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Abstract

Radiative transfer theory describes the interaction of radiation with scattering and

absorbing media. It has applications in neutron transport, atmospheric physics,

heat transfer, molecular imaging, and others. In steady state, the radiative transfer

equation is an integro-differential equation of five independent variables, which

are 3 dimensions in space and 2 dimensions in the angular direction. This high

dimensionality and the presence of the integral term present serious challenges when

solving the equation numerically. Over the past 50 years, several techniques for

solving the radiative transfer equation (RTE) have been introduced. These include,

but are certainly not limited to, Monte Carlo methods, discrete-ordinate methods,

spherical harmonics methods, spectral methods, finite difference methods, and finite

element methods. Methods involving discrete ordinates and spherical harmonics have

received particular attention in the literature.

This work introduces a parallel space-angle discontinuous Galerkin (saDG)

method to solve the steady-state RTEs. The objective-oriented design of the software

allowed us to apply the saDG approach to a variety of RTEs with considerable ease,

including 1x1s, 1x2s, and 2x2s. The direct solver can achieve high-order accuracy

solutions for low-dimensional problems. However, for high-dimensional problems,

the direct solver is time-consuming and requires significant memory usage that may

exceed the computer’s RAM capacity. To address this issue, we employed the Angular

Decomposition (AD) method in the iterative solver, which improves runtime efficiency

and reduces memory usage. To handle large-scale problems, we developed a parallel
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solver based on AD and Domain Decomposition (DD) methods. Finally, we applied

Reflective Boundary Conditions to 2-D Cartesian radiative transfer problems.
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Introduction
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This thesis is devoted to the development of an efficient algorithm to solve radiative

transfer problems in multi-dimensions. A significant barrier for current computers,

aside from the requirement to reduce computing time, is the amount of memory

required to hold operators and data. We, therefore, examine the entire procedure,

from discretization to solution algorithms to implementation strategies, in order to

offer a way to solve physics problems with reasonable time and storage. Our main

direction of improvement is the implementation on clusters and supercomputers.

1.1 Radiative transfer equation

The radiative transfer takes place in a wide range of natural phenomena and engineer-

ing applications. The propagation of radiation in the form of electromagnetic waves

through a medium is affected by absorption, emission, and scattering processes. The

radiative transfer equation (RTE) mathematically describes these interactions, which

have a wide range of applications in such areas as heat transfer, neutron transport,

atmospheric science, optical molecular imaging, and some other applications, as

shown in Fig. 1 [42]. In brief, modeling radiative transfer is essential in many

engineering fields. The equation used in most radiative transfer models is the radiative

transfer equation, which describes a beam radiation that loses energy to absorption,

gains energy via emission, and redistributes energy by scattering. In the quasi-steady

state we investigated, the RTE can be viewed as an integro-differential equation of

five independent variables, given by [109, 60, 32, 42]

ŝ · ∇I + βI = κIb +
σs

4π

∮
4π

I(x, ŝ′)Φ (̂s, ŝ′) dΩ. (1.1)

The solution of the radiative intensity I is dependent on the direction ŝ and the

spatial position x. Other parameters are described in the following chapters.
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1.2 Motivations

The main difficulties in solving the RTE numerically are high-dimensionality and

discontinuity solutions in both space and angle. The former requires a huge amount

of memory and computation time even at a reasonable accuracy. Aside from reducing

the dimension of a problem, adaptive and parallel methods are the common ways to

overcome this issue. Therefore, the discontinuous Galerkin (DG) method is adopted

for the following advantages:

1. The DG method allows discontinuous solutions of RTE in angle and space for

their discontinuous base functions.

2. Due to the judicious use of the target fluxes, which are determined by the

values on the two sides of the element interface, the “wave motion” which is the

propagation of incident radiation in the RTE can be captured.

3. The DG method has its natural advantage in parallel computing, because of

the weak couplings of elements. It is necessary to make our program parallel,

since we are going to solve the RTE potentially in a 5-dimensional domain.

4. The element size and polynomial order can be changed arbitrarily due to the

weak enforcement of jump conditions.

Opposed to the common idea of discretizing the derivative operator on the spatial

domain and the integral operator in the angular domain, independently, we show a

possibility to combine these into one Galerkin approximation on a space-angle domain.

Clearly, the space-angle DG (saDG) method includes the opportunity of using efficient

parallelization techniques and obtaining highly accurate solutions. Furthermore, the

saDG software has an object-oriented design based on the software for the solutions

of causal Spacetime Discontinuous Galerkin (cSDG) methods for elastodynamics [5],

advection-diffusion equation [93], and electromagnetics [7], just to name a few. It

allows for the creation of reusable classes, which can be easily instantiated to create
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objects that can be used multiple times in different parts of a finite element simulation.

The object-oriented design can reduce the amount of code that needs to be written

and make it easier to maintain and update the software, which is suitable for handling

different forms of RTEs.

1.2.1 Different forms of the RTE

As mentioned above, the dimension of the general RTE can be reduced to different

versions, for example, for a symmetric problem or a two-dimensional Cartesian

problem that has different dependencies, as shown in Fig. 2. One can easily implement

any version of the RTE thanks to the object-oriented design by providing the forms of

the derivative operator and the integral operator. So far, the versions of one-dimension

Cartesian (1x1s), two-dimension Cartesian (2x2s), three-dimension Cartesian (3x2s),

one-dimension cylindrical (1x2s), and two-dimension cylindrical (2x1s) RTEs have

been implemented.

Our publications related to this topic are listed below:

1. Clarke, P., Wang, H., Garrard, J., Abedi, R., and Mudaliar, S. (2019a).

Space-angle discontinuous Galerkin method for plane-parallel radiative transfer

equation. Journal of Quantitative Spectroscopy and Radiative Transfer, 233:87–

98

2. Wang, H., Abedi, R., and Mudaliar, S. (2020c). Space-angle discontinuous

Galerkin method for radiative transfer between concentric cylinders. Journal of

Quantitative Spectroscopy and Radiative Transfer, 257:107281

3. Wang, H., Abedi, R., and Mudaliar, S. (2019). A discontinuous Galerkin method

for the solution of two dimensional axisymmetric radiative transfer problem.

In 2019 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium),

Atlanta, Georgia, USA. In press
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4. Wang, H., Abedi, R., and Mudaliar, S. (January 6-9, 2020b). Space-angle

discontinuous Galerkin method for one-dimensional cylindrical radiative trans-

fer equation. In AIAA Science and Technology Forum and Exposition 2020,

Orlando, Florida, USA. In press

5. Wang, H., Abedi, R., and Mudaliar, S. (2021a). Iterative space-angle discon-

tinuous galerkin method for radiative transfer problems from 1d to 3d. In

2021 XXXIVth General Assembly and Scientific Symposium of the International

Union of Radio Science (URSI GASS), pages 1–4

1.2.2 Efficiency & scalability

Due to the high dimension of the computational domain, the linear algebraic

system assembled by the saDG method easily leads to an untreatable size, even

for a one-dimensional cylindrical problem (three-dimensional in space and angle)

[119]. Therefore, it is not feasible to directly solve the discrete system of linear

equations. We, hence, applied the decomposition methods in angle and space to the

computational domain. After such decomposition, a solution to the global system

is sought while performing local processes in each subdomain and communications

between subdomains. These methods are applied to parallel computing for the

solution of the RTE, which significantly improves the efficiency, performance, and

scalability to solve radiative transfer problems on supercomputers.

Angular decomposition & iterative method

For the angular decomposition (AD) method, the challenges are decouplings of the

integral operator in (1.1) and reflective boundary conditions. For example, in the

space-angle domain, x×ŝ, as shown in Fig. 3, elementQ in gray couples with the other

three elements in the second column (in angle) if the integral term is applied. This

is because the interval of the integral operator is form [ŝ0, ŝ4]. If reflective boundary

conditions are applied, assuming the element boundary at x4 in cyan contains the
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reflected angle, it is then coupled with the incident angle which is located in the

element in green. To decouple these terms, we slice the angular domain at ŝ1, ŝ2, and

ŝ3 to achieve 4 slabs. Then, the computation is taken individually in each slab. When

it comes to the integral operator or the boundary conditions, the communications

between each slab are taken by exchanging the solutions. Such processes require

mesh renumbering and an iterative method, such as the successive over-relaxation

method that can accelerate the convergence with a proper relaxation factor. Although

iteration is inevitable for decouplings, memory requirements and total computation

time for the AD method are much less than for the direct solver.

Domain decomposition

For the domain decomposition (DD) method, the spatial mesh is divided into smaller

subdomains. As shown in Fig. 3, the dark green line split the domain into two

subdomains. One option is to solve each subdomain with the same governing equation

individually by the assigned processor, which is known as the conventional DD

method, as shown in Fig. 4a. Subdomains are not isolated, since the continuity

on the subdomain interfaces is weakly enforced. Therefore, communications to pass

the interface solutions are needed. Similar to the AD method, to achieve the global

solutions, iteration is required, since the local solutions inside subdomains depend on

the previous iteration from the neighbor subdomains. Another option is to obtain the

global linear system of equations directly by assembling the local stiffness matrices

in the subdomains in a distributed manner and solving the whole with a distributed-

memory linear solver, such as MUMPS [8]. In this case, calculation of the jump

conditions is required on the subdomain interface from the neighbor elements in other

subdomains. To reduce the amount of communication, additional elements belonging

to the respective adjacent processor are added to the border of each subdomain.

These elements are referred to as ghost elements. As depicted in Fig. 51, the ghost

elements in green in subdomain 1 are duplicated from subdomain 2. Because of the

creation of ghost elements, each processor is required to take more memory than
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the conventional DD method. However, it is worth solving the global linear system

directly rather than iteratively by sacrificing some memory usage.

Our publications related to this topic are listed below:

1. Wang, H., Abedi, R., and Mudaliar, S. (forthcoming). Iterative space-angle

discontinuous Galerkin method for radiative transfer equation. Waves in

Random and Complex Media

2. Wang, H., Abedi, R., and Mudaliar, S. (2020a). A parallel space-angle discon-

tinuous galerkin method for radiative transfer in two-dimensional rectangular

enclosures. In 2020 IEEE USNC-CNC-URSI North American Radio Science

Meeting (Joint with AP-S Symposium), pages 1–2

3. Wang, H., Abedi, R., and Mudaliar, S. (2021b). A space-angle discontinuous

galerkin method for one-dimensional cylindrical radiative transfer equation with

angular decomposition. In 2021 United States National Committee of URSI

National Radio Science Meeting (USNC-URSI NRSM), pages 107–108

1.2.3 Problems of interests of RTE

Reflections

In real-world physics, surface reflections can be very complex with radiative transfer

problems. The widely used assumptions for surfaces are diffuse reflectors of radiant

energy. However, many surfaces deviate substantially from this behavior. All clean

metals, many glassy materials, and most polished materials in industrial applications

display strong specular reflection. It is important to import different reflective

boundary conditions. We consider the model of reflections, such as specular, diffuse,

and directional diffuse reflection, which allows us to better understand the radiative

transfer phenomenon, as shown in Fig. 5. This work is supported by The Air Force

Research Laboratory’s Sensors Directorate.
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Refraction

Another important phenomenon in radiative transfer problems is refraction. This

includes the assumptions of piece-wise constant and variable refractive indices, as

shown in Fig. 6. The refractive index can be a function of spatial location. At a

given location, it also varies if there is a change in the density. These changes may

be due to the structure of the system under consideration or due to the heating effect

caused by the spatial and temporal variations in the medium. Modern electronic

and electrical components like thermal barrier coatings, connectors, electrochromic

displays, sensors, etc. are some of the examples that require consideration of variable

refractive indices. Our goal is to simulate refraction problems with both the piece-wise

constant and variable refractive indices in year 2023.

Our publications related to these topics are listed below:

1. Wang, H., Abedi, R., and Mudaliar, S. (2022). A space-angle discontinuous

galerkin method for two-dimensional radiative transfer equation with reflective

boundary conditions. In 2022 United States National Committee of URSI

National Radio Science Meeting (USNC-URSI NRSM), pages 326–327

1.3 Dissertation Format

The following chapters contain several journal articles in which the dissertation author

was either the primary author or a major contributor. Figure 7 shows the contents

of the following chapters.
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Chapter 2

Space-Angle Discontinuous

Galerkin Method for Plane-Parallel

Radiative Transfer Equation
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2.1 Abstract

The radiative transfer equation (RTE) for a plane-parallel problem involving scat-

tering, absorption and radiation is solved using the discontinuous Galerkin (DG)

finite element method (FEM). Both space and angle directions are discretized by the

DG method. Thus, while the method has a higher accuracy in angle direction than

hybrid FEM-Discrete Ordinate (SN) and FEM-Spherical Harmonic (PN) methods, it

removes the continuity constraint implied by the form of basis function for continuous

FEMs in space and angle. The discrete formulation of the problem is presented

for nonzero phase function and a variety of boundary conditions. The numerical

results demonstrate a p + 1 convergence rate when the intensity is interpolated by

an order p polynomial in both space and angle. The method is validated against

exact solutions, and compared with other space-angle and hybrid FEMs for a few

benchmark problems. The appropriateness of the DG formulation for problems with

discontinuous solution is demonstrated by solving a problem with delta source term,

where an in-element averaging of the source term eliminates negative intensity values

for high order elements. Finally, a problem with an angular-line source term and

a convergence study where the solution order is zero in angle are used to further

demonstrate the advantages of the high order space-angle DG formulation; for the

convergence study problem, the error was reduced by about 13 binary orders of

magnitude, by increasing the order in both space and angle, rather than in space

only.

2.2 Introduction

The radiative transfer equation (RTE) describes the interaction of radiation in an

absorbing, scattering medium. These equations describe such wide-ranging processes

as radiation transfer in the atmosphere, flow-field heat transfer for hypersonic vehicles,

or x-ray imaging. Two of the most popular solution methods for these transfer
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equations are the Discrete Ordinate (SN) method and Spherical Harmonic (PN)

method. In the Discrete Ordinate method, the angular domain is discretized by

a discrete set of ordinate directions, which creates a set of spatial RTE equations

for each specific direction. The spatial domain is solved using finite difference, finite

volume (FV), or finite element methods (FEMs). Integrals over the solid angles

are replaced by sums over the ordinate directions. The spherical harmonic method

involves multiplying the RTE by various powers of direction cosines of the intensity,

which forms a set of moment equations which are solved to find the solution. The

intensity is approximated by an orthogonal series of spherical harmonics, thereby

giving the method its name [109].

One common method for solving the equation in the spatial domain, while utilizing

the SN or PN method for the angular domain, is the Galerkin finite element method.

Shmygevskii [108], Krim [1], Razzaghi [98], and Sallah [105] implemented the Galerkin

technique for the RTE. Egger et al. [44] used the Galerkin finite element method in

space/spherical harmonic method in the angular domain to solve the RTE. Because

the normal Galerkin method can show numerical oscillations for certain problems,

Avila [11] instead used two stabilized Galerkin finite element methods: the streamline-

upwind Petrov Galerkin (SUPG) method, and the Orthogonal Subscales (OSS)

method, to resolve this issue while using the discrete ordinate method to discretize in

angle. Both SUPG and OSS methods showed better accuracy than the Galerkin finite

element method. To improve convergence rates of the solution, Grella implemented

a sparse tensor Galerkin approach using both the (SN) [55] and (PN) [56] methods.

To solve radiative transfer problems in the random space, Jin and Lu [67] developed

a Stochastic Galerkin method.

The Galerkin finite element method does have a disadvantage in solving the

radiative transfer equation for certain types of problems in that it cannot handle

discontinuities in the solution. Because the RTE has wave propagation characteristics

along all ray directions, this frequently leads to discontinuities. A particular way

to resolve this issue is to soften the requirements of continuity from element to
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element. The Discontinuous Galerkin (DG) method was developed to solve this type

of problem. Liu et al. [84] developed an (SN) Discontinuous Galerkin method for

solving the RTE in semitransparent graded index medium. Zhao et al. [139], Han

et al. [58] and Eichholz [45] developed an (SN) Discontinuous Galerkin method for

solving RTE problems. Crockatt et al. [33] developed a (SN)-DG method for the RTE

while implementing a integral deferred correction scheme in time for transient RTE

problems. Yuan et al. [133] used a (SN)-DG method while implementing a high order

positivity preserving limiter that prevents negative intensities which can lead to an

inaccurate solution. Similarly, Laboure et al. [75] developed a(PN)-DG method for

the RTE. Cui et al. [34, 35] used a hybrid DG method for multi-dimensional RTE,

where the solution space is the product of a polynomial function in space and a delta

function for the solid angle.

In spite of their popularity, the discrete ordinate method and spherical harmonic

method are not the only methods used to solve the RTE in the angular domain. Liu

[83] utilized the FEM in both space and angle to solve the one-dimensional RTE

with variable spatial refractive index, which also been studied later by using the

hybrid FV/ FE method [137]. The hybrid FV/ FE method for solving the RTE in

multi-dimensional enclosure was developed by Coelho [30]. Gao and Zhao [50], [51]

implemented a method using the DG in space and a piece-wise constant finite element

method in angle. Olbrant et al. [91] implemented a DG spatial discretization, but

used an entropy-based M1 model to solve in the angular domain. As in the spatial

domain, continuous methods can fail when discontinuities occur in the angular space

or domain interfaces. Therefore, over the past several years, Kophazi et al. [73] and

Kitzmann et al. [37] have both developed space-angle DG methods to solve both

spaces for this issue. Kophazi implemented the method for a simplified equation

without the phase function, known as the Boltzmann transport equation. Kitzmann

solved the RTE in spherical symmetry, which is a more complex version of the RTE

because it includes an additional derivative with respect to the polar angle.
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The Discontinuous Galerkin method has been shown to have advantages for

solving the radiative transfer equation. As detailed above, an arbitrary number of

discontinuities in the spatial and angular domains can be considered. When applying

the discrete ordinate or spherical harmonic methods, the radiative transfer equation

is solved as a set of coupled equations in space and angle. Because the DG method

is discontinuous by its nature, it prevents the artificial coupling in angle that the

continuous methods imply. These discontinuities also allow for an arbitrary order of

accuracy for each element, which is a very important consideration for future adaptive

implementations of this method.

This paper will detail an implementation of the space-angle DG method for a one-

dimensional RTE equation. In the next section, the formulation of the DG method

into a general RTE solver is detailed. Then, results from the code are validated and a

convergence study performed. Next, to compare the performance of the solver against

known exact solutions, benchmark problems are chosen as detailed in papers [96, 22].

Test cases selected to test the point source function implemented in the solver are

detailed. Finally, to further show the properties of the DG method, especially in

angle, a problem with an angular-line source term and a convergence study where the

solution order in angle is kept zero are investigated.

2.3 Mathematical Description

2.3.1 RTE equation and boundary conditions

For the one dimensional scattering medium with spatial- and angular-dependent

properties, the plane-parallel radiative transfer equation can be written as,

µ
dI

dz
+ βI − σs

2

∫ 1

−1

Φ(z, µ, µ′)I(z, µ′)dµ′ = S (2.1)

where µ is the direction cosine, I(z, µ) is the radiant intensity, S is the source term,

and Φ(z, µ, µ′) is the anisotropic scattering phase function. The values β = κη + σs,
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κη, and σs, are space-dependent extinction, absorption, and scattering coefficients,

respectively.

The partial differential equation (PDE) is enforced on the square domain (z, µ) ∈

Ω = (z, z̄) × (−1, 1), where z and z̄ are the minimum and maximum values of the

spatial coordinate z. The boundary conditions are specified on inflow boundaries for

I which are comprised of µ > 0 and µ < 0 for z = z and z = z̄, respectively. The

specific forms of boundary conditions used herein are discussed in §2.4.

2.3.2 Discontinuous Galerkin formulation

Fig. 8 shows an m by n tensor product discretization of Ω, where (z, z̄) and (−1, 1)

are discretized into {z0, z1, · · · , zm} and {µ0, µ1, · · · , µn}, respectively, for z0 = z,

zm = z̄, µ0 = −1, and µn = 1. Due to the change of direction of waves at µ = 0, 0 is

included in the set {µ0, µ1, · · · , µn}.

For an arbitrary element Q ∈ Ω, the residuals are,

RQ = µ
dI

dz
+ βI − σs

2

∫ 1

−1

Φ(µ, µ′)I(z, µ′)dµ′ − S (2.2a)

R∂Qz = µ(I∗ − I) (2.2b)

where (2.2a) corresponds to the residual in satisfying the PDE in equation (2.1). For

discontinuous Galerkin methods, the continuity of the solution on boundaries of an

element are weakly satisfied relative to target solutions. For this problem, since (2.1)

does not involve any derivatives in µ, no continuity condition is enforced on ∂Qµ, the

angle boundaries of the element as shown in the figure.

Equation (2.2b) corresponds to the residual in enforcing the target value for I on

∂Qz, the spatial boundaries of Q. This condition and the factor µ directly correspond

to the jump part of the differential operator µdI
dz

in (2.1). The target value I∗

corresponds to the upstream value along the direction of wave propagation. From the

form of (2.2a), this corresponds to the left side value of a spatial interface for µ > 0 and
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right side value for µ < 0. This is demonstrated in Fig. 9, where for the boundaries of

the domain, boundary conditions Ī are specified at z, µ > 0 and z̄, µ < 0. The other

two spatial boundaries, z, µ < 0 and z̄, µ > 0, are outflow boundaries where I∗ = I

implies that (2.2b) is trivially satisfied. For interior interfaces, Q+ and Q− show how

the target fluxes are specified. For Q+ in µ > 0, the upstream value corresponds to

the left trace of I on ∂Qz; since on the right boundary I∗ = I, the left boundary is the

only boundary of the element where the nontrivial jump condition R∂Qz = µ(Iout−I)

is enforced. Conversely, for Q− in µ < 0, the condition R∂Qz = µ(Iout−I) is enforced

on the right boundary and this residual is trivially satisfied on the left boundary.

The unknown fields in each element are interpolated by tensorial product

polynomials of order pz in z and pµ in µ. The space of a complete one-dimensional

polynomial of order p can be spanned by a variety of basis functions, such as

monomials ϕi(s) = si, i = 0, · · · , p. For example, for pz = 2 and pµ = 1, the basis {1,

z′, z′2, µ′, z′µ′, z′2µ′} is formed by product of monomial bases {ϕi(z
′)|i = 0, · · · , pz}

= {1, z′, z′2} and {ϕj(µ
′)|j = 0, · · · , pµ} = {1, µ′}. The scaled coordinates z′ and µ′

are given by,

z′ = 2
z − cz
∆z

µ′ = 2
µ− cµ
∆µ

where cz and cµ are the midpoints and ∆z and ∆µ the spans of a quadrilateral

element Q in z and µ directions, respectively. The use of z′, µ′ ∈ [−1, 1] prevents

ill-conditioning problems that can arise in the global linear system when z, µ are

directly used to interpolate element solutions. Using the scaled coordinates, the

discrete solution field in an element Q is interpolated as,

IhQ(z
′, µ′) =

pz∑
i=0

pµ∑
j=0

aijQϕi(z
′)ϕj(µ

′)=

pz∑
i=0

pµ∑
j=0

aijQz
′iµ′j (2.3)
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where aijQ are unknowns for element Q. Two sample space-angle basis functions are

shown in Fig. 10.

The discrete solution is obtained by the solution of the following weighted residual

statement,

∫
Q
ǏRQdzdµ+

∫
∂Qz

ǏR∂Qzdµ = 0∫
Q
Ǐ .

{
µ
dI

dz
+ βI − σs

2

∫ 1

−1

Φ(µ, µ′)I(z, µ′)dµ′ − S

}
dzdµ

+

∫
∂Qz

Ǐ .µ(I∗ − I)dµ = 0 (2.4)

for all elements Q ∈ Ω. Since a Galerkin method is used, the weight functions

are equal to discrete solution basis functions ϕi(z
′)ϕj(µ

′) within one element Q and

zero elsewhere, for all elements Q and 0 ≤ i ≤ pz and 0 ≤ j ≤ pµ. The solution

to (2.4) results in a global system of equations whose solution determines aijQ for all

elementsQ in (2.3). The global coupling between different angle ranges µ ∈ (µj, µj+1),

j ∈ {0, · · · ,m− 1} arises from the triple phase function integral in (2.4) or boundary

conditions, such as reflective boundary condition, that can couple all angles at z = z

and z = z̄. The numerical solutions in §2.4 are obtained by the solution of (2.4).

2.4 Numerical Examples

2.4.1 Method of Manufactured Solutions (MMS)

To validate and provide convergence estimates for the DG RTE code, the Method

of Manufactured Solutions (MMS) is used. In the MMS, a solution to the RTE is

manufactured that is of the form desired for the given test problem. For the RTE,

assume a function form for I,

I(z, µ) = f(z, µ) (2.5)
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Then, the solution is substituted into the base RTE, and a new source term is

generated for the equation that exactly satisfies the partial differential equation.

RQ = 0 ⇒

S = µ
dI

dz
+ βI − σs

2

∫ 1

−1

Φ(µ, µ′)I(z, µ′)dµ′

The new source term computed by the MMS is then input into the equation in a

discrete solution. If the MS belongs to the space of finite element solution, e.g., when

it is a polynomial of order equal or less than that used to interpolate I, the exact

solution is recovered. Otherwise, the discrete solution approaches the MS in the limit

of mesh refinement and/or polynomial enrichment. The former approach is used in

§2.4.1 and the latter in §2.4.1.

Validation Study

When f(x) is a polynomial that belongs to discrete solution space, the FE solution

Ih(z, µ) should recapture the solution given by f(z, µ). However, due to finite

precision errors there will be very small discrepancies between the two solutions

that depend on machine precision. In the following examples, the two solutions are

compared point-wise with a relative tolerance of ε = 1E− 6. All the test cases below

share the same spatial(1D)×angle mesh(1D) mesh as shown in figure 11

It is important to note that each spatial layer z[i] and angle layer µ[i] are subdivided

into three bands (elements) and each layer is assigned different and independent

material properties (η
[i]
a , η

[i]
s ) to ensure discontinuity in layers for code verification.

Utilizing this setup, the two cases are characterized by a zero and non-zero phase

function Φ(z, µ, µ′) within equation 2.1 respectively. For simplicity, the assumed

exact solutions are only distinguished by angular layers; all spatial layers within a

given angular layer will be assigned the same exact solution based on this angular

layer.
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Test case I for Φ(z, µ, µ′) = 0

For a zero phase function equation 2.1 can be rewritten in terms of the source S(z, µ)

as:

S(z, µ) = µ
dI

dz
+ βI. (2.6)

For this relatively simpler case, each angle layer µ[i], for i = 1, .., 4 is assigned an

assumed exact solution of the following polynomial forms:

I [1] =f [1](z, µ) = 4.0 + 4.2z + 11.2z2 − 10.3µ+ 4.0zµ

+ 3.3z2µ− 3.1µ2 + 2.5zµ2 + 4.1z2µ2

I [2] =f [2](z, µ) = 4.0 + 4.2z + 11.2µ− 10.3zµ

I [3] =f [3](z, µ) = 4.0 + 4.2z + 11.2z2 − 10.3µ+ 4.0zµ

+ 3.3z2µ− 3.1µ2 + 2.5zµ2 + 4.1z2µ2

I [4] =f [4](z, µ) = 1.0.

In order to ensure that the FEM elements capture the imposed solution through

in the element interpolations all elements in the spatial layers j are interpolated with

second order basis order p = 2 for z[j] and the orders of the basis in the angular layers

are k = 2 for µ[1], k = 1 for µ[2], k = 2 for µ[3],and k = 1 for µ[4].

With the above exact solution forms and their corresponding source terms defined

by equation 2.6, the following solution is generated as visualized in figure 12.

Test case II for Φ(z, µ, µ′) ̸= 0

For a nonzero phase function equation 2.1 can be rewritten in terms of the source

S(z, µ) as:

S(z, µ) = µ
dI

dz
+ βI − σs

2

∫ 1

−1

µ′Φ(z, µ, µ′)I(z, µ′). (2.7)
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The prescribed Phase function used in this case is of the following polynomial

form with z, µ, and µ′ orders 2, 1, and 2, respectively:

Φ(z, µ, µ′) =4.0 + 4.2z + 11.2z2 − 10.3µ+ 4.0µz + 3.3µz2

− 3.1µ′ + 2.5µ′z + 4.1µ′z2 − 5.1µµ′ − 2.6µµ′z

+ 1.3µµ′z2 − 1.6µ′2 + 2.1µ′2z − 12.1µ′2z2

− 15.2µµ′2 − 7.8µµ′2z − 2.5µµ′2z2

For this more complex problem, each angle layer µ[i], for i = 1, · · · , 4 is assigned

the exact solution of the following polynomial form:

I [i] =f [i](z, µ) = 4.0 + 4.2z + 11.2z2 − 10.3µ+ 4.0z ∗ µ

+ 3.3z2µ− 3.1µ2 + 2.5zµ2 + 4.1z2µ2, for i = 1, .., 4

For this case all elements in the spatial layers j and in the angular layers i are

interpolated with second order basis k = 2 for z[j],and k = 2 for µ[i] respectively.

With the above exact solution forms and their corresponding source terms defined

by equation 2.7, the following solution is generated as visualized in figure 13.

Convergence Study

The MMS was performed with harmonic functions for both the phase and intensity

to perform a convergence study for the proposed DG RTE method. These functions

are chosen as

Iexact(z, µ) = f(z, µ) = sin
(
π
z

L

)
sin(πµ) (2.8a)

Φ(z, µ, µ′) = ηs(z, µ) cos
(
(µ− µ′)

π

2

)
(2.8b)
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The L2 norm of the point-wise error E between the discrete and exact solution is

used to characterize numerical error,

Point-wise error: E = Ih(z, µ)− Iexact(z, µ)

L2 norm of error: L2(E) =

√∫
Ω

Ω||E||2 =

√∫
Ω

Ω(Ih(z, µ)− Iexact(z, µ))2.

Since the exact solution (2.8a) is not a polynomial and does not belong to

DG solution space, there will exist a finite discrete solution error. The rate of

the convergence of the solution is obtained by determining the slope νp of the

logarithm of the solution error versus logarithm of element size h. Polynomial order

of p = pz = pµ = 0 to p = pz = pµ = 3 are used to interpolate I in both space and

angle. As shown in Fig. 14, asymptotic convergence rate of νp = p+1 is achieved for

polynomial order p as h → 0.

2.4.2 Benchmark problems

Consider radiative transfer in an anisotropically scattering slab of thickness of L with

space dependent scattering coefficient, σs(z) = z/L, and a unit extinction coefficient,

β = 1. The anisotropic phase function, Φ(µ, µ′), is assumed to be

Φ(µ, µ′) =
M∑

m=0

amPm(µ)Pm(µ
′), (2.9)

where am are specified constants, Pm are Legendre polynomials, and M is the order

of anisotropic scattering. In this paper, the slab is a forward-scattering medium with

M = 7 and am = {1.0, 1.98398, 1.50823, 0.70075, 0.23489, 0.05133, 0.00760, 0.00048}.

Two cases of isotropic and anisotropic incident radiations at the left boundary surface

are investigated. The numerical results are compared with analytic solutions for the

first case, as well as the least-square finite element method (LS) and LS employing

the discrete ordinates method (LS-DOM) [96] for both cases.
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Isotropic incidence

The boundary conditions in this case are given by,

I(z = 0, µ) · n̂z = 1, µ > 0

I(z = 1, µ) · n̂z = 0, µ < 0
. (2.10)

The basis order in both space and angle is p = 4. As shown in Fig. 15, the

computations are performed in a 6 × 8 finite element grid with refinement at µ = 0

to resolve the strong gradients.

The distribution of radiative intensity in spatial and angular domain is shown in

Fig. 16 obtained by LS [96] and DG methods, respectively. It shows that DG results

are in agreement with LS results.

Figure 17 shows the exit, the outflow boundaries, distributions of radiative

intensity at z = 0 and z = 1, respectively. For the purpose of comparison, analytic

solutions of Cengel and Özis, ik [22] are plotted, and numerical results obtained by LS

method and LS-DOM method [96] are also shown. Obviously, DG results are in good

agreement with those results.

The radiative heat fluxes for forward (µ > 0) and backward (µ < 0) are defined

by

q+(z) = 2π

∫ 1

0

I(z, µ)µdµ (2.11a)

q−(z) = −2π

∫ 0

−1

I(z, µ)µdµ (2.11b)

In this paper, the backward and forward radiative heat fluxes are normalized by the

inflow flux, 2π
∫ 1

0
I(0, µ)µdµ, for the comparison purpose. Fig. 18 shows that the

results by DG method coincide with the analytic solution [22] and those results by

the LS and LS-DOM method [96].
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The computed results of hemispherical reflectivity (q−(z = 0)) and transmissivity

(q+(z = 1)) of the slab in Table 1 are in agreement with the analytic values of Cengel

and özis, ik [22] and the results obtained by LS method and LS-DOM method.

Anisotropic incidence

In this case, the anisotropic incidence boundary condition is adopted. The incident

radiation at boundary z = 0 arrives along specified directions, and can be expressed

as [96],

I(z = 0, µ) · n̂z = g(µ), µ > 0

I(z = 1, µ) · n̂z = 0, µ < 0
(2.12)

where

g(µ) =



0 0.0 < µ ⩽ 0.1

1

2

{
1 + sin

[ π

0.1
(µ− 0.15)

]}
0.1 < µ ⩽ 0.2

1 0.2 < µ ⩽ 0.5

1

2

{
1− sin

[ π

0.1
(µ− 0.55)

]}
0.5 < µ ⩽ 0.6

0 0.6 < µ ⩽ 1.0

, (2.13)

and the function g(µ) defines a piece-wise constant radiative intensity distribution

between 0 and 1, with smooth transitions by sinusoidal curves. Fig. 19 shows the

contour plots of radiative intensity in spatial and angular domains solved by DG and

LS [96] methods.

The exit distributions of radiative intensity at z = 0 and z = 1 are depicted in Fig.

20, respectively. Results obtained by the DG method agree well with those results

by the space-angle LS method. As expected results obtained by a hybrid LS method

for space, and DOM in angle are less accurate due to discrete nature of this solution

in angle, i.e., the so-called ray effect.

22



Backward and forward radiative heat flux distributions are shown in Fig. 21,

respectively. Also compared with the results by LS-DOM method, backward and

forward radiative heat flux distributions by the DG method are in better agreement

with those obtained by the LS method [96].

Table 2 shows that the computed reflectivity and transmissivity of a slab are in

good agreement with those results obtained by LS method [96].

2.4.3 Point source

In addition to the benchmark problems detailed above, several other test problems

were chosen to evaluate the DG formulation. The method has capability to have point

sources SI(z̄, µ̄) on both the boundary and interior of the domain. For a source term

at point (z̄, µ̄) , the source term value at any arbitrary point within the computational

domain at point (z, µ) with respect to the reference source can be written as,

S(z, µ) = SI(z̄, µ̄)δ(z − z̄)δ(µ− µ̄)

where SI(z̄, µ̄) is the intensity of the point source.

The first test case was run with scattering neglected, i.e a zero phase function.

The left boundary was subject to a vacuum (homogeneous) boundary condition,

I(0, µ) · n̂z = 0

while the right side was given a reflective boundary.

I(1,−µ) · n̂z = I(1, µ) · n̂z.

These boundary conditions hold for each test case given in this section. The slab was

discretized with a 16x 32 grid in the (z, µ) domain with element order p = 0. The
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given point source term is,

S(z = 0.375, µ = 0.75) = 10

With the goal to solve the problem with higher order elements, the domain is

solved with p = 1 in Fig. 22b. This test case highlights an issue with numerical error,

caused by numerical overshoot and undershoot, near the point source location. We

obtain negative values for I, which are obviously nonphysical. This is caused by direct

integration of the point source in the element(s) containing it. Since delta function

has no inherent length scale, this problem persists regardless of the resolution of the

mesh. That is h-refinement does not address it. In addition, p-enrichment, increasing

the order of element, generally exacerbates the problem.

To address the undershoot (and overshoot) problem, we propose to use the average

of the point source over the elements covering it. Therefore, instead of a delta function

source of magnitude S over elements with space-angle area ∆z∆µ, the source term

becomes a uniform Sa of magnitude,

Sa(z, µ) =
SI(z̄, µ̄)

∆z∆µ
(2.14)

This averaging scheme approximates the delta function at a resolution that is dictated

by the underlying DG grid size. Clearly, as the element size h of the element(s)

containing delta source approach zero, the solution tends to exact solution wherein

I focuses on angle µ̄ with infinite intensity. Figure 22e shows the result obtained by

using the average source term for the same grid specification in Fig. 22b. As can

be seen, the numerical undershoot is resolved, thereby removing the non-physical

negative intensity.

With this issue resolved, h-refinement was performed in Fig. 22d. Using a

refinement ratio of two, a 32× 64 grid is used for this example. Due to the halving of

the mesh resolution in each direction, the area over which the point source is averaged
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is divided by four, resulting in fourfold increase in Sa. By inspecting the weighted

residual statement (2.4), and the averaging scheme (2.14) one can show that when

angular size of elements is halved, the maximum observed I doubles for this problem.

This feature can be observed in comparison of Figs 22c and 22d.

Figure 22e shows a p-enrichment with respective to the solution in 22d, where

element order is increased from p = 1 to p = 3. For this particular problem,

p-enrichment does not drastically change the solution, although the variation of I

from the element of application of point source down to the reflected side is slightly

smoother. Finally, Fig. 22f solves this problem when Rayleigh scattering is used,

where the phase function, Φ(µ, µ′) is given,

Φ(µ, µ′) =
3

8

(
3− µ2 − µ′2 + 3µ2µ′2)

The small values of I at angles other than those covered by the source term and its

reflection are caused by scattering of these rays.

2.4.4 Properties of the space-angle DG formulation

In this section, two cases are conducted to further elaborate on the properties of the

space-angle DG formulation, as opposed to those by continuous methods or methods

with low order of accuracy in angle. The first case mainly focuses on the discontinuous

property of the DG method. The second case shows the advantages of the DGmethod,

when a high order of accuracy in angle is needed.

Discontinuous basis functions in both space and angle

To further show the capability of the DG method, an angular-line source is added

in the (z, µ) domain with a 16 × 32 grid. The scattering is neglected to clearly

demonstrate the advantage of using a DG formulation in the angle direction. The
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given intensity source term is,

S(z, µ) = δ(z − 0.4)
[
−100(µ− 0.5)2 + 5.76

]
, µ ∈ [0.26, 0.74]

That is, the source term is the product of a delta function in space and a second

order parabola with a maximum value of 5.76 at µ = 0.5 in angle. This corresponds

to a line source along µ. The left boundary is given a vacuum boundary condition,

while the right boundary is a reflective boundary wall. The polynomial order of the

solution is p = 3 in space and angle.

Similar to the point source case, the wave propagating forward does not pollute

the solution of the upstream elements in space (Mz in Fig. 23), i.e.,, ahead of the

source term the solution remains zero as physically it should be. This is made possible

by using the upstream value for the target solution at a quadrature point on vertical

inter-element boundaries; cf. (2.2b) and Fig. 9. Another interesting observation is the

high order approximation of the solution in the elements that contain the source line

(shown by the white thick line) and downstream of it. The smoothness of the source

term in the angle direction also facilitates a higher order solution in space; unlike the

point source problems in §2.4.3, there was no need to evenly distribute the source

term in space, in the elements containing it, to avoid negative solution for I.

The DG method also ensures that elements in angle direction that should have

zero solution, will end up with zero solution. Three groups of elements can be seen in

terms of approximating the source term in angle. For the 6 inner most layers in angle,

the source term is entirely nonzero and smooth within the elements. The solution

variation in angle is accurately captured by the second order polynomial in angle

within each of these elements. For the elements right on top and bottom of these

6 angular layers, the source term only penetrates half way though the elements, as

indicated by the while line. Since the solution is second order in angle in an element,

the discontinuous nature of the solution in angle cannot be exactly captured in these

elements. Specifically, we do not recover a zero solution right outside the source term
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angular span within these elements. Finally, in the next immediate upward N+
µ and

downward N−
µ angular neighbors in Fig. 23, the finite elements capture the exact zero

solution.

The methods that enforce the continuity of solution cannot capture either of these

feature exactly. For example, if a continuous finite element method is used in space,

due to the continuity constraint of the solution, the source term incorrectly penetrates

a bit in the upstream elements in the Mz region. Likewise, if a continuous finite

element approximation is employed in the angle, again due to the same continuity

constraint, the elements in layersN+
µ andN−

µ end up with nonzero solution. The same

holds true for the spherical harmonic and other methods that use globally continuous

functions to approximate the solution in angle. This example demonstrates that the

discontinuity of the solution between elements, and the use of physically-based target

values in DG methods lends itself to accurate solutions for the RTE.

High order of accuracy in angle

To better understand the importance of high order of accuracy in angle for solving the

RTE, the same example for the convergence study in §2.4.1 is solved again. However,

the polynomial order in angle is fixed to be pµ = 0, while the polynomial order in space

is still set to be pz = 0 to pz = 3. It is clear in Fig. 24 that the convergence rate does

not improve (stays at 1) as the low order of pµ = 0 limits the convergence rate. That

is, the convergence rate νpz = pz + 1 no longer holds as h → 0. Because of this low

convergence rate, the errors are significantly larger for this configuration, especially

for smaller elements. This is evident in an about 13 binary orders of magnitude higher

error for pz = 3, log2 h ≈ −3.6 in Fig. 24 compared to the corresponding solution in

Fig. 14.

This example demonstrates that going to high spatial orders can be a waste of

computational resources given that the convergence rate is hindered by such a low

angular order. Methods that use FE in space and use a low order scheme in angle,

basically gain not much accuracy by using a high order approximation in space. The
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variation of the DG method presented in this section, resembles a hybrid DG in space

and FV, FD, or DOM method in angle, given that the order of polynomial solution

in angle is zero. From this perspective, we can compare it to the hybrid DG-DOM in

[139]. As mentioned, many of these methods cannot change the order of accuracy in

angle.

Other methods, such as the spherical harmonic method and spectral FEMs in

angle, have the same capability of the DG method in that the solution can be

arbitrarily high order in angle. But these methods basically have two disadvantages

in comparison to the DG method. First, due to the global nature of interpolation

functions in angle, no local adjustment of the order of accuracy in angle can be

made. Second, there is a tendency for such methods to result in oscillatory solution,

especially, when dealing with concentrated sources. The example of the angular-line

source term in §2.4.4 does not exhibit any of these problems. First, in principal,

in the DG method the order of each element can be adapted when needed, such as

a zeroth order in angle for elements excluding the line source and high orders for

elements that span the source line. Second, the locally high order methods such as

FEMs and especially DG methods are less prone to nonphysical solutions oscillations.

For example no oscillations are observed in the angle direction for the point and line

source problems in §2.4.3 and §2.4.4. However, it is noted that for problems that have

very smooth and globally nonzero solutions in angle, spherical harmonic and spectral

methods in angle may be preferred due to their exponential convergence property.

2.5 Discussion and conclusions

The FEM enables high order solution for the RTE in space and can readily handle

complex geometries. The continuous representation of solution for angle spans and

high order solution in this direction makes using finite elements in angle direction

promising as well. Such space-angle FEM methods have shown better accuracy, than
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hybrid FEM-SN (FEM-DOM) or FEM-PN methods, as for example can be seen in

Fig. 19a for the LS and LS-DOM methods.

While both the proposed space-angle DG method and the LS method [96] show

very good accuracies for the problems considered in §2.4.2, there are some important

differences. First, the RTE models a wave propagation equation along individual

ray directions. Unlike continuous FEMs, which enforce the continuity of solution

between neighboring elements, DG methods enforce continuity only along direction

implied by the RTE (2.1). For example, in Fig. 9 continuity is enforced only along

the upstream spatial direction and no angular continuity is enforced. This explains

why the source term in Figs 22a to 22f do not pollute the upstream element (and

neighboring elements in angle direction when phase function is zero). If continuous

Galerkin elements were used, the solution in such immediate neighboring elements

would not have been zero.

The examples in §2.4.4 are used to further elaborate on the discontinuity property

of the space-angle DG method, especially in angle direction. The solution of the

spherical harmonic or other methods that use continuous solution in the entire space

and/or angle, tend to exhibit non-physical oscillations. The weak enforcement of

the jump conditions between the elements relaxes such global continuity constraint

and results in a better solution when the DG method is used. In addition, since the

line source term in §2.4.4 is a second order polynomial in angle, it is more accurate

and efficient to use this high space-angle order DG formulation. In fact, high order

accuracy in angle is quite necessary as discussed in §2.4.4. The convergence rates

in Fig. 24 show that the low order in angle limits the overall convergence rate.

When more accurate solutions are required, the gain in efficiency and accuracy of

a space-angle high order method is substantially more than a space-only high order

method, such as a hybrid FEM-DOM formulation. For the convergence study problem

presented, by using a high order approximation in angle, the error was reduced by

about 13 binary orders of magnitude for the smallest elements considered, compared

to a space-only high order formulation.
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Another main advantage of the DG method is the increased flexibility offered in

both h and p adaptivity, wherein the size and order of elements can change from one

element to another one without the need for connecting elements used in continuous

FEMs. For example, by using h-adaptivity we could have highly refined elements

around the source term location in §2.4.3, while leaving the other elements coarse.

In [6] a novel adaptive scheme is proposed in which for dynamic problems space and

time are simultaneously adapted when needed. We are currently working on a similar

scheme where instead of physical time, angular direction is simultaneously adapted

along with space directions, as for example in Fig. 24, where elements including the

source term can undergo h- and hp-adaptivity, while elements having no source term

remain zeroth order. Moreover, the fully discretized DG method in space and angle is

also promising to solve more types of the RTE, such as the multi-dimensional RTE in

different space and angle configurations and the polarized (vector) form of the RTE.
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Chapter 3

Space-Angle Discontinuous

Galerkin Method for Radiative

Transfer between Concentric

Cylinders
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3.1 Abstract

The integro-differential radiative transfer equation (RTE) for concentric cylinders

problem involving scattering, absorption and emission is solved using the discon-

tinuous Galerkin (DG) finite element method (FEM). The space-angle DG method

directly solves the cylindrically-symmetric RTE as a three-dimensional problem,

where a 1D spatially domain in radial distance r is twice extruded in the cosine of

polar angle (µ) and the difference in azimuthal angle (φ̃) directions. Thus, the method

has a higher accuracy than hybrid FEM-Discrete Ordinate (SN) and FEM-Spherical

Harmonic (PN) methods. This is reflected by numerically verified convergence rate

of p + 1 for smooth problems and space-angle polynomial interpolation order of

p. The axisymmetric RTE formulation is more complicated than the plane-parallel

formulation, for having two independent angle directions (µ and φ̃) and an extra

derivative term with respect to φ̃ in the differential equation. This results in a complex

characteristic structure in r − φ̃ plane with strong discontinuity lines in radiation

intensity I. A method of characteristics is formulated and implemented to verify

the DG formulation and demonstrate its accuracy when such strong discontinuities

persist in the solution, specifically when there are no scattering and absorption terms.

The relaxation of inter-element continuity constraint of continuous FEMs by this DG

method implies its superiority in numerically capturing such discontinuities. Finally,

a benchmark problem pertained to heat radiation in a gray gas and another one

with nonzero phase function demonstrate the effectiveness of the method in modeling

black-body and scattering angular integration terms.

3.2 Introduction

The Radiative Transfer Equation (RTE), a first order integro-differential equation,

describes the radiation intensity while propagating in an absorbing and scattering

medium. The RTE plays an important role in radiation transfer in atmosphere,
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semitransparent liquid and solids, porous materials, and many other participating

media [109, 88]. Different numerical methods have been formulated to solve the RTE

over the past few decades. These methods, including Finite Volume (FV) method [31]

and Finite Element Method (FEM) [99], are commonly hybridized with the Discrete

Ordinates Method (SN or DOM) [49, 114] or Spherical Harmonic Method (PN) [46,

89, 15] to handle the integrals over the solid angle.

In SN methods, the angular dependence of radiation intensity in the RTE is

decoupled by the angular discretization using a discrete set of directions (discrete

ordinates) while the integral terms are replaced by quadratures. The spatial

dependence in the RTE is discretized by the numerical methods mentioned above.

Thus, the RTE and its corresponding boundary conditions are transformed into a set

of Partial Differential Equations (PDEs) only in terms of the spatial coordinates. Two

drawbacks of the classical SN method are known as false scattering and the ray-effect

[17] that mainly caused by the form of angular discretization [23]. In addition, the SN

method can be problematic when specularly reflecting boundaries are present [102].

If a reflected beam on the boundary does not coincide with any discrete ordinate, the

intensity of the specularly reflected beam is generally undetermined. Besides, special

schemes are needed in the DOM for coping with the angular derivative terms in the

RTE in curvilinear coordinates [104]; that is, the angular redistribution [81] makes it

difficult to handle the angular derivative terms in the RTE.

In PN methods, the radiation intensity field is approximated by an orthogonal

series of spherical harmonics, thereby giving the method its name [109]. In the

spherical harmonics series, each term has one spatial coefficient and one angular

coefficient. After the integration, the expansion coefficients are formulated into a set

of PDEs. The drawbacks of the PN method are the derivation of the set of PDEs

and the corresponding boundary conditions for high-order approximations, tendency

of getting nonphysical oscillations and negative values for radiation intensity for high

order approximations [43], and the lack of accuracy in optically thin media [24].
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The (continuous) FEM is a versatile method that can simulate a wide range of

problems in scientific and engineering fields which allows complex geometries. It has

also been used for solving the RTE in the spatial domain by Shmygevskii [108], Krim

[1], Razzaghi [98], Sallah [105], and Egger et al. [44]. When solving the RTE in

spatial domain by the FEM, the radiation intensity is approximated by a series of

shape functions in space. FEMs are generally preferred over FV and Finite Difference

(FD) methods if higher orders of accuracy are sought. However, continuous FEMs

do have a disadvantage in dealing with discontinuous and high gradient solution

features. This is particularly important for the RTE, since the propagation of rays

along characteristics can result is strong discontinuities in radiation intensity. The

Discontinuous Galerkin (DG) method is more appropriate for this class of problems,

including the RTE, since it relaxes the strong inter-element continuity of continuous

FEMs.

The DG method was originally introduced by Reed and Hill [101] to study the

neutron transport equation. For DG methods the basis functions are discontinuous

across element interfaces; accordingly the jump between interior traces of solution

and the so-called numerical fluxes is weakly enforced on inter-element boundaries.

DG methods are specifically suitable for hyperbolic PDEs and the RTE, since

the evolution of solution along characteristics can result in (strong) discontinuities.

Several hybrid DG methods such as the SN -DG method [84, 139, 58, 45, 33, 133], and

the PN -DG method [75] have been proposed, wherein the spatial domain is discretized

by the DG method.

One can take advantage of FEM and DG methods to discretize the entire spatial

and angular domain rather than only the spatial domain, as in the aforementioned

hybrid DG methods. Liu [83] and Pontaza [96] used the FEM in both space and angle

to solve the one-dimensional RTE. Castro and Trelles [21] developed the spatial and

angular finite element to solve multi-dimensional RTE with high order of accuracy.

Gao and Zhao [50, 51] associated the DG in space with a piece-wise constant FEM in

angle. As in the spatial domain, continuous methods may fail to accurately capture
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discontinuities of the solution that can occur in the angular domain. Formulating

a DG method in both space and angle is desirable since it prevents the artificial

continuity constraint of hybrid DG methods in angle. Moreover, arbitrarily high

orders of accuracy can be achieved both in space and angle directions. Kophazi and

Lathouwers [73] implemented the DG method in both space and angle to solve the

Boltzmann transport equation. Kitzmann et al. [37] solved the one-dimensional RTE

with spherical symmetry by the DG method. In previous works [29, 27], a high

order space-angle discontinuous Galerkin (DG) method for the plane-parallel RTE

was proposed.

There are fewer computational works for the steady state radiative heat transfer

in one-dimensional cylindrical medium compared to plane-parallel and some other

RTEs. Some numerical methods formulated for this problem are Monte Carlo (MC)

[62] and variational [86, 69, 94] methods. Nowadays, with the huge improvement of

computing power, the MC method can solve this type of radiative transfer problems

efficiently and accurately. In fact, due to its accuracy, the MC method has been

recommended as benchmark for comparison of other methods [116, 16]. Besides,

the MC method can handle complex geometries easily, and have a low algorithmic

complexity. However, it has disadvantages. For example, for intensively scattering

cases, it becomes very slow because of the exponentially increasing number of photon

interactions. For the computation of conduction and/or convection parts involved in

the problems, it is difficult for the MC method match the required grid size needed for

coupling other grid-based method, whereas, it is relatively easy for the DG method in

this case. No matter what method is used, a few difficulties associated with the one-

dimensional cylindrical RTE are: (1) it involves two independent variables in angle

direction, which results in a high dimensional problem in spatial and angular domain;

(2) an additional angular derivative term in the RTE in curvilinear coordinates

requires the specification of target fluxes and their integration on new angle-normal

element interfaces; (3) the additional angular term results in curved characteristics

in space and angle and more complex jump manifolds for radiation intensity. For
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simplification, only the steady state radiative transfer in gray media is discussed

in this paper. The spectral radiation is not focused here. However, the existing

approaches to band correlation can help study the spectral properties by providing

the radiative intensity in a set of gray gases and the probability density function

(PDF) of absorption coefficient [61]., e.g., k-distribution method [113], correlated-k

method [54, 82] and spectral-line-weighted sum-of-gray-gases (SLWSGG) [132, 110]

The remainder of manuscript is structured as follows. The formulations of the

method of characteristic and the DG method for the steady state RTE in one-

dimensional cylindrical coordinates are presented in §3.3. The implementation of

the DG method and the required extrusion operations in the angle direction and

the implementation of the method of characteristics are described in §3.4. Next,

several numerical examples are presented in §3.5 to verify and validate the DG

formulation. This includes the use of Method of Manufactured Solution (MMS),

an example of a sharp discontinuous solution in space and angle obtained by the

method of characteristic, a benchmark problem from [86], and another problem in an

anisotropic scattering medium. Final conclusions are drawn in §3.6.

3.3 Mathematical description

3.3.1 Radiation transfer equation and boundary conditions

The general form of RTE for a gray medium is,

dI(x, ŝ)

ds
= −βI(x, ŝ) + κIb(x) +

σs

4π

∮
4π

I(x, ŝ′)Φ(̂s, ŝ′)ds′ + S(x, ŝ). (3.1)

This equation describes the change of radiation intensity I(x, ŝ) at spatial location

x along the path ds in the angle space with angle coordinate ŝ. The values β, κ,

and σs, are the spatial-dependent extinction, absorption, and scattering coefficients,

respectively. The anisotropic scattering phase function is represented by Φ(̂s, ŝ′) and

s′ is the solid angle for phase function integration. The solid angle differential for s′ is
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denoted by ds′. The spatial-dependent total black-body radiation intensity is given

by Ib. The source term is denoted by S(x, ŝ). If radiative equilibrium prevails, Ib is

[88],

Ib(x) =
1

4π

∮
4π

I(x, ŝ′)ds′. (3.2)

For one-dimensional axisymmetric problems (infinite in z direction), the RTE

for a gray medium that emits, absorbs and anisotropically scatters in an cylindrical

enclosure is written as,

sin θ cos φ̃
∂I(r, µ, φ̃)

∂r
− sin θ sin φ̃

r

∂I(r, µ, φ̃)

∂φ̃

= −βI(r, µ, φ̃) + κIb(r) +
σs

4π

∫ π

−π

∫ 1

−1

I(r, µ′, φ̃′)Φ(µ, φ̃, µ′, φ̃′)dµ′dφ̃′ + S(r, µ, φ̃),

(3.3)

where the spatial location x is represented in polar coordinates with r, φx, and z

corresponding to radial distance, spatial azimuthal angle, and coordinate along the

axis of symmetry, respectively. The spherical coordinates of solid angle ŝ are polar

angle θ and angular azimuthal angle φs, as shown in Fig. 25. The radiation intensity

is expressed as I(r, µ, φ̃), where µ = cos(θ) ∗ and φ̃ is the azimuthal angle measured

from the local radial direction; that is, φ̃ = φs − φx. The spatial coordinates z and

φx are removed due to invariance along the axis of symmetry, and angular symmetry

of the problem (enabling the use of φ̃ instead of two coordinates φs and φx). The

direction of the ray at point x and angular coordinates θ and φ̃ is expressed as

ŝ = (sin θ cos φ̃, sin θ sin φ̃). To guarantee the energy conservation, the phase function

is normalized as,

1

4π

∫ π

−π

∫ 1

−1

Φ(µ, φ̃, µ′, φ̃′)dµ′dφ̃′ = 1. (3.4)

∗Since, the spatial coordinate (r, φx, z) does not include a spatial azimuthal angle, the subscript
s is dropped from angular azimuthal angle and its cosine value for brevity.
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Equation (3.3) is solved on the three-dimensional domain (r, µ, φ̃) ∈ Ω =

(R1, R2)× (−1, 1)× (−π, π), where R1 and R2 are the radii of inner and outer surface

walls; cf. Figure 25. For an opaque surface that emits and reflects specularly and

diffusively, the radiation intensity on the domain boundary, Rw, with index w ∈ {1, 2}

referring to the inner and outer radii, is given by [88],

I(Rw, ŝ) = ϵ(Rw)Ib(Rw) +
ρd(Rw)

π

∫
ŝ′·n>0

I(Rw, ŝ
′)̂s′ · ndµ′dφ̃′ + ρs(Rw)I(Rw, ŝs),(3.5)

where n is the surface normal, ϵ is the wall emissivity and ρ is the reflectivity divided in

a diffuse component ρd and a specular component ρs with the relationship, ρ = ρd+ρs.

Since the surface is opaque, ϵ + ρ = 1. The first term on the right side of (3.5)

arises from the surface emission. Under the assumption of diffuse-gray Ib = n2σT 4/π

[88]. The second term is the diffusively reflected component. The third term is

the specularly reflected component, where ŝs is the specular direction defined as the

direction of a light beam traveling from the surface in a direction of ŝ after a specular

reflection. This direction is given by ŝs = ŝ− 2(̂s ·n)n. Equation (3.5) is specified on

the inflow boundaries which are defined when ŝ · n > 0.

3.3.2 Characteristic directions for the RTE

The method of characteristics was firstly introduced to solve the RTE in 1970 [20].

Rukolaine et al. [102] extended this method to solve the 2-D RTE in cylindrical

coordinates with complex boundary conditions. By solving Ordinary Differential

Equations (ODEs) along the characteristic lines, this method provides physical insight

on how the rays propagate in the space-angle domain and can be computationally

advantageous for high spatial or angular dimension problems.

To validate DG solution, the method of characteristics is introduced. Along a

characteristic line, the RTE takes the form,

dI

ds
= S̆(r, µ, φ̃), (3.6)
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where S̆ is the total source term which is the right hand side of (3.3),

S̆(r, µ, φ̃) = −βI(r, µ, φ̃) + κIb(r)

+
σs

4π

∫ π

−π

∫ 1

−1

I(r, µ′, φ̃′)Φ(µ, φ̃, µ′, φ̃′)dµ′dφ̃′ + S(r, µ, φ̃).
(3.7)

Equation (3.6) is written as,

V ·
(
∂I

∂r
,
∂I

∂µ
,
∂I

∂φ̃

)
= |V| dI

dl
= S̆, (3.8)

where V =
(
sin θ cos φ̃, 0,− sin θ sin φ̃

r

)
, ẽ = V

|V| is the unit vector (direction) along the

characteristic, and l is the length coordinate along the characteristic starting from the

inflow (upstream) towards the outflow (downstream), tangent to ẽ as shown in Fig.

26. The relation between the increments of space-angle coordinates and characteristic

length is,

dr =
sin θ cos φ̃

|V|
dl,

dµ = 0,

dφ̃ = −sin θ sin φ̃

r|V|
dl,

(3.9)

accordingly, characteristic lines stay in the r − φ̃ plane, since dµ = 0.

The ODE (3.8) is solved starting from inflow parts of spatial boundary of Ω (at

R1 or R2), where I is given at the beginning of characteristic lines as initial condition.

This can easily be done when there are no angular integration terms in (3.7), that is

when Ib, Φ = 0. For details of the implementation of this method when these angle

integrals are present, refer to §3.4.2.

3.3.3 Discontinuous Galerkin formulation

Figure 27 shows an m × n × l tensor product discretization of space-angle domain

Ω = (R1, R2)× (−1, 1)× (−π, π), discretized into {r0, r1, ..., rm}, {µ0, µ1, ..., µn}, and
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{φ̃0, φ̃1, ..., φ̃l} along r, µ, and φ̃ directions, respectively, for r0 = R1, rm = R2,

µ0 = −1, µn = 1, φ̃0 = −π, and φ̃l = π. For an arbitrary element Q ∈ Ω in Fig. 27,

the interior residual corresponding to PDE (3.3) is,

RQ = sin θ cos φ̃
∂I

∂r
− sin θ sin φ̃

r

∂I

∂φ̃
+ βI − κIb

− σs

4π

∫ π

−π

∫ 1

−1

I(r, µ′, φ̃′)Φ(µ, φ̃, µ′, φ̃′)dµ′dφ̃′ − S(r, µ, φ̃).

(3.10)

For DG methods the continuity of solution on the boundary of elements is weakly

satisfied relative to a target or numerical flux I∗. As mentioned in §3.2, this relaxes

the continuity constraint of continuous finite element methods, which can be both

nonphysical and not accurately model the propagation of waves along characteristic

lines. For RTE, the residual on ∂Q, the boundaries of the element Q, corresponds to

differential operator dI(x, ŝ) / ds in (3.1) and is expressed as,

R∂Q = ŝ · n(I∗ − I), (3.11)

where n = (nr, nφx , nz) is the normal direction on ∂Q in spatial coordinates and ŝ is

the direction of radiation.

The target value I∗ corresponds to the upstream value along the direction of wave

propagation and is given by,

I∗ =

I ŝ · n ≥ 0 outflow

Iout ŝ · n < 0 inflow

⇒ R∂Q =

0 ŝ · n ≥ 0

ŝ · n(Iout − I) ŝ · n < 0

. (3.12)

That is, on outflow boundary of Q, where ŝ · n ≥ 0, I∗ is set equal to interior trace

and the jump condition R∂Q is trivially satisfied. On the other hand, the inflow

boundaries correspond to ŝ · n < 0. For inflow boundaries, the target flux is set

equal to outside intensity Iout. When the inflow boundary of Q is on the boundary

of domain, ∂Ω, Iout is set to the boundary flux determined from (3.5). For a point on
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an inflow interface of Q that is inside Ω, I∗ is set to Iout, the interior trace of I at the

same location for the neighboring element Qout. Clearly, Iout is also the target value

for the same point on the boundary of neighbor element Qout. For Qout this point

is on its outflow boundary and R∂Q is trivially satisfied. That is, for any interior

interface in Ω, there is exactly one non-trivially zero R∂Q on the side that is inflow

boundary. This corresponds to the downstream direction of characteristic lines; cf.

Fig. 26.

Next, the specific form of ŝ · n for axisymmetric RTE in (3.3) is discussed

to determine inflow and outflow boundaries of Q and I∗ from (3.12). For this

configuration ŝ = (sin θ sinφx, sin θ sinφx, cos θ). Since the solution is invariant along

z-direction and φx = −φ̃ when φs = 0 the expression for ŝ · n in (3.11) is simplified

to,†

ŝ · n = sin θ cos φ̃nr − sin θ sin φ̃nφ̃. (3.13)

Note that the factors of nr, nφ̃, and nµ (zero) in ŝ · n correspond to the factors of

dI / dr, dI / dφ̃, and dI / dµ (zero) in (3.10), considering that the geometric Jacobian

of the cylindrical coordinate system is equal to r.

A cubic element in Fig. 27 has 6 boundaries in Ω. Figure 28 shows element Q and

its four neighbors in the r-φ̃ plane. The two boundaries along positive and negative

µ directions are not shown as ŝ · n is trivially zero and there is no coupling between

elements in µ direction (this corresponds to the absence of dI / dµ term in (3.10)).

The normal vectors for element Q point outward toward neighboring elements B, C,

D and E . The normals of the neighboring elements on the shared boundaries with Q

point in the opposite directions. For normal vectors, the subscripts denote the element

for which the normal vector is defined and the superscripts show the coordinate and

the direction that the normal is pointing to. For example, nφ̃−

Q is the normal from

element Q to E in the negative φ̃ direction.

†Due to axisymmetry, the same expression is obtained for φs ̸= 0.
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The specific values of (nr, nφ̃, nµ) are shown in parentheses for the four faces of the

element Q that are in the r-φ̃ plane in Fig. 28. Specifically, (nr, nφ̃, nθ) = (∓1, 0, 0)

for ∂Q∓
r and (nr, nφ̃, nθ) = (0,∓1, 0) for ∂Q∓

φ̃ , respectively, and their corresponding

ŝ · n and residuals are,

ŝ · n = sin θ cos φ̃nr ⇒ R∂Qr = sin θ cos φ̃nr(I
∗ − I), on ∂Q∓

r (3.14a)

ŝ · n = − sin θ sin φ̃nφ̃ ⇒ R∂Qφ̃
= − sin θ sin φ̃nφ̃(I

∗ − I), on ∂Q∓
φ̃ (3.14b)

The coordinates φ̃ and µ = cos θ at each point on these four boundaries determine

the value of ŝ · n in (3.14) and whether the residual is trivially zero for ŝ · n ≥ 0.

It is noted that while the boundary of Ω in Fig. 27 includes r-, φ̃-, and µ-normal

surfaces, boundary conditions are only enforced on r-normal spatial boundaries of

the domain at r = R1 and r = R2, on the parts that are wave-inflow; the description

of regions on r = R1 and r = R2 that are inflow is provided in §3.4.2. For µ-

normal boundaries, by default there are no boundary residuals, as for element facets

at µ = ±1 we have nr = nφ̃ = 0; accordingly, the corresponding element boundary

residual is zero from (3.13). Finally, for φ̃-normal facets, R∂Qφ̃
= 0 in (3.14b) as

φ̃ = ±π for these facets on the boundary of Ω.

In this work, the unknown intensity in each element is expressed in terms of scaled

coordinates r′, µ′, φ̃′,

r′ =
r −mr

∆r

φ̃′ =
φ̃−mφ̃

∆φ̃

µ′ =
µ−mµ

∆µ

where mr, mφ̃, and mµ are the minimum values of the coordinates within the element

and ∆r, ∆φ̃, and ∆µ the spans of a cubic element Q in r, φ̃, and µ directions,

respectively. The use of scaled coordinates (r′, φ̃′, µ′) ∈ [0, 1] prevents ill-conditioning
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problems that can arise if r, ϕ̃, and µ are directly used to interpolate the solution

within elements.

The discrete solution for element Q, IhQ, is interpolated by the tensorial product

monomials of order pr, pµ, and pφ̃, in r, µ and φ̃, respectively, and is given by,

IhQ(r
′, µ′, φ̃′) =

pr∑
i=0

pφ̃∑
j=0

pµ∑
k=0

aijkQ r′iφ̃′jµ′k, (3.15)

where the coefficients aijkQ are the unknowns for element Q. Note that IhQ is zero

outside the element Q. In general, for example in the context of a p-adaptive scheme,

each space-angle element Q can have its distinct orders (pr, pφ̃, pµ). However, this

option is not practiced in the numerical studies presented in §3.5 and a constant

polynomial order p := pr = pφ̃ = pµ is used for all directions.

The discrete solution Ih is obtained by multiplying the interior residual (3.10) and

boundary residual (3.11) by weight functions Î and integrating them over the interior

and boundary of elements, respectively. The discrete form of this weighted residual

statement for an arbitrary element Q ∈ Ω is,

∫
Q
ÎQ

(
sin θ cos φ̃

∂IhQ
∂r

− sin θ sin φ̃

r

∂IhQ
∂φ̃

+ βIhQ − κIb − S(r, µ, φ̃)

− σs

4π

∫ π

−π

∫ 1

−1

Ih(r, µ′, φ̃′)Φ(µ, φ̃, µ′, φ̃′)dµ′dφ̃′
)
rdrdµdφ̃

+

∫
∂Qr

ÎQ
[
sin θ cos φ̃(I∗ − IhQ)

]
nrrdµdφ̃

+

∫
∂Qφ̃

ÎQ
[
− sin θ sin φ̃(I∗ − IhQ)

]
nφ̃drdµ = 0. (3.16)

Since a Bubnov Galerkin method is used, the weight functions, ÎQ, are taken from the

basis functions of the discrete solution ÎhQ, equal to monomials r′iµ′jφ̃′k for 0 ≤ i ≤ pr,

0 ≤ j ≤ pφ̃, and 0 ≤ k ≤ pµ, within the element Q and zero outside. The global

coupling between different angle ranges µ ∈ (µj, µj+1), j ∈ {0, · · · ,m − 1} and

φ̃ ∈ (φ̃k, φ̃k+1), k ∈ {0, · · · , l − 1} arises from the triple phase function integral
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in (3.16) or boundary conditions, such as reflective boundary condition, that can

couple all angles at r = R1 and r = R2; cf. (3.5).

3.4 Implementation

3.4.1 Discontinuous Galerkin implementation

The implementation of the RTE is based on a general purpose C++ software code for

the solution of discontinuous Galerkin methods. This software was originally designed

for the solution of causal Spacetime Discontinuous Galerkin (cSDG) methods for

elastodynamics [5], advection-diffusion equation [93], and electromagnetics [7], just

to name a few. The cSDG method directly discretizes space and time with simplicial

elements that satisfy a special causality constraint. The weak enforcement of the

jump conditions between interior and target fluxes on the boundaries of elements

provides unique opportunities to model complex interface matching problems; see

for example [134, 3, 135]. However, these facet terms require more general

modeling of integration cells capable of integration of coincident interior and facets

cells for interface problems [4], facet and cofacet neighborhood information, and

computational geometry operations.

We have used the existing functionalities of the cSDG software for the imple-

mentation of general RTEs. Specifically, the support for coupling of space with

other coordinates (time in aforementioned references) simplified the implementation

of space-angle coupled elements. However, a major overhaul of the software and

implementation of a new geometry library (GMeshing) was required to analyze space-

angle elements used for the RTE. To implement general RTEs, the software supports

the extrusion of a 1D to 3D spatial domain, discretized by simplicial elements,

into arbitrary number of extrusions in angle or other coordinates. For example,

in Fig. 27, 1D simplicial spatial elements (lines) on the left are extruded first to

the 9 once-extruded simplicial elements (squares) in the r − φ̃ plane and next to
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twice-extruded simplicial elements (cubes) in Ω. Some specific challenges with this

implementation included setting neighborhood information (facets and cofacets in

spatial and extrusion directions), formation and processing of integration cells, and

computational geometry information of the extruded cells. Moreover, for angle

integration terms in (3.3) and (3.5) additional neighborhood information between

space-angle cells and their corresponding base spatial elements, e.g., elements Q and

Qx in Fig. 27, and integration routines were required. The software architecture of

GMeshing and this expanded finite element DG module are expected to be discussed

in more detail in subsequent publications.

3.4.2 Method of characteristic

The method of characteristic is implemented in Matlab and C++ to visualize the

solution and compare the results with the DG method. The RTE formulation with

or without angular integration terms (emission term and scattering term) can be

modeled with this method. The forward and backward implementations of this

method are discussed next.

Forward scheme

Characteristics corresponds to the path of radiation rays that go through the disk

depicted in Fig. 25. According to (3.9), each characteristic is invariant to µ. This

implies that the characteristics remain in the r− φ̃ plane and that the characteristic

lines coincide for all r−φ̃ planes at different µ values. All of the characteristics starting

at the inflow boundary on the inner wall eventually reach the outflow boundary on

the outer wall. However, the characteristics starting at the outer wall end at either

the inner wall or the outer wall. These inflow and outflow boundaries are shown by

red and blue, respectively, in Fig. 29. This is because in a disk-like medium some

inflow rays on the outer wall intersect the outer wall and some reach the inner wall.
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To calculate the radiation intensity field, the domain is first discretized into N

r − φ̃ planes for µk ∈ {µ1, ..., µN}. The characteristic lines and other quantities on

the kth r− φ̃ plane are decorated with the left superscript k, corresponding to µk. For

example, the characteristic lines on the kth plane are klj for j ∈ {1, 2, . . . ,M} where

M is the number of characteristic lines considered on this plane and j is the index of

characteristic line. As shown in Fig. 29, the characteristic lines start from points on

the inflow boundaries of the domain, that is φ̃ ∈ [−π/2, π/2] at r = R1 the inner wall

and φ̃ ∈ [−π − π/2] ∪ [π/2, π] at r = R2 the outer wall. Finally, each characteristic

line klj is discretized into segments separated by points kpij, with i being the index of

points on this line, as shown in the figure. Thus, the radiation intensity at the end

of the segment point, kpi+1
j , along characteristic, klj, is calculated by forward Euler

scheme derived from (3.8),

|V|
kI i+1

j − kI ij
∆l

= kS̆i
j, k ∈ {1, . . . , N}, j ∈ {1, . . . ,M}, (3.17)

where kS̆i
j is the source term at point kpi+1

j and ∆l =
√

∆r2 +∆φ̃2 is the distance

of the points kpij and
kpi+1

j with relative positions ∆r and ∆φ̃ in r and φ̃ directions,

respectively. This ODE starts from initial condition kI0j at the first point of

characteristic klj on the corresponding inflow boundary; cf. Fig. 29.

If angle coupling exists (with angular integration terms in (3.3)), an iterative

method is needed to update the total source term, kS̆i
j. The trapezoidal rule is used

to approximate the integrals over the angle at kpij. Since all characteristics overlap

each other over µ direction, no interpolation of solutions is needed in this direction

and a trapezoidal rule is employed for angle integrations in µ direction. For example,

the two points kpij and
k−1pij are shown for the integrals in µ at pij location in r − φ̃

planes in Fig. 29. However, the solutions for solid angle integration along φ̃ need to

be interpolated from existing solutions at points kpij. A trapezoidal rule based on the

interpolated solutions is used for the φ̃ direction integrals. The iterations start with

46



an initial guess, e.g., the solution with no angular integration, and continues until the

intensity at all points converges.

Backward scheme

A backward scheme is preferred if the solution is sought on a structured grid. The

domain is discretized into a structured cube with points kqıȷ = (rı, φ̃ȷ, µk), where

rı ∈ {r0, r1, ..., rM}, φ̃ȷ ∈ {φ̃0, φ̃1, ..., φ̃L}, and µk ∈ {µ0, µ1, ..., µN}. Since the RTE is

a linear differential equation, the path of a characteristic line passing through a point,

both forward and backward, is independent of the solution of radiation intensity along

its path. This is reflected in the independence of the increments of the characteristic

path on solution I in (3.9). Accordingly, the backward path of a characteristic passing

through a grid point kqıȷ, shown in green in Fig. 29, can be determined by (3.9),

without having the solution of radiation intensity along its path (shown in dashed

line). Once the starting point on the inflow boundary of the domain, shown by kq̄ıȷ, is

determined, the initial condition along this determined characteristic path is obtained

from the boundary condition. Next, a forward Euler integration scheme similar to

(3.17) can be used to determine the solution at kqıȷ from the boundary condition at

kq̄ıȷ. When angular integration terms in (3.3) are nonzero, an iterative solution scheme

similar to that described in §3.4.2 is used; the initial solution (guess) corresponds to

the solution with zero angle integral terms and at each iteration source term and

radiation intensity are updated until the differences of radiation intensities of two

successive solutions is below a user specified tolerance at all grid points.

The backward scheme has several advantages. First, the structured points kq̄ıȷ can

coincide with quadrature points of a DG method discretization. This enables the

computation of the error between discrete DG solution and a solution represented by

this backward method of characteristics. The latter solution can be considered as the

(exact) reference solution as long as sufficiently small ∆l is chosen for the integration

of solution in (3.17). Second, since a structured grid is used in all directions, the

points in φ̃ direction also coincide; thus, unlike the forward scheme in §3.4.2 there
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is no need to interpolate the solution in φ̃ direction when angular integration terms

are nonzero. Third, as will be discussed in §3.5.2, cf. Fig. 32, the characteristic lines

are sparse in certain parts of the domain. Using a backward scheme ensures that

the solution can be represented by uniform resolutions in all directions. However, it

is noted that the backward scheme is more expensive as for each point, the solution

along one characteristic is required. In contrast, in forward scheme, the solution along

each characteristic line represents many solution points.

3.5 Numerical examples

In this section, the DG method is first verified for problems with exact smooth

solutions; the MMS is used in §3.5.1 to first capture polynomial solutions that belong

to discrete solution space and next obtain the convergence rate of the DG method. A

furnace radiation problem for which closed form analytical solution does not exist is

studied in §3.5.2. The method of characteristics is used to verify the DG method for

this problem and demonstrate the form of characteristics for this axisymmetric RTE

formulation. Finally, a blackbody emission problem and an anisotropic scattering

problem are presented in §3.5.3.

3.5.1 Method of manufactured solution

The MMS is used to validate formulation and implementation of the DG RTE method.

In the MMS, a function IM is chosen to satisfy the RTE,

I(r, µ, φ̃) = IM(r, µ, φ̃). (3.18)

The source term in (3.3) is determined such that IM satisfies this equation.

Accordingly, source term, specifically denoted by SM for the MMS, is obtained by
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plugging (3.18) in the RTE to obtain,

SM = sin θ cos φ̃
∂IM

∂r
− sin θ sin φ̃

r

∂IM

∂φ̃
+ βIM − κIb

− σs

4π

∫ π

−π

∫ 1

−1

IM(r, µ′, φ̃′)Φ(µ, φ̃, µ′, φ̃′)dµ′dφ̃′. (3.19)

Conversely, if the RTE problem is solved with the source term (3.19) and boundary

conditions consistent with IM on the inflow parts of the spatial boundary of domain

at R1 and R2, the function IM is recovered as the exact solution of the RTE (3.3).

In discrete setting, if the manufactured solution IM belongs to the space of finite

element solution, i.e., when it is a polynomial of order equal or less than that

used to interpolate Ih in (3.15), the exact solution IM is recovered. Otherwise,

Ih asymptotically converges to IM as finer meshes (h-refinement) or higher order

polynomials for Ih (p-enrichment) are used. The former and latter cases are applied

for problems in §3.5.1 and §3.5.1, respectively.

Validation study for polynomial exact solutions

Two cases are conducted for validating the formulation and implementation in an

annulus with inner and outer radii of R1 = 1 and R2 = 2, respectively. In the first

case, the MS solution IM is given as a second order polynomial in both space and

angle,

IM(r, µ, φ̃) = r2µ2 + r2φ̃2 − rµ2 − rφ̃2 + µ2φ̃2 + µφ̃+
1

2
φ̃2. (3.20)

The phase function Φ and black-body radiation Ib are equal to zero. The DG method

recovers the exact solution to to within machine precision. Several contour plots

of the solution in r − φ̃ planes are shown in Fig. 30. In the second case, the MS

solution IM remains the same as in the first case in (3.20). The black-body radiation

Ib = (1/4π)
∮
4π
Ids′ is assumed at radiative equilibrium; cf. (3.2). The phase function

is set to Φ = 1 for an isotropic scattering. Again, the DG method recovers the exact

solution to within machine precision.
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Convergence study

The following harmonic function is used as the manufactured solution to perform a

convergence study for the proposed DG method,

IM(r, µ, φ̃) = sin (πr) sin (πµ) sin (πφ̃). (3.21)

The L2 norm of the point-wise error ε between the discrete and manufactured

solution is used to characterize the numerical error,

Point-wise error : ε(r, µ, φ̃) = Ih(r, µ, φ̃)− IM(r, µ, φ̃), (3.22a)

L2 norm of error : L2(ε) =

√∫
Ω

|ε|2dΩ. (3.22b)

Since polynomials are used for the discrete solution in (3.15), Ih cannot exactly

represent the manufactured solution (3.21) and the numerical error is nonezero for all

element sizes and polynomial orders. The spatial domain corresponds to an annulus

with inner and outer radii of R1 = 1 and R2 = 2, respectively. The coarsest mesh

used for convergence study contains four elements in space, corresponding to uniform

element size of h = (R2 − R1)/4 = 0.25. In angle directions, this mesh contains

four elements in φ̃ and µ directions, corresponding to inter-element values of φ̃ ∈

{−π,−π/2, 0, π/2, π} and µ ∈ {−1,−0.5, 0, 0.5, 1}, respectively. For convergence

analysis this mesh is uniformly refined in all directions by factors of 2. For example,

for the next coarsest mesh h = 0.125 and 8 elements are used in each angle direction.

Uniform space and angle polynomial orders of p = 0 to p = 3 are used for the analysis.

The convergence rate of the discrete solution is obtained by determining the slope βp

of the logarithm of L2 norm of error L2(ε) versus the logarithm of the element size

h. As shown in Fig. 31, the asymptotic convergence rate of βp = p+1 is achieved for

polynomial order p as h → 0.
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3.5.2 Verification of the DG method with the method of

characteristics

A practical problem of radiation in an annular furnace with inner and outer radii of

R1 = 1 and R2 = 2 is considered with inflow boundary conditions I(R1) = I(R2) = 1.

There are no angular coupling integrals in (3.3) as κ = 0 and σs = 0 . The extinction

coefficient is β = 0.01. Since this problem does not have a closed-form exact solution,

the method of characteristics is used to verify the DG solution.

For the method of characteristic, it is worth mentioning that a sparse zone exists

along φ̃ = ±1
2
π. While in this case 200 characteristic lines are used in each r − φ̃

plane, the solution points are still very sparse in the regions shown in Fig. 32. To

better show this sparsity and noting the symmetry of the solution with respect to

φ̃ = 0 plane, the solution I is only shown on the top half of the domain. As done for

the next results, one can simply increase the number of characteristics lines to reduce

the sparsity. However, for comparison of the two methods, it is noted that the DG

method does not have this issue, since the solution is interpolated by polynomials

over the entire space-angle domain.

The results for both methods are shown in Fig. 33 in sliced r − φ̃ planes for

µ = −0.5, 0, 0.5. These planes are chosen since characteristic lines stay in them.

For the method of characteristics, ∆l = 0.01 and 2000 characteristic lines are used

in each r − z plane to generate the plots; cf. §3.3.2 and §3.4.2. As shown in Fig.

33a, there are two lines of strong discontinuity in I that coincide for all values of

µ. The distance between these lines decreases and the discontinuity jump increases

as r increases toward R2 = 2. As shown in Fig. 33b, the DG method is capable

to accurately capture this discontinuity without much numerical oscillations around

these lines with a moderately refined mesh of 32 × 32 × 32 elements and p = 3.

It is emphasized that one main advantage of DG methods over continuous finite

element methods is their superior performance for problems with jumps and high

gradient solutions features. Due to the structure of characteristic lines, such jumps
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in the solution are common for the axisymmetric RTE. This example demonstrates

the advantage of using a DG method for this RTE formulation.

To compare the results of the DG method and the method of characteristics,

a convergence study is performed in terms of the L2 error norm between the two

solutions. That is, the high resolution solution of the method of characteristics plays

the role of exact solution IM in (3.22). The convergence rate of βp ≈ 0.4 is not

improved by increasing the polynomial order. The limit in the convergence rate of

the solution is due to the strong discontinuity lines that pass through finite elements.

3.5.3 Benchmark problems between two concentric cylinders

Blackbody emission

The problem of a gray gas at radiative equilibrium between two concentric cylinders

with infinite height is conducted and compared with the numerical results by Loyalka

[86] which are accurate enough to be considered as the benchmark solution [88]. The

ratio of inner and outer radii of the walls takes the values R1/R2 = 0.1, 0.5, 0.9.

Moreover, the optical thickness, τ =
∫ r

0
β(r)dr, also changes in different cases by

changing the extinction coefficient β. The inner surface is hot (T1 = 2000K) and

highly reflective (ϵ1 = 0.1); the outer surface is relatively cool (T2 = 400K) and is a

strong absorber (ϵ2 = 0.9). Inside the concentric cylinder, the medium is gray and

non-scattering (σs = 0).

The nondimensional radiative heat transfer, Ψ, is defined as [86],

Ψ =
q(τ1)

J1 − J2
, (3.23)

where q(τ1) is the radiative flux density at r = R1 (τ = τ1). The radiative flux density

at radius r is obtained by the inner product of the surface normal nx and heat flux
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vector q(r),

q(r) = q(r) · nx, where q(r) =

∮
4π

I(r, ŝ)ŝds′. (3.24)

Since only inner surface is concerned, the surface normal nx = (−1, 0, 0) is used for

r = R1 in (er, eφx , ez) coordinate system; cf. Fig. 25.

The values J1 and J2 are the radiosity of the walls at radii R1 and R2, respectively.

They account for non-black emission and diffuse reflection. For wall w ∈ {1, 2}, Jw
has the relation with net radiative flux qw = q(Rw) [86],

qw =
ϵw

1− ϵw
(πIbw − Jw), (3.25)

where the black-body radiation at wall w, denoted by Ibw, is obtained from (3.2).

Since qw and Ibw are computed from the solution to RTE and ϵw is the emissivity of

wall w, Jw can be obtained from (3.25). Once J1 and J2 are obtained, Ψ is computed

from (3.23).

A 16 × 16 × 16 grid with polynomial order p = 1 is used for DG solutions. As

shown in Fig. 35, the DG results agree well with the numerical results by Loyalka

[86]. It is observed that the nondimensional radiative heat transfer decreases with

the increase of the optical thickness as well as the increase of the radius ratio. The

effect of the radius ratio can be attributed to the fact that as R1/R2 → 0 less energy

is reflected from the inner boundary and most of the energy exits from the outer

boundary. It is noticed that the difference between DG and reference solution is

slightly larger for thinner optical thicknesses and the difference has overall lower

values for smaller R1/R2 ratios. This may be attributed to numerical integration

errors and other approximations involved in the solution method employed in [86].

Comparing to the previous example in Fig. 33b, where strong discontinuity is

inside the domain along the characteristic lines r sin φ̃ = ±1, the results with diffuse

reflection on boundaries and emission in the domain seem much smoother; this is
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shown in Fig. 36 for a particular case of R1/R2 = 0.5 and τ2 − τ1 = 10. In general,

the angle integrations through scattering and black-body radiation terms, as well

as emissive and diffusive terms on the boundary of domain in (3.5), smoothen the

solution around the characteristic jump lines in Fig. 33b. These angle integral terms

improve the accuracy and order of convergence of the DG method.

Anisotropic scattering

In this case, the enclosure of two infinite concentric cylinders with radii of R1 = 1

and R2 = 2 contains an anisotropic scattering medium with the cold inner wall with

I(R1) = 0 and isotropic incidence on outer wall with I(R2) = 1. The extinction,

absorption, and scattering coefficients are β = 0.1, κ = 0, and σs = 0.05, respectively.

The Rayleigh scattering is used, where phase function Φ(µ, φ̃, µ′, φ̃′) is given,

Φ(µ, φ̃, µ′, φ̃′) =
3

4

{
1 +

[√
(1− µ2)(1− µ′2) cos (φ̃− φ̃′) + µµ′

]2}
. (3.26)

A 64×64×64 grid with polynomial order p = 2 is used for DG solutions, whereas,

a 201 × 201 × 201 structured grid with ∆l = 0.01 is used for the backward iterative

method of the method of characteristics; cf. §3.4.2. It took the iterative method 221

steps to converge to 1× 10−12 relative error, which is quite inefficient. The results for

both methods, as shown in Fig. 37a, indicate a strong discontinuity which is similar

to the results in §3.5.2. Again, the DG method accurately captures the discontinuity

without much numerical oscillations along the jumps, with coarser grid compared to

the method of characteristics. Fig. 37b shows the results of the difference between the

solutions with anisotropic scattering and the solutions without scattering, i.e., σs = 0

for the two methods. It provides a better perspective of how the medium scatters

the radiation energy. As shown, strong scattering is observed near the outflow outer

boundary where rays intersect with the outer wall. Moreover, the backward scattering

is weaker from the outer wall towards the inner wall.
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3.6 Discussion and conclusions

A discontinuous Galerkin method for the solution of steady state radiative heat

transfer between concentric cylinders, described by the one-dimensional RTE in

cylindrical coordinates, was presented. The application of the discontinuous Galerkin

method is described for problems in which radiation intensity varies over one

dimension in space and two dimensions in angles. In this application, the RTE is

spontaneously discretized over the space and angle by the DG method.

To discretize the angular directions, the spatial elements are extruded in two

angular directions. This allows the basis function to be high order not only in space

but also in angle. This aspect improves the convergence rate as shown in §3.5.1

and [27], compared to the hybrid methods that are capable of changing the order of

accuracy only in space, such as hybrid (SN) FEM [108, 1, 98, 105], (SN) DG method

[84, 139, 58, 45, 33, 133], and other hybrid methods [50, 51, 34, 35] which use a

piece-wise constant or a delta function in angle. Specific to this RTE formulation,

the discretization of the dI/dφ̃ term in (3.3) with finite difference in discrete ordinate

method poses new implementation challenges and introduces additional discretization

errors. For the DG formulation, the RTE is fully discretized in space and angle, so

no additional scheme is needed to model this derivative term.

The use of DG formulation has several advantages. First, similar to continuous

FEMs complex spatial geometries can be modeled with arbitrarily high order of

accuracy in space. Second, inter-element continuity constraint is enforced weakly

using the target flux I∗. In contrast, for the RTE formulation presented herein, a

continuous space-angle FEM formulation would enforce a continuity constraint along

the µ direction. This continuity condition is nonphysical when there are no angle-

integration terms in (3.1) and (3.5). Moreover, the use of upstream values for I∗

results in very accurate representation of solution, consistent with the characteristic

structure of problem; as discussed DG methods have a superior performance to

continuous FEMs in capturing jumps in solution, such as those observed in r−φ̃ planes
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in Fig. 33. Third, a major advantage of DG methods is the increased flexibility in

both h and p adaptive schemes, where the size and order of the elements can change

suddenly without the need to use transition elements used in FEMs. We plan to

extend the novel adaptive operations proposed in [6] from space and spacetime to the

space-angle RTE problem. Fourth, as discussed in detail in [27], while both DG in

angle and spherical harmonic method can achieve arbitrary high order of accuracy in

angle, the former has a better performance for problems with concentrated point or

line sources.

Several numerical examples were presented for this DG formulation. The

convergence study was conducted for both smooth and discontinuous solutions. While

for the latter, the convergence rate is relatively poor as shown in Fig. 34, the space-

angle DG method is still able to accurately capture discontinuities in the solution in

r− φ̃ planes. Moreover, the benchmark problem from [86] shows the high accuracy of

the DG method for different optical thicknesses and ratios of the inner to outer radii.

The last problem shows that the DG has a good flexibility for solving the RTE with

complex properties, e.g.,scattering in an anisotropic medium.

In order to verify the results by the DG solver, the method of characteristic

is employed for the one-dimensional cylindrical RTE. The method of characteristic

performs much better, especially, with respect to the strong discontinuity, since the

intensity is calculated along the corresponding characteristics without jumps involved.

However, its lack of complexity in geometry (boundary condition particularly) and

the low iteration convergence rate when having the angular integration term make

the scheme limited. Although the transition region at the discontinuity is inevitable

for the DG method, for example in Fig. 37, where continuity of the solution in each

element is required, other mesh-based methods such as continuous FEMs can suffer

even worse numerical oscillations [43]. In the previous work [27], it was demonstrated

that having both the discontinuous property between elements and the capability of

high order accuracy makes the space-angle DG method outstanding for solving the
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RTE. One extension to this work is to apply the h- and hp-adaptive mesh scheme to

mitigate the transition region as much as possible.

Another important extension to this work is the formulation of an iterative solution

of the RTE when angular integration terms are present. In this case, the system

stiffness matrix is very dense and even for moderate resolutions of the grid in space

and angle, this matrix may not fit in computer RAM memory. We are currently

working on an iterative scheme that each time only one slab of the domain in r − φ̃

plane is solved. This would enable solving the problem in §3.5.3 with much higher

resolutions.
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Chapter 4

Iterative Space-Angle

Discontinuous Galerkin Method for

Radiative Transfer Equation
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4.1 Abstract

The radiative transfer equation (RTE) is an integro-differential equation that

describes the radiation energy absorbing, emitting, and scattering in both space

and angle, which can be up to five-dimensional problems. It is difficult for an RTE

solver to satisfy both accuracy and efficiency (less computational resources) for such

high-dimensional problems. In this paper, an iterative solver for one-dimensional

cylindrical radiative transfer problems using the space-angle discontinuous Galerkin

(DG) method is developed to achieve both accuracy and efficiency. The iterative

solver is based on the angular decomposition (AD) method, which slices the spatial-

angular domain into slabs and decouples the angular integration between slabs.

Both Gauss-Seidel (GS) and successive over-relaxation (SOR) iterative methods are

investigated by numerical analysis and examples. The comparison of the two iterative

methods suggests that an appropriate relaxation factor for the SOR method may

accelerate the convergence. Finally, the iterative method is more efficient than the

direct solution of the system both in terms of memory usage and computational time,

especially for finer meshes.

4.2 Introduction

Radiative transfer takes place in a wide range of natural phenomena and engineering

applications. The propagation of radiation in the form of electromagnetic waves

through a medium is affected by absorption, emission, and scattering processes. The

radiative transfer equation (RTE) mathematically describes such processes and heat

transfer, neutron transport, atmospheric science, optical molecular imaging are a few

areas of its application [109]. In the steady state, the RTE is an integro-differential

equation of up to five independent variables, which are 3 dimensions in space and 2

directions of the solid angle. The high dimensionality and the integral term present

serious challenges when trying to solve the RTE numerically. The discontinuous
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Galerkin (DG) finite element method (FEM), introduced by Reed and Hill [100],

is one of the most popular grid-based numerical methods for solving the RTE due

to its high order accuracy and flexibility in mesh grids. The basis functions used

in the DG method are discontinuous across element interfaces; accordingly, the jump

condition between interior traces of solution and the so-called numerical flux is weakly

enforced on the interface boundaries. The space-angle DG method is specially suitable

for the RTE, since the evolution of solution along characteristics can be strongly

discontinuous in both space and angle [88]. However, the direct solution of the linear

system formed by the DG formulation can be quite expensive.

Discrete ordinates method (DOM), also known as SN method method, is a

common approach to discretize the angle domain by using a quadrature method for

the integrations in solid angles. The spatial dependence in the RTE is discretized

by the numerical methods mentioned above. Thus, the RTE and its corresponding

boundary conditions are transformed into a set of Partial Differential Equations

(PDEs) only in terms of the spatial coordinates. Two drawbacks of the classical SN

method are known as false scattering and the ray-effect [17] that are mainly caused

by the form of angular discretization [23]. In addition, when reflective boundaries

are present, the performance of the SN may not be satisfactory [102]; if a beam on

the specular reflective boundary does not coincide with any discrete ordinate, the

intensity of the specularly reflected beam is missed in the absent directions. Besides,

special methods are needed in the DOM for coping with the angular derivative terms

in the RTE in curvilinear coordinates [104]; that is, the angular redistribution [81]

makes it difficult to handle the angular derivative terms in the RTE. The spherical

harmonic method involves multiplying the RTE by various powers of direction cosines

of the intensity, known as spherical harmonics [109]. Due to spectral nature of

spherical function approximation, the discrete implementation of the RTE has super

convergence properties in angle for sufficiently smooth solutions. Moreover, due to

orthogonality of spherical harmonics the solutions for different spherical harmonics

can be obtained independently for a nonscattering medium.
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Discontinuous Galerkin (DG) methods [127, 97, 72, 26] are another family of

methods used for the discretization of space and/or angle directions. The DG

discretization of solution in space can be combined with different discretization

methods in angle. Some examples are SN [133, 33] and PN [75, 111] angle

discretizations. We have used DG discretization in both space and angle in [26, 119].

DG discretization in angle has at least two advantages to PN method for certain

problems. First, if the underlying exact solution is not smooth enough, the

superconvergence property of the PN method no longer holds as shown in [57] and

[111]. This is the case for many RTE solutions, for example those in cylindrical

axisymmetric setting [119]. Second, high accuracy may be required only in a narrow

band of angles for example for concentrated incident wave or source terms. Due

to discrete nature of the solution, DG methods are ideal for local refinement of the

solution around the angles of interest.

For RTE problems with nonzero angle integration terms, i.e., with nonzero

scattering coefficient or reflective boundary conditions, the global system matrix

that arises from numerical discretization of the all aforementioned methods can be

quite large. When SN or PN methods are used, the otherwise independent solutions

for different angles or spherical harmonics become coupled. For example, for the

cylindrical axisymmetric problems considered herein, instead of solving a number of

1D problems in space, a space-angle three dimensional coupled problem needs to be

solved. If the number of unknowns in angle is high, for example a space-angle DG

discretization with high angle order or element count, the direct solution of these

systems can result in high CPU times and memory usage.

Iteration methods can alleviate the issues pertained to solving such high dimen-

sional problems to some extent. There are many existing methods such as Jacobi,

Richardson, and generalized minimal residual (GMRES) [40] methods to iteratively

solve a linear system. One approach that will be the most relevant to this paper is

to split the global matrix K into two matrices A and B. Some examples of these

methods are Jacobi and Gauss-Seidel methods [80, 70], where A is diagonal part for
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the former one and diagonal and lower part for the latter one. As it will become

evident, this class of methods is related to how the source iteration is used for the

solution of RTEs with scattering.

For the RTE, the source iteration [38] is to decouple scattering and transport,

and to exploit that the transport part can be inverted efficiently. The scattering part

is treated as the source term with an initial guess and taken to the right-hand side

of the linear equation. This approach resembles Gauss-Seidel (GS) iteration where

only the block diagonals A (transport part) is maintained in the part of the global

matrix K that is explicitly formed. Since the transport part is inverted explicitly, this

method converges very fast for transport dominant problems. However, in the case of

scattering dominance, this method converges more slowly. Besides the above iterative

methods, the successive over-relaxation (SOR) method is a good alternative to the

usual source iteration method as it can accelerate the convergence [76]. An optimal

relaxation parameter in the SOR method can tremendously expedite the iteration.

However, finding the optimal relaxation parameter is not straightforward and can be

expensive.

In this paper, the angular decomposition (AD) method is introduced and

associated with two different iterative methods to numerically solve the RTE

iteratively. The formulation of the DG method is presented in §4.3. The AD method,

and its combination with the GS and the SOR iterative methods are described in

§4.4.1. Next, a series of numerical examples are conducted in §4.5 to compare the

efficiencies of the iterative solvers and the direct solver.

4.3 Discontinuous Galerkin formulation of RTE

The general form of steady-state RTE for a gray medium is given as,

dI(x, ŝ)

ds
= −βI(x, ŝ) + κIb(x) +

σs

4π

∮
4π

I(x, ŝ′)Φ(̂s, ŝ′)ds′. (4.1)
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This equation describes the change of radiation intensity I(x, ŝ) at spatial location

x along the path ds in the angle space with angle coordinate ŝ. The values β, κ,

and σs, are the spatial-dependent extinction, absorption, and scattering coefficients,

respectively. The anisotropic scattering phase function is represented by Φ(̂s, ŝ′) and

s′ is the solid angle for phase function integral. The solid angle differential for s′ is

denoted by ds′. The spatial-dependent total black-body radiation intensity is given

by Ib. For problems in different dimensions or different coordinate systems, the left

hand side term of Eqn. 4.1, dI(x, ŝ)/ ds, is different.

Our space-angle DG implementation of (4.1) supports 1D to 3D spatial domains,

discretized by simplicial elements, and arbitrary number of angles that are represented

by extrusion of spatial elements in angle directions. In this paper, we use the space-

angle DG formulation for 1D cylindrical symmetric problems [119] to study the

performance of the proposed iterative methods in Section 4.4. Figure 38 illustrates

how the space-angle mesh is generated for a 1D spatial mesh extruded in two angular

directions for this problem. This particular RTE formulation is chosen due to

interesting inter-element couplings that occur in one of the angle directions. The

1D simplicial spatial elements (lines) on the left are extruded first to the 9 once-

extruded simplicial elements (squares) in the r− φ̃ plane and next to twice-extruded

simplicial elements (cubes) in Ω. This grid can correspond to a steady-state RTE in

1D cylindrical coordinate, whose specific expression of (4.1) is,

sin θ cos φ̃
∂I(r, µ, φ̃)

∂r
− sin θ sin φ̃

r

∂I(r, µ, φ̃)

∂φ̃

= −βI(r, µ, φ̃) + κIb(r) +
σs

4π

∫ π

−π

∫ 1

−1

I(r, µ′, φ̃′)Φ(µ, φ̃, µ′, φ̃′)dµ′dφ̃′ + S(r, µ, φ̃),

(4.2)

where (µ, φ̃) represents the coordinates in the angular domain. The above RTE can

then be discretized over a space-angle finite element domain.

In a DG formulation, residuals (errors) must be specified both in the interior and

on the boundary of elements. The weighted residual (WR) statement for a space-angle
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region Q is formed by multiplying the RTE (equation 4.1) by the weight function Î

and adding the corresponding weighted residuals on the boundary of the element,

∫
Q
Î

[
dI(x, ŝ)

ds
+ βI(x, ŝ)− κIb(x)

]
dV −

∫
Q
Î

[
σs

4π

∮
4π

I(x, ŝ′)Φ(̂s, ŝ′)ds′
]
dV

+

∫
∂Q

Î (I∗ − I) ŝ · n dA = 0

(4.3)

where ∂Q is the boundary of Q and n is the spatial normal vector on ∂Q. In discrete

setting, Q represents a space-angle element as shown in Figure 38 and the intensity

I is replaced by its discrete approximation in Q, IhQ = HQ · aQ, where HQ is the

tensorial product basis function formed by the monomials within element Q and aQ

is the unknown vector for elementQ. Moreover, any of the basis functions can be used

for the weight function Î; that is, Î = Ĥ in discrete setting. The term (I∗ − I) ŝ · n

is the jump condition which weakly enforces the continuity between each element.

For this RTE, the derivative dI(x, ŝ)/ds involves derivatives in the angle direction

φ̃. As a result, the term (I∗−I)n is active not only on element boundaries with spatial

normal, but also those with normals along φ̃ direction. Figure 39 shows the neighbors

of an element in r − φ̃ plane. Along r and φ̃ normal planes (I∗ − I)n takes specific

forms. For more information on the space-angle DG formulation of 1D cylindrical

coordinate, we refer the readers to cf. [119]. Using the RTE in cylindrical coordinate

and the specific forms of jump terms on ∂Q, equation (4.3) is expressed as,

∫
Q
Ĥ

(
sin θ cos φ̃

∂IhQ
∂r

− sin θ sin φ̃

r

∂IhQ
∂φ̃

+ βIhQ − κIb − S(r, µ, φ̃)

− σs

4π

∫ π

−π

∫ 1

−1

Ih(r, µ′, φ̃′)Φ(µ, φ̃, µ′, φ̃′)dµ′dφ̃′
)
rdrdµdφ̃

+

∫
∂Qr

Ĥ
[
sin θ cos φ̃(I∗ − IhQ)

]
nrrdµdφ̃

+

∫
∂Qφ̃

Ĥ
[
− sin θ sin φ̃(I∗ − IhQ)

]
nφ̃drdµ = 0. (4.4)
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Equation above is enforced for all elements Q in the entire space-angle domain Ω.

Elements are coupled through I∗ terms in the r − φ̃ plane and the phase integral in

angle directions µ and φ̃. This results in a global linear system of equations,

Ka = F. (4.5)

where a is the global unknown vector formed from individual element unknowns

aQ, K is the stiffness matrix, and F is the force vector comprising the terms that are

independent of element unknowns a.

4.4 iterative methods and angular decomposition

Directly solving the system requires dealing with a large stiffness especially for the

multi-dimensional RTEs with the angular integral term. In the AD method, the

space-angle domain is sliced along the angle direction and divided into several slabs.

Subsequently, each slab can be solved separately. In this section, the GS and SOR

iterative methods are formulated in conjunction with the AD scheme. The relaxation

factor provided by the SOR method is discussed.

4.4.1 Angular decomposition

There are two types of coupling between elements, in general: a) the coupling through

I∗ − I term; b) the angular integration coupling. For the first one, the coupling is

generally in space boundaries of the space-angle element. But in the case of curvilinear

coordinate or when refractive index gradually changes in space-angle, the coupling can

also be through angle boundaries of element. The 1D cylindrical RTE has a numerical

flux in the azimuthal angle direction φ̃ measured from the local radial direction; that

is, φ̃ = φs − φx. The spatial coordinates φx is removed due to invariance along

the axis of symmetry, and angular symmetry of the problem (enabling the use of φ̃

instead of two coordinates φc and φx). In this case, the whole space-angle domain can
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be sliced into slabs along the directions that have no numerical fluxes (I∗ − I term)

on the element boundaries that form the exterior boundary of the slab. Figure 38b)

illustrates how each slab is formed after the base elements are extruded. Different

colors represent different slabs. The slabs are coupled only through angle integration

terms such as the phase function integration inside the domain and diffuse or specular

reflective interface conditions. The angular integration terms can be divided into

those within a slab and those that couple distinct slabs. The angle integration terms

make the stiffness matrix dense. Accordingly, forming and storing the entire stiffness

matrix can be computationally expensive and require extensive memory resources as

the system size increases. The AD scheme drastically reduces the memory use.

An example of a 4 × 4 × 4 space-angle mesh (a) and its stiffness pattern (b) are

depicted in Figure 40 for the discussion of such couplings. The elements are numbered

as Ai,j, Bi,j, Ci,j and Di,j, where the spatial elements are denoted by the letters A,

B, C, and D, the subscripts i and j represent the numbering in φ̃ and µ directions,

respectively. For example, D3,1 is the green element in Figure 40(a) which is forth in

r, third in µ, and first in φ̃. Each dot in the stiffness pattern represents a space-angle

element. The coupling through I∗ − I term in space can be seen in the matrix at

the off block-diagonal entries. For instance, the dot at (1, 5) is the coupling between

element A1,1 and B1,1. The coupling through I∗ − I term in φ̃ is overlapped with the

angle coupling in φ̃. Four cases of the latter couplings are shown through matrices

A2,φ̃, B2,φ̃, C2,φ̃ and D2,φ̃ for the second layer of elements and all layers i in φ̃, that

is couplings between A2,i, B2,i, C2,i, and D2,i, respectively, for i = 1 to 4. The angle

coupling in µ results in cross-slab couplings. This corresponds to blocks outside the

four 16× 16 squares, for example, the gray square C13,φ̃ in the figure that couples C1,φ̃
and C3,φ̃.

The stiffness K, thus, can be divided into two parts: the coupling within the slab,

A; the coupling across slabs B where K = A+B. Accordingly, Eqn. (4.5) is written
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as,

Ka = Aa+Ba = F. (4.6)

If the AD scheme is applied, the above equation is solved iteratively by assembling

A only. The second term Ba can be approximated by using the solution a from the

previous step. Instead of solving a = K−1F, A is used as the approximate stiffness,

and B is moved to the right hand side of the linear Eqn. (4.6). Then, the iterative

methods, Gauss-Seidel and successive over-relaxation methods are used to solve the

above equation.

4.4.2 iterative methods

Two iterative methods are discussed in this section. The first iterative method is

a regular iterative method based on the method of matrix splitting. The second

iterative method provides a relaxation factor to accelerate the convergence.

Gauss-Seidel method

For a given linear system of equations, such as Eqn. (4.6), the stiffness can be split

into K = A + B, to rewrite the equation as a = A−1F − Ca, where C = A−1B.

Subsequently, this is solved iteratively by updating the solution of each sub-domain

until the residuals of the solution Rn = xn − xn−1 at step n in all slabs converge to

zero. Conceptually, the solution is expressed as an iteration,

an+1 = A−1F−Can. (4.7)

Successive over-relaxation method

One of the well-known modifications for the above iterative method is successive

over-relaxation (SOR) method. Here is a brief derivation of the SOR method used

in solving the RTE. The stiffness is decomposed as K = A + B. The system of the
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linear equations (4.5) can be written as,

Aa = αF+ [(1− α)A− αB] a, (4.8)

where the constant α ∈ (0, 2) is the relaxation factor. By solving the left hand side of

the above equation for a, and using the previous solutions for a, Eqn. (4.5) is solved

by the following successive relation, an+1 = αA−1F + [(1− α)I− αC] an. Or it can

be expressed by the increments of unknowns, ∆an+1 := an+1 − an,

∆an+1 = [(1− α)I−C] ∆an. (4.9)

The initial value of the unknowns is often set to be a0 = 0.

The SOR method used for the RTE has a different decomposition scheme for

K compared to the traditional SOR method where the matrix is decomposed into

a diagonal component and strictly upper and strictly lower triangle components.

However, the relaxation factor is assigned in the same manner in that a value of

α < 1 is often used to help establish convergence of a diverging iterative process

while a value of α > 1 is used to speed up convergence of a slow-converging process.

If α = 1, the SOR method simplifies to the GS method.

Numerical analysis of iterative methods

The SOR scheme is conditionally convergent. The common ratio of the SOR

scheme, q, which is related to the convergence rate can be acquired by factorizing

C = U−1ΛU, where U is the n × n matrix whose ith column is the ith eigenvector

of C, and Λ is the diagonal matrix whose diagonal elements are the corresponding

eigenvalues of C, {λi}. Then, by pre-multiplying U, Eqn. (4.9) is modified into a

factorized form. The common ratio of its characteristic equation is

q = max
i

∥1− α− αλi∥, (4.10)
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where λ is the eigenvalues of C. In order to maintain a convergent process, the

common ratio should be less than 1, q < 1.

Optimal relaxation factor αopt

Figure 41 depicts the common ratios changing with the eigenvalues and the relaxation

factor for a better understanding of the properties of the SOR scheme. The smaller

q, the better the convergence. The white curves shows the optimal relaxation factors

for the corresponding eigenvalues, i.e., for a single eigenvalue, the optimal relaxation

factor results in the fastest convergence. When the eigenvalues ranges from −0.5 to

1, there is an optimal α for which q is zero, whereas for λ < −0.5 the optimal α is 2.

The optimal αopt for a best convergence rate is obtained by plugging the maximum

and minimum λ into Eqn. (4.10) and requiring that both have the same q value when

possible,

αopt = Min

{
2

2 + λmin + λmax

, 2

}
. (4.11)

4.5 Numerical examples

First, the convergence study is conducted by adopting the method of manufactured

solution. Second, the stability of the iterative methods is numerically investigated.

Third, the performance of the iterative solver is compared with the direct solver.

Finally, an example with Gaussian point source is presented to demonstrate the

flexibility and efficiently of the space-angle DG method and show how the number of

iterations increase versus the scattering coefficient.
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4.5.1 Convergence study

The following harmonic function is used as the manufactured solution to perform a

convergence study for the proposed DG method,

IM(r, µ, φ̃) = sin (πr) sin (µ) sin (φ̃). (4.12)

The detailed method of manufacture solution can be found in [119]. Since

polynomials are used for the discrete solution in (4.4), Ih cannot exactly represent

the manufactured solution (4.12) and the numerical error ε = Ih − IM is nonezero

for all element sizes and polynomial orders. As shown in Fig. 42, the asymptotic

convergence rate of βp = p+ 1 is achieved for polynomial order p as the element size

h → 0.

4.5.2 Numerical investigation of the stability of the iterative

methods

The enclosure of two infinite concentric cylinders with radii of R1 = 1 and R2 = 2

contains an anisotropic scattering medium with isotropic incidence on both inner and

outer walls with I(R1) = I(R2) = 1. The medium is cold (no emitting), so Ib = 0

in (4.1). The extinction, absorption, and scattering coefficients are β = 1, κ = 0.05,

and σs = 0.95, respectively, i.e., the intensity is strongly scattered in the medium.

The Rayleigh scattering is used, where the phase function Φ(µ, φ̃, µ′, φ̃′) is given,

Φ(µ, φ̃, µ′, φ̃′) =
3

4

{
1 +

[√
(1− µ2)(1− µ′2) cos (φ̃− φ̃′) + µµ′

]2}
. (4.13)

Four structured meshes of 4 × 4 × 4, 8 × 8 × 8, 16 × 16 × 16, and 32 × 32 × 32

resolution are used in the simulations. The polynomial order in space and angle is

p = 0 or p = 1. Both direct and iterative methods are used. Due to the computational
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resource limits, the results for the 32 × 32 × 32 grid resolution are only obtained by

iterative methods.

We want to numerically investigate whether the GS iteration can be applied to the

RTE problem. We also want to study the effect of mesh resolution on the optimum

value of α for the SOR method.

The maximum and minimum eigenvalues of C are computed for the 4 × 4 × 4,

8 × 8 × 8 and 16 × 16 × 16 mesh resolutions and the polynomial order p = 0 in

space and angle. As discussed in section 4.4.2, for the stability of the method the

spectral radius of the amplification matrix must be less than one. For the GS method

this means that ρ(C) = max ∥λ∥ < 1. In Figure 43(a) the maximum and minimum

eigenvalues of the C are plotted versus normalized scattering parameter σs/β, where

σs/β = 0 and σs/β = 1 correspond to zero and maximum scattering. The energy is

balanced only for σs/β = 1, for which black-body emission is ignored in the media.

As it can be seen for all values of σs/β, ρ(C) < 1. For σs = 0, B = 0 corresponds

to a nonscattering medium. As σs → 0, we have C → 0 and the GS and SOR

both converge. As σs/β increases, so does ρ(C), but satisfies the stability limit for

the GS method. We also observe that for higher mesh resolution, the spectral radius

increases. For example, for σs = 1, ρ(C) increases from about 0.5 to 0.6 from 4×4×4

to 16× 16× 16 meshes.

Figure 44(a) shows the optimal value αopt for different nondimensional scattering

coefficients and mesh resolutions. Interestingly, for all cases considered αopt > 1. As

the medium becomes more scattering, that is as σs/β increases, αopt further increases

beyond 1. Moreover, for the same σs/β, finer meshes have a higher αopt. This means

that a fine-tuned α from a less computationally intensive coarse mesh is not suitable

for a finer mesh. Still, this figure provides an insight on how to assign α based on the

scattering parameter and mesh resolution. This figure also shows that the common

ratio q increases for a higher scattering medium. This is expected as in Eqn. (4.6)

a bigger portion of K is not explicitly considered through matrix B. Moreover, we

observe that once the optimal α is chosen independently for any mesh resolution, the

71



corresponding q is rather insensitive to the mesh resolution. That is, a higher mesh

resolution does not adversely affect the convergence rate, once the corresponding

optimal α is chosen.

In addition, to further inspect the convergence rate and α, the geometry is

changed by fixing the outer radius R2 and changing the inner radius from R1 =

0.25, 0.5, 0.75, 1.5, 1.75 using the 16 × 16 × 16 mesh resolution. The maximum

scattering is considered, i.e., σs = β = 1. Figure 44(b) shows the optimal value αopt

and the common ratio q against the ratio of R1 and R2. The optimal α decreases

from 1.5 to 1.1, while q decreases from 0.6 to 0.2. As the optical depth decreases

(R1/R2 → 0), the faster convergence is achieved.

The overall results show that the iterative method is convergent for the 1D

cylindrical problems.

4.5.3 Acceleration of iterative methods

To compare the efficiency of the iterative methods, the relative numerical error for the

global radiative intensity at iteration n is defined as, en(J) = max ∥(Jn − Jn−1)/Jn∥,

where J is the vector of the radiation intensity at all Gauss points. That, en(J), is

the L∞ error norm of the solutions between iterations n and n − 1. The numerical

iterations continue until the two successive iterations converge with this error norm

to within the tolerance 10−13.

Next, we investigate how the mesh resolution affects the optimum range of α

for the SOR method. The analysis in section 4.5.2 provides the optimal α and q,

solely based on the range of eigenvalues of C. However, in this section we carry out

the actual numerical solutions for different mesh resolutions and α to verify whether

the conclusions drawn from Figure 44 apply to actual RTE solutions. To achieve a

higher accuracy, p = 1 is used for the solutions in this section. Moreover, instead of

considering a range of values, only σs/β = 0.95 is considered in this example to limit

the number of actual RTE solutions.

72



Table 3 compares the number of iterations needed for convergence for different

mesh resolutions for the GS method (corresponding to the SOR methods for α = 1)

and SOR method for α = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6. The above criterion in terms of

the error en(J) is used to terminate the iterations. As it can be observed, the lowest

number of iterations are achieved for α = 1.1 for mesh resolutions 4 and 8 and α = 1.2

for mesh resolutions 8, 16, and 32. This example suggests that the optimum value

of α to increases for higher resolution meshes, which shows the same trend in Figure

44(a). For the remainder of this section, results for different mesh resolutions are

reported based on their optimum α within the range of values considered above.

Figure 45 shows the evolution of the error e(J) versus iteration number for the

GS and SOR methods for the coarsest (4×4×4) and the finest (32×32×32) meshes

with p = 1. The optimum value of α is chosen for each mesh for the SOR results. It

is shown that, for this particular case, the SOR method significantly outperforms the

GS method for the fine mesh, while for the coarse mesh, there are not much difference

in the performance of the two methods.

Next, we compare the efficiency of the iterative and direct solvers. Figure 46(a)

shows the memory usage of the iterative methods (for all α) and the direct solver.

The memory of direct solver is significantly higher than the iterative methods. For

example, for the mesh resolution 16×16×16, the memory usage of direct and iterative

solvers are around 2.5 GB and 220 MB, respectively. Due to the fast growth of the

memory, we could not use the direct solver for the 32×32×32 mesh. More significant

is the rate at which the memory usage increases versus the problem size; for the

direct solver, the memory usage scales linearly versus the total number of elements in

space-angle, whereas for the iterative methods the memory usage is proportional to

the number of elements in an individual slab. Thus, for the 1D cylindrical symmetry

problem considered, the rate of increase of memory versus mesh resolution would be

3 and 2 for the direct and iterative methods, respectively. This explains the lower

asymptotic slope of memory usage versus mesh resolution for iterative solvers as the

mesh resolution increases in the figure.
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Figure 46(b) compares the efficiency of the two methods in terms of the CPU

time. For the iterative methods, the SOR method with α = 1.2 outperforms the

GS method since overall a fewer number of iterations are needed. Otherwise, the

solution cost per iteration is the same for the two iterative methods. For both direct

and iterative solver, we solve the system directly using the LU factorization method

provided by MUMPS library [8]. It is evident that for the coarse meshes, the solution

cost of the direct and iterative solvers are close. In contrast, for finer meshes the

iterative solvers are significantly more efficient even though for the iterative methods

many iterations are needed to achieve convergence. This means that by dividing the

space-angle domain to smaller slabs, we save not only on memory usage, but also on

the overall CPU time.

4.5.4 Internal Gaussian source in small scattering albedo

media

A Gaussian point source added on the right-hand side of (4.2) is applied in the

annulus where the inner circle radius R1 and outer circle radius R2 are 1 and 2,

respectively. The source term is,

S = 10e−1000[(r−r0)2+(µ−µ0)2+(φ̃−φ̃0)2], (4.14)

where the center point p0 is at (r0, µ0, φ̃0) = (1.23, 0, 2.5π). The medium is cold and

gray. The absorption coefficient κ = 3 is fixed, while the scattering coefficient σs

changes exponentially from 1× 10−6 to 1. The relaxation factor for the SOR method

is α = 1 in this case, because for the scattering albedo σs/β close to 0, the optimal

αopt tends to 1.

The mesh shown in Figure 47a is refined around p0 with 96 elements in φ̃ and

32 elements in µ, as well as, 32 isometric elements in space. The polynomial order

is p = 2. The number of iterations is measured for different scattering coefficients,
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as shown in Figure 47b. For σs ≤ 0.01, fast convergence rate and small number of

iterations are observed. With the 0 initial guess of the iterative method, the minimum

number of iterations is 5 for σs = 1e− 6 and 1e− 5. As the scattering coefficient σs

increases beyond 0.1, the number of iterations increases linearly. Figure 47c shows the

solution of σs = 1× 10−5 medium with the internal source in the r − φ̃ plane, where

µ = 0. Since the scattering albedo is too weak, the intensity off the characteristics of

the source term is close to zero.

4.6 Discussion and conclusions

An iterative RTE solver with an angular decomposition (AD) method using the space-

angle discontinuous Galerkin method was presented. The iterative solver has several

advantages compared to a direct space-angle solution method. First, the number of

non-zero elements in the effective stiffness matrix is significantly reduced when the

AD method is applied. That is, the stiffness matrix of the iterative solver uses less

computational resources to assemble and compute than the direct solver. Second,

Figure 46(b) indicates that the iterative solver becomes even more efficient that

the direct solver as the problem size increases. Moreover, the AD method lends

itself to parallel computing as individual slabs can be solved in parallel with minimal

communication burden.

The GS method is very similar to the one used in the discrete ordinate methods.

However, there are two advantages to the proposed iterative method. First, the use of

the DG method for the angle (as well as space) direction(s) can enhance the robustness

and accuracy of the solution. Second, by tuning the α in the SOR method, we can

expedite the convergence of the iterative method. In fact, the comparison made

between the two iterative methods indicates that a proper (optimal) relaxation factor

for the SOR method can expedite the convergence of the SOR method. Especially,

once the optimal relaxation factor is determined, the common ratio (convergence

rate) is insensitive to the mesh resolution for the same problem, as suggested in

Figure 43(a). However, the determination of the optimal relaxation factor is difficult.
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Hardy et al. [76] propose examining the performance of the method for a coarse mesh

to determine the optimal value of relaxation parameter. Nevertheless, as shown in

Table 3, the optimal relaxation factor changes for different mesh resolutions. The

reason for this is that the eigenvalue range of the matrix C = A−1B changes as a

function of mesh resolution, thus affecting the optimal value for α. This is evident in

terms of the minimum and maximum eigenvalues of C in Figure 43(a).

There are several noteworthy extensions to this work. First, given that the space-

angle domain is already divided into slabs in the angle-direction, we can employ

an Angle-Decomposition (AD) method to parallelize the solution, as for example

in [12]. This combined with the SOR iterative method can drastically reduce the

computational time. Second, the determination of optimal value of α for different

mesh resolutions requires more rigorous analysis. Third, the real gains of the

proposed AD SOR iterative method are expected to be for 2D and 3D problems;

for example, the memory usage decreases by powers of 1/2 and 2/5 for 2D and 3D

problems, respectively, as compared to 2/3 observed for the cylindrical symmetric

problem considered herein. We note that our preliminary results for 2D problems are

promising. First, the iterative method can drastically increase the problem sizes that

can be tackled compared to the direct solution method. Second, in these results the

over-relaxed iterations are about 33% more efficient that the GS iteration. Finally,

adaptivity in space and/or angle can greatly reduce the computational cost for the

same level of solution accuracy. Although done in a different context, we plan to

employ the DG h-adaptive mesh operations proposed in [2, 6] for this purpose.
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Chapter 5

Combined Angular and Domain

Decomposition Parallel Methods to

Solve 2D Radiative Transfer

Problems Using Space-Angle

Discontinuous Galerkin Method
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5.1 Abstract

This article presents a useful method for employing distributed computing to simulate

radiative transfer phenomena numerically. The discontinuous Galerkin (DG) finite

element method (FEM) is used to solve the steady-state radiative transfer equation

(RTE) for two-dimensional problems involving absorption, emission, and scattering

with the semitransparent medium. The DG approach discretizes both spatial and

angular directions. Angular decomposition (AD) and domain decomposition (DD)

approaches are parallelization techniques implemented in this work. Two-dimensional

radiative problems are constructed, and a thorough evaluation of scalability, perfor-

mance, and efficiency on high processors is illustrated. A two-dimensional complex

geometry involving inclined boundaries and a semi-trapezoidal enclosure is validated

as a non-scattering homogeneous gray medium. The performance of hybrid AD-DD

systems has been demonstrated to be superior to that of AD and DD methods utilized

independently. Finally, we also investigate a square enclosure with circular and square

obstacles with a scattering gray semitransparent medium.

5.2 Introduction

Radiative transfer is the energy transfer phenomenon in the form of electromagnetic

waves, frequently distinguished by their radiative intensity. Contrary to heat

conduction and convection, it does not require a medium to transport energy. All

materials have a greater spontaneous capacity to emit and absorb electromagnetic

waves at higher temperatures. Therefore, it is essential to involve the ultra-long

or ultra-near functionalities, vacuum, and high temperatures applications, such as

industrial furnaces and combustion chambers with high temperatures [10][85], infrared

detectors [131][14], thermal images [115], neutrons [39][36], microelectronics [47][90],

satellites and astrophysics [66][103], the solar photovoltaic and photo-thermal industry

[65][64], optical imaging [71], to name a few. Radiative heat transfer is becoming more
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crucial and in ever-increasing demand as contemporary technology progresses toward

ultra-high temperatures, higher efficiency, extreme sizes, and space.

The governing equation for the radiative transfer process is the radiative transfer

equation (RTE), an intricate integral-differential equation. The Monte Carlo method

is a popular stochastic strategy for solving the RTE [141][106]. This approach

is incredibly adaptable and easy to set up. The cons of this approach are that

it is time-consuming and less efficient due to the iterative approach. The most

popular deterministic approaches are the spherical harmonics method (PN method)

[52] and the discrete-ordinates method (DOM) [78]. The DOM may be susceptible

to ray effects [130] and spurious scattering under some circumstances, which might

result in incorrect solutions. In contrast, the most efficient methods for spatial

discretization are the finite difference method (FDM) [18], finite volume method

(FVM) [136], finite element method (FEM) [92], discontinuous Galerkin (DG) [129]

[59], and so on. The FVM or (continuous) finite element method spatially discretized

these differential equations. However, the continuous scheme utilized in the FEM

rarely captures the discontinuity brought on by the existence of impediments.

To enhance, the DG method is used. The DG approach is helpful in modeling

discontinuous hyperbolic partial differential problems. It benefits from high-order

precision, flexibility to irregular shapes, good convergence properties, ease of parallel

calculation, and a strong theoretical foundation for error estimates and stability

[126]. Using the DG method, Zhao and Liu [140] solved multidimensional discrete

ordinate equations. The DG approach avoids artificial coupling since it is inherently

discontinuous. Theoretically, it may be used to discretize angular direction and

spatial domain. Clarke solved radiative transfer on parallel planes and concentric

cylinders [28], and Wang et al. [120] using the space-angle DG (saDG) methods,

respectively. The distribution of radiative intensity in spatial and angular domains

varies significantly for multidimensional radiative transfer in irregular geometries with

barriers. Therefore, it is crucial to discretize the spatial domain and angular direction

using the DG approach.
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Parallel computing can produce time- and memory-efficient methods, even though

creating accurate angular and spatial discretization's is essential for the numerical

solution of RTE. For difficult computational models, parallel processing is also

necessary, coupled with scalable and effective methods (heterogeneous medium, three-

dimensional complex geometry, etc.). The linear equations from the coupled spatial-

angular discretization are implicitly used by a Krylov subspace incremental algorithm,

in contrast to space-marching and source iteration methods for the solution of RTE

[41]. The benefits of such an approach over more traditional ones like space-marching

and source iteration in [107]. Implicit schemes are essential for dealing with ill-

conditioned matrices, which typically appear in radiation issues with heterogeneity's,

complicated geometries, high scattering, and reflections. Research has demonstrated

the benefits of parallel computing to solve RTE [74][63]. Krishnamoorthy et al. [74]

provided parallelization of the DOM-FVM for emitting-absorbing medium in Krylov

subspace approaches, along with a domain decomposition (DD) method. Marc [25]

proposed a pseudo-time marching-based implicit parallel approach utilizing the DD

method for the DOM-FVM. They observed 256 processes, a two-dimensional spatial

mesh with 5122 nodes in quadrature, 80 directions, and a remarkable scaling efficiency

of more than 85%.

A comparison of parallelization based on spatial DD vs parallelization based on

angular decomposition (AD) based on previous work suggests that the former is

superior [48]. The most significant constraint of the AD approach is introduced since,

in reality, only a small number of ordinates are used, often a few hundred for the

largest applications. Gonçalves [53] studied employing AD and DD approaches for

emitting-absorbing media to parallelize a space-marching algorithm for the DOM-

FVM. Each processor handles only a few directions in the AD while performing

calculations for the entire domain. In contrast, in the DD, each processor handles all

directions while performing computations for only a single subdomain. Contrary to

the DD, better efficiency was achieved in the AD since the number of iterations

was independent of the number of processors. The AD and DD methods were
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presented by Kanschat [68] for the DOM-FEM-based RTE solution. The advantages

of ordinate parallelism of the AD method, as opposed to the DD method, were

stressed. In this investigation, parallelization and adaptive mesh refinement were both

employed. Badri et al. [13] investigated the high-performance computing numerical

solution of RTE using the FEM alongside the DOM for spatial-angular discretization.

They presented two parallel methods of AD and DD and examined the efficiency,

performance, and scalability of thousands of processors for two- and three-dimensional

examples. The numerical results showed that AD performs better than DD.

In this paper, the space-angle discontinuous Galerkin method is developed to solve

the RTE for angular decomposition and domain decomposition parallel method for

different 2-dimensional complex enclosures. The rest of the paper is organized as

follows: Section 5.3 presents the formulations of the RTE equation and space-angle

DG method. The implementation of AD and DD is elaborated on in Section 5.4.

Section 5.5 illustrates some numerical examples of validation, scaling performance of

weak and strong scaling of AD, DD, and hybrid AD-DD, and an anisotropic scattering

problem of square geometry with obstacles. Finally, the concluding remarks of the

article are presented in Section 5.6.

5.3 Formulation

The two-dimensional Cartesian steady-state RTE in a gray medium that absorbs,

emits, and scatters has the form,

ζ
∂I(x, y, µ, φ)

∂x
+ η

∂I(x, y, µ, φ)

∂y
+ βI(x, y, µ, φ) =

κIb(x, y) +
σs

4π

∫ 1

−1

∫ π

−π

I(x, y, µ′, φ′)Φ(µ, φ, µ′, φ′)dµ′dφ′,

(5.1)

where I(x, y, µ, φ) is the radiative intensity in the x-y plane along the solid angle

direction ŝ(x, y, z) = {ζ, η, µ} assuming that z axis is infinity, where ζ = sin θ cosφ =√
1− µ2 cosφ, η = sin θ cosφ =

√
1− µ2 sinφ, µ = cos θ; θ and φ are the polar and

81



azimuthal angle measured with respect to a fixed axis in space, respectively. The

range of the polar and azimuthal angle should be θ ∈ [0, π] and φ ∈ [−π, π]. The

values β, κ, and σs, are the spatial-dependent extinction, absorption, and scattering

coefficients, respectively. The spatial-dependent total black-body radiative intensity

is given by Ib.The scattering phase function is represented by Φ(µ, φ, µ′, φ′). The

often-used Rayleigh scattering phase function is expressed as,

Φ(µ, φ, µ′, φ′) =
3

4

{
1 +

[√
(1− µ2)(1− µ′2) cos (φ− φ′) + µµ′

]2}
. (5.2)

The partial differential equation (PDE) is enforced in a 4-dimensional domain

(x, y, µ, φ) ∈ Ω. The boundary conditions are specified on inflow boundaries for I,

I(rw, ŝ) = Ip, ŝ · n < 0, (5.3)

where Ip is the prescribed intensity, n is the outward surface normal. In the space-

angle domain, the surface normal n has spatial components and angular components

n(x, y, z, µ, φ) = {nx, ny, nz, nµ, nφ}, so that ŝ · n = ζnx + ηny + µnz = ζnx + ηny,

where nz = 0 in the 2D spatial geometry.

5.3.1 Space-angle discontinuous Galerkin method

In this paper, we employ the space-angle DG method to solve the RTE in both space

and angle. The space-angle domain is generated by extruding the spatial domain as

shown in Fig. 48 in a space-angle space. The space element Qx is extruded into m

slabs in angle resulted in Q1, Q2, ..., Qm space-angle elements. The sample element

Ql has the boundaries in x direction, ∂Ql
x, and boundaries in ŝ direction, ∂Ql

ŝ. In the

2D domain, the space mesh consists of unstructured triangles, whereas the extrusion

process results in a structured rectangular mesh in angle. For an arbitrary element
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Ql, the residuals are,

RQl = ζ
∂I

∂x
+ η

∂I

∂y
+ βI

− κIb −
σs

4π

∫ 1

−1

∫ π

−π

I(x, y, µ′, φ′)Φ(µ, φ, µ′, φ′)dµ′dφ′, (5.4a)

R∂Ql = ŝ · n(I∗ − I), (5.4b)

where (5.4a) corresponds to the residual inside element Ql in satisfying the RTE in

(5.1).

(5.4b) corresponds to the residual in enforcing the target value, I∗, on ∂Ql, the

boundaries of Ql. This condition and the factor ŝ ·n = ζnx+ ηny directly correspond

to the jump part of the differential operator ζ ∂I
∂x

+ η ∂I
∂y

in (5.1). The target value I∗

corresponds to the upstream value along the direction of wave propagation, which is

given,

I∗ =

I, ŝ · n > 0

Iout, ŝ · n ≤ 0
, (5.5)

if ŝ ·n > 0, the element boundaries are outflow boundaries, where I∗ = I implies that

(5.4b) is trivially satisfied. If ŝ ·n ≤ 0, the element boundaries are inflow boundaries.

In this case, I∗ = Iout corresponds to the boundary value of its neighbor element. In

the 2D space-angle domain, the direction of the wave only propagates along space,

which means only the residuals on the element boundary R∂Ql
x
are considered in Fig.

48. The jump condition on R∂Ql
ŝ
are trivially satisfied. For example in Fig. 49, n1,

n2, and n3 correspond to the outward surface normal on element boundaries ∂Ql
x1
,

∂Ql
x2
, and ∂Ql

x3
, respectively. Outside Ql, the boundary condition Ip on ∂Ql

x1
and

the element boundary values Iout on ∂P and ∂O are specified. For a given angle ŝ,

since ŝ ·n1 < 0, ŝ ·n2 < 0, and ŝ ·n3 > 0, the nontrivial jump conditions are enforced

on ∂Ql
x1

and ∂Ql
x2

(element boundaries in red), while boundary ∂Ql
x3

(in blue) is the

outflow boundary.
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The unknown fields IhQl in element Ql are interpolated by tensorial product

polynomials of order px in space and pŝ in angle, which is written as,

IhQl(x, ŝ) = HQl

r (x)⊗HQl

ŝ (ŝ) · aQl

, (5.6)

where a is the vector of unknowns for the discrete solution, H is the basis function

vector formed by polynomials, and the subscripts x and ŝ denote the space and

angle, respectively. The tensorial product polynomials are used to interpolate the

unknown field of order px in space and order pŝ in angle. For the 2D space-angle

domain, HQl

r is formed by Pascal’s triangle in x and y, HQl

r (x, y) = {xiyj|i+ j ≤ px}.

HQl

ŝ is formed by monomials, HQl

ŝ (φ, µ) = {φiµj|i = 0, 1, . . . , pŝ, j = 0, 1, . . . , pŝ}.

For example, for px = 1 and pŝ = 2, HQl

r (x, y) = {1, x, y} and HQl

ŝ (φ, µ) =

{1, φ, φ2, µ, φµ, φ2µ, µ2, φµ2, φ2µ2}.

The weighted residual (WR) statement for a space-angle region Ql is formed by

multiplying the RTE by the weight function Î and adding the corresponding weighted

residuals on the boundary of the element, which is given as,

∫
Ql

ÎRQldVQl +

∫
∂Ql

ÎR∂QldA∂Ql = 0. (5.7)

In the 2D geometry discrete setting, Ql represents a space-angle element and the

intensity I is replaced by its discrete approximation IhQl = HQl · aQl
in Ql. By

replacing RQl and R∂Ql , the above equation is written as,

∫
Ql

Î

(
ζ
∂HQl

∂x
+ η

∂HQl

∂y
+ βHQl − κIb

)
· aQl

dVQl

−
∫
Ql

Î

[
σs

4π

m∑
j=1

(∫
Qj

ŝ

HQj · aQj

ΦdAQj
ŝ

)]
dVQl

+
3∑

i=1

∫
∂Ql

xi

Î [ŝ · n (I∗ −H∂Ql · a∂Ql)] dA∂Ql
xi
= 0

(5.8)
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The volume of space-element Ql is denoted by VQl . The area of the boundary ∂Ql
x

is denoted by A∂Ql
xi
. The equation above is enforced for all elements Ql in the entire

space-angle domain Ω. Elements are coupled through I∗ terms in the x - y planes and

the phase integral in angle directions µ and φ. This results in a global linear system

of equations,

Ka = F (5.9)

where a is the global unknown vector formed from individual element unknowns aQl ,

K is the stiffness matrix, and F is the force vector comprising the terms that are

independent of element unknowns a.

In the previous paper, we developed an accelerated iteration method for solving

1D cylindrical RTE using the space-angle DG formulation by adopting the successive

over-relaxation (SOR) method. A short introduction is provided to facilitate the

discussion of the angular decomposition method in Section 5.4.1.

5.4 Implementation

Assembling the entire system directly can result in a dense stiffness matrix that is

difficult to solve due to its high dimension and the presence of scattering term. To

handle this issue, especially when dealing with large-scale problems, it is important

to parallelize the solution process. Two popular methods for increasing scalability

are the angular decomposition and domain decomposition methods. In this section,

we will outline the specifics of these two decomposition methods.

5.4.1 Angular Decomposition

The direct assembly of the whole system may result in a very dense stiffness matrix,

which can be challenging to solve because of the interdependence between different

angular domains. This is due to the second term, the scattering term S, in the
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equation (5.8) for element Ql, which requires interactions with all angular elements

that have been extruded from the same spatial element. This can significantly increase

the size of the stiffness matrix and make it difficult to store, especially as the system

size grows.

To address this issue, we have developed the angular decomposition (AD) method

to decouple the angular domain. This involves replacing the discrete solutions with

calculated values, so that the coupling terms are treated as sources, contributing to

the right-hand side of the equation. Unlike the direct solver, which solves the system

directly, the AD method divides the angular domain into slabs and solves each slab

separately, resulting in an iterative process. Therefore, the scattering term S at

iteration step k is written as,

S =−
∫
Ql

Î

[
σs

4π

(∫
Ql

ŝ

HQl · aQl

ΦdAQl
ŝ

)]
dVQl

−
∫
Ql

Î

[
σs

4π

j<l∑
j=1

(∫
Qj

ŝ

IkQjΦdAQj
ŝ

)]
dVQl

−
∫
Ql

Î

[
σs

4π

j>l∑
j=1

(∫
Qj

ŝ

Ik−1
Qj ΦdAQj

ŝ

)]
dVQl

, (5.10)

where IkQj is the approximate solutions in element Qj at iteration k. The first term

in (5.10) still contributes to the formation of the matrix, whereas the second and

third terms play a role in the construction of the right-hand side. Such processes also

significantly increase the sparsity of the stiffness matrix, resulting in a block-diagonal

structure. This method is highly parallelizable, as the calculations of each slab can

be performed independently.
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If np MPI processors are applied to partition the angular domain, the above

equation can be rewritten as,

SM =−
∫
QM,l

Î

[
σs

4π

(∫
QM,l

ŝ

HQM,l · aQM,l

ΦdAQM,l
ŝ

)]
dVQM,l

−
∫
QM,l

Î

[
σs

4π

j<l∑
j

(∫
QM,j

ŝ

IkQM,jΦdAQM,j
ŝ

)]
dVQM,l

−
∫
QM,l

Î

[
σs

4π

j>l∑
j

(∫
QM,j

ŝ

Ik−1
QM,jΦdAQM,j

ŝ

)]
dVQM,l

−
∫
QM,l

Î

[
σs

4π

i ̸=p,j<l∑
i,j

(∫
Qi,j

ŝ

IkQi,jΦdAQi,j
ŝ

)]
dVQM,l

−
∫
QM,l

Î

[
σs

4π

i ̸=p,j≥l∑
i,j

(∫
Qi,j

ŝ

Ik−1
Qi,jΦdAQi,j

ŝ

)]
dVQM,l

, (5.11)

where M is the index of the angular subdomain. For the balancing purpose, the

slabs have to be evenly assigned to each subdomain. Hence, the maximum number

of processors can not exceed the number of slabs. Fig. 50 shows an example of

16 extruded elements in angles φ and µ divided into 4 subdomains (red and blue

boxes), so that each slab contains 4 slabs. The calculations of the scattering term in

subdomain 1 by the AD method for one iteration can be broken into the following

steps:

1. Assemble the local system for slab j in subdomain 1 by Equation 5.8, except

for the scattering term SM .

2. For slab j, the scattering term S1 is performed over the angular domain. The

first term in Equation 5.11 contributes to the local stiffness matrix in slab l

and subdomain M . The second and third terms contribute to the right-hand

side (RHS), i.e., the force vector. The last two terms need solutions from other

subdomains so that interprocessor communication is required.
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3. The solution of slab j is calculated after the assembly stage and the intensity

is then updated.

4. Repeat steps (1) to (3), until the solutions for all slabs in subdomain 1 are

updated.

5.4.2 Domain decomposition

For the domain decomposition (DD) method, the spatial mesh is divided into smaller

subdomains. One option is to solve each subdomain with the same governing

equation individually by the assigned processor, which is known as the conventional

DD method. Subdomains are not isolated, since the continuity on the subdomain

interfaces is weakly enforced. Therefore, communications to pass the interface

solutions are needed. Similar to the AD method, to achieve the global solutions,

iteration is required, since the local solutions inside subdomains depend on the

previous iteration from the neighbor subdomains. Another option is to obtain the

global linear system of equations directly by assembling the local stiffness matrices

in the subdomains in a distributed manner and solving the whole with a distributed-

memory linear solver, such as MUMPS [8]. In this case, calculation of the jump

conditions is required on the subdomain interface from the neighbor elements in other

subdomains. To reduce the amount of communication, additional elements belonging

to the respective adjacent processor are added to the border of each subdomain.

These elements are referred to as ghost elements. As depicted in Fig. 51, the ghost

elements in green in subdomain 1 are duplicated from subdomain 2. For a given

angle ŝ, the inflow and outflow boundaries between subdomains 1 and 2 are in red

and blue, respectively. Because of the creation of ghost elements, each processor is

required to take more memory than the conventional DD method. However, it is

worth solving the global linear system directly rather than iteratively by sacrificing

some memory usage. The implementation of the Domain Decomposition method in
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the Discontinuous Galerkin (DG) method in parallel computing can be accomplished

as follows:

1. Divide the computational domain into subdomains: The first step is to divide

the computational domain into a number of smaller subdomains, each of which

will be solved independently by a separate processing unit.

2. Assemble the local matrices: For each subdomain, the local matrices are

assembled using the DG method. The local matrices are then used to form

the global matrices, taking into account the information exchanged between

subdomains.

3. Exchange information between subdomains: To ensure that the solution in

each subdomain is consistent with the solutions in neighboring subdomains,

information is exchanged between subdomains. This information is typically

exchanged via ghost elements, which are used to communicate information

between adjacent subdomains. For example, the subdomain interface of element

1 is the inflow boundary, where its neighbor element, the ghost element 6, is

duplicated from subdomain 2.

4. Solve the global matrices: The global matrices are then solved internally, and

the solutions are assigned to the respective subdomains.

5.5 Numerical examples

This section illustrates some numerical problems. A two-dimensional complex

geometry with inclined boundaries of a semi-trapezoidal enclosure with a non-

scattering homogeneous gray medium, scattering and non-scattering scaling per-

formance checking of the enclosure, and a square enclosure with obstacles and

scattering problems are considered to thoroughly test the numerical solution method

for solving the RTE. These problems are solved by using C++with the University
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of Tennessee in Knoxville's ISAAC (Infrastructure for Scientific Applications and

Advanced Computing) cluster. The numerical tasks are executed on up to 256

processors, in order to analyze scaling performances.

5.5.1 Validation

Radiative heat transfer in a two-dimensional complex geometry involving inclined

boundaries, a semi-trapezoidal enclosure is considered a non-scattering homogeneous

gray medium, as shown in Fig. 52a. Byunt et al. [19] numerically solved this problem

using the finite volume method (FVM) with block-off procedures, while Zhang et al.

[138] used the natural element method (NEM). The dimensions of Cartesian system

of the trapezoidal enclosure are A(0, 0), B(1, 0), C(1, 1), D(0.75, 1), and E(0, 0.5).

The unit of all dimensions is assumed in meters. The medium temperature Tg is

maintained at 1000K, but all boundary walls’ temperature is maintained at Tw = 0K.

All the boundary walls are considered black. Three different absorption coefficients

κ = 0.1m−1, κ = 1.0m−1, and κ = 10m−1 are considered with an absorbing-emitting

and non-scattered gray medium. This problem is solved using the saDG method with

the polynomial order of p = px = pŝ = 1 in both space and angle. The total number

of spatial elements is 800, as shown in Fig. 52b, with a uniform 8× 8 extruded mesh

for angles φ and µ.

Figure 53a illustrates the comparison between the non-dimensional radiative heat

flux on the bottom wall and the exact solution. It can be seen that the current

solutions are close to the exact solutions, and the absorption coefficients have a big

effect on how the radiative heat flux is distributed on the bottom wall. When the

absorption coefficient is relatively low, such as κ = 0.1m−1, the radiative heat flux on

the bottom wall is primarily influenced by the surface temperature. In other words,

as the surface temperature increases, the radiative heat flux on the bottom wall also

increases. However, when the wall temperatures are zero (i.e., there is no temperature

gradient), the radiative heat flux is relatively weak. On the other hand, in optically
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thick media where the absorption coefficient is high, the radiative heat flux on the

bottom wall is mainly controlled by the medium temperature (denoted by Tg). In

this case, the radiative heat flux on the bottom wall is expected to be close to σT 4
g ,

where σ is the Stefan-Boltzmann constant. This means that the temperature of the

medium has the most effect on the heat flow from radiation in optically thick media.

On the other hand, Fig. 53b shows the non-dimensional radiative heat flux on

the inclined wall (top wall) compared to the exact solution. The findings suggest

that a jump in wall heat flux occurs at the junction of different parts of the inclined

wall, attributed to the disparity in how wall heat flux is defined at the inclined

boundary and upper wall. This behavior is more pronounced in cases with higher

optical thickness of the medium, indicating increased opacity. In summary, the jump

in wall heat flux is directly linked to the definition of wall heat flux and is more

prominent in opaque mediums. Further research is needed to better understand and

account for this behavior in practical applications.

5.5.2 Scaling performance

High-performance computing has two common notions of scalability, strong scaling,

and weak scaling. Strong scaling is defined as how the solution time varies with

the number of processors for a fixed total problem size. Weak scaling is defined as

how the solution time varies with the number of processors for a fixed problem size

per processor. For the DGRTE solver, strong scaling means setting up a problem

and measuring the solution time with different processors; weak scaling means fixing

the problem size for one processor (same number of slabs for each processor) and

measuring the solution time with different numbers of processors. In this section,

we evaluate the strong and weak scalability of the 2D saDG RTE solver with AD-

DD methods, as well as the efficiency of the hybrid AD-DD method. The problem is

considered in a quadrilateral enclosure with constant heat source boundary conditions

as depicted in 54. The non-scattering medium is considered for the weak scaling study
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of the AD method, while the anisotropic Rayleigh scattering medium with scattering

albedo, ω = σs/β = 0.5, is considered for the rest cases. The space and angle mesh

resolution may vary based on the memory capacity of the nodes with the polynomial

order p = 1.

These two scaling properties are measured by the parallel speedup Sp, and

efficiency np is defined as,

Sp =
t0
tp

(5.12)

Ep =
Sp × n0

np

(5.13)

where t0 and tp are the total run time required to solve the problem with n0 processors

(as a reference) and np processors, respectively.

Angular Decomposition

We analyze both weak and strong scaling performance using the AD method. The

weak scaling is conducted with a constant number of elements of 5009 triangular

spatial mesh with uniform 4× 4, 8× 4, 8× 8, 16× 8 and 16× 16 extruded mesh in

φ and µ for 16, 32, 64, 128, and 256 processors for AD as shown in Table 4. The

numerical results are analyzed for weak scaling of the relative parallel efficiency based

on the 16 processors. We track the total run time of each simulation. The results

show an excellent parallel efficiency for higher AD processors, as shown in Table 4,

where the parallel efficiency is around 1 for all cases. Scaling up to the maximum

number of processors studied here is not severely hindered by the communication cost.

Hence, it demonstrates that this approach should also scale to larger high-performance

computing systems.

Strong scaling is measured by dividing the 16 × 16 angular mesh into np

subdomains with 3469 triangular elements in the spatial domain and solving the
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problem with 16, 32, 64, 128, and 256 MPI processors. The temperature field is

shown in Fig. 55. The strong scaling allows the workload per processor to be varied

by changing the number of angular slabs assigned to each processor. As a result,

inter-processor communication’s effect on efficiency and the number of iterations

to achieve converged solutions are observed. The relationship between parallel

speedup, efficiency, and the number of processors is shown in Table 5 for AD. Fig.

56a depicts the strong scaling performance of relative parallel speedup and relative

parallel efficiency for total run time. The relative parallel speedup and efficiency are

calculated based on processor 16. Excellent parallel performance is achieved with an

efficiency greater than 1 by 32 processors. The relative parallel speedup of processor

256 increases to almost 8.5 times, and the relative parallel efficiency decreases to

0.531 than processor 16. One of the main reasons for the decreasing efficiency is the

growing number of iterations when more MPI processors are employed, as shown in

Table 5. The calculation of the scattering term involves utilizing solutions from the

previous iteration to update the current solutions. As more processors are employed,

more previous solutions are considered, as described in Equation 5.11, which results

in more iterations. Fig. 56b shows the efficiency evaluated by average iteration time,

which is better than the total run time when using more processors. However, aside

from the number of iterations, the quantity of communication among the processors

growing along with the number of processors also has a great impact on the efficiency.

Domain Decomposition

The simulation for weak scaling runs with 88 spatial elements per processor with

a uniform 4 × 4 extruded mesh in angle φ and µ. Table 6 illustrates the weak

scaling performance for the DD. The table 6 shows the relative parallel efficiency

based on the 16 processors. The efficiency degrades significantly when using a higher

number of processors, where the 256-processor case shows very low efficiency. This

drastic performance loss is largely attributed to the performance of MUMPS at the

solution stage that solves Equation 5.9, as shown in Table 6 in the third column.
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As np increases, the ratio of the matrix solving time tKp and the total run time tp,

denoted as α, gradually increases to 1, which means the solution stage dominates

the total run time. The overhead associated with the interagency communication

necessary to preserve the multiscale aspect of the simulation is the limitation of

MUMPS [8] in weak scaling challenges. The 256-processor simulation has a total

number of triangular mesh elements of 22528 and the overall number of degrees of

freedom in space and angle is 4325376. As the number of processors increases, the

quantity of interagency communication necessary to preserve the multiscale aspect of

the simulation expands. This may result in a considerable rise in processing costs,

which would ultimately restrict the simulation’s capacity to scale. Woźniak et al.

[128] investigated the weak scaling performance using MUMPS. The results showed

that the relative parallel efficiency dropped rapidly when the matrix was solved by a

high number of processors.

The strong scaling performance for DD simulates by dividing a uniform angular

extruded mesh of 4 × 4 with 3469 triangular elements in a quadrilateral enclosure.

Table 7 shows the strong scaling performance for the DD method. There is a tendency

for the ratio α increases with the growing number of processors. This is a similar trend

to the weak scaling case because the solution stage dominates the total run time.

The relative parallel efficiency decreases significantly when using a higher number

of processors, as shown in figure 56c. This results from MUMPS’s load imbalance

and high weight of communications being present in significant scaling difficulties

as reported in [87]. A scenario where some processors are idle while others are

significantly loaded might occur in many simulations where certain aspects of the

issue are more computationally intensive than others. This might lead to a situation

where the overall efficiency of the simulation is lowered, restricting the scalability of

the simulation.
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Hybrid Angular-Domain Decomposition

In this section, the AD and DD methods are combined with np = 256 processors.

The number of processors used for the AD and DD is denoted as nAD
p and nDD

p ,

respectively. The total number of processors, thus, is equal to np = nAD
p × nDD

p . In

order to merge the two methods, the angular domain is sliced into l slabs and assigned

evenly to nAD
p processors, while the spatial domain breaks into nDD

p subdomains.

Hence, iteration is needed with AD involved. By using the DD approach, the

computational domain is divided into smaller subdomains that can be processed

independently by different processors. By combining this with an AD approach,

which divides the computational work based on different directions or angles, the

amount of interprocessor communication required is significantly reduced. This can

lead to higher performance and efficiency, particularly in simulations with a large

number of processors. The hybrid AD-DD method with a proper combination can

achieve better scalability by reducing inter-processor communication overhead and

load imbalance. Table 8 shows the performance for combined AD-DD with np = 256.

The parallel speedup is calculated for AD-DD based on the 256×1 AD-DD processors

using equation 5.12. Tow factors mainly affect the speedup, the number of iterations

and the ratio of time, α. By increasing the number of processors for DD, the

number of iterations decreases, while α increases.It is investigated that the 32 × 8

AD-DD processors have the highest speedup 1.444 times compared with 256 single

AD configurations and the highest among the other six AD-DD combinations. We

used the best relative parallel speedup for running the numerical example in Section

5.5.3.

5.5.3 Square geometry with obstacles

The geometry is considered a square containing an array of nine obstacles with an

isotropic incidence. These obstacles consist of circular and square shapes, respectively.

Fig. 57 shows the computational domain. The distances shown in the figure are
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in meter units. The participating medium is cold and Rayleigh scattering with a

scattering albedo ω = σs/κ = 0.5 for the square geometry with circular and square

obstacles. The left boundary of the square geometry is maintained at a constant

temperature Tw = 1000K; the other boundaries are black and cold. 13059 triangular

elements are generated in space for the problem. The elements in the angle are

uniformly extruded mesh, 128× 16, in φ and µ. The polynomial order is p = 1. The

problem was executed 32× 8 AD-DD processors.

Fig. 58 depicts the contour temperature plot of a square enclosure with nine

circular and square obstacles, respectively. Compared to the circular and square

obstacles, the circular one has better resolution than the square obstacle due to

the edge of the geometry. Fig. 59 shows the contour temperature plot of the same

numerical problem with a uniform 16 × 16 angular discretization. The so-called

“Rays effect” appears in this contour plot. To avoid such effects, the author suggests

improving the angular extrusion, which was implemented in figure 58.

5.6 Conclusion

This paper employed the space-angle discontinuous Galerkin (saDG) method to solve

the steady-state radiative transfer equation (RTE). The saDG method allows fully

discretizing the computational domain in both space and angle. Two parallelization

methods, angular decomposition (AD) and domain decomposition (DD), were

applied. The AD method divides the angular domain into subdomains and solves

each subdomain in parallel. This approach enables us to solve the entire domain

iteratively. The DD method partitions the spatial domain into subdomains with

ghost elements added to facilitate forming the global stiffness matrix in a distributed

way. By using the distributed parallel linear solver, MUMPS, the global solution can

be obtained. Both AD and DD techniques for solving the RTE were implemented in

C++software for the DG finite element discretization.
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We demonstrated that our implementation of the AD method exhibits near-linear

weak scaling on a substantial number of processors. Additionally, it shows decent

efficiencies for strong scaling. In comparison, the AD method outperforms the DD

method. One of the challenges associated with the DD method is its scalability on

a large number of processors. This issue arises due to the significant proportion

of time spent on solving matrices by MUMPS. When the number of processors

increases, the complexity of communication and synchronization between them also

grows, which can lead to reduced efficiency. In contrast, though more iterations

are needed, the AD method’s parallelization across angular subdomains mitigates

these challenges by solving each subdomain individually, resulting in better overall

performance and scaling properties. To further enhance efficiency, the hybrid AD-DD

method, which combines the advantages of both the AD and DD methods, displayed

superior performance compared to AD alone. This improved performance is achieved

by employing an appropriate number of processors for AD and DD, striking a balance

between the two techniques to optimize computation and communication overhead.

In conclusion, our implementation of the AD method demonstrates promising

scaling properties and outperforms the DD method in terms of efficiency. Although

the DD method faces challenges related to scalability, the hybrid AD-DD approach

successfully combines the strengths of both methods. This synergy yields improved

performance, making it a viable solution for large-scale parallel computing applica-

tions.

A valuable extension to this work would be to explore alternative matrix solvers

for the Domain Decomposition (DD) method. The current implementation relies on

MUMPS, which has scalability limitations and communication overhead when used

with a large number of processors. By identifying and implementing a more efficient

matrix solver, it is possible to further improve the performance and scaling properties

of the DD method. This extension would involve a comprehensive analysis of

available matrix solvers, considering factors such as their parallelization capabilities,

communication overhead, and convergence rates. In addition, it may be beneficial to
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investigate the potential for developing customized or hybrid solvers tailored to the

specific requirements of the problem at hand. By enhancing the matrix solver within

the DD method, the overall efficiency and scalability of the hybrid AD-DD approach

could be further optimized, ultimately leading to more effective large-scale parallel

computing applications.
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Space-Angle Discontinuous

Galerkin method for 2D Radiative

Transfer Equation with Diffusively

and Specularly Reflective

Boundary Conditions
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6.1 Abstract

A space-angle discontinuous Galerkin (saDG) method for solving the Radiative

Transfer Equation (RTE) in arbitrary 2D domains is proposed. The space-angle

domain is fully discretized by the DG method. An angular decomposition approach,

resulting in an iterative solution process, is adopted to accelerate the solution and

reduce memory usage. The performance of the method is analyzed in the square

geometry with different types of boundary conditions. For nonscattering and open

systems, the number of iterations each time increases by one with one additional

reflective boundary. For other cases, we show that the number of iterations or

convergence rate of the iterative method for the specular reflection problems is not

only affected by the number of the reflective surfaces, but also by the scattering

and extinction properties of the media. Uniformly and directionally diffuse reflective

boundary conditions are compared in the same medium. Finally, the localization at

the focal point of a parabolic reflector is studied.

6.2 Introduction

The radiative transfer equation (RTE) is a first-order integro-differential equation,

which describes the radiative intensity propagating in the media that absorbs, emits,

and scatters [88]. While there are a variety of numerical methods available, methods

for space discretization coupled with angle discretization methods, such as the discrete

ordinate method (DOM) [49, 114] and spherical harmonics method [46, 89, 15], are

among the most extensively utilized strategies for the solution of radiative transfer

problems in participating media. These methodologies decouple the angle domain

and use mesh-based methods to solve the spatial domain. The DOM discretizes the

angular domain into a discrete collection of ordinate directions, resulting in a set of

spatial RTE equations for each particular direction. Finite difference, finite volume

(FV) [31], or finite element methods (FEMs) [99] are used to solve the spatial domain.
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Sums over the ordinate directions are used in place of integrals over the solid angles.

The spherical harmonic method entails multiplying the RTE by various powers of the

direction cosines of the intensity, resulting in a set of moment equations that must be

solved to obtain the solution. The approach is named after the fact that the intensity

is approximated by an orthogonal series of spherical harmonics.

Despite their popularity, the discrete ordinate and the spherical harmonic methods

are not the only ways of discretizing the RTE in the angular domain. The

discontinuous Galerkin (DG) finite element method (FEM) is one of the most popular

grid-based numerical methods for solving the RTE due to its high order accuracy

and flexibility in mesh adaptivity. The basis functions used in the DG method

are discontinuous across element interfaces; accordingly, the jump condition between

interior traces of the solution and the so-called numerical flux is weakly enforced on the

interface boundaries. The space-angle discontinuous Galerkin (saDG) methods that

fully discretize the spatial and angular domain are especially suitable for the RTE

since the evolution of solution along characteristics can be strongly discontinuous

when there are local radiation sources, incidence radiation enters from the boundary

surfaces, or upon reflection from reflective boundaries.

Gao and Zhao [50, 51] used a discontinuous Galerkin (DG) in space and a piece-

wise constant finite element method in angle. Olbrant et al. [91] employed an entropy-

based model to solve in the angular domain while using a DG discretization in space.

However, just like in the spatial domain, continuous approaches might fail when

discontinuities arise in angular space or domain interfaces. As a result, over the

last few years, Kophazi et al. [73] and Kitzmann et al. [37] have devised space-angle

DG algorithms to handle this problem in both space and angle. The Boltzmann

transport equation, which Kophazi implemented, is a simplified equation without a

phase function. Kitzmann solved the RTE with spherical symmetry, which is a more

complicated variant of the RTE due to the addition of a derivative with regard to

the polar angle. Sun et al. [112] proposed a spectral element method to discretize the

spatial and angular domains, while adopting the DG scheme in space to smoothen
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the oscillations induced by the spatial discontinuity of radiative intensity. Previous

works have shown that the space-angle DG method can be applied to solving the

RTEs with high order of accuracy and in parallel with the domain decomposition

(DD) and angular decomposition (AD) methods [118, 119, 124].

Reflections on surfaces include three types of reflection: specular reflection,

uniform diffuse reflection, and directional diffuse reflection, as shown in Fig. 60.

Specular reflection is mainly found on polished surfaces, while diffuse reflection

dominates on rough surfaces. The surface roughness mainly determines whether

diffuse reflection is uniform or directional. Although diffuse reflection is frequently

discussed in the literature, specular reflection [102, 77, 79] is less frequently discussed

due to the difficulty in its numerical treatment. When there are specularly reflecting

boundaries, the use of the discrete ordinates method can be difficult, as seen in the

following example. The direction of a specularly reflected beam does not coincide with

any of the directions of the discrete ordinate set; since there is no analytic quadrature

scheme for integrating the reflected wave in this case, it is often impossible to predict

how intense the specularly reflected beam is. As a result, some form of interpolation

is required, which is not straightforward on the sphere. This problem is exacerbated

if the angle between the directions of the reflected ray and the reflecting plane is too

small. This results from the fact that only half of the discrete ordinate set that is

inside the computational domain at the boundary can be used to predict the reflected

intensities, and the other half is out of the domain. Therefore, interpolation cannot

be used to determine the intensity of this beam in this situation and extrapolation is

necessary using half of the discrete ordinate set available. In addition to the discrete

ordinate method, Castro and Trelles [21] used the FEM in space and angle to solve

the radiative transfer problems in a parabolic concentrator with specularly reflective

boundary conditions. However, therein the maximum angular discretization order is

p = 1, that is only piecewise linear solutions are supported in angle. Clarke et al.

[27] applied the saDG method to the simulation of plane-parallel radiative transfer
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problems, with higher order polynomial in both space and angle, with specular

boundary condition.

The saDG method is very suitable for solving the RTE with reflective boundary

conditions because,

1. The saDG method robustly handles solution discontinuities both in space and

angle, especially for the problems when a beam specularly reflects from a surface;

2. Accuracy can be easily improved in the angular domain, especially, when a

directional solution is dominant, by applying finer element sizes (h-refinement)

or increasing the order (p-enrichment) in angle.

In this paper, the 2D RTE problems with reflective boundary conditions are solved

by the iterative saDG solver in parallel. The formulations of the DG method for the

steady RTE with specularly and diffusely reflective boundary conditions are presented

in §6.3. The implementations of the saDG solver for angular integration and reflective

boundary conditions are described in §6.4. Next, several numerical examples of a

square box and a parabolic reflector are presented in §6.5 with reflective boundary

conditions. Final conclusions are drawn in §6.6.

6.3 Formulation

6.3.1 2D RTE & its boundary conditions

For a monochromatic wavelength, the steady radiative transfer equation (RTE) is

written as,

ŝ · ∇I(x, ŝ) + βI(x, ŝ) = κIb(x) +
σs

4π

∮
4π

I(x, ŝ′)Φ(ŝ, ŝ′)ds′ + S(x, ŝ), (6.1)

where I is the radiative intensity in the spatial domain Ωx along the solid angle

direction ŝ. The extinction coefficient β = κ + σs is the sum of the absorption
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coefficient κ and the scattering coefficient σs. Φ (̂s, ŝ′) is the scattering phase function.

The spatial-dependent black-body radiative intensity is Ib. All quantities are also a

function of the wavelength, which is omitted for brevity.

The intensity, leaving a wall into a specified direction, is determined by its

surface properties. In applications considered here, both “ideal” and “nonideal”

opaque surfaces are taken into account. The ideal surface is assumed to be diffusely

emitting and diffusely and/or specularly reflecting (with the magnitude of reflectance

independent of the incoming direction). The nonideal surface, on the other hand,

is when arbitrary directional reflection behavior is encountered. In this case, the

reflectance is determined by an integral equation over all the incoming directions.

For the ideal surface, the boundary condition is [88],

I(xw, ŝ) = Ī(xw, ŝ) +
ρd(xw)

π

∫
ŝ′·n>0

I(xw, ŝ
′)ŝ′ · n ds′ + ρs(xw)I(xw, ŝs), (6.2)

where the subscript w refers to wall and indicates the spatial boundary of the domain,

ρd and ρs are the diffuse and specular reflectance, respectively. The first term on the

RHS of Eqn. 6.2 is the diffuse emission. The second RHS term is the uniform diffuse

reflection component, where ρd is the diffuse reflectance, n is the local outward surface

normal and ŝ′ · n = cos γ′ is the minus cosine of the angle between any incoming

direction ŝ′ and the surface normal, as depicted in Fig. 61. The third term is the

specularly reflective component, where ŝs is the specular direction, defined as the

direction from which a light beam must hit the surface in order to travel into the

direction of ŝ after a specular reflection. From Fig. 61, this direction is,

ŝs = ŝ− 2(ŝ · n)n. (6.3)

As a result, the outgoing intensity is not explicitly known, but is related to the

incoming intensity.
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Reflection from a surface with nonideal radiative properties is governed by the

bidirectional function, ρ′′(x, ŝ, ŝ′), so that

I(xw, ŝ) = Ī(xw, ŝ) +

∫
ŝ′·n>0

ρ′′(xw, ŝ, ŝ
′)I(xw, ŝ

′)ŝ′ · nds′. (6.4)

The second term on the RHS is called the directional diffuse reflection. If the surface

reflects uniformly diffusely, ρ′′ = ρd/π. For specular reflection, the bidirectional

function becomes a delta function, so that the above equation is reduced to Eqn. 6.2.

In most cases when the bidirectional function is introduced, the field is diffused to

the hemisphere but may have a directional and nonuniform character, which is called

the directional diffuse.

6.3.2 Space-angle DG discretization

The governing radiative transfer equations Eqn. 6.1 and reflective boundary

conditions Eqn. 6.2 or Eqn. 6.3 in semi-transparent media cannot be solved

analytically in most situations. The DG method is used to get a space-angle

approximation of the radiative intensity.

The element extrusion technique is utilized to define the space-angle mesh Ω.

In this technique, the spatial mesh Ωx is first discretized by simplicial elements.

The angular mesh is extruded from the spatial mesh Ωx. Normally, the solid angle

direction has two independent angle variables µ and φ, where µ is the cosine of the

polar angle θ, and φ is the azimuthal angle. The extrusion for the solid angle, thus,

needs to be done twice. For example, Fig. 62 shows the extrusion process of a space-

angle mesh extruded from a 2D spatial mesh in Cartesian coordinates. The element

Q is first extruded in µ from the spatial element Qxy, and then, extruded in φ from

the former extrusion to achieve the space-angle element. Since the four-dimensional

element cannot be illustrated, in the last subfigure, the x axis represents the 2D

geometry of the element in space.
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In a DG formulation, residuals (errors) must be specified both in the interior and

on the boundary of elements. The weighted residual statement (WRS) is formed

by multiplying the residuals inside and on the boundary of elements by the weight

function Î. For an arbitrary space-angle element Q ∈ Ω, the WRS is,

∫
Ql

ÎRQldV +

∫
∂Ql

ÎR∂QldA = 0, (6.5)

where Q is the element and ∂Q is the element boundary. The interior residual RQl

corresponding to Eqn. 6.1 is,

RQl = ŝ · ∇Ih(x, ŝ) + βIh(x, ŝ)− κIb(x)

− σs

4π

∮
4π

Ih(x, ŝ′)Φ (̂s, ŝ′) (ŝ, ŝ′)ds′ − S(x, ŝ).
(6.6)

For DG methods, the continuity of solutions across element boundaries is satisfied

by weakly satisfying the jump between the interior trace of intensity, Ih, and its target

flux I∗; this relaxes the continuity constraints of continuous finite element methods.

Correspondingly, for the RTE, the residual on the element boundary ∂Ql is expressed

as,

R∂Ql = ŝ · n
(
I∗ − Ih

)
, (6.7)

The weight function Î and discrete solution Ih are polynomials of order p in both

space and angle, interpolated with respect to a local coordinate system. The target

value I∗ corresponds to the upstream value along the direction of wave propagation

where ŝ · n < 0 is the inflow direction and ŝ · n > 0 is the outflow direction. The

reader is referred to [119] for more details on the definition of the target value and

saDG formulation for RTEs.

The diffuse and specular reflection boundary conditions are implemented differ-

ently. For the diffuse reflection boundary condition, the integral term in Eqn. 6.2 is

calculated using Gauss quadrature. For the specular reflection boundary condition,

106



the first step is to find the corresponding element of the specular direction. By

interpolating the solution within the element in the specular direction, the reflective

intensity is then obtained.

6.4 Implementation

Direct assembly of the whole system may result in a very large stiffness matrix that

is difficult to solve, due to the couplings in the angular domain from the scattering

integral and/or reflective boundary conditions (BCs). Specifically, the scattering

integral operator in Eqn. 6.5 for element Q leads to interacting with all angular

elements extruded from the same spatial point. For example, the extrusion of the

spatial element Q in Fig. 63(a), results in 16 elements in the angular domain. The

angular grid corresponding to quadrature point Q3 is shown in Fig. 63(b). Similarly,

for the reflective BCs, the element inflow boundaries (ŝ · n < 0) are coupled with

element outflow boundaries that contain the incidence angle. This can be seen in

Fig. 64. For the diffusely reflective BC, the elements containing red solid circles

are coupled with the elements containing blue hollow circles, depicted in Fig. 64(b).

For the specular reflective BC, the element containing the pointed red solid circle is

coupled with the element containing the pointed red dash-dot circle in Fig. 64(c).

Because of the couplings in angle, forming and storing the entire stiffness can be

computationally expensive and require extensive memory resources as the system

size increases.

To overcome the issue, we have developed an angular decomposition (AD) method

to decouple the angular domain. We refer the reader to our previous paper [124] for

the details of the AD method. In short, decoupling of the angular elements replaces

the current discrete solutions Ih in angle coupling terms (scattering in the domain

and reflection on the reflective boundaries) with their corresponding values from the

previous iteration. Thus, the coupling terms are considered as source terms and each

angular domain is solved with a much smaller and local stiffness matrix. The iterative
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method continues until the change in the solution between two successive iterations

is sufficiently small. The AD method results in small matrix solves. Moreover, it is

highly parallelizable, since the slab calculations are independent. Fig. 63 and 64 show

examples of coupling in 16 extruded elements (square regions) in angles φ and µ at a

spatial point. The angular domain is divided into 4 slabs (larger red and blue boxes)

so that each slab contains 4 elements. The red and blue dots inside the elements

are the quadrature points. Using this example, the following subsections describe the

implementation of the decoupled scattering integral term and reflective BCs, as well

as the iterative parallel algorithm. Due to the similarities of the solution procedure

for the other three slabs, only the solution process for slab 1 (in red) is provided in

detail.

6.4.1 Decoupling of scattering integral terms

The calculations of the scattering integral term in slab 1 and other slabs by the AD

method can be broken into the following steps (see Fig. 63),

1. Initialize the intensity at all quadrature points (in red and blue quadrature

points).

2. For all the quadrature points in slab 1, the integration is performed over the

solid red quadrature points. These values contribute to the local stiffness matrix

since the angles in slab 1 are still coupled. A similar process is repeated for other

slabs.

3. For all the quadrature points in slab 1, the integration is performed over the

hollow blue quadrature points in other slabs. In this case, the integration is

treated as the source term because the intensity at hollow blue points is known,

which is initialized in step (1) or updated in step (4). Hence, the hollow blue

points contribute to the right-hand side (RHS), i.e., the force vector, for the
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equation of slab 1. A similar process for updating the RHS is performed for the

other slabs.

4. The solution of each slab is calculated after the assembly stage. The intensity

is then updated at all the quadrature points (in red points after the solution of

slab 1, and blue points after the solution of each corresponding slab).

5. Repeat steps (3) and (4), until the solutions are converged.

6.4.2 Reflective boundary conditions

The procedure of calculations of reflective BCs is similar to that of the scattering

integral operator, with the difference that now the sample spatial quadrature point

∂Q2 resides on the boundary of element Q in Fig. 64(a). The spatial normal n, the

slant line in Fig. 64(b) and (c), divides the angular domain into reflected and incident

angles.

The angular coupling of the diffusely reflective BC corresponds to the second RHS

term in Eqn. 6.2 (uniform diffuse reflection) or the second RHS term in Eqn. 6.4

(directional diffuse reflection). The procedure is discussed below for all slabs and is

depicted for slab 1 in Fig. 64(b)

1. For each slab, loop over all the quadrature points that are in the incidence angle

(s · n > 0) and initialize their intensity. These points are shown by blue hollow

dots in Fig. 64(b).

2. For all quadrature points in reflected angle in slab 1, the integration is performed

over the blue dots. The calculation refers to Eqn. 6.2 or 6.4 based on whether

uniform or directional diffuse reflection is considered.

3. Update the solutions at the incidence angle points after the assembly stage.

4. Repeat steps (2) and (3), until the solution is converged.
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The steps for the specular reflection condition (the third RHS term in Eqn. 6.2)

are discussed below and depicted for slab 1 in Fig. 64(c),

1. For any reflection point in a slab, the corresponding incident point is determined

using Eqn. 6.3. This is shown for a quadrature point in slab 1 (pointed to solid

red circle) in Fig. 64(c), where the incident point (pointed to dash-dot red circle)

and its corresponding slab are determined.

2. The reflected intensity is calculated by the intensity at the incidence angle and

the specular reflectance.

3. Update solutions at the incident angle (red dash-dot circle).

4. Repeat steps (2) and (3), until the solution is converged.

6.4.3 Summary of parallel process

The steps taken in the iterative parallel process can be summarized as follows,

1. Divide the angular domain into m slabs and assign to n processors. In our

implementation, m is an integer multiple of n.

2. Initialize all the quadrature points in the domain and on the reflective

boundaries.

3. Assemble the slab level stiffness matrix and the RHS, except for the across slabs

coupling (reflective BCs and scattering) terms. The assembled stiffness matrix

is stored in its allocated processor.

4. Solve the system of the linear equations with the computed stiffness and the

current RHS. Then, update the solutions at all quadrature points.

5. Assemble the inter-slab and inter-processor coupling (reflective BCs and

scattering) terms and update the local RHS.
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6. Repeat steps (4) and (5), until the solution is converged by measuring the

relative error,

ekrel =

∥∥∥∥Ik − Ik−1

Ik

∥∥∥∥
∞

= max
j

∣∣∣∣∣Ikj − Ik−1
j

Ikj

∣∣∣∣∣, (6.8)

where j is the index of the quadrature point over the whole domain. The process

stops at iteration k, when the error ekrel is less than a convergence tolerance,

ϵ = 1× 10−10.

6.5 Numerical examples

In this section, the examples of 2D RTE in participating media with reflective

boundary conditions are presented in a square domain and a parabolic reflector. For

the square geometry, first the reflections inside the domain from an incident wave

entering the domain on the right edge are considered. This aims to compare different

types of reflective BCs, specular, uniform diffuse, and directional diffuse. The effect

of the number of reflective faces on the solution and convergence properties of the

iterative method are also studied in this example. Second, an internal source term is

considered for the square geometry. The last example shows the focusing effect in a

parabolic reflector.

6.5.1 Square box

Consider the radiative problems in a 1 × 1 square box with the following boundary

conditions, as depicted in Fig. 65. The red lines represent reflective boundaries and the

other boundaries represent vacuum, i.e., Iw = 0. We followed the naming convention

for the 6 cases from [9]. For the cases in the first row in Fig. 65, the wave inside the

domain can escape, and thus they are “open” systems. The cases in the second row

are “closed” systems, as the wave can get trapped either in vertical or all directions.
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Prescribed incidence on the left boundary

Fig. 66 shows the problem set-up for this example. A prescribed beam is entering

through the left boundary of the box, with an incidence angle of θinc = −π
4
, such that

its radiance is,

Iinc(x, y, φ, µ)

∣∣∣∣
x=0, y∈[0.4,0.6], φ=−π

4

= 1.

In the following sections, specular, uniform diffuse, and directional diffuse reflection

examples are considered for this problem.

Specular reflection The purpose of this example is to investigate how the number

of reflective boundaries, i.e., form of domain enclosure, affects the solution and

efficiency of the iterative method. Four of six cases of boundary conditions listed

in Fig. 65 are considered: (1) free box, (2) three free side, (3) corner, (5) single

free side. These cases correspond to the number of reflective boundaries of 0, 1,

2, and 3, respectively. All the reflective boundaries are specularly reflective, i.e.,

ρs = 1 in Eqn. 6.2. Each case is investigated for five single-scattering albedos

ωs = 0, 0.25, 0.5, 0.75, 1, where ωs is defined as,

ωs =
σs

β
. (6.9)

Since the extinction coefficient inside the medium is β = 1, the corresponding

scattering coefficient is σs = ωs. The Rayleigh phase function is adopted for the

scattering media, expressed as [88],

Φ(µ, φ, µ′, φ′) =
3

4

{
1 +

[√
(1− µ2)(1− µ′2) cos (φ− φ′) + µµ′

]2}
. (6.10)

Fig. 67 shows the adaptive mesh with 3730 triangles. A uniform 12× 6 extruded

mesh is used for angles φ and µ. The polynomial order for the discrete solution is

p = 1 in both space and angle directions.
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The results are presented for the space-dependent angular integrated density

function,

D(x) =

∫
4π

I(x, ŝ)ds. (6.11)

Fig. 68 shows the results for the four boundary condition cases (in rows) and

albedo values, ωs = 0, 0.5 and 1 (in columns), respectively. In the zero scattering

medium (ωs = 0), the overall density D of the beam decreases along the path line,

and D remains zero elsewhere in the box. In contrast, for the scattering media, the

density D decreases less along the path line than the zero scattering media. As more

reflective boundaries are used, the density D further increases in the domain and

outside of the ray paths.

The number of iterations for these cases are listed in Table 9. For zero scattering

cases, the number of iterations grows only 1 step for an additional specular reflection

boundary. However, for ωs = 1 case, the number of iterations is almost doubling with

any additional reflective boundary. The evolution of the iteration error en(I) for the

scattering cases is presented in Fig. 69 in the log-log scale. To get the average rate of

convergence α, the slope of the curves in this figure are computed after the stage that

the asymptotic rate is attained, i.e., past the first few iterations. Fig. 70 shows the

number of specularly reflective boundaries with respect to the average convergence

rate α in log2 scale. Interestingly, the slope of the convergence rate is close to its

scattering albedo when the scattering is strong (ωs ≥ 0.5), while for small scattering

albedo, the slope remains at 0.5.

Uniform diffuse reflection The uniform diffuse reflection case is investigated for

three albedos ωs = 0, 0.5, and 1. Only case (2), the three free side case, in Fig.

65 is considered for this problem, where the bottom boundary is uniformly diffuse

reflective, and the right and top boundaries are vacuum. Other properties and spatial

mesh remain the same as in the specular reflection example, but the angular mesh is
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further refined to the resolution 50×10. The contour plots of the intensity density D

for ωs = 0, 0.5, 1 are shown in Fig. 71, from left to right, respectively. As the albedo

increases, the overall values of the intensity field also increase.

Directional diffuse reflection The directional diffuse reflection case is investi-

gated for the albedo ωs = 0. The bottom boundary is considered as the directional

diffuse and similar to the previous example, the right and top boundaries are vacuum

(case (2) in Fig. 65). The difference between uniform and directional diffuse is that

the latter is governed by the bidirectional function in the angular integration. In this

case, the bidirectional reflection function of the Phong mode [95] is adopted,

ρ′′(ŝ, ŝ′) =
ap + 2

2π
cosap Θ, (6.12)

where the coefficient ap = 2a−2
b − 2 is related to the mean value of the microfacets

slope ab ∈ (0, 1], Θ is the angle between n and 1/2(ŝ+ ŝ′), as shown in Fig. 61. When

ab → 0, the surface is smooth so that the specular reflection is dominant. As ab

grows, the surface becomes rougher. When ab = 1, the mean microfacets slope is 45◦.

The bidirectional diffuse function is a constant, which indicates the uniform diffuse

condition. Fig. 72 shows the contour plots of the radiative density for the three mean

values of the microfacets, corresponding to ab = 0.1, 0.2, 0.3. As can be seen, the

rougher the surface (the larger ab), the more diffusive the reflection.

Gaussian point source

A Gaussian point source is applied in a 1×1 square box that shines towards all angle

directions,

S(x, y) = 10e−1000[(x−0.55)2+(y−0.6)2].

The medium is cold and non-scattering. The extinction coefficient is β = 1.0. All

the six boundary cases in Fig. 65 are considered. The free box, three free side, and

corner cases can be categorized as the open system, where the propagating wave
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eventually goes out through the vacuum boundaries. These three cases correspond

to open space, half space, and quarter of space setups, respectively. The waveguide,

single free side, and closed box cases are close systems, in which some fraction or all

the intensity bounces between the boundaries.

The spatial mesh contains 11138 triangles, refined around the location of the point

source is shown in Fig. 73. A uniform 32 × 16 extruded mesh is used for angles φ

and µ. The polynomial order for the discrete solution is p = 1. The RTE solver is

the same as the previous example. However, the iteration error is relaxed due to the

slow convergence rates for the closed systems. Similar to the definition in Eqn. 6.8,

the error indicator measures the error between prior and current solution. However,

we used an absolute value to relax the convergence condition; the absolute error is

given by,

ekabs =

∥∥∥∥Ik − Ik−1

Ī

∥∥∥∥
∞

= max
j

∣∣∣∣∣Ikj − Ik−1
j

Ī

∣∣∣∣∣,
where j is the index of the quadrature point, and Ī a scale number for the intensity.

For this problem, Ī = maxS(x, y) = 10.

The results are shown in Fig. 74 in the first and third rows. To better observe

the reflected waves, the free box solution is subtracted from all the other solutions,

as shown in the second and fourth rows. Because the point source is off-center, the

reflected intensity is stronger at the top right corner in the closed box. The subtracted

solutions show the “ray effects”. These ray effects can be mitigated by increasing the

solution resolution in angle.

The number of iterations for the six cases is listed in the second row of Table 10.

For the open systems, the number of iterations is equal to the number of reflective

boundaries. Each iteration calculates the next reflected propagation of intensity. For

the close systems, the number of iterations is positively correlated to the number

of reflective boundaries. The average convergence rates for the close systems are

measured and listed in the third row of Table 10. The convergence rate for the

waveguide is more than twice higher as for the closed box. The single free side
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converges slower than the waveguide, but still, faster than the closed box. This is

because the internal source gets reflected in the box and can not escape for the all-

reflection case. For the close system, the number of iterations is also related to the

extinction along the geometry path, s, through which the beam has traveled, given

by [88], ∫ s

0

βds = ln
I0
I(s)

,

where I0 is measured at the initial point. In this case, the initial point is at the center

of the source point, so that I0 = S(0.55, 0.6) = Ī. The intensity energy travels to

the boundary and gets reflected between mirrors and eventually dies out along the

shortest path, where I(s) ≈ ϵ = 1× 10−10. So that the approximated travel distance

is s ≈ 23, which implies that the bouncing intensity gets reflected at most 23 times.

This number have the same order of magnitude of the number of iterations for the

closed systems. To better demonstrate this relation, the closed box case is solved for

κ = 2 and 3. The corresponding number of iterations are 17 and 11, indicating that

the number of iterations is inversely proportional to the extinction coefficient for the

close systems.

6.5.2 Parabolic reflector

A parabolic reflector opening with a length between the focus and the vertex equal to

1/3 is considered. The height and width are 2 and 0.75, respectively. The incidence

entering perpendicularly from the top boundary is,

Iinc(x, y, φ, µ)

∣∣∣∣
y=0.75, φ=−π

2

= 1.

The curved boundary is specularly reflective, where ρs = 1. The spatial mesh contains

9110 triangles, refined around the focal point as shown in Fig. 75. A uniform 10× 10

extruded mesh is used for angles φ and µ. The polynomial order for the discrete

solution is px = 1 in space and pŝ = 2 in angle. The medium inside the reflector is

116



cold and non-scattering. The extinction coefficient is β = 1.0. The contour plot for

the radiative density is shown in Fig. 76. The correct position for the highest value

of the radiative density at the focal point of the parabolic reflector is obtained. The

radius of the localization is about 0.1.

6.6 Conclusions

We presented a space-angle discontinuous Galerkin (saDG) method for the solution of

the RTE with specularly and diffusely reflective boundary conditions. In our weighted

residual statement, the element continuity constraint is weakly enforced using the

target value I∗. Consistent with the form of the solution for the RTE, this approach

supports discontinuity in both space and angle. For the scattering media, the elements

are coupled in angle directions. To avoid large computational costs and memory

usage, an iterative method is used to reduce the global stiffness matrix size. The

interpolation of the solution in angle by the saDG method simplifies the formulating

and greatly improves the accuracy of the diffuse and specular reflections with fine

mesh and high-order polynomials in angle. Finally, in addition to the uniformly

diffuse reflection, the bidirectional reflection function is introduced to simulate the

surface roughness by evaluating the mean value of the slope of the microfacets.

There are some key findings of the specularly reflective boundary condition

investigated in Section 6.5.1,

1. For non-scattering media in open systems, the number of iterations is propor-

tional to the number of reflected rays.

2. Otherwise, the solution is an iterative process where the convergence rate gets

worse as the reflective surfaces or albedo increases, as explained through 2

examples,
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(a) In scattering media, it is shown that the convergence rate reduces by a

factor from about 0.5 to 1 (depending on albedo) with every one increase

to the number of reflective boundaries.

(b) In closed systems, The convergence rate drops from 1.6 to 0.72 as the

system gets more closed from bottom-top to all cases. Besides, the number

of iterations is inversely proportional to the extinction coefficient.

These findings are similar to [9] for an iterative solver for the Helmholtz equation.

Therein, the convergence rate of closed and open systems was very different [9] too.

Moreover, the results of the point source example reveal the “ray effect”, which is a

non-physical phenomenon, especially prevalent for the discrete ordinate method.
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Chapter 7

Summary and Conclusions

119



We presented a space-angle discontinuous Galerkin (saDG) method for solving

the radiative transfer equation (RTE). The objective-oriented design of the software

allowed us to apply the saDG approach to a variety of RTEs with considerable ease,

including 1x1s, 1x2s, and 2x2s. For low-dimensional problems, the direct solver can be

competent in getting high-order accuracy solutions. However, for high-dimensional

problems, the direct solver is slow in solution time and takes high memory usage

that may not fit in the computer RAM memory. Therefore, we applied the angular

decomposition (AD) method to the iterative solver to increase the run-time efficiency

and reduce memory usage. For large-scale problems, the parallel solver was developed

based on AD and domain decomposition (DD) methods. Finally, the reflective

boundary conditions were applied to 2-D Cartesian radiative transfer problems.

Our work results in new design methods of solving the steady-state radiative

transfer equation in multi-dimensions by spatial and angular discontinuous Galerkin

finite element method. Besides, it is expected to be applied to all kinds of numerical

applications of transport equations, including neutron transport, Boltzmann radiative

transfer, etc. In addition, our multi-dimensional meshing tool is able to create

elements in many other problems involving high dimensionality, e.g., transport

equations, electromagnetics, and space-time methods. Meanwhile, our work presents

a parallel framework for mesh-based methods, such as finite element methods and

finite volume methods, to improve computational efficiency.

The research work presented in this thesis is a collaborative effort, and my

individual contributions to each chapter are outlined below:

• Chapter 2: The development of the 1D saDG RTE solver was a joint effort by

Dr. Reza Abedi, Dr. Philip Clarke, and myself. I was responsible for conducting

the numerical examples and documenting them in the chapter.

• Chapter 3: I led the expansion of the saDG RTE solver to address 1D spatial

and 2D angular RTE problems, and I was the primary author of this chapter,

ensuring the content was thoroughly explained and well-structured.
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• Chapter 4: I conceived the idea of enhancing the solver’s efficiency and

memory usage through the implementation of an iterative method, and I was

the main writer for this chapter. I focused on providing a clear and detailed

explanation of the method and its benefits.

• Chapter 5: I devised the angular and domain decomposition methods and

carried out their implementation. My writing responsibilities included the

Formulation and Implementation sections, and I also contributed to the editing

process, refining the text for clarity and coherence.

• Chapter 6: I took the lead in implementing the reflective boundary condition

and served as the primary author for this chapter, ensuring a comprehensive

presentation of the concept and its application.

We will focus on three objectives in our future work. First, piece-wise constant

and variable refractive indices in the media will be considered. This will allow us

to study more complex media and metamaterials. Next, we will further improve the

efficiency and accuracy of the solver. In this case, the adaptive mesh generation

technique will be applied to the parallel saDG solver. The compact stencil size makes

the resulting method simple to parallelize while the local nature of the discontinuous

Galerkin approximation makes hp-adaptive refinement natural to implement. Last

but not least, we will mitigate the “ray effect” observed in the study when the mesh

in the angular domain is coarse. The multigrid method will be adopted in the angular

domain to eliminate the “ray effect”.
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132



[88] Modest, M. F. (2013). Radiative heat transfer. Academic press. 33, 37, 38, 52,

60, 100, 104, 112, 116

[89] Modest, M. F., Cai, J., Ge, W., and Lee, E. (2014). Elliptic formulation of

the simplified spherical harmonics method in radiative heat transfer. International

Journal of Heat and Mass Transfer, 76:459–466. 33, 100

[90] Modest, M. F. and Mazumder, S. (2022). Chapter 24 - nanoscale radiative

transfer. In Modest, M. F. and Mazumder, S., editors, Radiative Heat Transfer

(Fourth Edition), pages 887–903. Academic Press, fourth edition edition. 78

[91] Olbrant, E., Hauck, C. D., and Frank, M. (2012). A realizability-preserving

discontinuous Galerkin method for the m1 model of radiative transfer. Journal of

Computational Physics, 231(17):5612 – 5639. 12, 101

[92] Ouchtout, S., Rousseau, B., and Favennec, Y. (2022). Finite element framework

for modeling conducto-radiative transfers within heterogeneous media at both

discrete and continuous scales. International Journal of Heat and Mass Transfer,

197:123274. 79

[93] Pal, R. K., Abedi, R., Madhukar, A., and Haber, R. B. (2016). Adaptive

spacetime discontinuous Galerkin method for hyperbolic advection-diffusion with

a non-negativity constraint. International Journal for Numerical Methods in

Engineering, 105(13):963–89. 3, 44

[94] Pandey, D. and Cogley, A. (1983). An integral solution procedure for radiative

transfer in concentric cylindrical media. American Society of Mechanical Engineers.

35

[95] Phong, B. T. (1975). Illumination for computer generated pictures.

Communications of the ACM, 18(6):311–317. 114

133



[96] Pontaza, J. and Reddy, J. (2005). Least-squares finite element formulations

for one-dimensional radiative transfer. Journal of Quantitative Spectroscopy and

Radiative Transfer, 95(3):387–406. 13, 20, 21, 22, 23, 29, 34, 153, 154

[97] Ragusa, J. C., Guermond, J.-L., and Kanschat, G. (2012). A robust sn-dg-

approximation for radiation transport in optically thick and diffusive regimes.

Journal of Computational Physics, 231(4):1947–1962. 61

[98] Razzaghi, M., Oppenheimer, S., and Ahmad, F. (2001). Numerical solution

of radiative transfer problems in a slab medium by Galerkin-type approximation

techniques. Physica Scripta, 64(2):97. 11, 34, 55

[99] Reddy, J. and Murty, V. (1978). Finite-element solution of integral equations

arising in radiative heat transfer and laminar boundary-layer theory. Numerical

Heat Transfer, Part B: Fundamentals, 1(3):389–401. 33, 100

[100] Reed, W. H. and Hill, T. (1973). Triangular mesh methods for the neutron

transport equation. Technical report, Los Alamos Scientific Lab., N. Mex.(USA).

60

[101] Reed, William H and Hill, T. (1973). Triangular mesh methods for the neutron

transport equation. Technical Report LA-UR-73-479; CONF-730414-2, Los Alamos

Scientific Lab., N.Mex. (USA), Ann Arbor, Michigan, USA. 34

[102] Rukolaine, S., Vasilyev, M., Yuferev, V., and Galyukov, A. (2002). Numerical

solution of axisymmetric radiative transfer problems in arbitrary domains using

the characteristic method. Journal of Quantitative Spectroscopy and Radiative

Transfer, 73(2-5):205–217. 33, 38, 60, 102

[103] Safronova, A., Stafford, A., Gill, A., and Childers, R. (2021). Polarization of

hard x-ray dielectronic satellite lines from na-like w ions. Journal of Quantitative

Spectroscopy and Radiative Transfer, 272:107788. 78

134



[104] Salah, M. B., Askri, F., Slimi, K., and Nasrallah, S. B. (2004). Numerical

resolution of the radiative transfer equation in a cylindrical enclosure with the

finite-volume method. International Journal of Heat and Mass Transfer, 47(10-

11):2501–2509. 33, 60

[105] Sallah, M. and Attia, M. T. (2009). On Galerkin technique for transient

radiative heat transfer in finite thin media. Numerical Heat Transfer, Part B:

Fundamentals, 56(4):323–334. 11, 34, 55

[106] Sans, M., Farges, O., Schick, V., and Parent, G. (2022). Solving transient

coupled conductive and radiative transfers in porous media with a monte carlo

method: Characterization of thermal conductivity of foams using a numerical flash

method. International Journal of Thermal Sciences, 179:107656. 79
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Table 1: Hemispherical reflectivity and transmissivity of a slab with unit thickness,
transparent boundaries, and isotropic incidence.

DG LS LS-DOM Analytic
Reflectivity 0.020878 0.020878 0.020639 0.020878

Transmissivity 0.386094 0.386094 0.386612 0.386096

Table 2: Hemispherical reflectivity and transmissivity of a slab with unit thickness,
transparent boundaries, and isotropic incidence.

DG LS
Reflectivity 0.033816 0.033855

Transmissivity 0.205898 0.205899

Table 3: Number of iteration for the GS method and different relaxation factors for
the SOR method under different mesh resolutions. The optimum values are shown in
boldface.

relaxation factor 4× 4× 4 8× 8× 8 16× 16× 16 32× 32× 32
GS (1.0) 24 27 28 32
SOR 1.1 16 19 21 24

1.2 20 19 19 18
1.3 25 24 25 23
1.4 33 32 32 30
1.5 43 42 41 40
1.6 59 58 57 55
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Table 4: Weak scaling performance for AD.

np Extrusion tp(s) Ep

16 4× 4 425.263 -
32 8× 4 446.455 0.952
64 8× 8 449.612 0.946
128 16× 8 359.590 1.183
256 16× 16 413.689 1.028

Table 5: Strong scaling performance for AD.

np tp(s) Iterations Sp Ep

16 5178.387 13 - -
32 2528.959 13 2.048 1.024
64 1633.772 14 3.170 0.792
128 956.109 16 5.416 0.677
256 608.516 19 8.510 0.532

Table 6: Weak scaling performance for DD. The matrix solving time is denoted by
tKp .

np Elements tKp (s) tp(s) α = tKp /tp Ep

16 1408 130.779 150.69 0.868 -
64 5632 397.967 416.442 0.956 0.362
256 22528 2417.68 2440.29 0.991 0.062

Table 7: Strong scaling performance for DD.

np tKp (s) tp(s) α = tKp /tp Sp Ep

16 686.211 736.173 0.932 - -
32 345.882 370.962 0.932 1.984 0.992
64 244.573 258.191 0.947 2.851 0.713
128 126.719 133.939 0.946 5.496 0.687
256 131.281 135.364 0.970 5.438 0.340
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Table 8: Performance test for hybrid AD-DD.

nAD
p nDD

p tp(s) Iterations α = tKp /tp Sp

256 1 608.516 19 0.045 -
64 4 472.747 14 0.177 1.287
32 8 421.405 13 0.219 1.444
16 16 475.142 13 0.212 1.281
8 32 594.871 13 0.404 1.023
4 64 807.505 12 0.438 0.753
1 256 2539.172 12 0.795 0.240

Table 9: The number of iterations for the specular reflection problems.

Specular reflection

ωs free bottom bottom-right bottom-right-top

0 1 2 3 4
0.25 16 24 28 39
0.5 21 32 38 55
0.75 29 37 58 98
1 25 46 81 168

Table 10: The number of iterations (second row) and convergence rate (third row)
for the point source problem for κ = 1.

1) free box 2) three free side 3) corner 4) waveguide 5) single free side 6) closed box

no. iterations 1 2 3 18 24 32
α - - - 1.60 1.00 0.72
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Figure 1: The applications of radiation transfer equation [42].

Radiative Transfer
Equation

Cartesian (X)

x, y, θs, φs

z, θs

Cylindrical (C)

rx, φx, z, θs, φ̃

rx, zx, θs, φ̃
rx, φx, θs, φ̃

rx, θs, φ̃

rx, zx, θs

rx, θs

Spherical (S)

rx, θx, φx, θs, φ̃

rx, θx, θs, φ̃

rx, θx, θs rx, θx, θ̃

rx, θ̃

Figure 2: This figure shows the variables needed in different versions of RTE in the
three coordinate systems, respectively.
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Figure 3: A schematic of a space-angle domain. The horizontal axis x and the
vertical axis ŝ represent the space and angle, respectively. The sample element Q
is coupled with the elements in red, yellow, and blue, due to the integral operator.
The element boundary in cyan is coupled with the element boundary in blue, since
the incidence angle and the reflection angle are located on these element boundaries,
respectively. The dark green line separates the domain into two.

(a) Conventional DD (b) Ghost element DD

Figure 4: Two domain decomposition methods. (a) The spatial domain is
partitioned into two non-overlapping subdomains in orange and green. (b) The spatial
domain is divided into two subdomains. Each subdomain contains extra elements on
the subdomain interface, which are duplicated from its neighbor subdomain.
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Figure 5: Specular, diffuse, and directional diffuse reflection from a surface.

Figure 6: Refraction in the media of constant and variable refractive indices.
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Figure 7: Format of the dissertation.

Figure 8: Demonstration of region of applicability of residuals in z, µ) domain.
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Figure 9: The use of wave inflow values for I∗.

Figure 10: The formation of space-angle basis functions by tensor product of space
and angle monomial basis functions.
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Figure 11: SDG Mesh for code verification

Figure 12: Visualization of solution for code verification case of zero phase
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Figure 13: Visualization of solution for code verification case of non-zero phase
function

Figure 14: Convergence study of the DG RTE solution for a problem with exact
harmonic solution. Convergence rate of p+ 1 is achieved for the space-angle order of
p = 0 to 3.
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Figure 15: Finite element mesh for the DG method in the spatial-angular domain.
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(a) DG (b) LS [96]

Figure 16: Contour plot of radiative intensity, I(z, µ), in space-angle domain.

(a) I− at z = 0 (b) I+ at z = 1

Figure 17: Radiative intensity distribution at outflow boundaries.
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(a) Backward (b) Forward

Figure 18: Radiation heat flux distribution.

(a) DG (b) LS [96]

Figure 19: Contour plot of radiative intensity, I(z, µ), in space-angle domain.
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(a) I− at z = 0 (b) I+ at z = 1

Figure 20: Radiative intensity distribution at outflow boundaries.

(a) Backward (b) Forward

Figure 21: Radiation heat flux distribution.
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(a) 16× 32 grid, p = 0. (b) 16× 32 grid, p = 1.

(c) 16× 32 grid, p = 1, average source. (d) 32× 64 grid, p = 1, average source.

Figure 22: The effect of type of application of point source, element size h, and
order p on discrete DG solution. In all cases, except f) a zero phase function is used.
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(e) 32× 64 grid, p = 3, average source. (f) 32×64 grid, p = 3, average source, Rayleigh
scattering.

Figure 22: (continued) The effect of type of application of point source, element size
h, and order p on discrete DG solution. In all cases, except f) a zero phase function
is used.
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Figure 23: Contour plot of radiative intensity for the problem with the line source
term. The zoomed view shows the line source by a thick white line and its neighboring
elements, where Mz are the spatial upstream elements of the line source and M+

µ and
M−

µ are the upward and downward angular neighboring elements.
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Figure 24: Convergence study for the problem in §2.4.1, but with changing only pz
and fixing pµ = 0.

Figure 25: Cylindrical coordinates for the one-dimensional RTE.

Figure 26: Coordinate along a characteristic line.
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Figure 27: The illustration of the extrusion of the spatial domain in angle directions
µ and φ̃. The left figure shows the one-dimensional spatial elements and the right
shows their extrusion to form the three-dimensional domain Ω.

Figure 28: The illustration of normal vectors of the element Q and its neighboring
elements on the shared boundaries in r-φ̃ plane. The subscript and superscript
of normal vectors correspond to the element with normal vector and its direction,
respectively.
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Figure 29: Schematic of the discrete set of r − φ̃ planes, characteristic lines, and
points for numerical solution of the method of characteristics.

Figure 30: Validation of the DG RTE method by the MMS for second order
polynomial in space and angle for IM. The contour plots in r − φ̃ plane are sliced in
µ direction at µ = −0.5, 0, 0.5.

161



Figure 31: Convergence study of the DG RTE solution for the harmonic
manufactured solution. The asymptotic convergence rate βp = p + 1 is achieved
as h → 0 for p = 0 to p = 3.

Figure 32: The results of the method of characteristic in a r − φ̃ plane, where
φ̃ < 0 shows the characteristics in black and φ̃ ≥ 0 shows the characteristics with the
intensity field. The red arrows point to regions where characteristic lines are sparse.
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(a) Method of characteristics

(b) DG method

Figure 33: Contour plots of radiation intensity for the problem in §3.5.2 for two
different solution methods.

Figure 34: Convergence study of the DG RTE solution with respect to a high
resolution reference solution obtained by the method of characteristics.
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Figure 35: Nondimensional radiative heat transfer, Ψ, between concentric cylinders
at radiative equilibrium against the optical thickness, τ2 − τ1, at different radius
ratio, R2/R1. The solid lines are the numerical solution presented by Loyalka [86];
the hollow shapes (squares, circles and triangles) are the solutions by the DG method.

Figure 36: Contour plot of radiation intensity of the benchmark problem for
R1/R2 = 0.5 and τ2 − τ1 = 10.
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(a) Solutions with anisotropic scattering. (b) Difference between the scattering solutions and
the non-scattering solutions.

Figure 37: Contour plots of radiation intensity for the problem in §3.5.3 for µ = 0
for two different methods. The left and right figures correspond to the solutions by
the DG method and the method of characteristics (MoC), respectively.

Figure 38: The illustration of the extrusion of the spatial domain in angle directions
µ and φ̃: a) the one-dimensional spatial elements, b) extrusion of the spatial mesh to
form the three-dimensional domain Ω.
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Figure 39: Illustrations of normal vectors of the element Q and its neighboring
elements on the shared boundaries in r-φ̃ plane. The blue and lines represent the
element boundary in the r and φ̃ directions, respectively.

Figure 40: The stiffness matrix pattern in a 4×4×4 domain: (a) the 4×4×4 space-
angle mesh; (b) the stiffness matrix pattern of all couplings. The dots represent the
matrix block per element. The gray square C13,φ̃ depicts the coupling in µ direction
between elements C1,φ̃ and C3,φ̃. The dots in the four larger squares represent in-slab
couplings.
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Figure 41: Contour plots of the common ratios of the SOR scheme changing with
the eigenvalues, λ, and the relaxation factors. The common ratio greater than 1 is not
considered (white area). The white curve highlights the optimal relaxation factors
for the corresponding eigenvalues.

Figure 42: Convergence study of the DG RTE solution for the harmonic
manufactured solution. The asymptotic convergence rate βp = p + 1 is achieved
as h → 0 for p = 0 to p = 3.
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(a) (b)

Figure 43: The maximum and minimum of λ against (a) the scattering coefficients
σs of different mesh resolutions (b) R1/R2 for the problem described in §4.5.

(a) (b)

Figure 44: The optimal α (black) and common ratio q (red) against (a) the scattering
coefficients σs of different mesh resolutions and (b) the ratio of R1 and R2.
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Figure 45: Evolution of the error en(J) along iterations. Circle and and square
markers correspond to the results by the coarse and fine meshes, respectively.

(a) Memory usage (b) Wall clock time

Figure 46: Efficiency between direct solver and AD iterative solver.
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(a)

(b) (c)

Figure 47: (a)The refined angular mesh. (b)The number of iterations for different
scattering coefficients. (c) The contour plot of the intensity in the r− φ̃ plane, where
µ = 0.

Figure 48: Space-angle mesh generated by element extrusion from spatial mesh.
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Figure 49: An example of jump condition for I∗ in the direction of ŝ.

Figure 50: An example of angular decomposition for the scattering term. 16 angular
elements are divided evenly into four subdomains.

Figure 51: The spatial domain is divided into two subdomains. Each subdomain
contains extra elements on the subdomain interface, which are duplicated from its
neighbor subdomain.
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(a) Physical geometry (b) Spatial mesh

Figure 52: Trapezoidal enclosure with boundary conditions and spatial mesh.

(a) Bottom wall (b) Top wall

Figure 53: Non-dimensional radiative heat flux for κ = 0.1m−1, κ = 1.0m−1, and
κ = 10m−1 alone the bottom and top walls.
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Figure 54: Quadrilateral enclosure with boundary conditions.

Figure 55: Contour temperature plot for a quadrilateral enclosure.
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(a) Total run time for AD (b) Average iteration time for AD

(c) Total run time for DD

Figure 56: Strong scaling performance for (a) total run time for AD, (b) average
iteration time for AD, and (c) total run time for DD.
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(a) Circular (b) Square

Figure 57: A schematic for the square geometry with obstacles (a) Circular, (b)
Square.

(a) Circular (b) Square

Figure 58: A schematic for the contour temperature field with obstacles (a) Circular,
(b) Square.
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(a) Circular (b) Square

Figure 59: A schematic for the contour temperature field with obstacles (a) Circular,
(b) Square.

Figure 60: Specular, uniform diffuse, and directional diffuse reflection from a surface.

Figure 61: Radiative intensity diffusely and specularly reflected from a surface
boundary.
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Figure 62: Space-angle mesh generated by 2D element extrusion from spatial mesh.

Figure 63: An example of angular decomposition for the scattering integral term.
(a) Spatial mesh. The sample element Q contains 6 quad points in space. (b) Angular
domain at spatial point Q3. 16 angular elements are divided evenly into four slabs.
Slab 1 and its quadrature points (solid dots) are in red; the other slabs and quadrature
points (hollow dots) are in blue.
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Figure 64: Illustrations of the implementation of the reflective BCs. (a) For a given
spatial quadrature point ∂Q2 on the boundary of element Q, the spatial normal n is
known and determines the slant line that divides the angular domain into incidence
angles and reflected angles in (b) and (c) that correspond to the angular domain of
point ∂Q2. The red solid dots are the quadrature points in slab 1. (b) The blue
hollow dots are the decoupled quadrature points. (c) The blue hollow dots are the
quadrature points in the reflected angle. The red dash-dot circle (pointed to with an
arrow) is the specular incident angle corresponding to the specularly reflected angle
solid red point, pointed to by the other arrow.
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Figure 65: Six cases with different reflection boundary conditions. Boundaries in
red represent the reflective boundaries.

Figure 66: Schematic for the problem with a prescribed incident on the left wall.
The other three walls are either specularly reflective or vacuum depending on the case
described in Fig. 65.
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Figure 67: Spatial mesh for the specular reflection problem.
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Figure 68: Contour plots of radiative density D for the specular reflection problem
with incidence on the left boundary for the cases (1), (2), (3), and (5) listed in Fig. 65
in rows. The columns from left to right correspond to albedo ωs = 0 (zero scattering),
and ωs = 0, 5, 1, respectively.
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Figure 69: Evolution of errors with respect to iterations for ωs = 1.

Figure 70: Convergence rate with respect to number of specularly reflective
boundaries when ωs = 0, 0.25, 0.5, and 1.
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Figure 71: Contour plots of radiative density D for the uniformly diffuse reflection
problem with incidence on the left boundary, the diffusely reflective boundary at the
bottom, and vacuum boundaries on the right and top (case (2) in Fig. 65).

Figure 72: Contour plots of radiative density D for the directional diffuse reflection
problem with incidence BC on the left, diffuse reflective BC on the bottom, and
vacuum on the right and top boundaries (case (2) in Fig. 65). The solutions
correspond to different values of ab.
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Figure 73: Spatial mesh for the point source problem.
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Figure 74: Contour plots of radiative density D for the point source problem in the
first and third rows. The second and fourth rows are the subtractions of the solutions
from the free box solution. The top colorbar at the second row and first column is
for the solutions; and the bottom colorbar is for the subtractions.
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Figure 75: Spatial mesh for the parabolic reflector problem.

Figure 76: Contour plots of Radiative density D for the parabolic reflector problem.

186



Vita

Hang Wang was born in Daqing, Heilongjiang Province, China on November 22,

1990. Hang grew up in Shanghai, China, and graduated from Weiyu High School

in May 2010. In September 2010, he entered Shanghai University in Shanghai and

subsequently received the degree of Bachelor of Science in Mechanical Engineering in

June 2014. He continued his studies at Shanghai Institute of Applied Mathematics

and Mechanics, Shanghai University. Hang received a Master of Science degree in

Mechanical Engineering in July 2017. He has begun his studies at the University

of Tennessee Knoxville/Space Institute pursuing a Ph.D. in Mechanical Engineering

with a research concentration in Applied Mechanics and Computational Mechanics

under the pupilage of Dr. Reza Abedi, since August 2017.

187


	Space-Angle Discontinuous Galerkin Finite Element Method for Radiative Transfer Equation
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	1.1 Radiative transfer equation
	1.2 Motivations
	1.2.1 Different forms of the RTE
	1.2.2 Efficiency & scalability
	1.2.3 Problems of interests of RTE

	1.3 Dissertation Format

	2 Space-Angle Discontinuous Galerkin Method for Plane-Parallel Radiative Transfer Equation
	2.1 Abstract
	2.2 Introduction
	2.3 Mathematical Description
	2.3.1 RTE equation and boundary conditions
	2.3.2 Discontinuous Galerkin formulation

	2.4 Numerical Examples
	2.4.1 Method of Manufactured Solutions (MMS)
	2.4.2 Benchmark problems
	2.4.3 Point source
	2.4.4 nAProperties of the space-angle DG formulation

	2.5 Discussion and conclusions

	3 Space-Angle Discontinuous Galerkin Method for Radiative Transfer between Concentric Cylinders
	3.1 Abstract
	3.2 Introduction
	3.3 Mathematical description
	3.3.1 Radiation transfer equation and boundary conditions
	3.3.2 Characteristic directions for the RTE
	3.3.3 Discontinuous Galerkin formulation

	3.4 Implementation
	3.4.1 Discontinuous Galerkin implementation
	3.4.2 Method of characteristic

	3.5 Numerical examples
	3.5.1 Method of manufactured solution
	3.5.2 Verification of the DG method with the method of characteristics
	3.5.3 Benchmark problems between two concentric cylinders

	3.6 Discussion and conclusions

	4 Iterative Space-Angle Discontinuous Galerkin Method for Radiative Transfer Equation
	4.1 Abstract
	4.2 Introduction
	4.3 Discontinuous Galerkin formulation of RTE
	4.4 iterative methods and angular decomposition
	4.4.1 Angular decomposition
	4.4.2 iterative methods

	4.5 Numerical examples
	4.5.1 Convergence study
	4.5.2 Numerical investigation of the stability of the iterative methods
	4.5.3 Acceleration of iterative methods
	4.5.4 Internal Gaussian source in small scattering albedo media

	4.6 Discussion and conclusions

	5 Combined Angular and Domain Decomposition Parallel Methods to Solve 2D Radiative Transfer Problems Using Space-Angle Discontinuous Galerkin Method
	5.1 Abstract
	5.2 Introduction
	5.3 Formulation
	5.3.1 Space-angle discontinuous Galerkin method

	5.4 Implementation
	5.4.1 Angular Decomposition
	5.4.2 Domain decomposition

	5.5 Numerical examples
	5.5.1 Validation
	5.5.2 Scaling performance
	5.5.3 Square geometry with obstacles

	5.6 Conclusion

	6 Space-Angle Discontinuous Galerkin method for 2D Radiative Transfer Equation with Diffusively and Specularly Reflective Boundary Conditions
	6.1 Abstract
	6.2 Introduction
	6.3 Formulation
	6.3.1 2D RTE & its boundary conditions
	6.3.2 Space-angle DG discretization

	6.4 Implementation
	6.4.1 Decoupling of scattering integral terms
	6.4.2 Reflective boundary conditions
	6.4.3 Summary of parallel process

	6.5 Numerical examples
	6.5.1 Square box
	6.5.2 Parabolic reflector

	6.6 Conclusions

	7 Summary and Conclusions
	Bibliography
	Appendix
	Vita

