that can cripple most

statistical and/or machine learning methods.

To avoid the curse of dimensionality, dimension reduction techniques such as

PCA (principal component analysis), LDA (Linear Discriminant Analysis), or some

variations of deep learning models, e.g., auto-encoders (26), is used to encode the data

in a lower dimensional space representation. While these techniques may preserve

important information within the original dataset, these representations are often not

interpretable. Moreover, microbiome data may also be “noisy” and as such affected

by either confounding or unrelated variables.

To help overcome these limitations, deep learning models such as Recurrent Neural

Networks (RNN) have been used for both classification and feature dimensionality

reduction (65) with some success. Training a typical deep learning model, however,

usually requires at least hundreds (and often thousands) of samples to achieve ideal

performance (29). Such large numbers of samples are both difficult and costly

to collect in more ecological settings. Moreover, a deep learning approach often
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Figure 2.1: Model Pipeline Illustration for Select-Micro
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requires converting features (e.g., ASVs) into different (and often less interpretable)

representations.

Normalization

Microbiome richness can vary greatly between samples, thus, abundances of micro-

biomes between samples can also vary greatly. It is therefore important to normalize

abundances. We achieve this by converting ASV/OTU abundances from each sample

using the simple equation below:

Pk =
Ak∑n
i=1Ai

(2.1)

Where:

Pk : Ratio of OTU/ASV k within a sample

Ak : Raw Abundance of OTU/ASV k∑n
i=1Ai : Sum of OTU/ASV abundances

After conversion from raw abundances to their ratios within a sample, we consider

OTU/ASVs that make up ≥ 1% of the total microbiome community as “present”

per (51). Next, all present OTU abundances are replaced by their ranks within

sample. OTU/ASVs that do not pass the 1% threshold would be considered absent

and therefore have the lowest possible rank.

2.1.4 Our novel feature ranking framework for microbiome

analysis

We propose to address these challenges using a subset of features (e.g., ASVs)

that exhibit the most variation between environmental factors. In short, the

basic idea is to find microbial “species” that seems to be the most associated

with a certain environmental factor, and then check if these markers can also be
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linked to environmental change(s). We test our framework by finding the most

relevant features that help uncover associations between microbiomes and known

environmental factors. In contrast to the mostly single-label tasks of interest in

human gut microbiome studies, more generic ecological studies, especially for soil

microbiomes, have multiple environmental factors that could be involved. It is

therefore important to look at these factors more comprehensively, and discover

environmental factors that have detectable influences on microbial communities.

Kruskal Wallis H-Test

Analysis of variance (ANOVA) is a widely used statistical method to test differences

between groups by comparing their means, which can be used to help identify

“species” that have significantly different distributions between different environ-

ments; however, ANOVA requires that tested variables are homoscedastic, i.e., the

residual errors between independent variables (OTU/ASVs) and dependent variable

(environmental factor) are consistent. In practice, this means residuals from the

ANOVA model should follow a normal distribution, even though previous research

has suggested that this is often not a valid assumption for microbiome data (21).

H = (N − 1)

∑g
i=1 ni (r̄i − r̄)2∑g

i=1

∑ni

j=1 (rij − r̄)2
(2.2)

2.1.5 Results of our and alternative approaches

A broad range of feature selection methods exist and have been widely applied, and

many have shown to be highly effective in extracting important features in similar

datasets. For this analysis, we considered five different feature selection methods

based on different mathematical assumptions. In addition, we considered six different

machine learning classifiers that are commonly used, as shown in Figure 2.1. Similar

to other frameworks, classification performance, measurements of accuracy, precision,

recall, and F1 scores are computed for validation, and each sample was tested using

16



the Leave-One-Out approach (26). We also include metAML (49), which is a widely

used classification metagenomics-based prediction framework that uses LASSO (69)

as the feature selection method. metAML also supports using either a vector machine

or a random forest, and we report the results of the better performer per (49).

Although our approach is primarily designed to find the microbiome

OTUs/ASVs that are most predictive for a group of environmental

conditions, for most of the tasks our results are at least as good as

the baseline model and MetAML, which runs feature selection on each

environmental factor individually.

2.2 Using microbiome data to uncover clinically

important information

2.2.1 Background

DREAM challenges are community competitions in which experimentalists “hold

out” valuable validation data to test competing computational approaches in areas

including systems biology and translational medicine, and therefore can use said

data to evaluate the methodology of independent research groups across the world

for important bioinformatics problems. More detailed information about Dream

challenges can be found at their website. The main advantage for computational

researchers such as our group is the collection of metadata, data anonymization (in

the case of clinical data), and impact is usually well-defined given a clear biological

question and the common evaluation of the computational approach; it is clear which

methods work better than others given all groups work on the same data with the

same (held out) validation applied.
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Figure 2.2: OTU Feature Scores along ranks
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Figure 2.3: Normalized Knee point calculated for feature number cut off
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Figure 2.4: Model Comparison

Figure 2.5: Feature Number Comparison
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2.2.2 The role of microbiome analysis

The DREAM challenge organizers hypothesized that patient microbiome data could

be used to predict which women were at a higher risk of preterm birth.

We focused on the challenge’s Task 1 which aimed to identify women at high risk

of preterm birth greater than or equal to 37 weeks. The test data only included

samples collected no later than 32 weeks of gestation.

2.2.3 Our approach

We initially approached this challenge by treating it as a binary classification task

(preterm birth vs not preterm birth), using a 70-30 train test split ratio. After

making preliminary benchmarks using the microbiome data matrix with around 20

standard classifiers used, we picked the top three performing classifiers (SVM with

RBF kernel, AdaBoost, and Random Forest). With further benchmarks on these

three models using AUC score calculated with cross-validation, we find that Random

Forest slightly outperformed the other two classifiers consistently, so we decided to

use a single model moving forward. Our implementation is publicly shared at github.

Based on our experience with environmental microbiome data we focused pri-

marily on both feature engineering, e.g. alternative feature selection methods, and

attempts to leverage external information—and specifically clinical metadata—to

perform performance, similar to how environmental data boosted performance earlier

in the chapter.

None of the feature selection methods significantly improve model performance.

Using simple linear regressions, we find that three provided labels in the metadata:

collection week, race, and age, correlated with the binary labels (preterm birth vs non-

preterm birth). So we decided to augment the training data by transforming these

labels and treating them as additional features alongside the microbiome ASVs.

Collection Week: We simply added this label as a feature alongside the ASVs,

after scaling it to be between 0 and 1 using min-max scaling.
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Age: Since this label is noisier (containing missing data points or ambitious range),

we first tried replacing these missing values and ambiguous ranges with their median

age values, then adding it as another feature for training like collection week, based on

the benchmarks of the model prediction, adding continuous estimated age as features

did not help the model gain any performance. We then tried to convert the age vector

to a binary feature vector, using different cutoffs, after multiple testings, we find that

using 35 as the age cutoff and adding this binary age feature vector (0 for age < 35

and 1 for age >=35) consistently drives the model prediction performance higher, we

tested different values of age cutoff, and find 35 to be the best cutoff, with 31 being

a close second.

Race: We transformed this label by calculating the ratio of positive labels (preterm

birth) amongst each race group, and use this ratio as the estimate of the risk coefficient

for each race group, then normalize this ratio with min-max scaling to fit the range

of 0 and 1, with 0 meaning least risk and 1 being the highest risk.

2.2.4 Results

After multiple tests with AUC scores from cross-validation, we see a consistent again

in performance after we transform these three given labels in the metadata and

add them as features alongside the microbiome ASVs. Based on the submission

feedback calculated from the test dataset, our AUC score increased from 0.610 to

0.6228 by adding these three labels, further confirming that these metadata labels

can be potentially used to help the model make better predictions if used correctly.

2.3 Conclusion

In this chapter, we have introduced multiple applications of microbial data and how

approaching these with different computational methods can lead to results with

different performances, and there is no singular method that can be used to effectively
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understand different datasets, in the pre-term challenge, we show that the although

the model difference is significant, especially between decision tree-based methods

and non-decision tree-based methods, the model differences between decision tree

based models are marginal. Instead, adept reweighing of samples leads to much more

significant differences in model performances, which suggested that the quality of each

sample in the training set is variable. For smoky mountain soil data and the Colorado

gradient soil data, different classification models show a much larger difference in

performance, and the ranking of features is more important in these datasets, these

different elements that attribute to significant model performance improvement can

further provide us with insights about each dataset and understanding the biological

implications behind these elements.
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Chapter 3

Codon Usage Models and MLE-Phi

The main body of the following text was published in BICOB (2020),

https://doi.org/10.29007/87r9

3.0.1 Introduction

Codon usage bias, which refers to using synonymous codons that code for the same

amino acid at different rates, has been studied for decades. Codon usage bias has been

known to reflect the expression level of a protein-coding gene under the evolutionary

theory that selection favors certain synonymous codons. For example, the Codon

Adaptation Index (CAI) relies on relative synonymous codon usage observed in highly

expressed genes, and has been effective at predicting gene expression in unicellular

microorganisms (63). Inspired by CAI, tAI goes further and incorporates tRNA

gene copy number that exhibits a high and positive correlation with overall rRNA

abundance (55). The underlying assumption behind CAI and tAI is proteins with

higher expression contain more optimal codons. Because optimal codons help achieve

faster translation with less error, protein-coding genes with a higher ratio of optimal

codons likely have experienced more positive selection over time.

Codon usage within multi-cellular organisms with smaller effective population

sizes—such as flies, plants and humans—should be less directly affected by selection
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(55; 73). To improve prediction performance for all organisms, the Mutation-

Selection-Drift balance model was proposed in which selection favors optimal codons

and less optimal codons persist due to genetic drift. Codon bias can therefore be

thought of a balance between both mutation (e.g., GC content of an organism) and

selection (e.g, either high expression or a focus on higher accuracy).

3.0.2 Prior work

ROC-SEMPPR uses a Bayesian Markov chain Monte Carlo (MCMC) to estimate

the strength of selection on codon usage (31). Because this model considers both

selective pressure and mutational bias, it can be more comprehensive than models

that rely solely on features in highly expressed genes. This advantage is not “free”:

ROC-SEMPPR’s MCMC calculations are also significantly more computationally

intensive than most traditional codon usage models. For example, using the current

implementation of ROC-SEMPPR required about 19 hours to process 8.5 Mb of yeast

genome data in early 2020. Codon-specific metrics such as CAI and tAI, on the other

hand, are much faster because they use rely on pre-computed values. For example,

the CAI estimate for any given gene sequence is simply the geometric mean of each

codon’s respective value under the model.

3.0.3 Developing a faster codon usage model

ROC-SEMPPR is capable of calculating codon-specific estimates of selection pressure

and mutation bias. These estimates have been used to estimate gene expression (Φ)

based on this previous equation from (31).

pi =
exp [−∆Mi,1 − ∆ηi,1Φ]∑ng

j=1 exp [−∆Mj,1 − ∆ηj,1Φ]
(3.1)

We previously leveraged ideas from ROC-SEMPPR to develop a faster, more

flexible codon usage model that also relies on pre-computed values. This new method,

which we called MLE-Φ (Maximum Likelihood of Φ), estimates the protein synthesis
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rate Φ on arbitrary intervals using previously computed ROC-SEMPRR parameters.

With this modified Φ estimation framework, we can also predict gene expression at

a much finer grain than prior efforts.

3.0.4 Preliminary results

∆η is the ROC-SEMPPR measure of relative translation inefficiency for synonymous

codons, scaled relative to the preferred codon under selection pressure (Preferred

codon has a ∆η = 0). In other words, the higher ∆η is, the less efficient the codon

is compared to the preferred codon for a specific amino acid. ∆M describes the

ratio of the frequencies of one codon relative to the reference under pure mutation;

it represents how mutational favored (mutation biased) a codon is relative to the

preferred codon. Mutation rates are not always equal, so when there is little selection

acting on codon usage (e.g., when gene expression is very low), codon frequencies will

be dominated by these more mutation-favored codons as detailed in Gilchrist 2015

(31).

n+k∏
n

exp [−∆Mi,1 − ∆ηi,1Φ]∑ng

j=1 exp [−∆Mj,1 − ∆ηj,1Φ]
(3.2)

Here n marks the start position of a codon window/interval that spans k codons

(when this formula is applied to an entire gene, n = 0 and k = gene length / 3).

By finding a Φ that maximizes the output probability for this specific window, we

can get a effective estimate of Φ much faster, especially since MLE-Φ is optimized by

Newton’s root approximation method. In experimental studies such as a ribosome

footprint count analysis (local translation rates), it has been shown that the ribosome

covers about 10 codons in a transcript, suggesting an ideal value for k should be

approximately ten for modeling protein translation.

Implementation of MLE-Φ and respective computed values of ∆η and ∆M for

several most studied organisms are hosted on GitHub, and using these pre-computed

values of ∆η and ∆M to find the maximum likelihood of Φ significantly reduces
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computation time. In Table 4.4 we benchmark both methods using different model

organisms. Although this approach required running the original ROC-SEMPPR at

least once, our method can produce subsequent estimates for these organisms in only

seconds (versus days in some cases).

MLE-Φ closely approximates MCMC-based Φ (Figure 3.1). As expected, the

agreement of the two approaches tends to be better for highly expressed genes. This

is to be expected as codon usage bias should have stronger detectable effects on genes

with higher expression (32; 35; 71). Low expression genes correlate less well, in part

because they tend to be noisier and harder to measure experimentally (15; 68). Even

so, there is a clear and strong correlation between the original and our new approach

with an overall correlation coefficient of 0.93.

Comparison of tAI, CAI and MLE-Φ Estimates

These comparisons suggest that the prediction of gene expression is significantly

improved under our framework, and suggests that quantification of mutation bias

is essential for fully understanding synonymous codon usage. We also propose an

improved method, namely MLE-Φ, with much greater computation efficiency and

a wider range of applications. An implementation of this method is provided at

https://github.com/zlu-volyote/MLE-Phi.

We tested the performance of Φ estimation using empirical gene expression data

relative to both CAI and tAI. This assessment will determine what effects (if any)

incorporating mutation bias (∆M) has on our predictions. We computed these

gene expression measurements and then computed their correlation using the same

approach as Causton et al. (2001). MLE-Φ’s correlation is always higher than CAI for

all data, and higher than tAI for 3/5 data sets considered (see Table 3.1). Combined,

this supports using our new Φ estimation framework for predicting gene expression.

Because the more inclusive MLE-Φ model should perform better than CAI and

tAI for more complex organisms, we next decided to compare different metrics for

organisms under less selection pressure. Although MLE-Φ has the highest overall
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Figure 3.1: Correlation between MLE Φ and ROC-SEMPPR Φ
As shown there is a 0.93 Pearson correlation between these two measures, which
indicates that our new MLE estimation framework closely corresponds with the
calculations from the original ROC-SEMPPR.
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Table 3.1: Comparison of three metrics for different yeast data
A comparison between our three considered metrics using previously published yeast
mRNA abundances. Based on the Pearson correlation between predictions and
empirical gene expression data, all three methods perform similarly in yeast.

MLE-Phi tAI CAI
Arava 2003 0.637 0.621 0.643
Sun 2012 0.602 0.600 0.560

Nagalakshimi 2008 0.521 0.532 0.500
Holstege 1998 0.763 0.710 0.718
Causton 2001 0.688 0.676 0.657
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correlation for all organisms (Table IV), Φ is not always significantly better than tAI

and CAI (Z score, p < 0.01).

3.0.5 Looking at the effects of other factors affecting expres-

sion

Based on the Selection-Mutation-Drift model, more complex organisms with smaller

effective population sizes should be more tolerant of drift and therefore are expected

to be less affected by selection pressure. For example, in the original tAI paper,

the authors estimated the selection pressure on different organisms. Although yeast,

considered above, has strong estimated pressure (0.77-0.82), this pressure is only 0.24

in the model organism Arabidopsis thaliana and almost non-existent in humans (0.03)

as shown in Table 3.2.

Because the more inclusive MLE-Φ model should perform better than CAI and

tAI for more complex organisms, we next decided to compare different metrics for

organisms under less selection pressure. Although MLE-Φ has the highest overall

correlation for all organisms (Table IV), Φ is not always significantly better than tAI

and CAI (Z score, p < 0.01).

As described previously, measurement (and therefore assessment) is more difficult

for genes with lower overall expression ((15) (68)). It is also possible that a given gene

may have different expression levels under different conditions/cell types in multi-

cellular organisms. To address this issue, “Housekeeping” genes have historically

been used, which are genes involved in basic cell maintenance that are expected to

maintain consistent expression levels irrespective of tissue type, developmental stage,

or external signals. Although there are also a few genes such as 16S, tus, rpoD, glyA,

dnaB, gyrA, pykA/F, pfkA/B, mdoG and arcA that are widely used, it is difficult to

obtain these specific values for the organisms we are studying (27).

To overcome this issue we extend a previously published method from 2007 (27)

that used RT-PCR-based abundance estimates to rank genes. By picking genes on
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Table 3.2: Estimation of Selection Pressure in Several Eukaryotes

Organism Common Name Estimated Selection Pressure
Arabidopsis thaliana Thale Cress 0.24
Caneohardibtis elegans Round Worm 0.45
Drosophila melanogaster Fruit Fly 0.31

Homo saipens Human 0.03
Plasmodium falciparum Malaria Parasite 0.17
Saccharomyces serevisiae Baker’s Yeast 0.77

Schizosaccharomyces pombe Fission Yeast 0.82
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Table 3.3: Correlation-based comparison of the three considered metrics
using the top 5% of highly expressed genes and empirical expression data
Fisher’s R-Z transform is used to compute the Z score

Yeast Roundworm Fruitfly Arabidopsis
Same Size 518 2190 1393 2756
MLE-Phi 0.765 0.606 0.546 0.302

tAI 0.696 0.579 0.424 0.257
CAI 0.726 0.580 0.309 0.106

Z Score (Phi,tAI) 2.39 1.38 4.22 1.81
Z Score (Phi, CAI) 1.41 1.33 7.73 7.62
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the top of the generated rankings, our selections would likely be “housekeeping” gene

candidates and, more importantly, for this analysis, have more stable expression levels.

Here, rather than using RT-PCR RNA abundance data we create rankings based on

RNA-seq expression data from each organism and analyze the top 5% of the highly

expressed genes based on these data. As shown in table 3.3, this approach generates

candidates that are less noisy when compared to considering all protein-coding genes.

After reconsidering the Pearson correlation coefficients between the considered metrics

and prior empirical measurements, our Φ framework still consistently outperforms

other methods for all organisms tested.

We also analyzed the difference between correlation coefficients using Fisher’s R-

Z transform. As shown above, we observe consistently positive Z scores with most

comparisons having a corresponding p-value less than 0.05. This further confirms our

hypothesis that, by weighting in the effect of mutation bias, Φ-estimation is more

comprehensive and therefore a more accurate estimate fo organisms where selection

pressure is not the dominant driver of codon usage bias.

3.0.6 Looking deeper into mutation bias

We have shown above that our MLE estimate of Φ has better accuracy than other

traditional codon usage metrics when mutation bias impacts gene expression level

estimates.

To confirm that mutation bias is responsible for the observed differences between

model predictions, we created rankings for each coding gene in D. melanogaster

using Φ, tAI, and the prior empirical measurements. We then sorted the genes

by the ranking distance differences between tAI and Φ relative to the empirical

measurement data. As we move from genes with the highest prediction differences

to the lowest, we observe a clear shift in GC content (see Figure 3.2). This further

confirms that mutation bias plays an important role in the computational prediction

of gene expression, especially for multi-cellular organisms such as Drosophila.
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Figure 3.2: Shift of GC content across genes with different
levels of prediction differences between using Φ and tAI
The x-axis represents the number of genes with the highest prediction differences
between Φ and tAI, samples with a smaller size contain genes with more prediction
differences, while the y-axis represents the deviation from sample mean of GC content
to the population mean calculated from all 11,196 coding genes in Drosophila). The
observed GC bias decreases as we sample less different predictions between Φ and
tAI.
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Figure 3.3: Relative MLE-Φ and CAI Window Estimation
MLE-Φ and CAI for k=10 codon windows for the ACT1 gene in yeast; values
along the x-axis mark the start codon position of the window, values on the y
axis represent the ratio between window metric estimate and whole gene metric
estimate. This illustration indicates that although ACT1 is a “housekeeping” gene
with consistent global gene expression estimates (difference in ranking < 1%) using
different methods, there is visible disagreement in the more local translation rate
estimates using these approaches.
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Figure 3.4: Distribution of Window Measurements by CAI and MLE-Φ
Figure shows distributions of the distance between CAI and MLE-Φ, x label shows
the distance if the relative metric ratio between MLE-Φ and CAI, values along y-
axis represent the number of windows (window size of 10 codons) with respective
measurement distance.
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3.0.7 Local vs Global estimates

To ascertain how mutation bias affects so-called “translation tempo”, or the rate by

which a ribosome transcribes a specific region, we compared local measurements of

MLE-Φ and CAI using a window-based analysis (similar to our prior work in (18)),

created a ranking of CAI and Φ-based gene expression estimates, and selected a total

of 300 genes (5% of roughly 6000 coding genes in yeast) with the least difference in

overall expression level predictions.

For an example gene, we present ACT1(YFL039C) which is a housekeeping gene

ranked in the top 5% of highly expressed by MLE-Φ, CAI, and all other methods

considered here. As expected, gene-wide predictions of the expression level of ACT1

are very similar; however, we see clear variations in certain local regions (see Figure

3.3).

This result indicates that local protein translation rate estimates between models

can vary, even when global gene expression level predictions are similar. The rationale

is CAI and MLE-Φ are global estimates that converge to the same level but do not

indicate how fast/slow specific regions are translated. To illustrate this more clearly,

we computed the distance between MLE-Φ and CAI for codon windows in a total of

300 (roughly 5%) of the genes described above (Figure 3.4). Although most genes

have similar estimates using CAI and MLE-Phi, there is a number like ACT1 that

differ substantially. This is a major contribution of this work since there was no

local/window-based version of ROC-SEMPPR Φ prior to our developing MLE-Φ as

reported here and therefore such differences between global and local estimates has

not yet been reported to the best of our knowledge.

3.0.8 Discussion

Gene expression is a topic of great interest in biology, and there are a wide range of

approaches to model it(10)(77). For example, prior work has applied probabilistic

and machine learning approaches based on microarray data and typically achieved
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a prediction accuracy between 73% to 79% in yeast (10). Similar performance is

achieved using codon usage bias-based estimates such as CAI and tAI. We extend

and improve upon ROC-SEMPPR to develop a new MLE-Φ framework, which allows

estimating expression using any arbitrary interval. This allows using codon usage

bias to better understand other areas of biological interest such as protein synthesis

rates and co-translational protein folding.

Estimation of Φ also provides a more comprehensive interpretation of codon and

incorporates mutation bias estimates ∆M from ROC-SEMPPR. We confirm that

mutation bias plays an important role in shaping observed codon usage bias. By only

selecting the top 5% genes that are highly expressed, which is the exact method that

underlies CAI and TAI-based estimates, we observe that our new method MLE-Φ

is always better. This suggests that incorporating mutation bias into the expression

model better predicts the precise expression level of a gene, even in highly expressed

genes that are expected to have codon usage dominated by selection. This discovery

is most important for more complex organisms like D. melanogaster, Arabidopsis and

humans.

Significantly, we provide for the first time a framework that can use selection and

mutation-based parameters for more localized windows. Prior work, including ours

((18)), have shown that rare codons are evolutionary conserved and some likely help

proteins fold by slowing down the ribosome translation complex, a phenomenon called

“co-translational folding” in the literature. We show that a number of genes in yeast

have the same global estimate but differ greatly in a more local window-based analysis

(see Figures 3.3 and 3.4). We are currently using our new MLE-Φ framework with

ongoing experimental validation of preferred codon usage models for genes known to

co-translationally fold (see (57) for details). This will provide biological support that

MLE-Φ, which incorporates selection and mutational bias to better predict overall

gene expression, also is better able to estimate the “tempo” of the ribosome and aid

in downstream protein-focused research.
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Chapter 4

From Sequence to Expression,

Using Deep Learning Models to

Decipher Relations Between

Sequences and Gene Expression

4.1 Dream Challenge 2022 - Predicting promoter

sequences using millions of random promoter

sequences

4.1.1 Challenge Description

“Decoding how gene expression is regulated is critical to understanding disease.

Regulatory DNA is decoded by the cell in a process termed “cis-regulatory logic”,

where proteins called Transcription Factors (TFs) bind to specific DNA sequences

within the genome and work together to produce as output a level of gene expression

for downstream adjacent genes. This process is exceedingly complex to model as a

large number of parameters is needed to fully describe the process.
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Having the ability to understand cis-regulatory logic in the human genome is an

important goal and would provide insight into the origins of many diseases. However,

learning models from human data is challenging due to limitations in the diversity

of sequences present within the human genome (e.g. extensive repetitive DNA), the

vast number of cell types that differ in how they interpret regulatory DNA, limited

reporter assay data, and substantial technical biases present in many omic methods.

To overcome these issues, we have recently created high-throughput measurements of

the cis-regulatory activity of millions of randomly generated promoters in the single-

cell organism Yeast (de Boer et al. 2020). Here, the expression level generated by

each promoter sequence is measured via a fluorescent reporter gene regulated by a

promoter (Sharon et al. 2012). The set of randomly generated promoter sequences

is so large that it rivals the complexity of the entire human genome, which gives

us unprecedented power to learn the many parameters required to understand gene

regulation (see Rationale). Because both human and Yeast cis-regulatory logic uses

similar principles, we hope that the model architectures learned on yeast data can

inform how to create models for the human genome. ” (14)

4.1.2 Overall Approach

For this challenge, we use a basic BERT transformer (23), training the labeled training

in a 2-step process: whole data training and subset fine-tuning. We first train the

model with a designed regression trainer using all 6.7 million samples provided in

the training data, then based on the bins of expression tiers, sample equally from

18 expression bins to create a close to uniform distribution subset of data, and use

this subset to further tune the model to allow it to overcome it’s tendency to bias

toward the middle expression region that contains significantly more samples than

low and high expression regions. Based on our evaluation metric, this step effectively

increased the performance of the model, especially for prediction accuracy on low and

high-expression genes.
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4.1.3 Data Usage

In this challenge, we used the data mostly as it is, in the fine-tuning process, we

sampled a subset from the entire set, as described in below training process, we use a

99-1 random train test split for both training and fine-tuning. The training dataset

contains all 6.7 million samples provided in the challenge, then based on the bins of

expression tiers, we sample k promoter sequences randomly from each expression bin

(bins 1-18) to create a close to uniform distribution subset of data, by looking at the

distribution of the data and testing different k values, we used k=25000. Other values

of k we have tested include 3000, 15000, 50000, and 1000000. Both files used in the

two-step training process have been included in GitHub.

4.1.4 Model

We use a basic transformer model (72), and specifically, a basic configuration of

BERT (Bidirectional Encoder Representations from Transformers) (23). In addition

to achieving state-of-the-art performance on natural language processing tasks, BERT

has been successfully applied to prediction tasks on biological sequences (37), (16).

This BERT base model uses 12 layers of transformer blocks with a hidden size of 768

and the number of self-attention heads as 12 and, in total, around 110M trainable

parameters.

4.1.5 Training Procedure

Our training procedure is a two-step process based on provided labeled sequence

training data. During both pieces of training, we treat each individual nucleotide as

a word and split the entire promoter sequence, typically composed of at most 110

bases, into a sentence with at most 110 words, separated by spaces. Because some

sequences are larger, we use 128 as our max input size, and any sequence with less

than 128 words (nucleotides) is padded with ”[PAD]” tokens to ensure uniform input
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sizes. All training procedures and models were implemented in Python, our training

environment involves PyTorch (50) and Hugging-face (75).

Tokenizer

We first train a word piece tokenizer (61) customized to the input, due to the

special nature of inputs converted from SNA sequences, vocabularies are guaranteed

to be [’A’,’G’,’G’,’T’,’N’], while adding five special tokens commonly included in

transformer models: ”[PAD]”, ”[UNK]”, ”[CLS]”, ”[SEP]”, ”[MASK]”, which results

in a fixed vocabulary size of 10 tokens. In future training only two of the special

tokens – the mask token ”[MASK]” and the pad token ”[PAD]” – are used in further

training; the other special tokens were included during initial development to support

alternative model formulations.

Training and Fine-Tuning

We first train a BERT model from scratch, using only the entire data provided for

the contest (approximately 6.7 million sequences), with a designed regression model,

using an MSE (mean squared error) loss function and AdamW (40) optimization

function. After training the model with all the samples and their expression labels,

we further train the model with the fine-tuned subset. This subset used for fine-

tuning is sampled equally from 18 expression bins of the full dataset to create a

close-to-uniform distribution subset. The two-step training process shares the same

infrastructure except that the fine-tuned step uses a Huber loss function instead of an

MSE loss function, the detailed parameter for the layers and parameters are included

in below table:

4.1.6 Result and Discussion

Despite limitations in hardware and timeline, our approach exceeded the published

baseline model and made it to the final leader-board 45 teams at rank 33, similar
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Table 4.1: Transformer Architecture and Model Configurations for Dream NLP
Challenge

Model Architectures
BertForSequence
Classification

Train Epoches 3

Hidden Layer
Activation Function

GELU Per Device Batch Size 36

Hidden Layers 12 Initial Learning Rate 1e-5
Hidden Layer Size 768 Optimizer adamW
Dropout prob 0.1 Loss Function MSE/Huber
Max Position
Embeddings

512
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deep learning approaches with different variants were adopted by the top teams,

which further shows neutral network can be to successfully capture the patterns

from sequence to gene expression, it is also worth noticing that, contrary to the

increased performance attention mechanisms usual bring to natural language models,

teams who introduced attention mechanism into their model on this dataset generally

performed worse, which suggests that contextualized information of DNA sequences

is either not related to their gene expressions, or the designed models were not

capable of capturing the context information to make better predictions. To further

this, we designed a similar context-based transformer and examined the degree of

importance of contextualized information in genetic sequences when they are used to

make predictions about gene expressions. We also developed a model that uses codon

usage as the basic input unit instead of a single nucleotide, namely Codon-Bert.

4.2 CodonBERT: A Novel Approach to Under-

standing and Utilizing Codon Usage Patterns

4.2.1 Abstract

Codon usage bias refers to the uneven use of synonymous codons. For decades the

Codon Adaption Index (CAI) has been the gold standard for modeling codon usage

bias, especially with respect to predicting a gene’s overall expression level. However,

CAI is based on the assumption that a small training dataset – usually genes with

higher expression – are the best data for determining “preferred” within a species.

Although this assumption has largely held true for uni-cellular species such as yeast

and E.coli, CAI has been unable to serve as a viable method for modeling codon

usage in more complex organisms. Here we propose a novel deep learning framework

to predict gene expression using a natural language processing scheme, namely Codon-

BERT. We show that our model is capable of making substantially better predictions

of gene expression for a diverse collection of model organisms, especially for ones
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where it is less obvious how to choose highly expressed genes for a CAI-based model.

Our main contribution of this work is utilizing codon position information, which

is often overlooked by other methods, always produces a better model of codon

usage. Further, our more sophisticated framework that considers all genes (low, high,

and all genes in-between) does a much better job estimating gene expression of the

intermediate genes than prior approaches.

4.2.2 Introduction

Codon usage bias, which refers to using synonymous codons that encode for the same

amino acid with different frequencies, has long been studied. Previous studies have

shown that synonymous codon usage is likely shaped in part by positive selection

pressure (e.g., (2)), and highly expressed genes generally show higher synonymous

codon usage biases ((3), (11)). The observed positive correlation between gene

expression levels and estimated codon usage bias is generally attributed to selection for

translational efficiency ((64), (1)). Mutation (and thus random drift) is an alternative

and less interesting force that also can shape codon usage biases (see (62) for a review).

In 1986, Sharp proposed the Codon Adaption Index (CAI) (64) under the

assumption that, since optimal codons are more likely to be found in the highly

expressed genes given their stronger selection pressure, codons that are ”preferred”

(higher synonymous biases) in a known collection of highly expressed genes are more

likely to be transitionally efficient. This method proceeds as follows: calculate

the observed frequency of each codon divided by its frequency expected under the

assumption of equal usage, which is also called relative synonymous codon usage

(RSCU). The CAI of a gene is simply the geometric mean of RSCUs for each codon

in a gene divided by gene length. Genes with more optimal codons (higher RSCUs)

are likely highly expressed genes, and therefore CAI is a relatively accurate measure

of gene expression in the absence of mutation/random drift.
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It follows that CAI can be a very effective method of measuring codon usage

bias in single-celled microorganisms with short generation times such as yeast and

E. coli. However, CAI can be less effective when it comes to multi-cellular species

with weaker selection pressure ((59), (34)). Further, CAI tends to identify genes

with higher expression levels much better than lowly expressed genes that are more

susceptible to mutation and drift. Over the years, many methods based on CAI

have been proposed ((59), (34), (36)), but most of these methods only show a small

improvement over the original CAI methods with respect to predicting overall gene

expression.

More recently, studies have shown that rare codon “clusters” are functionally

important for protein activity and gene expression ((53), (19), (20), (7)). Because

CAI is simply a geometric mean of RSCUs, the relative positions of codons are not

factored in. Experimentally derived ribosome footprint data have shown that different

stages in the protein translation process, such as initiation and elongation of distinct

regions of genes, can have different impacts on protein synthesis ((56)). This suggests

that the same codon in different regions of a gene can have a different impact on

protein synthesis based in its “neighborhood” and therefore could impact overall

gene expression in a more localized fashion.

To better understand potential codon usage patterns and their impact on

observed gene expression, we propose a novel deep-learning framework to predict

gene expression using a natural language processing scheme, namely Codon-BERT.

We show that, compared to traditional codon usage bias models like CAI, our model

is capable of making significantly better predictions of gene expression in a diverse

collection of model organisms, especially for genes that are moderately expressed.

Our median improvement is nearly 54% relative to CAI, and is as high as 1600% on

our mammalian data, suggesting an approach looking at only the top X% of genes

may lead to a poor model, especially for large, multi-cellular organisms considered

here.
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4.2.3 Data

To test our model’s performance for expression level prediction, we collected

expression measurements from six model organisms: Saccharomyces cerevisiae

(Baker’s yeast), Escherichia coli, Caenorhabditis elegans (Roundworm), Drosophila

melanogaster (Common fruit fly), Arabidopsis thaliana (Thale cress), and Mus

musculus (House mouse). Data sources for each of these species are included in

Table 4.2.

For each species, only baseline control experiments are used (hence ignoring

any other included experiments that involved alternate conditions). The median

expression value is then used for each gene across all available experiments.

4.2.4 Method

The field of natural language processing (NLP) has seen the advent of a new family

of neural networks known as transformers. Transformers (72) are in direct contrast to

classical recurrent neural network techniques as they avoid autoregressive, sequential

processing, utilizing a self-attention mechanism (8). Self-attention mechanisms

learn contextual information about each input token, learning how each token is

related to other tokens within the sequence. In 2018, BERT (Bidirectional Encoder

Representations from Transformers) (23) was shown to outperform preexisting

models across a large diversity of NLP benchmark problems. When compared

to its predecessors, the major innovation of BERT comes from its inclusion of

”bidirectionality,” meaning a model learns a word and its context from left to right

as well as from right to left, leading to a significant improvement in how researchers

can model languages.

In computational biology, transformers, and specifically BERT, have seen success

across a wide variety of applications for biological sequences. DNABERT (37)

applied a modified BERT model to solve tasks such as identifying promoters, splice

sites, and transcription factor binding sites. ProteinBERT (16) applied BERT
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Table 4.2: Genbank accessions for all empirical expression data used in this study.

Species Accession Number

Saccharomyces cerevisiae (strain S288c) E-MTAB-8626

Escherichia coli (strain K12) GSE1121

Caenorhabditis elegans E-MTAB-2812

Drosophila melanogaster E-GEOD-18068

Arabidopsis thaliana E-MTAB-4202

Mus musculus E-GEOD-52564
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and a pretraining procedure to ultimately train a model on diverse protein-related

tasks. Genetic sequences are not so different from natural languages, and a coding

sequence, which usually ranges between 100-200 codons in length, can be treated as

a sentence in a language with a vocabulary of 64, one for each of the possible codons.

We hypothesized that NLP models—like BERT—could help discover patterns in

codon usage because there are both left-to-right patterns (translational efficiency,

see Introduction) as well as right-to-leftright to left (much less understood ribosomal

pausing/co-translational folding patterns). For example, we have previously shown

that less common codons (also called rare codons) that likely facilitate co-translational

folding occur in similar regions within evolutionary-related proteins (19). Further,

empirical analysis of ribosome footprint data – which is the best in vivo way to

measure ribosome translation efficiency – can be modeled well using fixed-sized

windows as small as 10bp (76). To the best of our knowledge, this study is the

first attempt to use transformer-based NLP models to further decipher codon usage

bias patterns, especially within the diverse set of model organisms considered here.

4.2.5 Pre-processing

The input to our CodonBERT model is gene sequences along with their labeled

empirical expression values. Gene sequences are converted into vectors through the

use of a tokenizer, which is a common technique in NLP that replaces each word in a

sentence with an encoded token (from the vocabulary) that the model can understand

as input. We used the base BERT (word piece) tokenizer from (23). We split the

input sequence into 3-base-pair subsequences, which equate perfectly to codons with

the gene and each constitutes a separate token. As is standard practice in training

transformers, we allow for a padding token represented by ”[PAD]”; this is used to

fill the sequence to the maximum allowed length. One more token, ”[UNK]” is used

to represent any unknown tokens, e.g., errors in the sequencing input data that fail

to determine the exact nucleotide.
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Once the sequences are tokenized, samples are then randomly split into 80%

training data and 20% testing data, the latter of which is unseen to the model during

training. We also use the same training set for a CAI-based framework that calculates

codon frequencies using only the most highly expressed genes (top 5%).

4.2.6 Model Architecture

Our model is implemented with Huggingface (75), a large open-source library of

models commonly used in NLP. Importantly, we use an identical model to the

base BERT model introduced in (23). The model uses 12 attention heads and 12

hidden layers in the encoding layers, allowing for a deep and large model that can

learn complex patterns in the input sequences. After hidden layers and attention

mechanisms, our configured BERT model uses GELU activation functions (33). All

the additional tuned hyperparameters and specifics for the configuration of the model

can be seen in Table 4.3.

4.2.7 Model Training and Evaluation

We train the model for 20 epochs on each dataset using a mean-squared error (MSE)

loss function. The model is trained with an AdamW optimization function (41) and

the base learning rate scheduler at which the initial learning rate is set to 1×10−5. For

regularization, we utilize dropout (67) on both hidden encoder layers and attention.

Both dropout rates are set to 0.1, and the dropout mechanism is disabled during

testing. Another method of regularization is imposed through LayerNorm (6) layers,

through which we use an ϵ value of 1 × 10−12. Other training configurations are

summarized in Table 4.3. Finally, we use the Spearman’s rank correlation coefficient

between model predictions and empirical expression values to assess each individual

model’s performance.

Code and data used to train the model, and instructions on running the model

are hosted on github at github.com/zlu-volyote/CodonBert.
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Table 4.3: Transformer Architecture and Model Configurations for CodonBert

Model Architectures
BertForSequence
Classification

Train Epochs 20

Hidden Layer
Activation Function

GELU
Per Device
Batch Size

2

Hidden Layers 12 Hidden Layer Size 768

Attention Heads 12
Attention
Dropout Rate

0.1

Initial Learning Rate 1e-5 Optimizer AdamW
Dropout Rate 0.1 Loss Function MSE
Max Position
Embeddings

512 LayerNorm ϵ 1e-12
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Figure 4.1: Scatter plot of Saccharomyces cerevisiae S288c gene expression
predictions made by CAI/Codon-BERT with respect to log-transformed empirical
expression measurements. We use Spearman r for ranked correlation (see Methods).
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4.2.8 Results

We first considered Saccharomyces cerevisiae (yeast) since we and others have shown

a strong correlation between observed codon usage biases and overall gene expression

(42), (76), (64), (3), (62). This dataset, therefore, is expected to have one of the

highest – if not the highest – CAI-based gene expression correlation. As shown in

Figure 4.1, our predictions of gene expression levels in Saccharomyces cerevisiae S288c

generated by our model (r=0.668) has a stronger correlation than CAI (r=0.452).

We further zoom into different tiers of expression as illustrated in Figure 4.2. For

genes with lower or higher expression levels, both methods perform either relatively

poorly (r=0.22 vs r=0.235) or relatively well (r=0.731 vs r=0.636), respectively,

consistent with prior studies in Saccharomyces cerevisiae (64), (42). Significantly,

for the majority of genes that are neither significantly highly expressed nor lowly

expressed (i.e. moderately expressed), our model significantly outperforms CAI

(r=0.539 vs r=0.258).

We then perform the same benchmark for five other datasets from different model

organisms, and the summary table of Spearman ranked correlations between the

models and empirical expression data are shown in Table 4.4. In strong support

of our underlying hypothesis that NLP can better determine cryptic codon usage

patterns than a more aggregate-based method, our model significantly outperforms

CAI across all datasets considered, especially for more complex organisms such as

Arabidopsis thaliana and Mus musculus. In these large multi-cellular organisms (a

plant and animal) our model yields a reasonable performance while CAI is barely

correlated with observed gene expression data generated from these species.

4.2.9 Discussion

As mentioned earlier in the Introduction, many alternative approaches compare their

results (often correlations) relative to CAI using genes from either yeast S288c or

E. coli K12, which were both considered here as well. We therefore performed a
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Table 4.4: Model benchmark results across selected model organisms. Consistent
with prior results (e.g., (42)), expression data-based CAI works poorly on Arabidopsis
and mouse while codonBERT performs relatively much better based on a more
comprehensive (but codon diversified) training dataset.

Species CodonBert CAI Percent Improvement

Escherichia coli 0.615 0.494 24.5

Saccharomyces cerevisiae 0.668 0.452 47.8

Caenorhabditis elegans 0.684 0.428 59.8

Drosophila melanogaster 0.523 0.392 33.4

Arabidopsis thaliana 0.522 0.157 223.5

Mus musculus 0.427 0.025 1600

54



Figure 4.2: Scatter plot of model predictions with empirical expression data across
different ranges of expression.
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literature search to compare our model performance with prior gene-based approaches

for predicting overall gene expression.

Relative Codon Usage Bias (RCBS) is an improved version of CAI based on a

bespoke set of 123 highly expressed genes from yeast genome and achieved roughly

a 3% gain in performance (an increased of Pearson correlation from 0.5987 to 0.6163

(22)) and, when performing the same analysis with another biologically-informed

set of 45 highly expressed genes from E. coli, they achieved roughly a 15% gain in

performance (a final Pearson correlation of 0.7082 (58)). We note that CodonBERT

already has the same correlation as the initial highly curated set of genes from E. coli

did (roughly 0.615) and outperforms RCBS and their highly curated set of genes for

yeast gene prediction by 8.4%.

Renana Sabi and Tamir Tuller proposed stAI as an improved version of tAI

(59)(60), which is often preferred by protein biochemists given that it more directly

models protein elongation by leveraging information about the overall tRNA pool

in an organism. Although this method is not broadly applicable since biological

experiments are required to parameterize the model, it provides an alternative,

biologically-informed view of modeling gene expression.

Further, Sabi and Tuller extensively evaluated tAI and stAI using empirical

protein abundance data, which is only indirectly measured based on sequencing-

based gene expression analysis. They showed that tAI has a Spearman correlation

of r=0.5032 with empirical gene expression measurements in E. coli, r=0.3328 in

Arabidopsis thaliana, r=0.0919 in C. elegans , r=0.4878 in D. melanogaster, and

0.6915 in S. cerevisiae. stAI has a spearman correlation of 0.5493, 0.3762, 0.0956,

0.5001, and 0.5802, respectively. CodonBERT does as well or better across all datasets

with the exception of C. elegans and Arabidopsis where our model has a correlation

of 0.684 and 0.522 vs. their best models at 0.0956 and 0,3762, respectively. We

conclude that CodonBERT is comparable and often better than even tRNA-pool-

based predictions.
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We are aware that one of the largest drawbacks of applying deep learning

approaches to biology applications is the lack of interpretability. In this specific

application, we train our model based on codon vectors along with their labeled

expression values, and the neural network adjusts the weights between layers based

on a designated objective function to minimize loss. As typical, we then optimize

the hyper-parameters to reach a good fit and present a model that significantly

outperforms existing codon-based methods without any clear biological insight on

what is driving the observed increase in performance.

Our objective in designing a preliminary model using NLP-transformers, BERT

in particular, is to leverage positional information of codons that largely has been

ignored in prior modeling of codon usage bias. For example, CAI is a geometric

mean of the RSCU value for each codon, so the primary consideration is “Does this

gene have more preferred/optimal codons than expected?” In contrast, BERT is

capable of using the positional information of words (here codons) by introducing

contextualized attention. Although this can result in a 17X improved correlation in

analyzing codon usage in a mammalian organism (mouse; see Table III), it largely is

comparable to CAI-based results on yeast and E. coli when CAI is trained on less

noisy input data (see (22) and above). Therefore, to more fairly evaluate whether

positional information of codons can lead to performance gains in predicting overall

gene expression, we randomly shuffle the codons in the original sequences, keep the

expression label unchanged, and then use the shuffled codon sequences to train a

new model. Doing this shuffling should effectively remove almost all local positional

information of codon “neighborhoods” while keeping other parameters of the model

the same, e.g., each gene has the same tokens just in a different order.

As shown in Figure 4.3, model performance uniformly drops for all datasets after

the input codons for each coding sequence are randomly shuffled. We can also see that

performance drop for certain species such as Mus musculus and Arabidopsis thaliana

is much more significant than it is in Saccharomyces cerevisiae and Escherichia coli,

which suggests that positional information of codons are more important when it
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Figure 4.3: Performance of CodonBERT After Shuffling Input Codons
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comes to predicting overall gene expression in some of the large, multi-cellular species

since C. elegans has roughly 1,000 cells (4). The effect of positional information is

most pronounced in Arabidopsis (2.7X better performance), which is the only plant

considered. This either may be a result of an under-resolved model—not uncommon

for deep learning NLP–or less likely some unique codon pattern that can better inform

overall gene prediction in plants due to some biological process. We leave this to future

work.

Interestingly, we note that even after shuffling codons prior to training our

model, codonBERT still outperforms CAI for each dataset, including Arabidopsis

shuffled and especially our mouse-derived dataset (see Figure 4.2). We attribute this

performance difference to our NLP-based model’s ability to better grasp codon usage

patterns across different expression tiers, without explicitly needing a subset (aka top

5%) of the training.

4.2.10 Conclusion

Here, we propose a deep learning-inspired codon-based expression prediction model

that outperforms currently prominent methods such as CAI, tAI, stAI, and RCBS.

We also show that position information of codons can play at least a minor role in

the gene translation process and always has a better overall performance relative to

shuffling the tokens for each gene considered. Interestingly, in contrast to prior work

we see relatively better performance on complex multi-cellular organisms (mouse and

Arabidopsis) relative to traditional approaches.
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