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Abstract

Given an ordinary elliptic curve E over a field k of characteristic p, there is an elliptic curve

E over the Witt vectors W (k) for which we can lift the Frobenius morphism, called the

canonical lifting of E. The Weierstrass coefficients and the elliptic Teichmüller lift of E

are given by rational functions over Fp that depend only on the coefficients and points of

E. Finotti studied the properties of these rational functions over fields of characteristic

p ≥ 5. We investigate the same properties for fields of characteristic 2 and 3, make

progress on some conjectures of Finotti, and introduce some conjectures of our own. We

also investigate the structure of rings of Witt vectors over arbitrary commutative rings and

give a computationally useful isomorphism for Witt vectors over Z/pαZ [alpha].
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Chapter 1

Preliminaries

1.1 Introduction

Let k be a perfect field of characteristic p > 0 and let E/k be an elliptic curve. We begin

with two definitions.

Definition 1.1. We say that E is ordinary if it has non-trivial p-torsion. Otherwise we say

E is supersingular.

Definition 1.2. Suppose the characteristic of k is not 2 and let E/k be given by

E/k : y2 = f(x) = x3 + ax2 + bx+ c.

Then the Hasse invariant of E is the coefficient of xp−1 in f(x)(p−1)/2. We can also define

the Hasse invariant if char(k) = 2. See Section 2.1.

This leads us to the following proposition, which we will not prove. See Chapter V

Section 4 of [Sil86] for more details.

Proposition 1.3. E is supersingular if and only if the Hasse invariant of E is 0.

Note. This is the only sense in which the Hasse invariant is actually an invariant. Isomorphic

ordinary curves with different Weierstrass equations can have different Hasse invariants.

When necessary, we will fix a Weierstrass form to avoid this ambiguity.
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With the above definitions in hand, we can define the main objects of interest for the

next two chapters.

Definition 1.4. Associated to an ordinary elliptic curve E over k, there exists a unique

(up to isomorphism) elliptic curve E over W (k), the ring of Witt vectors over k, called

the canonical lifting of E, and a map τ : E(k) → E(W (k)), i.e., a lift of points, called the

elliptic Teichmüller lift, characterized by the following properties:

1. The reduction modulo p of E is E.

2. If σ denotes the Frobenius of both k and W (k), then the canonical lifting of Eσ (the

elliptic curve obtained by applying σ to the coefficients of the equation that defines E)

is Eσ.

3. τ is an injective group homomorphism and a section of the reduction modulo p, which

we denote by π.

4. If φ : E → Eσ denotes the p-th power Frobenius, then there exists a map φ : E → Eσ,

such that the diagram

E(W (k)) Eσ(W (k))

E(k) Eσ(k)

φ

φ

τπ τσπ

commutes. (In other words, there exists a lifting of the Frobenius.)

This concept of canonical lifting of elliptic curves was first introduced by Deuring in

[Deu41] and then generalized to Abelian varieties by Serre and Tate in [LST64]. Apart from

being of independent interest, this theory has been used in many interesting applications,

such as counting rational points in ordinary elliptic curves, as in Satoh’s [Sat00], coding

theory, as in Voloch and Walker’s [VW00], and counting torsion points of curves of genus

g ≥ 2, as in Poonen’s [Poo01] or Voloch’s [Vol97].
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An algorithm for computing the canonical lifting of an elliptic curve over a field of

characteristic p ≥ 5 is given in [Fin20]. In this paper, Finotti notes that in all computed

examples the algorithm gives formulas which do not involve the discriminant of the curve

and conjectures that this is always the case. Some progress on this conjecture was made

in [FL20], [FL21], and [FL23]. In Chapter 2 and Chapter 3 of this dissertation, we study

the same algorithm for curves over fields of characteristic p = 2, 3 and make some progress

on the same conjecture. We also extend some of the results in [Fin14], introduce some

more conjectures that arose from various computations, and outline a modified algorithm to

compute canonical liftings based on these conjectures.

In Chapter 4, we shift our focus to computations involving Witt vectors (introduced in

detail below). It is well known that W (Fp) is isomorphic to Zp, the p-adic integers, and this

isomorphism can be used to drastically speed up this computation. In fact, this works for any

finite field. In [Hes15], the structure for W (Z) is given. In this dissertation, we investigate

the structure of W (R) and give a computationally useful isomorphism for W (Z/pαZ).

1.2 Witt Vectors and the Greenberg Transform

In this section we will review some of the basic facts about Witt vectors and define the

Greenberg Transform. More details, including motivation and proofs, can be found in many

sources such as Hazewinkel’s [Haz09] and Borger’s [Bor11]. A more friendly introduction

can be found in Rabinoff’s notes [Rab14]. We start with the following definition.

Definition 1.5. Fix a prime p. Then for each n ∈ Z≥0, the nth Witt polynomial is

wn(X0, . . . , Xn) := Xpn

0 + pXpn−1

1 + · · ·+ pn−1Xp
n−1 + pnXn.

These Witt polynomials allow us to define two more infinite families of polynomials. Note

that despite the denominators in the following formulas, cancellations yield polynomials with

coefficients in Z.

3



Definition 1.6. The Witt sum polynomials are Si ∈ Z[X0, . . . , Xi, Y0, . . . , Yi], where the Si

are inductively defined by

wn(S0, . . . , Sn) = wn(X0, . . . , Xn) + wn(Y0, . . . , Yn).

More explicitly,

Sn = Xn + Yn +
1

p

(
Xp
n−1 + Y p

n−1 − S
p
n−1
)

+ · · ·+ 1

pn

(
Xpn

0 + Y pn

0 − S
pn

0

)
. (1.1)

Definition 1.7. The Witt product polynomials are Pi ∈ Z[X0, . . . , Xi, Y0, . . . , Yi], where the

Pi are inductively defined by

wn(P0, . . . , Pn) = wn(X0, . . . , Xn) · wn(Y0, . . . , Yn)

More explicitly,

Pn =
1

pn

[
(Xpn

0 + · · ·+ pnXn)(Y pn

0 + · · ·+ pnYn)−
(
P pn

0 + · · ·+ pn−1P p
n−1

)]
. (1.2)

If we introduce a grading on Z[X0, . . . , Xn, Y0, . . . , Yn] by defining wgt(Xi) = wgt(Yi) =

pi, then both Sn and Pn are homogeneous of weights pn and 2pn respectively in this graded

ring. Since these polynomials have integer coefficients, it is well defined to evaluate them

with inputs in any commutative ring. This allows us to define the titular ring.

Definition 1.8. Let R be a commutative ring (with 1) and let p be a prime. The ring of

p-Witt vectors over R is defined to be the set RZ≥0 equipped with the following operations.

Let a = (a0, a1, . . .) and b = (b0, b1, . . .). Then

a+ b := (S0(a0, b0), S1(a0, a1, b0, b1), . . . )

and

a · b := (P0(a0, b0), P1(a0, a1, b0, b1), . . . ).

4



These operations make RZ≥0 into a commutative ring (with 1). When p is clear from context,

we denote this ring by W (R) and call it the ring of Witt vectors over R. Otherwise, we will

use the (non-standard) notation Wp,∞(R). Also, as with a and b above, we will use boldface

lettering for any Witt vectors, and normal lettering with subscripts for the components of

the vectors.

Since Si and Pi only depend on the X0, . . . , Xi and Y0, . . . , Yi, we can also define the

following rings.

Definition 1.9. Let R and p be as above and let n ∈ N. The ring of p-Witt vectors over

R of length n is defined to be the set Rn equipped with the operations in Definition 1.8

truncated to length n. This makes Rn into a commutative ring (with 1). When p is clear

from context, we denote this ring by Wn(R) and call it the ring of Witt vectors over R of

length n. Otherwise, we denote it by Wp,n(R), which is again non-standard.

Note. Since we are using 0-indexing, the elements of Wp,n(R) look like a = (a0, . . . , an−1)

rather than (a1, . . . , an).

We now list some useful facts about Witt vectors. We will not prove any of these, but

proofs can be found in in [Rab14].

Proposition 1.10. Let R be a commutative ring, p a prime, and n ∈ N ∪ {∞}. Then

1. The zero of Wp,n(R) is (0, 0, 0, . . .) and the one is (1, 0, 0, . . .).

2. For any a ∈Wp,n(R), we have

−a =

(−a0,−a1, . . .) if p 6= 2

(−1,−1, . . .) · a if p = 2

3. The invertible Witt vectors are Wp,n(R)× = {(a0, a1, . . .) ∈Wp,n(R) : a0 ∈ R×}.

4. For r ∈ R and a ∈Wp,n(R), (r, 0, 0, . . .) · a = (ra0, r
pa1, r

p2a2, . . .).

5. We can define the projection π : Wp,n(R) → R by π(v) := v0. Then π is a ring

homomorphism and R ∼= Wp,n(R)/ ker(π).

5



6. If p ∈ R×, then v 7→ (w0(v), w1(v), . . .) is a ring isomorphism from Wp,n(R)→ Rn.

7. For n 6=∞, Wp,n(Fp) ∼= Z/pnZ.

8. For q = pr, Wp,∞(Fq) is isomorphic to Zq, the (unique) unramified degree-r extension

of the p-adic integers.

There are two common maps on the Witt vectors that we will make use of: the

Verschiebung and Frobenius maps. A more thorough description of them can be found

in Chapter 5 of [Rab14], but we will also give the definitions and some properties here.

Definition 1.11. The Verschiebung map on W (k) is the map V : W (R)→W (R) defined

by

(a0, a1, . . .) 7→ (0, a0, a1, . . .).

There is a natural restriction of this map to the map V : Wn(R)→Wn+1(R) given by

(a0, a1, . . . , an) 7→ (0, a0, a1, . . . , an).

Note. Verschiebung is the German word for shift.

Definition 1.12. The Frobenius map on W (R) is the map F : W (R)→W (R) defined by

a 7→ (f0(a), f1(a), . . .)

where the fi are uniquely defined by the identity of functions wm◦F = wm+1 for all m ∈ Z≥0.

There is a natural restriction of this map to the map F : Wn+1(R)→Wn(R) given by

a 7→ (f0(a), f1(a), . . . , fn−1(a)).

Note. This map is called the Frobenius map because it is a lifting of the Frobenius map on

W (R)/pW (R). In the case where R already has a Frobenius (e.g. Fpr), the Witt vector

Frobenius is a lift of the Frobenius on R.

Normally, the Frobenius is a map from a ring to itself, which is the case for W (R), but

not forWn(R). To further illustrate this, we compute the first couple fi. Firstly, w0◦F = w1

6



gives f0(X0, X1) = Xp
0 + pX1. Then we have w1 ◦ F = w2, which gives

fp0 + pf1 = Xp2

0 + pXp
1 + p2X2

⇒ f1(X0, X1, X2) =
1

p

[
Xp2

0 + pXp
1 + p2X2 − (Xp

0 + pX1)
p
]

Note that despite the 1/p at the front, after cancellations f1 has integer coefficients (just like

the sum and product polynomials). Finally, we’ll compute f2,

w2 ◦ F = w3

⇒ fp
2

0 + pfp1 + p2f2 = Xp3

0 + pXp2

1 + p2Xp
2 + p3X3

⇒ f2(X0, X1, X2, X3) =
1

p2

[
Xp3

0 + pXp2

1 + p2Xp
2 + p3X3 − (fp

2

0 + pfp1 )
]

Expanding f0 and f1 above and cancelling appropriately gives a polynomial that, again, has

integer coefficients, despite the denominator. In general, fi ∈ Z[X0, . . . , Xi+1]. However,

modulo p, we can make a great simplification: fi = Xp
i for all i, which is item 2 of the

next proposition. This is where we can see the greatest similarity to the usual Frobenius

morphism. A deeper investigation into the properties of the Witt vector Frobenius can be

found in [DK14].

Proposition 1.13. Let a ∈W (R). Then

1. F (V (a)) = p · a.

2. If R is a ring of characteristic p, then F (a) = (ap0, a
p
1, . . .). In this case, it makes sense

to define F as a map on Wn(R) rather than the larger domain given above.

Proof. Item 1 is proved in Proposition 5.10 of [Rab14] and Item 2 is proved in Lemma 1.4

of [DK14].

So far, we have been working with any commutative ring, but most contexts work with

Witt vectors over a perfect field k of characteristic p. These are called p-typical Witt vectors

and have additional useful properties, which we enumerate next.

7



Proposition 1.14. Let k be a perfect field of characteristic p. Then

1. W (k) is a strict p-ring with residue field k, that is

(a) W (k) is complete and Hausdorff with respect to the p-adic topology,

(b) p is not a zero-divisor in W (k), and

(c) the residue ring, k = W (k)/pW (k), is perfect.

2. The integer pr in W (k) is given by V r(1), where V is the Verschiebung map.

3. Let τ : k → W (k) be the map a 7→ (a, 0, 0, . . .) (called the Teichmüller map). Then

for any a = (a0, a1, . . .) ∈W (k), we can write

a =
∞∑
i=0

τ(a
1/pi

i )pi.

Moreover, τ |
k×

: k× →W (k)× is an injective group homomorphism.

Finally, we define the Greenberg transform.

Definition 1.15. Let f(x,y) ∈ W (k)[x,y]. Let x0 = (x0, x1, . . .),y0 = (y0, y1, . . .) ∈

W (k[x0, y0, x1, y1, . . .]). Then we can evaluate f(x0,y0) = (f0, f1, . . .), which is an element

of W (k[x0, y0, x1, y1, . . .]) (in fact, fi ∈ k[x0, y0, . . . , xi, yi] for all i). This is called the

Greenberg transform of f and is denoted G (f).

Moreover, if

C/W (k) : f(x,y) = 0

is a variety, we define the Greenberg transform of C, denoted G (C), to be the (infinite

dimensional) variety over k defined by the zeroes of the coordinates fi of G (f).

It is clear from the definition that there is a bijection between C(W (k)) and G (C)(k),

so we will often identify them and implicitly switch between the two forms. Also, we have

G (x+ y) = (S0, S1, . . .) and G (x · y) = (P0, P1, . . .).

For more information on the Greenberg transform and its computation, see [Fin14].

8



Chapter 2

Canonical Liftings in Characteristic 2

In [Fin20], Finotti investigates the Weierstrass coefficients and the elliptic Teichmüller lift

of canonical liftings of elliptic curves over a field of characteristic 5 or more. Our goal in

this chapter is to prove similar results for characteristic 2. Throughout this chapter, let k

be a field of characteristic 2, let E/k be an ordinary elliptic curve, and let E/W (k) be its

canonical lifting.

2.1 Weierstrass Forms

We start by giving two forms for E, both of which will be useful for us.

Proposition 2.1. Any ordinary elliptic curve E/k is isomorphic to a curve of the form

E ′/k : y2 + hxy = x3 + ax2 + b (2.1)

and to a curve of the form

E ′′/k : y2 + xy = x3 + a′x2 + b′ (2.2)

where a′ = a/h2 and b′ = b/h6.

9



Proof. Let E/k be given by

E/k : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The Hasse invariant of this curve is a1, and since E is ordinary, a1 6= 0. So we can define

r = a3/a1 and t = (a21a4 + a23)/a
3
1. Then the standard isomorphism given by x 7→ x′ + r

and y 7→ y′ + t gives the form E ′ in Equation (2.1), with h = a1. The expressions for a and

b are messier, and so will not be included here, but they can be easily computed. Then,

applying the isomorphism given by x 7→ h2x′ and y 7→ h3y′ to E ′ gives the form E ′′ in

Equation (2.2).

Using the form in Equation (2.1), the Hasse invariant of E is h = h and the discriminant

is ∆ = h6b. We reiterate that since E is ordinary, h 6= 0. Since ∆ 6= 0, we also have

b 6= 0. It may seem strange to use this form, as Equation (2.2) appears simpler on inspection

(and it is). However, it has one useful property for us: by assigning weights of 1, 2, and 6

respectively to h, a, and b, and weights of 2 and 3 respectively to x and y, each monomial

in Equation (2.1) has weight 6. These balanced weights will benefit us later. Next, we show

that E has the same form.

Proposition 2.2. The curve E/W (k) is isomorphic to

E′/W (k) : y2 + hxy = x3 + ax2 + b (2.3)

where

h = (h, h1, . . .), a = (a, a1, . . .), and b = (b, b1, . . .).

Proof. Let E/W (k) be given by

E/W (k) : y2 + hxy + cy = x3 + ax2 + dx+ b.

Since E is the canonical lifting of E, it must reduce to E modulo 2, which immediately gives

c = (0, c1, c2, . . .) and d = (0, d1, d2, . . .).

10



Consider the isomorphism given by

x 7→ x′ + r y 7→ y′ + t,

which gives a new curve E′/W (k) given by

y2 + hxy + (hr + c+ 2t)y

= x3 + (a+ 3r)x2 + (2ar + 3r2 + d− ht)x+ (b+ ar2 + r3 − hrt+ dr − ct− t2).

We want hr + c+ 2t = 2ar + 3r2 + d− ht = 0, i.e.

r = −h−1(c+ 2t) and t = h−1(2ar + 3r2 + d).

Note that h0 ∈ k×, so h−1 exists. These two equations over W (k) give us an infinite system

of equations over k. Firstly, we have

(r0, r1, r2, . . .) = −h−1
(
(0, c1, c2, . . .) + (0, t20, t

2
1, . . .)

)
= −h−1

(
0, S1(0, c1, 0, t

2
0), S2(0, c1, c2, 0, t

2
0, t

2
1), . . .

)
which gives r0 = 0 and for all i ≥ 1, we can write

ri = fi
(
h−10 , h0, . . . , hi, c1, . . . , ci, t0, . . . , ti−1

)
where each fi is a polynomial over Z. Note that, crucially, ri does not depend on ti. Now,

we also have

(t0, t1, t2, . . .) = h−1
(
(0, a20, a

2
1, . . .) · (0, r1, r2, . . .) + 3(0, r1, r2, . . .)

2 + (0, d1, d2, . . .)
)
.

which gives t0 = 0 and for i ≥ 1, we can write

ti = gi
(
h−10 , h0, . . . , hi, a0, . . . , ai−1, r1, . . . , ri, d1, . . . , di

)

11



where each gi is a polynomial over Z. Since ri does not depend on ti, we can alternate between

computing ri and ti to get a solution for this system. That is, there are r, t ∈W (k) so that

hr + c+ 2t = 2ar + 3r2 + d− ht = 0. So we can write

E′/W (k) : y2 + hxy = x3 + (a+ 3r)x2 + b+ r(ar + r2 − ht+ d)− t(c+ t).

Since r0 = t0 = 0, we have that r ≡ t ≡ 0 (mod 2), and so E′ also reduces to E modulo

2.

Since h0 = h, a0 = a, and b0 = b, we will typically forgo the subscript for the first

components of the Weierstrass coefficients, in order to make the reduction modulo p more

clear. We will however use x0 and y0 instead of x and y, which makes the notation in the

elliptic Teichmüller lift consistent with the usual Witt vector notation.

2.2 The Voloch-Walker Algorithm

In Section 5 of [Fin20], Finotti describes the Voloch-Walker algorithm to compute the

Weierstrass coefficients and the coordinates of the elliptic Teichmüller lift for p ≥ 5. This

algorithm also works for p = 2 with some modifications, which we will elucidate here, along

with a summary of the algorithm.

2.2.1 The Setup

Firstly, from the reasoning just before Theorem 1.1 of [Fin02], we have that the Teichmüller

lift takes the form

τ(x0, y0) = ((x0, x1, x2, . . .), (y0, y1, y2, . . .))

where xn = Fn and yn = Gn + y0Hn with Fn, Gn, Hn ∈ k[x0] for all n ≥ 0. By Theorem 2.1

of [Fin04], we have dFn/dx0 = 0, so we can skip the integration step. Unlike for p ≥ 5, we

can’t assume that Gi = 0, but we can still apply Theorem 1.1 of [Fin02] to get deg(Fn) ≤

2n−2(n+ 4), deg(Gn) ≤ 2n−2(n+ 6), and deg(Hn) ≤ 2n−2(n+ 6)− 3
2
.

12



This algorithm can be applied to specific elliptic curves, but in order to calculate

general formulas, we can take our base field to be K = F2(a, b, h), where a, b, and h are

indeterminates. We then apply the algorithm to the curve given by

E/K : y20 + hx0y0 = x30 + ax20 + b,

to compute the Weierstrass coordinates an, bn, and hn and the Fn, Gn, andHn, one coordinate

at a time.

2.2.2 The Affine Part

Inductively, suppose we have already computed ai, bi, hi ∈ K, and Fi, Gi, Hi ∈ K[x0] for

i < n. To compute the (n+ 1)-st coordinates, we first compute the (n+ 1)-st coordinate of

the Greenberg transform, E/W (k) which gives

h2
n

0 (x2
n

0 yn + xny
2n

0 ) + x2
n

0 y
2n

0 hn = x2
n+1

0 xn + x2
n+1

0 an + bn + εn (2.4)

⇒ (h0x0)
2nyn + (x0y0)

2nhn = (x2
n+1

0 + (h0y0)
2n)xn + x2

n+1

0 an + bn + εn (2.5)

⇒ (h0x0)
2n(Gn + y0Hn) + (x0y0)

2nhn = (x2
n+1

0 + (h0y0)
2n)Fn + x2

n+1

0 an + bn + εn (2.6)

where εn ∈ K[x0, y0] contains all the other terms that come from the Greenberg transform.

We will use this equation to set up a system of equations to solve for an, bn, and hn and the

Fn, Gn, and Hn. Solving for the latter three means solving for their coefficients. Letting

M := b2n−3(n+ 4)c, N := b2n−2(n+ 6)c, and δ :=

1 if n = 1

2 if n ≥ 2

we have that

Fn =
M∑
i=0

cix
2i
0 , Gn =

N∑
i=0

dix
i
0, and Hn =

N−δ∑
i=0

eix
i
0.

Note that Fn has no terms with an odd power since its derivative is zero. Also note that in

the algorithm for p ≥ 5, the coefficients of Hn are called di rather than ei. This distinction

is not important, we merely point it out to avoid confusion. Replacing Fn, Gn, and Hn in

13



the Greenberg transform by these expressions gives

(h0x0)
2n

(
N∑
i=0

dix
i
0 + y0

N−δ∑
i=0

eix
i
0

)
+ (x0y0)

2nhn

= (x2
n+1

0 + (h0y0)
2n)

M∑
i=0

cix
2i
0 + x2

n+1

0 an + bn + εn.

(2.7)

Then using the equation for the curve E, we can repeatedly replace any powers of y0 greater

than one (including those in εn). Lemma 2.3 below can help with this. At this point, by

comparing coefficients of monomials of the same degrees, we get a linear system of coefficients

over K in the unknowns an, bn, hn, ci’s, di’s, and ei’s. We are guaranteed that this system has

a solution, namely the one associated to the canonical lifting. However, not every solution

to the system gives a canonical lifting. For this, we need the following step.

2.2.3 Regularity at Infinity

The next step in the algorithm is to ensure that τ ∗(x/y) has a zero at infinity. (If n = 1,

this does not give us any information, and so can be skipped.) Let mO be the elements h of

the function field of E that have a zero at infinity, i.e. ordO(h) ≥ 1. Then, letting τn be the

(n+ 1)-st coordinate of τ ∗(x/y), we have

τn =
xn
y2

n

0

+
x2

n

0 yn

y2
n+1

0

+
δ1

y
(n+1)2n

0

≡ 0 (mod mO)

for some δ1 ∈ K[x0, y0]. Using Equation (2.5) we can replace x2
n

0 yn and get

xn
y2

n

0

+
(x0y0)

2nhn + (x2
n+1

0 + (h0y0)
2n)xn + x2

n+1

0 an + bn

h2
n

0 y
2n+1

0

+
δ2

y
(n+1)2n

0

≡ 0 (mod mO),

where δ2 absorbs the terms from εn. The terms involving an, bn, and hn are already in mO,

and after getting a common denominator, some cancellations occur. So we end up with

1

h2
n

0 y
(n+1)2n

0

[
x2

n+1

0 y
(n−1)2n
0 xn + δ3

]
≡ 0 (mod mO), (2.8)
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that is, we need

ordO

(
x2

n+1

0 y
(n+1)2n

0 xn + δ3

)
> −ordO

(
h2

n

0 y
(n+1)2n

0

)
= −3(n+ 1)2n

⇒ degx0

(
x2

n+1

0 y
(n−1)2n
0 xn + δ3

)
< 3(n+ 1)2n−1.

Since deg
(
y
(n−1)2n
0

)
= 3(n − 1)2n−1, this degree restriction determines the ci for i ≥ 2n−1.

Since the di and ei can never be in the same coefficient, as the ei have a y0 attached, this

then determines the di for i ≥ 2n+1 − 1 and the ei for i ≥ 2n − 2. Also, with these values

determined, we are guaranteed that any solution to the system that remains will give us a

canonical lifting. So, letting M ′ = 2n−1 − 1, N ′ = 2n+1 − 2 and N ′′ = 2n − 3, what remains

to be solved is

(h0x0)
2n

(
N ′∑
i=0

dix
i
0 + y0

N ′′∑
i=0

eix
i
0

)
+ (x0y0)

2nhn

= (x2
n+1

0 + (h0y0)
2n)

M ′∑
i=0

cix
2i
0 + x2

n+1

0 an + bn + εn

(2.9)

As before, this gives a (now smaller) linear system over K in the unknowns an, bn, hn,

ci’s, di’s and ei’s. Note that this system does not have a unique solution, but the canonical

lifting is only unique up to isomorphism. Also, since the system is over K, the solutions will

also be in K, ensures that the induction hypothesis holds at every step.

2.3 Choosing a Solution

In this section, our goal is study solutions to the system given by Equation (2.9). More

specifically, we would like to pick a solution that is both “simple” in some sense and gives

nice properties to the Weierstrass coefficients and Teichmüller coordinates. First, we need

the following lemma.

Lemma 2.3. Using the form in Equation (2.1) for E/k, for all n ≥ 1, we have

y2
n

= h2
n−1x2

n−1y +
n∑
k=1

[
h(2

k−1−1)2n−k+1
(
x(2

k+1)2n−k + a2
n−k

x2
n

+ b2
n−k

x(2
k−1−1)2n−k+1

)]
.
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Proof. For n = 1, the identity gives

y2 = h2
1−1x2

1−1y + h(2
1−1−1)21−1+1

(
x(2

1+1)21−1

+ a2
1−1

x2
1

+ b2
1−1

x(2
1−1−1)21−1+1

)
= hxy + x3 + ax2 + b,

which is correct. Recall that we’re in characteristic 2, so −1 = 1 and we can take advantage

of the Frobenius for powers of 2. We proceed by induction. We have

y2
n

= (hxy + x3 + ax2 + b)2
n−1

= h2
n−1

x2
n−1

y2
n−1

+ x3·2
n−1

+ a2
n−1

x2
n

+ b2
n−1

= h2
n−1x2

n−1y + x3·2
n−1

+ a2
n−1

x2
n

+ b2
n−1

+ h2
n−1

x2
n−1

n−1∑
k=1

[
h(2

k−1−1)2n−k
(
x(2

k+1)2n−k−1

+ a2
n−k−1

x2
n−1

+ b2
n−k−1

x(2
k−1−1)2n−k

)]
= h2

n−1x2
n−1y + h0

(
x3·2

n−1

+ a2
n−1

x2
n

+ b2
n−1
)

+
n−1∑
k=1

[
h(2

k−1)2n−k
(
x(2

k+1+1)2n−k−1

+ a2
n−k−1

x2
n

+ b2
n−k−1

x(2
k−1)2n−k

)]
= h2

n−1x2
n−1y +

[
h(2

1−1−1)2n−1+1
(
x(2

1+1)2n−1

+ a2
n−1

x2
n

+ b2
n−1

x(2
1+1−1)2n−1+1

)]
+

n∑
j=2

[
h(2

j−1−1)2n−j+1
(
x(2

j+1)2n−j + a2
n−j
x2

n

+ b2
n−j
x(2

j+1−1)2n−j+1
)]

= h2
n−1x2

n−1y +
n∑
j=1

[
h(2

j−1−1)2n−j+1
(
x(2

j+1)2n−j + a2
n−j
x2

n

+ b2
n−j
x(2

j+1−1)2n−j+1
)]
.

Now we can move on to a description of the solutions.

Proposition 2.4. The system described in the previous section has two free parameters

which can be assigned to the values of an and hn.

Proof. Suppose we have computed ai, bi, hi, Fi, Gi, and Hi for i < n and that we have two

solutions to the system given by

(an, bn, hn, c0, . . . , cM ′ , d0, . . . , dN ′ , e0, . . . , eN ′′)

and (a′n, b
′
n, h

′
n, c
′
0, . . . , c

′
M ′ , d

′
0, . . . , d

′
N ′ , e

′
0, . . . , e

′
N ′′).
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Consider the curves given by these two solutions, say

E/Wn+1(K) : y2 + (h, . . . , hn−1, hn)xy = x3 + (a, . . . , an−1, an)x2 + (b, . . . , bn−1, bn)

E′/Wn+1(K) : y′2 + (h, . . . , hn−1, h
′
n)x′y′ = x′3 + (a, . . . , an−1, a

′
n)x′2 + (b, . . . , bn−1, b

′
n)

Since E and E′ are isomorphic, we must have u ∈ Wn+1(K)× and r, s, t ∈ Wn+1(K) such

that

x = u2x′ + r and y = u3y′ + u2sx′ + t.

Note that mod 2n, E and E′ are actually identical, not just isomorphic, so we must have

u ≡ 1 (mod 2n)

r ≡ s ≡ t ≡ 0 (mod 2n)

that is

u = (1, 0, . . . , 0, u); r = (0, 0, . . . , 0, r); s = (0, 0, . . . , 0, s); t = (0, 0, . . . , 0, t)

with u, r, s, t ∈ K. Substituting these values into the equation for E, we get

E′ : y′2 + (h, . . . , hn−1, hn + uh2
n

)x′y′ + (0, . . . , 0, rh2
n

)y

= x′3 + (a, . . . , an−1, an + sh2
n

+ r)x′2 + (0, . . . , 0, th2
n

)x+ (b, . . . , bn−1, bn).

We immediately see that we must have r = t = 0, as h 6= 0 and the coefficients of x and y

in E′ are zero. Simplifying gives

E′ : y′2 + (h, . . . , hn−1, hn + uh2
n

)x′y′

= x′3 + (a, . . . , an−1, an + sh2
n

)x′2 + (b, . . . , bn−1, bn).
(2.10)

So we have

h′n = hn + uh2
n

, a′n = an + sh2
n

, and b′n = bn.
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With these values, subtracting equations for the (n + 1)-st coordinate of the Greenberg

Transforms of E and E′ (with unknowns) gives

h2
n
∑

(di − d′i)x2
n+i

0 + y0h
2n
∑

(ei − e′i)x2
n+i

0 + u(x0y0h)2
n

= (x2
n+1

0 + h2
n

y2
n

0 )
∑

(ci − c′i)x2i0 + sh2
n

x2
n+1

0

The term x2
n+1

0

∑
(ci − c′i)x2i0 is the only term without h, and so cannot be cancelled by

any other terms. Thus, we must have ci = c′i for all i. This now gives:

h2
n
∑

(di − d′i)x2
n+i

0 + y0h
2n
∑

(ei − e′i)x2
n+i

0 + u(x0y0h)2
n

+ sh2
n

x2
n+1

0 = 0

⇒ h2
n

x2
n

0

(∑
(di − d′i)xi0 + y0

∑
(ei − e′i)xi0 + uy2

n

0 + sx2
n

0

)
= 0

Since h and x0 are non-zero, we can now focus on the term in parentheses.

We will use Lemma 2.3 to expand the term uy2
n

0 above. First, we note that after

expanding using this identity, the only remaining term with y0 is h2
n−1x2

n−1
0 y0. So we

must have ei = e′i for all i 6= 2n−1 and we get e2n−1 = e′2n−1 +uh2
n−1. We now turn to what

remains:

∑
(di − d′i)xi0 + u

n∑
k=1

[
h(2

k−1−1)2n−k+1
(
x
(2k+1)2n−k

0 + a2
n−k

x2
n

0 + b2
n−k

x
(2k−1−1)2n−k+1

0

)]
+ sx2

n

0

We can see right away that s will affect d2n and no others. So we get the first generator

for the nullspace of the coefficient matrix:

(h2
n

, 0, . . . , 0, 1, 0, . . . , 0)

where the 1 is in the coordinate corresponding to d2n .

We can also see that di will be affected by u for all i corresponding to the powers of x0

above. So we must have di = d′i for all i not appearring in a power of x0. This gives the

second (and final) generator for the nullspace:
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(
0, 0, h2

n

, 0, . . . , 0, b2
n−1

0 , . . . ,

n∑
k=1

a2
n−k

0 h(2
k−1−1)2n−k+1

, . . . , 1, 0, . . . , 0, h2
n−1, 0, . . . , 0

)

where b2
n−1

0 corresponds to d0, the large sum corresponds to d2n , the 1 corresponds to d3·2n−1 ,

and h2
n−1 corresponds to e2n−1.

So, these two free parameters allow us to choose two of an, hn, many of the di’s, or e2n−1.

Notably, since h 6= 0 (even if we’re not treating it like a variable), this means that we can

choose both an and hn!

Throughout, we have been using Equation (2.1). But we noted that we also have

Equation (2.2) and in fact, if there is some λ ∈ k so that λ2 + λ = a′ = a/h2, then E

is isomorphic to

E ′′′/k : y2 + xy = x3 + b′

where b′ = b/h6 (via x 7→ x and y 7→ y + λx). So, in some sense, E is almost isomorphic to

a curve with h = 1 and a = 0. This gives some intuition for why we can choose an = hn = 0

at every step. If h = 1 and a = 0, then the coefficient of xy in E would be 1 = (1, 0, 0, . . .)

and the coefficient of x2 would be 0 = (0, 0, 0, . . .).

2.4 Universality

As we showed in the previous section, at every step of the Voloch-Walker algorithm, we

can choose both an and hn. The “simplest” choice would be to choose them both to be

0. However, as explained in Section 2 of [Fin20], this could lead to the formula for bn to

be undefined for some values of a0, b0, h0 that give an ordinary curve. This leads us to the

following definitions, which are the characteristic 2 analogues of Definitions 1.2 and 2.1 of

[Fin20], respectively.

Definition 2.5. The set of ordinary coefficients over k is defined to be

k
3
ord := {(a0, b0, h0) ∈ k3 : the elliptic curve E/k defined by Equation (2.1) is ordinary.}
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Note that in this definition, we are implicitly assuming that E is non-singular as well.

So while the statement of this definition is very general, by the reasoning in Section 2.1, we

have that k3
ord = {(a0, b0, h0) ∈ k3 : b0 6= 0 and h0 6= 0}.

Definition 2.6. A rational function f ∈ F2(a, b, h) is called universal if it is defined for all

(a0, b0, h0) ∈ k3
ord.

Our goal in this section is to show that for every n ≥ 1 there are an, bn, hn ∈ F2(a, b, h)

that are universal, i.e. we only need one formula for the Weierstrass coefficients of E. First,

we show that the condition of universality restricts the form of these rational functions.

Proposition 2.7. If f ∈ F2(a, b, h) is universal, then f ∈ F2[a, b, h, 1/(bh)].

Proof. Suppose not and let g ∈ F2[a, b, h] be an irreducible factor of the denominator of f

with g not equal to b or h. Let k = F2. Then V := {g(a, b, h) = 0} is a variety of positive

dimension over k, and thus |V | = ∞. Furthermore, since (g, b) = 1 and (g, h) = 1, by

Bézout’s Theorem, we have |V ∩ {b = 0} ∩ {h = 0}| <∞. So there is some (a0, b0, h0) ∈ k3

such that g(a0, b0, h0) = 0 and b0, h0 6= 0. But then

E/k : y2 + h0xy = x3 + a0x
2 + b0

is an ordinary elliptic curve, so (a0, b0, h0) ∈ k3
ord, contradicting the universality of f . Thus

we must have f ∈ F2[a, b, h, 1/(bh)].

Now we move on to the main result of this section. As stated, the “simplest” choice for

an and hn is to take both of them to be 0. We will see that bn remains universal under this

choice and we even get some results about the coefficients of Fn, Gn, and Hn.

Proposition 2.8. Let K = F2(a, b, h) and let L := F2[a, b, h, 1/(bh)]. Then there are

an, bn, hn ∈ L and Fn, Gn, Hn ∈ L[x0] for all n ≥ 1 such that the canonical lifting of E/K is

given by

E/W (K) : y2 + (h, h1, . . .)xy = x3 + (a, a1, . . .)x
2 + (b, b1, . . .)

and the associated Teichmüller lift is given by

τ(x0, y0) = ((x0, F1, . . .), (y0, G1 + y0H1, . . .)).
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Proof. Inductively suppose we have ai, bi, hi ∈ L and Fi, Gi, Hi ∈ L[x0] for all i < n.

Choosing an = hn = 0 immediately gives an, hn ∈ L. As can be seen in Equation (2.10),

the formula for bn is not affected by any choice we make and so must be universal. Therefore

we also have bn ∈ L.

Consider Equation (2.7). By induction, we must have that all the terms contained in

εn are in L. Also, the ci determined by the condition on τ ∗(x/y) must all be in L, as the

leading coefficient of the expression in Equation (2.8) is in Fp.

By the reasoning in the proof of Proposition 2.4, we must have that c′i = ci for all i and

that e′i = ei for all i 6= 2n − 1. Therefore these coefficients must all be universal as well,

showing Fn ∈ L and nearly showing Hn ∈ L. At this stage we have a system of the form

(hx0)
2n

(
N ′∑
i=0

dix
i
0 + e2n−1x

2n−1
0 y0

)
= · · ·

where the right-hand side is in L. Equating coefficients and solving can only introduce a

denominator of h, which won’t kick us out of L, and so the di and e2n−1 are also in L, which

shows Gi, Hi ∈ L, finishing the proof.

There are two things of note in this proof. First, it does not depend strictly on choosing

an = hn = 0. As long as they are chosen to be in L, the proof still holds. Second, the

only denominator that is explicitly introduced is h. Hiding in the details of solving the

linear system, there is the potential for a denominator of b to be introduced. However, in all

computed examples, this denominator does not appear, which we will further investigate in

Section 2.6.

2.5 Modularity

In this section, our goal is to show that an, bn, hn, Fn, Gn, and Hn are modular functions

of specific weights. To clarify this statement, we first define wgt(a0) := 2, wgt(b0) := 6,

wgt(h0) := 1, wgt(x0) := 2, and wgt(y0) := 3. These weights allow us to make the following

definition.
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Definition 2.9. The modular functions of weight n (over F2(a, b, h, x0, y0)) are

Sn :=

{
f

g
: f, g ∈ F2[a, b, h, x0, y0] homogeneous and wgt(f)− wgt(g) = n

}
∪ {0}.

As noted in Section 2.1, both sides of Equation (2.1) are in S6. We then prove the

following proposition.

Proposition 2.10. If we choose an ∈ S2n+1 and hn ∈ S2n in each step of the Voloch-Walker

algorithm, then bn ∈ S6·2n, Fn ∈ S2n+1, Gn ∈ S3·2n, and Hn ∈ S3·2n−3 for all n ≥ 0.

Note. Since we are choosing an = hn = 0 at every step, we satisfy the conditions of this

statement, but there are many choices that guarantee modularity.

Proof. We (as usual) use induction to prove this proposition. Since both sides of

Equation (2.1) are in S6, we have our base case done. (This means that if we instead

start with Equation (2.2) we will not necessarily get modular functions!) Now, we assume

that for 0 ≤ i < n, we have bi ∈ S6·2i , Fi ∈ S2i+1 , Gi ∈ S3·2i , and Hi ∈ S3·2i−3.

By applying Lemma 3.1 of [Fin20] to the Greenberg Transform of E/Wn+1(K) with the

(n+ 1)-st coordinate of each vector set to 0, we get that εn from Equation (2.5) is in S6·2n .

The same lemma applied in a similar way gives us that τn ∈ S−2n and therefore δ3 = h2
n
δ2

from Equation (2.8) is in S(3n+3)2n . Therefore, we get that ci ∈ S2n+1−4i for 2n ≤ i ≤ M

Then following the Voloch-Walker algorithm, this gives di ∈ S3·2n−2i for 2n+1 − 1 ≤ i ≤ N

and ei ∈ S3·2n−2i−3 for 2n − 2 ≤ i ≤ N − δ.

Now, we’re choosing an and hn, which gives a unique solution to the system in the last

step of the Voloch-Walker algorithm. Also, by Proposition 2.8, we can take the denominators

of the ci’s, the di’s, the ei’s, and bn to be powers of bh, which is homogeneous of degree 7.

So by splitting the numerators, we can write

bn = bn,0 + bn,1

ci = ci,0 + ci,1

di = di,0 + di,1

ei = ei,0 + ei,1
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where

bn,0 ∈ S6·2n , and no term of bn,1 is in S6·2n

ci,0 ∈ S2n+1−4i, and no term of ci,1 is in S2n+1−4i

di,0 ∈ S3·2n−2i, and no term of di,1 is in S3·2n−2i

ei,0 ∈ S3·2n−2i−3, and no term of ei,1 is in S3·2n−2i−3.

Since only terms of the same weight can cancel each other out, we get

(h0x0)
2n

(
N ′∑
i=0

di,0x
i
0 + y0

N ′′∑
i=0

ei,0x
i
0

)
+ (x0y0)

2nhn

= (x2
n+1

0 + (h0y0)
2n)

M ′∑
i=0

ci,0x
2i
0 + x2

n+1

0 an + bn,0 + εn.

But then this is a solution to Equation (2.9), by uniqueness, it must be the only solution.

Therefore we must have bn,1 = ci,1 = di,1 = ei,1 = 0. This gives bn ∈ S6·2n , Fn ∈ S2n+1 ,

Gn ∈ S3·2n , and Hn ∈ S3·2n−3, which is what we needed to show.

2.6 A Partial Result

In [Fin20], Finotti notes that in all computed examples, the only factor that appears in

the denominator of the Weierstrass coefficients and Teichmüller coordinates is the Hasse

invariant. In later papers, this becomes the following conjecture (see [FL20] and [FL21] for

some partial results).

Conjecture 2.11. Let p ≥ 5, K = Fp(a, b), and h be the Hasse invariant of

E/K : y20 = x30 + ax0 + b.

Let the canonical lifting of E be given by

E/W (K) : y2 = x3 + (a, a1, a2, . . .)x+ (b, b1, b2, . . .)
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with associated Teichmüller lift

τ(x0, y0) = ((x0, F1, F2, . . .), (y0, y0H1, y0H2, . . .)).

Then as computed in the Voloch-Walker algorithm, an, bn ∈ Fp[a, b, 1/h] and Fn, Hn ∈

Fp[a, b, 1/h][x0] for all n ≥ 1.

As noted at the end of Section 2.4, all computed examples in characteristic 2 have the

same property: the only term in the denominator is a power of h. However, the possibility

for a power of b to appear in the denominator is not explicitly disallowed by the algorithm.

In fact, on inspection, the linear system does appear to require dividing by b. This leads us

to make the same conjecture for characteristic 2.

Conjecture 2.12. As computed by the Voloch-Walker algorithm described in Section 2.2,

along with the choice an = hn = 0, the denominators of bn, Fn, Gn, and Hn are exactly

powers of h. Equivalently, applying the algorithm to the form in Equation (2.2), bn ∈ F2[a, b]

and Fn, Gn, Hn ∈ F2[a, b][x0] for all n ≥ 1.

All computational evidence collected so far (up to n = 5 for p = 2) supports this

conjecture, but the proof has thus far been elusive. We have narrowed it down to the

following condition.

Conjecture 2.13. Let n ≥ 1, let K = F2(a, b, h), and let E/K be as in Equation (2.1).

Write the (n+ 1)-st coordinate of the Greenberg Transform of E as

h2
n

(x2
n

0 yn + xny
2n

0 ) + x2
n

0 y
2n

0 hn = x2
n+1

0 xn + x2
n+1

0 an + bn + εn.

Write εn =
∑
i

rix
i
0 + y0

∑
i

six
i
0 for ri, si ∈ K. Let ν = νb be the valuation at b. Then

ν(r2i) ≥ 2n − i− 1 for 0 ≤ i < 2n

ν(s2n−1) ≥ 2n − 1.

Heuristically, this seems likely. For the ri, we want coefficients of small powers of x0 to

be highly divisible by b. During the Greenberg transform, among other steps, we will be
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expanding powers of x30 + hx0y0 + ax20 + b, which would appear to introduce large powers of

b in the coefficients of small powers of x0. And as stated above, this condition holds for all

computed examples.

Theorem 2.14. Assume Conjecture 2.13 and let R = F2[a, b, h, 1/h]. Then, taking an =

hn = 0, we have that bn ∈ R and Fn, Gn, Hn ∈ R[x0] for all n ≥ 1.

Proof. For n = 1, we can explicitly compute

b1 = b2

F1 = bh−2

G1 = h−4
(
(ah2 + h4)x30 + (ah4 + b)x20 + b

)
H1 = h−1

(
x20 + (a+ h2)x0

)
and so the statement is true for n = 1 (regardless of the conjecture). Now, inductively

assume the theorem is true for k < n. Following the Voloch-Walker algorithm, we write the

(n+ 1)-st coordinate of the Greenberg Transform as

(h0x0)
2n

(
N∑
i=0

dix
i
0 + y0

N−2∑
i=0

eix
i
0

)
= (x2

n+1

0 + (h0y0)
2n)

M∑
i=0

cix
2i
0 + bn + εn. (2.11)

By the induction hypothesis, we have that εn ∈ R[x0, y0], as εn is an integer-polynomial

function of the previous coordinates, which are all in R. Since n > 1, we must have τ ∗(x/y)

regular, which, after some calculation, results in the requirement

ordO

(
x2

n+1

0 y
(n−1)2n
0 xn + δ3

)
> −3(n+ 1)2n.

Write δ3 = F + y0G and y
(n−1)pn
0 = H + y0K with F ,G,H,K ∈ R[x0]. Then we need

ordO

(
(H + y0K)x2

n+1

0 xn + F + y0G
)
> −3(n+ 1)2n

⇒ ordO

(
(Hx2n+1

0 xn + F) + y0(Kx2
n+1

0 xn + G)
)
> −3(n+ 1)2n
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Terms with y0 cannot cancel with terms without y0, so we can split this into two statements.

ordO

(
Hx2n+1

0 xn + F
)
> −3(n+ 1)2n and ordO

(
Kx2n+1

0 xn + G
)
> −3(n+ 1)2n + 3

⇒ degx0

(
Hx2n+1

0 xn + F
)
< 3(n+ 1)2n−1 and degx0

(
Kx2n+1

0 xn + G
)
<

3(n+ 1)2n − 3

2
.

We can write

Hxn = (x
3(n−1)2n−1

0 + · · · )
M∑
i=0

cix
2n+1+2i
0 .

Since the leading coefficient of H is 1, solving for the ci for i ≥ 2n−1 using this requirement

gives solutions in R. Note that at this point, we still have not used Conjecture 2.13.

The next step in the algorithm is to equate the remaining coefficients and solve the linear

system. Notably, di and ei only occur on the left-hand side of Equation (2.11) and all have

a coefficient of h0. Therefore, if we can show that the right-hand side has coefficients in R,

so must the left-hand side. Also, all of the terms on the left-hand side have a power of x0 of

2n or higher. So any coefficients attached to a power of x0 strictly less than 2n must come

entirely from the right-hand side. Our goal now is to analyze those coefficients and show

that they give a solution to the linear system of the form we want.

Let η = 2n − 1. Multiplying the sum on the right-hand side by x2
n+1

0 will result in terms

with a power of x0 greater than η. So we will move those terms to the left-hand side. Then

expanding y2
n

0 using Lemma 2.3 and again moving all powers of x0 greater than η to the

left-hand side gives the right-hand side as

h2
n

(
n∑
k=1

h(2
k−1−1)2n−k+1

b2
n−k

x
(2k−1−1)2n−k+1

0

)(
2n−1−1∑
i=0

cix
2i
0

)
+ h2

n+1−1c0x
2n−1
0 y0 + bn + εn

=
n∑
k=1

2n−1−1∑
i=0

h2
n+1−2n−k+1

b2
n−k

cix
2n−2n−k+1+2i
0 + h2

n+1−1c0x
2n−1
0 y0 + bn + εn

=
2n−2∑
j=0

 ∑
i≥0,k>0

2n−1−2n−k+i=j

h2
n+1−2n−k+1

b2
n−k

ci

x2j0 + h2
n+1−1c0x

2n−1
0 y0 + bn + εn.
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We move all terms with j > η to the LHS and are left with

2n−1−1∑
j=0

n−dlog2(2n−1−j)e∑
k=1

h2
n+1−2n−k+1

b2
n−k

cj−2n−1+2n−k

x2j0 + h2
n+1−1c0x

2n−1
0 y0 + bn + εn.

Now we write εn =
∑
i

rix
i
0 + y0

∑
i

six
i
0 and move all its terms with a power of x0 greater

than η to the left-hand side. Then we have

2n−1−1∑
j=1

r2j +

n−dlog2(2n−1−j)e∑
k=1

h2
n+1−2n−k+1

b2
n−k

cj−2n−1+2n−k

x2j0

+ (h2
n+1−1c0 + s2n−1)x

2n−1
0 y0 + (bn + h2

n

b2
n−1

c0 + r0) = 0.

This expression being zero means that all the coefficients are zero. Here is where

Conjecture 2.13 finally comes in. First, since h2
n+1−1c0 + s2n−1 = 0, we get that c0 ∈ R

and νb(c0) ≥ 2n − 1. This gives right away that bn ∈ R. Now, turning our attention to the

summation coefficients, for each j, we have

b2
n−1

cj =
1

h2n

r2j +

n−dlog2(2n−1−j)e∑
k=2

b2
n−k

0 cj−2n−1+2n−k

 .

For j = 1, this gives b2
n−1
c1 = h−2

n
r2, and so νb(c1) = νb(r2) − 2n−1 ≥ 2n−1 − 2. Now,

inductively suppose that for i < j, νb(ci) ≥ 2n−1 − i− 1. Then we have

ν(cj) ≥ min
{
νb(r2j), min

k
{2n−k + 2n−1 − (j − 2n−1 + 2n−k)− 1}

}
− 2n−1

= 2n − j − 1− 2n−1 = 2n−1 − j − 1 ≥ 0.

So we have cj ∈ R for all 0 ≤ j ≤ 2n−1−1 which is the rest of the cj and so by the reasoning

above, we have di, ei ∈ R as well, completing the proof.
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Chapter 3

Canonical Liftings in Odd

Characteristic

Our goals in this chapter are two-fold. First, we prove results similar to those in Chapter 2 for

characteristic 3. Second, we collect some other results that apply to curves in characteristic

5 and greater.

To start, let k be a field of characteristic 3, let E/k be an ordinary elliptic curve, and let

E/W (k) be its canonical lifting. Our first goal is to investigate properties of the Weierstrass

coefficients and Teichmüller lift of E.

3.1 Weierstrass Form in Characteristic 3

We start by giving the form for E that will be useful to us.

Proposition 3.1. Any ordinary elliptic curve E/k is isomorphic to a curve of the form

E ′/k : y2 = x3 + ax2 + b (3.1)

with a, b 6= 0.

Proof. Since char(k) 6= 2, we know that we can let E/k be given by

E/k : y2 = x3 + b2x
2 + b4x+ b6.
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The Hasse invariant of this curve is h = b2, which is non-zero since E is ordinary. So we can

apply the isomorphism given by x 7→ x+ b4
b2

, which gives

E ′/k : y2 = x3 + b2x
2 +
−b32b6 + b22b

2
4 − b34

b32
.

Renaming variables gives the form we want. Then the Hasse invariant of E is h = a and the

discriminant is ∆ = 2a3b. This means, since ∆ 6= 0, we have that both a 6= 0 and b 6= 0, i.e.

every curve of this form is ordinary.

In all sections about characteristic 3, we will only ever use the form in Equation (3.1).

Proposition 3.2. The curve E/W (k) is isomorphic to

E′/W (k) : y2 = x3 + ax2 + b (3.2)

where

a = (a, a1, . . .), and b = (b, b1, . . .).

Proof. Let E/W (k) be given by

E/W (k) : y2 + cxy + dy = x3 + ax2 + ex+ b.

Since E reduces to E mod 3, we have that

a = (a, a1, a2, . . .) and b = (b, b1, b2, . . .)

and

c = (0, c1, c2, . . .), d = (0, d1, d2, . . .), and e = (0, e1, e2, . . .).

By Proposition 1.10, 2 ∈ W (k)×, so we can apply the standard “completing the square”

isomorphism, i.e. y 7→ 1
2
(y − cx− dx). Since c0 = d0 = 0, this isomorphism maintains the

values of a0 and b0. So we have the form

E′/W (k) : y2 = x3 + (a, a′1, a
′
2, . . .)x

2 + (0, e′1, e
′
2, . . .)x+ (b, b′1, b

′
2, . . .).
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Now, consider r = (0, r1, r2, . . .) ∈W (k) and apply the isomorphism x 7→ x+ r. This gives

the new equation

E′′/W (k) : y2 = x3 + (a+ 3r)x2 + (3r2 + 2ar + e)x+ (ar2 + r3 + er + b).

Since r0 = 0, this isomorphism will again maintain the values of a0 and b0 in the first

coordinate. So we just need to show that there is some r ∈W (k) so that 3r2 + 2ar = −e.

Consider 3r2 + 2ar = r(3r − a). We have that 3r = (0, 0, r31, r
3
2, . . .) and so we can write

3r − a = (−a0, f1(a0, a1), f2(a0, a1, a2, r1), . . . , fn(a0, . . . , an, r1, . . . , rn−1), . . .)

where each fi is a polynomial with integer coefficients. Then

r(3r − a) = (0, P1(0, r1, a0, f1), P2(0, r1, r2, a0, f1, f2), P3(0, r1, r2, r3, a0, f1, f2, f3), . . .)

=
(

0, g1(a0, a1)− a30r1, g2(r1, a0, a1, a2)− a3
2

0 r2, g3(r1, r2, a0, . . . , a3)− a3
3

0 r3, . . .
)

where now each gi is a polynomial with integer coefficients. So we end up needing to solve

the system of equations

a30r1 = e1 + g1(a0, a1)

a3
2

0 r2 = e2 + g2(r1, a0, a1, f2)

...

a3
n

0 rn = en + g2(r1, . . . , rn−1, a0, . . . , an)

...

Since a0 = a 6= 0, this system has a solution. So there is some r ∈ W (k) so that 3r2 +

2ar + e = 0 and thus we have

E′′/W (k) : y2 = x3 + (a+ 3r)x2 + (ar2 + r3 + er + b).

Renaming variables gives the form we want.
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3.2 Choosing a Solution in the Voloch-Walker Algo-

rithm in Characteristic 3

The Voloch-Walker algorithm in characteristic 3 is effectively identical to the algorithm

described in [Fin20], except that f(x) = x3 + ax2 + b, which slightly changes the Greenberg

Transform. Otherwise the procedure is unchanged. However, we can perform the same

analysis as in Section 6 of [Fin20] and Chapter 2 of this dissertation to get a slightly nicer

result than for p ≥ 5.

Proposition 3.3. The linear system in the last step of the Voloch-Walker algorithm in

characteristic 3 has one free parameter, which can be assigned to either the value of an or

c3n−1.

Proof. Let K = F2(a, b). Suppose we have computed ai, bi, Fi, and Hi for i < n and that we

have two solutions to the system given by

(an, bn, c0, . . . , cM ′ , d0, . . . , dN ′)

and (a′n, b
′
n, c
′
0, . . . , c

′
M ′ , d

′
0, . . . , d

′
N ′).

where N ′ = (3n − 1)/2 and M ′ = 2 · 3n−1 − 3. Consider the curves given by these two

solutions, say

E/Wn+1(K) : y2 = x3 + (a, . . . , an−1, an)x2 + (b, . . . , bn−1, bn)

E′/Wn+1(K) : y′2 = x′3 + (a, . . . , an−1, a
′
n)x′2 + (b, . . . , bn−1, b

′
n).

Since E and E′ are isomorphic, we must have u ∈ Wn+1(K)× and r, s, t ∈ Wn+1(K) such

that

x = u2x′ + r and y = u3y′ + u2sx′ + t.

Note that modulo 3n, E and E′ are actually identical, not just isomorphic, so we must have

u ≡ 1 (mod 3n) and r ≡ s ≡ t ≡ 0 (mod 3n)
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that is

u = (1, 0, . . . , 0, u); r = (0, 0, . . . , 0, r); s = (0, 0, . . . , 0, s); t = (0, 0, . . . , 0, t)

with u, r, s, t ∈ K. Substituting these values into the equation for E, we get

E′/Wn+1(K) : y′2 + (0, . . . , 0,−s)x′y′ + (0, . . . , 0,−t)y

= x′3 + (a, . . . , an−1, an + ua3
n

)x′2 + (0, . . . , 0,−ra3n)x+ (b, . . . , bn−1, bn).

We immediately see that we must have s = r = t = 0, as a 6= 0 and the coefficients of x′y′,

y, and x in E′ are zero. Simplifying gives

E′/Wn+1(K) : y′2 = x′3 + (a, . . . , an−1, an + ua3
n

)x′2 + (b, . . . , bn−1, bn).

So we have a′n = an + ua3
n

and b′n = bn. Now, the Greenberg Transform of E is

2y3
n+1

0 Hn = (2ax0)
3nFn + anx

2·3n
0 + bn + εn (3.3)

where εn ∈ Fp(a, b) contains all the terms not involving an, bn, xn, or yn. With these values,

subtracting equations for (n + 1)-st coordinate of the Greenberg Transforms of E and E′

and substituting the appropriate expressions (with unknowns) for Fn and Hn gives

f
3n+1

2

(
N ′∑
i=0

(d′i − di)xi0

)
= (ax0)

3n

(
M ′∑
i=0

(c′i − ci)x3i0

)
− ua3nx2·3n0 . (3.4)

Taking c′i = ci if i 6= 3n−1 and c′3n−1 = c3n−1 + u, Equation (2.5) becomes

f
3n+1

2

(
N ′∑
i=0

(d′i − di)xi0

)
= 0.

This shows that we must have di = d′i for all i and so we see that the nullspace of the

coefficient matrix has dimension 1 and is generated by
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(a3
n

, 0, 0, . . . , 0, 1, 0, . . . , 0)

where 1 appears in the coordinate corresponding to c3n−1 .

So, similar to the case where p ≥ 5, we can choose the value of either an or c3n−1 (notably

we cannot choose bn). Unlike the p ≥ 5 case though, we know that a 6= 0, so choosing

the value of an is available regardless of the curve we started with! Thus we can make the

“simplest” choice and take an = 0.

Throughout, we have been using Equation (3.1). But actually, if a is a square in k, E is

isomorphic to

E ′′/k : y2 = x3 + x2 + d (3.5)

where d = b/a3 (via x 7→ ax and y 7→ a3/2y). So, in some sense, E is almost isomorphic to a

curve with a = 1. This gives some intuition for why we can choose an = 0 at every step. If

a = 1, then the coefficient of x2 in E would be 1 = (1, 0, 0, . . .).

3.3 Universality and Modularity in Characteristic 3

In this section, our goal is to show that an, bn, Fn, Gn, and Hn are universal modular

functions of specific weights. To clarify this statement, we make the following definitions.

Definition 3.4. The set of ordinary coefficients over k is defined to be

k
2
ord := {(a0, b0) ∈ k2 : the elliptic curve E/k defined by y2 = x3 + a0x

2 + b0 is ordinary.}

Note that in this definition, we are implicitly assuming that E is non-singular as well.

So while the statement of this definition is very general, by the reasoning in Section 3.1, we

have that k2
ord = {(a0, b0) ∈ k2 : a0 6= 0 and b0 6= 0}.

Definition 3.5. A rational function f ∈ F2(a, b) is called universal if it is defined for all

(a0, b0) ∈ k2
ord.

Also, we define wgt(a) := 2, wgt(b) := 6, wgt(x0) := 2, and wgt(y0) := 3. This allows us

to define

33



Definition 3.6. The modular functions of weight n (over F3(a, b, x0, y0)) are

Sn :=

{
f

g
: f, g ∈ F3[a, b, x0, y0] homogeneous and wgt(f)− wgt(g) = n

}
∪ {0}.

Lemma 3.7. If f ∈ F3(a, b) is universal, then f ∈ F3[a, b, 1/(ab)].

Proof. Suppose not and let g ∈ F3[a, b] be an irreducible factor of the denominator of f other

than a and b. Let k = F3. Then V := {g(a, b) = 0} is a variety of positive dimension over

k and thus |V | = ∞. Furthermore, since (g, a) = 1 and (g, b) = 1, by Bézout’s Theorem,

|V ∩ {a = 0}| < ∞ and |V ∩ {a = 0}| < ∞, so |V ∩ {a = 0} ∩ {b = 0}| < ∞. So there is

some (a0, b0) ∈ k2 such that g(a0, b0) = 0 and a0, b0 6= 0. But then

E/F3 : y2 = x3 + a0x
2 + b0

is an ordinary elliptic curve, so (a0, b0) ∈ k2
ord, contradicting the universality of f . Thus we

must have f ∈ F3[a, b, 1/(ab)].

Proposition 3.8. Let K = F3(a, b) and let L := F3[a, b, 1/(ab)]. Then there are an, bn,∈ L

and Fn, Hn ∈ L[x0] for all n ≥ 1 such that the canonical lifting of E/K is given by

E/W (K) : y2 = x3 + (a, a1, a2, . . .)x
2 + (b, b1, b2, . . .)

and the associated Teichmüller lift is given by

τ(x0, y0) = ((x0, F1, F2, . . .), (y0, y0H1, y0H2, . . .)).

Proof. Inductively suppose we have ai, bi ∈ L and Fi, Hi ∈ L[x0] for all i < n.

Choosing an = 0 immediately gives an ∈ L. As can be seen in the proof of Proposition 3.3,

bn is not affected by the choice of an. Therefore bn must be universal and so by Lemma 3.7

we have bn ∈ L.

Consider Equation (3.3). By induction, we must have that all the terms contained in

εn are in L. By the same logic as in Proposition 2.8, the ci determined by the condition

on τ ∗(x/y) are in L. By the reasoning in the proof of Proposition 3.3, we must have that
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c′i = ci for all i 6= 3n−1 and d′i = di. Therefore all these coefficients must be universal as well,

showing Hn ∈ L and nearly showing Fn ∈ L. At this stage, we are left with one unknown

remaining, c3n−1 . We end up with an equation of the form

ac3n−1x2·3
n

0 = · · ·

where everything on the right-hand side is in L. So solving for c3n−1 only involves dividing

by a, which keeps us in L. Therefore Fn ∈ L, which finishes the proof.

Proposition 3.9. If we choose an ∈ S2·3n in each step of the Voloch-Walker algorithm, then

bn ∈ S6·3n, Fn ∈ S2·3n, and Hn ∈ S3n+1−3 for all n ≥ 0.

Note. Since we are choosing an = 0 at every step, we satisfy the conditions of this statement,

but there are many choices that guarantee modularity.

Proof. The proof of this is essentially identical to the proof of Proposition 8.1 in [Fin20]

and to the proof of Proposition 2.10, with small changes made to account for the different

Weierstrass equation.

Note that just like the characteristic 2 case, if we had instead started with Equation (3.5),

we would not get modular functions, as this Weierstrass equation is not in S6.

3.4 Some Results and Conjectures in Odd Character-

istic

In [Fin20], [FL20], [FL21], and [FL23] Finotti and Li proved many results about the canonical

lifting of elliptic curves over fields of characteristic 5 and greater. In this section, we add to

those results and posit two conjectures.

Throughout this section, unless otherwise specified, let p ≥ 5 be prime, K = Fp(a, b), and

h be the Hasse invariant of

E/K : y20 = x30 + ax0 + b.
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Let the canonical lifting of E be given by

E/W (K) : y2 = x3 + (a, a1, a2, . . .)x+ (b, b1, b2, . . .)

with associated Teichmüller lift

τ(x0, y0) = ((x0, F1, F2, . . .), (y0, y0H1, y0H2, . . .)).

3.4.1 Results

In Theorem 6.4 [Fin14], Finotti proves a formula for the Greenberg Transform of a function

f ∈W (k)[x,y]. Our goal is to extend that formula to allow f to have a monomial in the

denominator (or equivalently, to have terms with negative exponents on x and y). This

allows us to more easily compute τ ∗(x/y) in the Voloch-Walker algorithm, among other

things. The proof of this theorem relies on Theorem 3.2 of [Fin11], which we reproduce here.

Theorem 3.10. Let f(x,y) ∈ W (k)[x,y] and suppose the Greenberg Transform of f is

given by (f0, f1, . . .). Then, if

wn(f0, . . . ,fn) ≡ fσn(wn(x0, . . . ,xn), wn(y0, . . . ,yn)) (mod pn+1)

(with wn the nth Witt polynomial and σ the Frobenius on W (k)) for some fi ∈

W (k)[x0, . . . ,xn,y0, . . . ,yn], then fi reduces to fi modulo p.

If we can extend this theorem to W (k)[x,y, 1/(xy)], then we can extend Theorem 6.4

of [Fin14] to the same ring.

Proposition 3.11. The formula for the Greenberg Transform given in Theorem 6.4 of

[Fin14] also holds for f ∈ W (k)[x,y, 1/(xy)], that is, we can have a monomial in the

denominator and the formulas will still hold.

Proof. As stated above, we need to show that Theorem 3.10 holds for W (k)[x,y, 1/(xy)].

Then the proof of Theorem 6.4 given in [Fin14] will also work for this larger class of functions.

Since we know Theorem 3.10 holds for f(x,y) ∈ W (k)[x,y], it suffices to show that it
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holds for 1/x or 1/y. Then sums and products will give us the rest of the functions in

W (k)[x,y, 1/(xy)], as the sum and product polynomials are defined the by the wn.

Suppose we have f0, . . . ,fn ∈W (k)[x,y, 1/(xy)] such that

wn(f0, . . . ,fn) ≡ 1

wn(x0, . . . ,xn)
(mod pn+1).

Then

wn(f0, . . . ,fn) · wn(x0, . . . ,xn) ≡ 1 (mod pn+1)

⇒ wn(P0(f0,x0), . . . , Pn(f0, . . . ,fn,x0, . . . ,xn)) ≡ 1 (mod pn+1)

Applying Theorem 3.10 to this gives that P0(f0,x0) ≡ 1 (mod p) and for all 0 < i ≤ n,

Pi(f0, . . . ,fi,x0, . . . ,xi)) ≡ 0 (mod p). This is exactly the calculation that one does to

compute 1/x, and so if the Greenberg Transform of 1/x is given by (f0, f1, . . .), we must

have that fi reduces to fi modulo p for all i. The same argument works for 1/y, which

finishes the proof.

In Theorem 5.3 of [Fin02], Finotti proves a condition on F2 that is equivalent to τ ∗(x/y)

having a zero at infinity. For n ≤ 2, this condition removes the need to actually compute

τ ∗(x/y) during the Voloch-Walker algorithm. Finotti asked whether we could get a similar

condition for n = 3. He had the idea to investigate τ ∗(1/x) and τ ∗(1/y), as these must

both also have a zero at infinity and are easier to calculate than τ ∗(x/y). We give a partial

answer to that question here.

Proposition 3.12. The requirement that τ ∗(1/x) has a zero at infinity determines the

coefficients of xip in Fn for i ≥ 2pn−1.

The requirement that τ ∗(x/y) has a zero at infinity determines the same coefficients for

i ≥ (3pn−1+1)/2. This is a larger set of coefficients than i ≥ 2pn−1, so τ ∗(1/x) being regular

doesn’t guarantee that we get a canonical lifting. The author is unsure if there is a stronger

requirement we can impose on τ ∗(1/x), but it seems likely as 1/x has a zero of multiplicity

two at infinity. So it’s possible that there is a stricter order requirement on the components

of τ ∗(1/x) that is sufficient to give a canonical lifting.
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Proof of Proposition 3.12. We start by computing 1/x = (z0, z1, . . .). Firstly, we have that

z0 = 1/x0. Then for any n ≥ 1, we have

0 = Pn(x, 1/x)

=
1

pn

[
(xp

n

0 + pxp
n−1

1 + · · ·+ pnxn)(zp
n

0 + pzp
n−1

1 + · · ·+ pnzn)− 1
]

≡ 1

pn

[
xp

n

0 (pzp
n−1

1 + · · ·+ pnzn) + pxp
n−1

1 (zp
n

0 + · · ·+ pn−1zpn−1) + · · ·+ pnxnz
pn

0

]
.

where the equivalence in the last line is modulo p. Note that, as usual with Witt vectors,

this expression has integer coefficients, despite the denominators of p. Solving this for zn, we

get zn = −xn/(x2p
n

0 ) + a rational function not involving xn. Also, by Lemma 5.1 of [Fin20],

we can write this as

zn =
−x(n−1)p

n

0 xn + a polynomial in x0, . . . , xn−1

x
(n+1)pn

0

.

Now we impose the requirement that τ ∗(1/x) has a zero at infinity. That is

ordO

(
−x(n−1)p

n

0 xn + a polynomial in x0, . . . , xn−1

x
(n+1)pn

0

)
⇒ ordO

(
−x(n−1)p

n

0 xn + · · ·
)
> −2(n+ 1)pn

⇒ degx0

(
−x(n−1)p

n

0 xn + · · ·
)
< (n+ 1)pn.

Now, as in the Voloch-Walker algorithm, we can write xn = F̂n +
∑M

i=0 cix
ip
0 . Therefore the

degree requirement will determine the ci where (n−1)pn+ ip ≥ (n+1)pn, i.e. i ≥ 2pn−1.

3.4.2 Conjectures

In [Fin20], Finotti stated the following.

Conjecture 3.13. As computed in the Voloch-Walker algorithm, an, bn ∈ Fp[a, b, 1/h] and

Fn, Hn ∈ Fp[a, b, 1/h][x0] for all n ≥ 1.

Conjecture 2.12 is essentially the same statement for characteristic 2 and we can extend

Conjecture 3.13 to characteristic 3 as long as we change the Weierstrass equation accordingly.

38



These conjectures are supported by all computations done to date, which are summarized

in the Table 3.1 (next page). This table lists the prime and the highest value of n for which

we have computed the Weierstrass coefficients and the Teichmüller lift coordinates. These

values of n are relatively small because operations with Witt vectors are computationally

expensive, both in processor time and memory. The computations were done at various

points in both SageMath versions 9.2 – 9.8 and Magma versions 2.26 and 2.27. The files

containing these polynomials are available upon request.

At this time, proofs for these conjectures are elusive. Proving any one of them requires

analysis of solutions to large linear systems that are quite opaque. In fact, even computing

small examples does not clarify things. For example, for p = 3 and n = 2, after we ensure

the regularity of τ ∗(x/y), we have to solve a linear system of the form



1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 −a32 0 · · · 0

0 0 0 −a32 · · · 0
...

...
...

...
. . .

...

1 0 0 0 · · · −a32

0 · · · 0 0

0 · · · 0 b
3n+1

2

∗ · · · ∗ ∗

∗ · · · ∗ ∗
...

...
...

...

∗ · · · ∗ ∗

0

1 0 0 · · · 0

∗ 1 0 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · 1

0

∗ D





an

bn

c0

c1
...

c4

d15

d14
...

d7

d6
...

d0



=



0

∗

∗

∗
...

∗

∗

∗
...

∗

∗
...

∗
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Table 3.1: Computed Canonical Liftings

Prime(s) Highest computed n

2 5
3 4
5 3

7 - 13 2
17 - 997 1
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where

D =



−a 1 0 0 0 0 0

a2 −a 1 0 0 0 0

−a4 − ab a3 − b a2 −a 1 0 0

a5 −a4 − ab a3 − b a2 −a 1 0

−a4b −a3b+ b2 a5 −a4 − ab a3 − b a2 −a

b5 0 −ab4 −b4 a2b3 −ab3 a3b2 + b3

0 0 0 b5 0 −ab4 −b4


and all the ∗s are elements of Fp(a, b). So the determinant of the coefficient matrix is

(−a32)5 det(D) = a49b9. In fact, there are many choices for D, as there are more coefficients

than unknowns, and so the system is overdetermined (interestingly this only happens for

p = 3). The computation above shows one of these choices, but there is no choice for n = 2

that eliminates b from the determinant of the coefficient matrix. Thus by Cramer’s Rule, a

denominator of b will show up! But mysteriously, these powers of b cancel.

Computational evidence also led to the following conjecture.

Conjecture 3.14. Let p ≥ 5. Let h be an irreducible factor of h and νh be the valuation at

h on Fp(a, b). Then

νh(an), νh(bn), νh(Fn), νh(Hn) ≥ −(npn−1 + (n− 1)pn−2).

Furthermore, νh(F
′
1) = −1 and for n ≥ 2, we have

νh(F
′
n) ≥ −

[
(n− 1)pn−1 + (n− 3)pn−2 − 2p

(
pn−3 − 1

p− 1

)]
.

Both of these bounds are sharp.

Note. The statement about F ′n can be proved from the first statement. It follows from the

properties of valuations.

This conjecture was proved for a1 and b1 in [FL23]. Also, these bounds are the same

bounds that are given in [FL21] in Corollaries 2.2 and 6.2. However, the Ai and Bi referred
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to by Li and Finotti are computed using the so-called “j-invariant method.” Despite the

different algorithm, this result seems to add support to our conjecture. (See Section 2 of

[Fin20] for an explanation of the j-invariant algorithm, or Section 1 of [FL23] for a summary

of the both of the algorithms.)

3.5 An Alternative Algorithm in Characteristic 5 and

Greater

The algorithm described here was first proposed by Finotti during a meeting in 2022.

As stated above, we have computational evidence for Conjecture 3.13 and Conjec-

ture 3.14. We also have Proposition 8.1 of [Fin20], which gives that ai and bi are modular

functions in Fp[a, b, 1/(∆h)] of weight 4pi and 6pi, respectively. The proof of that proposition

also gives that Fi and Hi are modular functions in Fp[a, b, 1/(∆h)][x0, y0] of weight 2pi and

3pi − 3, respectively. Combining all of these facts, we (conjecturally) know exactly what

form these functions will take. For example, for p = 5, we have h = 2a, and the bound from

Conjecture 3.14 (and from [FL23]) for n = 1 is −1. So we can write

a1 =
α1a

6 + α2a
3b2 + α3b

4

h

b1 =
β1a

7b+ β2a
4b3 + β3ab

5

h

for some α1, α2, α3, β1, β2, β3 ∈ Fp. Solving a linear system over Fp is (in general) much

faster than solving a linear system over Fp(a, b). So rather than slowly solving one system

over Fp(a, b), we can compute the canonical lifting of many different curves over Fpr , and

use those results to set up a linear system in the α’s and β’s (and the coefficients of Fi and

Hi) that gives a solution in Fp. While this algorithm is based on conjecture, it is possible to

verify that the result that we get gives the canonical lifting by checking that τ ∗(x/y) has a

zero at infinity.

We implemented both the standard algorithm and the interpolation algorithm in both

SageMath Version 9.8 and Magma Version 2.27-7 in order to compare. These computations
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were performed on a server with two ten-core 3.0 GHz Intel Xeon E5-2690 v2 CPUs and 192

GiB of RAM, running GNU/Linux with kernel 5.1.11 (64-bit). The results are contained in

Table 3.2 (next page). The memory measurements for Magma are imprecise, as it appears

Magma allocates memory in chunks.

In SageMath, the interpolation algorithm uses slightly more memory but appears to

be orders of magnitude faster. Furthermore, the speedup factor appears to increase as

n increases, so we get larger and larger returns. However, it seems that most of this

speedup comes because the algorithm used by SageMath to solve linear systems over

Fp(a, b) is very slow. In contrast, in Magma, in all cases that we tested, the results are

the opposite: the interpolation algorithm is about an order of magnitude slower than the

classical one, but appears to be more memory efficient. It’s possible this slowness may be

solved by parallelizing the code, as most of the computations can run independently. The

code for both of these implementations can be found at https://github.com/nielrenned/

canonical-lifting-comparison. We welcome any input on potential efficiency gains, as these

results seem quite strange.
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Table 3.2: Comparison of the Two Canonical Lifting Algorithms

SageMath

Parameters Classical Interpolation

p up to n time (sec) memory (MiB) time (sec) memory (MiB)

5 2 167 23.11 3.47 29.44

7 1 0.680 11.78 0.099 20.13

7 2 > 3 days 29.6 43.33

11 1 1.16 13.27 0.258 21.76

13 1 2.08 14.32 0.358 22.46

17 1 4.6 15.90 0.704 25.76

Magma

Parameters Classical Interpolation

p up to n time (sec) memory (MiB) time (sec) memory (MiB)

5 2 0.22 32 0.67 32

7 2 2.02 32 8.72 64

11 2 87.4 364 616 317

13 1 0.03 32 0.08 32

17 1 0.04 32 0.12 32

19 1 0.07 32 0.17 32

23 1 0.11 32 0.31 32

101 1 14.4 157 132.5 131
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Chapter 4

Mixed Characteristic Witt Vectors

Our goal in this chapter is to investigate the structure of so-called ”mixed characteristic”

Witt vectors, that is Wp,n(R) with char(R) 6= p. We’ll start with some general results about

the characteristic of these rings, show how Wp,n(R) can be seen as a direct sum, and then

prove an isomorphism for Wp,n(Z/pαZ).

4.1 The Characteristic of the Witt Ring

Since Wp,n(R) is a commutative ring, it makes sense to ask what its characteristic is. To do

this, we investigate the form that the integers take as Witt vectors.

If char(R) = p, then Fp ⊆ R, and we have an algorithm for mapping the integers to

Wp,n(R). For any c ∈ Z, we write its p-adic series, i.e., c = c0 + c1p+ c2p
2 + · · · . Since each

ci ∈ Fp, we have c
1/p
i = ci, and so c = (c0, c1, c2 . . .). The following proposition extends this

idea to any ring. We believe this result is known, but are including a proof for completeness.

Proposition 4.1. Given c ∈ Z, the image of c in Wp,∞(R) is given by c = (c0, c1, c2, . . .),

where c0, c1, c2, . . . ∈ Z are defined as follows:

c0 = c

and

cn =
c− cpn

pn
−

n−1∑
i=1

cp
i

n−i

pi
=

1

pn

[
c−

n−1∑
i=0

picp
n−i

i

]
.
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Note. If p /∈ R×, these computations must first be done in Z, and then mapped into R.

Proof. We begin by proving the proposition is true for all c ≥ 0.

First, we note that this is clear for 0. The zero of Wp,∞(R) is 0 = (0, 0, 0, . . .). Now,

consider c = 1. The one of Wp,∞(R) is 1 = (1, 0, 0, . . .). Using the formulas above we have

c0 = 1, and c1 = (1− 1p)/p = 0. Then, proceeding inductively, we get

cn =
1− 1p

n

pn
−

n−1∑
i=1

0p
i

pi
= 0.

So the formulas are correct for c = 1.

Now, let c > 1 and suppose the formulas are correct for c− 1. For the sake of notation,

let d = c − 1. Then we have c = d + 1. So we apply the Witt sum, i.e., we have

cn = Sn(d0, . . . , dn, 1, 0, . . . , 0) for all n ≥ 0.

First, we note that this gives c0 = S0(d0, 1) = d+ 1 = c and

c1 = S1(d0, d1, 1, 0)

= d1 + 0 +
dp0 + 1p − cp0

p

=
d− dp

p
+
dp + 1− cp

p
=
c− cp

p
.

Now, inductively assume that the formulas are correct for all m < n. Then we have

cn = Sn(d0, . . . , dn, 1, 0, . . . , 0)

= dn + 0 + 1
p
(dpn−1 + 0p − cpn−1) + · · ·+ 1

pn−1 (dp
n−1

1 + 0p
n−1 − cp

n−1

1 ) + 1
pn

(dp
n

0 + 1p
n − cp

n

0 )

=

(
d− dpn

pn
−

n−1∑
i=1

dp
i

n−i

pi

)
+

n−1∑
i=1

dp
i

n−i − c
pi

n−i

pi
+
dp

n
+ 1− cpn

pn

=
c− cpn

pn
−

n−1∑
i=1

cp
i

n−i

pi
.

Each Sn is a polynomial over Z, so by the first line, despite the denominators, we get that

cn is in Z. So the proposition is true for all c ≥ 0.
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Now, suppose c < 0 and let b = −c. Define the cn as above. We know the formulas work

for b. For p 6= 2, we have c = (−b0,−b1,−b2, . . .). We need to show that cn = −bn for all n.

This is clearly true for c0 and we have

c1 =
c− cp

p
=

(−b)− (−b)p

p
= −b− b

p

p
= −b1.

Then, inductively, we have

cn =
1

pn

[
c−

n−1∑
i=0

picp
n−i

i

]

=
1

pn

[
(−b)−

n−1∑
i=0

pi(−bi)p
n−i

]

= − 1

pn

[
b−

n−1∑
i=0

pibp
n−i

i

]
= −bn

so we indeed have that c = (c0, c1, . . .). Now, if p = 2, we have

c = (−1,−1,−1, . . .) · (b0, b1, b2, . . .) = (P0(−1, b), P1(−1, b), P2(−1, b), . . .) .

Again, right away we get that c0 = −b0. Now inductively suppose ck = Pk(−1, b) for

k < n. Then we have

Pn(−1, b)

=
1

2n

[(
(−1)2

n

+ 2(−1)2
n−1

+ · · ·+ 2n(−1)
)(

b2
n

0 + 2b2
n−1

1 + · · ·+ 2nbn

)
−

n−1∑
i=0

2iP 2n−i

i

]

=
1

2n

[(
1 + 2 + · · ·+ 2n−1 − 2n

) (
b2
n

0 + 2b2
n−1

1 + · · ·+ 2nbn

)
−

n−1∑
i=0

2ic2
n−i

i

]

=
1

2n

[
−
(
b2
n

0 + 2b2
n−1

1 + · · ·+ 2nbn

)
−

n−1∑
i=0

2ic2
n−i

i

]

By construction of the bn, for any n (and any p), we have

b =
n∑
i=0

pibp
n−i

i (4.1)
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so the expression above simplifies to

Pn(−1, b) =
1

2n

[
−b−

n−1∑
i=0

2ic2
n−i

i

]
=

1

2n

[
c−

n−1∑
i=0

2ic2
n−i

i

]
= cn.

finishing the proof.

Our goal now is to determine the characteristic of Wp,n(R) for any R, which will give us

our first insight into its structure. We start by investigating the Witt vector representation

of char(R).

Proposition 4.2. Let N = char(R) and suppose p | N . Let v = vp(N). Let N be the image

of N in Wp,∞(R). Then for all j ≥ 0 we have

pjN =

(
0, . . . , 0,

N

p
N1,j,

N

p2
N2,j, . . . ,

N

pv
Nv,j,

N

pv
Nv+1,j,

N

pv
Nv+2,j, . . .

)

where the first j + 1 entries are zero and Ni,j ∈ Z for all i.

Proof. First, note that this is clearly true for N = 0. So assume N > 0. We start with j = 0

and apply the Proposition 4.1. Firstly, we have N0 = N ≡ 0 (mod N) and

N1 =
N −Np

p
=
N

p
(1−Np−1) =:

N

p
N1,0.

Suppose n ≤ v. Then inductively, we have

Nn =
N −Npn

pn
−

n−1∑
i=1

Npi

n−i

pi

=
N

pn
(1−Npn−1)−

n−1∑
i=1

1

pi

(
N

pn−i
Nn−i,0

)pi

=
N

pn

[
1−Npn−1 −

n−1∑
i=1

(
N

pn−i

)pi−1
Npi

n−i,0

]
=:

N

pn
Nn,0

Since n− i ≤ v, we have that N
pn−i

is an integer and so Nn,0 is an integer. Now suppose n > v

and continue with the induction. In this case, we get
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Nn =
N −Npn

pn
−

n−1∑
i=1

Npi

n−i

pi

=
1

pn

[
N −Npn −

n−1∑
i=1

piNpn−i

i

]

=
1

pn

[
N −Npn −

v∑
i=1

pi
(
N

pi
Ni,0

)pn−i
−

n−1∑
i=v+1

pi
(
N

pv
Ni,0

)pn−i]

Note that the expression in square brackets is an integer, since N
pi
∈ Z for all i ≤ v. Since

Nn is also an integer, we must have that that expression is divisible by pn. So if we factor

out an N from the square brackets, that expression must still be divisible by pn−v. So we

can write

=
N

pv
1

pn−v

[
1−Npn−1 −

v∑
i=1

pi
(
N

pi

)pn−i−1
Npn−i

i,0 −
n−1∑
i=v+1

pi−v
(
N

pv

)pn−i−1
Npn−i

i,0

]

=:
N

pv
Nn,0,

and rest assured that Nn,0 is indeed an integer. So the proposition holds for j = 0.

Now, inductively assume the proposition holds for all k < j. By Proposition 5.10 of

[Rab14], we have that multiplication by p is equivalent to applying F ◦ V , where F and V

are the Frobenius and Verschiebung maps, respectively. So, pj ·N = F (V (pj−1 ·N )). Lemma

4.1 of [DK14] gives us a formulation for F , namely, F (x0, x1, . . .) is given by (y0, y1, . . .) with

yn = xpn + pxn+1 + pfn(x0, . . . xn)

where fn is a polynomial with integer coefficients that is homogeneous of weight pn+1 under

the weighting wgt(xi) = pi. Using this notation, we let (x0, x1, . . .) = V (pj−1 ·N ). Then

x0 = . . . = xj = 0 and

(xj+1, xj+2, . . .) =

(
N

p
N1,j−1,

N

p2
N2,j−1, . . . ,

N

pv
Nv,j−1,

N

pv
Nv+1,j−1,

N

pv
Nv+2,j−1, . . .

)
.
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Since each fn is homogeneous of positive weight, fn(0, . . . , 0) = 0. So it is immediately

clear that yn = 0 for all n < j. Furthermore,

yj = xpj + pxj+1 + pfj(x0, . . . , xj)

= 0p + p
N

p
N1,j−1 + pfj(0, . . . , 0)

= NN1,j−1 ≡ 0 (mod N)

This proves the first part: pj ·N has zero in its first j + 1 entries. Now, for 1 ≤ n < v,

we consider

yj+n = xpj+n + pxj+n+1 + pfj+n(x0, . . . , xj+n)

=

(
N

pn
Nn,j−1

)p
+ p

(
N

pn+1
Nn+1,j−1

)
+ pfj+n

(
0, . . . , 0,

N

p
N1,j−1, . . . ,

N

pn
Nn,j−1

)
=
N

pn

((
N

pn

)p−1
Np
n,j−1 +Nn+1,j−1

)
+ pfj+n

(
0, . . . , 0,

N

p
N1,j−1, . . . ,

N

pn
Nn,j−1

)

Since fj+n is homogeneous, it has no constant term. Also, fj+n has integer coefficients.

Therefore, since
N

pn
divides

N

pm
for m ≤ n, every term of fj+n is an integer and has a factor

of
N

pn
in it. So we can write yj+n =:

N

pn
Nn,j.

Finally, for n ≥ v, we have

yj+n = xpj+n + pxj+n+1 + pfj+n(x0, . . . , xj+n)

=

(
N

pv
Nn,j−1

)p
+ p

(
N

pv
Nn+1,j−1

)
+ pfj+n

(
0, . . . , 0,

N

p
N1,j−1, . . . ,

N

pv
Nn,j−1

)
=
N

pv

((
N

pv

)p−1
Np
n,j−1 + pNn+1,j−1

)
+ pfj+n

(
0, . . . , 0,

N

p
N1,j−1, . . . ,

N

pv
Nn,j−1

)

By the same logic as before, we can factor out
N

pv
from fj+n, so we can write yj+n =:

N

pv
Nn,j.

Putting this all together, we have

pj ·N = (y0, y1, . . .) =

(
0, . . . , 0,

N

p
N1,j,

N

p2
N2,j, . . . ,

N

pv
Nv,j,

N

pv
Nv+1,j,

N

pv
Nv+2,j, . . .

)
,
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with the first j + 1 entries 0, which is what we set out to prove.

Corollary 4.3. Let N = char(R) and suppose p | N . Then char(Wp,n(R)) = pn−1N and

char(Wp,∞(R)) = 0.

Proof. If N = 0, then Z ↪→ R. So for any c ∈ Z, taking c = (c0, c1, . . .) as in Proposition 4.1,

we have c0 6= 0. Thus char(Wp,n(R)) = 0 for all n ∈ N ∪ {∞}, which shows the corollary is

true for N = 0. So let N > 0 and let Ni,j be as in Proposition 4.2.

We first show that
N

p
N1,j 6≡ 0 (mod N) for all j. Let M = pjN . Let M = (M0,M1, . . .)

as in Proposition 4.1. Then we have

N

p
N1,j = Mj+1 =

1

pj+1

[
M −

j∑
i=0

piMpj+1−i

i

]
=
N

p
−

j∑
i=0

Mpj+1−i

i

pj+1−i . (4.2)

Since M = pjN , by Proposition 4.2, we have that Mi ≡ 0 (mod N) for all 0 ≤ i ≤ j, so

we can write Mi = ciN for some ci ∈ Z. Letting N ′ = N/p, we have Mi = cipN
′. Then for

k ≥ 0,

Mpk

i

pk
= pp

k−k(ciN
′)p

k

= pp
k−kN ′(· · · ).

Since pk − k ≥ 1 for all k ≥ 0, we have Mpk

i /p
k ≡ 0 (mod N). So Equation (4.2) simplifies

to
N

p
N1,j ≡

N

p
(mod N).

Since char(R) = N , N
p
6≡ 0 (mod N). So, we’ve shown that the first non-zero entry of

pj ·N is
N

p
and occurs at index j+ 1. Now, we note that char(Wp,n(R)) must be a multiple

of N , otherwise the first component would be non-zero.

Let n ∈ N. We can write n = cpj for some j with p - c. Then we have

nN = cpjN = c ·
(

0, . . . , 0,
N

p
, . . .

)
=

(
0, . . . , 0, c

N

p
, . . .

)

Since p - c, we can never have
cN

p
≡ 0 (mod N), since we’ll always be missing a factor of p.

This shows two things. Firstly, every multiple of N has a non-zero component, which proves
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char(Wp,∞(R)) = 0. Secondly, the number of zeroes at the beginning of nN is exactly

vp(n) + 1. So the smallest integer that maps to 0 in Wp,n(R) must be pn−1N .

This proposition, along with Remark 2.5 of [Rab14] gives a complete characterization of

the characteristic of Witt Rings. We have

char(Wp,∞(R)) =

0 if p | char(R)

char(R) otherwise

and

char(Wp,n(R)) =

p
n−1char(R) if p | char(R)

char(R) otherwise

4.2 The General Structure of Wp,n(R)

Our goal in this section is to investigate the structure of Wp,n(R) a little bit more. We start

by showing the ideals of R lift to ideals of Wp,n(R) in a natural way.

Proposition 4.4. Let I be an ideal of R. Thenfor all n ∈ N ∪ {∞},

Wp,n(I) := {(a0, a1, · · · ) ∈Wp,n(R) : ai ∈ I for all i}

is an ideal of Wp,n(R) and

Wp,n(R)/Wp,n(I) ∼= Wp,n(R/I).

Proof. Let r ∈ Wp,n(R) and a ∈ Wp,n(I). The product polynomials Pi have integer

coefficients and every monomial is of the form c
∏
X
sj
j

∏
Y tk
k , where c ∈ Z and sj, tk > 0

for all j, k. So the monomials in Pi(r,a) will be an integer times an element of R times

an element of I, which, since I is an ideal, is in I. Then we add up all these elements, so

Pi(r,a) ∈ I and therefore ra ∈Wp,n(I).
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Now, let b ∈ Wp,n(I). By the above, −b is also in Wp,n(I). Then since the sum

polynomials Si all have integer coefficients, Si(a,−b) ∈ I for all i. So (a − b) ∈ Wp,n(I).

Thus Wp,n(I) is an ideal of Wp,n(R).

For the second part, define ϕ : Wp,n(R) → Wp,n(R/I) by ϕ(v) = (v0 + I, v1 + I, . . .).

Then Theorem 2.6 of [Rab14] gives that ϕ is a ring homomorphism. Also, clearly ker(ϕ) =

Wp,n(I), so the First Isomorphism Theorem finishes the proof.

We can take advantage of this lifting of ideals to gain insight into the structure ofWp,n(R).

First we need a small computational lemma.

Lemma 4.5. Let p, α,M ∈ Z>0 with p prime and p -M . Let a, b ∈ Z such that apα+bM = 1.

Then for all i ≥ 0,

(apα)p
i

+ (bM)p
i ≡ 1 (mod pα+iM).

Proof. We have

1 = 1p
i

= (apα + bM)p
i

= (apα)p
i

+ (bM)p
i

+

pi−1∑
n=1

(
pi

n

)
(apα)n(bM)p

i−n

Clearly, every term in the sum is divisible by M . From [Fin14] Lemma 8.1, we have that

νp(
(
pi

n

)
) = i− νp(n). So each term in the sum is also divisible by pαn+i−νp(n). Since n < pn,

we have νp(n) < n. This gives

αn+ i− νp(n) > n(α− 1) + i ≥ α + i− 1.

Therefore, αn+ i−νp(n) ≥ α+ i and so pα+i divides every term in the sum. So, mod pα+iM ,

the summation is congruent to 0, finishing the proof.

Theorem 4.6. Let R be a commutative ring of characteristic N > 0. Write N = pαM with

p -M . Then, for all n ∈ N ∪ {∞},

Wp,n(R) ∼= Wp,n(R/pαR)⊕Wp,n(R/MR).

53



Proof. Let I = pαR and J = MR. Since p -M , 1 is a linear combination of pα and M , so I

and J are coprime. Thus by the Chinese Remainder Theorem, I ∩ J = IJ = (pαM) = (0)

and R ∼= (R/I)⊕ (R/J).

Now we apply a similar argument to Wp,n(R). Since I ∩ J = (0), we get by construction

that Wp,n(I)∩Wp,n(J) = (0). If we show that Wp,n(I) and Wp,n(J) are coprime, we’ll have,

by the Chinese Remainder Theorem and Proposition 4.4,

Wp,n(R) ∼= Wp,n(R)/Wp,n(I)⊕Wp,n(R)/Wp,n(J) ∼= Wp,n(R/I)⊕Wp,n(R/J)

Let a, b ∈ Z such that apα + bM = 1. By construction of the ideals, we have

(apα, 0, 0, . . .) ∈ Wp,n(I) and (bM, 0, 0, . . .) ∈ Wp,n(J). We claim that (apα, 0, 0, . . .) +

(bM, 0, 0, . . .) = (1, 0, 0, . . .), which will show that Wp,n(I) and Wp,n(J) are coprime.

The first component being 1 is clear, so we need to show that the rest of the components

are 0. We start with

S1((ap
α, 0, . . .), (bM, 0, . . .)) =

1

p
[(apα)p + (bM)p − 1].

By Lemma 4.5, (apα)p + (bM)p ≡ 1 (mod pα+1M), which gives S1 ≡ 0 (mod pαM). Now

inductively assume Sj ≡ 0 (mod pαM) for all j < i. We have

Si((ap
α, 0, . . .), (bM, 0, . . .)) = −

i−2∑
j=1

Sp
j

i−j

pj
− 1

pi
[(apα)p

i

+ (bM)p
i − 1].

Again by Lemma 4.5, we have that p−i[(apα)p
i

+ (bM)p
i − 1] ≡ 0 (mod pαM). Also,

since Si−j ≡ 0 (mod pαM) and j < pj, we have that p−jSp
j

i−j ≡ 0 (mod pαM). So

Si ≡ 0 (mod pαM) as well, proving the claim and finishing the proof of the theorem.

The isomorphism here is hiding in the details of the proof. Combining the isomorphisms

from the Chinese Remainder Theorem and Proposition 4.4, we get the explicit form

φ : Wp,n(R)→Wp,n(R/MR)⊕Wp,n(R/pαR)

(v0, v1, . . .) 7→ (v0 + (pα), v1 + (pα), . . .)⊕ (v0 + (MR), v1 + (MR), . . .) .
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For computational purposes, we would also like to know how to invert this, which leads us

to the next theorem.

Theorem 4.7. Take R as in Theorem 4.6 and let a, b ∈ Z such that apα + bM = 1. Take φ

as above and define

ψ : Wp,n(R/MR)⊕Wp,n(R/pαR)→Wp,n(R)

(a0, a1, . . .)⊕ (b0, b1, . . .) 7→ ((apα)a0 + (bM)b0, (ap
α)a1 + (bM)b1, . . .).

Then φ and ψ are inverses.

Proof. First we show that ψ is well-defined. Let

(a0, a1, . . .)⊕ (b0, b1, . . .) = (a′0, a
′
1, . . .)⊕ (b′0, b

′
1, . . .).

Then we have that ai = a′i + kiM and bi = b′i + `ip
α for all i. We compute

ψ((a0, a1, . . .)⊕ (b0, b1, . . .))

= ((apα)a0 + (bM)b0, (ap
α)a1 + (bM)b1, . . .)

= ((apα)(a′0 + k0M) + (bM)(b′0 + `0p
α), (apα)(a′1 + k1M) + (bM)(b′1 + `1p

α), . . .)

= ((apα)a′0 + (bM)b′0 + (ak0 + b`0)p
αM, (apα)a′1 + (bM)b′1 + (ak1 + b`1)p

αM, . . .)

= ((apα)a′0 + (bM)b′0, (ap
α)a′1 + (bM)b′1, . . .) since char(R) = pαM

= ψ((a′0, a
′
1, . . .)⊕ (b′0, b

′
1, . . .)).

Therefore ψ is well-defined. Now we compute

ψ(φ(v)) = ψ((v0, v1, . . .)⊕ (v0, v1, . . .))

= ((apα + bM)v0, (ap
α + bM)v1, . . .) = v

and
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φ(ψ(a⊕ b))

= φ(((apα)a0 + (bM)b0, (ap
α)a1 + (bM)b1, . . .))

= ((apα)a0 + (bM)b0, (apα)a1 + (bM)b1, . . .)⊕ ((apα)a0 + (bM)b0, (apα)a1 + (bM)b1, . . .)

= (a0, a1, . . .)⊕ (b0, b1, . . .) = a⊕ b.

So indeed, ψ = φ−1 (and therefore is an isomorphism as well) finishing the proof.

And finally, we can remove the Witt vector aspect entirely in one component, which is

computationally useful.

Corollary 4.8. Take R as in Theorem 4.6. Then

Wp,n(R) ∼= (R/MR)n ⊕Wp,n(R/pαR).

Proof. Since char(R/MR) = M , and p - M , p ∈ (R/MR)×. So by [Rab14] Remark 2.5,

which is restated in Proposition 1.10, Wp,n(R/MR) ∼= (R/MR)n via (w0, w1, . . .).

4.3 The Additive Structure of Wp,n(Z/pαZ)

So now we’d like to know the structure of Wp,n(R/pαR). For general R, it seems intractable,

so we’ll shift our focus to R = Z. In Proposition 1.6 of [Hes15], the structure of Wp,n(Z) is

given by

Wp,n(Z)+ =
n∏
i=0

Z · V i(1) ∼= Zn

with multiplication given by

V i(1) · V j(1) = pi · V j(1)

for i ≤ j. Despite the strange multiplication listed above, we actually get an isomorphism

of rings given by the ghost map, w∗ : Wp,n(Z)→ Zn defined by a 7→ (w0(a), w1(a), . . .).

The results below build on this idea to extend the result that Wp,n(Fp) ∼= Z/pnZ to a

slightly larger class of rings. Our goal in this section is to prove the following theorem.

56



Theorem 4.9. For all n ∈ N, the additive group of Wp,n(Z/pαZ) is isomorphic to

(Z/pn+α−1Z)⊕ (Z/pα−1Z)n−1.

By Corollary 4.3, we know the first piece is the image of Z, and so is generated by one. So

we will start by constructing elements of order α−1, then prove that these elements do in fact

generate subgroups with trivial intersection. After that, we will show that these elements

have “nice” multiplicative properties and use these properties to construct an isomorphism

that is computationally useful.

We start by defining the following values. Let g0 = p and then for i ∈ {1, . . . , n− 1}, let

gi be defined recursively by

gi = − 1

pi

i−1∑
j=0

pjgp
i−j

j .

This definition gives the following useful property for i ≥ 1:

i∑
j=0

pjgp
i−j

j = 0. (4.3)

From the construction, these gi are rational numbers, but we would like to use them as

components of the Witt vectors, so we need the following lemma.

Lemma 4.10. The gi defined above are integers and νp(gi) = pi − pi−1 − · · · − p− 1.

Proof. By definition, g0 is an integer and νp(g0) = 1.

Now, inductively assume the statement is true for j < i. Then we have

νp

(
i−1∑
j=0

pjgp
i−j

j

)
≥ min

1≤j≤i−1
{j + pi−jνp(gj)}

= min
1≤j≤i−1

{j + pi−j(pj − pj−1 − · · · − p− 1)}

= min
1≤j≤i−1

{j + pi − pi−1 − · · · − pi−j}

Now, for 1 ≤ k < j ≤ i− 1, we have

j + pi − pi−1 − · · · − pi−j = j + pi − · · · − pi−k − (pi−k−1 + · · ·+ pi−j)
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< j + pi − · · · − pi−k − (1 + · · ·+ 1︸ ︷︷ ︸
j-k ones

)

= k + pi − · · · − pi−k.

Therefore the minimum above is achieved by j = i − 1 and we are taking a minimum

over distinct numbers, so the the inequality becomes an equality. This gives

νp

(
i−1∑
j=0

pjgp
i−j

j

)
= i+ pi − pi−1 − · · · − p− 1

and so

νp(gi) = pi − pi−1 − · · · − p− 1

which is positive, proving both statements in the lemma.

Now, we can use these g’s to define the generators. For all i ∈ {1, . . . , n− 1} define

γi := (0, . . . , 0︸ ︷︷ ︸
i−1 zeroes

, g0, g1, . . . , gn−i).

Note that g0 occurs at index i − 1 (since Witt vectors are 0-indexed). Our goal now is to

prove that these γ’s are the correct generators.

Lemma 4.11. For any c ∈ Z, cγi = (0, . . . , 0︸ ︷︷ ︸
i−1 zeroes

, cg0, c
pg1, c

p2g2, . . .).

Proof. First note that this is clearly true for c = 0, 1. Since the first i− 1 components of γi

are 0, we have

cγi = (0, . . . , 0︸ ︷︷ ︸
i−1 zeroes

, Pi−1(c, γi), Pi(c, γi), . . .).

So we consider

Pi−1(c, γi) =
1

pi−1

[
(cp

i−1

0 + · · ·+ pi−1ci−1)(p
i−1g0)

]
= g0(c

pi−1

0 + · · ·+ pi−1ci−1)

= g0

i−1∑
j=0

pjcp
(i−1)−j

j = cg0.
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This last equality comes from Equation (4.1). Now, for j ≥ i, we have

Pj(c, γi) =
1

pj

(cp
j

0 + · · ·+ pjcj)(p
i−1g

j−(i−1)
0 + · · ·+ pjgj−(i−1)︸ ︷︷ ︸

=0 by Equation (4.3)

)−
j−1∑
k=i−1

pkP pj−k

k


= − 1

pj

j−1∑
k=i−1

pkP pj−k

k

Then inductively we have

Pj(c, γi) = − 1

pj

j−1∑
k=i−1

pk
(
cp
k−(i−1)

gk−(i−1)

)pj−k
= cp

j−(i−1)

(
− 1

pj

j−1∑
k=i−1

pkgp
j−k

k−(i−1)

)

= cp
j−(i−1)

(
− 1

pj

j−i∑
k=0

pk+(i−1)gp
(j−i)−(k−1)

k

)

= cp
j−(i−1)

(
− 1

pj−(i−1)

j−i∑
k=0

pkgp
j−(i−1)−k

k

)
= cp

j−(i−1)

gj−(i−1).

Since the first i−1 components are zero, these indices are correct, proving the statement.

Proposition 4.12. For each i, the additive order of γi is pα−1.

Proof. By the above Lemma 4.11, for any c ∈ Z, the component at index i− 1 is cg0 = cp.

For any c < pα−1, cp 6≡ 0 (mod pα). So |γi| ≥ pα−1. Now, letting c = pα−1, we have

cp ≡ 0 (mod pα). Also, since pi(α− 1) ≥ α for all i ≥ 1, we have that cp
i ≡ 0 (mod pα). So

each component of cγi is 0, and thus |γi| = pα−1.

We’ve shown that the γ’s have the correct order, so now we need to show that 〈γi〉 has

trivial intersection with the integers and the groups generated by the other γj. We can see

right away that for i 6= j, 〈γi〉 ∩ 〈γj〉 = {0}: Lemma 4.11 shows that the first non-zero

component of respective elements occur at different indices. So we only need to show that

the intersection with the integers is trivial. For this, we again need another lemma.

Lemma 4.13. Let c ∈ Z with c 6= 0. Let β = νp(c) and define the ci as in Proposition 4.1.

Then for i ∈ {0, . . . , β}, νp(ci) = β − i.

59



Proof. Since c0 = c, we have that νp(c0) = β. So we proceed by induction.

νp(ci) = −i+ νp

(
c− cpi −

i−1∑
j=1

pjcp
i−j

j

)

≥ −i+ min

{
β, piβ, min

1≤j≤i−1

{
j + pi−j(β − j)

}}

Since β ≥ i > j, we have

(pi−j − 1)(β − j) > 0

⇒ pi−jβ − β − pi−jj + j > 0

⇒ j + pi−j(β − j) > β.

Clearly piβ > β, so the minimum above is β, and furthermore, there is only one expression

in the min equal to β, and so the inequality becomes an equality. So we get νp(ci) = β−i.

Note that this argument breaks for i = β + 1, because the inner min becomes β as well,

and so we cannot declare the equality at the end. For i > β, the only thing we know is that

νp(ci) ≥ 0, since it is an integer. In fact, in testing, it is possible for the valuation to become

positive again.

Also, this lemma shows that the valuations of the ci must first decrease to 0 before they

can begin jumping around uncontrollably. We take advantage of this fact in the the proof

of the next proposition.

Proposition 4.14. For all i, 〈γi〉 ∩ 〈1〉 = {0}.

Proof. Suppose m = cγi for some non-zero m, c ∈ Z. Then by Lemma 4.11, we have

m = (0, . . . , 0, cg0, c
pg1, . . .) where mi−1 = cg0, mi = cpg1 and so on. Since m0, . . . ,mi−2 are

all equivalent to 0 (mod pα), we get that νp(m0), . . . , νp(mi−2) ≥ α. Also, since cpg0 6= 0,

we have that νp(mi−1) < α. Applying Lemma 4.13, we must have that νp(mi−2) = α, which

gives that νp(m) = α + i− 2 and νp(mi−1) = α− 1.
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Now, let β = νp(c). Since m 6= 0 and |γi| = pα−1, we get that β < α − 1. We also get

that α− 1 = νp(mi−1) = β + 1. Using Lemma 4.10, we get

α− 1 = νp(mi) + 1 = νp(c
pg1) + 1 = pβ + (p− 1) + 1 = p(β + 1) = p(α− 1).

This series of equalities implies that p = 1, a contradiction. So we must have that m = 0.

With these propositions, we finally have all the tools we need to prove the theorem at

the beginning of the section.

Proof of Theorem 4.9. From Corollary 4.3, we have that |1| = pα+n−1. From Proposi-

tion 4.12, we have that |γ1| = · · · = |γn−1| = pα−1. Furthermore, these elements generate

subgroups whose pairwise intersections are always zero. So we have

(Z/pn+α−1Z)⊕ (Z/pα−1Z)n−1 ≤Wp,n(Z/pαZ)+.

But also

pα+n−1 · (pα−1)n−1 = pαn = |Wp,n(Z/pαZ)|

which completes the proof.

4.4 The Multiplicative Structure of Wp,n(Z/pαZ)

Now we know the additive structure and we have an explicit formula for the generators

of each component. This construction of the generators, while not extremely complicated,

could actually be simpler. From computer testing and proof sketches, the author believes

that generators of the form γi = V i−1(p, 0, 0, . . .) would also work. However, the particular

generators in the previous section were chosen for their multiplicative properties. This is

a ring after all, and we’d like to have a (relatively) simple expression for multiplication.

Unfortunately, the multiplication cannot be done componentwise, as the author initially

hoped. However, it can still be simplified quite a bit compared to the standard product

polynomials. We start with the following proposition.
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Proposition 4.15. For i 6= j, γiγj = 0.

Proof. Without loss of generality, suppose i < j. Then the first j − 1 components of γiγj

are zero and for k ≥ j, we have the following:

Pk(γi, γj)

=
1

pk

[
(pi−1gp

k−i+1

0 + · · ·+ pkgk−i+1)(p
j−1gp

k−j+1

0 + · · ·+ pkgk−j+1)

− (pjP pk−j

j + · · ·+ pk−1P p
k−1)

]

Since k > i, the first factor inside the brackets is pi−1
k−i+1∑̀

=0

p`gp
k−i+1−`

` , which is 0 by

Equation (4.3). This holds for all k ≥ j, so each Pk = 0. Thus γiγj = 0.

This proposition already vastly simplifies multiplication! We know we can write any

element of v ∈Wp,n(Z/pαZ) as v = v0+
∑n−1

i=1 viγi, where v0 ∈ Z/pα+n−1Z and vi ∈ Z/pα−1Z.

Multiplying two elements of this form would give many terms of the form γiγj with i 6= j,

which all disappear! Multiplying any of the γ’s by an integer doesn’t introduce any more

complications, but there will still be terms of the form cγ2i . To take care of these terms, we

can use the next proposition.

Proposition 4.16. For all i, γ2i = piγi.

Proof. Since, the first i− 1 components of γi are zero, the first i− 1 components of both γ2i

and piγi will also be zero. So we consider

Pi−1(γi, γi) =
1

pi−1
[(pi−1g0)(p

i−1g0)] = pi−1g20 = pig0.

Then, for k ≥ i, we have

Pk(γi, γi) =
1

pk

(pi−1gp
k−i+1

0 + · · ·+ pkgk−i+1︸ ︷︷ ︸
=0 by Equation (4.3)

)2 − (piP pk−i

i + · · ·+ pk−1P p
k−1)


= − 1

pk

k∑
j=i−1

pjP k−j
j
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Now we turn our attention to piγi. From Lemma 4.11, we have that the first non-zero

component is also pig0. Then we can perform the same computation as above and the first

term inside the brackets will again be zero by Equation (4.3). So the resulting expression

has exactly the same form. That is, inductively, for k ≥ i, we have

Pk(γi, γi) = − 1

pk

k∑
j=i−1

pjP k−j
j (γi, γi) = − 1

pk

k∑
j=i−1

pjP k−j
j (pi, γi) = Pk(p

i, γi).

Therefore γ2i = piγi.

Note that it is perfectly valid here to have i ≥ α, and so we may end up with γ2i = 0.

Using these two propositions, we can see right away how to multiply two elements in this

new form. Let a = a0 +
∑n−1

i=1 aiγi and b = b0 +
∑n−1

i=1 biγi. Then we have

ab =

(
a0 +

n−1∑
i=1

aiγi

)(
b0 +

n−1∑
i=1

biγi

)

= a0

(
b0 +

n−1∑
i=1

biγi

)
+ a1γ1

(
b0 +

n−1∑
i=1

biγi

)
+ · · ·+ an−1γn−1

(
b0 +

n−1∑
i=1

biγi

)

= a0b0 +
n−1∑
i=1

a0biγi + (a1b0γ1 + a1b1γ
2
1) + · · ·+ (an−1b0γ1 + an−1bn−1γ

2
n−1)

= a0b0 +
n−1∑
i=1

(a0bi + aib0 + piaibi)γi

This greatly simplifies the multiplication compared to using the product polynomials.

We can also see from the formula that it’s not quite component-wise multiplication, but it’s

close: the only coefficient that is affecting the other components is the integer part at the

start. As far as the authors can tell (through computer testing), this seems unavoidable.

That is, there seems to be no alternative choice for γi where the multiplication can be done

component-wise.
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4.5 The Coefficients of γi

We now turn our attention to how we can compute the coefficients of 1 and the γi for any

vector v ∈Wp,n(Z/pαZ). Our goal in this section is to prove this theorem.

Theorem 4.17. Let v ∈ Wp,n(Z/pαZ). Define c0 = wn−1(v) and for i ∈ {1, . . . , n − 1},

ci = p−i(wi−1(v) − c0), where wj is the jth Witt polynomial. Then, with the γi defined as

above,

v = c0 +
n−1∑
i=1

ciγi.

Note. These computations must be done in the integers because of the denominators in the

formula for the ci and because c0 is in Z/pn+α−1Z.

As with the gi in Section 4.3, by construction, these ci are rational numbers with

denominators divisible by p. However, we want ci ∈ Z/pα−1Z, and so we need denominators

not divisible by p. For this, we have the following lemma.

Lemma 4.18. The ci defined in Theorem 4.17 are integers for all v ∈Wp,n(Z/pαZ).

Proof. We consider the numerator of ci,

wi−1(v)− wn−1(v) =
i−1∑
j=0

pjvp
(i−1)−j

j −
n−1∑
j=0

pjvp
(n−1)−j

j

=
i−1∑
j=0

pj
(
vp

(i−1)−j

j − vp
(n−1)−j

j

)
−

n−1∑
j=i

pjvp
(n−1)−j

j

Every term in the second sum is divisible by pi, so we need only focus on the terms in the

first sum. Let 0 ≤ j ≤ i − 1. If vj = 0, the entire term is 0 and so is divisible by pi. So

assume vj 6= 0. Then we have

pj
(
vp

(i−1)−j

j − vp
(n−1)−j

j

)
= pjvp

(i−1)−j

j

(
1− vp

(n−1)−j−p(i−1)−j

j

)
= pjvp

(i−1)−j

j

(
1− vp

(i−1)−j(pn−i−1)
j

)
Since i < n, we have, by Fermat’s Little Theorem, vp

n−i−1
j ≡ 1 mod p, since (p − 1) |

(pn−i − 1). Then, by Lemma 1.4 of [Rab14], this gives v
p(i−1)−j(pn−i−1)
j ≡ 1 mod pi−j. So
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pi−j |
(

1− vp
(i−1)−j(pn−i−1)
j

)
, and thus pi divides the entire term because we’re multiplying by

pj at the front. Therefore pi divides every term in the numerator, and so ci is an integer.

So we know it makes sense to use these ci as the coefficients. Before we prove

Theorem 4.17, we need the following lemma about what happens when we add an element

of 〈γi〉 to an arbitrary Witt vector.

Lemma 4.19. Let v = (v0, . . . , vn−1) ∈ Wp,n(Z/pαZ) and let c ∈ Z. Define w =

(w0, . . . , wn−1) = v + cγi. Then wj = vj for 0 ≤ j < i − 1, wi−1 = vi−1 + cp, and for

j ≥ i,

wj = vj +

j−1∑
k=i−1

1

pj−k

(
vp

j−k

k − wp
j−k

k

)
.

Proof. We have cγi = (0, . . . , 0︸ ︷︷ ︸
i−1 zeroes

, cg0, c
pg1, . . .). So we get

v + cγi = (v0, . . . , vi−2, vi−1 + cg0, Si(v, cγi), Si+1(v, cγi), . . .).

Since g0 = p, this shows the first two of the three statements in the lemma. So now we let

j ≥ i and consider

wj = Sj(v, cγi)

= vj + cp
j−(i−1)

gj−(i−1) +

j−(i−1)∑
k=1

1

pk

(
vp

k

j−k + (cp
j−(i−1)−k

gj−(i−1)−k)
pk − wp

k

j−k

)
= vj +

j−(i−1)∑
k=1

1

pk

(
vp

k

j−k − w
pk

j−k

)
+

j−(i−1)∑
k=0

1

pk
(cp

j−(i−1)−k
gj−(i−1)−k)

pk

= vj +

j−(i−1)∑
k=1

1

pk

(
vp

k

j−k − w
pk

j−k

)
+
cp
j−(i−1)

pj−(i−1)

j−(i−1)∑
k=0

pj−(i−1)−kgp
k

j−(i−1)−k︸ ︷︷ ︸
0 by Equation (4.3)

= vj +

j−1∑
k=i−1

1

pj−k

(
vp

j−k

k − wp
j−k

k

)
.

This is the final tool we need to prove Theorem 4.17.
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Proof of Theorem 4.17. For the sake of notation, let a0 = (a0,0, . . . , a0,n−1) := c0. Then, for

i ∈ 1, · · · , n− 1, recursively define

ai = (ai,0, . . . , ai,n−1) := ai−1 + ciγi.

Under this notation, we have, for 0 < i, j ≤ n− 1,

ai,j = Sj(ai−1, ciγi).

Our goal is to show that an−1 = v. By Lemma 4.19, we have

a1,0 = a0,0 + c1g0

= a0,0 + w0(v)− wn−1(v)

= v0 + a0,0 − c0 = v0.

So a1 = (v0, a1,1, . . . , a1,n−1). Now, inductively assume aj = (v0, . . . , vj−1, aj,j, . . . , aj,n−1) for

all j < i and consider ai. For all k < i− 1, we have

ai,k = Sk(ai−1, ciγi) = ai−1,k = vk,

since the first i− 1 components of ciγi are 0. Then, repeatedly using Lemma 4.19, we have

ai,i−1 = Si−1(ai−1, ciγi)

= ai−1,i−1 + pci

= Si−1(ai−2, ci−1γi−1) + pci

= ai−2,i−1 +
i−2∑

k=i−2

1

p(i−1)−k

(
ap

(i−1)−k

i−2,k − ap
(i−1)−k

i−1,k

)
+ pci

= ai−3,i−1 +
i−2∑

m=i−3

i−2∑
k=m

1

p(i−1)−k

(
ap

(i−1)−k

m,k − ap
(i−1)−k

m+1,k

)
+ pci

=
...
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= a0,i−1 +
i−2∑
m=0

i−2∑
k=m

1

p(i−1)−k

(
ap

(i−1)−k

m,k − ap
(i−1)−k

m+1,k

)
+ pci

= a0,i−1 +
i−2∑
k=0

1

p(i−1)−k

k∑
m=0

(
ap

(i−1)−k

m,k − ap
(i−1)−k

m+1,k

)
︸ ︷︷ ︸

telescoping

+ pci

= a0,i−1 +
i−2∑
k=0

1

p(i−1)−k

(
ap

(i−1)−k

0,k − ap
(i−1)−k

k+1,k

)
+ pci

=
i−1∑
k=0

1

p(i−1)−k
ap

(i−1)−k

0,k + pci −
i−2∑
k=0

1

p(i−1)−k
ap

(i−1)−k

k+1,k

=
1

pi−1

[
i−1∑
k=0

pkap
(i−1)−k

0,k − c0 + wi−1(v)−
i−2∑
k=0

pkap
(i−1)−k

k+1,k

]
=

1

pi−1
[
a0,0 − c0 + pi−1vi−1

]
= vi−1.

This induction gives us that an−1 = (v0, . . . , vn−2, an−1,n−1). So finally we need to compute

an−1,n−1 = Sn−1(an−2, cn−1γn−1)

= an−2,n−1 +
n−2∑

k=n−2

1

p(n−1)−k

(
ap

(n−1)−k

n−2,k − ap
(n−1)−k

n−1,k

)
=

...

= a0,n−1 +
n−2∑
m=0

n−2∑
k=m

1

p(n−1)−k

(
ap

(n−1)−k

m,k − ap
(n−1)−k

m+1,k

)
= a0,n−1 +

n−2∑
k=0

1

p(n−1)−k

k∑
m=0

(
ap

(n−1)−k

m,k − ap
(n−1)−k

m+1,k

)
= a0,n−1 +

n−2∑
k=0

1

p(n−1)−k

(
ap

(n−1)−k

0,k − ap
(n−1)−k

k+1,k

)
=

1

pn−1

[
n−1∑
k=0

pkap
(n−1)−k

0,k −
n−2∑
k=0

pkap
(n−1)−k

k+1,k

]

=
1

pn−1

[
a0,0 −

n−2∑
k=0

pkvp
(n−1)−k

k

]

=
1

pn−1

[
wn−1(v)−

n−2∑
k=0

pkvp
(n−1)−k

k

]
= vn−1.
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Therefore an−1 = v and the formulas for the ci are correct.

Finally, we note that these formulas also give us an algorithm for computing the

components of a Witt vectors from the ci without using the sum polynomials. Given

c0, . . . , cn−1, the vi can be computed recursively as follows. For i ∈ {0, . . . , n − 2}, we

have

vi =
c0 + pi+1ci −

∑i−1
j=0 p

jvp
i−j

j

pi

and the final component is given by

vn−1 =
c0 −

∑n−2
j=0 p

jvp
n−1−j

j

pn−1
.
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