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ABSTRACT 

Visual working memory (VWM) guides the motor system by temporarily keeping relevant 

information in mind. As an interface between perception and action, VWM plays a critical role 

in supporting goal-directed behavior. Research on the relationship between VWM and action has 

primarily focused on the effect of VWM on motor output. Traditional approaches index outcome 

responses, such as accuracy, but this practice provides limited information on underlying VWM 

processes. Conversely, the influence of action on VWM processes has received less attention and 

its neural correlates are not well understood. In this thesis, I examined VWM-action links using 

functional near-infrared spectroscopy (fNIRS) and mouse-tracking to record real-time 

trajectories of participants' motor responses. Experiment 1 aimed to understand the relationship 

between movement dynamics, VWM performance, and their associated neural activity in a 

standard change detection task. Experiments 2 and 3 focused on the effect of action on VWM 

encoding using change detection tasks that manipulated task-relevance of the action (Experiment 

2) and action-relevance of the items held in VWM (Experiments 2 & 3). The results showed that 

action enhanced VWM encoding for action-relevant features but impaired memory for action-

irrelevant features. Moreover, the frontoparietal VWM network was differentially associated 

with action-relevant and action-irrelevant memory performance. Together, these findings suggest 

a trade-off between action and VWM encoding, where the representations of action-relevant 

features are prioritized but action-irrelevant features are suppressed. These results support and 

expand on the motor-induced encoding effect, demonstrating how action enhances VWM 

encoding for features that are action-relevant. 
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Chapter 1: Introduction 

Goal-directed behavior is demonstrated by the ability to orient and interact accordingly 

with the surrounding environment. Integral to this ability is the interface between perception and 

action: utilizing relevant environmental input to create a motor response that produces a desired 

outcome. This process involves engaging the motor system to stimuli in the environment that 

satisfy internal goals or task demands. Visual working memory (VWM; Baddeley, 1992, 2003) is 

a cognitive function that plays a critical role in this process by holding goal-relevant information 

in mind, enabling flexible interaction with the environment. Even the simplest of everyday 

activities requires accessing the privileged information temporarily held in VWM. However, 

only a very limited amount of information can be held in VWM at any given time, with average 

capacity limits typically around 3-4 simple pieces of information (e.g., remembering different 

colors; Cowan, 2001). Despite this low number, there is considerable individual variability in 

capacity estimates, which are highly predictive of several positive cognitive constructs such as 

cognitive control (Unsworth et al., 2012; Gulbinaite, 2014; Cowan et al., 2005), problem-solving 

(Alloway et al., 2009; Tillman et al., 2008) and fluid intelligence (Fakuda et al., 2010; Unsworth 

et al., 2015). Therefore, a fundamental research goal in the cognitive sciences is to better 

understand the behavioral and neural interactions that underlie VWM, its relation to other 

cognitive processes, and ultimately how it supports goal-directed behavior.  

A standard approach to assessing VWM is using the change detection task (Luck & 

Vogel, 1997). In the canonical change detection task, an array of items is briefly presented to be 

encoded into VWM, followed by a short maintenance interval, and then a test array that either 

contains the same items that were previously shown or one of the items changes (e.g., a color 

change). Researchers have used the change detection task to extensively probe VWM processes. 
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For example, this task can reliably differentiate between individuals with high and low VWM 

capacity (Dai et al., 2019). Moreover, individual VWM performance measured with the change 

detection task has been shown to remain highly stable over time and across multiple 

measurements (Xu et al., 2018). This makes the change detection task well-suited for 

investigating the relationship between VWM and action.  

Several studies have examined VWM and how it can be enhanced. Luria et al. (2016) 

suggested that attentional control may contribute to individual differences in VWM capacity. 

According to this perspective, attentional control limits distractor information from entering 

VWM. In other words, individuals with superior attentional control may have more top-down 

resources available for representing goal-relevant information in VWM (also see Melcher & 

Piazza, 2011). Attentional control training has been shown to significantly enhance VWM 

performance in individuals with low VWM capacity (Li et al., 2017), providing support for the 

importance of attentional processes in VWM performance. These results provide evidence that 

individual differences in attentional processes are important contributors to VWM performance. 

Another construct that works closely with attention processes is action, yet the role of action in 

VWM performance is less studied. In the following sections, I review evidence for bidirectional 

VWM-action links and point to open questions in this line of work. The first goal of this thesis is 

to investigate the relationship between motor dynamics and VWM performance. The second goal 

will be to determine whether action during VWM encoding modulates VWM performance.  

Action and cognition: Bidirectional links 

Traditionally, the motor system was viewed as an output of cognition and treated as 

distinct from perceptual and cognitive processes. Under this framework, information flowed in 

cognition in a single direction across different stages. These stages typically involve (1) 
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perceptual processing of a stimulus, (2) converting perceptual information to a symbolic code 

that permits the abstract representation of the stimulus, (3) decision-making processes to 

determine the appropriate behavioral response, and (4) motor output to execute the chosen 

response (Sternberg 1969). However, an abundance of research has since shown that the motor 

system influences cognition and that the two systems interact with each other in ways that go 

beyond a simple input and output relationship. 

 There is extensive research from various fields that supports the idea of bidirectional 

links between action and cognition. One such field is vision sciences, where studies have found a 

connection between visual attention and action preparation and execution. These studies have 

demonstrated that a saccade or reaching behavior to a spatial location improves visual attention 

to that location (Hoffman & Subramaniam, 1995; Baldauf et al., 2006), and enhances the 

discrimination of targets prepared movement location (Schneider & Deubel, 1995). Moreover, 

features of stimuli that are action-relevant have been shown to receive heightened perceptual 

processing (Bosco et al., 2017). In the following sections, I review the current body of literature 

on the bidirectional relationship between VWM and action (as depicted in Figure 1). The review 

begins by discussing research demonstrating how VWM guides action and how the contents of 

VWM can impact motor behavior. Next, I discuss research on the impact of action on VWM and 

long-term memory. Finally, I discuss neuroimaging studies on the VWM network and propose 

potential neural networks involved in the effect of action on VWM encoding.  

VWM guides the motor system 

VWM and the motor system closely coordinate to generate purposeful behavior. VWM 

actively preserves previously seen visual information for future interaction with the environment, 

making it a mediator between perception and action processes. Guiding future actions is a central  
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Figure 1. Bidirectional Links between Action and Visual Working Memory 
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concern of VWM (Allport, 1987; Ballard et al., 1997; Prinz et al., 2013), as it stores information 

that is no longer visible to guide the motor system toward potentially relevant stimuli. VWM is 

particularly important for guiding precise motor movements. For example, the size and shape of 

an item stored in VWM can determine whether a large gripping action or a fine gripping 

response is necessary (e.g., Grèzes et al., 2003). Below, I discuss research exploring the 

automatic recruitment of VWM processes during action and how VWM can affect the motor 

system.  

VWM is recruited by action 

One type of action where VWM may be fundamental is eye movements. Eye movements 

occur rapidly, constantly scanning the environment for relevant visual input. To do this, eye 

movements rely on past visual information to update retinal inputs across saccades to view the 

external environment continuously (i.e., transsaccadic updating). The maintenance of 

information across a saccade has been proposed to rely on VWM processes (e.g., Aagten-

Murphy & Bays, 2019; Tas et al., 2016). That is, eye movements may recruit VWM processes to 

perceive the world in a stable state. VWM processes have also been implicated in guiding other 

forms of movements too, such as reaching behavior. It is well established that action preparation 

enhances the visual perception of action-relevant features of an item, such as its size and 

orientation (e.g., Bosco et al., 2017; Gutteling et al., 2011). In line with these findings, 

neuroimaging research has evaluated whether early visual cortex is recruited by motor 

preparation and execution to explain enhanced visual perception of action-relevant features. 

Gutteling et al. (2015) showed with fMRI that different movement behaviors (e.g., grasp or 

pointing) could be decoded with high accuracy from signals in early visual cortex. Furthermore, 

signals in V1 could predict the type of response for both movement execution and movement 
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preparation. These results have also been found in situations where visual input is not present 

(i.e., complete darkness) at the time of the action (Monaco et al., 2018; Singhal et al., 2013), 

further suggesting that the contents in VWM may be recruiting early visual areas during 

movement preparation.  

VWM influences action 

Information held in VWM has also been shown to influence prospective actions. A 

common method for examining this relationship is using a visual search task and manipulating 

the contents of VWM. One way this is studied is by using a dual-task paradigm where a visual 

search task is performed during the maintenance interval of a VWM task. Visual search has been 

shown to be biased if one of the items (a distractor or the target) in the search array matches an 

item held in VWM (e.g., the shape of item held in VWM; Han & Kim, 2009; Hollingsworth & 

Luck, 2009; Olivers, 2009; Olivers et al., 2006; Soto et al., 2006), an effect termed memory-

driven capture. Items held in VWM in an active state, as opposed to an accessory or passive 

state, are particularly prone to bias attention and responses in visual search tasks (Olivers et al., 

2011).  

 The contents of VWM have also been shown to impact eye movement trajectories. For 

example, Theeuwes et al. (2005) asked participants to remember the spatial location of a dot in a 

memory condition. Participants then performed an eye movement to a target located either to the 

left or right where the memory item had been. Compared to a no-memory condition, it was found 

that saccades curved away from the spatial location of the memory item. The authors proposed 

that deviation from the memory item reflected a strong overlap of the VWM and eye movement 

systems, such that the memory item was inhibited during the eye movement (also see Boon et al., 

2014; Belopolsky & Theeuwes, 2011). Further, eye movements have been shown to curve away 
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from the location if the item was still visually present (e.g., Doyle & Walker, 2001). Together, 

these results demonstrate that visual perception and the contents of VWM can modulate motor 

dynamics.  

The motor system influences VWM 

It has also been demonstrated that the motor system influences VWM processes, 

consistent with the action-oriented approach to studying cognition (Thelen & Smith, 1994; Chiel 

& Beer, 1997). Research in this area has primarily focused on how actions during the 

maintenance interval can modulate the contents of VWM. One common approach to examining 

actions' influence on VWM is with a dual-task that cues participants to execute a hand movement 

to a spatial location during the maintenance interval of a memory task. The item location of the 

movement may then be cued during the memory test phase (action-relevant), or another non-

movement location may be cued (action-irrelevant). The typical finding is that items presented in 

action-relevant locations result in better memory than items at action-irrelevant locations (Heuer 

et al., 2017; Ohl & Rolfs, 2018, 2020; Hanning et al., 2016). This effect, termed selection-for-

action, has been proposed to occur by an attentional prioritization of items at action-relevant 

locations; however, it remains unclear whether selection-for-action enhances action-relevant 

items, inhibits action-irrelevant items, or if the effect is a combination of both (Heuer et al., 

2020). While there are still open questions in this line of research, these results provide strong 

evidence that motor processes can modulate the contents of VWM.  

Similarly, Tas et al. (2016) showed that the overt execution of a saccade to an object 

during the retention interval automatically encodes the object into VWM. In a series of 

experiments, participants performed change-detection tasks. During the retention interval, 

participants either overtly shifted attention via a saccade to a secondary, irrelevant object or 
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covertly shifted attention to the presence of the object while maintaining central fixation. 

Performance on the change-detection task was impaired when saccade execution was required 

during the maintenance interval compared to when no saccade was required. These results 

suggest that saccade execution automatically led to VWM encoding of the secondary object, thus 

increasing VWM load and impairing memory for the objects relevant to the change-detection 

task. Importantly, these results suggest that actions may automatically recruit VWM processes 

and impact the representation of items held in VWM.  

Recent research has also shown an effect of motor processes on long-term memory 

encoding. Yebra et al. (2019) was the first to show that executing simple motor responses (e.g., a 

button-press) enhances long-term memory encoding, an effect they termed action-induced 

memory enhancement. In a series of go/no-go tasks, participants were instructed to execute 

responses to one type of stimulus (go trials) and inhibit responses to another stimulus type (no-go 

trials). Across their experiments, the authors found better memory for go trials than no-go trials. 

Functional magnetic resonance imaging (fMRI) results showed engagement of the locus 

coeruleus on go trials, known to release noradrenaline, an important neural resource for 

improving memory encoding (Strange & Dolan, 2004). Based on these results, the authors 

concluded that executing a motor response led to enhanced memory encoding. In addition to 

action execution, the degree of motor engagement, including motor preparation, has been shown 

to enhance long-term memory encoding (Kinder & Buss, 2021). Using a modified go/no-go task, 

we found that go stimuli had better memory than no-go stimuli (replicating the results of Yebra 

et a., 2019). Importantly, however, when compared to a motor-neural condition we found that 

both go (motor execution), and no-go trials (motor preparation) had better memory scores. We 

interpreted these results to reflect a graded effect of motor engagement on memory encoding, an 
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effect we termed motor-induced encoding. Together, these studies provide evidence that motor 

processes can affect cognitive processes such as attention and long-term memory. 

As reviewed here, several lines of work have examined the bidirectional link between 

action and memory. However, one aspect that has not been examined is whether action 

modulates VWM encoding. Although research has shown that action modulates the contents of 

VWM during the maintenance interval (Heuer et al., 2017; Heuer et al., 2020), it is still unclear 

whether action modulates VWM representations as they are being encoded. This open question 

builds upon our previous work (Kinder & Buss, 2021), which revealed that motor engagement 

enhances memory encoding for items in long-term memory. In this thesis, I investigate whether 

the motor-induced encoding effect can be extended to VWM encoding.   

Motor-induced encoding in VWM: Neural mechanisms 

Neuroimaging research supports a close link between memory and motor systems, as 

these systems significantly overlap (Jonikaitis & Moore, 2019; Ikkai & Curtis, 2011). For 

example, single-cell recordings of the posterior parietal cortex (PPC) in rhesus monkeys suggest 

activity of a population of neurons tuned to remembering a location persists during the 

maintenance interval and into movement preparation (Anderson & Buneo, 2002; Anderson & 

Cui, 2009; Quiroga et al., 2006). Specifically, these studies have provided evidence that the 

intraparietal sulcus (IPS) in PPC is involved in motor engagement and VWM. Additionally, it 

has been proposed that action can enhance long-term memory encoding via the locus coeruleus 

(Yebra et al., 2019), which is a part of the noradrenergic system that promotes successful 

memory encoding by releasing noradrenaline (Strange & Dolan, 2004). 

Another possibility is that motor engagement could improve VWM encoding through an 

attentional network that includes top-down signals from frontoparietal regions that influence 
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VWM representations in early visual areas (Pasternak & Greenlee, 2005). The dorsal attention 

network (DAN) includes multiple frontoparietal regions involved in memory and action, 

including the IPS, superior parietal lobule (SPL), and pre-SMA. It is also involved in modulating 

the top-down deployment of attention (Vossel et al., 2014) and has been associated with stimuli 

eliciting high motor engagement and activation in the pre-SMA (Koldny et al., 2017). Because 

the pre-SMA scales in activation during motor preparation until motor execution, it is a potential 

candidate for sending top-down projections to visual areas that enhance VWM memory as motor 

engagement increases. However, other frontal regions such as the middle frontal gyrus (MFG) 

and superior frontal gyrus (SFG) also play a role in VWM (Riley & Constantinidis, 2016). The 

neural networks proposed here underlying the motor-induced encoding effect are speculative, 

and it is possible that motor engagement could enhance VWM encoding via a distributed 

network. In this thesis, the neural correlates of the motor-induced encoding effect will be 

explored by recording cortical activation in frontoparietal regions using functional near-infrared 

spectroscopy (fNIRS). 

Present study 

This review highlights that the VWM and motor system are closely linked and interact 

bidirectionally. Although research has demonstrated that action affects the contents of VWM 

during maintenance, it remains unclear how motor processes influence VWM during encoding. 

This thesis aims to address this knowledge gap by using a combination of continuous behavioral 

and neural measurements. In three experiments, I concurrently measured movement trajectories 

via mouse-tracking and cortical activation via fNIRS in change detection tasks. These 

experiments included a standard version of the change detection task (Experiment 1) and 

investigated the effects of different motor responses on VWM encoding (Experiments 2 & 3) 
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 The traditional approach to measuring motor responses and performance in change 

detection tasks has relied on outcome responses, typically accuracy. Although informative for 

calculating the number of items successfully held in VWM (Pashler, 1988), this practice 

provides limited information on the behavioral dynamics underlying VWM performance.  

In recent decades, accumulating evidence suggests that movements continuously interface with 

cognitive processes in real-time, suggesting that using a movement tracking method could 

provide a more direct observation of cognition. Neurophysiological research provides further 

support for the continuous updating of motor output during cognitive processing. For instance, 

Cisek and Kalaska (2005) demonstrated that activity in the premotor cortex dynamically unfolds 

throughout a decision. In that study, monkeys were tasked with reaching toward one of two 

response options. Single-cell recordings over the premotor cortex initially showed that 

directionally tuned neurons simultaneously activated for both response options as the reaching 

movement began. Importantly, as the reaching behavior unfolded, activation for the selected 

location gradually increased while, simultaneously, activation for the unselected response 

location was gradually inhibited. Furthermore, it was found that activation in the premotor cortex 

could reliably predict the eventual reaching response location and if there would be a reaching 

error. These findings suggest that a real-time movement tracking method could provide a more 

comprehensive understanding of the relationship between motor processes and VWM 

performance. 

 Behavioral evidence in humans also supports the dynamic activation of multiple response 

options. Spivey et al. (2005) demonstrated this in language recognition by asking participants to 

move and select one of two words, such as candy and candle, after hearing a phrase (e.g., "select 

the candy"). When the incorrect response (e.g., candle) overlapped with some of the phonemes 
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for the correct response (e.g., candy), movements tended to be initially attracted either toward the 

incorrect response or between the response options before gradually transitioning back toward 

the correct response. This demonstrated that movement trajectories continually evolve during 

language recognition, indicating partial activation of each response option at different points of 

the movement. Additionally, movement trajectories have been shown to index participants' long-

term memory strength (Papesh & Goldinger, 2013). In this study, participants made old/new 

responses to stimuli in a memory task and then rated their confidence along a 1-7 rating scale. As 

measured with mouse-tracking, participants' movement trajectories predicted their confidence 

estimates. Specifically, more linear, and faster movement trajectories were associated with 

stronger memories, whereas more curvilinear and slower movement trajectories were associated 

with weaker memories. Therefore, in the proposed experiments, mouse-tracking will be used in a 

change detection task to index VWM strength. 

 In the first experiment, I recorded real-time movement trajectories and cortical activation 

in a standard change detection task. Participants moved a mouse cursor to one of two response 

locations that indicate either a "same" or "different" response. The task utilized four VWM set 

sizes, ranging from set sizes 2-5. First, I will investigate whether VWM capacity estimates 

replicate the findings commonly seen in button-press versions of the change detection task. I 

predicted that higher set sizes would be linked to more activation in PPC (Todd & Marois, 2004, 

2005), and movement trajectories would be more curvilinear and slower to move toward the 

correct response. Further, I predicted that trials with less curvature would be associated with 

greater activation in the VWM frontoparietal network. 

 In the subsequent experiments I recorded real-time movement trajectories (Experiments 2 

& 3) and cortical activation (Experiment 3) in modified change detection tasks. In alternating 
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blocks, participants either performed either a "no-movement" or a "move" change detection task. 

In the move version of the change detection task, participants were tasked to engage in a simple 

motor movement (i.e., button-presses) during memory encoding. The no move change detection 

task was identical to the move change detection task, except that there was no motor engagement 

during memory encoding. A set size of 4 was used to examine VWM performance near the 

average VWM capacity estimate (~3-4 items). First, I predicted VWM performance would 

improve when participants executed motor responses during memory encoding compared to no 

movement, consistent with the motor-induced encoding effect. I also hypothesized that activation 

in the frontoparietal VWM network during encoding would predict subsequent VWM 

performance. That is, greater activation in these regions should be associated with movement 

trajectories that are less curvilinear, indicating VWM performance. Finally, I hypothesized that 

individual motor dynamics, such as trajectories' curvature, would predict VWM outcome 

performance measures, such as accuracy.  
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Chapter 2: Experiment 1 

The main objective of Experiment 1 was to examine VWM performance and its neural 

correlates using a mouse-tracking adaptation of the standard change detection task. Specifically, 

this experiment aimed to determine whether the dynamics of participants' movements (i.e., 

response curvature) would vary based on VWM demands (i.e., higher set sizes) and activity in 

VWM regions of interest. The task (illustrated in Figure 2) required participants to attend to the 

color of the items in a brief encoding display, followed by a test display where participants 

moved the mouse-cursor to select a response (upper-left or upper-right response location), 

indicating whether the items had changed or remained the same. The subsequent experiments 

followed a similar experimental structure, but with motor manipulations during the encoding 

display.  

Methodology 

Participants 

Participants included 36 undergraduate students (30 female) ranging from 18-28 years of 

age from the University of Tennessee, Knoxville. One participant was dropped due to a color 

vision deficiency being detected with the Ishihara Test for Color Blindness (Clark, 1924), 

resulting in a final sample size of 35 participants. The final sample of participants all had normal 

or corrected-to-normal vision and were right-handed. The required sample size was calculated 

with a power analysis based on the results of a separate pilot study (N = 7) of the same design. 

The power analysis was run with the MorePower 6.0 program (Campbell & Thompson, 2012). 

For a 2 (change: same, different) x 4 (set size: SS2, SS3, SS4, SS5) within-subjects design, we 

calculated the required sample size to achieve a power of .9. I calculated the most conservative 

sample size estimate between the effects of change (ηp² = .765), set size (ηp² = .152), and change  
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Figure 2. Experiment 1 Trial Sequence. Participants initiated each trial by clicking on the “Start” 

button. An encoding array of colored circles then appears, followed by a blank maintenance 

interval, and then a test array. The colored circles in the test array can be either the same color as 

those in the encoding array (same trial) or one of the colors changes (different trial). In this 

example, the set size is 2 and there is a color change. In this instance, the “same” response is 

associated with the top-right response location and the “different” response is associated with the 

top-left response location during the test array.   
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x set size interaction (ηp² = .286) on curvature scores. The power analysis showed that a 

minimum of 28 participants were needed to achieve .9 power to detect a set size curvature effect 

of ηp² = .152. I opted to oversample, aiming to recruit 36 participants in anticipation of potential 

exclusions. The same target sample size of 36 participants was used for all subsequent 

experiments. Participants provided informed consent, completed a demographics survey upon 

arrival, and were compensated with course credit upon completion of the study. The University 

of Tennessee Institutional Review Board approved the proposed study's protocols. 

Apparatus and stimuli 

The change detection task was displayed on a 20.5 x 11.5-inch LCD computer monitor 

with a resolution of 1920 x 1080 pixels and a refresh rate of 60Hz. Participants were seated 

approximately 60 cm from the computer monitor. Stimuli were presented via an online interface 

of the MouseTracker (Freeman & Ambady, 2010) and MATLAB R2022a (Natick, 

Massachusetts: The MathWorks Inc.) software. The x and y coordinates of participants' mouse 

cursor movements were recorded on the screen at a sampling rate of 60Hz. Each trial began 

when participants clicked a "Start" button at the center bottom of the screen, subtending ~4.9 x 

1.7 degrees of visual angle (dva). Next, a fixation cross appeared at the center of the screen, 

subtending ~.45 x .45 dva. The response locations were white rectangles (RGB: 255, 255, 255) 

located at the upper-left and upper-right corners of the screen. The response locations subtended 

~7.2 x 3.5 dva. Stimuli were circles that varied in HSV color space. Six colors were generated on 

each trial such that at least 60º separated each color in color space. Colored circles were 

randomly selected from this pool to be displayed on the stimulus array on a uniform gray 

background (RGB: 148, 148, 148). These items, each subtending ~1.7 x 1.7 dva, were randomly 

placed along positions of an imaginary circle (radius of ~3.23 dva), also separated by at least 60º.  
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Design and procedure 

The basic structure of the task is illustrated in Figure 2. Each trial was initiated when 

participants clicked on the "Start" button. A fixation cross was then presented for 500 ms at the 

center of the screen. After fixation offset, the encoding display was presented for 800 ms, 

followed by a maintenance interval of 2000 ms, and then the test display was presented until a 

response was recorded. Intertrial intervals varied trial by trial based on the amount of time 

participants took to click the "Start" button. However, a minimum intertrial interval of 500 ms 

was implemented. Participants were instructed to attend to and remember the items that appeared 

during the encoding display. There were set sizes of either 2, 3, 4, or 5 items presented during the 

encoding display. During the test display, the colors of the items in the array reappeared and 

either stayed the same (same trial) or one of the colors changed (different trial). Same and 

different responses were mapped to the upper-left and upper-right response locations (equally 

counterbalanced across participants). The mouse cursor was locked at the Start location until the 

onset of the test display. Participants were instructed to initiate moving the mouse cursor as 

quickly as possible once the test display appeared. This standard mouse-tracking instruction 

promotes movement dynamics that coincide with ongoing cognitive processes (Freeman & 

Ambady, 2009) as opposed to movements occurring after a decision is already made. 

Participants had 500 ms to initiate movement once the test display appeared, or the message 

"Please start moving earlier even if you are not fully certain of a response yet!" was presented. 

Trials with this message were discarded from further analyses.  

 Set size (2, 3, 4, & 5) and trial type (same, different) were randomly mixed in 2 blocks of 

140 trials per block, with 280 total trials (Table 1). There were an equal number of trials per 

condition (35 trials each). Participants received a short break between blocks. There were eight  
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Table 1. Summary of participants and experimental context for each experiment 

Experiment Encoding 

Time 
Maintenance 

Time 
Set 

Size 
Encoding 

Movement  
Trial 

# 
Context N 

1 800ms 2000ms 2,3,4, 

& 5 
No 280 fNIRS 35 

2 800ms 2000ms 4 Yes 240 Behavioral 33 

3 800ms 2000ms 4 Yes 200 fNIRS 32 

  



 

 

  

 

19 

practice trials, with one practice trial per condition. Participants were shown example sequences 

of trials to become familiarized with the task before the practice trials. Overall, the task lasted 

approximately 40 minutes.  

Mouse-tracking methods 

Data preprocessing 

Movement trajectories along the x- and y-axes were rescaled into a standard coordinate 

space (bottom left: [-1,0]; top right: [1,1.5]). Trajectories to the left response location were 

remapped to the right location, resulting in the overlay of all trajectories to the same response 

location. Spatial (i.e., the proximity of the mouse cursor to each response location) mouse-

tracking data were extracted. For spatial data preprocessing, trajectories were normalized into 

101-time steps to compare trials of varying response times. After spatial normalization, the x and 

y coordinates at each of the 101-time steps were averaged for each participant (Freeman & 

Ambady, 2010).  

 Trials were excluded from the following analyses based on the criteria of my previous 

work (Kinder et al., 2022): Incorrect trials (8.82% of trials), slow RTs (two standard deviations 

above the mean; 3.65% of trials), slow movement initiations (two standard deviations above the 

mean; 2.10% of trials), and abnormal trajectories (two standard deviations above and below the 

mean AUC; 7.58% of trials). Overall, 11.79% of trials were excluded from the following 

analyses, not including the accuracy analyses.  

fNIRS methods 

Data acquisition and probe design 

fNIRS data were collected with a 29-channel (3 cm separation; 8 sources and 16 

detectors) TechEn CW7 system (TechEn Inc., Milford, Massachusetts) at a sampling rate of 25 
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Hz. Near-infrared wavelengths of 830nm and 690nm were used to record changes in HbO and 

HbR concentration during the change detection tasks in Experiments 1 and 3 (Table 2). The 

source-detector configuration (Figure 3) contained 29 channels separated by 30mm and 2 short 

channels separated by 10mm. Short source-detector channels were used to regress out 

extracerebral artifacts (Goodwin, 2014). Channels were distributed over the right frontal cortex, 

motor cortex, and posterior parietal cortex to target regions of interest related to memory, action, 

and attention (Table 2). Participants wore a 60cm circumference fNIRS custom cap fitted with 

the source-detector channels. After cap placement, a Polhemus digitizing system was used to 

obtain the spatial coordinates of the sources and detectors and to map their location in reference 

to each participant’s anatomical landmarks (nasion, left and right preauricular, inion, and vertex 

(CZ)). Before beginning data collection, these points were mapped onto a brain atlas using the 

AtlasViewer toolbox (Aasted et al., 2015) and visually inspected for probe placement accuracy. 

fNIRS signal quality was also visually inspected with the TechEn CW7 system before data 

collection began to enhance signal quality.  

Preprocessing for channel space 

fNIRS data were pre-processed in MATLAB R2022a (Natick, Massachusetts: The 

MathWorks Inc.) using the Homer2 software (Huppert, 2009). The preprocessing options used in 

Defenderfer et al. (2022) were used in the following channel space processing steps, which are 

described below. fNIRS data were first converted to units of optical density. The data were then 

processed using a combined approach of spline interpolation and Savitzky-Golay filtering 

techniques (Savitzky & Golay, 1964), with a frame size of 10s and a p-value of 0.99, to correct 

for significant spikes and baseline shifts. To minimize motion artifacts, we employed the 

hmrMotionCorrectWavelet method (Molavi & Dumont, 2012) with an IQR threshold of 0.72.  
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Table 2. fNIRS Recorded Regions of Interest  

Anatomical Region Hemisphere MNI Scalp Coordinates 

(x, y, z) 
Nearest Brodmann’s 

Area 

Precentral gyrus R 29, -22, 95 6 

Superior frontal 

gyrus 
R 26, 40, 74 8 

Middle frontal 

gyrus 
R 62, 39, 35 9 

Inferior frontal 

gyrus 
R 72, 32, 7 45 

Superior parietal 

lobule 
R 30, -52, 93 7 

Angular gyrus R 47, -78, 61 39 
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Figure 3. fNIRS probe configuration and sensitivity profile. a. fNIRS source and detector 

configuration to record from the regions of interest. Eight light detectors and 16 light sources 

were used to generate 29 source-detector channels. Channels connected to detectors 15 and 16 

were short source-detector channels. b. The sensitivity profiles obtained through 100 million 

photon simulations demonstrate the varying levels of sensitivity of the fNIRS source-detector 

probe configuration to cortical activation. The gradient scale depicts the regions where the probe 

was most sensitive (shown in red) and least sensitive (shown in blue).  
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Finally, a bandpass filter to the fNIRS data was applied to further remove motion-related 

noise, retaining frequencies between 0.01 Hz and 0.5 Hz. The modified Beer-Lambert Law 

(Delpy, 1988) was used to convert optical density units to HbO and HbR concentrations. A 

nuisance regressor was applied to each channel depending on which short source-detector 

channel was closest. The onset of each stimulus was convolved with a single gamma function, 

representing the canonical hemodynamic response. On each trial, a beta coefficient was 

calculated for HbO and HbR to reflect the amplitude of each signal every trial. 

Preprocessing for image reconstruction 

Next, channel-based time series data were converted to volumetric time series data 

(Forbes et al., 2021). The position of channels across participants invariably differs based on 

individual anatomy. Therefore, this approach provides better localization of activation by 

reconstructing individual brain atlases into a common brain, akin to the preprocessing steps in 

fMRI research.  

NeuroDOT scripts in MATLAB were used to carry out the following steps. First, the data 

was converted to hemoglobin concentration values with a differential path-length factor of 6 for 

both wavelengths. The processed channel data was used to construct volumetric timeseries data 

based on the procedure outlined in Forbes et al. (2021). Colin's atlas was used that aligns each 

participant digitized anatomical landmarks into a standardized space. A light model was then 

created based on the digitized spatial coordinates. To create a sensitivity profile for each source-

detector pair, photon migration simulations were performed using HOMER2's AtlasViewerGUI 

that simulates the photon migration path of near-infrared light emitting from each channel. 

Monte-Carlo simulations of 10,000,000 photons were simulated for each channel (Fang & Boas, 

2009). Sensitivity profiles for each channel will be integrated to create a mask for each 
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participant that reflects the areas of the brain from which the fNIRS channels were recording. A 

mask at the group level was then created that included voxels in which at least 60% of 

participants had overlapping data.  

Next, image reconstruction in NeuroDOT was used to combine the simulated light 

models with the channel time series data to create volumetric time-series data for each 

participant. Channel data were down-sampled from 25 Hz to 10 Hz to reduce computational 

demands. The Tikhonov regularization method was used to generate voxel time series data for 

HbO and HbR concentrations (Eggebrecht et al., 2014; Wheelock et al., 2019). Therefore, a 

simulated light model was combined with pre-processed channel data to produce volumetric 

timeseries data. Due to the complexity of accurately estimating near-infrared light diffusion in 

biological tissue, the Tikhonov regularization method (Wheelock et al., 2019) was used to 

generate voxel-wise timeseries data for each chromophore. This method helps to avoid rounding 

errors that could lead to an under-determined light diffusion solution. Once the reconstruction 

was complete, the amplitude of ΔHbO and ΔHbR for each condition per subject was estimated 

using a General Linear Model with a hemodynamic response function derived from diffuse 

optical tomography data (Forbes et al., 2021). The GLM consisted of several regressors to model 

the encoding event of each condition. These events were modelled using a 800 ms box-car 

function (equivalent to the encoding display duration) convolved with a gamma function (created 

using spm_Gpdf; h1 = 4, l1 = 0.0625; h2 = 12, l2 = 0.0625). 

Statistical analyses  

Behavioral analyses 

 The effects of set size (SS2, SS3, SS4, SS5) and trial type (same, different) on traditional 

outcome-based measures and continuous motor dynamics were assessed in the change detection 



 

 

  

 

25 

task. The following dependent variables were reported with a 2x4 repeated-measures ANOVA: 

Accuracy, RT, Pashler’s K (Pashler, 1988; Rouder et al., 2011), area under the curve (AUC), and 

maximum deviation (MD) time (Freeman, 2014). VWM capacity was be assessed with Pashler’s 

K. For each set size, Pashler’s K was calculated to generate an index of VWM capacity. 

Pashler’s K was extracted using Equation (1), in which N is the set size, H is the hit rate, FA is 

the false alarm rate, and K is the VWM capacity estimate.  

𝐾  =  𝑁  ×  (𝐻  −  𝐹𝐴)                                                              (1) 

AUC was examined as a measure of spatial attraction toward the incorrect response on 

each trial. AUC is calculated as the geometric area under each response trajectory and above the 

idealized response trajectory (i.e., the most linear path to the correct response location). AUC 

provides a holistic measure of how much participants deviate from the straightest possible path 

to the correct response location. In the context of the change detection task, higher AUC scores 

would indicate more deviation away from the correct response, or worse memory performance. 

MD time was also examined to better understand at what point in time the trajectory in each 

condition maximally deviates from the correct response. This measure indicates peak deviation 

along the x and y axis (i.e., the euclidean distance). For these analyses, only trajectories that 

maximally deviate toward the distractor response location were considered.  

 As a separate set of analyses, the time course of when participants began to move 

relatively closer to the target on same and different trials was examined. Typically, in change 

detection tasks a same response bias is found (e.g., Wijeakumar et al., 2017), in which accuracy 

is higher for same compared to different trials as set size increases. This result may be due to the 

increasing number of same items which activate the same response, while slowing down 

evidence accumulation for the different response. However, the specific time course of same vs. 
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different trial’s decision making at varying set sizes is unclear. Traditional behavioral methods 

have used RT to evaluate the time of correct response initiation, but this approach provides 

limited insight, as RT scores only reflect the output and measurements can be similar across 

trials due to temporal differences in cognitive processes. For example, mouse-tracking studies 

have shown that velocity and acceleration changes across different points in trials can lead to 

similar RTs (see Kinder et al., 2022). To assess the timing at which target initiation occurs, the 

analysis procedure of Spivey (2005) was followed. First, trajectories x and y coordinates were 

averaged at each of the normalized 101-time steps. Next, the Euclidean distance to the target and 

distractor was calculated at each time point. In Equation (2), the Euclidean distance at a 

particular time is represented by dij, xi and yi denote the horizontal and vertical position at each 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

                                                       (2) 

time point, and xj and yj denote the horizontal and vertical position at either the target or 

distractor response location. For each set size, the divergence point at which same and different 

trials begin to move relatively closer to the target than the distractor was compared. For these 

analyses, an alpha of .006 was used as the threshold for statistical significance to control for 

multiple comparisons (Chen, 2017).    

fNIRS analyses 

 The image reconstructed fNIRS data underwent a 4 (set size: SS2, SS3, SS4, & SS5) x 2 

(change: same, different) x 2 (hemoglobin: HbO, HbR) repeated-measures ANOVA, which 

included correct trials only. The reconstructed fNIRS HbO and HbR maps were used for analysis 

with 3dMVM in AFNI (Chen et al., 2014). The residuals for each voxel from the ANOVA were 

created and then used in AFNI's 3dClustSim to determine the smallest cluster size required to 
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obtain a family-wise error rate of less than .05 and a voxel-wise threshold of less than .05 (Cox et 

al., 2017). Based on this approach, the minimum cluster size required was 21 voxels.  

Behavioral results 

 In the following analyses, impact of set size and trial type (same or different) on 

conventional outcome-based measures (RT and accuracy) and mouse-tracking trajectory 

measures were examined. These analyses employed two-factor repeated measures ANOVAs. To 

address multiple comparisons, all pairwise comparisons were corrected using the Bonferroni-

Holm correction. Finally, the time at which same and different trials diverge toward the target 

response location was examined for each set size to examine the same response bias.  

Accuracy 

 There was a significant effect of trial type on accuracy, F(1,34) = 16.26, p <.001, ηp² = 

.324. Same trials (M = 94%) had higher accuracy than different trials (M = 88.4%), suggesting a 

bias toward the same response. There was also a significant effect of set size on accuracy, 

F(3,102) = 74.26, p <.001, ηp² = .689. As expected, accuracy decreased linearly as set size 

increased, F(1,34) = 121.51, p <.001, ηp² = .781. Pairwise comparisons showed that accuracy 

between SS2 (M = 97.8%), SS3 (M = 94.9%), SS4 (M = 89.9%), and SS5 (M = 83.1%) all 

significantly varied (all p’s < .05). Finally, there was a significant set size x trial type interaction, 

F(3,102) = 35.72, p <.001, ηp² = .512. For set sizes 4 and 5, accuracy was significantly higher on 

same (SS4: M = 92.2%, SS5: M = 92.1%) than different trials (SS4: M = 87.7%, SS5: M = 

74.1%), p’s < .01. However, for set sizes 2 (p = .282) and 3 (p = .332), trial type had no effect on 

accuracy. This accuracy result suggests that the response bias toward same is present at higher 

set sizes (SS4 & SS5), but not present at lower set sizes (SS2 & SS3). These results can be seen 

in Figure 4a.  
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Figure 4. Experiment 1 Outcome-based Results. a. Accuracy plotted as a function of trial type 

and set size. b. Pashler’s K plotted as a function of set size. c. Reaction time plotted as a function 

of trial type and set size. Error bars display SEM. * p < .05. ** p < .01.  
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Pashler’s K 

 There was a significant effect of set size on VWM capacity estimates as measured by 

Pashler’s K, F(3,102) = 105.377, p <.001, ηp² = .756. VWM capacity increased linearly as set 

size increased, F(1,34) = 154.82, p <.001, ηp² = .820. Pairwise comparisons showed that SS2 (M 

= 1.87) had a significantly lower K estimate than SS3 (M = 2.69), SS4 (M = 3.19), and SS5 (M = 

3.3), all p’s < .001. The only pairwise comparison that did not reach statistical significance was 

SS4 versus SS5, p > .90, which is consistent with previous findings that VWM capacity is 

approximately 4 items (Brady et al., 2011; Luck & Vogel, 2013). These results can be seen in 

Figure 4b.  

Reaction time 

 There was a significant effect of trial type on reaction time (RT), F(1,34) =11.69, p = 

.002, ηp² = .256. Same trials (M = 1215.49 ms) had significantly faster RTs than different trials 

(M = 1257.47 ms). There was also a significant effect of set size on RT, F(3,102) = 36.16, p 

<.001, ηp² = .515. RT slowed linearly as set size increased, F(1,34) =51.47, p <.001, ηp² = .602. 

RTs between SS2 (M = 1168.43 ms), SS3 (M = 1213.28 ms), SS4 (M = 1267.04 ms), and SS5 (M 

= 1297.16 ms) all significantly differed (p’s < .001), except for the pairwise comparison between 

SS4 and SS5 (p = .150). In addition, there was a significant trial type x set size interaction, 

F(3,102) =5.75, p =.001, ηp² = .145. On SS4 and SS5, different trials (SS4: M = 1292.07 ms; 

SS5: M =1336.55 ms) had significantly slower RTs than same trials (SS4: M = 1242.01 ms; SS5: 

M = 1257.77 ms), p = .009 and p < .001, respectively. RTs between same and different trials did 

not significantly differ on SS2 and SS3 trials, p = .403 and p = .092, respectively. These results 

(Figure 4c) followed the same pattern of results found with accuracy. 
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Area under the curve (AUC) 

 There was a significant effect of trial type on AUC, F(1,34) = 4.96, p =.033, ηp² = .127. 

Different trials (M = .627) had greater AUC than same trials (M = .464), suggesting a same 

response bias (i.e., greater curvature toward the same response on different trials). Next, there 

was a significant effect of set size on AUC, F(3,102) =3.10, p =.030, ηp² = .084. Curvature was 

found to linearly increase as set size increased, F(1,34) =9.59, p =.004, ηp² = .220. However, 

pairwise comparisons showed that curvature only significantly varied between SS2 (M = .503) 

and SS5 (M = .583), p = .025. There was no trial type x set size interaction effect, F < 1. Average 

trajectories broken down by trial type and set size can be seen in Figure 5a.  

Maximum deviation time 

 A significant effect of trial type on MD time was found, F(1,34) =25.06, p <.001, ηp² = 

.424. MD was reached at a significantly earlier point in time on same trials (M = 585.64 ms) than 

different trials (M = 616.83 ms) overall, suggesting that the bias toward the same response occurs 

during early processing. In addition, there was a significant effect of set size on MD time, 

F(3,102) =49.45, p <.001, ηp² = .593. MD time increased linearly as set size increased, F(1,34) 

=66.36, p <.001, ηp² = .661. Pairwise comparisons showed that MD time between SS2 (M = 

548.72 ms), SS3 (M = 580.58 ms), SS4 (M = 623.27 ms), and SS5 (M = 652.37 ms) all 

significantly differed, p’s < .01. Finally, there was also a significant trial type x set size 

interaction effect, F(3,102) = 3.94, p =.01, ηp² = .104. On same trials, MD time between SS4 and 

SS5 did not differ, p = .114 (all other p’s <.05). The interaction effect was also driven by the 

difference between same and different trials MD time occurring later at higher set sizes. For 

example, at SS2, the mean difference between same and different trials MD time was 14.72 ms, 

whereas at SS5, the mean difference was 47.14 ms. Again, this result suggests that the same  
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Figure 5. Experiment 1 Mouse-tracking Results. a. Curvature as measured with area under the 

curve plotted across conditions. b. Maximum deviation time plotted across conditions. c. Mean 

trajectories for each set size. d. Mean trajectories for each trial type. Error bars display SEM. * p 

< .05. ** p < .01.   
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response bias becomes stronger at higher set sizes. The MD time results can be seen in Figure 

5b.  

Same response bias  

 A “same response bias” is commonly found in change detection tasks, in which 

behavioral measures such as accuracy result in better performance on same trials than different 

trials (e.g., Wijeakumar et al., 2017). This effect tends to become stronger as set size increases 

(see Accuracy, RT, and MD time results above), suggesting that the presence of more same items 

biases response selection toward the same response. The following movement trajectory analyses 

were broken down by set size to examine the divergence point at which same and different trials 

began to move relatively closer to the target than the distractor location. As described earlier, the 

Euclidean distance, or proximity of the mouse-cursor to the target and distractor response 

locations over time was compared at each normalized time point. Figure 6 shows the Euclidean 

distance to the target and distractor for same and different trials. At the beginning of each trial, 

the proximity to the target and distractor response locations are similar due to the starting 

location being equidistant between the two. For SS2 (Figure 6a) same trials, target and distractor 

proximities begin to significantly diverge at the 35th normalized time step (p = .005; alpha = 

.006). On different trials, this divergence did not occur until the 45th normalized time step (p = 

.003). For SS3 (Figure 6b) same trials, divergence occurred at the 34th normalized time step (p = 

.004), compared to the 46th time step for different trials (p = .004). For SS4 (Figure 6c), same 

trials diverged at the 34th time point (p = .003) compared to the 48th time step for different trials 

(p = .005). Finally, for SS5 (Figure 6d), same trials diverged at the 35th time point (p = .005) 

compared to the 49th time point for different trials (p = .002).  
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Figure 6. Euclidean Distance to the Target and Distractor across Conditions. Euclidean distances 

for same and different trials are shown for each set size, including the time at which significant 

divergences occurred (dashed lines; p < .006). a. SS2 trials b. SS3 trials c. SS4 trials. d. SS5 

trials.  
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Overall, these findings strongly support a “same response bias” and shed light on its 

temporal dynamics. Across set sizes, same trials diverged sooner toward the target response 

location than different trials. There was also evidence that the same response bias becomes 

greater as set size increases, indicated by the difference between same and different divergences 

becoming greater at higher set sizes. For example, at SS2 there were 10 normalized time steps 

between same and different trials divergence points, but at SS4 there were 14 normalized time 

steps between these divergence points. Interestingly, same trials divergence points remained 

relatively constant across set sizes (SS2: 35th; SS3: 34th; SS4: 34th; SS5: 35th). This pattern of 

results suggests that the same response bias may not be driven by early, strong evidence 

accumulation on same trials. Rather, it may be that the same response bias is driven by slower 

evidence accumulation on different trials. Indeed, as set size increases, the divergence point on 

different trials occurs later (SS2: 45th; SS3: 46th; SS4: 48th; SS5: 49th). Due to the ratio of same-

different items increasing on different trials as set size increases (e.g., 1:1 ratio at SS2; 3:1 ratio 

at SS4), early “same” response activation may slow and impair evidence accumulation on 

different trials (i.e., later divergences toward the target; also see MD Time results) and more 

errors (see Accuracy results above).  

fNIRS results 

 To examine the impact of VWM demands on neural activity in the change detection task, 

the image-reconstructed fNIRS data were analyzed using AFNI's 3dMVM with a repeated-

measures ANOVA design that included set size (SS2, SS3, SS4, SS5), trial type (same, 

different), and hemoglobin (HbO, HbR) as factors. The analysis identified brain regions that 

showed significant main effects or interaction effects for clusters that exceeded the necessary 

cluster size threshold (i.e., a cluster containing a minimum of 21 voxels). 
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Group effects 

 The ANOVA revealed clusters in brain regions that were influenced by the independent 

variables of set size (SS2, SS3, SS4 & SS5) and change (same & different). Clusters were 

screened to only include those that interacted with hemoglobin (HbO & HbR). That is, only 

clusters in which HbO was greater than HbR were considered (indicating a meaningful change in 

neural activation; Kinder et al., 2022). These clusters and their associated effects are summarized 

in Table 3.  

 Frontal cortex. The first cluster in SFG revealed a significant main effect of 

hemoglobin, in which HbO (M = 0.61) was greater than HbR concentration (M = -.28), t(34) = 

2.58, p = .014 (Figure 7a), indicating that there was task-related activation in this region. In the 

IFG, there was a cluster showing a significant set size x change x hemoglobin interaction, F(3, 

102) = 3.98, p = .010, ηp² = .105 (Figure 8c). The interaction effect was driven by HbO (M = 

.103) being greater than HbR (M = -.034) on SS4 different trials (p = .046). Further, HbO 

concentration significantly differed between same (M = -.046) and different trials for SS4, p = 

.009. This result suggests that IFG activation was associated with SS4, different trials in the 

change detection task.  

Posterior parietal cortex. A cluster in the angular gyrus showed a significant set size x 

hemoglobin interaction effect, F(3, 99) = 3.95, p = .010, ηp² = .107 (Figure 7b). A simple main 

effect analysis showed that this interaction was driven by HbO (M = .217) being greater than 

HbR (M = -.087) concentration for SS4 trials, p = .035. This suggests that this region is active 

under high VWM demands, or when VWM is around capacity (~3-4 items). Further, HbO 

activation for SS4 was greater compared to SS3 (M = -.044), p = .04. Next, a cluster in the SPL  
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Table 3. Summary of significant fNIRS group effects in Experiment 1 

 

Effect Region Cluster Size 

(# voxels) 
MNI Coordinates 

(x, y, z) 
F 

value 

Hemoglobin SFG 206 22, -4, 79 6.66* 
SS x 

Hemoglobin 
Angular gyrus 45 62, -62, 23 3.95* 

Change x 

Hemoglobin 
SPL 30 52, -48, 67 6.14* 

SS x Change x 

Hemoglobin 
IPL 44 50, -34, 63 3.01* 

 
IPL 30 58, -54, 53 3.67* 

 
IFG 25 50, 34, 31 3.98** 

 

Note. * p < .05. ** p < .01.  
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Figure 7. Experiment 1 fNIRS Main effects and Two-way Interactions. a. Main effect of 

hemoglobin in SFG. b. SS x hemoglobin interaction found in the angular gyrus. c. Change x 

hemoglobin interaction found in the SPL. Error bars display SEM. * p < .05.  
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Figure 8. Experiment 1 fNIRS Three-way Interactions. a. SS x change x hemoglobin interaction 

effect in IPL. b. SS x change x hemoglobin interaction effect in another cluster in IPL. c. SS x 

change x hemoglobin interaction effect in IFG. Error bars display SEM. * p < .05. ** p < .01.  
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revealed a significant change x hemoglobin interaction, F(1, 34) = 5.23, p = .029, ηp² = .133 

(Figure 7c). On same trials, HbO (M = .052) was greater than HbR (M = -.036), p = .028.  

There were two clusters in the IPL that showed a significant set size x change x 

hemoglobin interaction (Figures 8a & 8b), F(3, 96) = 3.01, p = .034, ηp² = .086 and F(3, 102) = 

3.69, p = .014, ηp² = .098, respectively . In the first IPL cluster (Figure 8a), HbO (M = .085) was 

greater than HbR (M = -.083) on SS3, different trials, p = .016. In addition, HbO (M = .05) was 

greater than HbR (M = -.025) on SS5, same trials, p = .007. Lastly, this cluster also showed 

greater activation for SS4 different trials (M = .068) compared to SS4 same trials (M = -.052), p 

= .027. This result shows that this region is engaged on different trials at or near VWM capacity 

(SS3 & SS4), but not outside of capacity (SS5). The second IPL cluster (Figure 8b) showed 

greater HbO concentration for SS5 different (M = .230) compared to same trials (M = -.124). 

However, HbO was not significantly greater than HbR in the SS5, different condition, p = .137.  

fNIRS and behavioral correlations 

 The relationship between neural and mouse-tracking measures was assessed through 

bivariate correlation analyses with AFNI's 3dttest+ function and in SPSS. Voxel-wise residuals 

from each correlation analysis were used to estimate the minimum cluster size to achieve 

significance (p < .05). Beta weights from the significant correlation clusters were extracted and 

analyzed to determine the Pearson Correlation Coefficient and for visual inspection. For each set 

size and trial type, AUC was correlated with activation in clusters in which HbO was greater 

than HbR. These clusters and their behavioral correlations are summarized in Table 4. 

Same trials 

Frontal cortex. There was a strong negative correlation between AUC and HbO 

concentration in a cluster in IFG on SS2 trials (r = -.503, p = .002; Figure 8a), indicating that as  
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Table 4. Correlations between AUC scores and fNIRS data in Experiment 1 

 

Condition Region Cluster Size 

(# voxels) 
MNI Coordinates 

(x, y, z) 
r value 

SS2 Same IFG 113 60, 12, 19 -.503** 
 

SMA 57 8, 28, 67 .462** 

 
SFG 33 24, 38, 51 -.454** 

SS3 Same Precentral 

gyrus 
135 24, -18, 77 -.450** 

 
Angular 

gyrus 
33 44, -78, 39 .514** 

SS5 Same IPL 118 52, -38, 55 .398* 

SS2 Different SPL 69 40, -50, 69 .440** 

 
MFG 26 44, 30, 35 .418** 

SS3 Different SFG 57 16, 2, 75 .418* 

 
MFG 29 36, 46, 37 .381* 

SS5 Different Precentral 

gyrus 
112 46, 6, 53 -.485** 

 
MFG 67 44, 28, 41 .464** 

  

Note. * p < .05. ** p < .01.   
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Figure 8. Experiment 1 fNIRS and AUC Correlations for Same Trials. a. SS2 same trials 

correlations. b. SS3 same trials correlations. c. SS5 same trials correlations. * p < .05. ** p < .01.   
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activation increased, performance improved (i.e., less curvature or a more direct path toward the 

target response). Similarly, there was a negative correlation between AUC and HbO 

concentration on SS2 trials in SFG (r = .479, p = .004; Figure 8a). 

Motor cortex. There was a positive correlation between AUC and HbO concentration in 

the SMA on SS2 trials (r = .462, p < .008; Figure 8a), suggesting that performance worsened 

(i.e., more curvature away from the target response) as activation increased in this cluster. 

Conversely, in the precentral gyrus, there was a cluster showing a moderately strong negative 

correlation between AUC and HbO concentration on SS3 trials (r = -.450, p = .007; Figure 8b).  

Posterior parietal cortex. There was a cluster in the angular gyrus showing a significant 

negative association between AUC and HbO concentration on SS3 trials (r = .450, p = .007; 

Figure 8b). On SS5 same trials, there was a positive correlation between AUC and HbO in a 

cluster in the IPL (r = .398, p = .018; Figure 8c). 

Different trials 

Frontal cortex. There were three clusters in MFG related to behavioral performance on 

SS2, SS3, and SS5 trials (Figure 9a-c). On SS2 trials, MFG showed a positive correlation 

between AUC and HbO (r = .418, p = .013). Similarly, On SS3 and SS5 trials, MFG showed a 

positive correlation (r = .381, p =.029 & r = .464, p = .005 respectively). On SS3 trials, there was 

also a positive correlation between AUC and HbO in a cluster in SFG (r = .418, p = .013; Figure 

9b).  

Motor cortex. There was one cluster in motor cortex that was found to predict behavioral 

performance. On SS5 trials, precentral gyrus showed a negative correlation between AUC and 

HbO (r = .485, p = .003; Figure 9c). 
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Figure 9. Experiment 1 fNIRS and AUC Correlations for Different Trials. a. SS2 different trials 

correlations. b. SS3 different trials correlations. c. SS5 different trials correlations. * p < .05. ** 

p < .01. 
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Posterior parietal cortex. There was one cluster in posterior parietal cortex that showed 

an association with behavioral performance. In the SPL, HbO concentration was positively 

correlated with AUC on SS2 trials (r = .440, p = .008; Figure 9a). 
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Chapter 3: Experiment 2 

 The results of Experiment 1 demonstrated that mouse-tracking measures, which capture 

behavior over time, can be utilized to better understand VWM performance. Response curvature 

was also found to relate to activity in regions of interest that are commonly implicated in the 

VWM frontoparietal network, including IPL, SPL, MFG, and SFG (Linden et al., 2003; Pessoa 

& Ungerleider, 2004; Todd & Marois, 2004; Wijeakumar et al., 2017). After establishing that 

mouse-tracking measures predict VWM performance, in Experiment 2 the primary aim was to 

examine the effect of action on VWM encoding. To do this, I manipulated action during VWM 

encoding in the change detection task. Specifically, participants either executed a task-relevant 

response (active move), a task-irrelevant response (passive move), or no response during 

encoding. I hypothesized that task-relevant actions would enhance VWM encoding compared to 

no movement, in line with the findings of my previous work on long-term memory encoding 

(Kinder & Buss, 2021).  

Methodology 

Participants 

Participants included undergraduate students (29 female) ranging from 18-23 years of age 

from the University of Tennessee, Knoxville. Three participants were dropped because they had 

poor key press encoding accuracy (more than 2 standard deviations below the group mean; 

73.42%) in the active and passive motor versions of the change detection tasks (46.25%, 52.50, 

and 42.50% key press accuracies). One additional participant was dropped due to not following 

task instructions, resulting in low shape change detection performance (61.3%), which fell more 

than two standard deviations below the group mean (82.1%). As a result, the final sample size 

for Experiment 2’s results consisted of 32 participants. Participants provided informed consent, 
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completed a demographics survey upon arrival, and were compensated with course credit upon 

completion of the study. The University of Tennessee Institutional Review Board approved the 

proposed study's protocols.  

Apparatus and stimuli 

The set-up was identical to Experiment 1 with the following exception: 1) Either colored 

circles or triangles were randomly selected on each trial to be presented during the encoding 

display. Participants performed the change detection tasks on a computer monitor with a 

resolution of 1920 x 1080 pixels and a refresh rate of 60Hz while sitting approximately 60 cm 

away from the screen. MouseTracker and MATLAB R2022a software were used to present 

stimuli and record participants' mouse movements at a sampling rate of 60Hz. Each trial began 

with a "Start" button click and a fixation cross appearing on the screen. Response locations and 

stimuli were displayed on a uniform gray background. The colored circles or triangles were 

randomly selected from a pool of six colors that were at least 60º apart in color space and were 

presented along positions of an imaginary circle separated by at least 60º. 

Design and procedure 

The basic structure of the change detection tasks is shown in Figure 10. In alternating 

blocks, participants performed either a "no move" (Figure 10a), an “active move" (Figure 10b), 

or a “passive move” (Figure 10c) change detection task. The sequencing of tasks was randomly 

generated at the start of each experiment. Participants completed 6 blocks (two for each task) 

with 40 trials presented in each task block. Participants also completed three blocks of practice 

trials (10 trials in each block) for each task at the start of the experiment. The order of the 

practice blocks was randomly generated. An example sequence of each change detection task 

was shown at the start of the experiment.  
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Figure 10. Experiment 2 Change Detection Tasks. a. In the no move change detection task, an 

encoding array briefly appears, followed by a maintenance interval and a test array. On “same” 

trials, the colors and the shapes during the test array are identical to those in the encoding array. 

On “different” trials, either one of the colors changes, or all the shapes change during the test 

array compared to the encoding array. b. The passive move change detection task is identical to 

the no move version, except participants execute a space bar button-press during the encoding 

array. c. In the active move change detection task, participants instead make a shape judgement 

response during the encoding array. 
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No move change detection task 

Each trial began when participants clicked the "Start" button, followed by a fixation cross 

presented for 500 ms at the center of the screen. Then, the encoding display was presented for 

800 ms, immediately followed by a 2000 ms maintenance interval. During the maintenance 

interval, the text "Same or Different" in 12 size font was presented at the center of the screen. 

Participants were tasked to remember the color and shape of the four items that appeared during 

the encoding display. During the test display, a same or different trial type will occur. For same 

trials, the colors and shapes of all stimuli on the test display remained the same as they had 

appeared on the encoding display. For different trials, either one of the item's color will change, 

or all of the shapes will change (e.g., circles to triangles) for the test display compared to the 

encoding display. Same and different responses were mapped to the upper-left and upper-right 

response locations (counterbalanced across participants). The mouse cursor was locked at the 

Start location until the onset of the test display. Participants were instructed to initiate moving 

the mouse cursor as quickly as possible once the test display appeared. A minimum intertrial 

interval was set to 500ms. 

Trial type trials (same & different) were randomly intermixed across the two blocks of 

the no move change detection task, with 40 trials in each block. In different trial type trials, the 

color changed 80% of the time (32 trials), and the shapes changed 20% of the time (8 trials). 

Shape change trials were used to ensure participants would also attend and encode the shape of 

the stimuli in the array, which would be held constant and manipulated in the following move 

versions of the change detection tasks.  
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Passive move change detection task 

The passive move version of the change detection task was identical to the no move 

change detection task, except that participants initiated a task-irrelevant motor movement during 

the encoding display of the task. Specifically, on every trial, participants pressed the space bar 

when the encoding display appeared. Participants were instructed to respond as quickly as 

possible when the encoding display appeared (i.e., the movement was associated with the 

encoding display onset, not the stimuli). The encoding display lasted for 800 ms, followed by a 

2000 ms maintenance interval, and finally the test display appeared until a same/different 

response occurred. The sequence of events in the passive move version of the change detection 

task can be seen in Figure 10b. As in the no-move version of the change detection task, trial 

types (same & different) were randomly intermixed across the two blocks of the passive move 

change detection task. On different trials, the color changed 80% of the time (32 trials), and the 

shape changed 20% of the time (8 trials). 

Active move change detection task 

The active move version of the change detection task was identical to the no move 

change detection task, with the exception that participants executed a task-relevant motor 

movement during the encoding display. In addition to encoding the items into VWM, 

participants were instructed to make a shape judgment of the stimuli in the display. Depending 

on whether the shapes of the items are all circles or triangles, participants pressed either the “z” 

or “x” key (key to shape mappings were counterbalanced across participants) with their left 

hand. Participants were instructed to respond with a shape judgement key press as quickly and as 

accurately as possible. After participants make a circle or triangle response and the encoding 

display offsets (800 ms), the maintenance interval occurred (2000 ms), followed by the test 
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display (until response; Figure 10c). The active move change detection task consisted of two 

blocks, and the trial types (same and different) were randomly intermixed throughout. The color 

changed in 80% of the different trials (32 trials; action-irrelevant), while the shape changed in 

20% of the different trials (8 trials; action-relevant). 

Mouse-tracking methods 

Data preprocessing 

Movement trajectory preprocessing and exclusion criteria were the same as in 

Experiment 1, with the exception that trials in the movement change detection task were 

discarded if an incorrect movement was executed (if any) during the encoding display.  

Movement trajectories along the x- and y-axes were transformed into a standard 

coordinate space, with trajectories to the left response location remapped to the right location to 

overlay all trajectories to the same response location. Trajectories were normalized into 101-time 

steps for spatial data preprocessing to compare trials of varying response times. After spatial 

normalization, x and y coordinates were averaged for each participant.  

The same trial exclusion criteria were used as in Experiment 1, with the exception that 

incorrect movement responses in the passive and active movement blocks and incorrect shape 

change trials were also excluded. Trials that were excluded from analyses included incorrect test 

trials (13.73% of trials), trials with slow reaction times (3.91% of trials), trials with slow 

movement initiations (3.22% of trials), trials with abnormal trajectories (6.42% of trials), and 

incorrect key presses in the movement blocks (7.7% of trials). In total, 23.98% of trials were 

excluded from subsequent analyses not related to accuracy.  
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Statistical analyses  

Behavioral analyses 

 The impact of trial type (same, different) and movement (no move, passive move, active 

move) on both conventional outcome-based measures and continuous motor dynamics were 

evaluated in the change detection task. A 2x3 repeated-measures ANOVA was used to examine 

the same behavioral dependent variables as in Experiment 1, including Accuracy, RT, Pashler's 

K, AUC, and MD time. To control for multiple comparisons, the Bonferroni-Holm correction 

was applied to all pairwise comparisons. 

Behavioral results 

Movement encoding accuracy 

 Movement encoding accuracy in the passive and active move blocks was analyzed in two 

ways: 1) accurate responses regardless of timing, and 2) accurate responses that occurred during 

the encoding display (i.e., encoding movement accuracy within 800 ms). The first analysis 

examined whether participants are following task instructions. For this analysis, overall accuracy 

was 89.90%. Overall accuracy was significantly higher in the passive move task (M = 94.45%) 

than in the active move task (M = 85.35%), t(31) = 5.88, p < .001. Next, encoding movement 

accuracy overall was 83.77%. Encoding movement accuracy was significantly higher in the 

passive movement task (M = 89.02%) than in the active movement task (M = 78.52%), t(31) = 

6.06, p < .001. These results suggest that, as expected, the active movement task was more 

difficult than the passive movement task due to the movement being tied to specific features (the 

shapes) of the stimuli.  
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Figure 11. Experiment 2 Shape Change Accuracy Results. Error bars display SEM.   
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Shape change detection accuracy 

 Overall, shape change accuracy was very high across conditions (M = 97.5%; Figure 11). 

There was no effect of movement on shape change detection accuracy, F < 1. No move (M = 

96.9%), passive move (M = 97.3%), and active move (M = 98.5) trials did not differ, p’s > .90.  

Overall change detection accuracy 

 There was no effect of trial type (same, different) or movement on accuracy, F < 1. 

However, there was a significant trial type x movement interaction, F(2,62) = 4.16, p =.020, ηp² 

= .118. A simple main effect analysis showed that on active move trials, accuracy was 

significantly higher for same (M = 87.4%) compared to different trials (M = 80.1%). These 

results can be seen in Figure 12a.  

Pashler’s K 

 There was no significant effect of movement on VWM capacity estimates as measured 

with Pasher’s K, F = 1.54. No move (M = 2.83), passive move (M = 2.70), and active move (M = 

2.70) trials did not differ (Figure 12b). 

Reaction time 

 There was no effect of trial type on RT, F < 1. There was a significant effect of 

movement on RT, F(2,62) = 3.63, p =.032, ηp² = .105. No move trials (M = 1418.63 ms) had 

significantly slower RTs than passive move trials (M = 1367. 88), p = .013. No move trials RTs 

did not differ from active move trials (M = 1391.98 ms), p = .807, and there was no difference 

between passive move and active move trials, p = .366. The trial type x movement interaction 

effect was not significant, F < 1. A breakdown of RT scores can be seen in Figure 12c.  
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Figure 12. Experiment 2 Outcome-based Results. a. Accuracy plotted as a function of trial type 

and movement. b. Pashler’s K plotted as a function of movement. c. Reaction time plotted as a 

function of trial type and movement. Error bars display SEM. * p < .05.  
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Area under the curve 

 There was no significant effect of trial type or movement on AUC scores (Figure 13a), F 

< 1. The trial type x movement interaction was also non-significant, F = 1.39. Average 

trajectories broken down by trial type and movement conditions can be seen in Figure 13 c-d.  

Maximum deviation time 

 There was no significant effect of trial type on MD time, F < 1. The effect of movement 

on MD time reached marginal significance, F(2,62) = 2.92, p =.061, ηp² = .086. MD time on no 

move trials (M = 693.02 ms) occurred marginally later compared to passive move trials (M = 

662.41 ms), p = .060. The trial type x movement interaction did not reach significance, F < 1. A 

breakdown of MD time measures for Experiment 2 can be seen in Figure 13b.  
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Figure 13. Experiment 2 Mouse-tracking Results. a. AUC plotted across conditions. b. MD time 

plotted across conditions. c. Mean trajectories for each movement type in the change detection 

task. d. Mean trajectories for each trial type. Error bars display SEM.   
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Chapter 4: Experiment 3 

Experiment 2 investigated the effect of action on VWM encoding with a mouse-tracking 

paradigm. The results indicated that neither task-relevant (active move) nor task-irrelevant 

(passive move) actions influenced VWM encoding. However, it is possible that the complex 

design of three alternating tasks introduced additional task demands that negatively impacted the 

movement change detection tasks, as evidenced by the surprisingly low movement accuracy 

during encoding in the passive and move blocks. In order to address this issue, Experiment 3 

simplified the design by using only two alternating tasks and focused on comparing the active 

move and no move change detection tasks, similar to the design in my previous work (Kinder et 

al., 2021). Furthermore, fNIRS was employed in Experiment 3 to explore the brain-behavior 

relationships between VWM performance, as measured by response curvature, and action during 

VWM encoding. 

Methodology 

Participants 

 Experiment 3 consisted of 36 participants (32 female; 18-22 years of age), all of whom 

were undergraduate students at the University of Tennessee, Knoxville. One participant was 

dropped because they had low movement encoding accuracy (68%) in the active move block 

(more than 2 standard deviations below the group mean; 74.9%). Two more participants were 

dropped because they had poor shape change detection accuracy (10% and 20%) in the no move 

block (more than 2 standard deviations below the group mean; 49.0%). One additional 

participant was dropped because the fNIRS cap was unable to make contact and record from the 

scalp. After these exclusions, the final sample size consisted of 32 participants. Prior to the 

study, participants provided informed consent and completed a demographics survey. Upon 
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completion, participants were compensated with course credit. The study's protocols were 

approved by the University of Tennessee Institutional Review Board. 

Apparatus and stimuli 

 The set-up was identical to Experiment 2. Participants completed the change detection 

tasks on a computer monitor with a resolution of 1920 x 1080 pixels and a refresh rate of 60Hz, 

while seated approximately 60 cm away from the screen. Stimuli presentation and mouse 

movement recording were carried out using MATLAB R2022a and the MouseTracker software 

at a sampling rate of 60Hz. Each trial began with a "Start" button click and a fixation cross 

displayed on a uniform gray background. Stimuli were presented on an imaginary circle 

separated by at least 60º, and the colored circles or triangles were randomly selected from a pool 

of six colors that were at least 60º apart in color space. 

Design and procedure 

 Figure 14 illustrates the basic structure of the change detection tasks. At the start of the 

experiment, participants alternated between performing a no move (Figure 14a) and an active 

move (Figure 14b) change detection task in randomly generated sequencing. Each experiment 

consisted of 4 blocks, with 50 trials presented in each task block, totaling 200 trials. Participants 

completed two practice blocks of each task, consisting of 10 trials each, at the start of the 

experiment. The order of the practice blocks was also randomly generated, and participants were 

provided with an example sequence of each change detection task at the start of the experiment. 

No move change detection task 

 The no move change detection task was the same as in Experiment 2. At the beginning of 

each trial, participants clicked the "Start" button and viewed a fixation cross presented at the 

center of the screen for 500 ms. This was followed by an encoding display shown for 800 ms and  
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Figure 14. Experiment 3 Change Detection Tasks. Trial sequence for the no move (a.) and active 

move (b.) change detection tasks in Experiment 3, identical to those used in Experiment 2.   
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then a 2000 ms maintenance interval. Participants were instructed to remember the color and 

shape of the four items shown during the encoding display. Next, a same or different test display 

occurred. On same trials, the test display items had the same colors and shapes as those in the 

encoding display, while on different trials, the color of one item or the shapes of all items were 

altered. Same and different responses were assigned to the upper-left and upper-right response 

locations, which were counterbalanced across participants. The mouse cursor was fixed at the 

Start location until the onset of the test display. Participants were asked to initiate moving the 

mouse cursor as soon as possible after the test display appeared. A minimum intertrial interval of 

500 ms was implemented. 

 In the no move change detection task, trial types (same and different) were randomly 

presented in two blocks of 50 trials each. On different trials, the color changed in 80% of the 

trials (40 trials), while the shape changed in 20% of the trials (10 trials). Similar to Experiment 2, 

shape change trials were included to ensure participants attended and remembered the shape of 

the stimuli, as in the active move block. 

Active move change detection task 

 The active move change detection task used in Experiment 2 was replicated here. 

Participants used the "z" or "x" key with their left hand to respond based on whether the shapes 

of the items were circles or triangles, respectively. Participants were instructed to respond 

quickly and accurately. After the encoding display (800 ms), the maintenance interval occurred 

(2000 ms), followed by the test display (displayed until response). The active move task 

consisted of two blocks, with same and different trials randomly intermixed. On different trials, 

the color changed 80% of the time (40 trials; action-irrelevant) and the shapes changed 20% of 

the time (10 trials; action-relevant). 
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Mouse-tracking methods 

Data preprocessing 

 Mouse-tracking preprocessing and exclusion criteria were the same as those used in 

Experiment 2. The movement trajectories along the x- and y-axes were converted to a standard 

coordinate space. Trajectories that went to the left response location were remapped to the right 

location to align all trajectories to the same response location. The trajectories were then 

normalized into 101-time steps to compare trials with different response times. Following spatial 

normalization, the x and y coordinates were averaged for each participant. 

 Trials that were excluded from subsequent analyses comprised of incorrect change 

detection test trials (15.21%), trials with slow times (4.24%), trials with slow movement 

initiations (2.44%), trials with abnormal trajectories (6.72%), and incorrect key presses in the 

movement block (8.19%). Overall, 25.6% of trials were excluded from subsequent analyses, not 

including accuracy analyses. 

fNIRS methods 

Data acquisition and probe design 

 The same fNIRS probe design, channel preprocessing, and image reconstruction steps 

were used as in Experiment 1.  

Statistical analyses 

Behavioral analyses 

 In the change detection tasks, it was examined how trial type (same, different) and 

movement (no move, active move) influenced outcome-based and mouse-tracking measures. I 

used a 2x2 repeated-measures ANOVA to analyze the same behavioral dependent variables as in 

Experiment 2, which included accuracy, RT, Pashler's K, AUC, and maximum deviation time. 
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To account for multiple comparisons, the Bonferroni-Holm correction was applied to all pairwise 

comparisons. 

fNIRS group analyses 

 A repeated-measures ANOVA with factors of trial type (same, different), movement (no 

move, active move), and hemoglobin (HbO, HbR) was conducted on the reconstructed fNIRS 

data. Another repeated-measures ANOVA was conducted to examine neural activity in shape 

change detection trials (action-relevant trials). For this analysis, the factors of movement (no 

move, active move), and hemoglobin (HbO, HbR) were included. The HbO and HbR activation 

maps were analyzed using 3dMVM in AFNI. Residuals for each voxel were created and 

subjected to AFNI's 3dClustSim to determine the minimum cluster size necessary to achieve a 

family-wise error rate of less than .05 and a voxel-wise threshold of less than .05 (Cox et al., 

2017). 

Behavioral results 

Movement encoding accuracy 

 Movement accuracy in the active move task was 88.25%. Accurate movement responses 

that occurred during the encoding display (i.e., within 800 ms) was 84.09%. A between-

experiment analysis using an independent samples t-test showed that movement accuracy during 

encoding was significantly higher in the active move task in Experiment 3 (M = 84.09%) than 

the active move task in Experiment 2 (M = 78.52%), t(62) = 2.42, p = .018. This result suggests 

that the more complicated design used in Experiment 2 (three alternating tasks) compared to 

Experiment 3 (two alternating tasks) introduced additional task demands as suspected.  
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Shape change detection accuracy 

 Overall shape change detection accuracy was high across the no move and active move 

tasks (M = 96.6%). Shape change detection accuracy was significantly higher in the active move 

task (M = 98.67%) compared to the no move task (M = 94.69%), t(31) = 2.35, p = .025 (Figure 

15). This result suggests that VWM for action-relevant features (i.e., the shapes) was enhanced in 

the active move block (Table 5).  

Overall change detection accuracy 

 The effect of trial type on change detection accuracy was marginally significant, F(1,31) 

= 3.564, p =.068, ηp² = .103, with same trials (M = 86.2%) having higher accuracy than different 

trials (M = 83.8%). There was a significant effect of movement on accuracy, F(1,31) = 10.34, p 

=.003, ηp² = .250. No move trials (M = 89.6%) had significantly higher accuracy than active 

move trials (M = 80.4%), indicating that VWM was worsened for action-irrelevant features (i.e., 

color) in the active move task. There was no trial type x movement interaction effect, F = 1.4. 

Accuracy results can be seen in Figure 16a.  

Pashler’s K 

 VWM capacity as estimated with Pashler’s K was significantly higher in the no move (M 

= 3.16) compared to the active move change detection task (M = 2.42), t(31) = 3.21, p = .003 

(Figure 16b). This result suggests that VWM capacity was worsened when an action-irrelevant 

response was required in the active move task.  

Reaction time 

 There was a significant effect of trial type on RT, F(1,31) = 7.36, p =.010, ηp² = .204. 

Pairwise comparisons showed that RTs were significantly faster on same (M = 1202.78 ms) than  
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Figure 15.  Experiment 3 Shape Change Accuracy Results. * p < .05. Error bars display SEM. 
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Table 5. Action-relevant and action-irrelevant effects on change detection accuracy 

 

Experiment Change 

Dimension 
Action-

relevant 
Pairwise 

Comparison 
t Action 

Enhancement 

or Inhibition 

2 Color No Passive move – 

No move 
-1.30 No 

Color No Active move – 

No move 
-1.20 No 

Shape Yes Passive move – 

No move 
0.21 No 

Shape Yes Active move – 

No move 
0.94 No 

3 Color No Active move – 

No move 
-3.20* Inhibition 

Shape Yes Active move – 

No move 
2.35* Enhancement 

  

Note. * p < .05.   
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Figure 16. Experiment 3 Outcome-based Results. a. Accuracy for each condition. b. Pashler’s K 

for each movement type. c. RT for each condition. Error bars display SEM. * p < .05. ** p < .01.   
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different trials (M = 1250.01 ms; Figure 16c). There was no effect of movement on RT, F < 1, 

and there was not a trial type x movement interaction effect, F =2.4.   

Area under the curve 

 There was a significant effect of trial type on AUC, F(1,31) = 5.36, p =.028, ηp² = .152. 

Pairwise comparisons showed that AUC was larger on different (M = .585) compared to same 

trials (M = .404; Figure 17a). There was no significant effect of movement on AUC, F = 2.2, and 

there was not a significant trial type x movement interaction effect, F < 1.   

Maximum deviation time 

 There was a significant effect of trial type on MD time, F(1,31) = 10.23, p =.003, ηp² = 

.254. Same trials (M = 614.79 ms) reached MD significantly sooner than different trials (M = 

653.85 ms; Figure 17b). There was no effect of movement on MD time, F < 1, and there was not 

a trial type x movement interaction effect, F = 2.6.  

fNIRS results 

 To investigate how action-irrelevance (color dimension test trials) affected VWM 

performance and neural activity in the change detection task, reconstructed fNIRS data were 

analyzed with AFNI's 3dMVM using a repeated-measures ANOVA design with movement (no 

move, active move), trial type (same, different), and hemoglobin (HbO, HbR) as factors. An 

additonal ANOVA was conducted to examine the impact of action-relevance (shape dimension 

change trials) on VWM neural activiation. This ANOVA had two factors: movement (no move, 

active move) and hemoglobin (HbO, HbR). 

 

 

 



 

 

  

 

68 

Action-irrelevant group effects 

Frontal cortex. There was a significant movement x hemoglobin interaction in a cluster 

in SFG, F (1,30) = 6.45, p = .016, ηp² = .177 (Figure 18a). A simple main effect analysis revealed 

that the interaction was by greater HbO concentration on no move trials (M = .058)  

compared to active move trials (M = .004), p = .014. However, in the no move condition, HbO 

was not significantly greater than HbR (M = .004), p = .304.  

Posterior parietal cortex. There was a significant move x change x hemoglobin three-

way interaction in a cluster in the angular gyrus, F (1,29) = 5.39, p = .027, ηp² = .157 (Figure 

18b). On active move different trials (M = .118), HbO concentration was significantly greater 

compared to no move different trials (M = .001), p = .017. However, HbO was not significantly 

greater than HbR (M = -.008) on active move different trials, p = .189. A summary of the action-

irrelevant group effects can be found in Table 6.  

Action-relevant group effects 

Frontal cortex. There was a cluster in SFG that showed a significant difference between 

HbO and HbR, t (31) = 2.57, p = .015 (Figure 19a; Table 7), indicating that this region was 

engaged during shape change detection trials. There was also a movement x hemoglobin 

interaction effect found in MFG, F (1,30) = 6.39, p = .017, ηp² = .176 (Figure 19b). This 

interaction was driven by HbO (M = .092) being significantly greater than HbR (M = -.092) on 

no move trials (p = .048), but not on active move trials (p = .202). This result suggests that MFG 

activity was associated with VWM encoding during no move trials, but not active move trials.  
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Figure 17. Experiment 3 Mouse-tracking Results. a. AUC scores for each condition. b. MD 

Time across conditions. c. Mean trajectories plotted for each move type. d. Mean trajectories 

plotted for each trial type. Error bars display SEM. * p < .05. ** p < .01.  
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Figure 18. Experiment 3 Action-irrelevant fNIRS Group Effects. a. Move x hemoglobin 

interaction SFG. b. Move x change x hemoglobin interaction found in the angular gyrus. Error 

bars display SEM. * p < .05. 
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Table 6. Summary of fNIRS group effects for action-irrelevant trials in Experiment 3 

 

Effect Region Cluster Size 

(# voxels) 
MNI Coordinates 

(x, y, z) 
F 

value 

Move x 

Hemoglobin 
SFG 21 28, 30, 57 6.46* 

Move x Change 

x Hemoglobin 
Angular 

gyrus 
30 40, -80, 47 5.39* 

 

Note. * p < .05.   
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Figure 19. Experiment 3 Action-relevant fNIRS Group Effects. a. Hemoglobin main effect in 

SFG. b. Move x hemoglobin interaction in MFG. Error bars display SEM. * p < .05. 

  



 

 

  

 

73 

Table 7. Summary of fNIRS group effects for action-relevant trials in Experiment 3 

 

Effect Region Cluster Size 

(# voxels) 
MNI Coordinates 

(x, y, z) 
F 

value 

Hemoglobin SMA 83 24, 2, 75 6.61* 
Move x Hemoglobin SFG 33 26, 30, 57 6.39* 

 

Note. * p < .05.   
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fNIRS and behavioral correlations 

 Bivariate correlation analyses were conducted in SPSS and AFNI's 3dttest+ function to 

examine the relationship between neural and mouse-tracking measures, as done in Experiment 1. 

Voxel-wise residuals from each correlation analysis were used to estimate the minimum cluster 

size required to achieve significance (p < 0.05). The beta weights from the significant correlation 

clusters were extracted and analyzed to determine the Pearson Correlation Coefficient. To 

investigate the relationship between memory strength and neural activation, AUC scores were  

correlated with clusters showing greater HbO than HbR on action-irrelevant and action-relevant 

trials. 

Action-irrelevant correlations 

 There were no correlations found between no move behavioral performance and neural 

activity. Below, correlations brain-behavior correlations for active move trials are reported.    

Motor cortex. There was a positive correlation between AUC scores and HbO 

concentration in a cluster in the SMA on active move different trials (r = .424, p = .018; Figure 

20b), indicating that greater activation in this region was associated with worse performance 

(i.e., more movement curvature).  

Posterior parietal cortex. There was a cluster in IPL that showed a negative correlation 

between AUC and HbO on active move same trials (r = -.358, p = .044; Figure 20a). Greater 

activation in IPL was associated with less movement curvature, or better VWM performance. A 

summary of these correlations can be found in Table 8.  

Action-relevant correlations 

Frontal cortex. There was a negative correlation between AUC and HbO in SFG on 

active move trials (r = -.356, p = .046; Figure 21b). 
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Figure 20. Experiment 3 fNIRS and AUC Correlations for Action-irrelevant Trials. 

a. Correlations for move same trials. b. Correlations for active move different trials. * p < .05.  
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Table 8. Correlations between AUC and fNIRS data on action-irrelevant trials  

 

Condition Region Cluster Size 

(# voxels) 

MNI 

Coordinates 

(x, y, z) 

r 

value 

Active move same IPL 476 54, -58, 53 -.358* 

Active move different SMA 23 20, 10, 71 .424* 

  

Note. * p < .05.   
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Figure 21. Experiment 3 fNIRS and AUC Correlations for Action-relevant Trials. a. Correlations 

for no move trials. b. Correlations for active move trials. * p < .05. ** p < .01.   
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Posterior parietal cortex. On no move trials, there were two clusters in posterior parietal 

cortex that were negatively associated with AUC. First, the HbO concentration in SPL was 

negatively correlated with AUC (r = -.452, p = .009; Figure 21a). Next, HbO concentration in 

IPL was strongly negatively correlated with AUC (r = -.610, p < .001; Figure 21a). These results 

suggest that when no movement was required during VWM encoding, activity in posterior 

parietal cortex during encoding predicted enhanced VWM performance.  

On active move trials, the opposite result was found in posterior parietal cortex compared 

to no move trials. Two clusters in SPL had HbO concentrations that were found to be positively 

correlated with AUC scores (r = .368, p = .042 & r = .373, p = .05; Figure 21b). When a 

movement was required during encoding and the action-relevant dimension was tested, 

participants with greater activity in posterior parietal cortex predicted worse behavioral 

performance (i.e., greater AUC scores). A summary of these correlations can be found in Table 

9. 
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Table 9. Correlations between AUC and fNIRS data on action-relevant trials 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. * p < .05. ** p < .01.   

Condition Region Cluster Size 

(# voxels) 
MNI Coordinates 

(x, y, z) 
r value 

No move SPL 97 40, -54, 71 -.452** 

 
IPL 80 54, -64, 45 -.610** 

Active move SPL 290 48, -50, 69 .368* 

 
SFG 32 30, 28, 57 -.356* 

 
SPL 21 26, -80, 61 .373* 
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Chapter 5: General Discussion  

VWM is a fundamental aspect of cognition that guides our motor system toward relevant 

information in the environment. Although it is well-established that VWM and the motor system 

work closely together to produce goal-directed behavior, there is a gap in our understanding of 

how action affects VWM encoding and VWM representations. To address this open question the 

present study investigated the impact of motor responses on VWM encoding using movement 

dynamics and neural activity measurements during a series of change detection tasks. 

The first aim of this thesis was to examine the relationship between movement dynamics, 

VWM performance, and their associated neural activity in a standard version of the change 

detection task (Experiment 1). To accomplish this, a novel mouse-tracking and fNIRS change 

detection task design was employed. The behavioral results of the study supported previous 

research (Wijeakumar et al., 2017), showing that performance worsened as set size increased 

(i.e., lower accuracy and slower response times) and that VWM capacity was limited to around 

3-4 items (Luck & Vogel, 1997). The mouse-tracking measures revealed similar findings, with 

response curvature (AUC) increasing as set size increased, and MD time being reached sooner at 

lower set sizes. Moreover, the study found that response curvature correlated with VWM 

demands, which expands on previous research linking curvature to long-term memory strength 

(Papesh & Goldinger, 2012). 

Experiment 1 yielded several behavioral results indicating better performance for same 

compared to different trials. This same response bias is a common finding in the VWM literature 

and it is known to become stronger as set size increases (e.g., Costello & Buss, 2018). In the 

whole report version of the change detection task used in the study, participants were required to 

detect whether a single item had changed among all the presented items. At higher set sizes, this 
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means there were more same items than different items (e.g., SS4: 3:1 same-different item ratio), 

leading to input that is more congruent with the same response option. I used movement 

trajectory analyses to investigate three possible explanations for this same response bias: (1) 

early “same” activation driving decision evidence towards the same response on same trials, (2) 

early “same” activation recruiting additional top-down VWM comparison resources on different 

trials, requiring more time for response selection processes to resolve competition, or (3) a 

combination of both, leading to enhanced performance on same trials and impaired performance 

on different trials. For each above explanation, higher set sizes should strengthen each effect due 

to the increasing number of “same” items. On same trials, I found that the time at which 

trajectories began to deviate towards the same response was similar across all set sizes. However, 

on different trials, trajectories deviated towards the different response (i.e., the target location) 

systematically later in time as set size increased. This suggests that participants may not be 

biased towards selecting the same response on same trials, even at higher set sizes where more 

items do not change. Rather, the additional recruitment of VWM comparison processes at higher 

set sizes my worsen both the ability and time it takes to detect a change when one is present. 

Specifically, conducting VWM comparison processes on numerous same items may tax the 

VWM system, worsening representations and increasing uncertainty, making it less likely to 

reach the activation threshold for detecting a change in the different item. These results make an 

interesting contribution to the VWM literature and have implications for our present 

understanding of VWM dynamics in the change detection task. Future implementations of 

change detection tasks should consider how same and different responses can be influenced 

based on the set size and type of change detection design (e.g., whole report vs. single report). 
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In Experiment 1, neural data from the change detection task activated regions commonly 

associated with the VWM frontoparietal network, including IPL, SPL, MFG, and SFG (Linden et 

al., 2003; Pessoa & Ungerleider, 2004; Todd & Marois, 2004; Wijeakumar et al., 2017). 

Specifically, a SFG cluster was found to be engaged in the change detection task collapsed 

across all conditions, while an IFG cluster was only activated when VWM capacity was near 

capacity (SS4). Posterior parietal cortex activation varied with set size, but not in a linear manner 

as expected. While SS4 showed greater activation than SS3 in this region, activity between SS4 

and SS2 trials did not vary. In previous research (Todd & Marois, 2004) it has been shown that 

activation in posterior parietal cortex linearly increases from SS1 to SS4 until plateauing 

(thought to reflect reaching VWM capacity). It is possible that my finding shows part of 

posterior parietal cortex being recruited specifically when VWM demands are at or near capacity 

(SS4). Indeed, the intra parietal sulcus (IPS) reported by Todd and Marois (2004) is located 

superiorly to the cluster in angular gyrus reported here. The lack of a linear effect of set size on 

neural activity in this region may be due to a lack of required statistical power. That is, it is 

possible that there were not enough overlapping fNIRS probe placements over IPS to detect a 

significant linear effect of set size. 

 In Experiments 2 & 3, the focus was on examining the impact of action on VWM 

encoding. To this end, I manipulated task-relevance of the action in Experiment 2 and action-

relevance of the dimension of items being encoded in Experiments 2 & 3. Experiment 2 included 

a task-relevance manipulation to better understand the effect of action on memory encoding. 

Previous work has shown that task-irrelevant (Shimane et al., 2022) and task-relevant (Kinder & 

Buss, 2021) items encoded into long-term memory can be improved by motor engagement; 

however, the link between VWM encoding and actions task-relevance is unclear. Contrary to 
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expectations, Experiment 2 did not reveal an effect of action on either task-relevant or task-

irrelevant items in VWM, compared to a no movement control condition. Further, I did not find 

the common change detection result (as seen in Experiment 1) that same trials typically have 

better performance than different trials overall. These results suggest that VWM processes may 

have been taxed by the high demands of randomly switching between three different tasks (no 

move, passive move, and the active move change detection tasks). Another result supporting this 

interpretation is that movement accuracy during encoding in the passive and active move blocks 

were much lower than expected. Experiment 3 used a simplified design (no move and active 

move; two alternating tasks), and with this I found (1) better performance on same compared to 

different trials as expected, and (2) higher movement encoding accuracy for the active move 

change detection task used in Experiment 3 compared to the one used in Experiment 2. Overall, 

these results indicate that the complex design used in Experiment 2 likely imposed high task 

demands that negatively affected change detection performance and disrupted motor engagement 

processes in the passive and active move change detection tasks. 

Experiment 3 provided a behavioral and neural dataset that combined mouse-tracking and 

fNIRS to investigate the effect of action on VWM encoding. This experiment manipulated 

whether an action was required during VWM encoding and whether the features of the items 

tested were action-relevant or action-irrelevant. Behavioral results revealed that performance, 

including accuracy and Pashler’s K, was better for no move compared to when action-irrelevant 

(i.e., color) features were tested. However, when action-relevant features (i.e., shape) were 

tested, the opposite pattern of results was found, with there being higher accuracy compared to 

the no move change detection task. This set of results suggests that action improved the VWM 

encoding of features that were relevant to the action, but inhibited the encoding of features that 
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were irrelevant to the action. These results build upon other studies that manipulated whether the 

action was directed towards an action-relevant or -irrelevant spatial location during maintenance 

(Heuer et al., 2017; Heuer et al., 2020), and suggest that both the enhancement of action-relevant 

features and the inhibition of action-irrelevant features during VWM encoding. The fNIRS 

results showed that activation in frontal cortex was linked to enhanced VWM encoding for 

action-relevant features. On the other hand, activation in posterior parietal cortex was associated 

with enhanced VWM encoding for action-irrelevant features and those that were unrelated to 

action (no move). Interestingly, for action-relevant items, greater activation in posterior parietal 

cortex was detrimental to VWM performance. These findings suggest that the VWM network is 

differentially activated when encoding features that are action-relevant or action-irrelevant.   

 The findings of this thesis are consistent with theories of embodied cognition. From this 

perspective, the motor system holds a significant role in cognition, rather than simply serving as 

its output. That is, cognition is proposed to be grounded and emerges from environmental 

interactions tied to sensorimotor systems (Chiel & Beer, 1997), and emphasizes a bidirectional 

relationship in which both the motor and cognitive systems can continuously exchange 

information (Thelen & Smith, 1996). This view regards the motor system as a fundamental 

aspect of cognition. This thesis expands on embodied cognition perspectives by showing that the 

influence of action on VWM encoding depends on action-relevance.  
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Chapter 6: Conclusion  

This thesis presented an account of action’s effect on memory encoding that was 

examined in the context of a VWM change detection task. The results of this work provide new 

insights into VWM processes in the change detection task and have theoretical implications for 

the relationship between action and memory. Results showed that the strength of VWM memory 

representations can be measured with a mouse-tracking method that is sensitive to temporal 

dynamics, which can be used to better understand VWM effects such as the same response bias 

examined here. My main results demonstrated that action enhances VWM encoding for action-

relevant features but impairs memory for action-irrelevant features. This suggests that the motor 

system may allocate VWM resources toward action-relevant features, while diverting VWM 

resources away from action-irrelevant features. In other words, the motor system may 

differentially impact the representations of features held in VWM depending on their action-

relevance. Furthermore, the fNIRS data indicated that activation in frontal cortex is related to 

enhanced VWM encoding for action-relevant items. Alternatively, it was found that activation in 

posterior parietal cortex was associated with enhanced VWM encoding for action-irrelevant 

items and when no movement was required. Interestingly, for action-relevant items, increased 

activation in posterior parietal cortex resulted in impaired memory performance. These results 

provide new insights into the neural dynamics involved in VWM encoding and demonstrate how 

the frontoparietal VWM network may be differentially activated depending on the action-

relevance of the encoded. Future research that combines continuous behavioral and neural 

measures is positioned to provide a more comprehensive understanding of the relationship 

between memory and action.  
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