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Abstract

Deep Learning and neuroscience have developed a two way relationship with each informing

the other. Neural networks, the main tools at the heart of Deep Learning, were originally

inspired by connectivity in the brain and have now proven to be critical to state-of-the-

art computational neuroscience methods. This dissertation explores this relationship, first,

by developing an adaptive sampling method for a neural network-based partial di↵erent

equation solver and then by developing a topological deep learning framework for neural

spike decoding. We demonstrate that our adaptive scheme is convergent and more accurate

than DGM – as long as the residual mirrors the local error – at the same number of training

steps and using the same or less number of training points. We present a multitude of tests

applied to selected PDEs discussing the robustness of our scheme.

Next, we further illustrate the partnership between deep learning and neuroscience by

decoding neural activity using a novel neural network architecture developed to exploit the

underlying connectivity of the data by employing tools from Topological Data Analysis.

Neurons encode information like external stimuli or allocentric location by generating

firing patterns where specific ensembles of neurons fire simultaneously for one value.

Understanding, representing, and decoding these neural structures require models that

encompass higher order connectivity than traditional graph-based models may provide.

Our framework combines unsupervised simplicial complex discovery with the power of deep

learning via a new architecture we develop herein called a simplicial convolutional recurrent

neural network (SCRNN). Simplicial complexes, topological spaces that use not only vertices

and edges but also higher-dimensional objects, naturally generalize graphs and capture

more than just pairwise relationships. The e↵ectiveness and versatility of the SCRNN is

demonstrated on head direction data to test its performance and then applied to grid cell

datasets with the task to automatically predict trajectories.
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Chapter 1

Introduction

Deep learning has seen a surge in popularity as accessibility to modern computational

resources continues to grow and more complex models have been deployed. The main tool

of deep learning is called an (artificial) neural network (NN), and since the implementation

of NNs containing more parameters has become computationally feasible, larger datasets

can be used for training, thus, leading to state-of-the-art results across a variety of tasks

in a number of domains. Neural networks get their name from the similarities between

their weights and activation functions and the axon-synapse-dendrite neuronal signaling

in the mammalian brain. Some NN architectures take the neuroscience inspiration one

step further in an attempt to mimic certain brain functions; for example, recurrent and

gated connections can provide neural networks with a type of working memory helpful for

dealing with time-series data [3]. The relationship between deep learning and neuroscience

extends beyond just architecture. Common training techniques like dropout have drawn

inspiration from neuronal activity, specifically the stochastic firing present in population

activity. Deep learning informs areas of neuroscience either with direct applications, e.g.,

neural decoding [4, 5, 6] or EEG-based epilepsy detection, or by biologically restricting neural

networks to experimentally observed connections and analyzing the networks dynamics as

it performs a specific task [7, 8]. Thus, the inspiration drawn from neuroscience by deep

learning gets reciprocated proving the pair of research areas are truly intertwined.

The symbiotic relationship is evident in the application of NNs to solving partial

di↵erential equations (PDEs), where NNs can be applied to PDEs relevant in computational

neuroscience. In these applications, the NNs model the solution to the PDE. Some popular

methods are called the Deep Ritz Method (DRM) [9], Physics-Informed Neural Networks
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(PINN) [10], and the Deep Galerkin Method (DGM) [11]. Each method follows a similar

algorithm of sampling the domain in a mesh-free manner and updating weights using a PDE-

based loss function. However, the methods di↵er in sampling strategy, NN architectures, and

the specific loss functions employed. In this work, we choose to focus on DGM due to its

resampling for training iterations and its incorporation of the strong formulation of the PDE

into the loss function. The use of meshless resampling helps avoid the curse of dimensionality

and provides better coverage of the domain than methods that sample only once at the

beginning of training. Other numerical methods for solving PDEs, like the finite di↵erence

method (FDM) or the finite element method (FEM), have seen improved results when certain

adaptive sampling strategies have been employed, and, thus, it appears worthwhile to explore

adaptive sampling strategies for DGM. These classical adaptive methods use what is called

a marking strategy driven by an error indicator to identify regions of the domain that could

benefit from additional sampling points. There exist some previous works that focus on

adaptive sampling for NN-based PDE solvers. In [12, 13], additional points are sampled, but

only a subset are marked and kept for training. Additionally, in [12], the domain is segmented

across the temporal dimension and several networks are pieced together to get a solution

for the entire domain. For the sake of e�ciency, we choose to develop an adaptive sampling

strategy that utilizes computations already necessary for training as our error indicators.

Using computational e�ciency and classical adaptive marking strategies as our motivation,

we develop the Adaptive Deep Learning Galerkin Method (ADLGM). In this method, no

extra points are wasted by not being used for training. ADLGM and its application to

a number of PDEs are presented in Chapter 3 (published in the Journal of Computational

Physics [14]). The final application of ADLGM featured in this work is to the Cable equation

which bares significance in neuroscience as it helps model the membrane potential in axons

and dendrites.

In Chapter 4, we take a task oriented approach to developing a topological deep learning

framework for neural decoding. Decoding methods typically employ statistical or deep

learning based models since one may view them as a regression problem where we learn

the relationship between the dependent variable being decoded and the independent spike

trains. Statistical methods like, but not limited to, linear regression, Bayesian reconstruction,

and Kalman filtering are utilized for their interpretability and relatively low computational

cost [4, 15, 1]. On the other hand, deep learning for neural decoding is a rapidly growing field

due to neural networks’ observed success at time-series tasks like sequence prediction as well

2



as neural networks’ ability to generalize beyond training data [4, 16, 17, 18]. Neural networks

have outperformed statistical methods at decoding head direction and two-dimensional,

environment-based position from neural recordings of head direction (HD) cells and place

cells, respectively [4, 5, 6]. Deep learning’s superior decoding performance has been observed

for a variety of network architectures including recurrent (RNNs) [19, 20], fully-connected

feed forward (FFNNs), and convolutional neural networks (CNNs) [17, 21]. The smaller

network sizes required for success in decoding compared to visual tasks allows for state-of-

the-art performance on limited amounts of data [15].

Neurons in the brain form dense connections that lead to heavily correlated activity.

Beyond these structural connections, higher-dimensional functional connectivity has been

observed within groups of neurons exhibiting similar firing properties; for example, grid cells

within a module [22]. Topological data analysis is comprised of techniques that heavily

utilize objects called simplicial complexes and has been applied to real-world problems in

di↵erent fields including, but not limited to, signal processing [23, 24, 25, 26], materials

science [27, 28], biology [29, 30, 31], and chemistry [32, 33]. Simplicial complexes, topological

spaces with the ability to describe multi-way relationships, naturally lend themselves to

defining and encapsulating the hierarchical properties of neuronal data [22, 34], making

them an increasingly popular tool for representing neural activity [35, 2, 36, 37, 38, 39, 40].

We propose a topological deep learning framework for neural spike train decoding by

defining population activity on a simplicial complex that is then embedded in our new neural

network architecture called a simplicial convolutional recurrent neural network (SCRNN).

The neural activity is defined on a simplicial complex via a pre-processing procedure, which

consists of binning the spikes to generate a spike count matrix that is then binarized,

and active cells within a time bin are connected by a simplex. The construction of the

simplicial complex makes no assumptions about the spike train’s encoding, and the higher

dimensional connectivity of the simplicial complex ameliorates feature representation. Note

the pre-processing procedure does not require prior knowledge of the neural activity beyond

spike counts, thus avoiding the high computational cost of computing properties such as

wavelet representations, coactivity, or other similarity measurements. The SCRNN employs

simplicial convolutional layers [41, 42, 43, 44] to extract features from the simplicial complex

that are then fed to recurrent layers. We validate the framework on HD data by comparing

results to those of simpler NN architectures that ignore the topology of the input data. Next,

we apply the framework to the more di�cult task of decoding two-dimensional position in an

3



environment from a population of grid cells. The higher dimension of the encoded variable

requires more cells for encoding; hence, the task requires larger networks and is more di�cult

to perform.

The chapters are organized as follows. Chapter 2 provides a foundational understanding

of the relevant deep learning tools used in this work. Chapter 3 describes ADLGM, an

adaptive marking strategy for DGM. We show ADLGM can provide more accurate solutions

in fewer training steps than baseline DGM. In Chapter 4, we develop a topological deep

learning framework for neural decoding that combines tools from topological data analysis

with the power of deep learning. We compare the method to common NN architectures on

HD data. Finally, we apply the method to grid cell data, which, to our knowledge, is the

first deep learning application to decoding recorded grid cell activity.
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Chapter 2

Background

This chapter serves to detail aspects of, and elucidate parallels between, the electrical

signaling in the mammalian brain and NNs. In section 2.1, we provide a brief overview

of the di↵erent parts of a neuron and their roles in the electric message-passing system in

the mammalian brain. Section 2.2 contains a review of the deep learning machinery employed

throughout this dissertation.

2.1 Neuronal Signaling

Neurons are the main units of information-processing in the brain. A neuron consists of

dendrites, a soma (cell body), and an axon; each part has a specific role in the transmission of

signals throughout networks of neurons. Dendrites receive signals from many other neurons

and pass these signals on to the soma. The soma sends these signals to the axon hillock,

which sums them. If the accumulated signal strength exceeds a certain threshold, it triggers

an action potential, or spike, and the axon hillock fires a signal down the axon. The signal

is then transmitted to other neurons via synapses ; this is where the axon terminals of one

neuron communicate with the dendrites of another.

Biological neural networks are densely connected with some neurons receiving and sending

signals to thousands of other neurons. How well two neurons communicate with one another

is referred to as synaptic strength and is controlled by what is called synaptic plasticity.

Synaptic plasticity is the weakening or strengthening of synapses based on their level of

activity. Two neurons frequently communicating with one another see an increase in synaptic

strength whereas two neurons rarely sharing signals learn to have a weaker connection.
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2.2 (Artificial) Neural Networks

To avoid any confusion, let us remark here that, for the rest of this work, we will strictly

refer to the population of neurons in the brain as a “biological neural network.”

The main units of a NN are perceptrons. Perceptrons consists of weights and a bias term

used to compute a weighted sum of its inputs that are then fed to an activation function,

see Defintion 2.1 for a formal description.

Definition 2.1. Let W 2 Rm, b 2 R, and � : R ! R be a nonlinear function. Then a

perceptron receiving input x 2 Rm computes

�
�
W

Tx+ b
�
.

Note here the similarities between a neuron and perceptron: weights analogous to

synaptic strength transform inputs received from dendritic structures that are then summed

and only high enough values trigger a meaningful output from the nonlinear function.

Neural networks are formed by connecting perceptrons, using the output of one or several

perceptrons as the input to others. One of the most basic NN architectures is a fully-

connected feedforward neural network (FFNN), see Definition 2.2 and Figure 2.1. In a

FFNN, perceptrons are stacked in layers where the output of each perceptron from the

previous layer is fed to each perceptron in the following layer.

Definition 2.2. For ` = 1, . . . , L, let W` 2 Rn(`�1)⇥n(`), b` 2 Rn(`), and let � : R ! R be

a nonlinear function. Then a fully-connected feedforward neural network with L� 1 hidden

layers receiving input x 2 Rm computes

x0 = �
�
W

T
0 x+ b0

�
,

x` = �
�
W

T
` x`�1 + b`

�
, ` = 1, . . . , L,

xout = W
T
L+1xL + bL+1,

where � is applied element-wise, n(`) is the width of layer ` for ` = 1, . . . , L, n(�1) = m,

and we take n(L+ 1) to be the desired dimension of the output.

Two other NN architectures relevant to this dissertation; the Elman RNN [19], see

Definition 2.3 and Figure 2.1, and the long short-term memory network (LSTM) [45], see
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Figure 2.1: (left) diagram of a FFNN with a two dimensional input, two hidden layers with
five nodes, and a one dimensional output. (right) an Elman RNN with a two dimensional
input and four dimensional hidden layer and hidden state, and four dimensional output. The
hidden state is denoted by orange nodes.
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Definition 2.4; feature connections that help NNs handle time-series data by using recurrent

connections.

Definition 2.3. Let Wh 2 Rm⇥n, Wy, Vc 2 Rn⇥n, bh, bc 2 Rn, and let � : R ! R be a

nonlinear function. Then an Elman RNN receiving input xt̃ from sequence {xt}Tt=1 ⇢ Rm,

for some 1  t̃  T computes

ht̃ = �
�
W

T
h xt̃ + bh + Vcht̃�1 + bc

�
,

yt̃ = � (Wyht̃ + b) .

where � is applied element-wise, h0 = 0 2 Rn, and ht̃ is called a hidden state.

A multi-layer RNN is created by stacking multiple RNNs, feeding the outputs, {xt}Tt=1, of

one as the inputs to another. The hidden state gives the network a type of working memory

similar to the mammalian brain.

An LSTM uses gated connections in addition to recurrent connections to mimic working

memory. The gated connections are incorporated in order to give the network a sense of

what information from the input sequence is relevant to the current time step.

Definition 2.4. Let Wf ,Wi,Wo,Wc 2 Rm⇥n, Vf , Vi, Vo, Vc 2 Rn⇥n, and bh, bc 2 Rn. Let

�s : R ! R be a sigmoid function and �h : R ! R be the hyperbolic tangent function, i.e.

�h(x) = tanh(x). Then an LSTM cell receiving input xt̃ from sequence {xt}Tt=1 ⇢ Rm, for

some 1  t̃  T computes

ft̃ = �s

�
W

T
f xt̃ + Vfht̃�1 + bf

�
,

it̃ = �s

�
W

T
i xt̃ + Viht̃�1 + bi

�
,

ot̃ = �s

�
W

T
o xt̃ + Voht̃�1 + bo

�
,

ĉt̃ = �h

�
W

T
c xt̃ + Vcht̃�1 + bc

�
,

ct̃ = ft̃ � ct̃�1 + it̃ � ĉt̃,

ht̃ = ot̃ � �h (ct̃) .

where �s, �h are applied element-wise, � denotes Hadamard (element-wise) multiplication,

and h0 = 0 2 Rn.

Network weights are computed using a training process with the ultimate goal of

minimizing some chosen loss function. Unlike biological neural networks’ employment of
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synaptic plasticity, neural network parameters are updated via stochastic gradient descent

or one of its variations. Despite this departure from biological relevance, there exist training

techniques, outside of updating weights, that have drawn inspiration from observed behavior

of the mammalian brain. One such technique, utilized in both Chapter 3 and 4, is dropout.

When employing dropout, some desired percentage, pdrop, of network nodes, including the

nodes’ incoming and outgoing connections, are temporarily and randomly not included in

the forward pass through the network. This mirrors the stochastic firing of neurons in

the brains and is aimed to prevent overfitting and improve the generalization power of the

network. Here, overfitting refers to a network that performs well on training data, but does

not generalize to data not seen during training. By only including a subset of the network

in di↵erent training steps, nodes of the network will not learn to correct the errors of other

nodes, which can lead to overfitting.
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Chapter 3

The Adaptive Deep Learning

Galerkin Method

In this chapter, we develop ADLGM and test it against its baseline counterpart on a variety

of PDEs. In section 3.1, we describe DGM. Section 3.2 details ADLGM and its features.

Section 3.3 contains comparisons of ADLGM and DGM on several PDEs over di↵erent

domains. In section 3.4, we remark on the e↵ectiveness of using the residual as an error

indicator for a marking strategy. In section 3.5, we directly apply our ADLGM algorithm

to the Cable equation, a popular PDE in neuroscience used to model membrane potential

throughout dendritic trees.

3.1 Deep Galerkin Method

Consider a PDE of the form,

N (u(x, t)) = f(x, t), x 2 ⌦, t 2 (t0, T ]

B(u(x, t)) = 0, x 2 @⌦, t 2 (t0, T ] (3.1)

I(u(x, t0)) = 0, x 2 ⌦

where N is a general di↵erential operator and ⌦ 2 Rd is open and bounded. In DGM, the

solution to the PDE (3.1) is approximated by a neural network U(x, t; ✓) with parameters ✓,

which are learned through training. The training process of DGM involves sampling from

the spatiotemporal domain, evaluating a loss function, and updating the network parameters
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according to a preferred optimization scheme, typically some form of gradient descent. The

goal of training is to minimize the loss function, which for DGM, incorporates the strong

form of the PDE (3.1) and is defined by

LFDGM = LFr + LFb + LF0, (3.2)

where, for {xn} = {(xn, tn)} ⇢ ⌦⇥ (t0, T ], {xb,n} = {(xb,n, tn)} ⇢ @⌦⇥ (t0, T ], and {x0,n} =

{(xn, t0)} ⇢ ⌦ ⇥ {t0} ⇢ Rd+1,

LFr := MSE [N (U({xn}; ✓))� f({xn})] ,

LFb := MSE [B(U({xb,n}; ✓))] , (3.3)

LF0 := MSE [I(U({x0,n}; ✓))] ,

and MSE denotes the mean square error.

DGM employs a specific network architecture, shown in Figure 3.1, to approximate the

solution. The hidden portion of a DGM network consists of what we refer to as DGM layers

followed by one fully connected layer. Each DGM layer contains four sub-layers, depicted in

Figure 3.2.

For DGM, forward propagation for a given input x = (x, t) 2 Rd+1 through a network

U(x; ✓) with L+ 1 hidden layers is as follows [11]:

S
1 = �(W 1x+ b

1),

Z
l = �(V z,lx+W

z,l
S
l + b

z,l), l = 1, . . . , L,

G
l = �(V g,lx+W

g,l
S
l + b

g,l), l = 1, . . . , L,

R
l = �(V r,lx+W

r,l
S
l + b

r,l), l = 1, . . . , L, (3.4)

H
l = �(V h,lx+W

h,l(Sl �R
l) + b

h,l), l = 1, . . . , L,

S
l+1 = (1�G

l)�H
l + Z

l � S
l
, l = 1, . . . , L,

U(x; ✓) = WS
L+1 + b,

where � denotes Hadamard (element-wise) multiplication, � : RM ! RM is the element-

wise activation function, M is the number of units per sub-layer, and ✓ = {V,W, b} with the

di↵ering superscripts are the model parameters.
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Figure 3.1: A schematic of the DGM network architecture with three DGM layers.
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Figure 3.2: Diagram displaying the four sub-layers and flow within a single DGM layer.
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As can be observed in Figure 3.2 and the equations listed in (3.4), a DGM layer consists of

four sub-layers, denoted Z,G,R, and H, each with its own two weight matrices and a single

bias vector, totaling eight weight matrices and four bias vectors per DGM layer. These extra

parameters help balance the e↵ort between avoiding vanishing gradients and capturing the

complex behavior of certain solutions, something not explicitly addressed in the architecture

of a simple feed-forward network.

Algorithm 1: DGM [11]

initialize the network U(·; ✓) ;
while i  imax do

Sample {xj} ⇢ ⌦ ⇥ [t0, T ] according to chosen probability densities;
Calculate loss at the randomly sampled points LFDGM(xj);
Perform one step of gradient descent at the randomly sampled points;

end

3.2 Adaptive Deep Learning Galerkin Method

In this section, we develop an adaptive sampling framework which optimizes the training

points for that method. We are inspired by the idea of adaptive mesh refinement [46]

techniques, mostly used in traditional numerical PDEs and specifically the finite element

method and its derivatives [47]. This technique improves the accuracy and e�ciency of

a base numerical method by better resolving the computational solution in parts of the

spatiotemporal domain where the PDE solution has “di�cult” features that require more

information. The method of identifying and marking those regions that require more

information, is called a marking strategy, and this marking strategy uses an error indicator

function to drive it. The marked regions are then enriched with more information via

adaptive mesh refinement. The adaptive sampling proposed is e�ciently applied to the

DGM algorithm, which constantly needs resampling of the training points set. The method

incurs no additional significant overhead since it does not require the resampling of a second

set of points just for adaptivity purposes, where only few are eventually chosen, although the

error indicator is calculated on all. The error indicator driving the adaptive procedures is the

loss function used in DGM already, which means no additional calculations are required. The

marking strategy uses an e�cient standard sorting routine, and the “additional” points are

introduced following the same spirit of the refinement idea used in traditional finite element

14



methods when local refinement is performed but without the extra overhead. The batch size

does not grow larger than a certain max size, which can be chosen a priori, because of the

way we are implementing the marking and the resampling; hence, the computational cost

is even less than the DGM with the same max number of training points which we use to

compare it with. So our method really improves DGM by making it more e�cient and more

accurate.

3.2.1 Method Description

Taking the square root of a loss function is a common machine learning technique that can

help with updating weights during training and was shown to improve the process of solving

PDEs using neural networks [48]. Another machine learning and optimization technique

is to employ penalty parameters to emphasize specific terms of interest within the loss

function [12, 13]. For these reasons, we define our loss function, LF , to be,

LF :=
p

CrLFr + CbLFb + C0LF0, (3.5)

where Cr, Cb, C0 > 0 are the penalty parameters for the PDE residual term, the boundary

and initial conditions terms as defined in equation (3.3), respectively.

In DGM, one simply samples points according to preferred probability densities and uses

those points for one training iteration. For our method, we use the loss function of DGM,

equation (3.2), as an error indicator to identify regions in need of refinement and generate

extra points in these parts of the domain su↵ering from high loss values. We first sample a

fixed amount of uniformly distributed points, and we calculate the loss function value on the

existing uniformly sampled spatiotemporal training points {x`}N`=1 ⇢ ⌦ ⇥ [t0, T ]. We note

here that this is already done as a part of the base DGM algorithm, so no extra computational

cost is incurred for this step. We then insert the contribution of each training point to the

loss function, LF` := LF (x`), where

LF (x`) =

8
>>><

>>>:

LFr , x` 2 ⌦ ⇥ (t0, T ]

LFb , x` 2 @⌦ ⇥ (t0, T ]

LF0 , x` 2 ⌦ ⇥ {t0}

,
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in a vector and sort it from high to low. We choose the points with the higher loss

function values by following the classical idea in [49], i.e. by choosing only the loss function

contributions from the first k < N points, where the sum of those k is a certain prescribed

percentage p of the global loss function value LF . That is,

kX

`=1

LF`  p LF.

We use each one of the original, marked training points {x`} as the mean of a multivariate

normal distribution with covariance matrix ⌃ = v0Id, where Id 2 R(d+1)⇥(d+1) is the identity

matrix, to increase the resolution of the data set around that point. In this work, an episode

refers to a single sampling trained for a fixed number of ADAM optimization steps. We call

each of these ADAM training steps an iteration. At every episode, we repeat the adaptive

sampling process until training is complete (see Algorithm 2). That is, we resample the fixed

uniform points and also sample the extra points adaptively where is needed. In this way, we

are naturally defining our adaptive framework in an e�cient manner following the spirit of

classical adaptive methods.

Algorithm 2: Adaptive Sampling DGM

initialize the network U(·, ✓) ;
while LF > tol and i < imax do

Sample {xj} in ⌦̄ ⇥ [t0, T ] uniformly;
Calculate loss function contribution LF (xj) at each point;
Insert loss at each point in vector {LF`}N`=1 and sort from high to low;

if
Pk

`=1 LF`  p LF then
for each uniform point x`, ` = 1 . . . k;
generate m` additional points s.t. µ` ⇠ N (x`, v0Id);

end
Use the enriched training set to find U(x, ✓) ;
using one episode of DGM[11] by doing a certain fixed number of training steps;

end

3.2.2 Hyperparameter Sensitivity Analysis

We perform hyperparameter analysis to understand the sensitivity of our method to the

number of additional points sampled per marked mean. For this, we select the following
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Poisson problem

��u(x, y) = 2n2
⇡
2 sin(n⇡x) sin(n⇡y), in ⌦ (3.6)

u(x, y) = 0, on @⌦

where ⌦ = (0, 1)2, which has known oscillatory solution

u(x, y) = sin(n⇡x) sin(n⇡y).

Specifically, we solve the problem for n = 4 by employing a network with the DGM

architecture containing L = 2 layers (3 hidden layers total) and M = 16 units per sub-

layer. In this work, although ADLGM may be applied to initial and boundary points, we

only perform adaptive sampling on the interior of the domain, e↵ectively replacing LF with

LFr in Algorithm 2. We resample 500 interior points with 2,000 boundary points at every

episode. Each episode consists of 10 iterations. At each resampling the interior points

accounting for p = 20% of the interior loss are used as the means of normal distributions for

additional points with a fixed value v0 = 0.001 for each chosen mean. For penalty terms,

we use Cr = 1 and Cb = 800. The high penalty term and oversampling on the boundary

helps compensate for the adaptivity on the interior. Here we test solving eq. (3.6) with 1,

3, 5, and 10 additional points per mean. Absolute and relative error measurements of the

approximate solution are computed on uniform grids of points {xi}
Ngrid

i=1 evenly spaced in

each spatiotemporal direction covering the entire domain using the following equations,

MSEabs :=
1

Ngrid

NgridX

i=1

(U(xi; ✓)� u(xi))
2
,

MSErel := [MSEabs] /

2

4 1

Ngrid

NgridX

i=1

u(xi)
2

3

5 .

As shown in Table 3.1 and Figure 3.3, generating 1 extra point per marked mean achieved the

best accuracy and proved to be the most stable. This suggests adding too many points to each

marked mean degrades the enhancement from employing the adaptive method. Intuitively,

this makes sense as the resultant clustering, evident in Figure 3.4, from the superfluous

adaptive points can lead to an imbalanced training data set. For e�ciency and to eliminate

a hyperparameter, in the subsequent tests we only keep one extra point per mean.
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Table 3.1: Error and loss measurements for the Poisson problem (3.6) with n = 4. Values
reported are averages of 10 realizations, see Figure 3.3. The error and loss both increase
with the number of points added per marked mean.

number of points
p
LFr

p
MSEabs

p
MSErel

1 0.4067 1.960⇥ 10�3 3.940⇥ 10�3

3 0.4917 3.141⇥ 10�3 6.314⇥ 10�3

5 0.5970 4.137⇥ 10�3 8.316⇥ 10�3

10 0.8184 6.057⇥ 10�3 1.217⇥ 10�2
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Figure 3.3: Error and loss per episode measurements for the Poisson problem (3.6) with
n = 4. The solid points and shaded region correspond to the mean and two standard
deviations, respectively. The square root of the residual and error was measured on a uniform
grid for 10 realizations of each points per mean value. The magnification of the last 2000
episodes reveals that adding only one point per mean performs best.
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Figure 3.4: Absolute residual (left column) and absolute error (right column) plots for the
Poisson problem (3.6) with n = 4 at episode 500 with sample points superimposed. Each
row corresponds to the number of points added per marked mean. From top to bottom, we
show 1, 3, 5, and 10 points points per mean. The residual and error, though of di↵erent
orders of magnitude, mirror each other locally.
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3.2.3 Adaptive Variance

Here we show that adapting the variance increases the stability of the plain adaptive sampling

DGM and makes the method less sensitive to penalty terms. The motivating intuition behind

the adaptive variance is to further localize the extra adaptively added points in the marked

regions with the highest residual. We employ the adaptive method mentioned in Algorithm 2,

but within an episode, the hyperparameter controlling the covariance matrix, v0, is not fixed

for each marked mean. The diagonal elements of the covariance matrix are now dependent

on the value of the residual at that point. To be more precise, given a marked mean, x`,

and chosen initial variance, v0, we sample extra points according to a multivariate normal

distribution centered at x` with covariance matrix ⌃` = v`Id such that

v` = v0

����
LFr(xmin)

LFr(x`)

���� , (3.7)

with xmin denoting the marked mean with the lowest residual of the original uniformly

sampled points at the start of that particular episode.

We note that we have performed various tests that showed that the adaptive variance

DGM (ADLGM), exhibits similar behavior to plain adaptive with regards to points per

mean. Thus, for each uniformly sampled point that has been marked for refinement, we

only adaptively sample one additional point when we employ ADLGM. A similar adaptive

technique was tested on the points per mean hyperparameter where, guided by the ratio

featured in equation (3.7), more points were adaptively distributed around marked points

with higher residuals but showed no improvement.

We demonstrate the results for the Poisson problem (3.6) with n = 4 for the penalty

terms Cb = 100, 800 using the same network architecture and sampling hyperparameters

as the previous section. Figure 3.6 exhibits the additional stability resulting from the

adaptive variance and shows that ADLGM converges in fewer episodes than its plain adaptive

counterpart.

3.3 ADLGM vs DGM Comparisons

In this section, we demonstrate the e↵ectiveness of our algorithm on the oscillatory solution

Poisson problem the Poisson problem with a square nonlinearity, and Burgers’ equation, two

benchmark problems often used to test adaptive methods. We also solve more examples
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Figure 3.6: Loss per episode measurements for the Poisson problem (3.6) with n = 4
comparing plain adaptive sampling to adaptive variance sampling (ADLGM) for the test
cases Cb = 100, 800. (top row): Cb = 100. (bottom row): Cb = 800. The solid points and
shaded region correspond to the mean and two standard deviations, respectively. The right
plots are a magnification of the last 2000 episodes. The plots show that ADLGM trains
faster and the shaded regions reveal that the adaptive variance improves stability.
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discussing the suitability of the PDE residual as a good error indicator for our adaptive

procedures. All DGM realizations use the same number of episodes and iterations as their

ADLGM counterpart as well as the same loss function (3.5).

3.3.1 Poisson with Oscillatory Solution

Now we show that our ADLGM learns better and faster than the DGM, the solution to the

oscillatory solution PDE in (3.6). We provide results for both DGM and ADLGM for the

cases n = 4 and 8, see Figure 3.7 for approximate solutions.

For all comparisons, the batch size used in the DGM tests is slightly higher than the

maximum batch size observed in all episodes of ADLGM runs. We remark that ADLGM

maximum batch size was used in only few episodes.

In Table 3.2, we display the loss, error, and relative error, and in figures 3.8 and 3.9, we

see that ADLGM converges faster to a more accurate solution in a significantly more stable

manner. We note that for n = 4 we use the same network parameters as in subsection 3.2.2

for 5,000 episodes of training. For n = 8 since it produces a more oscillatory solution, we

increased the width of our DGM sub-layers to M = 64 units from the 16 used for n = 4.

3.3.2 Poisson with Squared Nonlinearity

Now we proceed to test a di↵erent elliptic PDE that has a square nonlinearity equipped with

non-constant Dirichlet boundary conditions,

��u+ u
2 = f(x, y), (x, y) 2 ⌦, (3.8)

u(x, y) = g(x, y), (x, y) 2 @⌦ .

We use the method of manufactured solutions and choose f and g such that u(x, y) =

sin(↵⇡(x � 0.5)(y � 0.5)) is the exact solution to the boundary value problem (3.8) in

⌦ = (0, 1)2. The chosen two values of the coe�cient ↵ = 8, 16 correspond to progressively

more complicated PDE problems, see Figure 3.10. We plot the results in Figure 3.11 and

observe that the improvement of ADLGM over the DGM in row 1 Figure 3.11 grows as the

PDE becomes more complicated using the same size network (see, row 2 Figure 3.11). In

Figure 3.12 we plot also the 2D exact error and residual landscape plots, showing that in

this case the residual properly tracks the error.
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Figure 3.7: Solutions of the Oscillatory Poisson problem (3.6) generated by ADLGM. (left)
n = 4, and (right) n = 8.
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Table 3.2: Error and loss measurements for the Poisson problem (3.6) with n = 4, and 8.
Values reported are averages of 10 realizations. For n = 4 and 8, ADLGM improves accuracy
and achieves a lower residual.

n Method
p
LFr

p
MSEabs

p
MSErel

4
DGM 1.088 8.266⇥ 10�3 1.259⇥ 10�2

ADLGM 0.6644 4.173⇥ 10�3 8.389⇥ 10�3

8
DGM 4.451 1.390⇥ 10�2 2.794⇥ 10�2

ADLGM 3.053 8.519⇥ 10�3 1.712⇥ 10�2

26



Figure 3.8: Error and loss per episode measurements on a logarithmic scale for the Poisson
problem (3.6) with n = 4. The solid points and shaded region correspond to the mean and
two standard deviations, respectively. (left): residual (right): error. The plots reveal that
ADLGM again achieves better accuracy with improved stability.
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Figure 3.9: Error and loss per episode measurements on a logarithmic scale for the Poisson
problem (3.6) with n = 8. The solid points and shaded region correspond to the mean and
two standard deviations, respectively. (left): residual (right): error. Similar to the n = 4
case, ADLGM achieves better accuracy with improved stability.
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Figure 3.10: Solutions of the Poisson problem with square nonlinearity as in equation (3.8)
generated by ADLGM. (left) ↵ = 8, and (right) ↵ = 16.
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Figure 3.11: Residual and absolute error per episode on a logarithmic scale for comparison of
ADLGM to DGM for the Poisson problem with square nonlinearity as in equation (3.8) with
↵ = 8, 16. The solid points and shaded region correspond to the mean and two standard
deviations, respectively. (top row): ↵ = 8 (bottom row): ↵ = 16. ADLGM achieves better
accuracy than DGM throughout training.
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Figure 3.12: Residual and absolute error plots for the Poisson problem with square
nonlinearity as in equation (3.8) with ↵ = 16 at episode 500.
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3.3.3 Burgers’ Equation

In this section, we provide results on solving Burgers’ equation using ADLGM. We tested

our algorithm on the following Burgers’ equation with one spatial dimension and Dirichlet

boundary conditions:

ut + uux �
0.01

⇡
uxx = 0, x 2 (�1, 1), t 2 (0, 1]

u(x, 0) = � sin(⇡x), x 2 (�1, 1) (3.9)

u(�1, t) = u(1, t) = 0, t 2 (0, 1]

For comparison purposes, we compute a high fidelity numerical solution using FEniCS [50,

51], see Figure 3.13. We solve the problem with a network with the DGM architecture

containing L = 2 layers (3 hidden layers total) and M = 5 units per sub-layer. We resample

10,000 interior points with 200 boundary points and 100 initial points at every episode.

Each episode consists of 10 iterations. At each re-sampling the interior points accounting

for p = 10 percent of the interior loss are used as the means of normal distributions for

additional points with an initial variance value v0 = 0.0001, smaller than the initial variance

used for the oscillatory Poisson problem (3.6) to account for the thin shock in the Burgers

solution.

In the rest of the work, we do 1000 episodes of ADAM training, and using the sample

points from the last adaptive episode, we perform 10,000 iterations of L-BFGS. This allows

for comparison to various adaptive methods that have been applied to PINN [13]. As shown

in Table 3.3, ADLGM achieves better accuracy and lower residual than DGM. These results,

Table 3.3, are comparable to those observed for an adaptive version of the PINN method in

figure 8 in [13].

We remark here that in the Burgers’ tests, as shown in Figure 3.14, we observe that

earlier in the training process, the residual does not mirror the error locally like we observed

in figure 3.8 for the oscillatory problem. Later in the training process they match better.
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Figure 3.13: Solution to Burgers’ Equation (3.9) generated by ADLGM.
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Table 3.3: Error and loss measurements for Burgers’ problem (3.9). Values reported are
averages of 10 realizations. ADLGM improves accuracy and achieves a lower residual.

Method
p
LFr

p
MSEabs

p
MSErel

DGM 1.394⇥ 10�2 1.329⇥ 10�2 2.166⇥ 10�2

ADLGM 9.450⇥ 10�3 5.763⇥ 10�3 9.394⇥ 10�3
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Figure 3.14: Absolute residual (left column) and absolute error (right column) plots for
Burgers’ problem (3.9) with sample points superimposed. From top to bottom, each row
corresponds to episode 250 and 1000. Note the regions of highest magnitude for the residual
and error converge to the same parts of the domain as training occurs.
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3.4 Notes on Residual as a Marking Strategy

3.4.1 ADLGM on Allen-Cahn Equation

Here we show the results from testing ADLGM on the following Allen-Cahn PDE:

ut � 0.0001uxx + 5u3 � 5u = 0, x 2 (�1, 1), t 2 (0, 1]

u(x, 0) = x
2 cos(⇡x), x 2 (�1, 1) (3.10)

u(t,�1) = u(t, 1), ux(t,�1) = ux(t, 1), t 2 (0, 1]

Here, we again use FEniCS [50, 51] to compute a high fidelity solution for the purpose of

calculating errors. The network we use to solve the Allen-Cahn problem consists of L = 3

DGM layers with M = 40 units per sub-layer. At each ADAM episode we sample 20,000

interior, 200 boundary, and 100 initial points. We use p = 5 percent for marking and set

the initial variance to v0 = 0.001 for adaptively adding points. For a penalty term, we use

C0 = 100 because DGM and ADLGM, and PINN, see [12], were not able to converge to a

solution without it.

Figure 3.16 shows ADLGM is able to drive down the absolute residual to slightly lower

values than DGM; however, this does not correspond to a lower maximum error. Looking at

the residual plots in Figure 3.17, we see that throughout training the regions of high residual

do not coincide with those of highest error leading the residual-based marking strategy to

add points to region of relatively low error. This might explain why the e↵ect of ADLGM

on the error is negligible.

Note that the regions marked by ADLGM in the earlier episodes are the same regions

identified for the highest weights in [52], indicating the agreement of our adaptive method

and marking strategy with their results, even if they use a radically di↵erent approach to

adaptivity. This fact, emboldens us to say that the residual is not a sharp local error

indicator, like you would expect to have, in order to correctly drive the marking strategy

and adaptivity.
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Figure 3.15: Solution to Allen-Cahn Equation (3.10) generated by ADLGM.
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Figure 3.16: Residual and error plots for (top row): ADLGM and (bottom row): DGM. We
see that ADLGM achieves similar results to DGM.
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Figure 3.17: Absolute residual (left column) and absolute error (right column) plots for the
Allen-Cahn PDE (3.10) with sample points superimposed. From top to bottom, each row
corresponds to episode 200 and 1000. Note the regions of highest magnitude for the residual
and error do not mirror each other throughout all of training.
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3.4.2 ADLGM on Poisson on a Notch Domain

To further test our algorithm and the assertion regarding error and residual discrepancy we

consider the following Poisson problem on a notch domain:

�u = 0, in ⌦ (3.11)

u(r,�) = r
2
3 sin

✓
2

3
�

◆
, on @⌦

where ⌦ = [�0.5, 0.5]2 \ {(x, y) :
�3⇡

4
 �  3⇡

4
} and � denotes the polar angular

coordinate of the pair (x, y). This problem has an exact solution

u(r,�) = r
2
3 sin

✓
2

3
�

◆
,

shown in Figure 3.18, with a point singularity in the first derivative at the origin. To tackle

this PDE, we use the same network and sampling hyperparameters as we did for the n = 4

case of the oscillatory Poisson problem (3.6).

We observe that, similarly to Allen-Cahn, the residual does not mark the regions with the

highest error during training, see Figure 3.19. The highest residual can be found in the sharp

corners, while the highest error lies close to the boundary near the origin where the derivative

is infinite. We like to note that our algorithm performs as intended, which is to minimize

the residual, but the residual is failing to mirror the error locally. The consequence of this

is that ADLGM shows negligible improvement in accuracy over DGM, when comparing the

error plots.

In order to drive our marking strategy to the regions su↵ering the worst accuracy, we now

test a di↵erent ad-hoc error indicator [53] adapted from the inverse inequality used in finite

element methods [54]. Specifically, instead of marking the means with the highest residual,

we use the value
krxU(x)k
kU(x) + ✏k , (3.12)

for some small ✏ > 0, to drive the “refinement”.

We test this new strategy using the same network parameters as before, but now we mark

the points where
krxU(x)k
kU(x) + ✏k > p · c,
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Figure 3.18: Solution to the Poisson problem on the notch domain (3.11) generated by
ADLGM using the inverse inequality marking strategy.
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Figure 3.19: Absolute residual (left column) and absolute error (right column) plots for the
notch domain Poisson problem (3.11) with sample points superimposed. From top to bottom,
each row corresponds to episode 250 and 1000. Note the regions of highest magnitude for
the residual and error do not mirror each other throughout all of training.
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with p = 60 percent and c = 2.83, which was observed to be a suitable upper bound to

(3.12) as the model converged to the solution of problem (3.11). Note the value for c is

problem dependent and, hence, would need to be recalculated if the strategy was employed

to solve a di↵erent PDE. The results, see Figure 3.20, show that while the inverse inequality

marking strategy successfully adds points to the parts of the domain with the highest error,

especially later in training, it does not lead to a significant improvement in approximating

the solution. We conjecture this is because the DGM setup, and other deep learning PDE

solving techniques, minimize a loss function that is based on the residual for the interior of

the domain. Thus, any adaptive strategy can only aim to reduce the residual even when it

proves to be a poor error indicator for certain PDEs. This realization might point to the

need for modifying appropriately the loss term specifically the residual in order to become

more sharp error indicator, analogously with the classical mesh adaptivity setup where a

sharp residual type a posteriori error estimator is not just the norm of the residual.

3.5 Cable Equation

Now we apply ALDGM directly to a PDE relevant in neuroscience, the Cable equation. The

cable equation has been used to model membrane potential in axons and dendrites. One

of the most famous of these models is the Rall model, which represents a dendritic tree as

a cylinder of finite length, Lc, with uniform passive membrane [55, 56]. Assuming “sealed

end” boundary conditions; that is, no flow out of either end of the cylinder; this model takes

the form

@
2
V

@X2
= V +

@V

@T
, x 2 [0, Lc], T > 0

@V (0, T )

@X
= 0 =

@V (Lc, T )

@X
, T > 0 (3.13)

V (X, 0) = h(X), x 2 [0, Lc].

A general solution to (3.13) has been obtained using separation of variables [57] and is given

V (X, T ) =
1X

n=0

Bncos

✓
n⇡X

Lc

◆
e
�[1+(n⇡

Lc
)2]T

, (3.14)
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Figure 3.20: Value of (3.12) (left column) and absolute error (right column) plots for the
notch domain Poisson problem (3.11) with sample points superimposed. From top to bottom,
each row corresponds to episode 250 and 1000. The inverse inequality marking adds points
to the region of high error, but this does not lead to a more accurate model.
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where

B0 =
1

Lc

Z Lc

0

h(X)dX

Bn =
2

Lc

Z Lc

0

h(X)cos

✓
n⇡X

Lc

◆
dX.

Here, we apply ADLGM to (3.13) with h(X) = 50cos(⇡X) and Lc = T = 1, which, by (3.14),

has exact solution

V (X, T ) = 50cos (⇡X) e�(1+⇡2)T
.

We solve the problem with a network consisting of L = 4 layers (5 hidden layers total) and

M = 32 units per sub-layer. We resample 5,000 interior points with 400 boundary points

and 200 initial points at every episode. At each re-sampling the interior points accounting

for p = 1 percent of the interior loss are marked and used as means to the multivariate

normal distributions used to generate adaptive points. Similar to solving the Allen-Cahn,

we use C0 = 100 in the loss function to make sure we properly capture the initial activity,

but here we set Cb = 50 to improve the solution along the boundary. After 4,000 episodes

of ADAM optimization and 10,000 iterations of L-BFGS, we obtain the results presented in

Table 3.4 and Figure 3.21.
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Table 3.4: Error and loss measurements for the Cable equation (3.13).

p
LFr

p
MSEabs

p
MSErel

8.125⇥ 10�2 0.5368 6.890⇥ 10�2
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Figure 3.21: (left) Exact solution to the Cable equation (3.13) given by equation (3.14).
(right) Solution obtained using ADLGM.
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Chapter 4

A Topological Deep Learning

Framework for Neural Spike Decoding

In this chapter, we take a task-oriented approach to develop a topological deep learning

framework for decoding grid cell spike trains. In section 4.1, we provide background on

neural decoding and grid cells. Section 4.2 provides details on tools from TDA that we use

to represent neural activity. In section 4.3, we present the overall framework; specifically, we

describe how we define neural activity on a simplicial complex and the dynamics of the novel

SCRNN architecture that we employ to handle these simplicial complexes. We conclude

the chapter with section 4.4 in which we apply our framework to two separate datasets of

neural population activity. We first validate the method by decoding head direction from a

population of HD cells, and compare the results to those produced by other NN architectures.

Next, we demonstrate the e↵ectiveness of the method by decoding two-dimensional location

from a population of grid cells. Notably, to the best of our knowledge, our grid cell decoding

task marks one of the first deep learning applications to decoding experimental grid cell data.

Most di�culties accompanying decoding experimental, rather than simulated, neuronal data

can be attributed to the inherent noise in the data itself as well as the number of cells required

to encode certain variables. This noise may be typically generated from recording devices and

the fact that some cells are responsible for encoding more than one piece of information [58].

Several steps of the pre-processing procedure were designed with such noise in mind.
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4.1 Neural Decoding

Neurophysiological recording techniques have produced simultaneous recordings from in-

creased numbers of neurons, both in vitro and in vivo, allowing for access to the activity

of the hundreds of neurons required to encode certain variables [2, 59, 60, 61]. This makes

e�cient algorithms for decoding the information content from neural spike trains of increasing

interest. Neural decoding can help provide insight into the function and significance of

individual neurons or even entire regions of the brain [62]. Further, recent work in the area

of brain-machine interfaces has integrated neural decoding of brain cells of certain utility

into models used for prosthetic device control, perceptual readout, and communication with

disabled patients [63, 64, 65]. One particular type of brain cell recently recorded in a quantity

that allows for the analysis of its functional connectivity and structure of its population

activity is the grid cell [2].

Grid cells are believed to be pivotal to mammalian navigation by playing a role in

path integration [22, 58, 66], which is the integrating of one’s velocities, and vector-based

navigation, the planning of trajectories to target locations [67, 68, 69]. Grid cells encode

two-dimensional allocentric location by forming hexagonal, periodic firing fields within an

environment [22, 58, 67]. Grid cells with firing fields exhibiting the same spacing and

orientation form what are referred to as modules [58, 70]. Due to the critical role grid cells

play in the mammalian navigation system, we are interested in decoding grid cell activity.

Existing grid cell decoding e↵orts simulate grid cell activity within a heavily-tuned deep

learning-based model trained on a spatial orientation or navigational task, and the simulated

activity is then decoded using fully-connected feed forward or recurrent layers [71, 72].

However, these deep learning applications to neural decoding utilize architectures that ignore

the underlying structure of the input neural activity. To appeal to this existing blindspot,

we propose a topological deep learning framework for neural spike train decoding that takes

into account the functional connectivity of neural data by first defining it on a simplicial

complex. We then exploit the power of deep learning by employing our new neural network

architecture that is designed to input and extract data from simplicial complexes called a

simplicial convolutional recurrent neural network (SCRNN), see Figure 4.1.
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Neural Activity

Pre-Processing
(Fig. 4)

SCRNN
(Fig. 5)

Figure 4.1: An overview of our framework. Neural data in the form of spike trains,
represented by a raster plot, is defined on a simplicial complex via a pre-processing procedure,
see Figure 4.2. The raster shown includes the activity of only five neurons for clarity. The
simplicial complex gets input into a SCRNN, see Figure 4.3. Finally, the SCRNN decodes
the desired variable(s). Here, we depict 2D location being decoded with the start and end
locations of the trajectory depicted by a circle and star, respectively.
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4.2 Topological Data Analysis Background

We introduce simplices and simplicial complexes, the topological structures we exploit for

feature representation.

To define a k�simplex, we first must define what it means to be geometrically

independent.

Definition 4.1. A collection {v0, v1, . . . , vn} ⇢ Rd \ {0} is geometrically independent if and

only if for any {t0, t1, . . . , tn} ⇢ R with
Pn

i=0 ti = 0, the condition
Pn

i=0 tivi = 0 implies

ti = 0 for all i 2 {0, 1, . . . , n}.

Definition 4.2. A k�simplex, s
k, is the convex hull of k + 1 geometrically independent

points {v0, v1, . . . , vk}, denoted by [v0, v1, . . . , vk].

Definition 4.3. The faces of a k�simplex [v0, v1, . . . , vk] are the (k� 1)�simplices given by

[v0, . . . , vj�1, vj+1, . . . , vk] for some j 2 {0, 1, . . . , k} and are denoted s
k�1
j ⇢ s

k.

Definition 4.4. A simplicial complex S is a collection of simplices satisfying

1. if s 2 S, then every face of s is in S and

2. if s1, s2 2 S, then s1 \ s2 = ; or s1 \ s2 2 S .

To ease understanding, one may consider a 0-simplex as a vertex, a 1-simplex as an

edge, a 2-simplex as a triangle, a 3-simplex as a tetrahedron, and so on. Orientation can be

assigned to k�simplices forming what is called an ordered k�simplex. For a face sk�1 ⇢ s
k, if

the orientation of sk�1 coincides with that of sk, we write s
k�1 � s

k. Additionally, features,

typically vectors or scalars, can also be assigned to the simplices. The features of the

k�simplices are represented by a vector, or matrix depending on the feature size, called the

k�cochain, and it is denoted by ck.

Definition 4.5. Let {ski }
Nk
i=1 be the ordered k�simplices of a simplicial complex. Then for

each s
k
i 2 {ski }

Nk
i=1, assign a feature c

i 2 RNfeat. The k�cochain, ck 2 RNk⇥Nfeat, is then

given,

[ck]ij =
⇥
c
i
⇤
j
. (4.1)
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4.3 Method

4.3.1 Pre-processing

To define the population activity of a group of cells on a simplicial complex, we partition time

into non-intersecting bins and compute the spike counts for each bin. After a thresholding

procedure, active cells within a time bin are connected via the appropriate-dimensional

simplex. The result is a simplicial complex where connectivity is generated by functional

activity. That is, simplices do not represent anatomically supported structural connections

between neurons, but rather a temporally linked firing of neurons. We call this complex the

functional simplicial complex. Note that the functional simplicial complex is discovered in

an unsupervised manner without imposing any prior structure during any step.

The experimental HD data and grid cell data consist of neurons and their corresponding

spike times. Given the spike times of N simultaneously recorded neurons, we first construct

a spike count matrix A by creating Ntime non-intersecting bins of width tbin and counting

each individual neuron’s number of spikes within each bin, shown in Figure 4.2. The element

Aij is then set equal to the spike count of neuron i within bin j. The next step is to binarize

A via a row-wise thresholding procedure. For a fixed row, consider the elements {a`}Ntime
`=1

ordered from highest to lowest. Then for some value p 2 (0, 1], we select {a`}m
?

`=1 for m
?

given by,

m
? = argmin

1mNtime

(
mX

`=1

a` s.t.
mX

`=1

a` � p ·
NtimeX

`=1

a`

)
. (4.2)

The m
? selected row elements are then set to 1 while the remaining Ntime � m

? elements

are set to 0. This is repeated for every row of A using the same value for p as before.

Note that thresholding row-wise accounts for the variability in total spikes among neurons

by comparing each neuron’s activity against itself. We then proceed column-wise through

the binarized matrix, connecting each active neuron within a time bin by the appropriate-

dimensional simplex, see Figure 4.2. Specifically, if there are 0  nact  N active neurons

in a column, an (nact � 1)�simplex is constructed on the nodes corresponding to those nact

rows.
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ur

on

Neural Data

Time

Simplicial Complex

3 2 6 2 3 4

5 0 7 5 4 3

4 6 3 6 3 5

5 5 3 1 5 3

4 5 2 3 5 5

Spike Count Matrix Binarized Matrix

Figure 4.2: An example of the pre-processing procedure. Neural spiking data is represented
as a raster plot on the left. The data is binned and converted to a spike count matrix.
A row-wise thresholding procedure, given in Equation (4.2), binarizes the matrix. The
binary matrix is displayed here with elements equal to 1 being colored in and the white
elements conveying a 0. The colored regions within each column are then connected via the
appropriate dimensional simplex to create the simplicial complex. For example, we see that
the second column of the binarized matrix has three active neurons (green, orange, and blue).
This generates a 2-simplex on the corresponding nodes. Note this allows for a multi-way
description of these three nodes’ relationship as opposed to the clique of 1-simplices that can
only describe these nodes by their pairwise relationships.
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4.3.2 SCRNN Input

Sub-complexes corresponding to a desired number, ncol, of consecutive time bins (columns

of the spike count matrix A) are used as inputs to the SC layers. Suppose we aim to find the

value of the decoded variable in time bin nt, where ncol  nt  Ntime. Then the elements of

the 0-cochain, c0(nt) 2 RN0⇥ncol , are given

[c0(nt)]ij = [A]i(nt�ncol+j) , (4.3)

for i = 1, 2, ..., N and j = 1, 2, ..., ncol. The 1-cochains are the Pearson product-moment

correlation coe�cients of the row-vectors of A corresponding to the 1-simplices’ faces. Let

N1 denote the number of 1-simplices present in the functional simplicial complex. After

arbitrarily indexing the 1-simplices, let q(i) and r(i) denote the row index corresponding

to the faces of the ith 1-simplex. We define the elements of the 1-cochain, c1(nt) 2 RN1 ,

as follows: for any i 2 {1, 2, ..., N1} not present in the nt time bin, we set [c1(nt)]i = 0;

otherwise,

[c1(nt)]i = Rq(i)r(i), (4.4)

where Rq(i)r(i) is the Pearson product-moment correlation coe�cients of the q(i)th and r(i)th

row-vectors of A. Similarly, for the 2-cochains, let q(i), r(i), and u(i) denote the row index

corresponding to the 0-simplices contained in the ith 2-simplex. We define the elements of

the 2-cochain, c2(nt) 2 RN2 , as follows: for any i 2 {1, 2, ..., N2} not present in the nt time

bin, we set [c2(nt)]i = 0; otherwise,

[c2(nt)]i = min{Rq(i),r(i)u(i), Rr(i),q(i)u(i), Ru(i),q(i)r(i)}, (4.5)

where Rq(i),r(i)u(i) denotes the multiple correlation coe�cient of the q(i), r(i), and u(i)th row-

vectors of A with r(i) and u(i) considered dependent on q(i). Higher dimensional cochains

can be defined in a similar manner, but with a metric other than the correlation of the

simplices’ faces that can be chosen specific to the cell population being decoded.

4.3.3 SCRNN

It is common practice for neural activity to be converted to a matrix where rows represent

individual neurons and columns correspond to time bins. The most widely used deep learning
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approach to handling matrices as inputs is to employ a convolutional neural network (CNN).

In a CNN, convolutional layers extract features from the input by aggregating weighted

information from neighboring elements in the input matrix. This localization of information-

sharing assumes regular connectivity where only neighboring rows, or columns, possess

significance to each other. Thus, in tasks where rows of a matrix neighboring each other

bares no significance, CNNs do not intuitively extract features.

Simplicial convolutions generalize convolutions to account for data with irregular

connectivity. For these layers, input data is defined on a simplicial complex, and information-

sharing is generated by the Hodge-Laplacian. To define the Hodge-Laplacian, we must first

introduce the k�dimensional incidence matrix, Bk 2 RNk�1⇥Nk , where the ijth element is

given by,

[Bk]ij =

8
>>><

>>>:

0, if sk�1
i 6⇢ s

k
j ,

�1, if sk�1
i ⇢ s

k
j and s

k�1
i 6� s

k
j ,

1, if sk�1
i ⇢ s

k
j and s

k�1
i � s

k
j

(4.6)

where Nk�1 and Nk are the number of (k�1)�simplices and k�simplices, respectively. Note,

we consider B0 = 0 2 RN0⇥N0 . Then, finally, the k�Hodge-Laplacian, Lk 2 RNk⇥Nk , is

defined as,

Lk = B
T
k Bk +Bk+1B

T
k+1 . (4.7)

In simplicial convolutions, the terms of the Hodge-Laplacian in equation (4.7) act as shift-

operators defining which simplices of the same dimension share information. The terms BT
k Bk

and Bk+1B
T
k+1 are called the lower and upper Laplacian, and they capture connectivity by

lower and higher dimensional simplices, respectively. A degree D simplicial filter consisting

of weights W = {Wi}2Di=0 is an operator, Hk 2 RNk⇥Nk , given by,

Hk = W0I +
DX

i=1

Wi(B
T
k Bk)

i +
DX

i=1

Wi+D(Bk+1B
T
k+1)

i
, (4.8)

where k is the dimension of simplices and (·)i denotes the i�th power of a matrix. Note,

each power of the lower and upper Laplacians localizes information-sharing to within the i

nearest k�simplices, similar to increasing the filter size in a traditional convolutional layer.
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In the case where we restrict Wi = Wi+D in Equation (4.8), i.e.

Hk = W0I +
DX

i=1

WiL
i
k , (4.9)

it has been shown [43] that the filters are low-degree polynomials in the frequency domain.

We now discuss the dynamics of the simplicial convolutional layers of an SCRNN.

Proposition 4.6. Consider an SCRNN consisting of L simplicial convolutional layers, each

equipped with F filters, {Hf
k (`)}Ff=1, for each dimension k of the functional simplicial complex

with maximum simplicial dimension K, where ` 2 {1, 2, . . . , L} denotes the simplicial

convolutional layer. In such a network, the number of parameters used in the simplicial

convolutional layers is F [2(D + 1) + (K � 1)(2D + 1)]L.

Proof. Let f 2 {1, 2, . . . , F} and ` 2 {1, 2, . . . , L} be arbitrary. Fix k = 0. Then because

B0 = 0 2 RN0⇥N0 , we have

H
f
0 (`) = W

f,0
0 (`)I +

DX

i=1

W
f,0
i (`)(B1B

T
1 )

i
, (4.10)

where {W f,0
i (`)}Di=0 are filter parameters. Thus, the 0-dimensional component of an arbitrary

filter in an arbitrary simplicial convolutional layer contains D+1 parameters. Similarly, for

fixed k = K, we have

H
f
K(`) = W

f,K
0 (`)I +

DX

i=1

W
f,K
i (`)(BT

KBK)
i
. (4.11)

Therefore, the K-dimensional component of an arbitrary filter in an arbitrary simplicial

convolutional layer also contains D + 1 parameters. Now, for an intermediate dimension

k 2 {1, 2, . . . , K � 1}, a filter is defined

H
f
k (`) = W

f,k
0 (`)I +

DX

i=1

W
f,k
i (`)(BT

k Bk)
i +

DX

i=1

W
f,k
i+D(`)(Bk+1B

T
k+1)

i
, (4.12)

which contains 2D + 1 parameters {W f,k
i (`)}2Di=0. For an arbitrary filter, there are K � 1

such components (one for each dimension k 2 {1, 2, . . . , K � 1}). Hence, for a single filter,

the total number of parameters for all intermediate k-dimensional components combined is
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(K�1)(2D+1). Adding this sum to the number of parameters for k = 0 and k = K, we see

that one filter contains 2(D + 1) + (K � 1)(2D + 1) parameters. Finally, because this holds

for any filter in any layer, we multiply by the number of filters and the number of layers

giving us F [2(D + 1) + (K � 1)(2D + 1)]L total simplicial convolutional parameters.

Note that the dynamics of the simplicial convolutional layers prevent exponential growth

of parameters with respect to filters and number of layers.

For the first layer ` = 1, features {xf
k(1)}Ff=1 are extracted from the input, xk(0), via the

nonlinear transformations,

xf
k(1) = �

⇣
H

f
k (1) xk(0)

⌘
, (4.13)

for each f = 1, 2, . . . , F and k = 1, 2, . . . , K. Note x0(0) 2 RN0⇥ncol for some hyperparameter

1  ncol  Ntime, and xk(0) 2 RNk for 1  k  K. For the intermediate simplicial

convolutional layers ` = 2, 3, . . . , L� 1 and fixed k, each of the filters {Hf
k (`)} is applied to

each of the extracted features from the previous layer. To prevent the exponential growth of

the number of filters, the outputs extracted from the same feature from the previous layer are

summed together to create one single output feature. That is, for each feature {xg
k(`�1)}Fg=1

from the previous layer, we extract,

xg
k(`) = �

 
FX

f=1

H
f
k (`) x

g
k(`� 1)

!
, (4.14)

for g 2 {1, 2, . . . , F}. In the final simplicial convolutional layer, ` = L, features are extracted

following the same procedure as the intermediate layers, but additionally, all extracted

features are summed:

xk(L) =
FX

g=1

xg
k(L) =

FX

g=1

�

 
FX

f=1

H
f
k (`) x

g
k(`� 1)

!
, (4.15)

where x
g
k(L) as in Equation (4.14) for ` = L. If 1 < ncol, then x0(L) is summed

across columns, which gives us x0(L) 2 RN0 . Finally, the outputs for each dimension

of the simplicial complex, {xk(L)}Kk=1, are stacked to create one output feature vector,

x(L) 2 R
PK

k=0 Nk . For illustrative purposes, Figure 4.3, depicts L = 2 simplicial convolutional

layers each consisting of F = 3 filters for each dimension of the input simplicial complex.
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Figure 4.3: A diagram of L = 2 simplicial convolutional layers each equipped with two filters,
H

1
k(1) and H

2
k(1), for each simplicial dimension k = 0, 1, 2. Filters are color coded with filters

that get concatenated bearing the same color as the resultant simplicial complex. In the
first layer, we see three orange filters indicating the three dimensions of the input simplicial
complex. The features extracted using these filters result in a new, orange simplicial complex.
The second filter, depicted in light blue, extracts a separate simplicial complex. In the second
simplicial convolutional layer, the process is repeated with two new filters, depicted by yellow
and dark blue. In order to prevent exponential growth, features extracted from the same
input from the previous layer are summed. Finally, all extracted features are summed and
flattened to create one feature vector.
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To form an input sequence to the RNN component of the SCRNN, we consider the outputs

of the simplicial convolutional layers corresponding to a desired number of consecutive

time bins. Given the sequential nature of the decoding task, we append the simplicial

convolutional layers with a multi-layer RNN, see Definition 2.3.

4.4 Results

For comparison of the SCRNN to existing NN architectures, we decode experimental HD

data using an FFNN and an RNN. We also choose to compare our method to using only a

graph neural network (GNN), which corresponds to removing the 2�simplices. To highlight

the role of the recurrent layers of the SCRNN, we also employ an architecture consisting of

simplicial convolutional layers attached to fully connected feed-forward layers; we refer to

this network as the simplicial convolutional neural network (SCNN).

Finally, after testing all five methods on the HD data and demonstrating that the SCRNN

has the best performance, we implement our SCRNN framework on the more complex task

of decoding three modules of grid cells that includes conjunctive grid/HD cells. For the

grid cell task, we not only include comparisons to the other NN architectures, but we also

test the performance of generating functional simplicial complexes for each grid cell module

individually. We describe this method further below. Below, we outline the results for both

the head direction and grid cell tasks.

4.4.1 Head Direction Cells

The neurons making up the head direction (HD) system in the brain encode the direction

the head is facing at any given time. This encoding is done by identifying di↵erent ensembles

of certain neurons, called HD cells, which fire simultaneously, where each grouping of cells

represents a di↵erent direction [73]. To demonstrate the e↵ectiveness of our method, we

analyze HD data recorded in [1]. The spike times of HD cells in the anterodorsal thalamic

nucleus (ADn) along with the corresponding ground truth head angles of seven mice were

recorded using multi-site silicon probes and an alignment of LED lights on the mice’s

headstage, respectively. The sessions recorded comprised of two hours of sleep followed by 30-

45 minutes of foraging in an open rectangular environment followed by 2 more hours of sleep.

For the results shown in this work, we used the foraging portion of session ‘Mouse28-140313’
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in [1]. This dataset contains the spike data of 22 neurons, and to reduce computational cost,

we looked at the first 20 minutes of a 38 minute foraging session for a single mouse.

Decoding accuracy was measured in three di↵erent ways. First, we considered the median

absolute error (MAE), which is defined,

MAE = median
n=1, 2, ..., Ntime

�� rescale
⇥
✓dec(n)� ✓true(n)

⇤ �� , (4.16)

where Ntime is the number of time bins, and ✓dec, ✓true 2 [0�, 360�) are the decoded and the

ground truth directions, respectively. The mapping rescale accounts for the ring structure

of HD. For example, 310� and 20� should be recorded as a di↵erence of 70� instead of 290�.

Similarly, we compute the average absolute error (AAE), which considers the average

instead of the median discrepancy as defined below,

AAE =
1

Ntime

NtimeX

n=1

�� rescale
⇥
✓dec(n)� ✓true(n)

⇤ �� . (4.17)

The final recorded error is the catastrophic error, denoted as CAT, which counts the

number of predictions o↵ by 90� or more from the real HD, since this would imply that

our prediction is completely wrong. We focus on CAT error based on the importance of

bounding the cost of a single error as opposed to just bounding the overall error [74]. That

is, considering the median or average of errors places less significance on the larger outliers

that can have devastating consequences in applications of models employing neural decoding.

We ran 10 trials with 75% of the data used for training and 25% of the data used for

testing for each method using the hyperparamters listed in Appendix Table 1. All around

the SCRNN performed the best across all non-geometric architectures, see Table 4.1 and

Figure 4.4. While the GNN achieved lower MAE and AAE, these are not the measurements

for which the networks were optimized. Note the GNN produced 19 catastrophic errors

compared to the 6 observed for the SCRNN. Similarly, if we instead use 50% for training and

50% for testing or 25% minutes for training and 75% for testing, the SCRNN still outperforms

the non-geometric networks. See the Appendix 5 for additional tests and hyperparameter

tuning information.

Though we include the MAE and AAE measurements, it is important to note that the

NN hyperparameters were only tuned to minimize CAT. We observe the SCRNN produces

the least amount of catastrophic errors of all the networks included in the comparison. Thus,
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Table 4.1: The AAE and MAE on the training and testing data, as well as the total numbers
of catastrophic errors. We observe the SCRNN produces the least amount of catastrophic
errors.

method train AAE test AAE train MAE test MAE CAT

FFNN 12.03 16.85 8.87 12.75 70

SCNN 14.67 15.61 11.00 11.70 88

GNN 12.96 14.44 10.11 10.79 19

RNN 7.92 14.49 5.92 11.26 9

SCRNN 8.20 13.99 6.13 10.57 6
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(a) Method: SCNN MAE: 11.7 AAE: 15.61 CAT: 88

(b) Method: FFNN MAE: 12.75 AAE: 16.85 CAT: 70

(c) Method: SCRNN MAE: 10.96 AAE: 14.11 CAT: 6

(d) Method: RNN MAE: 11.26 AAE: 14.49 CAT: 9

Figure 4.4: Plots depicting the true head angle and the predicted head angle for the first
two minutes (left) and the catastrophic error for each time bin for the full twenty minutes
(right) for four di↵erent networks, a) SCNN, b) FFNN, c) SCRNN, and d) RNN.
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we conclude that inputting the underlying simplicial complex structure into the network and

using its connectivity to generate information-sharing prevents less outlier errors that could

become problematic in application. With this in mind, we apply the SCRNN to grid cells;

a di↵erent type of cell that encodes environment-based location.

4.4.2 Grid Cells

Layers in the Medial Entorhinal Cortex (MEC) have been shown to include both pure grid

cells which are believed to fire independent of head direction and conjunctive grid/HD cells

which display firing patterns tuned to a single head direction [2, 75]. We decode the position

(as in xy�coordinates) from the activity of a population of cells recorded in a moving rat,

which contains pure grid cells and conjunctive grid/HD cells [2].

Due to the fact firing fields for cells within a module are the same, except for a shift in

space, it takes more than one module to encode position [70, 76]. Cells firing at the same time

within a module generate a spatial grid over the environment. A multi-scale representation

for location is then created by layering the grids generated by di↵erent modules.

What follows is a brief description of the grid cell data reported in [2]. Neural activity

was recorded in layers II and III of the medial entorhinal cortex using high-site-count

Neuropixels silicon probes [60, 61] while rats foraged alone in an open square 1.5m⇥1.5m

arena. Three-dimensional motion capture was utilized to track the rats’ head directions

and two-dimensional positions in the environment. The results presented in this paper use

modules labeled R1-R3 day one in the source data [2]. In the following analysis, we look at a

population of 482 cells that contains three grid modules consisting of 166, 167, and 149 cells

total with 93, 149, and 145 of them being pure grid cells, respectively; for a look at the spike

trains from the first module, see Appendix Figure 4. The rest of the population is made up

of conjunctive grid/HD cells. The di�culties of decoding such a population stem from not

only the large amount of cells, but also the fact that some cells are not solely responsible for

encoding position, the target variable we aim to decode [58]. The larger population of cells

and, consequently, the larger size of the functional simplicial complex compared to the HD

decoding task, means a more heavily parameterized SCRNN is required to decode position.

We include comparisons to a FFNN, SCNN, RNN, and to an altered version of our

method, abbreviated SCRNNmod where we create a functional simplicial complex for each

individual grid cell module. That is, we follow the same pre-processing procedure as above
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treating each module as its own population. This generates incidence matrices Bk(r) for

each simplicial dimension k, where r = 1, 2, 3 denotes the grid cell module. We then create

a block matrix B̃k for each simplicial dimension k:

B̃k =

2

664

Bk(1) 0 0

0 Bk(2) 0

0 0 Bk(3)

3

775 .

The simplicial convolutional filter then takes the form

Hk = W0I +
DX

i=1

Wi(B̃
T
k B̃k)

i +
DX

i=1

Wi+D(B̃k+1B̃
T
k+1)

i
. (4.18)

To measure the success of the models, we compute the Average Euclidean Distance (AED)

across all time-bins:

AED =
1

Ntime

NtimeX

n=1

q
(xdec(n)� xtrue(n))

2 + (ydec(n)� ytrue(n))
2

, (4.19)

where Ntime is the number of time bins, (xdec, ydec) are the decoded xy�coordinates, and

(xtrue, ytrue) are the ground-truth xy�coordinates. We once again measure catastrophic

errors; in this context, we consider a catastrophic error to be when the euclidean distance

between the model output and ground truth is greater than 0.6m.

We tuned hyperparameters to minimize AED. With the hyperparameters detailed in

Supplementary Material, we calculate the AED from Equation (4.19) on the training and

test data with an 80% training and 20% testing split.

The SCRNN is clearly able to learn the pattern between grid cell activity and position

in the environment, and it achieves the lowest AED on the training set. However, the lowest

testing AED and least amount of catastrophic errors were produced by the RNN. We remark

that in this case, we optimized the networks with respect to AED, so the CAT listed is simply

a byproduct of those networks; when optimized to produce the lowest CAT, results could

di↵er. Note that a discrepancy between training and test results is expected given the fact

grid cells may not encode the exact location, so training could bias the network to map

neural codes for general locations to the specific labelled locations included in the training

data.
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Table 4.2: The AED on the training data and the AED on the testing data. While the
SCRNN achieves the lowest train AED, the RNN shows the best generalizability with its
low test AAE.

method train AED test AED CAT

FFNN 0.0521 0.1551 47

SCNN 0.0541 0.1779 84

RNN 0.0298 0.0958 16

SCRNN 0.0286 0.1473 57

SCRNNmod 0.0297 0.1629 75
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Figure 4.5: a)-c) Plots showing results from two minutes of the grid cell decoding task. a)
Comparison of decoded versus ground truth x�coordinate. b) Comparison of decoded versus
ground truth y�coordinate. c) Error for each time bin measured by equation (4.19). d) In
grey is the ground truth position of the rat in the environment for all time bins used. Though
we decode the entire trajectory shown in grey, for visual purposes, we include colorized paths
showing a 5 second comparison of decoded versus ground truth position.
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Chapter 5

Conclusions

In this work, we discussed and explored the relationship between deep learning and

neuroscience through applications of NN-based models to PDE solving and neural decoding.

In chapter 3, we developed an adaptive sampling marking strategy for the DGM

algorithm. To the best of our knowledge, this is the first adaptive scheme for DGM. Although

adaptive sampling methods have been applied on PINN, they are not transferable in an

e�cient way to the DGM setup. Our algorithm takes advantage of the DGM algorithm

and its continuous resampling of training points in order to minimize extra computational

cost when selecting additional training points adaptively. We have demonstrated that our

adaptive algorithm performed well on PDEs that are used as classic benchmark problems

to evaluate adaptive procedures, like the oscillatory solution Poisson (3.6) and the Burger’s

equation (3.9). We found that the residual for those PDEs was mirroring adequately the local

error landscape during the training process in the interior of the spatiotemporal domain.

Hence, for those problems, we concluded that the residual is a good error indicator to

drive our adaptive algorithm. In examples where the residual poorly mirrored the local

error, the results were a↵ected. For example, in the case of the Allen-Cahn (3.10) and the

classical benchmark problem of the notch domain (3.11), the residual was not following the

error’s local behavior. For these, we observed that our adaptive procedures did not have an

improvement over the DGM algorithm. Even when we used a di↵erent marking criterion

more closely following the error, the improvement we observed was negligible. This indicated

to us that is not enough to mark areas where the actual error is large, as long as the residual,

which the training process is based upon its minimization, is small at those areas. The result
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of this, is the network remaining unaware of those high error areas that the residual does

not mark, hence no error improvement over DGM, is observed there.

For future work, we theorize that a modified residual term could be used in the loss

function and as an error indicator helping possibly to better follow the local error in the

spirit of a posteriori error estimators used in classical adaptive numerical methods. This

might improve the performance of the ADLGM algorithm over DGM in those cases. Another

potential future endeavor is to build upon the application of ADLGM to the cable equation

by using ADLGM to aid in neuroscience models involving complex domains. Certain neural

processes occur over irregular geometries that can proved di�cult for traditional mesh-based

methods like FEM and FDM. Such domains would not cause issues, however, for meshless

methods like DGM or ADLGM.

In chapter 4, the simplicial convolutional framework was able to successfully decode a

population containing pure grid and conjunctive grid/HD cells. Decoding position from the

activity of a population containing more than just pure grid cells requires a framework robust

to noisy input data, which our pre-processing is heuristically designed to be by binning spike

counts and thresholding out low-activity time windows for each neuron. The results also

showed defining neural activity on a simplicial complex and extracting features via simplicial

convolutions that are then fed to recurrent layers improves the decoding of HD cell spike

train data. It is not surprising that the SCRNN provided better results than the FFNN

and SCNN, which lack recurrent connections, considering the time-series nature of the data.

Further, the recurrent layers in the back-end RNN are more biologically relevant than those

of an FFNN: the hidden states in the recurrent layers act as memory bu↵ers similar to the

working memory maintained within the prefrontal cortex in human brains [3].

This work features a low-complexity version of the framework to assist with network

comparison and reducing computation time. For comparison purposes, the number of

deep learning techniques applied to any NN architecture was kept to a minimum: only

dropout, which itself was inspired by the stochastic Poisson-like firing of neurons [3, 77],

was employed. For computational purposes, the maximal simplicial dimension was capped

at two. Future work could involve higher complexity, for example, a biologically relevant

functional simplicial complex of higher dimensions where simplices imply a connection that

is experimentally supported. In both the low-complexity and biologically inspired cases,

it would be worthwhile to analyze the learned filter parameters and better understand the

dynamics of the simplicial convolutional layers. Similar analysis to existing NN architectures,
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such as CNNs, has shown an understanding of the learned parameter space can be exploited

to improve network performance [78]. Further analysis of the simplicial convolutional layers

of a successfully trained decoding model could help with understanding the dynamics of

the decoded population. Specific to the grid cell application, layers simulating grid cell

activity within a path navigation model could employ a simplicial encoder [41] and simplicial

convolutional layers. The encoder would generate simplicial complex representations of space

that are then decoded using the simplicial convolutions. This would di↵er from existing deep

learning-based navigational models [71, 72] in that it would take into account the functional

connectivity in both the encoding and decoding of spatial location. Though this work focused

on decoding population activity from single cell recordings, the simplicial convolutional

framework has wider applicability. With only slight modifications, the framework can

be adapted to other computational neuroscience tasks like brain-machine interfaces [79]

or epileptic seizure detection [80], essentially any task where connectivity and higher

dimensional relationships have traditionally been ignored. Beyond the scope of neuroscience,

the SCRNN can be used on any dataset where shape can be characterized by a simplicial

complex. A recent increase in works employing tools from Topological Data Analysis (TDA)

has revealed that the underlying shape of data can be exploited to improve performance in

tasks across a number of domains [24, 81, 27].
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Peter Ledochowitsch, Carolina Mora Lopez, Catalin Mitelut, Silke Musa, Michael Okun,

Marius Pachitariu, Jan Putzeys, P. Dylan Rich, Cyrille Rossant, Wei-lung Sun, Karel

Svoboda, Matteo Carandini, Kenneth D. Harris, Christof Koch, John O’Keefe, and

Timothy D. Harris. Fully integrated silicon probes for high-density recording of neural

activity. Nature, 551(7679):232–236, 2017. 49, 63

[61] Nicholas A. Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius

Pachitariu, Marius Bauza, Maxime Beau, Jai Bhagat, Claudia Bhm, Martijn Broux,

Susu Chen, Jennifer Colonell, Richard J. Gardner, Bill Karsh, Fabian Kloosterman,

Dimitar Kostadinov, Carolina Mora-Lopez, John OCallaghan, Junchol Park, Jan

Putzeys, Britton Sauerbrei, Rik J. J. van Daal, Abraham Z. Vollan, Shiwei Wang,

Marleen Welkenhuysen, Zhiwen Ye, Joshua T. Dudman, Barundeb Dutta, Adam W.

Hantman, Kenneth D. Harris, Albert K. Lee, Edvard I. Moser, John OKeefe, Alfonso

Renart, Karel Svoboda, Michael Husser, Sebastian Haesler, Matteo Carandini, and

Timothy D. Harris. Neuropixels 2.0: A miniaturized high-density probe for stable,

long-term brain recordings. Science, 372(6539):eabf4588, 2021. 49, 63

76



[62] Joshua I. Glaser, Ari S. Benjamin, Roozbeh Farhoodi, and Konrad P. Kording. The roles

of supervised machine learning in systems neuroscience. Prog Neurobiol, 175:126–137,

04 2019. 49

[63] Jonathan R. Wolpaw, Niels Birbaumer, Dennis J. McFarland, Gert Pfurtscheller, and

Theresa M. Vaughan. Brain computer interfaces for communication and control. Clinical

Neurophysiology, 113(6):767–791, 2002. 49

[64] Xiang Zhang, Lina Yao, Xianzhi Wang, Jessica Monaghan, David Mcalpine, and

Yu Zhang. A survey on deep learning-based non-invasive brain signals: recent advances

and new frontiers. J Neural Eng, 18(3), 03 2021. 49

[65] Michael A. Schwemmer, Nicholas D. Skomrock, Per B. Sederberg, Jordyn E. Ting,

Gaurav Sharma, Marcia A. Bockbrader, and David A. Friedenberg. Meeting brain–

computer interface user performance expectations using a deep neural network decoding

framework. Nature Medicine, 24(11):1669–1676, 2018. 49

[66] Caitlin S. Mallory and Lisa M. Giocomo. From entorhinal neural codes to navigation.

Nature Neuroscience, 21(1):7–8, 2018. 49

[67] Ila R. Fiete, Yoram Burak, and Ted Brookings. What grid cells convey about rat

location. Journal of Neuroscience, 28(27):6858–6871, 2008. 49

[68] Daniel Bush, Caswell Barry, Daniel Manson, and Neil Burgess. Using Grid Cells for

Navigation. Neuron, 87(3):507–520, Aug 2015. 49
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Appendix

A Neural Decoding

A.1 Hyperparameter Tuning

Below, we outline the di↵erent hyperparameters used throughout tuning for the results

included in the main paper. For all hyperparameter tuning, we used a manual trial-and-

error search method. Once the trial-and-error search method identified a hyperparameter

value that produced the best results, we then conducted remaining trials with that value.

HD decoding hyperparameters. The training and test data was constructed from 20

minutes of a 38 minute session of open foraging using tbin = 100ms. The first 25% of the data

was used for testing data and the last 75% of the data was used for training. Ground truth

labels were computed by taking the circular mean of recorded head directions within each

time bin. During construction of the functional simplicial complex, the maximum dimension

of simplices was bounded at k = 2. This bound was chosen due to the computational cost

associated to including higher dimensional complexes. Framework hyperparameters were

manually tuned within a pre-selected range to minimize CAT.

Once the best hyperparameters were identified for each of the four networks, we ran

ten di↵erent trials with the ascribed hyperparameters, which can be found in Table 1, and

identified the trial that resulted in the lowest CAT. When confronted with a tie, we chose

the trial that had the least MAE.

Grid cell decoding hyperparameters. We use 10 total minutes of recorded neural

activity and ground truth position with bin sizes of tbin = 100ms. The first 20% of the data

was used for testing data, and the last 80% of the data was used for training. Ground truth

position is computed as an average of observed positions within a time bin. We employ 2
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simplicial convolutional layers of degree 2, each consisting of 3 filters and using ReLU as

the nonlinear activation function. The features extracted from the simplicial convolutional

layers are then fed to a RNN with 3 blocks using a hidden dimension of size 50. The network

trained for 50 epochs on a batch size of 16 with learning rate 0.001. Similar to the HD

decoding task, framework hyperparameters were manually tuned within a pre-selected range

to minimize AED.
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Table 1: A table comparing the di↵erent networks based on their trial with the lowest
catastrophic error. All trials were executed with 100 epochs, threshold 30, learning rate
0.001, and dropout rate 0.2. For the NN Width, the three values denote the size of each NN
Layer.

FFNN SCNN RNN SCRNN

Batch Size 16 8 8 32
Max Conv. Dim. N/A 1 N/A 1
SC Layers N/A 1 N/A 2
N filters N/A 3 N/A 3
Degree N/A 2 N/A 2
NN Layers 3 3 2 2
NN Width 128, 128, 64 128, 128, 64 N/A N/A
Hidden Size N/A N/A 100 50

Test MAE 12.75 11.56 11.26 10.96
Test AAE 16.85 15.43 14.49 14.11
CAT 70 94 9 6
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Table 2: Search values used for hyperparameter tuning. All hyperparameter search tests
were conducted with 15 minutes of training data and 5 minutes of testing data.

Decoding Method Hyperparameter Range

FFNN

Epochs 100
Batch Size 4, 8, 16, 32

Learning Rate 0.001
NN Layers 1, 2, 3
Layer Width 64, 128, 256

Activation Function ReLU

SCNN

Intervals per Sample 1, 2, 3, 4
Epochs 100

Batch Size 8, 16, 32
Learning Rate 0.001

Dropout 0.2, 0.3
SC Layers 1, 2

Number of Filters 3
NN Layers 1, 2, 3
Layer Width 64, 128

Activation Function ReLU

RNN

Epochs 100
Batch Size 8, 16, 32

Learning Rate 0.001
Dropout 0.2, 0.3
NN Layers 1, 2
Hidden Size 25, 30, 40, 50, 75, 100

Activation Function ReLU

SCRNN

Epochs 50, 100
Sequence Length 3, 5, 8

Threshold 5, 10, 30
Batch Size 8, 16, 32

Learning Rate 0.001
Dropout 0.2, 0.3
SC Layers 1, 2

Number of Filters 3
NN Layers 1, 2
Hidden Size 50

Activation Function ReLU
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Table 3: A table of hyperparameter values used during hyperparameter tuning for the grid
cell decoding task. Following the same procedure as was done for the HD application, we used
a manual trial-and-error search method to identify optimal hyperparameters that minimized
AED.

Decoding Method Hyperparameter Range

SCRNN

Test % of Data 20%
Epochs 50

Sequence Length 3, 5, 8
Threshold 1, 10, 20
Batch Size 8, 16, 32, 64

Learning Rate 0.0001, 0.001
Dropout 0.2, 0.3
SC Layers 1, 2, 3, 5

Number of Filters 2, 3, 5
NN Layers 1, 3, 5
Hidden Size 25, 40, 50, 75, 100, 200

Activation Function ReLU
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A.2 Analysis of Di↵erent Train/Test Splits

In this section, we show results for the HD decoding task with two di↵erent training

and testing data splits: one with 50% training, 50% testing (Figure 1) and another with

25% training, 75% testing (Figure 2). Following the same manual hyperparameter tuning

procedure mentioned in Appendix A.1, we tuned the FFNN, SCNN, SCRNN, and RNN to

minimize CAT. For both splits, we observe the SCRNN provides the best results.

Training: 10 minutes, Testing: 10 minutes The results shown in Figure 1 correspond

to 10 minutes of training data and 10 minutes of testing data. Note, the SCRNN has the

lowest MAE, AAE, and CAT across all architectures.

Training: 5 minutes, Testing: 15 minutes Next, the results in Figure 2 correspond

to 5 minutes of training data and 15 minutes of testing data. Again, the SCRNN has the

lowest MAE, AAE, and CAT across all architectures.

A.3 Neural Data

In this section, we include visualizations of the neural activity in the form of raster plots. The

spike trains of all 22 HD cells used in the HD decoding task are shown in Figure 3. Note how

cells can di↵er in firing pattern. The pre-processing procedure of our framework accounts

for this in the binarization step by thresholding row-wise, meaning a neuron’s activity is

compared to itself. Otherwise, neurons that fire more frequently would lead to the complete

zeroing out of activity of neurons that, by comparison, rarely fired.

Figure 4 shows the spike trains from a single module used in the grid cell decoding task.

This module consists of 166 neurons. The other two modules (not shown) used in the grid cell

decoding task consist of 167 and 149 grid cells. The increased number of neurons compared

to the HD system is necessary to encode a two-dimensional variable and makes the grid cell

decoding task more complex.
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a) Method: SCNN MAE: 11.59 AAE: 16.51 CAT: 139

b) Method: FFNN MAE: 11.99 AAE: 17.19 CAT: 138

c) Method: SCRNN MAE: 11.03 AAE: 15.29 CAT: 65

d) Method: RNN MAE: 11.57 AAE: 15.84 CAT: 69

Figure 1: Plots depicting the true head angle and the predicted head angle for the first two
minutes with the catastrophic error for each time bin for four di↵erent networks, a) SCNN,
b) FFNN, c) SCRNN, and d) RNN.
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a) Method: SCNN MAE: 14.9 AAE: 20.56 CAT: 202

b) Method: FFNN MAE: 14.35 AAE: 19.58 CAT: 173

c) Method: SCRNN MAE: 11.57 AAE: 15.98 CAT: 73

d) Method: RNN MAE: 13.18 AAE: 17.9 CAT: 117

Figure 2: Plots depicting the true head angle and the predicted head angle for the first two
minutes with the catastrophic error for each time bin for four di↵erent networks, a) SCNN,
b) FFNN, c) SCRNN, and d) RNN.
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Figure 3: A raster plot showing the HD neural activity from ‘Mouse28-140313’ in the source
data [1]. The HD system includes 22 neurons recorded over a 38 minute period while the
mouse foraged in an open environment.
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Figure 4: A raster plot showing the neural activity from a single module of 166 grid cells
recorded over a 19 minute period while the rat foraged in an open 1.5⇥1.5 meter environment.
The data is labeled R1 day 1 in the source data [2].
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