
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2023

Exploiting Symmetry in Linear and Integer Linear Programming Exploiting Symmetry in Linear and Integer Linear Programming

Ethan Jedidiah Deakins
Industrial and Systems Engineeering, edeakins@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Industrial Engineering Commons

Recommended Citation Recommended Citation
Deakins, Ethan Jedidiah, "Exploiting Symmetry in Linear and Integer Linear Programming. " PhD diss.,
University of Tennessee, 2023.
https://trace.tennessee.edu/utk_graddiss/8141

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8141&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Ethan Jedidiah Deakins entitled "Exploiting

Symmetry in Linear and Integer Linear Programming." I have examined the final electronic copy

of this dissertation for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Industrial

Engineering.

James Ostrowski, Major Professor

We have read this dissertation and recommend its acceptance:

James Ostrowski, Hugh Medal, Mingzhou Jin, Jean-Paul Watson

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Ethan Jedidiah Deakins entitled “Exploiting

Symmetry in Linear and Integer Linear Programming.” I have examined the final paper copy

of this thesis for form and content and recommend that it be accepted in partial fulfillment

of the requirements for the degree of Doctor of Philosophy, with a major in Industrial &

Systems Engineering.

Jim Ostrowski, Major Professor

We have read this thesis
and recommend its acceptance:

Mingzhou Jin

Hugh Medal

James Ostrowski

Jean-Paul Watson

Accepted for the Council:

Dixie Thompson

Vice Provost and Dean of the Graduate School

To the Graduate Council:

I am submitting herewith a thesis written by Ethan Jedidiah Deakins entitled “Exploiting

Symmetry in Linear and Integer Linear Programming.” I have examined the final electronic

copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in

Industrial & Systems Engineering.

Jim Ostrowski, Major Professor

We have read this thesis
and recommend its acceptance:

Mingzhou Jin

Hugh Medal

James Ostrowski

Jean-Paul Watson

Accepted for the Council:

Dixie Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Exploiting Symmetry in Linear and

Integer Linear Programming

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Ethan Jedidiah Deakins

May 2023

© by Ethan Jedidiah Deakins, 2023

All Rights Reserved.

ii

Dedicated to my late father, Timothy Deakins, and mother, Melissa Deakins, who showed

me the value of hard work and perseverance.

iii

Acknowledgements

I would like to express my deepest gratitude to my advisor, Professor James Ostrowski, for

all his support and guidance. He played a pivotal role in convincing me to continue my

education in graduate school. I would like to thank Dr. Bernard Knueven and Dr. Tony

Rodgriguez for their friendship and for being role models early on in graduate school. They

showed me the dedication required to finish this degree and how to enjoy the ride at the

same time. I would also like to thank Professors Mingzhou Jin and Hugh Medal and Dr.

Jean-Paul Watson for serving on my dissertation committee.

I would like to express my appreciation to the University of Tennessee, the Nuclear

Engineering University Program, and the U.S. Department of Energy, for providing funding

for my graduate studies and the work in this dissertation.

I would like to thank my lovely wife, Kelsie Joy Deakins. Her love and support during

my graduate schooling knew no rivals. I truly would not have been able to complete this

degree without her by my side through thick and thin.

Finally, I would like to thank all the wonderful friends I have made these past

four years: Christopher Muir, Amelia McIlvenna, Jonathan Schrock, Lorna Treffert,

Najmaddin Akhundov, Marzieh Bakhsi, Rebekah Herman, Moises and Rachel Ponce,

Christopher Ginart, and Tim Gallacher. I have benefited greatly from their friendship and

encouragement.

iv

Abstract

This thesis explores two algorithmic approaches for exploiting symmetries in linear and

integer linear programs. The first in Chapter 1 is orbital crossover, a novel method of

crossover designed to exploit symmetry in linear programs. Symmetry has long been

considered a curse in combinatorial optimization problems, but significant progress has been

made. Up until recently, symmetry exploitation in linear programs was not worth the cost

of symmetry detection. However, recent results involving a generalization of symmetries,

equitable partitions, has made the cost of symmetry detection much more manageable.

The motivation for orbital crossover is that many highly symmetric integer linear

programs exist, and thus, solving symmetric linear programs is of major interest in order to

efficiently solve symmetric integer linear programs. The results of this work indicate that

a specialized linear programming algorithm that exploits symmetry is likely to be useful in

the toolbox of linear programming solvers.

The second algorithm is orbital cut generation. The main issue brought forward by

symmetric integer linear programs is multiple symmetric solutions having an equivalent

objective value. This massively increases the search space for algorithms such as branch

and bound or branch and cut. Orbital cut generation aims to tackle the issues of multiple

equivalent symmetric solutions using symmetrically equivalent cutting planes.

Chapter 2 shows how to effectively exploit symmetry in integer linear programs by

generating symmetrically equivalent cutting planes that remove all symmetric solutions in

one go. Further, the method is strengthened using symmetry to aggregate integer linear

v

programs and generate cutting planes in aggregate spaces before lifting them to the original

problem.

vi

Table of Contents

1 Orbital Crossover 1

1.1 Nomenclature . 2

1.1.1 Symmetries . 2

1.1.2 Partitions . 2

1.1.3 Linear Programs . 3

1.2 Introduction . 3

1.3 Background: Symmetry and EPs . 5

1.3.1 Partitions and Restrictions . 5

1.3.2 Symmetries and Fractional Symmetries 6

1.3.3 Orbits and Generalizations . 7

1.3.4 Stabilizers and Generalizations . 8

1.4 Orbital Crossover . 9

1.4.1 Creating ALP (A, b, c,P) . 9

1.4.2 Lifting Solutions from ALP (A, b, c,P) to ELP (A, b, c,P) 10

1.4.3 Arriving at an optimal BFS to LP (A, b, c) 12

1.4.4 Reducing the number of r variables 13

1.5 Iterative Lifting . 14

1.6 Benchmarks . 17

1.6.1 Implementation . 17

1.6.2 Test Sets, Methods, and setup . 17

1.6.3 Results . 19

vii

1.7 Discussion . 22

2 Orbital Cut Generation 23

2.1 Nomenclature . 23

2.1.1 Symmetries . 23

2.1.2 Partitions . 23

2.1.3 Linear and Integer Linear Programs 24

2.2 Introduction . 25

2.3 Symmetry in ILP (A, b, c) . 27

2.3.1 Symmetries . 27

2.3.2 Orbits and Orbital Partitions . 28

2.3.3 Stabilizers . 29

2.4 Orbital Cut Generation . 29

2.4.1 Generating Symmetric Valid cuts for ILP (A, b, c) 31

2.5 Aggregation . 35

2.5.1 Reducing the Dimension of ILP (A, b, c) 35

2.5.2 Lifting a Valid cut . 36

2.5.3 Iterative Lifting . 40

2.6 Implementation . 43

2.6.1 Generating Symmetric Cutting Planes 43

2.6.2 Exploiting Stabilizer Subgroups . 44

2.7 Benchmarks . 45

2.7.1 Test Sets, Methods, and setup . 45

2.7.2 Results . 46

2.8 Discussion . 49

Appendices 56

A Orbital Crossover Implementation 57

A.1 Nomenclature . 57

viii

A.1.1 Input Data . 57

A.1.2 Output Data . 57

A.2 Implementation Details . 59

Vita 69

ix

List of Tables

1.1 Benchmark Results for the HS-COV-COD Instances 20

1.2 Benchmark Results for the MIPLIB 2017 Instances 21

2.1 Bounds for SA, SA+, SCG, and OCG . 47

2.2 IP Gap (%) for LPR, SCG, and OCG . 48

x

List of Figures

2.1 A Cutting Plane on the Optimal Face of LP (A, b, c) 30

2.2 Symmetric Cutting Planes on the Optimal Face of LP (A, b, c) 30

xi

Chapter 1

Orbital Crossover

This chapter and Appendix A are based on a manuscript prepared for publication by Ethan

Deakins, Bernard Knueven, and Jim Ostrowski:

Deakins, E., Knueven, B., and Ostrowski, J. (2023). Orbital Crossover. Submitted

Authors Ostrowski and Knueven proposed the method. Authors Deakins and Ostrowski

developed the proofs of Theorems 1.2 and 1.3. Author Deakins developed the source

code, conducted all computational experiments, and drafted the manuscript. Author

Ostrowski edited the manuscript. A preprint of the paper is available at https://

optimization-online.org/2022/12/orbital-crossover/

In this chapter we present orbital crossover. We use a generalization of symmetries,

equitable partitions, to aggregate and solve a linear program. Then we show how to use

the equitable partition as a guide to disaggregate a solution to a vertex. We extend orbital

crossover to an iterative procedure allowing us to conduct the crossover method in smaller

dimensions. We demonstrate the effectiveness of orbital crossover against multiple linear

programming algorithms using a variety of linear programming instances.

1

https://optimization-online.org/2022/12/orbital-crossover/
https://optimization-online.org/2022/12/orbital-crossover/

1.1 Nomenclature

1.1.1 Symmetries

G Symmetry group of an integer linear program.

G Formulation group of an integer linear program.

F Set of Fractional symmetries of a linear program.

Pπ Permutation/doubly stochastic matrix acting on the columns of an integer linear

program.

Pσ Permutation/doubly stochastic matrix acting on the rows of an integer linear

program.

Sn Set of permutation matrices of dimension n× n.

Sm Set of permutation matrices of dimension m×m.

Dn Set of doubly stochastic matrices of dimension n× n.

Dm Set of doubly stochastic matrices of dimension m×m.

orb(v,G) Operator giving the orbit of a vector v with respect to a group G.

stab(v,G) Operator giving the stabilizer subgroup of a group G with respect to a vector v.

iso(v,F) Operator that isolates a vector with respect to F .

1.1.2 Partitions

O Orbital partition of the variables (and constraints) of an integer linear program.

P Equitable partition of the variables (and constraints) of a linear program.

V Partition of the variables of a linear or integer linear program.

C Partition of the constraints of a linear or integer linear program.

Ok The kth set of an orbital partition O.

Pk The kth set of an equitable partition P .

Vk The kth set of a partition of the variables of a linear or integer linear program.

Ck The kth set of a partition of the constraints of a linear or integer linear program.

2

EQ(F) Operator resulting in an equitable partition given a set of fractional symmetries

F .

R(P) Set of all representatives in a partition P .

R(xi,P) Representative of xi in a partition P .

1.1.3 Linear Programs

A Matrix of constraint coefficients for a linear or integer linear program.

b Vector of constraint right-hand sides for a linear or integer linear program.

c Vector of objective coefficients for a linear or integer linear program.

LP (A, b, c) Linear program with respect to A, b, and c.

RLP (A, b, c,P) Restricted linear program with respect to A, b, c, and P .

ALP (A, b, c,P) Aggregate linear program with respect to A, b, c, and P .

ELP (A, b, c,P) Extended linear program with respect to A, b, c, and P .

1.2 Introduction

We consider linear programs LP (A, b, c) of the following form:

max ctx (1.1a)

s.t. Ax ≤ b (1.1b)

x ≥ 0, (1.1c)

with ct ∈ Rn representing the objective coefficients and x in Rn representing the decision

variables. We have that b is in Rm and A ∈ Rm×n.

In general, we solve problems of the form in (1.1) using either simplex methods (primal or

dual simplex algorithms) or interior point methods (IPM)s (logarithmic barrier, predictor-

corrector, etc). An interior point method improves a feasible interior solution point of

3

a linear program (LP) by steps through the interior of the feasible region in contrast to

simplex methods that move through steps around the boundary [9]. Both theoretically and

practically, IPMs are attractive due to their polynomial run-times. However, they produce

interior point solutions, whereas, simplex methods produce vertex solutions that are sparser

and may be preferable in various applications.

Typically, a crossover routine accompanies an IPM to achieve a vertex solution to the LP

problem [3]. Crossover techniques are computationally expensive. Gurobi reports that 29%

of the solver time is spent in crossover when the solver uses an IPM [6]. However, IPMs are

not the only means of producing interior point solutions in the hopes of solving LPs faster.

Symmetric structures, and their generalizations, of LPs can be exploited to reduce problem

size, but doing so may return interior point solutions.

In [17], the authors show how to reduce the dimension of an LP with respect to an

equitable partition (EP). Further, they show that a feasible solution to the reduced LP can

be lifted to a feasible solution to the original LP with the same objective value, and vice

versa. The conversion from a reduced solution to a full-dimension solution and vice versa

occurs by matrix multiplication by a suitable matrix. However, this conversion does not

guarantee one arrives at a basic solution.

In this paper, we introduce a novel method of crossover, orbital crossover, that uses

symmetry in the LP as a guide to achieve an optimal basic feasible solution (BFS). We

organize the remainder of this paper as follows. First, a brief discussion of preliminaries on

symmetry and EPs. Next, an explanation of the ideas behind the construction of orbital

crossover. After this, an extension of the foundation of orbital crossover and how to apply it in

an iterative procedure corresponding to iterative refinements of an EP. Next, an explanation

of the methodology behind benchmark setups and results. The paper rounds out with a

discussion on the performance of orbital crossover.

4

1.3 Background: Symmetry and EPs

1.3.1 Partitions and Restrictions

Let P = {P1, P2, . . . , Pk} be a partition of the decision variables and let the representative

of Pk ∈ P be the lowest index member of Pk. Let R(P) be the set of all representatives

associated with a partition P . Further, we let R(xi,P) be the function that identifies the

representative of xi given partition P , that is, the representative xj ∈ R(P) such that xi

and xj are in the same set Pk ∈ P . We overload the R notation to act on sets Pk ∈ P as

well, where R(Pk) returns the representative of the set Pk, that is R(Pk) = Pk ∩R(P).

We define the restricted linear program, RLP (A, b, c,P) to be that as (1.1) with the

additional constraints:

xi = xR(xi,P), i = 1, 2, . . . , n, i ̸= R(xi,P). (1.2)

Obviously, RLP (A, b, c,P) can be written in such a way as to aggregate variables that belong

to the same set of the partition. Such an aggregation will yield a formulation with only k

variables. It is possible that such a restriction may make a subset of the constraints linearly

dependent. We assume that those constraints are handled via preprocessing. We will refer

to the aggregated version as ALP (A, b, c,P).

We will make use of the extended linear program, ELP (A, b, c,P), where the set of

constraints (1.2) are replaced by

ri,R(xi,P) = xi − xR(xi,P) (1.3)

and all constraints are written in standard form. We sometimes refer to ri,R(xi,P),(
xi, xR(xi,P)

)
, and (1.3) as linking variables, pairs, and constraints, respectively. Note that

since the newly formed r variables are unbounded and appear in just one (new) equality

each, a basis for LP (A, b, c) can easily be mapped to a basis for ELP (A, b, c,P) by adding

the r variables to the basis. Similarly, a basis for ELP (A, b, c,P) can be mapped to a basis

5

in LP (A, b, c) if all the r variables are basic, simply by truncating the r variables and their

associated constraints. We will show how to efficiently arrive at an optimal basic solution of

LP (A, b, c) given an optimal BFS to ALP (A, b, c,P), by way of ELP (A, b, c,P), when P is

generated via symmetry information.

1.3.2 Symmetries and Fractional Symmetries

In this section we mention some basic ideas in group theory. An in-depth review can be

found in [42, 19, 4]. The symmetry group of LP (A, b, c) is defined to be permutations that

map feasible solutions to the LP to feasible solutions with the same objective value [35]. Let

G represent the symmetry group. Computing G is not practical, as it requires the knowledge

of all feasible solutions. The formulation group, G, is used to approximate G in practice.

Note that G ⊂ G. The formulation group of (1.1) contains the set of permutations Pπ such

that there exists a (Pπ, Pσ) with:

cPπ = c, (1.4a)

Pσb = b, (1.4b)

APπ = PσA, (1.4c)

Pπ ∈ Sn, Pσ ∈ Sm, (1.4d)

where Sn and Sm are the sets of all permutation matrices of appropriate size [29].

Note that Pπ represents permutations of the columns (variables) while Pσ represents

permutations of the rows (constraints). Thus, we can think of constraints being equivalent

with respect to the group generated by all feasible Pσ permutations. Recall that we are

considering linear programs whose constraints are written as Ax ≤ b. The pair (Pπ, Pσ)

can be considered a symmetry of the problem written in standard form, where Pσ describes

the action on the slack variables. There is a correspondence between constraints that are

6

equivalent with respect to a group and slack variables that are equivalent with respect to

that same group.

Allowing (Pπ, Pσ) to be doubly stochastic matrices that satisfy (2.2) gives the set of

fractional symmetries, F . Now, we have Pπ ∈ Dn and Pσ ∈ Dm, where Dn and Dm are

the sets of all doubly stochastic matrices of appropriate size [17]. Note that the set of all

fractional symmetries can be thought of as a polyhedron (though they no longer form a

group).

1.3.3 Orbits and Generalizations

A problem’s symmetry group can be used to define equivalence classes on both the sets of

variables as well as the set of feasible solutions. Two solutions are equivalent with respect

to the group G if there exists a permutation in G that maps one solution to the other. We

call the set of all solutions equivalent with respect to the group G to a solution x the orbit

of x with respect to G [28]. This is denoted as orb(x, G). We overload the orb notation to

act on variables as well as vectors. We have that j ∈ orb(i,G) if and only if ej ∈ orb(ei,G).

We say that two variables in the same orbit are equivalent. The variable orbits can be used

to define a natural partition of the variables as j ∈ orb(i,G) implies that i ∈ orb(j,G). We

let O = {O1, . . . , Ok} represent the orbital partition of the variables.

While not immediately obvious, equitable partitions (EP)s are the fractional symmetry

analog of orbits [17]. Formally, (V , C), partitions of the variables (V = (V1, . . . , Vk)) and

constraints (C = (C1, . . . , Ck)), is an EP with respect to F , if it satisfies the following

constraints:

∑
p∈C

(Ap,i − Ap,j) = 0 ∀i, j ∈ V ∈ V , C ∈ C (1.5a)

∑
i∈V

(Ap,i − Aq,i) = 0 ∀p, q ∈ C ∈ C, V ∈ V (1.5b)

∑
p,q∈C

(bp − bq) = 0 ∀C ∈ C (1.5c)

7

∑
i,j∈V

(ci − cj) = 0 ∀V ∈ V (1.5d)

We say that partition P2 is a refinement of partition P1 if for all P 2
i ∈ P2 there exists a

P 1
j ∈ P1 with P 2

i ⊆ P 1
j . It can be shown that any orbital partition is a refinement of an EP.

Conversely, P1 is coarser than P2. The coarsest EP can be computed efficiently [2], and is

often used as the first step in computing the formulation group of an instance.

1.3.4 Stabilizers and Generalizations

The stabilizer of a group G with respect to an element v, stab(v,G) is defined to be:

stab(v,G) def
= {Pπ ∈ G | Pπ(v) = v}.

Note that this definition allows for v to be either a vector or a variable. Using the

constraints (2.2), this can be thought of as adding the constraint Pπv = v, or, in the case

where v represents a variable, say xi, by fixing Pπ(i, i) to one.

Similar to the stabilizer, we wish to isolate elements of an EP by creating a refinement

where that element is in a singleton set in the refined partition. Formally, we have iso(v,F)

defined as:

iso(v,F) def
= {Pπ ∈ F | Pπ(v) = v}.

Again, this can be thought of adding the constraint Pπv = v, or, in the case where v

represents a variable, say xi, by fixing Pπ(i, i) to one.

EPs are useful in LP as they provide a method of aggregating variables based on symmetry

information. Let EQ(F) be an equitable partition of the variables and constraints of an LP

with respect to F . When an LP is aggregated based on P = EQ(F), we have the following

theorem.

8

Theorem 1.1 (Lemma 5.1 [17]). Let F be the set of fractional symmetries acting on a

linear program, P = (V , C) an EP with respect to F , z∗R the optimal objective value to

RLP (A, b, c,P) and z∗ the optimal objective value to LP (A, b, c). Then, z∗R = z∗.

1.4 Orbital Crossover

For P = (V , C), an EP of LP (A, b, c), we will show how to use an optimal basic solution to

ALP (A, b, c,P) to find an optimal basic solution to LP (A, b, c) via ELP (A, b, c,P).

1.4.1 Creating ALP (A, b, c,P)

First, we need to define how the aggregate formulation is created. Let R(V) be the set of

variable representatives and R(C) be the set of constraint representatives in R(P). Then

ALP (A, b, c,P) has |R(V)|-many variables and |R(C)|-many constraints. Note that each of

the |R(C)|-many constraints is written in standard form making them linearly independent.

For each representative constraint cp ∈ R(C), we construct an aggregated constraint by

simply combining the coefficients of variables in the same set of the EP P . That is, the

coefficient of each representative variable xj, j ∈ R(V) in ALP (A, b, c,P) will be

∑
i|R(i,P)=i

Ap,i,

and the right hand side of the constraint remains unchanged. The objective function is

similarly aggregated.

Example 1.1. Aggregating an instance of LP (A, b, c)

Consider the following example LP:

max x1 + x2 + x3 (1.6a)

s.t. x1 + x2 ≤ 1 (c1) (1.6b)

x2 + x3 ≤ 1 (c2) (1.6c)

9

x1 + x3 ≤ 1 (c3) (1.6d)

x1 + x2 + x3 ≤ 1 (c4) (1.6e)

xi ≥ 0, ∀i. (1.6f)

We add slack variables for each constraint, denoted as si, to transform the problem into

standard form. Here, si is the slack for constraint ci. In this LP, the coarsest EP is

P = (V , C) = {(x1, x2, x3), (s1, s2, s3), (s4), (c1, c2, c3), (c4)}.

Note that the partitions of the slack variables correspond to the partitions of the

constraints. Given this correspondence, we will omit constraint partitions going forward.

The representatives are x1, s1, s4, c1, and c4. Thus, we can write ALP (A, b, c,P) for this

example in standard form as an LP on three variables with two constraints:

max 3x1 (1.7a)

s.t. 2x1 + s1 = 1 (c1) (1.7b)

3x1 + s4 = 1 (c4) (1.7c)

x1, s1, s4 ∈ R+. (1.7d)

We note that the optimal solution to (1.7) is (x1, s1, s4) =
(
1
3
, 1
3
, 0
)
. This can be

interpreted as saying that the average of all variables in V1 ∈ P is 1
3
, the average of all

variables in V2 ∈ P is 1
3
, and the average of variables in V3 ∈ P is 0. Also, in this optimal

solution we have x1 and s1 as basic variables and s4 as a nonbasic variable.

1.4.2 Lifting Solutions from ALP (A, b, c,P) to ELP (A, b, c,P)

After arriving at an optimal BFS to the ALP (A, b, c,P), we then lift the solution to an

optimal BFS to the extended linear program ELP (A, b, c,P). Recall that the ELP (A, b, c,P)

contains all of the original variables in addition to the linking r variables (1.3).

10

Let xa∗
i be the optimal value of the aggregate variable xa

i . The original variables can be

recovered by:

xi = xa
R(xi,P) ∀i ∈ {1, . . . , n}, (1.8)

recalling that R(xi,P) identifies the representative of i in partition P . Note that this implies

that

ri,R(xi,P) = 0 ∀ i ̸= R(i,P). (1.9)

Similarly, let sa∗i be optimal value of the slack variable sai . Then

si = saR(si,P) ∀i ∈ {1, . . . , m}. (1.10)

Let (x, s, r)∗ denote the lifted solution from (xa, sa)∗, an optimal BFS from the

ALP (A, b, c,P). We have the following result.

Theorem 1.2. (x, s, r)∗ is an optimal BFS to ELP (A, b, c,P) with nonnegativity constraints

on the r variables.

Proof. First, note that as a consequence of [17], if we truncate (x, s, r)∗ to (x, s)∗ then

(x, s)∗ is both optimal and feasible for LP (A, b, c). Now, recall that equation (1.8) implies

equation (1.9), thus (x, s, r)∗ satisfies ELP (A, b, c,P). Next, note that there are n+m+(n−

|R(V)|)-many variables in ELP (A, b, c,P). The constraints of ELP (A, b, c,P) contribute

m+ (n− |R(V)|)-many linearly independent binding constraints. Thus the set of nonbasic

variables should be of size n.

Let NBALP be the set of nonbasic variables in the optimal BFS to ALP (A, b, c,P). We

have that |NBALP | = |R(V)|. The disaggregation of every nonbasic variable in NBALP

contributes one non-basic variable in ELP (A, b, c,P). In addition, there are n − |R(V)|-

many r variables that are in the non-basis, giving a total of |R(V)| + n− |R(V)| = n-many

variables.

11

Example 1.2. Lifting an instance of ALP (A, b, c,P) to ELP (A, b, c,P).

The extended formulation for the LP in the previous example is as follows:

max x1 + x2 + x3 (1.11a)

s.t. x1 + x2 + s1 = 1 (c1) (1.11b)

x2 + x3 + s2 = 1 (c2) (1.11c)

x1 + x3 + s3 = 1 (c3) (1.11d)

x1 + x2 + x3 + s4 = 1 (c4) (1.11e)

r2,1 = x2 − x1 (1.11f)

r3,1 = x3 − x1 (1.11g)

x, s, r ≥ 0. (1.11h)

Performing the lifting via equations (1.8) and (1.10), we have x1 = x2 = x3 =
1
3
, s1 = s2 =

s3 =
1
3
, s4 = 0 r2,1 = 0, and r3,1 = 0. There are nine variables and six equality constraints.

Letting s4, r2,1, and r3,1 be the set of nonbasic variables will result in a non-degenerate BFS.

1.4.3 Arriving at an optimal BFS to LP (A, b, c)

The previous section shows how to construct an optimal BFS to ELP (A, b, c,P) from the

solution to ALP (A, b, c,P). However, we wish to have an optimal BFS to LP (A, b, c). We

note that this can be accomplished easily if all the r variables are in the basis by truncating

the r variables. Starting at the lifted BFS, where all the r variables are nonbasic, we

iteratively pivot on each r variable. To ensure that the r variables never re-enter the set

of nonbasic variables, we relax their lower bounds to be negative infinity as they enter the

basis, making them free variables. We need to ensure, however, that the objective value does

not change as we pivot r variables into the basis.

12

Theorem 1.3. One can pivot on any r variable without changing the objective function.

Proof. Let z∗ be the optimal solution value to ALP (A, b, c,P). From Theorem 1.1, we have

that the optimal solution value to LP (A, b, c) is z∗ and that the lifted basic solution also has

an objective of z∗. Consider pivoting on the nonbasic variable r. If either the reduced cost

of r is zero or the pivot is degenerate, then pivoting does not change the objective. Consider

now the case where the reduced cost is strictly positive and the pivot is non-degenerate.

Note that the non-negativity constraint on r is arbitrary and could have been written as a

non-positivity constraint, and the current BFS would still remain a BFS if such a change

were made. Switching the sense of r would negate the reduced cost of r. Since the current

BFS is optimal, pivoting on r in the “down direction” must be degenerate, so the solution

value does not change.

1.4.4 Reducing the number of r variables

In the above method, n−|R(V)|-many r variables are created, and each of these r variables

adds one simplex pivot to the crossover algorithm. The quantity of r variables can be reduced

by taking advantage of the following observation. If a constraint (including a variable bound)

is binding in the solution to ALP (A, b, c,P), then there exists a vertex in LP (A, b, c) where

all equivalent constraints are binding. The intuition behind this is that in ALP (A, b, c,P),

x and s represent the average value of the variables they represent, so if one is at its bound,

then all are at their bound. Consider then an aggregate x variable that is nonbasic in

ALP (A, b, c,P). In the lifted tableau, variables that are not representatives are always basic

by construction. This leads to a situation where the tableau contains constraints of the form:

xi − xR(xi,P) − ri,R(xi,P) = 0,

where ri,R(xi,P) is nonbasic and xR(xi,P) = 0. Clearly, we can perform a degenerate

(downward) pivot on ri,R(xi,P) to remove it from the nonbasis and add xi to the nonbasis.

13

Thus, we could have originally omitted the ri,R(xi,P) variable (and its associated constraint)

from the formulation and simply included xi in the nonbasis.

Note that slack variables do not have associated r variables, so we cannot easily swap

basic s variables that we know to be zero into the nonbasis in place of r variables. It is

likely that enforcing some constraints to be binding will force a set of r variables to take the

value of zero, so it might be possible to construct the lifted BFS with fewer r variables in

the nonbasis. However, identifying which r variables to remove from the basis would require

testing for linear dependence. This linear dependence check might be more expensive than

the savings gained by fewer pivots.

1.5 Iterative Lifting

The benefit of the method described in Section 1.4 is that an optimal solution to the linear

program can be found in the aggregated space. Crossover itself, however, is done in the

extended space. By performing an iterative lifting procedure, we can do many of the crossover

operations in lower dimensions. Recall that for any EP P , RLP (A, b, c,P) will have the same

optimal solution value as LP (A, b, c). Obviously, we’d prefer to find the coarsest partition to

allow for the most aggregation (and smallest dimension of ALP (A, b, c,P)). Let P1 and P2

be two EPs of LP (A, b, c) where P2 is a refinement of P1. We can use the above methods

to lift a vertex solution of ALP (A, b, c,P1) to ALP (A, b, c,P2) and as long as P2 is not

the discrete partition (That is, |Pk| = 1,∀Pk ∈ P2), this lifting will be done in a smaller

dimension than the original extended formulation.

Example 1.3. Lifting a solution from ALP (A, b, c,P) to ALP (A, b, c,P1).

Consider again the linear program given in (1.6). The coarsest EP, P1, after putting the

problem in standard form, is P = {(x1, x2, x3), (s1, s2, s3), (s4), (c1, c2, c3), (c4)}. Isolating x1

gives the refinement, P1 = {(x1), (x2, x3), (s1, s3), (s2), (s4), (c1, c3), (c2), (c4)}, which is also

an EP of (1.6). The formulation for ALP (A, b, c,P1) in standard form is:

max x1 + 2x2 (1.12a)

14

s.t. x1 + x2 + s1 = 1 (c1) (1.12b)

2x2 + s2 = 1 (c2) (1.12c)

x1 + 2x2 + s4 = 1 (c4) (1.12d)

x, s ≥ 0. (1.12e)

As before, we can lift the solution from ALP (A, b, c,P) to ALP (A, b, c,P1). In this case,

we have x1 = x2 = x3 = 1
3
, s1 = s2 = 1

3
, and s4 = 0. While not a vertex to (1.12), it is a

vertex to ELP (A, b, c,P1):

max x1 + 2x2 (1.13a)

s.t. x1 + x2 + s1 = 1 (c1) (1.13b)

2x2 + s2 = 1 (c2) (1.13c)

x1 + 2x2 + s4 = 1 (c4) (1.13d)

r2,1 = x2 − x1 (1.13e)

x, s, r ≥ 0. (1.13f)

Pivoting on r2,1 would result in a vertex to ALP (A, b, c,P1). Note that (1.13) is a smaller

formulation than that of (1.11).

We generate our set of EPs as follows. Let P be the the coarsest possible EP with

respect to F . We let P1 be the EP generated by F1 = iso(x1,F). Similarly, we let P i be the

coarsest EP generated by F i = iso(xi,F i−1). We use the EP P to construct ALP (A, b, c,P)

and solve it for an initial aggregate solution. From here, we use the EPs P1, . . . ,Pd to

construct ELP (A, b, c,P1), . . . , ELP (A, b, c,Pd) and lift the solution from ALP (A, b, c,P)

to ALP (A, b, c,Pd). Pd is the discrete partition and thus an optimal feasible solution to

ALP (A, b, c,Pd) is an optimal feasible solution to LP (A, b, c). We formalize this solution

technique in Algorithm 1.

15

Algorithm 1 Iterative Orbital Crossover Implementation

function IterativeOrbitalCrossover(LP (A, b, c), f)
l← 0
k ← 0
n← the number of columns in LP (A, b, c)
m← the number of rows in LP (A, b, c)
Pk ← EP(LP (A, b, c))
ALP (A, b,Pk)← Fold(LP (A, b, c),Pk)
(V a, Sa, Ba)← Solve(ALP (A, b, c,Pk))
while |Pk| < n+m do
Pk+1 ← Refine(Pk)
l← l + |Pk+1

x | − |Pk
x |

if l < f then
k ← k + 1

else
ELP (A, b, c,Pk+1)← Extend(ALP (A, b, c,Pk+1),Pk,Pk+1, (V a, Sa, Ba))
(V a, Sa, Ba)← OC(ELP (A, b, c,Pk+1)
l← 0
k ← k + 1

end if
end while

end function

16

(V a, Sa, Ba) represent the solution and basis to the previously solved instance of

ALP (A, b, c,P) or ELP (A, b, c,P). Let |Pk
x | be the number of non-slack sets in Pk. The

algorithm allows the user to control the minimum amount of new non-slack sets in the

partition before an iterative lift and orbital crossover occur by the argument f in Algorithm 1.

Each time a refinement occurs, the change in the number of non-slack sets is added to the

value l. Once l ≥ f or |Pk| = n+m, an iteration of lifting and orbital crossover occurs and

l is set to 0. Appendix A.2 gives a description of each bold font function in Algorithm 1 and

their components.

1.6 Benchmarks

1.6.1 Implementation

Orbital crossover was implemented using HiGHS version 1.2. HiGHS is a high performance

serial and parallel dual simplex solver for large scale sparse linear programming problems (see

[22] and https://github.com/ERGO-Code/HiGHS for more details). Although the HiGHS

authors market it as a high-performance dual simplex solver, it possesses a well-implemented

version of the primal simplex algorithm and an IPM solver with crossover. This makes HiGHS

a capable candidate for implementing OC and for comparing against the dual simplex and

IPM solvers.

A modified version of saucy [10] was used to compute the EPs. saucy was chosen over

other symmetry-detection software [31, 40], as it has an extension [43] that allows it to accept

LP files. It was integrated directly into the HiGHS source files as a class object callable by

the main HiGHS objects.

1.6.2 Test Sets, Methods, and setup

Benchmark tests are set up using two different LP data sets. The first data set is a group

of LP relaxations for a subset of instances in the MIPLIB 2017 Benchmark repository

at https://miplib.zib.de/tag_benchmark.html. We preprocess the instances in this set

17

https://github.com/ERGO-Code/HiGHS
https://miplib.zib.de/tag_benchmark.html

three times. First, using saucy, we remove instances containing no symmetry. Second,

using our EP code, we remove instances whose symmetry is the result of duplicate columns

or duplicate rows. However, we note that using our EP code, if an instance has both duplicate

columns and duplicate rows, then an instance will not be removed. Finally, we remove any

instance that takes less than ten seconds to solve across all methods listed below. We refer

to this data set as MIPLIB 2017.

The second data set is a large collection of LP relaxations of highly symmetric MILP

instances. We preprocess these instances one time removing instances that solve in less

than ten seconds across all methods listed below. Instances beginning with cod are used

to compute maximum cardinality binary error correcting codes [25]. Instances beginning

with codbt are used to compute minimum dominating sets in Hamming graphs. Instances

beginning with cov are covering design problems [33]. Many of these instances used to be

available on Francois Margot’s website http://wpweb2.tepper.cmu.edu/fmargot/lpsym.

html, however, this website does not appear to be functional anymore. We refer to this data

set as HS-COV-COD.

We use five different solving strategies across both data sets above. We list these strategies

below.

• HDS: HiGHS serial dual simplex solver,

• HIP: HiGHS IPM solver with HiGHS crossover,

• HIP ALP: HiGHS IPM solver to solve ALP (A, b, c,P), lift the solution to LP (A, b, c),

and obtain a optimal BFS with HiGHS crossover,

• OCDS: OC with iterative lifting using HiGHS serial dual simplex solver to solve

ALP (A, b, c,P),

• OCIP: OC with iterative lifting using HiGHS IPM solver and HiGHS crossover to

solve ALP (A, b, c,P).

18

http://wpweb2.tepper.cmu.edu/fmargot/lpsym.html
http://wpweb2.tepper.cmu.edu/fmargot/lpsym.html

1.6.3 Results

The computer used for all benchmarks is a Dell Lattitude 5521 with an Intel i7-11850H

at 2.50GHz and 16 GB of RAM. All results for the HS-COV-COD test suite can be

found in Table 1.1. The difference between OCDS and OCIP is minimal in the highly

symmetric instances, as they likely are lifting the same solution to the the aggregate problem.

Interestingly, the times reported for HIP, HIP ALP, OCDS, and OCIP are almost entirely

the time spent in crossover. The small size of the aggregate allows HIP ALP, OCDS, and

OCIP to solve the aggregate problem instantaneously, while HIP spends all but two seconds

(for the entire test suite) in crossover.

When looking at MIPLIB 2017, we remove the HDS column from Table 1.2 as it is

widely outperformed. However, these problems have more significant aggregated problems,

and we wish to separate the impact of the solving the aggregate versus time spent specifically

in crossover. We’ve added four columns titled HC, HAC, OC (DS), and OC (IP) which

describe the time spent in crossover for HiGHS crossover from HIP, HiGHS crossover from

HIP ALP, OC from OCDS, and OC from OCIP, respectively. We perform the same pair-wise

comparison for these instances. HIP is the fastest solver for two instances. HIP ALP is the

fastest solver for ten instances. OCDS is the fastest solver for six instances. OCIP is the

fastest solver for one instance.

Note that HC performs much better than in the highly symmetric instances. This is likely

due to the fact that the lifted solution to the aggregated problem sometimes is a vertex in

the original problem (or only a few pivots away). The OC methods would still perform

degenerate pivots if the lifted solution was a vertex.

Most modern commercial solvers use multiple methods to solve a given LP instance by

passing each method to a single core in a multi-core machine and taking the solution from the

solver that returns first. We simulate this method by taking the minimum solve times across

each instance and analyzing the total solve time. For the instances in HS-COV-COD, the

sum of the minimum solve times is 1,230.46 seconds. For the instances in MIPLIB 2017,

the sum of the minimum solve times is 274.42 seconds. This is an 8.74% improvement

19

Table 1.1: Benchmark Results for the HS-COV-COD Instances

Instance HD HIP HIP ALP OCDS OCIP
cod733 30.35 1.95 2.12 1.74 1.73
codbt161 22.88 0.75 1.07 0.84 0.84
codbt162 37.65 0.90 2.41 3.27 3.21
codbt163 77.56 2.01 5.00 4.78 4.80
codbt164 82.17 2.90 6.37 3.64 3.60
codbt171 3601.87 5.42 14.92 24.63 24.33
codbt172 3611.58 188.32 288.13 216.73 212.74
codbt173 3607.37 61.98 194.39 100.84 80.92
codbt174 3615.73 94.84 193.55 116.49 95.15
codbt261 464.03 3.11 8.01 6.51 6.56
codbt262 2601.94 65.62 65.60 48.92 49.35
codbt451 3603.75 15.97 30.89 27.47 26.98
codbt452 3626.21 96.47 156.73 90.38 88.94
codbt453 3620.45 40.11 81.68 47.67 47.96
codbt731 411.99 8.84 14.62 16.30 16.13
codbt732 2304.69 12.71 23.91 21.08 21.13
codbt821 363.48 0.76 2.27 3.67 3.76
codbt822 236.31 2.94 6.40 5.40 5.32
codbt831 3626.37 154.34 199.01 95.31 94.89
codbt832 3645.83 979.85 1524.01 212.35 210.42
cov1385 12.42 0.23 0.58 0.72 0.72
cov1496 114.54 4.72 11.30 3.79 3.88
cov1497 49.66 3.17 6.48 2.29 2.43
cov15107 967.88 322.61 275.93 19.13 19.16
cov15108 282.21 99.24 90.47 9.98 10.00
cov15109 28.46 1.96 3.05 0.80 0.91
cov15118 13.37 28.44 32.83 1.31 1.29
cov161110 114.61 7.33 9.53 1.81 1.93
cov16118 3604.33 1956.83 2041.95 53.52 53.24
cov16119 1451.97 477.84 482.37 15.01 15.05
cov161210 23.78 21.43 22.73 1.19 1.17
cov16129 40.89 109.67 122.78 3.75 3.85
cov171210 3632.91 2208.61 2164.76 38.00 38.18
cov171211 444.56 24.37 31.18 2.41 2.31
cov17129 3632.81 3602.68 3659.56 179.51 182.04
cov171310 151.74 443.44 392.68 10.55 10.52
cov171311 129.75 65.65 70.72 3.02 2.93

53888.09 11118.00 12239.96 1394.81 1348.36

20

Table 1.2: Benchmark Results for the MIPLIB 2017 Instances

Solve Time (Secs) Crossover Time (Secs)

Instance HIP HIP
ALP

OCDS OCIP HC HAC OC
(DS)

OC
(IP)

atlanta-ip 12.80 12.14 6.65 12.50 0.09 0.13 0.30 0.34
bab6 27.47 19.19 9.05 19.12 0.07 0.23 0.23 0.23
chromatic-
index1024-7

14.21 2.05 5.67 6.36 3.08 1.31 5.52 5.61

cryptanalysis-
kb128n5obj14

5.58 4.51 16.11 5.16 0.79 0.55 0.47 0.52

cryptanalysis-
kb128n5obj16

5.70 4.46 11.66 5.04 0.79 0.71 0.47 0.52

k1mushroom 34.34 22.96 13.03 21.37 1.53 5.22 2.81 2.94
map10 166.74 36.34 17.20 46.97 0.31 0.69 10.43 11.37
map16715-04 213.93 49.65 19.10 59.78 0.29 0.65 10.69 11.80
neos-
3555904-
turama

12.69 10.08 6.18 8.55 0.26 2.03 0.20 0.43

neos-
4722843-
widden

10.40 0.72 2.13 3.57 0.07 0.20 2.08 3.06

neos-631710 354.08 175.57 18.36 14.33 132.22 175.27 16.44 13.87
neos-873061 13.57 11.92 31.16 12.35 0.17 0.34 0.84 0.76
physician-
sched6-2

62.11 34.53 80.97 38.67 2.65 0.69 2.76 3.95

rail01 36.16 28.59 85.01 33.57 7.50 1.34 0.68 0.75
rail02 93.16 75.52 972.41 94.00 13.19 2.66 6.26 8.84
satellites2-40 9.95 9.18 44.91 10.10 2.67 1.98 0.09 0.23
satellites2-
60-fs

6.22 6.23 30.35 6.69 2.09 1.53 0.13 0.23

uccase12 14.84 3.82 8.48 4.84 0.17 0.32 1.43 1.31
uccase9 7.36 7.94 13.57 8.04 0.10 0.13 0.08 0.10

1101.27 515.40 1391.98 410.99 168.03 195.99 61.89 66.85

21

over OCIP for the HS-COV-COD data set and a 33.23% improvement over OCIP for the

MIPLIB 2017 data set.

1.7 Discussion

OC proves to be an effective method of exploiting symmetry. For the instances in HS-COV-

COD, we show that the OCDS and OCIP strategies are approximately 87% faster than the

next best strategy not using OC. The reason for this is the instances in this data set have

an immense amount of symmetry which allows OC to further exploit the structure of the

problems. This allows OC to perform much of the pivoting work in smaller dimensions via

iterative lifting.

The benchmark results for the instances in MIPLIB 2017 show different results. These

instances do have symmetry, but in general, not nearly as much symmetry as the instances

in HS-COV-COD. We see for this data set that the OCIP strategy is the best performer

in terms of time required to solve all instances by 20.26%.

The decrease in effectiveness for OC in the MIPLIB 2017 data set can be partly

explained by the instances having less symmetric structure. On the other hand, the standard

method of determining superbasic variables to perform pushes on during HiGHS crossover

may result in less pivots than what OC would require. We see that the addition of OCDS

and OCIP strategies in the porfolio of solvers results in reduction of total solve time for both

HS-COV-COD and MIPLIB 2017 data sets making OC a valuable strategy.

Going forward, we see this as a tool that can be used to help solve highly-symmetric

integer programs. A trouble when using cut-generation schemes to solve highly-symmetric

integer programs is that including all symmetric-equivalent cuts can quickly increase the size

of the formulation. The proposed approach will help solve these large instances.

22

Chapter 2

Orbital Cut Generation

2.1 Nomenclature

2.1.1 Symmetries

In The set of elements {1, 2, . . . , n}.

Πn The symmetric group of In.

G Symmetry group of an integer linear program.

G Formulation group of an integer linear program.

Pπ Permutation matrix acting on the columns of an integer linear program.

Pσ Permutation matrix acting on the rows of an integer linear program.

Sn Set of permutation matrices of dimension n× n.

Sm Set of permutation matrices of dimension m×m.

orb(v,G) Operator giving the orbit of a vector v with respect to a group G.

stab(v,G) Operator giving the stabilizer subgroup of a group G with respect to a vector v.

2.1.2 Partitions

O Orbital partition of the variables (and constraints) of an integer linear program.

V Partition of the variables of a linear or integer linear program.

23

C Partition of the constraints of a linear or integer linear program.

Ok The kth set of an orbital partition O.

Vk The kth set of a partition of the variables of a linear or integer linear program.

Ck The kth set of a partition of the constraints of a linear or integer linear program.

R(O) Set of all representatives in a partition O.

R(xi,O) Representative of xi in a partition O.

2.1.3 Linear and Integer Linear Programs

A Matrix of constraint coefficients for a linear or integer linear program.

b Vector of constraint right-hand sides for a linear or integer linear program.

c Vector of objective coefficients for a linear or integer linear program.

ILP (A, b, c) Integer linear program with respect to A, b, and c.

LP (A, b, c) Natural linear relaxation of ILP (A, b, c).

AILP (A, b, c,O) Aggregate integer linear program with respect to A, b, c, and an orbital

partition O.

ALP (A, b, c,O) Aggregate linear program with respect to A, b, c, and an orbital partition

O.

FILP Feasible region of an integer linear program.

FLP Feasible region of a linear program.

FAILP Feasible region of an aggregate integer linear program.

FALP Feasible region of an aggregate linear program.

24

2.2 Introduction

We consider integer linear programs ILP (A, b, c) of the following form:

max ctx (2.1a)

s.t. Ax ≤ b (2.1b)

x ∈ Z≥0, (2.1c)

with ct ∈ Rn representing the objective coefficients and x ∈ Zn
≥0 representing the decision

variables. We have that b is in Rm and A ∈ Rm×n.

One method of solving problems in the form of (2.1) is cutting plane algorithms [7, 8, 30,

14, 15]. The first version of cutting plane algorithms for integer programs was proposed by

Ralph Gomory in the 1960s [16]. However, the algorithm seemed to produce weak cutting

planes leading to slow convergence in practice. This caused a general lack of interest in

cutting plane algorithms from integer programming community for quite some time after.

The development of polyhedral theory and families of strong valid cuts in the 1980s led to

a renewed interest in cutting plane techniques [34]. Early research on the success of strong

valid cuts is shown for the traveling salesman problem in [39, 18]. Further work on the use

of strong valid cuts in a variety of problem types can be found in [48, 23, 5].

Now, the state of the art method for solving problems in the form of (2.1) is the

branch and cut (B&C) algorithm. The B&C algorithm is a composition of the branch

and bound (B&B) algorithm and the cutting plane algorithm. We assume the reader is

familiar with B&C and B&B, but excellent introductions can be found in [7, 11, 24, 39, 47].

In general, several rounds of cutting plane generation are applied at the root node of the

B&C enumeration tree based on factors such as density and previous success, but many

fewer or no rounds of cut generation are applied later in the enumeration tree [7].

Even with the success of strong valid cuts used in B&C, symmetry in ILP (A, b, c)

continues to wreak havoc. ILP (A, b, c) is said to be symmetric if its variables can be

25

permuted without changing the structure of the problem [29]. Symmetry in ILP (A, b, c)

can massively increase the search space in the enumeration tree. Many symmetric optimal

solutions to the natural linear relaxation LP (A, b, c) of ILP (A, b, c) may be evaluated with

no actual progress in the dual bound. Research found in [1, 20, 32] focuses on auxiliary

and (or) extended formulations that reduce the amount of symmetry in ILP (A, b, c). The

collection of work found in [26, 41, 45] shows valid cuts that can exclude feasible symmetric

solutions.

The work in [27, 28] establishes a different idea known as isomorphism pruning within

the context integer linear programming and is used to prune isomorphic subproblems in

the enumeration tree. Ostrowski et al. [37, 38] introduces orbital branching and constraint

orbital branching, respectively. Orbital branching uses knowledge of the orbital partitioning

of variables based on the symmetry group of ILP (A, b, c) to prune equivalent subproblems

in the enumeration tree. Constraint orbital branching extends the ideas of orbtial branching

into constraint based branching rules to prune equivalent subproblems from the enumeration

tree.

In this work, we introduce the technique of orbital cut generation, which exploits the

symmetry group of ILP (A, b, c) to generate symmetrically equivalent cutting planes. We

demonstrate the usefulness of this technique in improving the dual bound compared more

traditional cut generation for ILP (A, b, c) at the root node for a suite of highly symmetric

instances. We compare our technique to that of standard cut generation, that is, cut

generation that does not exploit symmetry and provide initial and final dual bounds for

both techniques applied to ILP (A, b, c) at the root node. Our results show the potential

of our technique to improve the best dual bound at the root node, and in some cases, even

provide the optimal objective value.

We organize the remainder of this chapter as follows. Section 2.3 provides a brief

discussion of preliminaries on symmetry. In Section 2.4, we formally present orbital cut

generation and prove its validity. Section 2.5 provides an extension of orbital cut generation

and shows how to apply it iteratively using aggregate formulations of ILP (A, b, c). Section

2.6 provides details on the implementation of orbital cut generation. Section 2.7 discusses the

26

methodology and provides results for the computational comparison of orbital cut generation

and standard cut generation. Finally, Section 2.8 rounds the paper out with a discussion of

the effectiveness and implications of orbital cut generation.

2.3 Symmetry in ILP (A, b, c)

2.3.1 Symmetries

In this section we mention some basic ideas in group theory. An in-depth review can be

found in [42, 19, 4]. First, let Πn represent the set of permutations of In = {1, 2, . . . , n},

that is, Πn is the symmetric group of In. For a vector a ∈ Rn, the permutation π ∈ Πn acts

on a by permuting its coordinates [38]. We denote the permutation of the coordinates of a

as follows:

π(a) = (aπ1 , aπ2 , . . . , aπn).

Throughout this work, we express permutations in cycle notation. that is, the expression

(p1, p2, . . . , pk) is the permutation that sends the entry pi to pi+1 for i = 1, 2, . . . , k − 1 and

the entry pk to p1.

The symmetry group of ILP (A, b, c) is defined to be permutations that map feasible

solutions to ILP (A, b, c) to feasible solutions with the same objective value [35]. Let FILP

represent the feasible region and G the symmetry of group of ILP (A, b, c), then G is formally

defined as:

G def
= {π ∈ Πn | π(x) ∈ FILP , ∀x ∈ FILP}.

Computing G is not practical, as it requires the knowledge of all feasible solutions. The

formulation group, G, is used to approximate G in practice. Note that G ⊂ G. The

formulation group of (2.1) contains the set of permutations π ∈ Πn such that there exists

σ ∈ Πm where the permutation matrices (Pπ, Pσ) satisfy:

cPπ = c, (2.2a)

27

Pσb = b, (2.2b)

APπ = PσA, (2.2c)

Pπ ∈ Sn, Pσ ∈ Sm, (2.2d)

where Sn and Sm are the sets of all permutation matrices of appropriate size [29]. Note that

Pπ represents permutations of the columns (variables) while Pσ represents permutations of

the rows (constraints). Thus, we can think of constraints being equivalent with respect to

the group generated by all feasible Pσ permutations.

2.3.2 Orbits and Orbital Partitions

The symmetric group Πn can be used to define equivalence classes on the vectors v ∈ Rn. We

say two vectors are symmetrically equivalent with respect to Πn if there exists a permutation

in Πn that permutes one vector onto another. We call all vectors symmetrically equivalent

with respect to Πn to a vector v ∈ Rn the orbit of v with respect to Πn. This is denoted as

orb(v,Πn) and formally we have

orb(v,Πn)
def
= {π(v) | π ∈ Πn}.

In the context of ILP (A, b, c), the problem’s formulation group G can be used to define

equivalence classes on both solutions and constraints [29]. We can also consider orbits of

variables by calculating the orbit of their corresponding unit vectors. That is, We have that

xj ∈ orb(xi, G) if and only if ej ∈ orb(ei, G). We say that two variables in the same orbit are

equivalent. The variable orbits can be used to define a natural partition of the variables as

xj ∈ orb(xi, G) implies that xi ∈ orb(xj, G). We let O = {O1, . . . , Ok} represent the orbital

partition of the variables. As a final note on equivalence classes, we refer to symmetrically

equivalent cuts throughout the remainder of this paper. We say two cuts (or constraints)

λx ≤ β, γx ≤ β are symmetrically equivalent if there exists a permutation π ∈ G such that

π(λ) = γ.

28

We say that the representative of Oi ∈ O for i = 1, . . . , k is the lexigraphically lowest

index member of Oi. Let R(O) be the set of all representatives associated with a partition

O. Further, we let R(xi,O) be the function that identifies the representative of xi given

partition O, that is, the representative xj ∈ R(O) such that xi and xj are in the same set

of O. We overload the R notation to act on the sets Oi ∈ O as well, where R(Oi) returns

the representative of the set Oi, that is R(Oi) = Oi ∩R(O).

2.3.3 Stabilizers

The stabilizer of a group Πn with respect to an element v, stab(v,Πn) is defined to be:

stab(v,Πn)
def
= {π ∈ Πn | π(v) = v}.

Note that this definition allows for v to be either a vector or a variable in the context of

ILP (A, b, c). Using the constraints in (2.2), this can be thought of adding the constraint

Pπv = v, or, in the case where v represents a variable, say xi, by fixing Pπ(i, i) to one.

2.4 Orbital Cut Generation

Standard cut generation produces valid cuts that remove solutions from LP (A, b, c) but not

ILP (A, b, c). However, if ILP (A, b, c) has symmetry then there may be many remaining

solutions that are symmetrically equivalent to those removed. These remaining solutions

might hinder standard cut generation’s ability to improve the dual bound.

For example, in Figure 2.1, x1 is an optimal vertex solution removed by the valid cut

λ1x ≤ β. However, there are other symmetrically equivalent solutions not removed by the

valid cut λ1x ≤ β. It is possible that resolving LP (A, b, c) with the valid cut will produce

a new solution that is one of the symmetrically equivalent vertices such as x2 (shown in

Figure 2.2). Standard cut generation may produce the symmetrically equivalent cut λ2x ≤ β.

This process may continue until a large number of symmetrically equivalent valid cuts are

generated. For the example in Figure 2.1, all symmetric valid cuts required are shown in

29

x1

λ1x ≤ β

Figure 2.1: A Cutting Plane on the Optimal Face of LP (A, b, c)

x1x2

x3

x4 x5

x6

λ1x ≤ β

λ2x ≤ β

λ3x ≤ β

λ4x ≤ β

λ5x ≤ β

λ6x ≤ β

Figure 2.2: Symmetric Cutting Planes on the Optimal Face of LP (A, b, c)

30

Figure 2.2. However, we can exploit the symmetry in ILP (A, b, c) to produce all of these

symmetrically equivalent valid cuts without requiring multiple solves of LP (A, b, c). In this

section, we show how to exploit the symmetry in ILP (A, b, c) to generate all symmetric valid

cuts for a given valid cut λx ≤ β.

2.4.1 Generating Symmetric Valid cuts for ILP (A, b, c)

Let λx ≤ β a valid cut with respect to FILP . Using permutations in G, we can permute the

coordinates of the coefficient vector λ. That is, we obtain a coefficient vector λπ where

λπ = π(λ) = (λπ1 , λπ2 , . . . , λπn).

The permuted coefficient vector then gives the symmetrically equivalent cut

λπx = λπ1x1 + λπ2x2 + · · ·+ λπnxn ≤ β.

In fact, we fully exploit G by computing

orb(λ,G)
def
= {π(λ) | π ∈ G}.

This allows us to generate all symmetrically equivalent cuts

λπx ≤ β, ∀λπ ∈ orb(λ,G).

Theorem 2.1. Let G′ be a symmetry group of ILP (A, b, c) and λx ≤ β a valid cut for FILP

of ILP (A, b, c). Then λπx ≤ β is a valid cut for FILP , ∀ λπ ∈ orb(λ,G′).

Proof. Suppose that λx ≤ β is a valid cut for FILP . Choose a π ∈ G′ and let λπx ≤ β be the

cut obtained by permuting the coordinates of λ by π, so λπ = π(λ). Now, suppose λπx ≤ β

is not a valid cut for FILP . Then, ∃ x1 ∈ FILP such that

λπx
1 > β.

31

Because G′ is a group, π−1 is in G′. Permuting x1 by π−1 gives

π−1(x1) = x2.

Since π−1 ∈ G′, x2 is feasible. However,

λx2 = λπ−1(x1) = π(λ)x1 = λπx
1 > β.

Thus, λx ≤ β is not valid.

Obviously, the addition of the symmetric valid cuts λπx ≤ β changes the formulation

group of ILP (A, b, c) because additional rows have been added to the constraint matrix.

However, adding all symmetrically equivalent cuts preserves the symmetries acting on the

variables of ILP (A, b, c).

Theorem 2.2. Let ILP (Aλ, bλ, c) be ILP (A, b, c) with the valid cuts λπx ≤ β, ∀ λπ ∈

orb(λ,G). Let G and Gλ be the formulation group for ILP (A, b, c) and ILP (Aλ, bλ, c),

respectively. Let Gπ ⊆ G be the permutations acting on the variables of ILP (A, b, c) and

Gλ
π ⊆ Gλ be the permutations acting on the variables of ILP (Aλ, bλ, c). Then Gπ ⊆ Gλ

π.

Proof. Choose any (πi, σi) ∈ G such that (πi, σi) satisfies 2.2 for ILP (A, b, c). Then we have

the following for ILP (Aλ, bλ, c).

i) Obviously,

Pπi
c = c.

ii) Let

bβ =

β
...

β

32

be a |orb(λ,G)|-dimensional vector. Note that

bλ =

 b

bβ

and let

Pσiγi =

Pσi
0

0 Pγi

where Pγi is any permutation on the elements {1, . . . , |orb(λ,G)|}. We have that

Pσiγibλ =

Pσi
0

0 Pγi

 b

bβ

 =

 Pσi
b

Pγibβ

 =

 b

bβ

 = bλ.

iii) Let B be the matrix of coefficients in the valid cuts λπx ≤ β, ∀λπ ∈ orb(λ,G). Then,

AλPπi
=

A
B

[
Pπi

]
=

APπi

BPπi

 =

Pσi
A

BPπi

 .

Pπi
permutes the columns of B, but by construction of B, permuting the columns will

produce a one-to-one mapping on the rows of B. That is, for λπx ≤ β, ∀λπ ∈ orb(λ,G),

λπPπi
=

[
λπ

] [
Pπi

]
= πi(λπ) = λπ′

and λπ′ ∈ orb(λ,G). Let Pγi be the permutation that permutes λπ to λπ′ for all

λπ ∈ orb(λ,G). Then we have

Pσi
A

BPπi

 =

Pσi
A

PγiB

 =

Pσi
0

0 Pγi

A
B

 = PσiγiAλ.

Thus, the formulation group of ILP (Aλ, bλ, c) includes the set of permutations πi and

permutations σiγi above. Note that we need not know the exact permutations σiγi, but only

that they exist.

33

Example 2.1. Constructing symmetrically equivalent valid cuts

Consider the following example of ILP (A, b, c):

max x1 + x2 + x3 + x4 (2.3a)

s.t. x1 + x2 + x3 ≤ 2 (c1) (2.3b)

x2 + x3 + x4 ≤ 2 (c2) (2.3c)

x1 + x3 + x4 ≤ 2 (c3) (2.3d)

x1 + x2 + x4 ≤ 2 (c4) (2.3e)

xi ∈ {0, 1}, ∀i. (2.3f)

The formulation group G of (2.3) can be represented by the following group generators

(x1, x2)(c2, c3),

(x1, x4)(c1, c2),

(x1, x3)(c2, c4).

Each product of cycles above is one generator for G.

We note that the optimal solution to LP (A, b, c) of (2.3) is

(x1, x2, x3, x4) =

(
2

3
,
2

3
,
2

3
,
2

3

)

with an objective function value of 2.67. A valid cut that separates the above solution from

FILP is

3x1 + 6x2 + 6x3 + 6x4 ≤ 12. (2.4)

Adding (2.4) to (2.3) and resolving LP (A, b, c) gives a new optimal solution

(x1, x2, x3, x4) =

(
1,

1

2
,
1

2
,
1

2

)

34

with an objective function value of 2.5.

Let λ be the vector of coefficients in (2.4), that is λ = (3, 6, 6, 6). The orbit of λ with

respect to G is

orb(λ,G) = {(3, 6, 6, 6), (6, 3, 6, 6), (6, 6, 3, 6), (6, 6, 6, 3)}

and the resulting valid cuts are

3x1 + 6x2 + 6x3 + 6x4 ≤ 12 (c5), (2.5a)

6x1 + 3x2 + 6x3 + 6x4 ≤ 12 (c6), (2.5b)

6x1 + 6x2 + 3x3 + 6x4 ≤ 12 (c7), (2.5c)

6x1 + 6x2 + 6x3 + 3x4 ≤ 12 (c8). (2.5d)

Adding all cuts in (2.5) to (2.3) and resolving LP (A, b, c) results in the new optimal

solution

(x1, x2, x3, x4) =

(
4

7
,
4

7
,
4

7
,
4

7

)
with an objective function value of 2.29.

2.5 Aggregation

2.5.1 Reducing the Dimension of ILP (A, b, c)

The benefit of the method described in Section 2.4 is that all symmetric solutions can be

separated from FILP of ILP (A, b, c) using knowledge from G in conjunction with a valid cut.

However, if ILP (A, b, c) has a lot of symmetry, generating these symmetric valid cuts can

become cumbersome. In the worst case, we may need to add one cut for every permutation

in G. It is not uncommon to have instances of ILP (A, b, c) whose symmetry groups are of

order ranging from 106 to 1010. In this section, we discuss how to restrict our search to valid

cuts with small orbit sizes.

35

Recall from Section 2.3 that we can naturally partition the variables of ILP (A, b, c)

according to their orbits. From this point forward we let OG′
= {V , C} be an orbital partition

of the variables and constraints of ILP (A, b, c) with respect toG′. Here V and C are partitions

of sets containing co-orbital variables and co-orbital constraints, respectively.

We can aggregate the variables and constraints of ILP (A, b, c) via OG′
. The resulting

aggregate integer linear program AILP (A, b, c,OG′
) will have |R(V)|-many variables and

|R(C)|-many constraints. Note that this aggregation can be thought of as a relaxation of

ILP (A, b, c). The aggregation routine is stated formally in Algorithm 2. As a consequence

of this procedure, an aggregate variable xa
R(Vj)

in AILP (A, b, c,OG′
) represents the sum of

the variables xi such that xi ∈ Vj. That is,

xa
R(Vj)

=
∑
i∈Vj

xi, ∀Vj ∈ V . (2.6)

As a result of Theorem 2.2, adding λπx ≤ β, ∀λπ ∈ orb(λ,G) does not change symmetries

acting on the variables of ILP (A, b, c). It does, however, add only one new constraint set

to OG, meaning that regardless of the size of orb(λ,G), only one constraint is added to

AILP (A, b, c,OG).

2.5.2 Lifting a Valid cut

Even though AILP (A, b, c,OG′
) is a relaxation of ILP (A, b, c), we can generate valid cuts

in the aggregate space that are valid in the lifted space. Now, we show how to lift a valid

cut in the aggregate problem to the original problem.

Let

λaxa = λa
1x

a
R(V1)

+ · · ·+ λa
kx

a
R(Vk)

≤ β

be a valid cut for the feasible region FAILP of AILP (A, b, c,OG′
). Since

xa
R(Vj)

=
∑
j∈Vj

xj ∀Vj ∈ V ,

36

Algorithm 2 Aggregate ILP (A, b, c)

Input: ILP (A, b, c), OG′

Output: AILP (A, b, c,OG′
)

procedure Aggregate(ILP (A, b, c), OG′
)

Aa ← |R(C)| × |R(V)|-dimensional zero matrix
ba ← an |R(C)|-length zero vector
ca ← an |R(V)|-length zero vector
la, ua ← an |R(V)|-length zero vector
for j ∈ R(V) do ▷ Loop over each representative variable

for i = 1, 2, . . . ,m do
k ← R(ci,OG′

)
Aa

k,j ← Aa
k,j + ai,j ▷ ai,j the coefficient of xj in constraint i of A

bak ← bak + bi
end for

end for
for j = 1, 2, . . . , n do

k ← R(xi, O
G′
).

lak ← lak + lj ▷ lj is the lower bound of xj

ua
k ← ua

k + uj ▷ uj is the upper bound of xj

end for
for j ∈ R(V) do

caj ← cj ▷ cj is the objective coefficient of xj in c
end for

end procedure

37

we have that

λaxa = λa
1x

a
R(V1)

+ · · ·+ λa
kx

a
R(Vk)

= λa
1

∑
j∈V1

xj + · · ·+ λa
k

∑
j∈Vk

xj ≤ β.
(2.7)

Theorem 2.3. Let G′ be a symmetry group of ILP (A, b, c), OG′
an orbital partition of the

variables and constraints of ILP (A, b, c) with respect to G′, and λaxa ≤ β a valid cut for

FAILP of AILP (A, b, c,OG′
). Then

λa
1

∑
j∈V1

xj + · · ·+ λa
k

∑
j∈Vk

xj ≤ β

is a valid cut for FILP .

Proof. Suppose λaxa ≤ β is a valid cut for FAILP . Now assume that

λa
1

∑
j∈V1

xj + · · ·+ λa
k

∑
j∈Vk

xj ≤ β

is not valid for FILP . Then ∃ yd ∈ FILP such that

λa
1

∑
j∈V1

ydj + · · ·+ λa
k

∑
j∈Vk

ydj > β.

Let ya be the aggregate solution of yd according to (2.6). Obviously, ya ∈ Z≥0. Now, if we

sum the co-orbital constraints of ILP (A, b, c) substituting ydj for xj, we obtain the following

∑
i∈Ck

n∑
j=1

ai,jy
d
j ≤

∑
i∈Ck

bi, ∀Ck ∈ C. (2.8)

Note that co-orbital variables will have like coefficients in (2.8), otherwise they would not

be co-orbital.

38

Let aaR(Ck),1
, . . . , aaR(Ck),l

, ∀Ck ∈ C be the coefficients on variables belonging to the same set

V1, . . . , Vl in (2.8), respectively. Further, the right-hand sides of each constraint in a set Ck ∈

C are the same. Therefore, the right-hand sides of (2.8) can be written as |Ck|bR(Ck), ∀Ck ∈ C.

Now, the left-hand sides and right-hand sides in (2.8) can be expressed as

∑
i∈Ck

n∑
j=1

ai,jy
d
j ≤

∑
i∈Ck

bi = aaR(Ck),1

∑
j∈V1

ydj + · · ·+ aaR(Ck),l

∑
j∈Vl

ydj , ∀Ck ∈ C

= aaR(Ck),1
yaR(V1)

+ · · ·+ aaR(Ck),l
yaR(Vl)

, ∀Ck ∈ C

= aaR(Ck)
ya, ∀Ck ∈ C

≤ |Ck|bR(Ck), ∀Ck ∈ C.

(2.9)

The row sums in (2.9) are the aggregate constraints of AILP (A, b, c,OG′
). Now, we know

ya ∈ FAILP . Thus,

λaya = λa
1y

a
R(V1)

+ · · ·+ λa
ky

a
R(Vk)

= λa
1

∑
j∈V1

ydj + · · ·+ λa
k

∑
j∈Vk

ydj

≤ β.

(2.10)

The statement in (2.10) is a contradiction.

Example 2.2. Aggregating ILP (A, b, c) and a valid cut in AILP (A, b, c,OG′
).

Recall Example 2.1 and let ILP (Aλ, bλ, c) be (2.3) with the valid cuts in (2.5) and let

Gλ be the formulation group of ILP (Aλ, bλ, c). We proved in Theorem 2.2 that the addition

of all co-orbital valid cuts preserves the permutations π ∈ G acting on the variables of

ILP (A, b, c). The orbital partition of the variables and constraints in ILP (Aλ, bλ, c) with

respect to Gλ is

OGλ

= {(x1, x2, x3, x4), (c1, c2, c3, c4), (c5, c6, c7, c8)}.

39

AILP (Aλ, bλ, c,OGλ
) is

max xa
1 (2.11a)

s.t. 3xa
1 ≤ 8 (ca1) (2.11b)

21xa
1 ≤ 48 (ca5) (2.11c)

0 ≤ xa
1 ≤ 4 (2.11d)

xa
1 ∈ Z≥0, (2.11e)

and the optimal objective value of ALP (Aλ, bλ, c,OGλ
) is 2.29. ALP (Aλ, bλ, c,OGλ

) is the

linear relaxation of AILP (A, b, c,OGλ
). The four valid cuts c5, c6, c7, and c8 aggregate down

into only one valid cut ca5 in AILP (Aλ, bλ, c,OGλ
).

A valid cut for FAILP of (2.11) is xa
1 ≤ 2. This gives a new optimal objective value of 2.

From (2.7), the valid cut when lifted to ILP (A, b, c) is

xa
1 = 2 (x1 + x2 + x3 + x4) ≤ 2 (c9) (2.12)

giving LP (A, b, c) of (2.3) with the cuts in (2.5) and (2.12) and optimal objective of 2. Note

that the addition of (2.12) to (2.3) results in

OGλ

= {(x1, x2, x3, x4), (c1, c2, c3, c4), (c5, c6, c7, c8), (c9)}

as

orb((1, 1, 1, 1), G) = {(1, 1, 1, 1)}.

2.5.3 Iterative Lifting

Once an optimal feasible solution is found for AILP (A, b, c,OG), no more useful valid cuts

can be generated for ILP (A, b, c) using AILP (A, b, c,OG). We can then use the stabilizer

chain of G to find a tighter relaxation. Let G1 = stab(x1, G) and O1 be an orbital partition

of the variables and constraints of ILP (A, b, c) with respect to G1. O1 is a refinement of

40

OG. That is, for Oi ∈ O1, ∃ Oj ∈ OG where Oi ⊆ Oj. We define Gi = stab(xi, G
i−1), i =

2, 3, . . . , n and Oi the orbital partition of the variables and constraints of ILP (A, b, c) with

respect to Gi.

For each orbital partition Oi, we can use the methods above to first construct

AILP (A, b, c,Oi) and then generate valid cuts λaxa ≤ β for FAILP . When using G, adding

the cut λπx ≤ β for all π only resulted in one additional constraint in the aggregate. Because

we are using Gi, a subgroup of G, this is no longer the case. We need to be able to efficiently

compute all unique aggregations with respect to Oi, that is, for a given orbit O with respect

to G, we wish to compute the set of representatives for the orbital partition of O with respect

to Gi. To do this, we refer the reader to [21], and note that the command orbitsDomain in

GAP does this computation.

Lastly, recall that once an optimal feasible solution is found for AILP (A, b, c,Oi), we lift

and continue cut generation in AILP (A, b, c,Oi+1). However, it is possible that a solution to

ALP (A, b, c,Oi+1) may not be integral when aggregated according to Oj, j < i. We exploit

this situation by “swapping” stabilizer levels back to Gj to generate more cutting planes in

AILP (A, b, c,Oj). This swapping allows us to extend the time spent generating cuts with

the smaller orbits. We compute Oj and aggregate ILP (A, b, c) with respect to Oj when we

swap stabilizer levels. Upon finding a new optimal feasible solution to AILP (A, b, c,Oj), we

compute the new orbital partition Oi+1, aggregate ILP (A, b, c) with respect to Oi+1, and

resume cut generation in AILP (A, b, c,Oi+1). Algorithm 3 formalizes iterative orbital cut

generation.

Subroutines in Algorithm 3 without formal descriptions in this text are explained below.

• ComputeOrbs: This method computes the orbital partition of the variables and

constraints of ILP (A, b, c) with respect to a group.

• CutGen: This method generates valid cuts for AILP (A, b, c,Oi), lifts them to

ILP (A, b, c), and generates all symmetrically equivalent valid cuts for ILP (A, b, c).

Then, the symmetrically equivalent valid cuts are aggregated down to AILP (A, b, c,Oi)

41

Algorithm 3 Orbital Cut Generation

Input: ILP (A, b, c), G
Output: zb ▷ Best dual bound for ILP (A, b, c)

procedure OrbitalCutGen(ILP (A, b, c), G)
k ← 0
OG ← ComputeOrbs(G)
AILP (A, b, c,OG)← Aggregate(ILP (A, b, c), OG)
V IQ, zb ← CutGen(AILP (A, b, c,OG), ILP (A, b, c)) ▷ List of valid cuts, dual bound
Gk ← G
Ok ← OG

while IsNotDiscrete(Ok) do
k ← k + 1
Gk ← stab(xk, G

k−1)
Ok ← ComputeOrbs(Gk)
AILP (A, b, c,Ok)← Aggregate(ILP (A, b, c), Ok)
V IQ, zb ← CutGen(AILP (A, b, c,Ok), ILP (A, b, c))

end while
end procedure

42

to improve the dual bound. This method continues until all aggregate variables are

integral.

• IsNotDiscrete: This method determines whether or not the orbital partition is

discrete. That is, each set in the partition is a singleton set.

2.6 Implementation

Orbital cut generation is implemented using a Python driver. It is a mix of of pure Python,

CPython, and C code. The formulation group, stabilizer groups, and orbits are computed

using saucy and GAP [43, 13]. All solving is completed using CPLEX due to the access it

provides users to the simplex tableau and LU factorization.

CPython is used for more intense methods that aggregate ILP (A, b, c) and add valid cuts

to ILP (A, b, c) and AILP (A, b, c,Oi). Simpler routines such as verifying whether or not an

aggregate solution is close to integral are implemented in pure Python. Python was chosen

as a driver due to the use of SageMath [46] for its library access to GAP.

2.6.1 Generating Symmetric Cutting Planes

CPLEX has a method binvarow that produces the optimal simplex tableau for a linear

program. Although, to obtain the columns of the tableau corresponding to the slack

variables, one must use the binvrow method to obtain the inverse basis matrix rows and

use linear algebra to compute the reduced slack columns. We use both the binvarow and

binvrow methods in the CPLEX Python API to compute the full optimal simplex tableau of

ALP (A, b, c,OG).

We construct a Gomory mixed integer cut for each reduced row with a non-slack basic

variable and fractional right-hand side in the optimal simplex tableau of ALP (A, b, c,OG).

We then lift the cut using (2.7) to ILP (A, b, c) and generate orb(λ,G) for the lifted cut

coefficient vector λ. We use the GAP orbit method that takes a permutation group, a list of

43

objects, and an action as arguments. The sg.lg.Permuted action tells GAP to compute the

orbit of the coefficient vector by applying all permutations in G to the vector.

Each coefficient vector in orb(λ,G) is assigned an index and the indices are added to

a list and appended to OG. The new constraints resulting from orb(λ,G) are added to

ILP (A, b, c), aggregated back down to AILP (A, b, c,OG), and ALP (A, b, c,OG) is resolved

with the aggregate cutting planes. This continues until each integer required variable in

AILP (A, b, c,OG) is integral. In practice, we measure closeness to integrality and consider

variables in AILP (A, b, c,OG) to be integer if they are within 0.01 of integrality.

2.6.2 Exploiting Stabilizer Subgroups

Once AILP (A, b, c,OG) is close to integrality, we start to exploit the stabilizer chain of G.

We examine OG, choose the lowest index variable i that is not in a singleton set in OG, and

compute the stabilizer subgroup Gi of G with respect to xi. Gi will produce a new orbital

partition Oi. The new orbital partition Oi does not contain the orbital partition of the valid

cuts that have been added to ILP (A, b, c) at this point. We must compute the new orbital

partition of the valid cuts under the action of Gi and append them to Oi.

We do so by maintaining a list of lists of the coefficient vectors corresponding to co-

orbital valid cuts in the lifted space. We compute the new orbital partition of the co-orbital

coefficient vectors under the action ofGi using orbitsDomain. Once the new orbital partition

of all valid cuts is known, it is appended to Oi and AILP (A, b, c,Oi) is constructed. Now,

the process of generating cutting planes in the aggregate space, lifting them to the dis-

aggregated space, generating the symmetrically equivalent cutting planes, and aggregating

them back down to the aggregate space continues. The entire process is allowed to continue

until we arrive at a discrete orbital partition. Like with AILP (A, b, c,OG), we move to the

next stabilizer subgroup in the stabilizer chain when all variables in AILP (A, b, c,Oi) are

close to integral.

We provide a final note on the implementation of orbital cut generation. For stabilizer

swapping from Gi to Gj where j < i, it is possible that i − j > 1. However, once no

44

more cuts can be generated at level j, we resume cut generation at level i. In practice,

our implementation of orbital cut generation does not generally make it past the third level

of the stabilizer chain before timing out, so resuming cut generation at j + 1, . . . , i − 1

is not necessary. The interested reader is directed to the source code found at https:

//github.com/edeakins/MIPSymmetryCuts.

2.7 Benchmarks

2.7.1 Test Sets, Methods, and setup

The instances chosen for testing in this paper are combinatorial optimization problems with

application in coding theory and statistical design. Instances beginning with cod are used

to compute maximum cardinality binary error correcting codes [25]. Instances beginning

with codbt are used to compute minimum dominating sets in Hamming graphs. Instances

beginning with cov are covering design problems [33]. Finally, instances beginning with sts

compute the incidence width of Steiner-triple systems [12]. These families of instances have

been used as tests for many papers on symmetry in integer programming such as [27, 28, 36].

We compare orbital cut generation against the standard cutting plane method [7]. In this

section, we refer to orbital cut generation as OCG and the standard cutting plane method

as SCG. The methods are described in detail below.

• OCG: The contribution described in this paper and displayed in Algorithm 3 using

Gomory’s mixed integer cuts.

• SCG: The standard cutting plane method. This method iteratively generates

Gomory’s mixed integer cuts and adds them to ILP (A, b, c) until the variables of

ILP (A, b, c) are integral.

For both OCG and SCG we generate a Gomory cut for every non-integer x variable at

each ALP (A, b, c,Oi) solve. Note that we refer to solving the natural linear programming

relaxation of ILP (A, b, c) without any cuts as LPR.

45

https://github.com/edeakins/MIPSymmetryCuts
https://github.com/edeakins/MIPSymmetryCuts

Each run of OCG and SCG is given a two-hour time limit. We record the best dual

bound achieved by both methods and compare against one another. Further, we compare

against the dual bounds given by a rank-3 Sherali-Adams closure [44], as well as a slightly

modified closure (by adding counting constraints [36]). We denote the rank-3 Sherali-Adams

dual bound with and without counting constraints as SA and SA+, respectively. We show

the results from the Sherali-Adams closure to compare the relative strength of the proposed

cuts, but note that computing the Sherali-Adams dual bounds can take several hours.

2.7.2 Results

Tables 2.1 and 2.2 provide data on the results of orbital cut generation benchmarks. Table 2.1

shows the best dual bounds across each method, the optimal objective value (column seven),

and some statistics on cut generation for each instance in the test suite. Overall, OCG

performs very well compared to LPR and only one instance did not see an improvement in

best dual bound. OCG is able to achieve a better dual bound than SCG for 24 of the 30

instances. OCG matches or outperforms SA on 22 of the 30 instances. SA+ outperforms

OCG for 20 of the 30 instances, however, OCG does produce a dual bound for five instances

that SA+ could not produce in a twenty-four-hour time limit. Both SA+ and OCG are able

to achieve the optimal objective value for five instances. However, the five instances vary by

one across both methods. That is, SA+ produces the optimal objective value for codbt33

and OCG does not, where as OCG produces the optimal objective value for cov943 and

SA+ does not. Interestingly, certain instances seem to benefit most from OCG. The largest

improvements in best dual bound from LPR to OCG occur in the sts instances with an

average improvement of 58%. The codbt instances see the least improvement over LPR

with an average improvement of 4%.

Columns eight, nine, and ten of Table 2.1 show the number of cuts added to ILP (A, b, c)

by SCG, number of calls to the cut generator function in orbital cut generation, and number

of cuts added to ILP (A, b, c) by OCG, respectively. Note that the number of calls to the

cut generator function in SCG is equal to the number of cuts added to ILP (A, b, c). Many

46

Table 2.1: Bounds for SA, SA+, SCG, and OCG

Name LPR SA SA+ SCG OCG OPT SCG Cuts OCG Calls OCG Cuts
Maximization

cod103 93 90 85 92 91 72 3620 99 965635
cod105 18 18 15 18 14 12 2818 71 906755
cod83 28 26 23 27 24 20 15106 79 2171141
cod93 51 48 45 50 48 40 8398 95 1363460

Minimization
codbt05 23 24 26 23 24 27 15291 5538 1333344
codbt15 41 42 * 41 44 54 8424 6807 3016119
codbt24 30 31 * 30 31 36 121274 8208 2518454
codbt33 22 23 24 22 23 24 17161 8932 1792910
codbt34 54 56 * 54 57 72 6075 3875 2389178
codbt42 16 18 19 17 17 20 23436 10325 1391041
codbt43 40 41 * 40 41 48 9207 6090 2481410
codbt52 29 31 * 29 30 36 13604 7677 2083682
codbt61 22 23 24 22 24 24 19195 62 10083
codbt71 39 41 43 39 40 48 10142 2353 810244
codbt80 29 31 32 30 32 32 14764 27 67587
codbt90 52 54 56 52 52 62 8283 60 750594
cov1053 12 13 14 12 14 17 15971 188 825321
cov1054 42 45 46 45 45 51 15560 168 638192
cov1075 12 14 16 13 14 20 25326 21478 193118
cov1076 30 39 39 32 36 45 25554 3754 7733103
cov1174 10 10 12 16 16 17 18395 148 825002
cov743 9 11 12 10 12 12 37575 198 41080
cov832 10 10 11 11 11 11 3114 6 114
cov943 21 22 23 23 25 25 21189 102 397779
cov954 26 28 29 28 28 30 24674 155 1039251
sts15 5 8 8 7 8 9 40047 137 2328
sts27 9 15 16 12 16 18 38398 109 467129
sts45 15 24 24 19 21 30 36394 654 37862
sts63 21 34 37 27 34 45 33806 493 592492
sts81 27 44 48 32 40 61 31821 10761 872493

47

Table 2.2: IP Gap (%) for LPR, SCG, and OCG

Name LPR Gap (%) SCG Gap (%) OCG Gap (%)
Maximization

cod103 23 22 21
cod105 33 33 14
cod83 29 26 17
cod93 22 20 17

Minimization
codbt05 17 17 13
codbt15 32 32 23
codbt24 20 20 16
codbt33 9 9 4
codbt34 33 33 26
codbt42 25 18 18
codbt43 20 20 17
codbt52 24 24 20
codbt61 9 9 0
codbt71 23 23 20
codbt80 10 7 0
codbt90 19 19 19
cov1053 42 42 21
cov1054 21 13 13
cov1075 67 54 43
cov1076 50 41 25
cov1174 70 6 6
cov743 33 20 0
cov832 10 0 0
cov943 19 9 0
cov954 15 7 7
sts15 80 29 13
sts27 100 50 13
sts45 100 58 43
sts63 114 67 32
sts81 126 91 53

40 27 17

48

more cuts are added using OCG, however with fewer calls to the cut generator. On average,

for every one call to the cut generator in OCG, 3,827 symmetrically equivalent cuts are

generated. Further, OCG averages 103 times as many cuts generated in the two-hour time

limit.

Table 2.2 shows the gap between the best dual bound achieved across LPR, SCG, and

OCG and the optimal objective value for each instance. We compute the gap for each method

using the standard formula for mixed integer programming (MIP) gap used by solvers. The

last row in Table 2.2 gives the average of each column. The average gap for LPR is 40%

showing that there is plenty of room for improvement by strengthening the natural relaxation

of ILP (A, b, c). SCG decreases the average final gap to 27% and OCG furthers this trend

pushing the average final gap down to 17%. The average gap using OCG is least for the cov

instances at 13% and greatest for the sts instances at 31%. We note that the sts instances

have notoriously bad relaxations and the greatest average gap for LPR as well.

2.8 Discussion

OCG proves to be an effective method at improving the dual bound at the root node

compared to SCG. All instances, except one, see an improvement in the dual bound for

LPR vs. OCG with an average improvement of 19% across all instances. As for SCG vs.

OCG, all instances, except five, see an improvement in the dual bound. The instances with

the largest improvement are sts instances. The sts family of instances is well known for

having very weak relaxations. This may provide some insights as to why these instances see

the most improvement.

With the exception of cod103, the codbt family of instances seems to be the hardest to

improve. Many of the instances that see the least improvement using OCG tend to start with

a tighter dual bound, although, this is not always the case (see codbt34 in Table 2.1). OCG

is able to find the optimal objective value for five of the thirty instances in the test suite.

Four of these five instances are the same instances that SA+ achieves the optimal objective

49

value. However, OCG is able to achieve the optimal objective value for one instance that

SA+ is not and vice versa.

We note that a very naive cut selection routine was implemented for OCG and SCG. We

use Gomory mixed integer cutting planes and select all rows having a fractional right-hand

side unless the corresponding basic variable is a slack variable. With a better selection rule

for which cuts and how many cuts to generate, the results of OCG would likely improve.

Further, using various types of cutting planes would most likely produce an improvement

compared to the naive implementation of OCG.

50

Bibliography

[1] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh, and

Pamela H Vance. Column generation for solving huge integer programs, 1996. 26

[2] Christoph Berkholz, Paul Bonsma, and Martin Grohe. Tight lower and upper bounds for

the complexity of canonical colour refinement. Theory of Computing Systems, 60(4):581–

614, 2017. 8

[3] Robert E. Bixby and Matthew J. Saltzman. Recovering an optimal lp basis from an

interior point solution. Operations Research Letters, 15(4):169–178, 1994. 4

[4] Peter J Cameron et al. Permutation groups. Number 45. Cambridge University Press,

1999. 6, 27

[5] Alberto Caprara and Matteo Fischetti. Branch-and-cut algorithms. Annotated

bibliographies in combinatorial optimization, pages 45–64, 1997. 25

[6] Christopher Maes, Edward Rothberg, Zonghao Gu, Robert Bixby. Initial basis selection

for lp crossover. url: https://cerfacs.fr/wp-content/uploads/2016/01/maes.

pdf, 6 2014. 4

[7] Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, et al. Integer programming,

volume 271. Springer, 2014. 25, 45

[8] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-

salesman problem. Journal of the operations research society of America, 2(4):393–410,

1954. 25

51

https://cerfacs.fr/wp-content/uploads/2016/01/maes.pdf
https://cerfacs.fr/wp-content/uploads/2016/01/maes.pdf

[9] George B Dantzig and Mukund N Thapa. Linear programming 1: introduction. Springer

Science & Business Media, 2006. 4

[10] Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploiting

structure in symmetry detection for cnf. In Proceedings of the 41st Annual Design

Automation Conference, DAC ’04, page 530–534, New York, NY, USA, 2004.

Association for Computing Machinery. 17, 59

[11] Matthias Elf, Carsten Gutwenger, Michael Jünger, and Giovanni Rinaldi. Branch-and-

cut algorithms for combinatorial optimization and their implementation in abacus. In

Computational Combinatorial Optimization, pages 157–222. Springer, 2001. 25

[12] DR Fulkerson, George L Nemhauser, and LE Trotter Jr. Two computationally difficult

set covering problems that arise in computing the 1-width of incidence matrices of steiner

triple systems. Technical report, WISCONSIN UNIV-MADISON MATHEMATICS

RESEARCH CENTER, 1974. 45

[13] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.12.2, 2022.

43

[14] Ralph Gomory. An algorithm for the mixed integer problem. Technical report, RAND

CORP SANTA MONICA CA, 1960. 25

[15] Ralph E Gomory. Solving linear programming problems in integers. Combinatorial

Analysis, 10:211–215, 1960. 25

[16] Ralph E Gomory. An algorithm for integer solutions to linear programs. Recent advances

in mathematical programming, 64(260-302):14, 1963. 25

[17] Martin Grohe, Kristian Kersting, Martin Mladenov, and Erkal Selman. Dimension

reduction via colour refinement. In European Symposium on Algorithms, pages 505–

516. Springer, 2014. 4, 7, 9, 11

52

[18] Martin Grötschel and Olaf Holland. Solution of large-scale symmetric travelling

salesman problems. Mathematical Programming, 51(1-3):141–202, 1991. 25

[19] Larry C Grove and Clark T Benson. Finite reflection groups, volume 99. Springer

Science & Business Media, 1996. 6, 27

[20] Søren Holm and Michael Malmros Sørenson. The Optimal Graph Partitioning Problem:

Solution Method Based on Reducing Symmetric Nature and Combinatorial Cuts. Aarhus

School of Business, 1992. 26

[21] Derek F Holt, Bettina Eick, and Eamonn A O’Brien. Handbook of computational group

theory. Chapman and Hall/CRC, 2005. 41

[22] Qi Huangfu and JA Julian Hall. Parallelizing the dual revised simplex method.

Mathematical Programming Computation, 10(1):119–142, 2018. 17

[23] M Junger, G Reinelt, and S Thienel. Practical problem solving with cutting plane

algorithms in combinatorial optimization, dimacs series in discrete mathematics and

theoretical computer science. American Mathematical Society, 111, 1995. 25

[24] Michael Jünger and Denis Naddef. Computational combinatorial optimization: optimal

or provably near-optimal solutions, volume 2241. Springer, 2003. 25

[25] Simon Litsyn. An update table of the best binary codes known. Handbook of Coding

Theory, 1998. 18, 45

[26] Elder M Macambira, Nelson Maculan, and CC de Souza. Reducing symmetry of

the sonet ring assignment problem using hierarchical inequalities. Technical report,

Technical Report ES-636/04, Programa de Engenharia de Sistemas e Computaçao . . . ,

2004. 26

[27] François Margot. Pruning by isomorphism in branch-and-cut. Mathematical

Programming, 94(1):71–90, 2002. 26, 45

53

[28] François Margot. Exploiting orbits in symmetric ilp. Mathematical Programming,

98(1):3–21, 2003. 7, 26, 45

[29] François Margot. Symmetry in Integer Linear Programming, pages 647–686. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2010. 6, 26, 28

[30] Harry M Markowitz and Alan S Manne. On the solution of discrete programming

problems. Econometrica: journal of the Econometric Society, pages 84–110, 1957. 25

[31] Brendan D McKay. Nauty user’s guide (version 2.4). Computer Science Dept.,

Australian National University, pages 225–239, 2007. 17

[32] Isabel Méndez-Dı́az and Paula Zabala. A branch-and-cut algorithm for graph coloring.

Discrete Applied Mathematics, 154(5):826–847, 2006. 26

[33] WH Mills and RC Mullin. Coverings and packings. New York, NY: Wiley, 1992. 18, 45

[34] John E Mitchell. Branch-and-cut algorithms for combinatorial optimization problems.

Handbook of applied optimization, 1(1):65–77, 2002. 25

[35] James Ostrowski. Symmetry in integer programming. Lehigh University, 2009. 6, 27

[36] James Ostrowski. Using symmetry to optimize over the sherali–adams relaxation.

Mathematical Programming Computation, 6:405–428, 2014. 45, 46

[37] James Ostrowski, Jeff Linderoth, Fabrizio Rossi, and Stefano Smriglio. Orbital

branching. In International Conference on Integer Programming and Combinatorial

Optimization, pages 104–118. Springer, 2007. 26

[38] James Ostrowski, Jeff Linderoth, Fabrizio Rossi, and Stefano Smriglio. Constraint

orbital branching. In International Conference on Integer Programming and

Combinatorial Optimization, pages 225–239. Springer, 2008. 26, 27

[39] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution

of large-scale symmetric traveling salesman problems. SIAM review, 33(1):60–100, 1991.

25

54

[40] Peter Dobsan. Pynauty pypi web page. url: https://pypi.org/project/pynauty/,

2022. 17

[41] E Rothberg. Using cuts to remove symmetry. In 17th International Symposium on

Mathematical Programming, 2000. 26

[42] Joseph J Rotman. An introduction to the theory of groups, volume 148. Springer Science

& Business Media, 2012. 6, 27

[43] Jonathan David Schrock. Symmetry detection in integer linear programs. 2015. 17, 43,

59

[44] Hanif D Sherali andWarren P Adams. A hierarchy of relaxations between the continuous

and convex hull representations for zero-one programming problems. SIAM Journal on

Discrete Mathematics, 3(3):411–430, 1990. 46

[45] Hanif D Sherali and J Cole Smith. Improving discrete model representations via

symmetry considerations. Management Science, 47(10):1396–1407, 2001. 26

[46] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.7),

2023. https://www.sagemath.org. 43

[47] Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020. 25

[48] Laurence A Wolsey and George L Nemhauser. Integer and combinatorial optimization,

volume 55. John Wiley & Sons, 1999. 25

55

https://pypi.org/project/pynauty/

Appendices

56

Appendix A

Orbital Crossover Implementation

A.1 Nomenclature

A.1.1 Input Data

n Number of columns in LP (A, b, c).

nk
col Number of sets in Vk.

nk
row Number of sets in Ck.

P k
part Array tracking which set P k

i ∈ Pk each variable/constraint belongs to.

Aip Array of P k
part[i],∀i ∈ Aio.

P k
size Array of the size of each set P k

i ∈ Pk.

P k
set Array of the sets P k

i ∈ Pk.

Ba Array of basis statuses for all variables in solution ALP (A, b, c,Pk).

A.1.2 Output Data

F Temporary array for a new aggregate row entering Aitemp.

Ava Array of constraint matrix coefficients in ALP (A, b, c,Pk).

Avtemp Temporary array of constraint matrix coefficients in ALP (A, b, c,Pk).

Aia Array of constraint matrix indices in ALP (A, b, c,Pk).

57

Aitemp Temporary Array of constraint matrix indices in ALP (A, b, c,Pk).

Asa Array of column starts in constraint matrix in ALP (A, b, c,Pk).

(V a, Sa) Solution to ALP (A, b, c,Pk).

Ave Array of constraint matrix coefficients in ELP (A, b, c,Pk).

Aie Array of constraint matrix indices in ELP (A, b, c,Pk).

Ase Array of column starts in constraint matrix in ELP (A, b, c,Pk).

Avo Array of constraint matrix coefficients in LP (A, b, c).

Aio Array of constraint matrix indices in LP (A, b, c).

Aso Array of column starts in constraint matrix in LP (A, b, c).

Obja Array of objective coefficients in ALP (A, b, c,Pk).

Obje Array of objective coefficients in ELP (A, b, c,Pk).

Objo Array of objective coefficients in LP (A, b, c,Pk).

La Array of variable lower bounds in ALP (A, b, c,Pk).

Ua Array of variable upper bounds in ALP (A, b, c,Pk).

Le Array of variable lower bounds in ELP (A, b, c,Pk).

U e Array of variable upper bounds in ELP (A, b, c,Pk).

Lo Array of variable lower bounds in LP (A, b, c,Pk).

U o Array of variable upper bounds in LP (A, b, c,Pk).

RhsaL Array of constraint right-hand side lower bounds in ALP (A, b, c,Pk).

RhsaU Array of constraint right-hand side upper bounds in ALP (A, b, c,Pk).

RhseL Array of constraint right-hand side lower bounds in ELP (A, b, c,Pk).

RhseU Array of constraint right-hand side upper bounds in ELP (A, b, c,Pk).

RhsoL Array of constraint right-hand side lower in LP (A, b, c,Pk).

RhsoU Array of constraint right-hand side upper in LP (A, b, c,Pk).

Be Array of basis statuses for all variables in initial solution to ELP (A, b, c,Pk).

rklinks Array of the linking variables in ELP (A, b, c,Pk).

58

A.2 Implementation Details

Note that data containers that are associated with ALP (A, b, c,Pk) and ELP (A, b, c,Pk)

have their entries set to zero before each major iteration k. This includes temporary arrays

that house data for a short period during Algorithm 4. R(·) retains it definition from

Section 1.3. The basis statuses mentioned in the definitions of Ba and Be are: 0 (nonbasic

at lower bound), 1 (basic), 2 (nonbasic at upper bound), 3 (zero), and 4 (nonbasic with no

bound information). These values comes from HiGHS, but many commercial and other open

sources solvers use a similar system for classifying the basis/nonbasic status of variables in

a LP solution. Finally, we let P0 = P and note that all arrays containing constraint matrix

data for ALP (A, b, c,P) and ELP (A, b, c,P) are CSC formatted. The following sections

give a detailed description of the methods that make up the bold font sub-functions from

Algorithm 1.

Equitable Partitions (EP and Refine):

For the purposes of this paper, we leave out the direct implementation of our EP routine.

There is a large amount of components that integrate to compute and refine EPs in our OC

implementation. The backbone of EP implementation comes from saucy and details for

saucy can be seen in [10, 43]. It suffices to explain that EP accepts LP (A, b, c) as input and

computes an initial EP. If the EP is not discrete and Refine is called, the representative

of the largest non-slack set is isolated and a new EP is computed afterwards. We refer the

interested reader to the source code at https://github.com/edeakins/EQLPSolver/tree/

stable/HiGHS-1-2-1/src/presolve in the OCEquitable.cpp and OCEquitable.h files.

Aggregation (Fold):

Algorithm 4 is used to construct the aggregate A matrix for ALP (A, b, c,Pk). The

aggregate A matrix is constructed via nested for-loops. The outer loop iterates across

each variable set P k
i ∈ Vk recording xR(Pk

i). Once xR(Pk
i) is known, the first inner for-

loop calculates the column wise entries for the aggregate column xa
R(Pk

i)
using the coefficients

of xR(Pk
i) in LP (A, b, c). The second inner for-loop adds the coefficients and aggregate row

indices of xa
R(Pk

i)
into Ava and Aia, respectively. Lastly, the second inner for-loop clears the

59

https://github.com/edeakins/EQLPSolver/tree/stable/HiGHS-1-2-1/src/presolve
https://github.com/edeakins/EQLPSolver/tree/stable/HiGHS-1-2-1/src/presolve

values from temporary data containers. Once Algorithm 4 exists both inner for-loops, Asa

is updated to reflect the number of nonzero entries in aggregate column xa
R(Pk

i)
. The value

of start is updated with the current number of nonzero entries in the aggregate A matrix.

Note that R(P k
i) is a naming index on the aggregate variable xa

R(Pk
i)
. The actual internal

index for the aggregate column xa
R(Pk

i)
is i and this is why Asa is updated via Asa[i+ 1].

Algorithm 5, aggregates the objective function from LP (A, b, c) down to an objective

function for ALP (A, b, c,Pk). For each P k
i ∈ Vk, the objective coefficient of xR(Pk

i) in

LP (A, b, c) is extracted and then multiplied by |P k
i |. Similar to Algorithm 4, multiplying

the coefficient entry of xR(Pk
i) in ALP (A, b, c,Pk) means only the representatives of each set

in Vk must be considered. Next, the constraint right-hand sides must be aggregated as well.

Algorithm 6 shows this routine.

Finally, Algorithm 7 is used to construct the upper and lower bounds for each aggregate

variable in ALP (A, b, c,Pk). For each P k
i ∈ Vk, the upper and lower bound of xR(Pk

i) in

LP (A, b, c) is extracted and recorded as the upper and lower bound of the aggregate variable

xa
R(Pk

i)
. No multiplication is performed in this function because each aggregated variable

represents the average value of each variable in its respective set in Pk. Thus, the average

of the aggregate variable xR(Pk
i) representing P k

i must be within bounds of the variables

in P k
i . The Fold sub-function in Algorithm 1 comprises Algorithms 4 - 7 to construct

ALP (A, b, c,Pk).

60

Algorithm 4 Construct ALP (A, b, c,Pk) Constraint Matrix

1: function foldMatrix(LP (A, b, c), Pk = (Vk, Ck))
2: start← 0
3: nnz ← 0
4: Asa[0]← 0
5: for i← 0, nk

col − 1 do
6: q ← 0
7: P k

i ← P k
set[i]

8: r ← R(P k
i)

9: s← P k
size[i]

10: for j ← Aso[r], Aso[r + 1] do
11: c← Aip[j]
12: w ← Avo[j]
13: if F [c] = 0 then
14: F [c]← F [c] + 1
15: Aitemp[nnz] = c
16: nnz ← nnz + 1 ▷ Number of nonzeros in ALP
17: end if
18: Avtemp[c]← Avtemp[c] + w × s
19: end for
20: for j ← start, nnz do
21: c← Aitemp[j]
22: w ← Avtemp[c]
23: Ava[nnz]← w
24: Aia[nnz]← c
25: Avtemp[c] = 0
26: Aitemp[j] = 0
27: F [c] = 0
28: end for
29: Asa[i+ 1]← nnz
30: start← nnz
31: end for
32: end function

61

Algorithm 5 Construct ALP (A, b, c,Pk) Objective Function

1: function foldObjective(LP (A, b, c), Pk = (Vk, Ck))
2: for i← 0, nk

col − 1 do
3: P k

i ← P k
set[i]

4: r ← R(P k
i)

5: s← P k
size[i]

6: v ← Objo[r]
7: Obja[i]← v × s
8: end for
9: end function

Algorithm 6 Construct ALP (A, b, c,Pk) Right-hand Sides

1: function foldRhs(LP (A, b, c), Pk = (Vk, Ck))
2: for i← 0, nk

row − 1 do
3: P k

i ← P k
set[i+ nk

col]
4: r ← R(P k

i)
5: s← P o

size[i]
6: l← RhsoL[r − n]
7: u← RhsoU [r − n
8: RhsaL[i]← l × s
9: RhsaL[i]← u× s
10: end for
11: end function

Algorithm 7 Construct ALP (A, b, c,Pk) Variable Bounds

1: function foldBnds(LP (A, b, c), Pk = (Vk, Ck))
2: for i← 0, nk

col − 1 do
3: P k

i ← P k
set[i]

4: r ← R(P k
i)

5: l← Lo[r]
6: u← U o[r]
7: La[i]← l
8: Ua[i]← u
9: end for
10: end function

62

Solving ALP (A, b, c,P0) (Solve):

ALP (A, b, c,P0) is solved using either using HiGHS serial dual simplex solver or HiGHS

IPM with HiGHS crossover. The choice is left to the user and specified via options when

calling the modified HiGHS code containing OC.

Lifting (Extend):

Note that the Extend sub-function from Algorithm 1 uses Algorithm 4 as well to build

the initial A matrix of ELP (A, b, c,Pk) and linking variables/constraints are added later.

Recall that after OC, the solution to ALP (A, b, c,Pk−1) is the solution to ELP (A, b, c,Pk−1)

without the r variables. If the variable bound for xa
R(Pk−1

i)
is active in the solution to

ALP (A, b, c,Pk−1), then the variable bound(s) for xa
R(Pk

j)
∀P k

j ⊆ P k−1
i will be active

in ELP (A, b, c,Pk) Aggregate variable bounds in ELP (A, b, c,Pk) are determined via

Algorithm 8. The same logic is applied to determine the right-hand sides of aggregate

constraints in Algorithm 9. Note in Algorithm 9 that Sa contains the row values from the

solution to ALP (A, b, c,Pk−1).

Next, the basis for ALP (A, b, c,Pk−1) is lifted similarly to how the variable bounds and

right-hand sides are. Algorithm 10 explains this process. Be initially has all entries set to

a value of 4 (nonbasic without bound information). Non-slack aggregate variables xa
R(Pk

j)

are given the same basis status as xa
R(Pk−1

i)
so long as P k

j ⊆ P k−1
i . If R(P k−1

i) = R(P k
j)

and sa
R(Pk−1

i)
is anything but basic, then sa

R(Pk
i)

is given the same basis status as sR(Pk−1
i).

Otherwise, sR(Pk
i) is set to basic. This follows from our basis construction method in the

proof for Theorem 1.2 and the method for reducing the number of r variables from Section

1.4.

63

Algorithm 8 Fix Active Variables in ELP (A, b, c,Pk)

1: function fixBnds(LP (A, b, c), Pk−1 = (Vk−1, Ck−1), Pk = (Vk, Ck), V a)
2: for i← 0, nk

col − 1 do
3: P k

i ← P k
set[i]

4: r ← R(P k
i)

5: j ← P k−1
part [r]

6: l← Lo[r]
7: u← U o[r]
8: if V a[j] = l then
9: Le[i]← l
10: U e[i]← l
11: else if V a[j] = u then
12: Le[i]← u
13: U e[i]← u
14: else
15: Le[i]← l
16: U e[i]← u
17: end if
18: end for
19: end function

64

Algorithm 9 Fix Active Rows in ELP (A, b, c,Pk)

1: function fixRhs(LP (A, b, c), Pk−1 = (Vk−1, Ck−1), Pk = (Vk, Ck), Sa)
2: for i← 0, nk+1

row do
3: P k

i ← P k
set[i+ nk

col]
4: r ← R(P k

i)
5: j1 ← P k

part[r]

6: j2 ← P k−1
part [r]

7: sk ← P k
size[j1]

8: sk−1 ← P k−1
size [j2]

9: l← RhsoL[r]
10: u← RhsoU [r]
11: if Sa[j − nk−1

col] = l × sk−1 then
12: RhseL[i]← l × sk

13: RhseU [i]← l × sk

14: else if Sa[j − nk−1
col] = u× sk−1 then

15: RhseL[i]← u× sk

16: RhseU [i]← u× sk

17: else
18: RhseL[i]← l × sk

19: RhseU [i]← u× sk

20: end if
21: end for
22: end function

65

Algorithm 10 Lift the Basic/Nonbasic Columns to ELP (A, b, c,Pk)

1: function liftBasis(LP (A, b, c), Pk−1 = (Vk−1, Ck−1), Pk = (Vk, Ck), Ba)
2: for i← 0, nk

col + nk
row − 1 do

3: Be[i]← 4
4: end for
5: for i← 0, nk

col − 1 do
6: P k

i ← P k
set[i]

7: r ← R(P k
i)

8: j ← P k−1
part [r]

9: b← Ba[j]
10: Be[i]← b
11: end for
12: for i← 0, nk

row − 1 do
13: P k

i ← P k
set[i+ nk

col]
14: r2 ← R(P k

i)
15: P k−1

i ← P k−1
set [r]

16: r1 ← R(P k−1
i)

17: j ← P k−1
part [r1]

18: b← Ba[j]
19: if b ̸= 1 and r1 = r2 then
20: Be[i+ nk

col]← b ;
21: end if
22: end for
23: end function

66

Next, given a partition Pk, the linking r variables and their corresponding rows must be

constructed. This process is detailed in Algorithm 11. For each new set P k
j ∈ Vk, a linking

pair xR(Pk
j), xR(Pk−1

i) such that P k
j ⊂ P k−1

i is passed to the sub-function addLinks that adds

the linking variables and rows to ELP (A, b, c,Pk). The details of addlinks are left out of

this paper as it is comprised of resizing LP data arrays, moving data within these arrays,

and inserting new data into these arrays.

Orbital Crossover Pivoting (OC):

Finally, Algorithm 12 revises typical entering column selection procedure within HiGHS

for the primal simplex algorithm so that only the linking r variables are selected as entering

columns. As the linking variables are selected to enter the basis, their lower and upper

bounds are set to −∞ and ∞, respectively. Once the entering column is identified, the

primal simplex method continues by choosing the row for the leaving column, updating/re-

computing primal LP values, and (if necessary) re-factoring the LU factorization of the

inverse basis matrix B−1.

The functions primalChooseRow, primalUpdate, and primalRebuild are internal

functions of HiGHS and choose the leaving row, update the primal problem, and rebuild

the LU factorization of B−1, respectively. Further, the value of update is determined within

HiGHS primal and dual simplex code that require a LU re-factorization.

Algorithm 11 Construct Linking Variables and Constraints for ELP (A, b, c,Pk)

function createLinks(LP (A, b, c), Pk−1 = (Vk−1, Ck−1), Pk = (Vk, Ck), Ba)
for i← nk−1

col , n
k
col do

P k
i ← P k

set[i]
r ← R(P k

i)
j ← P k−1

part [r]
if Ba[j] = 1 then

addLinks(j, i)
end if

end for
end function

67

Algorithm 12 Primal Simplex Iteration with Revised Pivoting Rules

function pivotOnLinks(ELP (A, b,Pk), V k−1, V k)
nk
links ← |V k| − |V k−1|

for i← 0, nk
links do

cin ← rklinks[i]
U e[cin]←∞
Le[cin]← −∞
primalChooseRow()
primalUpdate()
if update > 0 then

primalRebuild()
end if

end for
end function

68

Vita

Ethan Jedidiah Deakins was born on October 6, 1995, to Tim and Melissa Deakins. He

attended Heritage High School in Maryville, Tennessee. Upon graduation, he enrolled at the

University of Tennessee, Knoxville and in the spring of 2014 he completed a undergraduate

degree in Industrial Engineering.

In the Summer of 2018, Ethan enrolled at the University of Tennessee, Knoxville, to

pursue his PhD in Industrial Engineering under the guidance of James Ostrowski. He was

supported in part by the university’s chancellor’s fellowship his first four years. Ethan

completed his PhD in Industrial Engineering in March 2023.

69

	Exploiting Symmetry in Linear and Integer Linear Programming
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	Nomenclature
	1 Orbital Crossover
	1.1 Nomenclature
	1.1.1 Symmetries
	1.1.2 Partitions
	1.1.3 Linear Programs

	1.2 Introduction
	1.3 Background: Symmetry and EPs
	1.3.1 Partitions and Restrictions
	1.3.2 Symmetries and Fractional Symmetries
	1.3.3 Orbits and Generalizations
	1.3.4 Stabilizers and Generalizations

	1.4 Orbital Crossover
	1.4.1 Creating ALP(A,b,c,P)
	1.4.2 Lifting Solutions from ALP(A,b,c,P) to ELP(A,b,c,P)
	1.4.3 Arriving at an optimal BFS to LP(A,b,c)
	1.4.4 Reducing the number of r variables

	1.5 Iterative Lifting
	1.6 Benchmarks
	1.6.1 Implementation
	1.6.2 Test Sets, Methods, and setup
	1.6.3 Results

	1.7 Discussion

	2 Orbital Cut Generation
	2.1 Nomenclature
	2.1.1 Symmetries
	2.1.2 Partitions
	2.1.3 Linear and Integer Linear Programs

	2.2 Introduction
	2.3 Symmetry in ILP(A,b,c)
	2.3.1 Symmetries
	2.3.2 Orbits and Orbital Partitions
	2.3.3 Stabilizers

	2.4 Orbital Cut Generation
	2.4.1 Generating Symmetric Valid cuts for ILP(A,b,c)

	2.5 Aggregation
	2.5.1 Reducing the Dimension of ILP(A,b,c)
	2.5.2 Lifting a Valid cut
	2.5.3 Iterative Lifting

	2.6 Implementation
	2.6.1 Generating Symmetric Cutting Planes
	2.6.2 Exploiting Stabilizer Subgroups

	2.7 Benchmarks
	2.7.1 Test Sets, Methods, and setup
	2.7.2 Results

	2.8 Discussion

	Appendices
	A Orbital Crossover Implementation
	A.1 Nomenclature
	A.1.1 Input Data
	A.1.2 Output Data

	A.2 Implementation Details

	Vita

