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ABSTRACT 

 

This research focuses on the evaluation of lithium indium diselenide (LISe) 

semiconductors in double-sided strip detector (DSSDs) designs as an example for the 

potential to achieve unparalleled neutron detection efficiency, spatial resolution, and 

timing resolution detection. LISe semiconductors offer high neutron detection efficiency 

due to the ~25% atomic ratio of Lithium-6, maximizing its efficiency of ~75% with 1 mm 

thickness at 2.8 angstroms. Furthermore, the 4.78 MeV 𝑄-value enables high intrinsic 

gamma discrimination in a pixelated design (electron range). These characteristics make 

LISe an alternative option for neutron radiography, energy-resolved imaging, and other 

neutron interrogation techniques. This dissertation summarizes my current efforts to 

enhance LISe-based neutron imaging systems to achieve an end goal of sub-5 µm spatial 

resolution and sub-1 µs timing resolution. My research focuses on using MATLAB and 

Silvaco to simulate the expected response of a LISe DSSD. These various datasets are then 

trained to Machine Learning models in order to predict the neutron interaction location 

based upon the induced signal across multiple strip electrodes.  In addition, various  DSSD 

designs were simulated to determine the strip electrode width/pitch that optimizes the 

tradeoff between signal integrity and reconstruction of the neutron absorption location. The 

addition of electronic and statistical noise to the signal as well as varying the charge 

collection efficiency was also explored. The improvement upon current neutron imaging 

systems has the opportunity to open new avenues of research that are not possible today.  
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CHAPTER ONE:  BACKGROUND 

 

1.1 Neutron Imaging 

 

Shortly after the discovery of the neutron by English physicist Chadwick, J., in 

1932, Kallmann, H., and Kuhn’s, E., research birthed the field of neutron imaging [1-4]. 

Early neutron radiographs suffered from poor resolution due to weak/uncollimated beams 

[5]. Kallmann, H., and Kuhn’s, E., research was put on hold during the Second World War. 

It would not continue until 1956 when Thewlis, J., and Derbyshire, R. T. P., used thin 

layers of boron to create neutron radiographs using the 8 MW, graphite-moderated British 

Experimental Pile 0 (BEPO) reactor [6]. This method was used to take neutron radiographs 

of Boral sheets and uranium, which demonstrated this technique as a tool for the non-

destructive testing (NDT) of materials. Previously, this field of study was not practical due 

to the low intensity of the neutron sources. This field of study became functional with the 

implementation of high flux reactors such as the High Flux Isotope Reactor and high 

energy pulsed neutron sources. 

One of these high-energy pulsed neutron sources is the Spallation Neutron Source 

(SNS) at Oak Ridge National Laboratory (ORNL). The SNS produces neutrons by 

delivering short proton pulses to a liquid mercury target [7]. This process starts with 

negatively charged hydrogen ions that are accelerated from 1 MeV to 1 GeV by a linear 

accelerator [8]. From here, they are impinged upon a 20-ton liquid mercury target where 

the high energy protons hit the nucleus of mercury atoms [9]. For every mercury atom that 

these protons hit, twenty to thirty neutrons will be released. After traveling down a flight-

tube, these fast and slow neutrons will arrive at a detector at slightly different times. Since 

the higher energy neutrons are traveling faster, they reach the detector before lower energy 

neutrons. The neutron cross sections for interactions with nuclei are both energy and 

isotopic dependent. Therefore, an energy-sensitive detector can be used to identify the 

signature of various isotopes. This principle is used for neutron stimulated emission 

computed tomography [10]. In pixelated detectors, a Timepix Application Specific 
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Integrated Circuit (ASIC) chip is used to correlate the neutron energy spectrum at each 

pixel within the device [11]. So, by precise timing of this neutron pulse, one can determine 

isotopic information from the object of interest due to resonant neutron absorptions [12]. 

A high-speed double-disk (HSDD) chopper can be used to segregate a specific energy 

range for the neutrons. However, this technique will usually remove quite a large majority 

of the epithermal neutrons, so it is only used on an experiment-by-experiment basis [13].   

Neutron imaging is the direct production of images by transmitting a neutron beam 

through an object and onto a detector medium, in my case, LISe. Reconstructing the image 

in two-dimensions is referred to as radiography, and the reconstruction of the image in 

three-dimensions is referred to as tomography [14, 15]. Neutron radiography produces a 

two-dimensional attenuation map of how far neutron radiation has penetrated the sample. 

Neutron detectors ranging from plastics, scintillators, semiconductors, and gas detectors, 

are currently employed at beamlines around the world. Each detector has advantages and 

drawbacks, some of those being timing, spatial resolutions, neutron detection efficiency, 

and neutron/gamma discrimination [16]. There is currently not a single detector that covers 

all experimental requirements for imaging with neutrons. For these reasons, the DOE has 

called for the development of next-generation thermal neutron imaging sensors [17].  

For neutron radiography and tomography, the incident flux, wavelength spectrum 

spread (
∆𝜆

𝜆
), and beam divergence are the key parameters to consider [15, 18]. In Equation 

(1),  neutron flux (Φ) is equal to the neutron density (𝑛) multiplied by the neutron velocity 

(𝑣). From Equation (2) , the deBroglie equation, the neutron wavelength (𝜆) is equal to 

Planck’s constant (ℎ) divided by the neutron mass (𝑚) times its velocity (𝑣). Lastly, in 

Equation (3) the beam divergence (𝜙) is approximately the neutron wavelength (𝜆) divided 

by width of the imaging slit (𝑑). The flux and wavelength of the neutron beam are directly 

related to one another, because as (
∆𝜆

𝜆
) gets smaller, so does the incident flux. In addition, 

this holds true for the spatial resolution. A higher spatial resolution is the result of the 

smaller pixel sizes, which means that the integrated flux at the pixel will be smaller as well. 
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Φ = 𝑛𝑣 (1) 

 

𝜆 =
ℎ

𝑚𝑣
 (2) 

 

𝜙~
𝜆

𝑑
 (3) 

 

Neutron imaging systems share many similarities with x-ray imaging systems, the 

primary difference being the interaction mode with the object of interest [19]. X-rays 

interact with the electron cloud of the atoms, while neutrons interact with the atomic nuclei. 

Unlike x-rays, neutrons can be attenuated by light atoms such as hydrogen and carbon. 

This allows for neutron imaging to have an advantage over x-ray imaging for visualizing 

the inside of a material that is comprised of high 𝑍 materials [20]. Additionally, neutrons 

are sensitive to light elements and easily penetrate thick samples, compared to X-rays. 

These properties allow users to image very complex materials. Over the past 35 years, 

neutron sources have increased the brightness of their pulses by over 100 times [21]. These 

sources have advanced to the point where the current detectors are the most significant 

limitation for neutron experiments [17]. Current neutron imaging techniques have limited 

applications mainly due to their poor spatial resolution. However, neutron imaging is a 

fundamental non-destructive characterization technique that is used at neutron scattering 

facilities around the world to image a wide range of sample materials [15, 19, 22]. Due to 

the uncharged state of neutrons, they are not easily detected by conventional detectors, and 

unique detectors are required to detect them. Recently, there has been a call by the 

Department of Energy (DOE) to develop next-generation thermal and cold neutron imaging 

systems [17]. Given that these devices require thermal or cold neutrons to operate, they are 

typically only operating at expensive neutron scattering facilities. This section will also 

discuss some of the research regarding the use of energy resonance imaging (ERI) for the 

non-destructive assay of materials. This field of study has been known by many different 

names: Neutron Energy Resonance Imaging, Energy-Resolved Neutron Imaging, Neutron 
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Absorption Imaging, along with Resonance Absorption Imaging [23-25]. All of these fields 

refer to the same method of using neutron resonance peaks to identify isotopic composition 

information [19]. The form of ERI that will be discussed within this dissertation makes use 

of epithermal neutrons ranging from 1 eV to 1,000 eV and thermal neutrons. By varying 

the neutron energy, we use the resonances inside the neutron energy spectra to identify 

isotopes within the object of interest [26]. Thermal and epithermal neutrons are required to 

obtain spectral data in the neutron resonance region, given absorption is quite unlikely at 

fast neutron energies.   

For a standard neutron radiography experiment, a total of 36 radiographs are taken 

by rotating the sample of interest in 5° steps over the course of 0° to 175°. The time stamp 

of each radiograph is then correlated to the neutron energy using the time-of-flight method. 

Given the low count rate for most of the pixels in a detector, the neutron energy spectrum 

is usually summed across a pixel or two in order to have a good signal-to-noise ratio [27]. 

The off-line analysis involves analyzing the data to find dips in the neutron absorption as 

a function of time, so a dark flash in the image is produced by the neutron absorption of a 

specific isotope. The data that would correspond to that neutron absorption would then be 

summed in order to map individual isotopes of interest.  

 

1.2 Fundamentals of Neutron Interactions  

 

Since we are interested in detecting neutrons, it is important to understand how they 

interact with matter. The secondary radiations resulting from neutron interactions with 

matter are heavy charged particles (HCPs) [19]. Neutron detectors will utilize the 

conversion of the incident neutron into secondary charged particles, which are easier to 

detect. This is the basis for neutron imaging and the semiconductor, LISe, on which this 

research was performed. Neutrons are usually divided into two categories: fast and slow 

(thermal), with a cut-off of ~0.5 eV between the two. This 0.5 eV cut-off corresponds to 

the 113Cd cut-off, where neutrons below this energy will be absorbed, and those above will 

be transmitted.  
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While most applications of neutron imaging employ slow/thermal neutrons, reactor 

beamlines often have fast neutrons in the mix; for these reasons, it is essential to discuss 

fast neutrons. Fission reactions usually produce fast neutrons with initial energy ranging 

from 0.1 – 3 MeV. Since fast neutrons possess a significant amount of kinetic energy, the 

capture process probability for nuclear reactions is relatively low. Fast neutrons are usually 

moderated or slowed down to lower energies before they can be captured [28].  Low 𝑍 

materials such as hydrogen are good at detecting neutrons. As stated before, we typically 

moderate the neutron down to the thermal energy range, which has an increased probability 

of the neutron being captured and inducing an interaction that is detectable.   

Unlike fast neutrons, thermal neutrons have an energy of 0.025 eV. These slow 

neutrons are useful because they create secondary radiations that can be directly detected 

[19]. These secondary radiations are usually in the form of HCPs, which tend to travel in a 

straight line and lose their energy through the direct ionization of atomic electrons. These 

HCPs must have a sufficiently high Q-value such that direct ionization is possible. The 

nuclear cross-section is used to determine the probability that a nuclear reaction will occur. 

This cross-section is calculated independently for every isotope. In neutron imaging, we 

want to employ a detector with a high thermal neutron capture cross-section [29]. The main 

isotopes that are used for neutron imaging are 157Gd (254,000 barns), 113Cd (20,600 barns), 

3He (5,333 barns), 10B (3,837 barns), and 6Li (940 barns) [30, 31]. When these isotopes 

interact with neutrons, they produce a particle or particles that we can detect. For instance, 

in 6Li-based semiconductors, the neutron capture reaction results in an alpha particle and 

triton that generate electron/hole pairs as they move through the detector medium. When 

designing thermal neutron imaging detectors, one will typically incorporate one or more of 

these isotopes into the detector medium in order to sense neutrons [31, 32]. Most neutron 

detectors consist of low 𝑍 isotopes, which are able to sense neutrons selectively. 

 

1.3 Neutron Detectors 

 

Compared to most other forms of radiation, neutrons are able to penetrate and have 

the capability to distinguish between different materials with similar chemical and physical 
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properties. The interaction of neutrons with the nuclei is governed not by the laws of 

classical physics but by quantum mechanics. Due to the uncharged nature of neutrons, they 

are not easily detected using conventional detectors such as high-purity germanium (HPGe) 

[33, 34]. The only practical method for detecting neutrons is by observing the ionization in 

the detection medium caused by the reaction products that follow neutron capture or 

inelastic neutron scatter. There are two main methods for neutron detection; direct and 

indirect detection. For scintillators, the incoming energy is converted into visible 

wavelength photons which are then converted to electrons by the charge-coupled devices 

(CCDs) that these scintillators are usually fixed to. For semiconductors, the indirect method 

involves placing a thin layer of neutron-absorbing material on top of the active detector 

medium. This layer of neutron-absorbing material is usually either Li6, B10, or Gd157 [5]. 

Neutrons are converted into charged particles in this thin layer of absorbing material 

following neutron capture. These charge particles are then detected by the detector 

medium. The practicality of this technique limits the detector efficiency to approximately 

4% [35]. It is worth noting that while Gd157 has the highest neutron capture cross-section, 

it also emits gamma-rays which can overwhelm the detector neutron response. Direct 

neutron detection is where the neutron absorbing material is part of the detector and 

operates as both the neutron absorber and detector. Semiconductors fall under this detection 

method, and these systems greatly increase the detector efficiency when compared to 

indirect neutron detection systems, also called neutron conversion systems [36]. 

There are many different neutron detection systems currently on the market; 

additionally, there are many parameters to consider when comparing the performance of 

different systems. High neutron detection efficiency results in lower data-collection times, 

allowing for more experiments to be performed compared to systems with low neutron 

detection efficiency. Excellent temporal resolution allows for the detection of more minor 

features such as defects, impurities, superlattices, and clusters within the object of interest. 

Gamma-ray discrimination is a function of the energy released in the thermal neutron 

absorption spectrum and how the detector responds to neutron interaction and background 

gamma-rays. Neutron detection efficiency is one of the main parameters to consider when 

selecting viable neutron imaging systems, where detection sensitivity is dependent upon 
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the gamma-ray absorption efficiency. CdZnTe (CZT) detectors are a good x-ray and 

gamma-ray medium, which creates a high gamma-ray background that masks the presence 

of neutrons; thereby making it challenging for CZT detectors to distinguish between 

neutrons and gamma-rays [37, 38]. GS20 is a 6Li-loaded glass scintillator that is used in a 

wide variety of applications ranging from neutron porosity measurements in the oil well 

logging industry to a time-of-flight single-crystal diffraction Anger camera at SNS [39, 

40]. This loaded glass scintillator is very fast (70 ns) and offers neutron/gamma 

discrimination; however, it has a low light output of 6,000 photons per MeV and internal 

defects that are challenging to overcome [41]. Current ZnS:LiF-based systems are bright 

with a theoretical light yield of 100,000 photons per MeV but have limited timing 

properties and spatial resolution [38, 42]. Due to its Li6 enrichment (95%), a low Z-value, 

and a high 𝑄-value, LISe possesses inherent neutron and gamma-ray pulse discrimination 

properties. The 𝑄-value for LISe is 4.78 MeV, which is due to its thermal capture reaction 

energy. Ideally, this 4.78 MeV neutron capture reaction results in a Gaussian distribution 

that is separate from the gamma-ray and noise floor, allowing for pulse discrimination. 

Helium-3 neutron detectors are widely considered the most versatile neutron 

imaging system and are used at neutron scattering facilities worldwide [43]. This is mainly 

due to its high capture cross-section for thermal neutrons, non-toxicity, and low-Z, which 

leads to excellent neutron/gamma discrimination. Helium-3 is collected as a byproduct 

from the radioactive decay of tritium at the Savannah River Site in South Carolina [44]. As 

a direct result of the nuclear weapons stockpile reduction, the production of helium-3 from 

tritium decay has declined.  To develop a neutron detector, we must create them out of 

materials with high absorption cross-sections. Because of this, lithium-6 has been explored 

to replace helium-3 in neutron detectors. Although lithium-6 has a lower thermal neutron 

capture cross-section than helium-3, lithium-6 has a higher atomic density. This results in 

better thermal neutron absorption for solid detectors.  

LISe is a semiconductor that meets the proposed DOE requirements for next-

generation thermal neutron imaging detectors [45, 46]. Therefore, LISe shows potential for 

addressing the current need for next-generation thermal neutron imaging sensors at neutron 

scattering facilities. LISe also can operate as both a scintillator and semiconductor with a 
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relatively low Z-value and high 𝑄-value, which makes pulse height discrimination of 

gamma rays possible. Due to its high neutron detection efficiency, LISe would lower the 

imaging time compared to current systems. 

 

1.3.1 Semiconductor Detectors  

 

  Semiconductors are defined by the conductivity/resistivity of the material. 

Resistivity and conductivity quantify the ability of a material to resist current flow in the 

presence of an external bias [47, 48]. The bandgap of the material governs these properties. 

This bandgap is the distance between the conduction and valence bands in energy space. 

The valence band is the highest energy state that an electron can occupy without becoming 

excited. While the lowest energy state that an electron can occupy is the conduction band. 

This conduction band is where electrons are loosely bound and can drift and diffuse 

between atoms. The distribution of electrons within the available states depends on the 

thermal energy available and is described by the Fermi-Dirac distribution described by 

Equation (4). 

 

𝑓(𝜖) =
1

exp (
(𝜖 − 𝐸𝐹

𝑘𝑇
) + 1

   
(4) 

 

 In Equation (4), 𝜖 is the energy level, 𝑘 is the Boltzmann constant, 𝐸𝐹 is the fermi 

level, and 𝑇 is the temperature.  The Fermi-Dirac distribution shows that the density of 

electrons in the conduction band is directly proportional to the temperature. This 

relationship is vital to understanding the performance and operation of semiconductor 

devices. When an electron is excited into the conduction band, it leaves behind a positively 

charged vacant state in the valence band. This positively charged vacant state is referred to 

as a hole. The W-value is the average energy required to produce an electron/hole pair and 

is determined by the average energy spent by a charged particle to produce a single 
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electron-hole pair. This W-value can be estimated by using Equation (5), where 𝐸𝑔 is the 

bandgap [49]. 

 

𝑊 = 2𝐸𝑔 + 1.43 𝑒𝑉   (5) 

 

When charge carriers are generated inside a semiconductor, they are driven to the 

electrodes by the internal electric field generated from the applied bias voltage. When a 

charged particle enters a biased semiconductor device, such as LISe, the ionization caused 

by these charged particles will create a pulse. If this pulse is large enough, the 

semiconductor device can be coupled with electronics to form a neutron detector. The 

coupling capacitor then collects this charged pulse as this pulse enters the electronic 

readout circuit (ERC). The main advantage of using semiconductors over traditional 

detection methods is that semiconductors have a high data rate, low power requirement, 

and small size. Since the current flowing through the semiconductor depends on the drift 

velocity, a larger mobility results in increased performance for semiconductors. Mobility 

is a function of the effective mass of charge carriers and the mean time between scattering 

events within the semiconductor. Simply put, it defines how charge carriers move through 

a semiconductor.  

Holes exhibit a lower mobility-lifetime product compared to electrons, which is 

typical for tertiary compound semiconductors [50, 51]. Charge-carrier lifetime is a 

combination of defect states, spatial distribution, and their capture cross-sections. Larger 

values for the charge-carrier lifetime result in better semiconductor radiation sensors 

because this allows charge to be collected before recombining. In addition, the neutron 

converter, Li6, is intrinsic to the semiconducting material as opposed to extrinsic. Due to 

this intrinsic neutron reactive material, the bulk of the semiconductor can capture thermal 

neutrons, resulting in an effective absorption efficiency of 82% at thermal energy for LISe 

[45]. 

The Shockley-Ramo Theorem allows us to derive the induced signal of any 

electrode design from the motion of charge carriers through the bulk. This induced charge 

is multiplied by the fraction of potential it has moved through. Three main things go into 
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calculating the induced signal: the electric potential, weighting field, and weighting 

potential; this is because charge carriers will follow the electric field line until they are 

collected by the collecting electrode. The electric and weighting potential are found using 

SILVACO to solve Poisson’s equation, current continuity equation, energy-balance 

equation, and lattice heat equation for electrons and holes.   

The current induced on a given electrode is found by using Equation (6). Where 𝑞 

is the charge of the carrier, �⃗� is the velocity, and �⃗⃗�0 is the weighting field. Another way to 

describe this is that the induced charge (𝑄) is equal to the charge of the carrier multiplied 

by the difference in the weighting potential (𝜑0) from the start to the end of the carrier 

path, found in Equation (7). Using Equation (8), the electric field (�⃗⃗�) at any point is found 

by taking the gradient of the electric potential (𝜑). The text “Radiation Detection and 

Measurements, Appendix D” details these Shockley-Ramo Theorem derivations [38]. 

These three equations are the primary basis for the 𝜂-function developed to date.  

 

𝑖 = 𝑞�⃗� ∙ �⃗⃗�0 (6) 

  

𝑄 = 𝑞∆𝜑0 (7) 

  

�⃗⃗� = −𝑔𝑟𝑎𝑑(𝜑) (8) 

  

A pulse height spectrum (PHS) built from the distribution of thousands of voltage 

pulses can be used to identify the radiation source or the composition of an unknown 

sample [52]. The accuracy of these spectra depends upon the charge carrier transport, 

charge collection efficiency, and the system noise. One of the main things to overcome 

regarding system noise is the leakage current. The leakage current is the flow of electrons 

in a semiconductor under bias without the presence of an excitation source such as ionizing 

radiation. The reduction of this leakage current improves the signal-to-noise ratio within 

our detector, increasing the detector performance. Because of the direct charge readout, 

solid-state detectors offer fast response times and high energy resolution [53]. LISe has a 
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wide bandgap (𝐸𝑔 > 2 eV) which makes it ideal for room temperature radiation detection. 

A wide bandgap reduces the leakage current and allows for smaller signals to be detected 

at room temperature [54]. This also removes the need for a turbo-vacuum pump or chiller 

during operation. 

Spatial resolution quantifies the smallest feature a device can resolve. A low spatial 

resolution is desired for thermal neutron imaging applications. The knife-edge resolution 

test is the current method for determining spatial resolution [55]. The knife-edge is a highly 

attenuating material (typically Gd-based) with enough size to shield part of the detector 

from the incident neutron beam. To reduce blurring effects from the neutron beam, the 

knife-edge is placed as close to the surface of the detector medium as possible and is tilted 

to provide the appropriate edge sampling. The modulation transfer function is a method for 

comparing spatial resolution across varying imaging systems. The relationship between 

contrast and spatial frequencies defines the framework for the modulation transfer function 

(MTF), where contrast is a measurement of the intensity range for a given imaging system 

[56]. To obtain this modulation transfer function, the knife-edge response is extracted and 

differentiated. This differentiation leads to the line spread function, which has a Gaussian 

shape. Discrete Fourier Transformation (DFT) of the Line Spread Function (LSF) gives us 

the MTF for the detector [45, 55]. Spatial resolution is often defined as being 10% of the 

MTF.  

Image processing is another crucial step to consider for neutron imaging. There are 

many ways to recreate images based on raw data, and a few of them are considered below. 

A Timepix ASIC coupled system is typically operated in counting mode to minimize the 

number of saturated pixels [57]. The system acquires multiple frames in quick succession, 

which are then averaged to create an image with good contrast. This ensures that hot pixels 

from noise and background radiation are minimized. The Point Spread Function (PSF), 

also known as the impulse response, is another way to reconstruct images from raw data 

[58]. The PSF involves taking the raw data from the detector response and performing a 

Fourier transform on it. 

It should be noted that the detector resolution needs to be defined for this PSF to 

reconstruct images accurately. The MTF is derived from the Fourier transformation of the 
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PSF. In addition, the pixel and background efficiencies must be accurately calculated in 

order to have proper image reconstruction using this PSF. Poor Fourier transformation of 

the raw data will lead to errors in the image reconstruction phase. A more efficient method 

for image reconstruction is filtered back-projection. This method involves reconstructing 

slices from 0º to 180º versus using the typical rectangular coordinate system. These 

reconstructed slices are then layered on each other to create the image field referred to as 

the projection. The Shannon theorem is described by Equation (9) and is used to determine 

the optimum number of projections to stack, 𝑀 [59]. Where 𝑁 is the number of steps 

required to produce a single projection. Simply put, 𝑁 and 𝑀 determine the best resolution 

for the reconstructed image. Typically, the two-dimensional images are layered or stacked 

to form the three-dimensional images post image reconstruction. The two-dimensional 

images are completely reconstructed before they are stacked to create three-dimensional 

images.  

 

𝑀 ≥
𝜋

2
∗ 𝑁 (9) 

 

The DOE has called for the development of next-generation thermal neutron 

imaging sensors, which is why we are designing a neutron imaging system with LISe [17]. 

Their report expressed the need for 1-10 µm spatial resolution systems while maintaining 

a sub-1 µs temporal resolution, with high count rate capabilities and excellent 

gamma/neutron discrimination. To meet these goals, we propose using a lithium-based 

semiconductor, such as LISe, in a double-sided strip detector (DSSD) design. LISe has 

excellent cold neutron detection capabilities, exhibiting a neutron mean free path of 474 

µm at 3.3 Å. In addition, the 4.78 MeV 𝑄-value for the 6Li(n,3H)4He reaction results in 

high intrinsic gamma discrimination [45, 46, 50, 57, 60, 61]. 

 

1.4 Energy Resonance Imaging 

 

The typical setup for ERI experiments includes a time-gated detector and pulsed  
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neutron source. The object of interest is placed near the detector window; for most of these 

experiments, it is within ~15 mm of the detector’s window [62]. To turn the neutrons into 

detectable signals, one could use a scintillator system with a HSSD chopper at a reactor 

beamline or a micro-channel plate (MCP) amplifier coupled to a Timepix readout system 

[63]. As seen in Figure 1, a photocathode converts the incoming particle into electrons 

which are amplified by a chevron stack of MCPs [64, 65]. A readout system subsequently 

encodes this electron cloud (Timepix3). In Figure 1, a double-strip detector array utilizes 

charge division or charge propagation time to determine the neutron interaction location; 

typically, a Timepix3 chip collects the neutron energy at each pixel. The micro-channel 

plate amplifier consists of micro-capillary arrays doped with Boron-10 that amplify 

incoming particles by a factor of 103 – 107 electrons [66]. The main downside of this 

detector is that it requires a large turbo-vacuum pump and has a pixel-ghosting effect. This 

ghosting effect is an afterimage resulting from the electrons' interaction within the micro-

capillary array [67]. When this device is put in front of a neutron beam, the object of interest 

will forever be burned into the micro-capillary array.  

The detector array consists of four Timepix3 chips tiled together in a quad 

array.  This encoded readout system has a timing resolution of ~1.56 ns. It should be noted 

that time resolution is the uncertainty in the peak width; for most spectral applications, we 

want a very fast timing resolution. The signal from the Timepix3 chips is then sent to a 

field-programmable gate array (FPGA) at a rate of 100 MHz. This FPGA, in-turn, sends 

the data to a graphical user interface with a frame rate of 1,200 frames/s [68]. This data is 

typically stored on an external computer, where off-line analysis is performed to calculate 

the neutron energy at a given time with ns timing resolution. The amount of data stored 

will depend upon the experiment and what the user would like to save. It is also worth 

noting that the Timepix4 chip will allow users to tile detectors on all four sides and offer 

sub-200 ps timing capabilities [69]. This system will be able to operate in a data driven or 

frame-based mode.  
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Figure 1. Schematic representation of a detector coupled with a micro-channel plate 

amplifier. The amplifier will amplify incoming electrons by a factor of 103 – 107 [65]. 
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𝐸 =
𝑚𝐿2

2 ∗ (𝑇 + ∆𝑇0)2
 (10) 

 

In Equation (10), the neutron energy 𝐸 is related to the mass of the neutron 𝑚, ∆𝑇0 

is the time delay of the trigger pulse compared to the time of spallation, 𝑇 is the time of the 

transmission spectra of interest, and 𝐿 is the distance between the spallation target and the 

detector of interest [62]. Given that each detector pixel is operated independently, many 

simultaneous events are recorded at every pixel. In addition, with enough data for each 

pixel, all the time steps are binned together to form an accurate neutron transmission 

spectrum. This can then be used to determine isotopic and elemental compositions. The 

energy-dependent transmission (𝑇𝑟(𝐸)) for each sample can then be calculated from the 

Beer-Lambert Law given by Equation (11).   

 

𝑇𝑟(𝐸) = 𝑒𝑥𝑝 [− ∑ 𝑁𝑖𝑑𝑖 ∑𝑖𝑗(𝐸)𝐴𝑖𝑗

𝑗𝑖

] (11) 

 

Where 𝑁𝑖 is the number of atoms per unit volume, 𝑑𝑖 is the thickness of the elements 

along the neutron path, 𝑖𝑗 is the neutron attenuation cross-section, and 𝐴𝑖𝑗 is the isotopic 

abundance of that specific element. As is typical for solid materials, the number of atoms 

per unit volume can be calculated from the material's density and atomic mass values. 

When experiments are performed with gases, the ideal gas equation can calculate the 

number of atoms per unit volume. Doing this allows for the quantitative characterization 

of neutron transmission spectra. 

This MCP detector array currently has a 50% neutron detection efficiency for 

thermal neutrons and 70% for epithermal neutrons [70]. These systems have been shown 

to produce the most advanced energy resonance images to-date. Current research is being 

performed to replace these MCPs with LISe to eliminate the need for a turbo-vacuum pump 

and no longer have the permanent pixel ghosting effect. While MCPs have Boron-10 within 

the glass micro-capillaries, LISe has Lithium-6 within the semiconducting material. In 
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addition, LISe has been shown to have an 81% neutron detection efficiency for thermal 

neutrons, which is much higher than current MCPs [71]. For these reasons, LISe is being 

explored to replace current MCPs in thermal neutron imaging detectors for ERI. It is worth 

noting that a consortium of European Organization for Nuclear Research (CERN) 

researchers are working on releasing a Timepix4 chip, with the capability of ~200 

𝑝𝑠 timing resolution [72]. 

 

1.4.1 Energy Resonance Imaging Experiments  

 

Several experiments are worth noting regarding this field of neutron imaging. The 

first experiment that will be discussed was performed by Tremsin et al. in 2017 [62]. This 

experiment consisted of taking various ~5-10 mm thick gold samples and analyzing their 

specific neutron absorption resonance in the spatial distribution of palladium and lead to 

map isotopic concentration. This experiment showed the possibility and application of 

measuring neutron transmission spectra simultaneously over an extensive range of 

energies, ranging from epithermal to thermal neutrons. This spans six orders of magnitude 

in the neutron energy spectrum and allows for the characterization of bulk microstructures, 

phases, textures, and strain distributions within a given sample. As stated previously, 

neutron resonances in the thermal and epithermal range of energies can be used to 

identify/map the elemental/isotopic distributions within the sample of interest. As can be 

seen in Figure 2, this experiment utilized thermal/epithermal neutron diffraction and 

neutron resonance spectroscopy to determine the internal structures and elemental 

compositions of various natural gold samples with a final spatial resolution of 100 μm. 

One conclusion that can be drawn from Figure 2 (b) is that the gold from samples 

N2 and N3 were single morphologic crystals, whereas samples N1 and N2 appear to be 

polycrystalline in structure with the varying isotopic concentration of palladium and lead 

within. The Timepix detector provides the position and time-of-flight for every detected 

neutron. The energy of each neutron is calculated from the time-of-flight that is measured 

(triggered) by each spallation pulse. In order to eliminate the effects of spatial differences 

in the neutron beam, all transmission spectra were normalized compared to the open beam 
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Figure 2. (a) Images of analyzed gold samples ranging from ~5-10 mm. (b) White beam 

neutron radiographs show the crystalline structure of various gold samples [51]. 
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time-of-flight spectra. Based on the neutron transmission spectra measured for this 

experiment, palladium, and lead resonances were found in samples N2 and N3. This 

experiment showed the capability of thermal/epithermal neutrons to penetrate materials 

typically opaque to a conventional non-destructive assay of materials techniques.  It should 

also be noted that the spatial distribution of palladium and lead can be reconstructed from 

the same experimental data shown in Figure 2. It is also possible to create a gold-only 

transmission image by taking the image in Figure 2 and subtracting the resonances for 

palladium and lead.  

The second experiment worth mentioning was performed by Myhre et al. at the 

Spallation Neutron Source in early 2019 [23]. In this experiment, spectral data from the 

epithermal neutron energy range was used to map the isotopic composition of uranium and 

gadolinium in tri-structural isotropic particle fuel (TRISO) kernels. The end goal of this 

experiment was to topographically map elements within the structure of small spherical 

metal oxide kernels that are used in the production of TRISO kernels. The uranium is used 

as a fissile material, and the gadolinium is used as a burnable poison in these TRISO 

kernels. The distribution and mapping of these elements are essential considerations for 

fuel design. Current techniques employ destructive methods of assay for these materials, 

and this experiment was the first study on the non-destructive assay of uranium oxide 

kernels by ERI. Several grams of these spheres were loaded into special vanadium cans for 

neutron imaging at the Spallation Neutron Source. Vanadium was chosen as the can 

material because it is transparent in the epithermal neutron energy region [73]. Considering 

this experiment was quite similar to the previous gold experiment, multiple radiographs 

were taken at the angles of interaction. These radiographs were taken using the MCP 

detector that Tremsin et al. developed. Figure 3 consists of the total ERI data collected and 

is given as neutron energy versus neutron attenuation. The absorption peaks for gadolinium 

and uranium are both labeled on the graph. This technique allows for mapping isotopic 

concentration within tiny microspheres to assist in developing and designing next-

generation reactor fuel. In addition, this research has paved the way for using ERI to study 

nuclear fuel materials at neutron scattering facilities around the world.  
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Figure 3. ERI spectra of uranium and gadolinium microspheres ranging from 0 eV to 

120 eV. This attenuation spectra is the inverse of the counts seen by the detector, where 

the uranium “peaks” are labeled with U and gadolinium “peaks” are tagged with Gd [5]. 
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 Another ERI experiment was performed at the Lujan Neutron Scattering Center at 

Los Alamos National Laboratory by Tremsin et. al. in 2017 [74]. For this experiment, non-

contact measurements of the partial pressure of krypton and xenon gases were taken while 

passing these gases through a neutron beam with various high-Z materials present. This 

experiment was a proof of principle demonstration using ERI as a non-destructive 

technique for measuring elemental compositions within fuel rods/assemblies. This 

technique was employed previously for solids; however, this was the first demonstration 

of mapping gases encapsulated within high-Z materials such as uranium, tungsten, and 

steel. For the most part, this technique will be beneficial for studying spend nuclear fuel 

assemblies. This experiment showed the multipurpose applications for ERI by mapping 

elements that are opaque to most other neutron imaging methods. The ability to image 

materials with phase separations is paramount for the non-destructive assay of spent fuel 

rods [75].  

 Using Equation (10), the energy of the detected neutron is determined from its time-

of-flight. This experiment consisted of placing two separate tubular containers with natural 

xenon and krypton next to each other. These tubes were then mounted in various 

configurations relative to uranium fuel pellets, tungsten, and steel. The results from this 

experiment can be seen in Figure 4. A width of 270 ns base-to-base separated the neutron 

pulses for this experiment. It should be noted that the intrinsic time resolution of this 

detector setup increases with increasing neutron energy. As is typical with most common 

experiments, open beam normalization was performed to eliminate the effects of beam 

spectra and detector ghosting [76]. Since this had a short beam time, neighboring pixels 

were integrated to reduce the noise of the quantitative analysis. During this experiment, 

3,000 spectra slices were recorded at each angle of interest to provide individual 

transmission images corresponding to a specific neutron energy range. A typical 

experiment employs choppers to mitigate the background; however, for this experiment, 

choppers were not fast enough to reduce the background without getting rid of the 

epithermal neutrons [13, 77]. In addition, post-experiment data binning allows for selective 

isotopic analysis of the reconstructed image. This experiment reinforces the use of ERI to 

image metals and that the gaseous partial pressure can be reconstructed in places where 
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Figure 4 (a) Image of voids within uranium dioxide fuel pellets can be seen. (b) Element-

specific images of U-238 were taken during this experiment by ERI. Both of these 

images have been normalized against the open beam to remove ghosting from the MCPs 

[74].  
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high-Z materials hide gases. This research paves the way for ERI to be used to image fuel 

assemblies and gases included within those assemblies.  

The last experiment that will be discussed was performed at Lujan Neutron 

Scattering Center at Los Alamos National Laboratory by Tremsin et al. in 2017 [78]. In 

this experiment, phase separation during crystal growth was observed in situ by using ERI. 

Similar to all other ERI experiments, neutrons are time tagged by an external trigger to 

calculate the neutron energy precisely. In this experiment, a furnace with a seed-crystal 

inside was placed in front of the detector at this beamline. Crystals were then grown using 

the Vertical Bridgman crystal growth method. The Vertical Bridgman crystal growth 

method relies upon the slow solidification of the melt with a controlled temperature profile. 

The heat transfer between the melt/solid interface is vital for crystal growth, and changing 

this profile can result in added point defects and inclusions. Considering these crystals 

usually take weeks, if not months, to grow, the ability to determine the crystal structure in 

real-time will revolutionize this field while saving material scientists numerous months of 

research while optimizing crystal growth parameters. For this reason, various crystals were 

grown inside the furnace and imaged during their growth with ERI to perfect the crystal 

growing parameters.        

As shown in Figure 5, the analysis of this spectrum allows for the investigation of 

properties such as crystallinity and phase separation. Crystallinity in the crystal boules is 

visible due to Bragg scattering within the lattice structure of the material [79]. Phase 

separation is visual once the sample has been reconstructed due to the temperature profile 

within the furnace. ERI allowed for the collection of multiple process parameters during 

crystal growth. These process parameters included the location and shape of liquid and 

solid phases, phase separations, point detects and inclusions and isotopic distributions 

during in situ growth. As we can see from some of these experiments, ERI is an exciting 

new scientific field. Not only will it save material scientists time, but it will also allow for 

the determination of multiple process parameters simultaneously. Additional experiments 

have explored using ERI to map the residual strain within bulk metal samples [80]. This 

tool helps quantify the residual stress within processed samples such as additive 
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Figure 5. (b) In situ mapping of europium concentration from ERI data for 

BaBrCl:0.5%Eu can be seen above. The europium content appears to be distributed only 

along the edges of the solid crystal. (c-d) In situ mapping of lithium concentrations from 

ERI data for Cs2LiLaBr6:Ce can be seen above. The clear band (blue) of lithium 

separation seen in (d) is a result of phase separation [78]. 
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manufacturing and welding.  In addition, ERI has been used to map discontinuity, grain 

orientation, alloy composition, and hardness of various samples for a plethora of 

engineering/material science applications [81-83]. This section has shown numerous 

applications for ERI detectors and the need to improve our current systems. We propose to 

improve the existing systems by implementing LISe detectors at neutron imaging facilities 

around the world.  

 

1.5 Strip Detectors  

 

The method for enhancing the spatial resolution using a double-sided strip design 

is similar to the η-function developed by the high energy physics community for MIPs 

tracking using single-sided silicon strip detectors at the Large Hadron Collider (LHC) [84, 

85]. Using this method, the charge is shared across multiple strips in a strip detector to 

enhance the spatial resolution by as much as a factor of ten. The goal of this application at 

the LHC is not position sensing of the MIPs but reconstructing the neutron interaction 

location from the induced signal on the strip electrodes. To properly spread the signal out 

across multiple electrodes, for our application, the electrode pitch must not be significantly 

larger than the combined ~47.5 μm range of the secondary charged particles (alpha/triton).  

The value of this double-sided strip detector design lies in its ability to log and 

interpret the energy deposition profile of the secondary charged particles. This also gives 

us the significant benefit of reducing the number of readout channels from N2 to 2N for 

direct coupling to the ASIC, which allows for a higher count rate. The DSSD design 

enables low-power processing electronics at a reduced data transfer rate, benefitting large-

area neutron imaging. Using this design, the neutron-induced signals may be measured 

using ASIC and signal trace lines over direct coupling, which avoids the challenges 

associated with device density when using the direct coupling technique via flip-chip 

bonding.  

According to the Shockley-Ramo theorem, the signal measured is through the 

formation of charge on the strip electrodes, maximizing the signal on a single strip as the 

charge cloud approaches the crystal boundary [86]. By time correlating the signal of each 
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strip in the double-sided strip design, we can determine the interaction voxel. This voxel 

has a square edge equal to the strip electrodes' pitch. Significant effort has been taken to 

develop an η-function to enhance the neutron capture point beyond this voxel (see Section 

Ⅱ.Ⅰ η-function Design). 

 

1.5.1 Silicon Strip Detectors 

 

Silicon tracking detectors are an established technology used for the inner tracking 

layers of particle tracking at the LHC and proposed for use in its upgrade to the High-

Luminosity Large Hadron Collider (HL-LHC) [87-89]. The two primary devices under 

consideration are double-sided 3D strip detectors (double-sided, double-type column 

(DDTC) 3D sensors) and planar strip detectors. These are charge induction detectors where 

charge carriers absorb energy from the detector stored on the readout electrodes. In 

principle, the energy the silicon absorbs induces charge formation on the electrodes by 

moving through the bulk. This induction of charge is used to measure the radiation 

interaction. Figures 6-7 shows the respective detectors.  

 The columns in Figure 6 are etched into the front and back of the sensor and do not 

go through the entire detector. On the sensor's front face, the columns are connected to the 

readout strips and are usually referred to as readout columns. The columns on the back face 

of the sensor are connected to the backplane and provide the ohmic contact. It is worth 

noting that each column is centered between four other columns with the opposite dopant 

type. For this to work correctly, the doping concentration for all columns is higher than 

that of the bulk substrate. High-resistive float-zone (FZ) silicon was used as the bulk 

material for these detectors. One challenge with this design is that the charge collection of 

double-sided 3D detectors is slower than full 3D detectors. To increase the timing of these 

detectors, one can increase the depth of the columns [90]. These planar silicon detectors 

are typically 300 µm thick but can vary based on application. It is also worth noting that 

the HL-LHC will deliver a peak luminosity of approximately 5 × 1034 cm-2s-1, so these 

detectors must be very radiation tolerant [89, 91]. Shown in Figure 7, the idea behind planar 
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Figure 6. Principle of double-sided 3D strip detectors: (a) three-dimensional view, (b) 

horizontal projection. The junction columns extend into the substrate from the front side 

and are connected to readout strips. The ohmic columns are extended into the substrate 

from the backplane and are all connected together [88].  

 

 

Figure 7. The principle design of a planar strip detector. P-stop implantations, which are 

present between the strips in the planar design, are omitted [89].  
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strip detectors is to share the induced charge across multiple strips (charge sharing) to 

determine the particle interaction with sub-pitch spatial resolution. Typical silicon strip 

detectors are either p+-n-n+ or p+-p-n+ design, where the sensor is either lightly n/p-doped. 

The doping concentration of the strips is much higher than the doping concentration of the 

bulk silicon. The strip pitches for these detectors at the LHC typically vary between 50-

100 µm. In addition, strips are often metalized above the dopant implantations to form 

capacitive coupling (AC). Inversely, if the implantations are directly coupled to the readout 

electronics, this would be direct coupling (DC). Similar to the DDTC design, the doping 

concentration must be several orders of magnitude larger than the substrate doping 

concentration. In addition, strip detectors will usually have metalized strips above the 

implants, which leads to capacitive coupling between the strip implantations and the 

metalized strips. To prevent the depletion zone from reaching the planar metal contact, the 

p-n junction is formed close to the top surface, and the dopant layer (p+ or n+) is on the 

bottom surface. This depletion zone is where the semiconductor is depleted of free charge 

carriers. A p-n junction is a junction created between an n-type and a p-type region. 

Electrons and holes from each region diffuse into the other region and will recombine with 

excess charge carriers. The p-n junction for this design is kept narrow by the high dopant 

concentration on the bottom side of the detector, which leads to good ohmic contact 

performance from these devices.   

The electrode pitch is the main factor determining these detectors' spatial 

resolution. A uniform probability distribution is assumed for a single particle interaction 

over a single strip. Suppose a single electrode collects the charge induced by a single 

interaction. In that case, the spatial resolution of the detector is the standard deviation of 

the uniform probability density distribution, Equation (12).  

 

 = √〈𝑥2〉 − 〈𝑥〉2 =
𝑝

√12
 (12) 

 

In this equation,  is the uniform probability density distribution, 𝑥 is the coordinate 

within one strip, and 𝑝 is the strip pitch. For a strip pitch of 50 µm, the single strip or binary 
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resolution would be 14.43 µm and is highly dependent upon allowing diffusion to occur. 

Charge sharing across adjacent strips is utilized to improve the spatial resolution of these 

detectors. The main drawback of charge sharing is that it can lead to lower signals measured 

per readout strip, which can decrease detector efficiency. As one can see, a smaller strip 

pitch increases the charge-sharing probability. To properly understand these devices, one 

must realize there is a tradeoff between spatial resolution and the amount of signal 

measured per strip. In addition, one must consider the physical limitations of the strip 

electrode width/pitch using current strip electrode fabrication methods. Using 

photolithography at the University of Tennessee’s Micro-Processing Research Facility 

(MPRF), we can consistently make 1 µm features and ~3-5 µm strips.    

 

1.6 Lithium indium diselenide  

 

LISe is room-temperature semiconductor comprised of three starting materials: 

lithium, indium, and selenium. Indium and selenium can be purchased at a 7N purity, 

whereas lithium-6 must be vacuum distilled to a minimum of 5N purity [92]. The first two 

elements, lithium and indium, are combined in a 1:1 molar ratio in a pyrolytic boron nitride 

crucible and heated. At this point, excess lithium is added to ensure proper molar ratios 

within LISe. Two moles of selenium are then added to the compound and heated. This is 

then sealed in an ampule, pressurized, and heated. The final product results in the 

polycrystalline form of LISe. Changing the stoichiometric concentration of selenium from 

two to anything other than two results in point defects and inclusions in the polycrystalline 

material [93]. These polycrystalline seed crystals are then grown into LISe crystal boules 

using the Vertical Bridgman growth method [94]. 

 The Vertical Bridgman growth method relies upon slow solidification of the melt 

under a controlled temperature profile. This requires precise and accurate control of the 

crystal’s temperature profile. Changing the thermal gradient across the melt/solid interface 

results in added point defects and inclusions. This reinforces the earlier statement that the 

heat transfer between the melt/solid interface is essential for crystal growth [78]. These 

crystal boules can be produced at 5-10 mm/day [95-98]. After they are grown, these crystal 
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boules are annealed in a lithium-rich environment to remove point defects and inclusions 

and maintain the stoichiometry (Se=1:1:2) within LISe. This annealing step is not required; 

however, it dramatically improves the performance of LISe as a semiconductor. This 

annealing step results in a yellow LISe crystal color.  

The LISe boules are typically sliced into individual bulk sensors with a diameter of 

13 mm and thickness ranging from 1.0 mm to 2.0 mm. These bulk sensors are then polished 

to enhance contact adhesion and etched in a 5% bromine/ethanol solution to remove surface 

contamination and defects. Photolithography is then performed, and gold ohmic contacts 

are sputtered onto the sensor. In the past, LISe sensors have been flip-chip bonded to a 

Timepix ASIC chip. This Timepix ASIC chip correlates the neutron energy spectrum at 

each pixel within a pixilated device [11]. This Timepix ASIC readout can be operated as a 

counting and high-resolution centroiding system. The Timepix ASIC associated with LISe 

operates in the counting mode. This Timepix coupling system resulted in the first high-

resolution direct conversion semiconductor for neutron detection and imaging [57].  

When a thermal neutron is absorbed by lithium-6 within the LISe polycrystalline 

structure, alpha particles and triton are emitted as the products. This reaction is shown in 

Equation (13). Note that the triton takes more (~57 percent) of the energy from the neutron 

capture reaction than the alpha particle.   

 

𝐿𝑖 +  𝑛0
1 →  𝐻(2.75 𝑀𝑒𝑉) +  𝐻𝑒2

4 (2.05 𝑀𝑒𝑉)1
3

3
6  (13) 

 

Conservation of momentum is conserved such that the lighter product receives the 

most kinetic energy. Due to this, large 𝑄-values are desirable for neutron detection because 

larger signals are produced within the semiconducting material. The energy deposition for 

LISe is large enough to allow for the discrimination between neutrons and gamma-rays. 

The energy these daughters carry is converted into electron/hole pairs within the bulk of 

LISe and swept away to the collector by the applied bias. Using a high isotopic enrichment 

of lithium-6 of 95% results in a higher neutron absorption cross-section because the neutron 

absorption cross-section for lithium-6 is 940 barns versus 45 millibarns for lithium-7. 



 

30 

 

Lithium-7 is not wanted since it does not produce heavy charged particles after a neutron 

absorption reaction. Due to this inherently large content of lithium-6 within the 

composition of LISe, approximately 75% of the incident thermal neutrons are captured. 

This theoretical yield can be calculated by taking the ratio 6Li and dividing it by all other 

isotopes in LISe. This is called capture efficiency, not neutron detection efficiency, because 

not all neutron captures result in a signal above the noise floor due to poor charge collection 

efficiency (CCE). It should be noted that solid lithium-6 deuteride is used as the fusion fuel 

for the second stage of thermonuclear weapons, and as such, the export and use are tightly 

controlled [38, 99]. It should also be noted that the competing indium-115 (n,) reaction 

has a somewhat high thermal neutron absorption cross-section of 202 barns. This secondary 

gamma is highly likely to escape and is not wanted during the signal development step.  

The desired ambient temperature thermal neutron detector bandgap is between 1.8 

and 2.0 eV. This desired bandgap is such that thermal photons cannot excite electrons into 

the conduction band, resulting in indistinguishable signal and noise [100]. This 

phenomenon is often referred to as dark noise. The bandgap for LISe is 2.8 eV, which is 

above this ideal range, but it still works as a room-temperature semiconductor. Within 

LISe, the 4.78 MeV 𝑄-value of the 6Li reaction creates localized regions of electron-hole 

pairs. Creating these electron-hole pairs requires the daughters (alpha/triton) to transfer 

energy to the bound valence electron. Direct ionization is the process by which these 

excited daughters transfer their energy. This ionization energy is the energy required to 

produce an electron-hole pair within a semiconductor. The total charge generated by 

incident radiation, 𝑄0, is dependent upon the elementary charge of an electron, 𝑞, and the 

number of charge carriers generated, 𝑁. Based upon a given energy deposition, 𝐸, and the 

ionization energy, 𝑊, Equation (14) is defined below. This charge-to-energy 

proportionality is the fundamental design for radiation detection [101]. 

 

𝑄0  =  𝑞𝑁 =  
𝑞𝐸

𝑊
   (14) 

 



 

31 

 

When enriched to 95% 6Li, LISe could reach a thermal neutron capture efficiency 

of 99% if it did not have competing elements such as 115In. 115In also captures thermal 

neutrons and does not give off measurable daughters. This limits the total detector 

efficiency from 99% to 78%, which is still much higher than other current detector systems 

[102].  Current 10B or 6Li-containing detector systems have a maximum neutron detection 

efficiency of 32% [103].  

 

1.7 Lithium indium phosphorus selenium 

 

The computational evaluation for the DSSD design is relevant for all lithium-

containing semiconductors. For these reasons, we have also explored using a new material, 

Lithium indium phosphorus selenium (LIPSe or LiInP2Se6), as a semiconductor in our 

DSSD design. LIPSe is a new material discovered by Mercouri G. Kanatzidis’s Research 

Group out of Northwestern University (NU) in 2020, which offers high neutron detection 

efficiency, excellent energy resolution, and both hole/electron collection [36].  

 The precursors for LIPSe consist of Li2Se, Li1.03In, and P2Se5, and they are 

synthesized independently and then grown as bulk material. Detector-grade LIPSe is then 

grown by chemical vapor transport (CVT). The precursors are loaded into a carbon-coated, 

13-mm fused silica tube where the bulk material is produced. A carbon-coated tube is 

required since it will withstand chemical attacks by Li. After purging the tube with 

nitrogen, it is flame-sealed under a vacuum. From here, the tube is heated to 750 ºC over 

10 hours, held at this temperature for 24 hours, cooled to 350 ºC over 12 hours, and furnace-

cooled to ambient temperatures. This bulk material is ground to a fine powder and loaded 

into a new tube for CVT growth. For an in-depth report on this CVT growth, please read 

“Direct thermal neutron detection by the 2D semiconductor 6LiInP2Se6” [36].  

 After growth, these 2D crystals have been fabricated into detector devices using 

evaporated planar gold contacts. These devices were tested with 241Am sources and 

resolved the 241Am peak for both holes and electrons, showing mobility for both charge 

carriers, and these results can be seen in Figure 8. Both charge carriers must have decent 

mobility for the DSSD design to work correctly. If they do not, you will collect most of   
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Figure 8. Pulse-height spectra for four LIPSe samples. Pulse height spectra are shown 

for electron (a-d) and hole (e-h) collection [36].  
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your charge on a single side of the device, significantly reducing the spatial resolution for 

a single dimension (X or Z) depending upon which side collects electrons or holes.   

 This lithium-based semiconductor has the same neutron capture reaction as LISe, 

seen in Equation(13, with the range of the alpha particle and triton being 6.7 µm and 37.5 

µm, respectively. However, since it has shown decent mobility for both electrons and holes, 

we have selected it for our DSSD detector design. NU is performing current progress 

toward Bridgeman growth of this material.  
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CHAPTER TWO:  RESULTS 

 

This dissertation seeks to provide the neutron imaging community with the results 

of our effort to develop LISe or another 6Li-based semiconductor as a DSSD which will be 

the first high-resolution (1-5 µm) neutron imaging sensor with excellent detection 

efficiency (>70%) and temporal resolution (<1 µs), and high-count rate capability. In 

addition, the lower effective-Z of LISe, in combination with the large reaction 𝑄-value of 

4.78 MeV, offers the potential for excellent gamma/neutron discrimination. As described 

in Chapter Ⅰ, there is a demand for next-generation thermal neutron imaging detectors at 

neutron imaging facilities worldwide. For these reasons, this proposed research will focus 

on developing a state-of-the-art LISe-based neutron imaging DSSD. It is worth noting that 

this research work is applicable to any 6Li-containing semiconductor.  

First, we have developed a custom η-function for our double-sided strip design to 

achieve our end goal of 1-5 µm spatial resolution. This η-function defines a “center of 

gravity” of the pulse height distribution across the strip electrodes to identify the point of 

impact. For our material (LISe), the detected charged particles are alphas and tritons 

emitted antiparallel to each other. Using SRIM, we have determined that the total path 

length of the alpha particle and triton is 47.5 µm [104]. This length defines the achievable 

spatial resolution using 6Li in scintillation screens. For semiconducting LISe, measuring 

the distribution of induced signals on the strip electrodes enables us to use this “center of 

gravity” concept to enhance the spatial resolution beyond 47.5 µm.  

Second, we have taken the simulated induced signals from the strip electrodes and 

trained them to machine learning (ML) models to predict the interaction location. Using 

proper data preprocessing techniques on our dataset is important to train these models 

accurately. These models are then exported in C++ Code for deployment with our 

electronics package.  

Third, we have computationally determined our double-sided strip detector's 

optimal strip pitch and width. It is not economically feasible to pattern and test a wide range 

of strip pitches and widths to determine which combination offers an optimal spatial 
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resolution. Due to this, we have simulated a range of electrode pitches from 15-75 µm and 

electrode widths from 10-50 µm. This will allow us to computationally determine the 

optimal width/pitch combination and use this design for our DSSD. It is worth noting that 

the current photolithography process at the UTK allows us to create 5 µm features on 

samples accurately.  

 

2.1 η-function Design 

 

This double-sided strip detector design works because of two secondary charged 

particles generated by the neutron absorption reaction within LISe. Electron-hole pairs are 

generated as these two particles slow down within the bulk material. By measuring the 

distributions of these induced signals on our strip electrodes, we can determine the 

interaction location and enhance the spatial resolution beyond the current ~34 μm 

maximum spatial resolution of LISe. The desired spatial resolution (sub-5 μm) is possible 

through charge sharing across adjacent strips due to the large range of the triton. To achieve 

our sub-5 μm spatial resolution goal, we must calculate the induced signal for a mesh 

throughout the LISe bulk and include a wide range of emission angles for the alpha/triton. 

The creation of our modified η-function started with modeling the weighting potential and 

electric field for a 500 μm thick LISe sensor with an applied bias of 1 V using SILVACO.  

The weighting potential is found by setting an electrode in the middle to a value of 1 V 

(source) and setting all other electrodes to ground. One of these models can be seen in 

Figure 9. Since SILVACO runs on a 32-bit processor, the main issue encountered when 

modeling these DSSD designs was memory allocation errors (running out of memory). We 

elected to employ a finer mesh near the electrodes, where the weighting potential changes 

the most. As is shown in Figure 10, the weighting potential does not change very rapidly 

throughout the bulk. Due to this, a coarse mesh was employed throughout the bulk.  

From here, a custom MATLAB program was created to calculate the negative 

gradients of the electric field potential to get the electric potential, which is a scalar 

quantity. We use this electric potential to calculate/define the amount of energy absorbed 
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Figure 9. SILVACO design for a DSSD with strip width/pitch of 20/30 µm. 
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Figure 10. The weighting potential for a central electrode using SILVACO for a strip 

width/pitch of 40/60 µm.  
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by a moving charged particle in the electric field. Next, a single point deposition of charge 

is spawned at one μm points (making up our mesh) within the bulk material, making up 

our simulation space. This was done to simulate the induced charge on each electrode from 

a point deposition charge at a given coordinate (X,Y,Z). This was mapped for point 

depositions of electron-hole pairs across the LISe sensor in a one μm mesh for all (Y) 

coordinates (bulk), and most (X,Z) coordinates to create our subspace. Lastly, a MATLAB 

program imports the Bragg Curve data calculated by SRIM to simulate the energy 

deposited by the secondary particles onto this mapped response. If we sum the induced 

signal across all strips, with a W-value of 1, we get 4.78 MeV, the 𝑄-value of the Li6 

neutron absorption reaction. The SRIM simulation results can be seen below in Figure 11 

and Figure 12.  

 Since perfect charge collection efficiency (no charge loss) was simulated for this 

system, a single-point deposition of charge is equal to one. This is also used as a check on 

the program to ensure the calculations leading up to this point in the code are without error. 

The simulated charge collected from an electron generated in the middle (250,250,250) of 

the detector and below Electrode 17 can be seen in Figure 13. In this simulation, Electrodes 

3-7 are on the top of the LISe bulk material, and Electrodes 13-17 are on the bottom. As 

expected, the nearest electrode collects most of the deposited charge (Electrode 5). This 

simulation was for an electrode width of 20 μm and pitch of 30 μm. 

The desired spatial resolution (sub-5 μm) is possible using charge sharing across 

adjacent strips due to the large range of the triton. To achieve our sub-5 μm spatial 

resolution goal, we must calculate the induced signal for a mesh throughout the LISe bulk 

and include a wide range of emission angles for the alpha/triton. We have explored five 

different strip width/pitch (in µm) combinations to achieve our sub-5 µm spatial resolution 

detector goal. These DSSD designs include strip widths/pitches of 10/15, 20/30, 30/45, 

40/60, and 50/75.  

 This custom eta-function can be broken down into three main steps, with a 

flowchart for this code in Figure 14 and the steps on page 43. 
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Figure 11. Simulation performed by SRIM to calculate the Bragg Curve data for an alpha 

particle deposition in LISe [79].  
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Figure 12. Simulation performed by SRIM to calculate the Bragg Curve data for triton 

deposition in LISe [79].  
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Figure 13. Simulated response of an electron generated at the middle of the detector. 

This electron is generated under Electrode 5. A charge collection of 1.0 signifies 

complete charge collection by an electrode. 

 

 

 

 



 

42 

 

 

Figure 14. Coding flowchart for the modified η-function that has been developed.  
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STEP 1 

a) Defines DSSD design (strip pitch and width) 

b) Imports electric field and weighting potential data generated by SILVACO 

c) It uses a scattered interpolation function to go from 10 µm to 1 um mesh 

d) Creates gradients of the electric field and outputs them for use in the next 

step 

STEP 2 

a) Electron-hole (e-h) pairs are spawned at 1 µm increments within the LISe 

bulk material. Electrons and holes are tracked throughout the material due 

to the electric field. The induced charge from each is found based on the 

gradient of the weighting potential at each time step along their track. 

b) These are spawned until they reach the edge of our material based on our 

DSSD design 

c) The output of this code is the (X,Y,Z) coordinate of each e-h pair and the 

subsequent charge induced on each electrode due to the movement of that 

pair 

STEP 3 

a) The results from STEP 2 and the SRIM Bragg Curve data, seen in Figures 

11-12, are used to determine the induced charge on each electrode from 

neutron interactions for all (X,Y,Z) coordinates. 

1. The Bragg Curve data determines the energy deposition of the triton 

and alpha particle throughout the bulk LISe material at various 

isotropic emission angles, giving charge generation at specific 

points. 

2. The responses are given for the top electrodes (electron collectors) 

and bottom electrodes (hole collectors) of the DSSD. The signal 

generated from the alpha particle and triton is calculated separately 

and summed for holes and electrons. The total induced charge on 

the electrode is the sum of the charge from all freed electrons and 

holes.  
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2.2 Training Dataset and Machine Learning Models 

 

The training dataset the machine learning models are trained to consist of the X and 

Z coordinate and the induced signal on the strip electrodes. Since the alpha/triton are 

emitted in 4π, we also must simulate the emission angles (φ/θ) emitted antiparallel and 

include these in the dataset. Performing these simulations for all emissions in 4π is 

unrealistic, and these simulations take quite some time to run (months without 

parallelization), so we wanted to figure out the maximum possible emission angle for the 

simulations to achieve our goal of sub-5 μm spatial resolution. φ ranges from (0°, 360°) 

and θ ranges from (0°, 180°). To orient φ/θ in this simulation, it is worth noting that φ of 

0° is parallel to the X-plane. To achieve our goal of ~ 5 μm spatial resolution, we have 

trained various machine learning models to predict the neutron interaction location based 

on the induced signal spread across multiple strip electrodes. Regression Trees and Neural 

Networks using 20% holdout validation were selected to model this dataset. Holdout 

validation is commonly employed for datasets where accuracy is essential [105]. The input 

variables for these models are the induced signal on each electrode for all possible 

interaction locations (one μm mesh) in our subspace. The output variables for these models 

are the interaction position (X and Z coordinates) in units of μm. As is typical when 

employing machine learning models, the model is trained to a single output variable. So, 

the models for the X and Z coordinates are trained separately. These models predict the 

neutron absorption location based on the induced signal across multiple strip electrodes. 

For neural networks, the induced signals are normalized to unit variance. Regression Trees 

do not require the data to be normalized. All models' minimum/maximum values are 

included in the training dataset. It is manually added to the dataset if it was not included in 

part of the 20% holdout validation.  

For the neural networks we employed, we used rectified linear unit for the hidden 

nodes and the Softmax activation for the output node/nodes. The Softmax activation 

function scales our values into probabilities, as seen in Equation (15). In this equation, 𝜎 

is the softmax, 
𝑍
→ is the input vector, 𝑒𝑧𝑖 is the standard exponential function for the input 
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vector, 𝐾 is the number of classes in the multi-class classifier, and 𝑒𝑍𝑗  is the standard 

exponential function for the output vector.  

  

𝜎 (
𝑍
→)

𝑖
=

𝑒𝑍𝑖

∑ 𝑒𝑍𝑗𝐾
𝑗=1

  (15) 

 

 The F1-score is typically used when evaluating the performance of predictive 

models that provide a binary (yes/no or 1/0) prediction. Since our models predict a non-

binary response, we have used the root mean square error (RMSE) to evaluate the model’s 

performance. The standard deviation of the residuals (prediction errors) or RMSE is used 

to quantify the performance of the various machine learning models. This loss function 

allows us to compare the performance between varying DSSD designs and is a general-

purpose error metric for numerical predictions [106]. The RMSE is often used for 

predictions in the same way as the standard deviation is used for a typical data set [107]. 

In Equation (16), 𝑁 is the sample size, 𝑥𝑖 is the predicted value, and �̂�𝑖 is the observed 

value.  

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − �̂�𝑖)2𝑁

𝑖=1

𝑁
 (16) 

 

We started with 90° emission angles for φ/θ and trained this dataset to coarse 

regression trees to determine how robust these models were. From here, we tested the 

model on a dataset consisting of a 1° emission angle for φ/θ to see if the RMSE was under 

our goal of 5 µm spatial resolution. As expected, the RMSE was greater than 5 µm, so we 

moved on to a training dataset that consisted of 30° emission angles for φ/θ. As before, this 

was tested on the same 1° emission angle dataset for φ/θ. The mean RMSE is well below 

our goal of sub-5 μm spatial resolution. However, bands of high RMSE values could be 

lowered if finer emission angle was selected for the training dataset. The tradeoff with 



 

46 

 

setting smaller/finer emission angles for φ/θ is the computational time since the emission 

angles will make the nested for-loops larger; because of this, the time required to run the 

simulations increases exponentially.  

We also wanted to ensure that the trained models still perform correctly under a 

few regions of interest. These being mainly at the edge of our subspace, between two strips, 

directly under a strip, and at the edge of a strip electrode. We also wanted to determine if 

the interaction depth affected our model performance. Figure 15 provides a visual 

representation of these regions of interest. Once the areas of interest were selected, we 

tested the performance of our coarse trees and neural networks at these points. The coarse 

trees and neural networks had very similar performance, so Table 1 only contains the 

RMSE results for the coarse trees. As one can see from the italicized values in the table, 

the model has the highest RMSE (worst performance) near the edges.  

A model for an electrode strip/pitch of 10/15 μm with a 1 μm mesh and 30º emission 

angles for the secondary charged particles was trained to Coarse Regression Trees 

(minimum leaf size: 36). A simulation was performed for an interaction location in the 

middle of the device with 1º emission angles for the secondary charged particles to prove 

that simulating 30º emission angles was sufficient for our goal. The RMSE versus Phi and 

Theta for various regions of interest can be seen in Figures 16-19. The RMSE values for 

these for these simulations can be found in Table 2-3. Another explored region of interest 

was at the edge of our subspace and the middle of our detector. As one can see from these 

results, the RMSE approaches the strip pitch (30 µm) at φ of 90º and θ of 90º and 270º. So, 

if the charge is directed upwards or downwards and not shared across adjacent strips, we 

see a decreased model performance. If finer emission angles for φ/θ are used when the 

charge is only spread across a single strip (directly upwards or downwards) then the model 

performance (RMSE) will increase. There is a trade-off between computational time and 

model fidelity, but based upon these results, 30º emission angles for φ/θ is sufficient to 

achieve our goal of sub-5 µm spatial resolution.  
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Figure 15. Schematic that identifies regions of interest for a strip pitch of 15 µm and strip 

width of 10 µm DSSD design. Regions of interest are designated by a black X. The 

training dataset subspace ranges from the dashed line on the left to the dashed line on 

the right. 
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Table 1. RMSE Dependence on Phi and Theta for a Reconstruction at 

the center of a 10/15 DSSD design 

Phi 

 (0º-180º) 

Theta 

(0º-360º) 

Mean RMSE 

(µm) 

0 0-10 8.11 

0 40-50 9.06 

0 85-95 8.40 

0 350-360 6.82 

45 0-10 11.30 

45 40-50 6.12 

45 85-95 5.38 

180 0-10 8.12 

180 40-50 9.05 

180 85-95 8.37 

180 265-275 8.38 
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Figure 16. Coarse Regression Tree model performance (RMSE in μm) versus angular 

position (φ/θ). This is for a neutron interaction at the edge of our subspace and the 

middle of the device (235,250,235). This is tested on 1º emission angles for the 

secondary charge particles.  
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Figure 17. Coarse Regression Tree model performance (RMSE in μm) versus angular 

position (φ/θ). This is for a neutron interaction between two adjacent strips and the 

middle of the device (242.5,250,242.5). This is tested on 1º emission angles for the 

secondary charge particles.  
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Figure 18. Coarse Regression Tree model performance (RMSE in μm) versus angular 

position (φ/θ). This is for a neutron interaction in the middle of the device (250,250,250) 

with 1º emission angles for the secondary charged particles.  
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Figure 19. Coarse Regression Tree model performance (RMSE in μm) versus angular 

position (φ/θ). This is for a neutron interaction at the edge of the rightmost strip in our 

subspace and in the middle of the device (260,250,260) with 1º emission angles for the 

secondary charged particles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
M

S
E

 (
µ

m
) 



 

53 

 

Table 2. Coarse Regression Tree RMSE for varying positions (Y) 

Coarse Tree 

Interaction Location Mean RMSE (µm) Median RMSE (µm) 

(235,50,235) 7.19 2.01 

(235,250,235) 7.26 2.01 

(235,450,235) 7.26 2.01 

(242.5,50,235) 2.45 1.13 

(242.5,250,235) 2.52 1.52 

(242.5,450,235) 2.52 1.52 

(250,50,235) 2.01 1.41 

(250,250,235) 2.10 1.43 

(250,450,235) 2.12 1.57 

(260,50,235) 2.50 2.00 

(260,250,235) 2.56 2.00 

(260,450,235) 2.58 2.00 
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Table 3. Coarse Regression Tree RMSE for varying positions (X,Y,Z) 

Coarse Tree 

Interaction Location Mean RMSE (µm) Median RMSE (µm) 

(235,250,242.5) 6.44 0.50 

(242.5,250,242.5) 1.39 0.71 

(250,250,242.5) 0.85 0.50 

(260,250,242.5) 1.58 0.50 

(235,250,250) 7.32 2.85 

(242.5,250,250) 2.66 2.03 

(250,250,250) 2.08 1.83 

(260,250,250) 2.59 2.26 

(235,250,260) 6.41 1.00 

(242.5,250,260) 1.45 0.50 

(250,250,260) 0.86 1.00 

(260,250,260) 1.55 1.00 
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2.3 Image Reconstruction 

 

Once the models had been trained, we were ready to test them with simulated 

(MCNP6.2) data. This η-function calculates the induced signal for a neutron interaction at 

the given MCNP6.2 simulated absorptions. Based on the previous section's results, the 

model were trained on a one µm gridded mesh (to the left/right of an electrode in the 

middle) with 30º emission angles for φ/θ. These reconstructions aimed to test our model 

against the MCNP6.2 data. 

We used MCNP6.2 to simulate a neutron beam striking a University of Tennessee 

Power T in front of a LISe imager. Due to its high thermal neutron absorption cross-section, 

157Gd was used as the material for the object of interest. We then sorted through the Particle 

Track Output (PTRAC) PTRAC F8 tally and found all the 6Li neutron absorption locations 

within LISe. These locations were used as the interaction location for the ƞ-function, and 

a random emission angle was chosen for φ and θ. After running it through our ƞ-function, 

we get the induced signal data from a neutron absorption at (X,Y,Z) coordinates (provided 

by MCNP6.2) for a 500 µm thick LISe detector. This was performed for any DSSD designs 

that we wanted to test.  

To reconstruct images larger than the simulation subspace (2 × strip pitch), the 

PTRAC neutron absorption data was divided into even voxels that are equal to the 

dimensions of the simulated subspace and ran through the ƞ-function. Correctly grouping 

and naming this data was important to have accurate reconstructions. The MCNP6.2 

PTRAC raw data for the first University of Tennessee Power T can be seen in Figure 20 

and divided up into small voxels to be run through the ƞ-function in Figure 21. The coarse 

tree reconstruction for this can be seen in Figure 22 and was the first proof-of-concept for 

our modified ƞ-function coupled with machine learning models. For all of these image 

reconstructions, properly binning data for pixels is very important to prevent striations or 

artifacts in images. After seeing these results, we decided to simulate a knife-edge test 

using MCNP6.2. This consisted of a neutron beam (1E9 neutrons) striking a 

Gadolinumium-157 knife-edge with our 500 µm thick LISe detector behind it. The PTRAC 

data was fed to the η-function like it was for the Power T reconstruction. The PTRAC data  
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Figure 20. MCNP6.2 simulation of the University of Tennessee Power T. Neutron 

absorptions are binned into 4 µm pixels.  
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Figure 21. The raw data from was divided into 5×5 60 µm squares (for a design that has 

a strip width/pitch of 20/30 µm) which were then run through the custom MATLAB 

code to generate the induced signal from a neutron absorption at each interaction 

location. MCNP PTRAC 6Li neutron absorptions were used as the initial interaction 

location (generation point) in our eta-function. 
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Figure 22. Coarse Tree reconstruction of the University of Tennessee Power T. Neutron 

absorptions are binned into 4 µm pixels. The simulated DSSD has a strip width/pitch of 

20/30 µm. 
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can be seen in Figure 23, and the Coarse Tree reconstruction can be seen in Figure 24. The 

Coarse Regression Trees are able reconstruct the knife-edge; however, the edge does 

appear to be blurred. We wanted to find the 10% MTF to determine the absolute spatial 

resolution of our detector. Unfortunately, we did not have high enough bin counts on the 

edge to get any reliable results. Increasing the number of neutrons in the MCNP6.2 

simulation would allow us to achieve reliable results and will likely be performed in the 

future. Ten reconstructions were performed for this knife-edge data with no fluctuations in 

the RMSE values for the predictions, showing that the reconstructions are reproducible and 

have minimal fluctuations.  

From here, we simulated a smaller (10 µm) University of Tennessee Power T to 

test the performance of the five DSSD strip width/pitch variation. The results from this 

reconstruction can be seen in Figure 25 and a summary of the RMSE values can be found 

in Table 4. RMSE values for reconstructions of the University of Power T using different 

DSSD Designs. Note that in Figure 25, only four of the reconstructions are shown. Neural 

networks and coarse regression trees were trained to the same simulated datasets and have 

very different RMSE values. Coarse regression trees are the most accurate models and have 

RMSE values between 3-7 meanwhile, neutron networks have RMSE values between 11-

24 for the same reconstruction. Considering these models are trained on simulated data 

(one µm mesh, perfect CCE, and 30º emission angles for φ/θ) coarse regression trees are a 

viable option for us to reach our goal of sub-5 µm spatial resolution. In the coming sections 

we will discuss the addition of noise and varying CCE on the performance of these models. 

 

2.4 Addition of Noise 

 

Since we have simulated LISe as an ideal semiconductor, we need to add noise to 

the dataset to ensure our models still perform properly under realistic/operating conditions. 

This is important to evaluate the effect of noise on the ƞ-function performance. Noise is 

generally divided into two main categories, statistical and electronic noise. In its simplest 

form, statistical noise is defined as the unexplained variance in a dataset. Likewise, 

electronic noise refers to the unwanted electrical energy that degrades the quality of the 
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Figure 23. MCNP6.2 simulation of a Gd-157 knife-edge. Neutron absorptions are binned 

into 3 µm pixels. 
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Figure 24. Coarse Tree reconstruction of a Gd-157 knife-edge. Neutron absorptions are 

binned into 3 µm pixels. The simulated DSSD has a strip width/pitch of 20/30 µm. 
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Figure 25. Reconstruction of the University of Tennessee Power T. Neutron absorptions 

are binned into 1 µm pixels. A) Raw MCNP Data. B) Strip width/pitch of 10/15 µm 

Coarse Tree Reconstruction. C) Strip width/pitch of 10/15 µm Neural Network 

Reconstruction. D) Strip width/pitch of 30/45 Coarse Tree Reconstruction. E) Strip 

width/pitch of 30/45 Neutral Network Reconstruction. 
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Table 4. RMSE values for reconstructions of the University of Power 

T using different DSSD Designs 

DSSD Design 

Strip Width/Pitch 

Coarse Tree 

 RMSE (µm) 

Neural Network  

RMSE (µm) 

10/15 1.76 4.00 

20/30 2.41 3.77 

30/45 5.03 3.43 

40/60 5.59 4.45 

50/75 6.81 24.55 
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signals we receive. We elected to add 100, 500, and 1,000 e- of Gaussian noise to the 

University of Tennessee Power T datasets that is shown in Figure 25. A visual 

representation of adding 100 e- of gaussian noise to a dataset can be seen in Figure 26, 

where sigma is equal to 100 e-. The RMSE from these reconstructions can be seen in Table 

5: RMSE values for Power T reconstruction using four different DSSD designs and the 

addition of gaussian noise to the dataset and show where the models start to perform poorly. 

Please note that when the RMSE approaches 5 µm we cannot correctly reconstruct the fine 

features of the Power T. 

Based upon the results in Table 5., the addition of Gaussian noise to the datasets 

before reconstruction has little effect on the ability of the model to reconstruct fine features 

properly. Due to this, we wanted to determine how far we could push our reconstruction 

models. For this reason, we added up to 10,000 e- of Gaussian noise to our datasets and 

tested their performance. This was done to determine exactly where the models would 

break down. The strip width/pitch design of 10/15 was selected for these tests. The edge of 

the subspace (235,250,235) was selected as the dataset to add noise to, because it has the 

highest RMSE value from the results shown in Table 3. These results can be seen in Tables 

6-7. From these results, the neural networks start predicting outside the subspace after 

3,000 e- of Gaussian noise is added to the datasets. The coarse tree models do not predict 

outside the subspace and has very little error even after adding 10,000 e- of Gaussian noise. 

 

2.5 Charge Collection Efficiency 

 

Charge collection efficiency, commonly called CCE, is the amount of charge 

collected from the detector for a single radiation event. If all generated electron-hole pairs 

are also collected, the CCE would be equal to one. The deviations from perfect CCE 

typically come from trapping and defects in the crystal lattice. For the first iteration of the 

η-function, an ideal semiconductor was simulated with no charge carrier detrapping, no 

charge carrier loss, and perfect CCE. However, in the real world, no semiconductor is 

perfect. Due to this, we wanted to make our simulations more realistic by running models 
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Figure 26. Gaussian noise was added to the final generated datasets to test how to models 

would perform in the real world with the addition of noise. Sigma is denoted by the red 

line in this plot and is equal to 100 e-. 
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Table 5: RMSE values for Power T reconstruction using four different DSSD designs 

and the addition of gaussian noise to the dataset 

DSSD Design Gaussian Noise RMSE (µm) 

Strip width/pitch e- Neural Networks Coarse Tree 

10-15 0 4.00 1.76 

10-15 100 4.01 1.79 

10-15 500 4.30 1.96 

10-15 1,000 5.10 2.20 

20-30 0 3.77 2.41 

20-30 100 3.78 2.43 

20-30 500 3.94 3.05 

20-30 1,000 4.41 4.12 

30-45 0 3.43 5.03 

30-45 100 3.63 5.13 

30-45 500 4.46 6.52 

30-45 1,000 5.79 8.61 

40-60 0 4.45 5.59 

40-60 100 4.48 5.67 

40-60 500 5.10 7.06 

40-60 1,000 6.26 9.39 
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Table 6. Coarse Regression Tree RMSE with the addition of noise 

Coarse Tree - (235,250,235) 

Noise (e-) Mean RMSE (µm) Median RMSE (µm) 

0 2.51 1.52 

10 2.51 1.52 

100 2.50 1.57 

1,000 2.53 1.88 

2,000 2.70 2.00 

3,000 2.86 2.19 

4,000 2.98 2.25 

5,000 3.06 2.31 

10,000 3.26 2.57 
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 Table 7. Neural Network RMSE with the addition of noise 

Neural Network - (235,250,235) 

Noise (e-) Mean RMSE (µm) Median RMSE (µm) 

0 6.47 6.51 

10 6.47 6.51 

100 6.47 6.51 

1,000 6.55 6.57 

2,000 6.76 6.78 

3,000 7.13 7.06 

4,000 7.63 7.42 

5,000 8.18 7.77 

10,000 11.66 9.29 
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for a CCE of 0.10, 0.25, 0.5, 0.75, and 0.9. The models that are trained on perfect charge 

collection efficiency and are tested against these varying CCE simulations. This is due to 

ensure that we have plenty of realistic datasets and models for our η-function. Since the 

Power T reconstruction was used to test the addition of noise to the dataset and resulting 

model performance, the PSI Siemens Star reconstruction was used to test the varying CCE 

datasets against the models trained for perfect charge collection efficiency. The innermost 

spokes of the PSI Siemens Star were used to test the model performance, with the raw 

MCNP PTRAC output data shown in Figures 27-29. Figure 30 shows how the data is 

divided up in order to simulated the subspace for the width/pitch design of 10/15 µm. The 

coarse tree and neural network reconstructions for this design can be seen in Figure 31-32. 

In similar fashion, Figure 33 shows how the data is divided for the simulated subspace of 

a width/pitch of 50/75 µm and the results from the reconstruction can be seen in Figures 

34-35.  

From these results in Table 8, the strip width/pitch design of 10/15 shows the lowest 

RMSE while varying the CCE, but for perfect CCE, the 20/30 design has the lowest RMSE. 

All models have the worst performance when the CCE is equal to 0.1. This shows us that 

when working with a material that has a low CCE, the models will likely need to be trained 

to a simulated dataset with that corresponding CCE. As expected, all models show the best 

performance on datasets they were trained on, a CCE of 1. When looking at the Neural 

Network performance, setting the CCE equal to between 0.25 and 0.75 results in the best 

model performance (lowest RMSE). This was expected because Neural Networks are 

highly robust to variations or changes in the datasets. For coarse tree models, the 10/15 

design shows the best performance, and the 20/30 design has the best performance for 

neural networks. Considering everything, it is best to test the CCE for any semiconductor 

and incorporate that value into the simulations. This will lead to higher fidelity models and 

allow us to reach our sub-5 µm spatial resolution goal. The only models that meet this goal 

for perfect CCE are the 10/15 and 20/30 DSSD designs. 
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Figure 27. PSI Siemens Star test object simulated by MCNP6.2. The red box is the region 

that we reconstructed using our five different DSSD designs.   
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Figure 28. Zoomed-in region of the PTRAC output PSI Siemens Star that was used to 

test the performance of our various DSSD designs and models.  
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Figure 29. The raw MCNP6.2 data shown in Figure 29 is binned into 5 µm pixels. 
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Figure 30. The raw data from Figure 28 was divided into 13×13 30 µm squares 

(width/pitch of 10/15) which were then run through the custom MATLAB code to 

generate the induced signal from a neutron absorption at each interaction location. 

MCNP ptrac Li-6 neutron absorptions were used as the initial interaction location 

(generation point) in these simulations.  
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Figure 31. Coarse Tree reconstruction of the 10/15 strip width/pitch design for the PSI 

Siemens Star. No noise is added to this reconstruction, and data is binned into 5 µm 

pixels. 
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Figure 32. Neural Network reconstruction of the 10/15 strip width/pitch design for the 

PSI Siemens Star. No noise is added to this reconstruction, and data is binned into 5 µm 

pixels. 
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Figure 33. The raw data from Figure 28 was divided into 2×2 150 µm squares which 

were then run through the custom MATLAB code to generate the induced signal from a 

neutron absorption at each interaction location for a 50/75 strip width/pitch. MCNP ptrac 

Li-6 neutron absorptions were used as the initial interaction location (generation point) 

in our simulations. 
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Figure 34. Coarse Tree reconstruction of the 50/75 strip width/pitch design for the PSI 

Siemens Star. No noise is added to this reconstruction, and data is binned into 5 µm 

pixels. 
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Figure 35. Neural Network reconstruction of the 50/75 strip width/pitch design for the 

PSI Siemens Star. No noise is added to this reconstruction, and data is binned into 5 µm 

pixels. 
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 Table 8: RMSE values for PSI Siemens Star reconstruction using five different DSSD 

designs while varying CCE 

DSSD Design  RMSE (µm) 

Strip width-pitch CCE Coarse Tree Neural Networks 

10-15 0.10 13.68 18.31 

10-15 0.25 10.49 18.73 

10-15 0.50 7.88 18.89 

10-15 0.75 5.83 19.75 

10-15 0.90 4.45 20.94 

10-15 1 4.09 22.23 

20-30 0.10 33.10 19.01 

20-30 0.25 11.80 13.94 

20-30 0.50 15.21 11.76 

20-30 0.75 13.58 11.47 

20-30 0.90 11.31 11.78 

20-30 1 3.46 11.72 

30-45 0.10 37.99 22.62 

30-45 0.25 22.34 20.04 

30-45 0.50 13.21 12.81 

30-45 0.75 12.54 14.18 

30-45 0.90 12.68 16.10 
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Table 8 continued: RMSE values for PSI Siemens Star reconstruction using five 

different DSSD designs while varying CCE 

DSSD Design  RMSE (µm) 

Strip width-pitch CCE Coarse Tree Neural Networks 

30-45 1 5.89 17.65 

40-60 0.10 43.23 31.45 

40-60 0.25 25.84 28.96 

40-60 0.50 15.64 14.25 

40-60 0.75 13.90 13.46 

40-60 0.90 13.58 14.12 

40-60 1 6.12 15.66 

50-75 0.10 51.51 46.91 

50-75 0.25 30.21 37.05 

50-75 0.50 15.77 26.55 

50-75 0.75 15.15 25.98 

50-75 0.90 15.07 24.98 

50-75 1 6.81 24.55 
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2.6 Determining the Optimal Strip Width/Pitch 

 

Since metalizing and testing many different DSSD designs experimentally is cost-

prohibitive, we have determined computationally that several models with possible strip 

width/pitches meet our goal of sub-5 µm spatial resolution. As stated previously, the RMSE 

is used to compare the performance between different models. Gaussian noise and varying 

CCE values were added to all models, with the performance of these models being 

discussed in the previous sections. Suppose the performance of any two models is the same. 

In that case, the largest strip width/pitch will be selected, making designing the electronics 

slightly less challenging and allowing us to create a larger area device, assuming we are 

developing a fixed number of readout channels.  

After adding Gaussian noise to the simulated datasets and calculating the RMSE, 

three possible strip width/pitches meet our sub-5 µm spatial resolution goal. These are the 

10/15, 20/30, and 30/45 µm designs. Only two strip width/pitch combinations meet our 

spatial resolution goal after adding in CCE, the 10/15 and 20/30 designs. After comparing 

these results, we narrowed it down to the 10/15 or 20/30 design. Since these two models 

have a very similar RMSE, the 20/30 design has been selected as the optimal strip 

width/pitch to build a detector.  

It is worth noting again that this ƞ-function is applicable for any 6Li-based direct 

conversion semiconductor. We have determined computationally which possible strip 

width/pitch combination offers us the best chance to meet our sub-5 µm spatial resolution 

goal. To compare the performance between different models, we used the RMSE and have 

shown that the 10/15 and 20/30 designs will meet our goal. It is worth noting that a fairly 

wide range of strip pitches/widths will meet our goal. We have shown that varying the CCE 

plays a much larger role in model performance over Gaussian noise for these cases. Since 

two DSSD configurations provide similar spatial resolution results, it is ideal to go with 

the larger strip width/pitches of the two designs.  
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2.7 Development of a LISe Detector  

  

As a risk mitigation strategy, we elected to bond a LISe wafer to a Timepix ASIC 

to have a working detector. This section will address building this sensor and the challenges 

associated with this system. A raw LISe wafer was polished using a polishing machine, 

with the final polish being 0.1 µm, which was done to prevent sample wedging. After 

interferometer measurements were taken to ensure the sample had sub-5 µm wedging, it 

was chemically etched with a bromine/methanol solution such that it had an optical finish 

and was perfectly smooth. An image of the interferometer results for the Y-Profile of a 

polished sample can be seen in Figure 36, and a photo of the LISe sample before being 

etched can be seen in Figure 37. The malicious polishing and etching of the LISe wafer 

were done to ensure proper metallization/photolithography and bonding to the Timepix 

ASIC to minimize the number of dead pixels.  

Photolithography is a fabrication technique that allows for small (µm) level features 

on a photomask to be baked by using an ultraviolet (UV) light-activated resin (also called 

photoresist) onto the surface of the sample. The sample is then metalized using radio 

frequency (RF) plasma sputtering with our ATC-Orion 5 UHV Sputtering System from 

AJA International. After this sputtering system metalized 250 nm of gold, the sample is 

placed in a photoresist remover, where the photoresist is removed. When done correctly, 

any surface of the sample that does not have photoresist on it will be covered with an even 

contact layer allowing for complex designs and fine features to be metalized. Indium and 

gold are both the most common metal contacts used for LISe. From here, the sample is 

then flip-chip bump bonded to a Timepix ASIC, which has 256 × 256 square pixels with a 

pitch of 55 µm. This system allows pixels to be read out individually, allowing for a system 

that provides 55 µm spatial resolution. It is worth noting that charge centroiding can be 

used for sub-55 µm spatial resolution but requires data post-processing.  

From here, the ASIC/sensor stack was wire bonded to the signal bond pads of our 

X-Ray Imatek baby board seen on the right side of Figure 38 by a private company. The 

X-Ray Imatek baby board is a readout printed circuit board (PCB) that allows a single 

Timepix to be controlled by the readout electronics module. An image of this final system  
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Figure 36. Interferometer results for the Y-profile (vertical) polished LISe sample. This 

sample was measured to be 0.7798 mm before being chemically etched.  

 

 

 

Figure 37. A polished LISe sample before being chemically etched. The interferometer 

results for the Y-profile (vertical) of this sample can be seen in Figure 36. 
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Figure 38. A LISe wafer flip-chip bump bonded to a Timepix ASIC and wire bonded to 

a X-Ray Imatek daughter board (eX Board). The LISe sample can be seen in Figure 37 

before etching, metallization, and mounting to the ASIC. After mounting it to the ASIC, 

the sample was cracked and scratched.   
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can be seen in Figure 38, while a zoomed-in image of the vertical crack can be seen in 

Figure 39. Note that the sample was perfectly polished/etched and had no cracks before the 

flip chip bump-bonding to the ASIC. After bonding to the ASIC, two cracks appear to go 

through the sample, a vertical and horizontal crack. A previously published LISe imager 

has shown good performance even after the sample has been cracked, so this device should 

still work as intended [57].  

After using the ribbon cable in Figure 40 to connect the X-Ray Imatek baby board 

to the ex Data acquisition board (ex DAQ) the graphic user interface (GUI) for the X-Ray 

Imatek imaging software was unable to recognize the ASIC Chip identification (ID) and 

operate. The chip ID is read from the chip on the same signal lines as the pixel value. For 

serial readout mode, it will be read out on a single line; for parallel readout, it will be read 

out on all 32 lines. It is evident that there are several faulty wire bonds that prevent our 

detector from operating correctly which can be seen in Figure 41. Reference wire bonds 

can be seen on the left side of Figure 41, and the wire bonds performed by a private 

company can be seen on the right side.  

To determine the location of faulty wire bonds, we connected the ribbon cable 

(Figure 40) to the X-Ray Imatek baby board and read the output pin-by-pin, comparing the 

results to the readout circuit diagrams (provided by X-Ray Imatek). After reading out pin-

by-pin and comparing the results from the electronics diagram (eX board), it was 

determined that eight faulty wire bonds existed between the ASIC and the X-Ray Imatek 

daughter board. A summary of these faulty wire bonds can be found in Table 9, where 

BGND stands for board ground, and the X’s in the second column denote pads that were 

not meant to be wire bonded at all. Due to these faulty wire bonds, this LISe detector does 

not operate. It is worth noting that an additional two large area LISe wafers have been 

polished, metalized, and flip-chip bump-bonded to ASICs but have yet to be tested with a 

new readout system, but will likely be tested in the near future.  
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Figure 39. Zoomed-in image of the crack that appears in the top of Figure 38. This crack 

runs lengthwise down the LISe semiconductor and appeared during flip-chip bump 

bonding the LISe sample to the ASIC.  
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Figure 40. Ribbon Cable that is used for communication between the baby board and 

data acquisition board. Individual pins were read out to determine which wire bonds 

were faulty.    

 

  

Figure 41. Left Image, reference wire bonds from a working LISe detector flip-chip 

bump bonded to a Timepix ASIC [57].  Right image, wire bonds for a LISe imager 

performed by a private company. 
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Table 9. Wire Bonding Summary of Shorted Pins 

Pin Number Pin Description Shorted To 

20 L0.D12 BGND 

151 BGND BGDN 

152 BGND BGND 

157 X PIN 158 

158 NTC_HOT1 PIN 157 

169 X BGND 

171 POLARITY_SEL BGND 

173 2V5_LANE1_A BGND 
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2.8 Development of a LIPSe DSSD 

  

Since LIPSe exhibits greater hole transport than LISe, we have selected it as the 

material for our Lithium-based semiconductor using a DSSD design. Since this is a new 

material, several small-scale tests must be performed to build a working detector. First, we 

tested the chemical compatibility of LIPSe with a new non-water-based photoresist for 

photolithography. Next, we tested wire bonding a large area (strip width/pitch of 200/350 

µm) LIPSe DSSD. Lastly, we developed a novel layered detector design for a small area 

(strip width/pitch of 20/30 µm). This section will discuss the results of these endeavors. 

LIPSe is very hydrophilic (dissolves in water), so we had to find a new positive 

photoresist for photolithography. Due to the high cost of this new photoresist (PR1-

1000A), we tested the chemical compatibility of a LIPSe sample with all components of 

the photoresist, developer, thinner, resist remover, and stopper. To this end, a LIPSe sample 

was submerged for 30 minutes in a petri dish containing dibasic esters, ethylbenzene, 

anisole, dimethyl succinate, and octane.  These chemicals comprise all components of the 

water-free photolithography process, and the LIPSe sample was stable after 30-minute 

exposures to each. 

 Due to the soft nature of LIPSe, we wanted to see if wire bonding was a viable 

option for connecting the strip electrodes to the readout board. Wire bonding is used to 

mount the top face of a DSSD semiconductor to the readout electronics and is a critical 

step. To this end, we metalized a preliminary LIPSe sample with a DSSD design using a 

shadow mask with an internal dimension of 4.4 × 4.4 mm2, with a strip width of 200 µm 

and strip pitch of 350 µm. Eleven strips are on each side of the LIPSe sample, which is 

~150 thick. This small area LIPSe sample metalized with 250 nm of gold can be seen in 

Figure 42 and was sent to the Princeton Material Institute for wire bonding. Both ball and 

wedge bonding were tested at the Princeton Material Institute, and some of the results can 

be seen in Figure 43. Due to this material's ductile/malleable nature, it craters during the 

compression stage for ball bonding and the sonication stage for wedge bonding. A LIPSe 

sample with an indium contact was also tested at the Princeton Material Institute with 

similar results. Another LIPSe sample was metalized with planar indium contacts and 
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Figure 42. LIPSe DSSD wire bonded at Princeton Materials Institute. 
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Figure 43. Zoomed-in image of a LIPSe DSSD wire bonded at Princeton Materials 

Institute. Right image is of a single wire bond. Take note of the cratering around the 

bond. 
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tested for adhesion; no usable data was taken with this sample because the contacts peeled 

off after touching the test-board contact pin. An image of the planar contact post-testing 

can be seen in Figure 44. It is worth noting that indium and gold contacts do not appear to 

have excellent adhesion to LIPSe, but offer excellent adhesion to LISe. Laser bonding was 

also researched; however, the minimum ribbon current systems can laser bond is just under 

1 mm. Since we cannot wire bond with LIPSe, we explored using an anisotropic conductive 

film (ACF) adhesive to bond the LIPSe detector to the readout electronics on both sides of 

the sensor. The conductive particles in this film have a diameter of 3 µm and are made of 

a Ni-Au polymer, allowing us to connect strip electrodes as small as 10 µm to the PCB. 

The bottom side of the sensor will be bonded directly to the PCB, and the top side will be 

connected to a readout flex cable that will be plugged into the board. Bonding a LIPSe 

DSSD to a readout flex cable resulted in the gold contact being peeled off of LIPSe. This 

indicates to us that there is poor contact adhesion between gold and LIPSe. For this reason, 

it is recommended that we explore more materials for LIPSe contacts in the future. 

 We have developed a novel DSSD design to preliminary test the performance of 

the ƞ-function. A schematic of this design can be seen in Figure 45. This design uses a non-

conductive contact (SiO2) to cover the sample's surface except for a small square in the 

middle for strip electrodes. Allowing for thirty-two strip electrons with a strip width/pitch 

of 20/30 on each sample side. The strips end with large area contact pads (110×110 µm) 

for connecting the sample to the board using ACF. The SOLIDWORKS design for the 

photomask of this electrode design can be seen in Figure 46, and for the non-conductive 

contact in Figure 47. This was developed after the first initial test bond of LIPSe with ACF 

to the readout cable removed the contact from the surface of LIPSe. The gold contacts 

should not peel off since the gold will be sputtered onto SiO2 instead of directly on the 

surface of LIPSe. This non-conductive contact should allow for much better adhesion 

between the strip electrodes, ACF, and the flex readout cable.  

 SiO2, also known as glass, is used in a variety of applications as a non-conductive 

contact. Various reports in the literature state that SiO2 must be sputtered with excess 

oxygen, while other reports contradict this statement [108, 109]. Without adding an oxygen 

tank to our sputtering system, we wanted to determine if we could sputter SiO2 under a   
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Figure 44. Image of a LIPSe sample metalized with planar indium contacts for testing. 

Note that the pogo contact pin peeled the contact away wherever it touched the indium 

contact. 
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Figure 45. Novel detector design for a 32 strip DSSD Design with a strip width/pitch of 

20/30 µm. 
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Figure 46. Shadow mask for a DSSD strip width/pitch of 20/30. There are 32 strips on 

each side.  
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Figure 47. Shadow mask for the non-conductive contact to be applied to LIPSe before 

metalizing with gold for the DSSD Design. SiO2 was selected for the non-conductive 

contact. The length of the large square in the middle is 960 µm. 
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vacuum without excess oxygen. Additionally, we wanted to ensure that we were sputtering 

SiO2 instead of either Si or SiO. To do this, 10 nm of SiO2 was sputtered on half of a LIPSe 

sample, seen in Figures 48-49, and interferometer, scanning electron microscope (SEM), 

and energy dispersive X-ray spectroscopy (EDS) measurements were taken.  

 The interferometer results can be seen in Figure 50 and show a clear indication that 

either Si, SiO, or SiO2 was sputtered on the sample's surface. To confirm the presence of 

oxygen on the surface of the sample, SEM and EDS measurements were taken at the 

Electron Microscopy Center using a Zeiss EVO SEM and Bruker EDS system. An SEM 

image of SiO2 on the surface of LIPSe can be seen in Figure 51. EDS was taken at three 

different points on the sample, and the results can be seen in Table 10. From these results, 

it is evident that excess oxygen is not required to rf-sputter SiO2 onto the surface of LIPSe. 

 Further research needs to be performed to determine the optimal contact for LIPSe; 

gold and indium are good but not excellent contacts with this newly discovered 

semiconductor. The photolithography process to make this device will consist of a four-

step process. First, photolithography with the non-conductive photomask will need to be 

performed. Then, the sample must be metalized with a thin layer (~4 nm) of SiO2, and 

photolithography with the DSSD design will be performed. From here, the sample would 

need to be flipped and repeated to create perpendicular strips on the back face of the 

sample. From here, the bottom side of the sample would be bonded with ACF directly to 

the PCB. The top side of the sample would be bonded with ACF to a flexible readout cable. 

The research thus far lays the groundwork for making a DSSD with LIPSe.  

 

2.9 LIPSe Gamma/Neutron Discrimination 

 

In addition to DSSD designs, we are developing pixelated LIPSe detectors for an 

imaging beamline. The current sensors at this beamline employ Lithium-6 loaded glass, 

offering 1 mm spatial resolution and a neutron-gamma discrimination ratio of 

approximately 105 [105]. We have been tasked with providing a detector that increases the 

spatial resolution to 0.5 mm and offers neutron-gamma discrimination greater than 107. A 
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Figure 48. LIPSe sample (top-right) before metallization with indium, which can be seen 

in Figure 44. LIPSe sample (middle) was metalized with SiO2 to test the adhesion, which 

can be seen in Figure 49.  
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Figure 49. LIPSe sputtered with SiO2. The top side of the dashed black line is where 

SiO2 was sputtered. The red box is where interferometer measurements were taken.  
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Figure 50. Interferometer measurements for the boxed region in Figure 49. Note the 

sharp line indicating SiO2 is present on the surface of the sample. 



 

101 

 

 

Figure 51. SEM image of a LIPSe sample with 10 nm of SiO2 sputtered on the surface. 

SEM-EDS measurements were taken at the three regions identified above. SEM-EDS 

does not measure lithium content.  

 

 

 

  



 

102 

 

 Table 10: SEM-EDS results for normalized mass concentration (%). 

Spectrum Oxygen Silicon Phosphorus Selenium Indium 

LIPSe_P184 1 1.96 2.22 8.37 70.81 16.63 

LIPSe_P184 2 3.83 3.47 8.84 68.95 14.91 

LIPSe_P184 3 2.37 2.28 8.48 70.50 16.37 

Mean 2.72 2.66 8.56 70.09 15.97 

Sigma 0.98 0.70 0.24 0.99 0.93 

Sigma Mean 0.57 0.41 0.14 0.57 0.54 
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review of interactions with matter can be found in the Appendix. The goal of these 

simulations is to computationally evaluate LIPSe to replace these detectors, related 

explicitly to gamma-neutron discrimination. Since LIPSe is a recently discovered material, 

we wanted to computationally show that by using threshold discrimination in a pixelated 

device, neutron/gamma discrimination is possible.  

When a gamma ray interacts with LIPSe or LISe, an electron is created that causes 

direct ionization, allowing us to generate a signal from our detector. We can use the 

attenuation coefficients of LIPSe, in Figure 52, to determine the mode of interaction that 

occurs. To this end, a unique material was created using ESTAR to assess the range of 

electrons in LIPSe, as seen in Figure 53. We conducted MCNP6.2 simulations of a 1.5 mm 

thick LIPSe sensor with a 300 µm pixel pitch to evaluate the signal spread over a pixelated 

device. An isotopically emitting monoenergetic electron source was generated in the 

middle of the 3×3 pixelated device. We evaluated the energies for the electron source of 

0.1 MeV, 0.5 MeV, 2.5 MeV, and 7 MeV. In a pixelated device, the signal generated on 

the pixels is a function of the weighting potential of that individual pixel, with the 

weighting potential being a function of the pixel pitch and device thickness. As one can 

see, when the bulk material (in this case, LIPSe) is thicker relative to the pixel pitch, most 

of the signal is generated by the charge moving near the collecting electrode. The weighting 

potential for this device can be seen in Figure 54, and a two-dimensional slice of this 

weighting potential can be seen in Figure 55. 

At very low energies, 0.1 MeV, the electron cloud is localized under a single pixel 

and can be seen in Figure 56. Increasing the electron's energy to 0.5 MeV results in the 

energy deposited by this electron spread across multiple pixels in Figure 57. As the energy 

of the electrons increases from 0.5 MeV to 2.7 and 7 MeV in Figures 58-59, most of the 

energy deposited by these electrons will be shared across all of the pixels and escape the 

simulated device. Considering these results, time-over-threshold (TOT) methods will allow 

for easy discrimination of gamma/neutrons interactions in LIPSe.  
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   Figure 52. Mass attenuation coefficient of gamma rays interacting with LIPSe.  
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Figure 53. ESTAR-calculated CSDA range of electrons in LIPSe. A mean excitation 

energy of 335.4 eV and density of 4.615 g/cm3 were used for this simulation.  
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 Figure 54. SILVACO simulation for the weighting potential of a pixelated LIPSe 

device. The contacts are the raised square pixels seen in the image above. 
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Figure 55. Two-dimensional slice of the weighting potential in the middle of a pixelated 

LIPSe device. The gold contacts extend from -20 to 0 and 100 to 120 in the Y-dimension.  
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Figure 56. Left: Top-down view of a MCNP6 simulation of 100 keV electrons generated 

below the center pixelated electrode. Right: Side view of a MCNP6 simulation of 100 

keV electrons generated in the middle of the LIPSe detector. 

  

Figure 57. Left: Top-down view of a MCNP6 simulation of 500 keV electrons generated 

below the center pixelated electrode. Right: Side view of a MCNP6 simulation of 500 

keV electrons generated in the middle of the LIPSe detector. 
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Figure 58. Left: Top-down view of a MCNP6 simulation of 2.5 MeV electrons generated 

below the center pixelated electrode. Right: Side view of a MCNP6 simulation of 2.5 

MeV electrons generated in the middle of the LIPSe detector. 

  

Figure 59. Left: Top-down view of a MCNP6 simulation of 7 MeV electrons generated 

below the center pixelated electrode. Right: Side view of a MCNP6 simulation of 7 MeV 

electrons generated in the middle of the LIPSe detector. 
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2.10 Converting a η-function into C++ for a LIPSe DSSD 

  

It is essential to deploy the models that have been trained into a format that can be 

used by the detector system. Additionally, some progress still needs to be made on the 

FPGA programming to make this detector system a functional DSSD for neutron imaging. 

The goal of this system is to offer real-time imaging with high spatial resolution, with a 

focus on energy resonance imaging. The models selected to deploy with our detector 

system must be programmed in C++ for implementation. This will allow our detector to 

provide a real-time reconstruction of the neutron interaction locations at neutron imaging 

facilities. 

The MATLAB Code Generation Application is used to generate the trained models 

into C++ code to fit into a format we can package with our detector system. These models 

can make between 2.6×106 and 2.7×106 observations or predictions per second. 

Considering the average thermal neutron flux at SNS is 4×1013 neutrons per centimeter 

squared per second and the LIPSe DDSD design is for an active imaging area of ~1 mm, 

4×1012 neutrons will hit our detector each second. Additionally, it is worth factoring in the 

neutron detection efficiency of LIPSe, which is ~22 percent for a 1 mm sample and ~70 

percent for a 1 cm sample. Since most LIPSe samples are on the order of 1 mm thick, our 

detector interacts with (records) ~8.8×1011 neutrons per second. From here, a 10-minute 

neutron experiment at SNS would result in a post-processing time of ~3.9 days. Due to 

this, it is recommended that after recording data on the detector side, the prediction (ML 

Models) are run in parallel such that the post-processing time is greatly diminished. The 

ML Models in our detector package allow for real-time imaging up to ~2.6×106 neutron 

counts per second for our small area LIPSe design but will require some minimal post-

processing time if the count rate is above this.  

 

 

 

  



 

111 

 

CHAPTER THREE:  CONCLUSIONS 

 

 A modified ƞ-function for lithium-based semiconductors has been developed that 

is comprised of high-fidelity semiconductor simulations (based on Shockley-Ramo 

Theorem), neutron interactions within LISe and LIPSe, charge induction on strip 

electrodes, and machine learning models.  These simulations have allowed us to 

computationally determine the strip electrode width/pitch that optimizes the tradeoff 

between signal integrity and reconstruction of the neutron absorption location to consist of 

two DSSD designs, using a strip width/pitch of 10/15 and 20/30 µm. Either of these designs 

will enable us to meet our spatial resolution goal of sub-5 µm. To date, there is no public 

record of anyone simulating a neuron-sensitive semiconductor for neutron imaging that 

meets our goal spatial resolution of sub-5 µm. This research will allow us to achieve 

unparalleled neutron detection efficiency, spatial resolution, and timing resolution 

detection. The improvements upon current neutron imaging systems has the opportunity to 

open new avenues of research that are not possible today. 

 The coarse regression trees and neutron networks have shown that they are robust 

enough to perform well even with the addition of 1,000 e- of Gaussian noise to validation 

datasets. We also learned that CCE plays a vital role in the model performance. When the 

CCE is low (0.1) compared to the ideal simulations (1) neutral networks and regression 

trees are unable to reconstruct simulated induced signal data. Before an ƞ-function is 

developed for new Lithium-based semiconductors, the CCE should be measured and 

incorporated into the simulations such that the models are able to accurately reconstruct 

real-world induced signal data. Radiation damage will change the expected response of the 

semiconductor, and will need to be accounted for in future simulations. Future work should 

focus on improving the fidelity of and making the charge transport code more realistic by 

adding things such as detrapping and diffusion. Additionally, some progress still needs to 

be made on the FPGA programming to make this detector system a functional DSSD for 

neutron imaging. 
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 Significant effort has been made to produce working LISe detectors coupled to the 

Timepix ASIC and a small-area LIPSe DSSD detector. The main challenges with the LISe 

detector have been sample cracking while flip-chip bump-bonding to the ASIC, and faulty 

wire bonds to the readout PCB. It was determined that there were eight faulty wire bonds 

that prevented this detector from operating. In addition to this faulty detector, two large 

area LISe wafers were polished, metalized, and flip-chip bump-bonded to ASICs, and 

properly wire bonded to a new readout system for testing this year. Seeing as LIPSe is a 

recently discovered material, my research has laid the groundwork for using this material 

in a DSSD design. The chemical compatibility of LIPSe with a new non-water-based 

photoresist has been tested and the photolithography recipe has been optimized for use. It 

was discovered that due to LIPSe’s ductile/malleable nature it craters during wire bonding, 

so we are unable to wire bond the strips of a DSSD design directly to the readout board. 

To this end, a novel DSSD design has been developed to test the performance of the ƞ-

function 

 For the ƞ-function to work ideally, the semiconductor must have both electron and 

hole transport. To this end, it is important to improve the quality of LISe semiconductors 

and increase the thickness of LIPSe semiconductors produced. LIPSe has both electron and 

hole transport, but is currently limited in its’ thickness due to the current growth method, 

CVT growth. On the other hand, LISe is grown using the vertical Bridgeman method, but 

has poor hole response. It would be valuable to the scientific community to explore 

improvements, growth and quality, for these two lithium-based semiconductors.  
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APPENDIX 

Overview 

 

This section is to act as a review for radiation interactions with matter. It is essential 

to understand what goes into neutron/gamma discrimination by determining the mode of 

interaction and expected energy of the neutrons and gamma rays. Radiation can be broken 

down into two different types:  ionizing or non-ionizing. Non-ionizing refers to a type of 

low-energy radiation that does not have enough energy to remove an electron from an 

atom; this means they do not have enough energy to cause a significant effect on materials. 

Unlike non-ionizing radiation, ionizing radiation has enough energy to remove electrons 

from atoms and molecules of materials. Ionizing radiation can be further broken down into 

two more categories: directly ionizing radiation and indirectly ionizing radiation.  

 

Ionizing Radiation 

 

Directly ionizing radiation refers to electrically charged particles such as electrons, 

protons, alpha particles, and fission fragments with sufficient kinetic energy to produce 

ionization by collisions—each interaction by these particles with matter cause the particle 

to lose energy until it is eventually stopped. Since larger particles will interact more 

frequently within a material, they will have a shorter range. When comparing the range of 

an alpha particle to a triton in the same material, the triton will travel much further than the 

triton because it is smaller.  

 

Photon Interactions with Matter 

 

Indirectly ionizing radiation ionizes the medium it interacts with through secondary 

reactions and typically refers to interactions by photons or neutrons with matter. Photons 

consist of both X-rays and gamma-rays, which interact in identical ways. The only 

difference is where they originate from. Gamma rays originate from the atom's nucleus, 
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and X-rays are generated from the electron shells. Photon interactions can be broken down 

into three main categories, as shown in Figure 60, which will be discussed in further detail.  

 

Photoelectric Effect 

 

The photoelectric effect is typically described as a low-energy phenomenon that 

consists of the emission of electrons when a photon, such as light, interacts with the atoms 

in a medium and produces photoelectrons from an inner shell. The energy of the ejected 

photoelectron (𝐸𝑒) is determined by Equation (17), where 𝐸 is the energy of the incident 

photon and 𝐸𝑏 is the binding energy of the electron shell [38]. After an inner shell electron 

ejects, the vacancy is typically filled by an outer shell electron. The photoelectric effect is 

the primary mode of interaction for low-energy gamma and X-rays.  

 

𝐸𝑒 = 𝐸 − 𝐸𝑏 (17) 

 

Compton Scattering 

 

Compton scattering is typically described as a mid-energy phenomenon where a 

photon is scattered off a free electron. As can be seen in Figure 61, the incoming (Incident) 

photon transfers a portion of its energy to the electron, called a Recoil electron. Equation 

(18) is used to describe the energy of the scattered electron as a function of the incident 

photon energy, 𝐸 in MeV, and photon scattering angle, 𝜃𝑠. The value of 0.511 is the rest 

mass of an electron in MeV. Since the scattering angle of the photon is a stochastic 

property, it can range between 0º (minimum energy transfer) to 180º (maximum energy 

transfer). As a result of this, the resulting electron energy can vary from 0 MeV to transfer). 

As a result of this, the resulting electron energy can vary from 0 MeV to 𝐸𝑒, found using 

Equation (18). 
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Figure 60. The relative importance of the three major types of gamma-ray interactions: 

photoelectric effect, Compton effect, and pair production as a function of atomic number 

and photon energy. The lines show the values of Z and ℎ𝑣 for which the two neighboring 

effects are just equal [38]. 

 

Figure 61. A schematic that relates the energy transfer and the scattering angle for any 

given interaction [31]. 
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𝐸𝑒 = 𝐸 [1 −
1

1 +
𝐸

0.511
(1 − 𝑐𝑜𝑠𝜃𝑠)

] (18) 

 

Since the probability of Compton scattering depends on the number of electrons 

available as scattering targets, it increases linearly with the atomic number, 𝑍.  

 

Pair Production 

 

Pair production is possible when the photon's energy exceeds 1.022 MeV, which is 

twice the rest mass of an electron. The probability of this interaction occurring is low until 

the photon energy reaches several MeV. Pair production is the phenomenon where the 

nucleus absorbs the photon and is replaced by an electron-positron pair. All excess kinetic 

energy carried by the photon (𝐸𝛾) is divided evenly between the electron (𝐸𝑒−) and 

positron (𝐸𝑒+), seen below in Equation (19). It is worth noting that 1.022 MeV of the 

photon’s energy is used to create the masses of the electron and position. Since the positron 

typically annihilates as it slows down in the medium, it will produce two photons moving 

in opposite directions, each with an energy of 0.511 MeV. 

 

𝐸𝛾 =  𝐸𝑒+ + 𝐸𝑒− (19) 

 

Photonuclear Reaction 

 

The photonuclear reaction is the absorption of a highly energetic photon into the 

atomic nucleus. This can result in the emission of nucleons, protons, or heavy charged 

particles. The reaction can occur for photons typically ranging from 10 MeV to 30 MeV. 

Photons with these energy levels are normally only seen in an accelerator, so it is not of 

great interest for neutron imaging.   
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