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Abstract

Path-Integral Monte Carlo Worm Algorithm is one of many Quantum Monte Carlo

(QMC) methods that serve as powerful tools for the simulation of quantum many-

body systems. Developed in the late 90’s, this algorithm has been used with great

success to study a wide array of physical models where exact calculation of observables

is not possible due to the exponential size of the Hilbert space. One type of systems

that have eluded PIMC-WA implementation are lattice models at zero temperature,

which are of relevance in experimental settings, such as in optical lattices of ultra-

cold atoms. In this thesis, we develop a PIMC Worm Algorithm for the simulation

of interacting bosonic lattices at zero temperature. The algorithm is benchmarked

with exact diagonalization by computing conventional estimators, such as kinetic

and potential energies, and also quantum entanglement estimators. We implement

our algorithm to numerically confirm new finite-size scaling forms that we derive for

various entanglement measures, such as the operationally accessible, and symmetry-

resolved Rényi entropies in the Bose-Hubbard model. We finalize by introducing a

method for the direct sampling of two dimensional truncated exponential distribution

for the reduction of autocorrelation times, an example of the algorithmic development

that will be needed moving forward to expand the applicability of our algorithm to

even more complex systems.
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3.8 Finite-size scaling of the second Rényi Entropy in a square lattice of size

M = 32× 32 at unit-filling for various subregion sizes. The subregions

are made up of lattice sites arranged as squares of linear sizes ` =

1, 2, . . . , 20. The entanglement is seen to increase linearly with the

boundary of the subregion. The data is fit to a linear model with

a sub-leading correction term that is logarithmic in `, as shown in

Eq. (3.35), yielding a ≈ 0.2, b ≈ 0.5, and c ≈ −0.6. The interaction

strength was fixed to a value near the 2D critical point. The inset

shows a plot of S2 minus the leading term in Eq. (3.35), exposing the

logarithmic dependence in ` of the subleading term. . . . . . . . . . . 87

3.9 β-scaling of the accessible entanglement Sacc
2 in a 1D chain of L = 8

sites at unit-filling under equal bipartition of size ` = 4. In contrast to
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Chapter 1

Introduction

1.1 Quantum entanglement

An entangled quantum many body system exhibits non-classical correlations between

its constituents. Formally, a system partitioned into two subregions A and B is

entangled if it’s wavefunction cannot be factored into a tensor product of the subregion

states:

|Ψ〉 6= |ΨA〉 ⊗ |ΨB〉, (1.1)

where |Ψ〉 is the state of the system, which exists in a tensor product Hilbert Space

of the two subregions: |Ψ〉 ∈ H = A⊗B.

In the entanglement literature, the system is most commonly partitioned into

contiguous spatial subregions, but other types of partitions can be chosen, such

as subsets of particles [3, 5–7]. Focus will be given to the case of entanglement

under a spatial bipartition into subsystems A, comprised of m lattice sites and a

complementary subregion B, with the remaining M − m sites. Under this type

of partition, states are represented in second quantization, where a state |Ψ〉 =

|n1〉 ⊗ |n2〉 · · · ⊗ |nN〉 is characterized by the set of occupation numbers on each site.

In an entangled system, performing a measurement in A, in general gives

information about subregion B. This information gain can be quantified via
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von Neumann and Rényi entanglement entropies, which are quantum information

theory analogs of the Shannon and Rényi entropies from classical information

theory. The degree of entanglement between subsystems is proportional to these

entanglement entropies. In the next section, information measures relevant to

quantum entanglement quantification are reviewed after discussing the classical

Shannon entropy for intuition.

1.2 Information measures

The probabilistic nature of quantum mechanics make it ideal for the application of

information measures. Moreover, these information measures can be directly used for

entanglement quantification. In this section, we give an overview of some information

measures from classical and quantum information theory. To build intuition, first the

Shannon entropy is introduced and an example is worked out to illustrate how much

information is gained from the outcome of a simple classical probabilistic event, a

coin flip. Then, we introduce the von Neumann entropy and the Rényi entanglement

entropies used for quantification of entanglement.

1.2.1 Classical Shannon entropy

The Shannon entropy gives the average amount of information gained from an event

in which the possible outcomes occur according to some probability distribution. It

is defined as:

S = −
∑
i

pi logb pi, (1.2)

where the sum is carried over all possible outcomes and pi is the probability of outcome

i, with pi > 0. The base b can be chosen arbitrarily depending on the context, but we

will use e such that logb → ln for the remainder of this work. To give some intuition

about how information gain can be estimated with Eq. (1.2), consider a regular coin

flip. Disregarding all physical effects that could bias the outcome, heads or tails
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randomly occur with equal probability, 1/2. Since there is no bias towards any of the

two possible outcomes of the coin flip, the information gain should be maximal. The

Shannon entropy for this case is:

S = −1

2
ln

1

2
− 1

2
ln

1

2

= ln 2

S ≈ 0.69 . . .

Now, consider a coin weighted such that it is more likely to land heads than tails.

For the sake of this example, heads shall occur with probability 2/3 and tails with

1/3. Since heads is now twice as likely to occur, more certainty about the outcome is

known before the coin flip and thus the information gain must now be less. Shannon

entropy gives:

S = −2

3
ln

2

3
− 1

3
ln

1

3

S ≈ 0.64 . . .

In Fig. 1.1, the Shannon entropy for the weighted coin flip example is plotted as a

function of the probability of landing heads. For both the case where the probability

of landing heads is low or that it is high, there is more certainty about the coin flip’s

outcome. When it is low, it is known with high certainty that the coin will probably

land tails, and hence the information gained is low. Similarly, when there is high

probability of landing heads, there is no much information gained, and once again

the entropy is low. In the case of a fair coin, where both sides have probability 1/2,

there is the most uncertainty of the outcome and thus the Shannon entropy reaches

a maximum. Notice the symmetry of the Shannon entropy about probability 1/2,

denoted by the vertical line.
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Figure 1.1: Shannon entropy for the coin flip example as a function of the probability
of landing heads. At the extreme cases where the probability is either zero or 1, there is
complete certainty of the coin flip outcome, and hence the Shannon entropy vanishes.
Maximum uncertainty about the outcome occurs when there is equal probability,
1/2, of landing either side, and the Shannon entropy thus reaches a maximum. The
entropy is symmetrical about the dashed vertical line denoting probability 1/2.
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In an entangled system, entanglement entropies behave similarly in that they

quantify the information gained about the state of one of the system’s partitions after

performing a measurement in the other. Now with the intuition obtained from this

classical example, the quantum information theory analog of the Shannon entropy,

the von Neumann entropy, will be presented.

1.2.2 von Neumann entropy

From the Shannon entropy example, notice that the probabilities of random events

occurring had to be known. In a quantum many-body system, the probabilities of

system configurations are encoded in its reduced density matrix, ρA, obtained by

tracing out the degrees of freedom in subregion B from the full density matrix, ρ:

ρA = TrB ρ =
∑
b

〈ψb|Ψ|ψb〉, (1.3)

where the sum is carried over all possible B states, ψb, and the full density matrix is:

ρ = |Ψ〉〈Ψ|, (1.4)

where |Ψ〉 is the state of the system, defined in a tensor product Hilbert Space of

the two subregions: |Ψ〉 ∈ H = A ⊗ B. Normalization ensures that the trace of

the density matrix is unity, Tr ρ = 1. The von Neumann entropy quantifies the

information gained about subsystem B by performing a measurement on subsystem

A and is defined as:

SvN = −Tr ρA ln ρA. (1.5)

The density matrix can be obtained via exact diagonalization of the ground state

Hamiltonian, but due to the exponentially large size of the Hilbert space, memory

requirements also grow exponentially, limiting system sizes. Entanglement can be
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calculated for larger systems in Quantum Monte Carlo (QMC) methods via the Rényi

entanglement entropy (EE).

1.2.3 Rényi entanglement entropy

In QMC [1, 7–17] and even experimentally [18–20], entanglement can be computed

via the Rényi entanglement entropy:

Sα(ρA) =
1

1− α ln Tr ραA, (1.6)

where α is the Rényi index. In the limit α → 1, we can show that the Rényi EE

becomes the von Neumann entropy:

lim
α→1

Sα(ρA) = lim
α→1

1

1− α ln Tr ραA, (1.7)

The trace of the reduced density matrix is unity, Tr ρA = 1, which means that taking

the limit α→ 1 will give an indeterminate form 0/0. Instead, apply L’Hopital’s rule:

lim
α→1

Sα(ρA)
(H)
= − lim

α→1

d

dα
ln Tr ραA

= − lim
α→1

d
dα

Tr ραA
Tr ραA

= − lim
α→1

Tr
d
dα
ραA

Tr ραA

= − lim
α→1

Tr
ραA ln ρA
Tr ραA

= −Tr
ρA ln ρA
Tr ρA

lim
α→1

Sα(ρA) = −Tr (ρA ln ρA) = SvN(ρA). (1.8)

In QMC methods, the second Rényi EE, S2 = −Tr ρ2
A, can be measured by writing the

purity, Tr ρ2
A, as the expectation value of a unitary SWAPA operator that exchanges

the state of A subregions between two identical replicas of a system, SWAPA |a1, b1〉⊗
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|a2, b2〉 = |a2, b1〉 ⊗ |a1, b2〉 [8]:

S2(ρA) = − ln Tr ρ2
A = − ln〈SWAPA〉. (1.9)

The density matrix cannot be directly accessed in QMC, but 〈SWAPA〉 can be

sampled. In principle, higher integer Rényi indices can also be sampled in QMC,

but α identical copies of the system are needed, which is computationally expensive.

We will focus on the case of α = 2, where only two copies of the system are needed.

1.2.4 Accessible Entanglement

Superselection rules (SSR), such as particle number, charge, or spin conservation

restrict the amount of entanglement that is accessible as a resource for quantum

information processing [21, 22]. Local operations on the state are limited to those

that do not violate the global SSR.

As a simple, yet illustrative example, consider a system of one particle confined to

two spatial modes A and B corresponding to site occupations, that conserves global

particle number N = 1. For the state |Ψ〉 = (|1〉A ⊗ |0〉B + |0〉A ⊗ |1〉B)resource /
√

2,

the von Neumann entropy, Eq. (1.5), gives that S1 = ln 2. We can in principle try

to transfer the entanglement from this state (resource) into an unentangled register,

|0, 0〉register, by acting with local operators SWAPA and SWAPB , which exchange the

modes in the A or B subregions, respectively, between register and resource:

SWAPA |φ〉A,register ⊗ |ψ〉A,resource = |ψ〉A,register ⊗ |φ〉A,resource , (1.10)

but this in general can violate the particle number SSR:

SWAPASWAPB |0, 0〉register ⊗ (|1, 0〉+ |0, 1〉)resource

= (|1, 0〉+ |0, 1〉)register ⊗ |0, 0〉resource︸ ︷︷ ︸
N 6=1;SSR violated

.
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In the entanglement transfer protocol described above, local operations resulted

in an apparently entangled register, albeit at the cost of violating total particle

number, which is not physically possible. Local operations will result in the accessible

entanglement being less or equal to the full entanglement.

In Ref. [21], it was shown that the maximal amount of entanglement transferrable

as a resource for quantum for information processing can be computed by averaging

the von Neumann entropy over sectors of fixed local particle, n, in subregion A:

Sacc
1 (ρA) =

∑
n

PnS1(ρAn), (1.11)

where Pn is the probability of having n particles in subregion A, and ρAn is the

reduced density matrix of A projected onto the subspace of fixed local particle n:

ρAn =
ΠnρAΠn

Pn
, (1.12)

with Πn the projection operator onto the n subspace. In Ref [22], the accessible

entanglement entropy was generalized to the case of arbitrary Rényi EE:

Sacc
α (ρA) =

α

1− α ln

[∑
n

Pne
1−α
α
Sα,(ρAn )

]
, (1.13)

which becomes Sacc
1 in the limit α → 1. The quantity, Sα(ρAn), is known as the

symmetry-resolved entanglement entropy of sector n. In this thesis, we introduce

a novel QMC algorithm with the goal of investigating the entanglement properties

(Rényi, accessible, and symmetry-resolved) of an experimentally relevant model of

interacting bosons on a lattice, the Bose-Hubbard model.
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1.3 Bose-Hubbard Model

The Bose-Hubbard model describes interacting itinerant bosons on a lattice and it is

defined as [23]:

H = −t
∑
〈i,j〉

b†ibj +
U

2

∑
i

ni(ni − 1)− µ
∑
i

ni , (1.14)

where t is the tunneling between neighboring lattice sites 〈i, j〉, U > 0 is a

repulsive interaction potential, µ is the chemical potential, and b†i (bi ) are bosonic

creation(annhilation) operators on site i, satisfying the commutation relation:[
bi , b

†
j

]
= δi,j, with ni = b†ibi the local number operator.

A schematic of the phase diagram of the one dimensional Bose-Hubbard model is

shown in Fig. 1.2. At strong interaction strength, U/t� 1, the system is in the Mott

insulating phase, where bosons are highly localized and, in the case of unit filling,

which will be our focus, they repel each other resulting in a particle occupancy of unity

on each lattice site. At weak interaction strengths, the system is a superfluid, where

bosons are highly non-localized. The insulating-superfluid quantum phase transition

is of the Berezinskii–Kosterlitz–Thouless (BKT) type, with its precise location being

a subject of numerous research studies [24–39], with most recent estimates placing its

value at U/t ' 3.3.

We will choose the basis states spanning the Hilbert space to be the set of Fock

states, or number occupation states:

|α〉 =
∣∣nα0 , nα1 . . . , nαM−1

〉
(1.15)

where nαi is the number of bosons on site i for the configuration α and M = Ld is the

total number of sites in a d-dimensional hypercubic lattice.
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Mott InsulatorSuperfluid
Transition Range

Figure 1.2: Schematic of the 1d Bose-Hubbard model phase diagram. At large
interaction strengths, U � 1, the model is in the Mott insulating phase, where
bosons strongly repel each other, which in the case of unit-filling, L = N , results in
one particle on each site. At weak interaction strengths, the model is in the superfluid
phase, where particles are highly non-localized. The superfluid-insulating quantum
phase transition occurs at a value of the interaction strength estimated to be in the
range U/t ' 3.3.
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In this basis, the kinetic term of the Hamiltonian in is off-diagonal, and the

interaction and chemical potential terms constitute are diagonal:

H0 ≡
U

2

∑
i

ni(ni − 1)− µ
∑
i

ni (1.16)

H1 ≡ −t
∑
〈i,j〉

b†ibj . (1.17)

Explicit expressions for matrix elements in this basis can be obtained, which yield:

εα ≡ 〈α|H0 |α〉 =
U

2

∑
i

nαi (nαi − 1)− µ
∑
i

nαi (1.18)

Hα′,α
1 ≡ 〈α′|H1 |α〉 = −t

∑
〈i,j〉

√
nαj (nαi + 1)δnα′i ,nαi +1δnα′j ,nαj −1

∏
k 6∈{i,j}

δnα′k ,nαk
. (1.19)

In Chapters 2 and 3, we will develop a Path Integral Ground State (PIGS) Monte

Carlo QMC algorithm for lattice bosons at zero temperature (T = 0) that will allow

for the simulation of Bose-Hubbard lattices and the computation of Rényi, accessible,

and symmetrt-resolved entanglement entropies.

1.4 Numerical computation of entanglement

The size of the Hilbert Space grows exponentially with system size. This makes the

density matrix too large for analytical calculation except for small and trivial systems.

Computational methods instead are employed for the calculation of entanglement

entropies, the most ubiquitous being exact diagonalization (ED) [3, 40–43], density

matrix renormalization group (DMRG) [44–48], and quantum Monte Carlo (QMC)

[1, 7–17].

ED is a powerful numerical tool which, among other applications, allows for

numerically exact results for the entanglement entropies across the phase diagram

of the Bose-Hubbard model. The main limitation of this method is that due to

the exponentially large size of the Hilbert Space, building and diagonalizing the
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Hamiltonian also requires an exponentially large amount of memory. In Fig. 1.3,

the size of the ground state Hamiltonian is shown as a function of system size, M ,

in the Bose-Hubbard model at unit filling, M = Ld = N . The size of the Hilbert

Space grows as DHil = (N + M − 1)!/N !(M − 1)! and exact diagonalization of the

Hamiltonian takes memory space on the order ofO(D2
Hil) [49], quickly making memory

requirements too large even for relatively small systems. Systems such as the largest

one shown in the figure, M = 32, with DHil ≈ 1017 are clearly intractable with

ED. Nevertheless, such a system can easily be studied using our novel lattice PIGS

algorithm. In this thesis, systems as large as M = 1032 at unit filling, and in two

dimensions, will be shown (Chapter 3).

To the best of our knowledge, the most state of the art ED calculation in the

Bose-Hubbard model relies on the representation of the Hilbert Space using an integer

basis to drastically reduce memory requirements [41]. With this astute integer basis

representation, ED has been used to calculate the Rényi spatial EE and accesible

EE exactly in any regime of the phase diagram of the 1d Bose-Hubbard model in

systems of up to N = 20 bosons at unit-filling, L = N , bipartitioned into ` = dL/2e
sites, where f(x) = dxe is the least-integer or ceiling function [41], with the required

memory being less than 1.5 terabytes (TB).

DMRG methods allow for the computation of entanglement for large systems sizes.

Due to the exponentially large size of the Hilbert space, the degrees of freedom are

truncated in practice in order to obtain the DMRG representation of the ground state

[45]. For the Bose-Hubbard model, it is common to work in the particle occupation

basis, where the Hilbert space is truncated by enforcing an upper limit, nmax, on the

on-site particle number [24, 50]. The validity of this truncation can be judged by

computing conventional observables, such as the ground state energy. It has been

seen that for quantities that are highly dependent of particle number fluctuations,

such as entanglement measures, large errors occur in regimes where these particle

fluctuations are large [41].
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These errors thus hinder the capability of DMRG for entanglement entropy

computation inside the superfluid phase of the Bose-Hubbard model, where particle

fluctuations are large. In order to study larger systems and at any interaction strength

value of the Bose-Hubbard model, quantum Monte Carlo (QMC) methods need to be

employed.

1.4.1 Monte Carlo (MC)

Monte Carlo methods are a set of numerical algorithms that rely on repeatedly

sampling random numbers to obtain the solution of physical and mathematical

problems, typically the approximation of a complicated sum or integral. To develop

some intuition, consider the case of performing a high-dimensional integration:

I =

∫
dxF (x), (1.20)

where F (x) is a generic high-dimensional function of the vector x. Without loss of

generality, F (x) can be factored into the product of a probability density, π(x), and

a function f(x) = F (x)/π(x) and the integral becomes:

I =

∫
dxf(x)π(x) ≡ 〈f(x)〉, (1.21)

where 〈. . . 〉 denotes an expectation value. For a large number of random samples,

Nsamples � 1, the value of the integral can be estimated as:

〈f(x)〉 ≈ 1

Nsamples

Nsamples∑
i=1

f(xi), (1.22)

where the random samples, f(xi), are drawn according to the probability density

π(x). Monte Carlo expectation values also possess an associated variance, σ2 =

〈f 2(x)〉−〈f(x)〉2, from which the error bars can be computed. Different methods are

used to compute the error bars, such as jacknife, bootstrap and binning analysis.
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Ref [51] provides an excellent introduction to error bar estimation using various

methods. The variance of a Monte Carlo expectation value decreases with the

number of samples as σ2 ∼ 1/
√
Nsamples [51, 52], and thus in the asymptotic limit,

Nsamples →∞, the expectation value becomes exact.

Even though direct methods exist for the direct sampling of random samples from

the probability density, π(x) [2, 53], it is not always possible to do so in general.

Instead, schemes to indirectly sample the desired probability density are needed.

These are known as Markov Chains. To ensure convergence of π(x), the Markov

Chain must satisfy two conditions. First, an equilibrium probability density πeq(x)

needs to exist. A sufficient, but not necessary condition to satisfy this stationarity

is via the Principle of Detailed Balance [53]. That is, that the number of times in

the Markov process that the transition x→ x′ occurs, must be equal to the number

of times that the transition x′ → x occurs. This statement can be mathematically

posed as:

π(x)T (x→ x′) = π(x′)T (x′ → x), (1.23)

where π(x) is the probability density function of the configurations and T (x → x′)

is the transition probability from x → x′. The second condition that needs to be

satisfied is that of ergodicity. This means that in an infinitely long Markov Chain,

every possible configuration should be generated in an aperiodic way. The set of

updates that can satisfy this ergodicity will depend on the specific Monte Carlo

algorithm and configuration space.

1.4.2 Metropolis-Hastings Sampling

An ubiquitous sampling algorithm that is employed in Monte Carlo simulations that

satisfies detailed balance is Metropolis Sampling [54]. In Metropolis Sampling, any

probability density function can be sampled, as long as a function is known that is

proportional to it:

W (x) ∝ π(x) = π(x)/Z, (1.24)
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where Z is the normalization constant of the stationary distribution, π(x). The

computation of the normalization Z is often difficult as the size of the configuration

space increases, but thanks to the Metropolis-Hastings algorithm, computing Z is not

needed since it will cancel out when setting up the Detailed Balance condition. First,

proceed by factoring the transition probability into a product of an a priori sampling

probability, P (x→ x′) and an acceptance probability, A(x→ x′):

T (x→ x′) = A(x→ x′)P (x→ x′). (1.25)

Substituting these factorized transition probabilities and also W (x) = π(x)/Z into

Eq. (1.23), the Detailed Balance condition becomes:

W (x)

Z A(x→ x′)P (x→ x′) =
W (x′)

Z A(x′ → x)P (x′ → x). (1.26)

Notice that by replacing the stationary distribution with proportional functions led

to the cancellation of the normalization constants, Z.

In Metropolis-Hastings sampling, a transition x → x′ will be accepted by

drawing a uniformly distributed random number, r ∼ U(0, 1), and comparing to the

acceptance ratio, R. If r < R, then the transition occurs. Otherwise, the transition

is rejected and the system stays in the same configuration.

1.4.3 Quantum Monte Carlo (QMC)

At the interface of Quantum Mechanics and Monte Carlo simulation are Quantum

Monte Carlo Methods (QMC) methods. These methods provide a way to simulate

quantum systems and estimate expectation values of observables and other physical

quantities of interest, such as entanglement entropies, without the need to diagonalize

the exponentially large Hamiltonian. There is a zoo of QMC methods, some of

them being Variational Monte Carlo, Diffusion Monte Carlo, Reptation Monte Carlo,
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Gaussian quantum Monte Carlo, Path Integral Monte Carlo, Path Integral Ground

State Monte Carlo, among others.

Recall from Eq. (1.9) that the second or higher integer (i.e, α ≥ 2;α ∈ Z) Rényi

EE’s can be sampled in QMC by rewriting these in terms of the expectation value

of the SWAPA, which can be estimated in simulations performed on a replicated

configuration space [8].

Before starting work on this thesis project, QMC methods existed that allowed for

the computation of entanglement in many different bosonic or fermionic, and discrete

or continuous physical systems [7–9, 11, 12], but there was still an absence of a zero

temperature QMC algorithm for the simulation of soft core interacting bosonic lattice

models. Our choice of QMC method to fill this algorithmic gap was a special case

of the Path Integral Monte Carlo (PIMC) for the simulation of T = 0 systems, Path

Integral Ground State quantum Monte Carlo, or PIGS.

PIGS utilizes the projection of a trial wave function in imaginary time to obtain

stochastically exact results for the ground state of a quantum many-body system:

|Ψ0〉 ∝ e−βH |ΨT 〉 , (1.27)

where e−βH is the density operator and the projection becomes exact in the limit of

infinitely large powers of it. PIGS has been previously formulated in first quantization

for non-relativistic Hamiltonians in the spatial continuum [55, 56] and in second

quantization on a lattice at finite temperature [57–60].

The configuration space in the PIGS algorithm is a set of paths that extend

in the imaginary and spatial directions, known as worldlines. The set of worldline

configurations can be sampled via Worm Algorithm updates [57, 61]. The so called

worm in the Worm Algorithm is formally inserted into the worldline configurations

by creating a particle, via a bosonic creation operator, at an imaginary time, then

destroying a particle at a later imaginary time, via a bosonic annihilation operator.

The worm has been shown to result improved dynamics in PIMC and allows this
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algorithm to also operate in the grand canonical ensemble [57, 61]. In Chapter 2,

we introduce a novel set of ergodic worm updates that allows for the simulation of

bosonic lattices at T = 0, where the breaking of imaginary time translational variance

results in a new topology of the worldline space and traditional, T > 0, worm updates

do not suffice to satisfy ergodicity.

State of the art, large scale PIGS in the continuum has allowed for the study of

the entanglement properties, including confirmation of an entanglement area law [62],

in 3d space for superfluid 4He [10]. Similar investigations of entanglement properties,

such as its finite size scaling are now possible in the Bose-Hubbard model thanks to

our new lattice PIGS algorithm.

1.5 Entanglement scaling

The information shared between partitions of an entangled quantum many-body

system can only be shared across their boundary. With entanglement entropies

being measures of information, these quantities then depend directly on the size

of this boundary. Many, but not all, quantum many-body systems systems obey an

entanglement area law [10, 62–64]; that is, that the entanglement grows proportionally

to the area of the boundary between subregions, S2 ∼ `d−1, where d is the spatial

dimension of the system and ` the linear size of the boundary. Area laws where first

observed by Bekenstein and Hawking in the context of the entropy of black holes

[65–67].

Sub-leading terms of the entanglement finite-size scaling can encode universal

numbers. For example, in the 2d Bose-Hubbard model, the second Rényi EE scales

as:

S2(`) = a`+ b ln `+ c, (1.28)
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where a, b, and c, fit parameters. The subleading logarithmic correction b and constant

c have been shown to contain universal information about the number of Goldstone

modes and central charge underlying the conformal field theory [67–72].

In 1d systems where the continuum limit is described by a conformal field theory,

Rényi entanglement entropies scale logarithmically with subsystem size [73, 74]:

Sα(ρA) ∼ c

6
(1 +

1

α
) ln `, (1.29)

where α is the Rényi index, c is the central charge underlying the CFT, and ` is the

subsystem size. This result has been confirmed numerically and it has been shown

that in the superfluid phase of the Bose-Hubbard model, the central charge is c = 1

[75], due to equivalence between superfluids and Tomonaga Luttinger Liquids [4]. As

a preview of the capabilities of the lattice PIGS algorithm that will be introduced in

this thesis, in Fig. 1.4 we show data obtained with it for the second Rényi EE as a

function of the natural logarithm of the subsystem cordlength. The subsystem size

` is replaced by the cordlength to account for distances measured on a ring (i.e, 1d

chain with periodic boundary conditions). The entanglement data is then fitted to

Eq. (1.29) with α = 2, with an additive constant:

S2 =
c

4
lnD(`) + const. (1.30)

The results in Fig. 1.4 already illustrate several of the strengths of our novel lattice

PIGS algorithm. First, the system, which consists of N = 64 particles at unit filling,

L = N , is much larger than what would be possible with ED. Second, the central

charge c = 1 was reliably extracted from the fit. And third, that the simulation

works for phases of the Bose-Hubbard model with large particle fluctuations, such

as the superfluid phase. In this phase, DMRG error is large for expectation values

that depend strongly on particle fluctuations [41], due to to the truncation of the on-

site particle number. Here, only interaction strengths representative of the superfluid
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phase, U/t = 2.0, and near the phase transition, U/t = 3.3, are shown. In Chapter 2,

S2 is computed as a function of interaction strength for all phases of the Bose-Hubbard

model in a chain of N = 256 bosons at unit-filling, with the results resembling the

ones obtained from an experiment done in an optical lattice of four 87Rb atoms [18].

1.6 Accessible and Symmetry-Resolved Entangle-

ment Scaling

For the accessible entanglement entropy, there was still no known finite size scaling

form, to the best of our knowledge. In Ref. [42], it was seen that the difference between

the full and accessible entanglement entropy, Sα−Sacc
α , could be related to the variance

of the local particle number distribution in the subsystem, σ2 = F = 〈n〉2 − 〈n2〉, for

systems in which this distribution is Gaussian:

Sα − Sacc
α =

1

2
lnσ2 +

1

2
ln
[
2πα1/α−1

]
. (1.31)

The local particle number variance, or bipartite fluctuations, have been previously

used as an entanglement-like measure and for the detection of quantum critical points

[39, 76, 77] and in 1d systems it has been found that they scale logarithmically with

subsystem size:

F(`) ≡ 〈n〉2 − 〈n2〉 ∼ K

π2
ln(`), (1.32)

where K is the Luttinger liquid parameter [4]. We propose and show in Chapter 4

that the relationships between the entanglement difference shown above and the

finite-size scaling fluctuations can be combined to obtain finite-size scaling forms

for the operationally accessible entanglement entropy in 1d systems with Gaussian

local particle number probability distribution.
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For the symmetry-resolved EE, the finite-size scaling has been previously obtained

in a calculation employing the replica trick and twist-field operators in the spin-

1
2
−XXZ chain [78]. In Chapter 4, it is shown that this finite-size scaling can also be

obtained from entanglement and bipartite fluctuations in 1d systems with Gaussian

probability distribution. The scaling is seen to exhibit the property of entropy

equipartition; that the scaling with subsystem size is independent of symmetry-

resolved sector (i.e, local particle number sector) [78, 79].

Our novel lattice PIGS algorithm provides a tool to numerically confirm the

obtained scaling forms. With it, we are able to compute the accessible entanglement

in the 1d Bose-Hubbard model for N = 64 bosons at unit-filling, L = N , beyond the

reach of exact diagonalization. These PIGS results for the accessible and symmetry-

resolved entanglement scaling are obtained for an interaction strength value near the

superfluid-insulating phase transition, and at a weaker interaction strength, deeper

into the superfluid phase where DMRG has been seen to have large error due to

the truncation of maximum on-site particle number in this phase where particle

fluctuations are large [41].

1.7 Thesis contributions

A summary of the most important contributions of this thesis include: (1) the

introduction of the ground state PIGSFLI algorithm. (2) the associated open source

code base [80], (3) new estimators for the efficient measurement of Rényi entanglement

entropies within the lattice path integral framework. (4) Results for the spatial

entanglement entropy in the 1D and 2D Bose-Hubbard model both at the quantum

critical point, and across the superfluid-insulator phase diagram for much larger

system sizes than had been previously studied, and without any local restrictions on

bosonic site occupations. (5) A finite size scaling analysis of subleading corrections

near the 2D superfluid-insulator quantum critical point which can encode universal

properties of the interacting system.

21



0.0 0.5 1.0 1.5 2.0 2.5 3.0

lnD(`)

0.8

1.0

1.2

1.4

1.6

S
2
(`

)

L = N = 64

c = 0.995± 0.003

c = 1.012± 0.001

U/t = 2.0

U/t = 3.3

Figure 1.4: Second Rényi entanglement entropy scaling with subsystem cordlength
in the 1d Bose-Hubbard model. The system consists of L = 64 sites at unit filling
at interaction strengths U/t = 3.3, near the superfluid-insulating quantum critical
point and U/t = 2, deeper into superfluid phase. The data points were obtained
from PIMC and are fitted to Eq. (1.30), shown as a solid line. The estimated central
charge for each curve is shown as an annotation, agreeing with the CFT prediction,
c = 1.
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(6) Particle number distributions and symmetry resolved entanglement in the

superfluid, critical, and Mott insulating regimes of the 1D Bose-Hubbard model,

where a strong dependence of the symmetry resolved entanglement with respect to

the local particle number is interpreted in terms of interactions between quasiparticles.

(7) Derivation and numerical confirmation of finite size scaling of accessible and

symmetry-resolved entanglement in one dimensional systems with Gaussian local

particle number distribution. (8) The introduction of a method for the direct

sampling of 2d truncated exponential distributions that results in the reduction of

autocorrelation times in lattice PIMC data.

We believe that the new algorithm has wide utility in the measurement and

quantification of quantum correlations in bosonic lattice models and can be extended

to model current and next-generation experiments on lattice gases. The ability to

measure the symmetry resolved and operationally accessible entanglement in such

systems has direct implications for the exploitation of correlated superfluid and

insulating phases as entanglement resources for quantum information processing.

To facilitate the reproduction of results presented in this work, and to promote

further exploration using the PIGSFLI algorithm, the C++ source code has been

released [80]. The scripts used to process the raw Monte Carlo data [81, 82], along

with the processed data files and scripts used to generate most of the plots in this

thesis are also available in public repositories [83, 84].
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Chapter 2

Lattice PIGS

The advent of replica based methods in quantum many-body systems have provided

a route to measuring entanglement entropies – a quantification of the amount of

non-classical information shared between a bipartition of a pure state – without the

need to construct the full density matrix via full state tomography [73]. Instead, the

purity (related to the Rényi entanglement entropy) can be directly obtained via the

expectation value of a local observable that is accessible in experimental quantum

simulators based on ultra-cold lattice gases [20]. While the replica trick and its

related SWAP algorithm have been implemented in numerical quantum Monte Carlo

simulations to measure Rényi entropies at zero temperature [7, 8, 11, 17, 85] and

the associated mutual information for finite temperature mixed states [15, 86–88] in

many physical scenarios (e.g. localized spin systems, lattice fermions, and continuum

quantum fluids), they have yet to be extended to the case of fully itinerant and

indistinguishable softcore lattice bosons where experiments are presently possible [18,

19].

The bosonic Hamiltonians of relevance to these systems, both in the continuum

and on a lattice, can be exactly simulated without a sign problem in any dimension via

path integral Monte Carlo (PIMC) [55, 57, 61]. Of particular importance is the Worm

Algorithm [58, 61, 89–91], which expands the configuration space of d+1 dimensional
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worldlines to include discontinuous paths representing finite particle trajectories in

imaginary time. The imaginary-time dynamics of these worms improve ergodicity and

allow for the direct sampling of the bosonic Hilbert space at finite temperature [58, 92],

and open source packages implementing the algorithm are available [59, 60, 80]. At

zero temperature, PIMC has a projector variant known as path integral ground state

Monte Carlo (PIGS) that has been previously implemented for non-relativistic bosons

in the spatial continuum [56, 93], with other Monte Carlo methods inspired by the

PIGS formalism applied to spin models and fermionic lattices [94]. A continuous

imaginary time T = 0 variant of PIMC for lattice bosons has been elusive in the

literature. This algorithmic gap is relevant to the physical modeling of experiments

of ultracold atoms confined to optical lattices [95], where finite temperature PIMC

require an extrapolation in temperature to properly describe ground state properties

[96, 97], as well as the measurement of entanglement [18, 19] highlighted above.

In this thesis, we address both of these issues by introducing a zero temperature

worm algorithm projector lattice quantum Monte Carlo algorithm (PIGS For Lattice

Implementations or PIGSFLI) extending finite temperature PIMC to ground state

calculations [80] where the Rényi entanglement entropy can be computed. Its

domain of applicability includes any d-dimensional bosonic lattice Hamiltonian with

arbitrary range interactions and hopping and it scales linearly in the total number of

lattice sites (Ld) and the projection length β such that Monte Carlo updates in the

algorithm scale as O(βLd). The quantum Monte Carlo (QMC) method operates

in the Fock space of bosonic occupation vectors |n1, . . . , nLd〉 with projection to

the ground state proceeding from a trial state |ΨT 〉. Here, a physically motivated

choice for |ΨT 〉 can lead to a significant acceleration in algorithm convergence. In

practice, any ground state expectation value can be obtained to arbitrary precision

by performing simulations at different values of the imaginary time projection length

β and performing an exponential fit to extract the β →∞ result.

Working within an expanded configuration space consisting of α independent

copies of the imaginary time worldlines, the replica trick [73] is used to derive an

25



efficient estimator for the αth Rényi entanglement entropy using the SWAP algorithm

[8] adapted to bosonic Hilbert space. While the PIGSFLI algorithm naturally operates

in the grand canonical ensemble with the average filling fraction 〈n〉 = 〈N〉 /Ls

controlled by a chemical potential µ, by restricting updates that change the number of

particles away from a target value (N), the canonical ensemble can also be efficiently

simulated at T = 0. In this case, where the number of particles is fixed, the symmetry

resolved Rényi entanglement entropy [21, 22, 98] can be computed by projecting into

the subspace of fixed local particle number in a spatial subregion. This latter quantity

is important as it sets an upper bound on the amount of entanglement that could be

extracted from the many-body system and transferred to a qubit register via local

operations and classical communication (LOCC) [99].

The algorithm and proposed estimators are carefully benchmarked against exact

diagonalization results for the Bose-Hubbard model. We find that relative errors

of order 10−4 can be obtained for both the kinetic and potential energies and

for unconventional estimators like the Rényi entanglement entropies (both full and

symmetry resolved), errors as small as 10−3. Extrapolation to β → ∞ can be

performed using only a few finite β simulations with the largest value required

for a bias-free fit scaling with system size L. While in one spatial dimension, the

density matrix renormalization group (DMRG) can be used to obtain the spatial

entanglement entropy in this model [100], recent work suggests that the required

restriction of the local Hilbert space to a fixed number of bosons can lead to errors

in the symmetry resolved entanglement that grows logarithmically in the system size

for weak, but finite soft-core repulsion [41]. In two spatial dimensions, for lattice

sizes up to 1024 sites at the critical point between a superfluid and insulator, we

demonstrate a perimeter law, producing data that is suitable for the extraction of

logarithmic corrections which can provide information on the underlying gapless

excitations in the system. By exploiting relations between entanglement measures

and local particle number fluctuations, we derive finite-size scaling forms for the

accessible and symmetry-resolved entanglement entropies for one dimensional systems
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with Gaussian local particle number distribution. These new scaling forms are then

confirmed in systems of up to N = 64 bosons via PIGSFLI simulations near the

superfluid-insulating phase transition and for weaker interactions, deeper into the

superfluid phase.

2.1 Projection onto the Ground State

The ground state |Ψ0〉 of a quantum many-body system described by Hamiltonian H

can be obtained from a trial wavefunction |ΨT 〉 via projection in imaginary time:

|Ψ0〉 ∝ lim
β→∞

ρ(β/2) |ΨT 〉 , (2.1)

where ρ(β) = e−βH is the imaginary time propagator and β is the projection length

in imaginary time. Convergence is guaranteed provided 〈Ψ0|ΨT 〉 6= 0. We expand

the trial wavefunction in a complete orthonormal basis {|α〉} via complex expansion

coefficients Cα ≡ 〈α|ΨT 〉 ∈ C:

|ΨT 〉 =
∑
α

Cα |α〉 (2.2)

chosen to partially diagonalize the Hamiltonian:

H = H0 +H1 (2.3)

where

H0 |α〉 = εα |α〉 . (2.4)

In the interaction picture, ρ(β) can then be expressed as:

ρ(β) = e−βH0Tτe
−

∫ β
0 dτH1(τ) (2.5)
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where Tτ is the imaginary time-ordering operator and:

H1(τ) = eτH0H1e
−τH0 . (2.6)

The propagator thus admits the expansion:

ρ(β) = e−βH0

[
1−

∫ β

0

dτH1(τ) +
∞∑
Q=2

(−1)Q
Q∏
q=1

∫ τq+1

0

dτqH1(τq)

]
, (2.7)

where 1 is the identity operator, Q the expansion order, and imaginary times are

ordered such that τ0 ≡ 0 < τ1 < τ2 < · · · < τQ < τQ+1 ≡ β. Using Eq. (2.7), the

matrix elements of the propagator can be written as

ρ(α, α′; β) = 〈α′| e−βH |α 〉 =
∞∑
Q=0

ρ(Q)(α, α′; β) (2.8)

where superscripts denote the order of the term in the expansion. The zeroth-order

term reduces to:

ρ(0)(α, α′; β) = e−εα′β 〈α′|1 |α 〉 = e−εαβ. (2.9)

Similarly, the first-order term of Eq. (2.8) becomes:

ρ(1)(α, α′; β) = −
∫ β

0

dτe−εα′β 〈α′|H1(τ) |α 〉 = −
∫ β

0

dτe−εα′ (β−τ)e−εατHα′,α
1 (2.10)

where we have introduced the notation Hα′,α
1 ≡ 〈α′|H1|α〉 for the off-diagonal matrix

element. Finally, the second and higher-order terms can be simplified by inserting

appropriate resolutions of the identity:

ρ(2)(α, α′; β) =

∫ β

0

dτ2

∫ τ2

0

dτ1e
−εα′β 〈α′|H1(τ2)H1(τ1) |α〉

=
∑
α1

∫ β

0

dτ2

∫ τ2

0

dτ1e
−εα′ (β−τ2)e−εα1 (τ2−τ1)e−εατ1Hα′,α1

1 Hα1,α
1 . (2.11)

28



Examining the form of Eqs. (2.9), (2.10), and (2.11), we can write the general

expansion:

ρ(α0, αβ; β) =
∞∑
Q=0

∑
α1...αQ−1

∫
dτQ (−1)Qe−εα0τ1

Q∏
q=1

e−εαq (τq+1−τq)H
αq ,αq−1

1 (2.12)

with the assignment αQ ≡ αβ and τQ+1 ≡ β, and we have introduced the short-hand

notation: ∫
dτQ ≡

∫ τQ+1

0

dτQ

∫ τQ

0

dτQ−1· · ·
∫ τ2

0

dτ1 . (2.13)

In order to gain physical intuition about the form of the propagator in Eq. (2.12),

we will consider a specific model of bosons on a lattice that will allow us to compute

the explicit form of the matrix elements εα and Hα′,α
1 .

2.2 Bose-Hubbard Model

In this thesis, the algorithmic developments underlying PIGSFLI will be benchmarked

on the Bose-Hubbard model describing the dynamics of itinerant bosons on a lattice

[23]:

H = −t
∑
〈i,j〉

b†ibj +
U

2

∑
i

ni(ni − 1)− µ
∑
i

ni . (2.14)

Here, t is the tunneling between neighboring lattice sites 〈i, j〉, U > 0 is a

repulsive interaction potential, µ is the chemical potential, and b†i (bi ) are bosonic

creation(annhilation) operators on site i, satisfying the commutation relation:[
bi , b

†
j

]
= δi,j, with ni = b†ibi the local number operator. Since our simulations

will be performed in the canonical ensemble, µ is a simulation parameter, that we

set using the method described in Ref. [101] to improve efficiency by controlling the

average number of particles to be around the target value N . Appendix A shows µ

being updated in an example simulation.

29



For this model, it is natural to choose {|α〉} to be the Fock basis of bosonic number

occupation states where

|α〉 =
∣∣nα0 , nα1 . . . , nαM−1

〉
(2.15)

with nαi the number of bosons on site i for the configuration α and M = LD is the

total number of D-dimensional hypercubic lattice sites. Then, the kinetic term of

the Hamiltonian in Eq. (2.14) is off-diagonal, whereas the interaction and chemical

potential terms constitute the diagonal part:

H0 ≡
U

2

∑
i

ni(ni − 1)− µ
∑
i

ni (2.16)

H1 ≡ −t
∑
〈i,j〉

b†ibj . (2.17)

Expressing H0 and H1 in the Fock basis yields explicit expressions for the matrix

elements:

εα ≡ 〈α|H0 |α〉 =
U

2

∑
i

nαi (nαi − 1)− µ
∑
i

nαi (2.18)

Hα′,α
1 ≡ 〈α′|H1 |α〉 = −t

∑
〈i,j〉

√
nαj (nαi + 1)δnα′i ,nαi +1δnα′j ,nαj −1

∏
k 6∈{i,j}

δnα′k ,nαk
. (2.19)

The structure of Eq. (2.19) ensures that only those off-diagonal elements where |α′〉
and |α〉 differ by one particle hop between different sites will be non-vanishing.

2.3 Configuration Space

With access to a representation of the ground state wavefunction via the projection

method described in Section 2.1 we can now consider the measurement of ground
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state expectation values of a physical observable O in the path integral picture:

〈O〉0 ≡
〈Ψ0|O|Ψ0〉
〈Ψ0|Ψ0〉

=
1

Z0

lim
β→∞

∑
αβ ,α′′,α′,α0

C∗αβCα0
ρ(α′′, αβ; β/2) 〈α′′|O|α′〉 ρ(α′, α0; β/2) , (2.20)

where we have used the expansion of the trial wavefunction in Eq. (2.2). The

normalization Z0 can be written as:

Z0 ≡ 〈Ψ0|Ψ0〉 = lim
β→∞

∑
α0,αβ

C∗αβCα0
ρ(α0, αβ; β) = lim

β→∞

∑
Q,αQ

∫
dτQ W0(Q,αQ, τQ)

(2.21)

where we have used Eq. (2.12) to express the configurational weight:

W0(Q,αQ, τQ) ≡ C∗αβCα0
(−1)Qe−εα0τ1

Q∏
q=1

e−εαq (τq+1−τq)H
αq ,αq−1

1 (2.22)

with

αQ ≡ α0, α1, . . . , αQ−1, αβ, τQ ≡ τ1, τ2, . . . , τQ . (2.23)

We can interpret Eq. (2.21) as an infinite sum over all configurations of particle

worldlines connecting state |α0〉 at τ = 0 to |αβ〉 at τ = β, via ρ(α0, αβ; β), with each

configuration having statistical weight W0. This formulation can be contrasted with

the more commonly studied finite temperature picture where paths are periodic in

imaginary time. The expansion order Q in Eq. (2.21) corresponds to the number

of insertions of the off-diagonal operator H1 which (as discussed in Section 2.2)

changes the local occupation number of a site (a particle hop). These hops can be

diagramatically represented as kinks in otherwise straight particle worldlines. Fig. 2.1

shows an example of a worldline configuration for four bosonic particles on four lattice

sites.
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2.3.1 Off-Diagonal Configurations: Worms

A major algorithmic advance in path integral Monte Carlo was attained through the

extension of the diagonal configuration space described above to one that includes

non-continuous paths (worms), corresponding to insertions of the single particle

imaginary time Green function [57]. This technology has also been adapted to

continuous space methods [89, 92] and allows for improved sampling performance,

extending simulations to N ' 104 particles, as well as allowing for native operation

in the grand canonical ensemble. A worm is shown in red in Fig. 2.1.

Worms can be included in the configuration space through the addition of a source

term in the system Hamiltonian:

H = H0 +H1 → H0 +H1 +Hworm, (2.24)

where

Hworm = −η
∑
i

(b†i + bi ), (2.25)

with η the worm fugacity – a tunable parameter associated with the energetic cost

of inserting or removing a worm end that can only affect the sampling efficiency.

Appendix A shows η being updated in an example simulation.

Expectation values of physical observables are only accumulated from configura-

tions with no worms presents, however the configurational weight in Eq. (2.22) needs

to be modified:

W0(Q,αQ, τQ) = C∗αβCα0
(−1)Qe−εα0τ1

Q∏
q=1

e−εαq (τq+1−τq)(Hαq ,αq−1

1 +Hαq ,αq−1
worm

)
(2.26)

where the matrix elements of the source term Hα′,α
worm can be calculated explicitly in

the Fock basis:
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Figure 2.1: Example of a 4-site worldline configuration. Paths evolve in the direction
of imaginary time (vertical axis) and particles can hop between sites (horizontal axis).
Imaginary times at which the Fock state changes have been labeled on the left side
of the diagram and the corresponding states are shown to the right. Increasing line
thicknesses have been used to denote the addition of a particle to that path segment,
and a vertical dashed line indicates the absence of a particle. The segment on site
i = 0 extending from imaginary time τ3 to τ5, where a particle was spontaneously
created and annihilated later, is called a worm and it will be an integral part of our
algorithm. The lattice sites are subject to periodic boundary conditions, as illustrated
by the particle hopping from site i = 3 to i = 0 at imaginary time τ7.
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Hα′,α
worm = −η

∑
i

(
√
nαi + 1δnα′i ,nαi +1 +

√
nαi δnα′i ,nαi −1)

∏
k 6=i

δnα′k ,nαk
. (2.27)

2.4 Sampling

The Monte Carlo approach to estimating expectation values of observable as in

Eq. (2.20) proceeds by creating a Markov chain from worldline configurations

drawn according to the probability density function π(x) = W (x)/Z, where x ≡
{Q,αQ, τQ} such that the resulting infinite dimensional sum/integral can be recast

as an importance sampling problem. The stochastic rules for transitions having

probabilities T (x → x′) between configurations are independent of the history of

the trajectory in state space, and π represents the steady state distribution. This is

achieved through a set of (possibly pairs of) Monte Carlo updates satisfying detailed

balance where π(x)T (x → x′) = π(x′)T (x′ → x), as well as fulfilling an ergodicity

condition that all configurations are connected by a finite number of steps and there is

no periodicity. We factorize the transition probability T (x→ x′) = P (x→ x′)A(x→
x′) into the product of an a priori sampling distribution P (x→ x′) and an acceptance

probability A(x → x′). Combined with detailed balance, the Metropolis-Hastings

condition then leads to an expression for the acceptance ratio of a general Monte

Carlo update:
A(x→ x′)

A(x′ → x)
=
W (x′)P (x′ → x)

W (x)P (x→ x′)
≡ R (2.28)

In [57], the original set of Worm Algorithm updates for finite temperature were

introduced. For readers not familiar with them, they will be described in detail in

Section 2.5. After reviewing these finite temperature updates, we introduce a new set

of T = 0 updates that are required due to the breaking of imaginary time translational

invariance and the algorithm is then benchmarked on the 1D Bose-Hubbard model

in Section 2.7
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2.5 Original Finite Temperature Updates

In this section, we discuss the original set of worm algorithm updates. Traditionally,

these are posed in terms of only one of the worm ends, either the head or the tail. For

our T = 0, it will be necessary to implement all of these in order to satisfy ergodicity

in the new configuration space.

2.5.1 Insert/Delete worm (or antiworm)

Insert: The insert worm update creates a finite particle worldline on a single site

through the insertion of a creation operator at time τt and destruction operator at

τh within a flat region of imaginary time delimited by imaginary times τprev and τnext

where the particle number does not change. A worm has a tail located at τt and head

at τh and these times are subject to the constraint: τh > τt. This update is proposed

only if there are no worm ends already present in the configuration.

An antiworm can instead be inserted if the sampled time of the worm head is

smaller than the tail: τh < τt. This will first annihilate a particle and create one at a

later time inside the flat region. This is only possible if there is at least one particle

in the chosen flat region. Thus, if the sampled times correspond to an antiworm and

there are no particles in the flat region, the update is rejected. For simplicity, we’ll

refer to either of these two types of path discontinuities as a worm when describing

the updates. The insert worm update is illustrated in Fig. 2.2 and proceeds as follows:

0. Attempt update with probability pinsert. This is the bare probability of

attempting this move from amongst the entire pool of updates. Every other

update will have a similar bare attempt probability.

1. Randomly sample a flat region with probability 1/Nflats, where Nflats is the total

number of flat regions.

2. Randomly sample the worm head time τh ∈ [τprev, τnext) with probability

1/(τnext − τprev).
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Figure 2.2: Insert/Delete worm. A worm is inserted by first randomly sampling
imaginary times τt, τh inside an also randomly sampled flat interval, delimited by the
times τprev and τnext. A worm head and tail are then inserted at τh and τt, respectively.
ε and εw correspond to the eigenvalues of the diagonal part of the Hamiltonian for
Fock states |α〉 and |αw〉, respectively. The case of τh < τt is also valid and would
correspond to an antiworm insertion, in which case a particle is first deleted by the
worm head, then one created by the tail.
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3. Randomly sample the worm tail time τt ∈ [τprev, τnext) with probability 1/(τnext−
τprev). Reject update if τh < τt and there are no particles in the flat interval.

4. Calculate the diagonal energy difference ∆V ≡ εw − ε, where εw is the diagonal

energy of the segment of path inside the flat region with more particles, and ε

the diagonal energy in the segment with less particles.

5. Sample a random and uniformly distributed number r ∈ [0, 1).

6. Check,

If r < Rinsert, insert worm into worldline configuration.

Else, reject update and leave worldlines unchanged.

Delete: The complementary update of a worm insertion is a worm deletion, and it

proceeds as follows:

0. Attempt update with probability pdelete.

1. Calculate diagonal energy difference ∆V ≡ εw − ε.

2. Sample a random and uniformly distributed number r ∈ [0, 1).

3. Check,

If r < Rdelete, delete worm from worldline configuration.

Else, reject update and leave worldlines unchanged.

The constants Rinsert and Rdelete are the Metropolis acceptance ratios for the

complementary pair of insert worm and delete worm updates and are computed using

Eq. (2.28). Evaluating the configurational weights after and before worm insertion

according to Eq. (2.26) and taking their ratio gives:

Winsert

Wdelete

= η2nwe
−(εw−ε)(τh−τt) . (2.29)
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Here, nw is the number of particles in the path segment with the extra particle

(denoted by the subscript w), or the segment after the worm tail, and εw is the

diagonal energy also in this path segment.

The proposal probabilities are obtained by multiplying all the probabilities

associated with each step of the update’s decision process:

Pdelete

Pinsert

=
pdelete

pinsert

(τnext − τprev)2Nflats . (2.30)

The total acceptance ratio for the worm insertion update thus becomes:

Rinsert = η2nwe
−(εw−ε)(τh−τt)pdelete

pinsert

(τnext − τprev)2Nflats (2.31)

and for worm deletion, we have the reciprocal:

Rdelete =
1

Rinsert

. (2.32)

2.5.2 Advance/Recede

This update update can be proposed when there is at least one worm end (head/tail)

present. A worm end is selected randomly, then it is moved backward or forward in

the imaginary time direction. The update is illustrated in Fig. 2.3 and it proceeds as

follows:

0. Randomly choose to move worm head or tail. If there is only one end, choose

that one.

1. Depending on the worm end selected, sample a new worm end time τnew ∈
[τprev, τnext) from a truncated exponential distribution

p(τnew) =


εw−ε

1−e−(εw−ε)(τnext−τprev) e
−(εw−ε)(τnew−τprev) head

ε−εw
1−e−(ε−εw)(τnext−τprev) e

−(ε−εw)(τnew−τprev) tail.

(2.33)
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The reason to sample the new time of the chosen worm end from a truncated

exponential distributions is that the Metropolis acceptance ratio becomes unity

and the update is always accepted. This is because the ratio of weights for the

advance/recede update, as computed from Eq. (2.22), is either:

Wadvance

Wrecede

= e−(εw−ε)(τnew−τh) (2.34)

for advance/recede of a worm head and:

Wadvance

Wrecede

= e(εw−ε)(τnew−τt) (2.35)

for advance/recede of a worm tail. As for the proposal probabilities, they are

computed from Eq. (2.33). Taking the ratio of the truncated exponential distribution

p(τ) between the new and old imaginary times, we obtain a complete cancellation

and acceptance ratio for this update is just unity:

Radvance = Rrecede = 1. (2.36)

2.5.3 Insert/Delete kink before worm head

Worm ends can move to neighboring lattice sites by inserting a kink either before or

after them. The imaginary time interval at which the kink can be inserted is delimited

from above by the worm head itself and from below by the largest of the two lower

bounds of the relevant flat regions on both sites. We reject all updates that would

interfere with kinks on adjacent sites. The update is illustrated in Fig. 2.4, for the

case of a worm head. In the figure, the matrix element corresponding to the worm

end, in this case a head, is H
α′i,αi
worm = 〈α′i|Hworm |αi〉, where |αi〉 and |α′i〉 are the Fock

states preceding and following the worm head, when it is on site i (i.e, before the kink

is inserted). The matrix element H
α′j ,αj
worm =

〈
α′j
∣∣Hworm

∣∣αj〉 is defined analogously, but

for when the worm head is on site j (i.e, after the kink is inserted). The update
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Figure 2.3: Advance/Recede. Worm end is selected at random. It is then moved
to a randomly sampled time inside the flat interval. The diagram above illustrates
the example of advancing/receding a head in imaginary time. Either the worm head
or tail can be timeshifted.
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Figure 2.4: Insert/Delete kink before head. A kink is inserted between
neighboring sites i , j before the worm head at a randomly sampled time τkink ∈
[τmin, τh) and the head moved to the site where the particle hops to. The lower bound
of the sampling interval τmin is chosen to be the largest out of the two lower bounds
of the corresponding flat intervals. This ensures that the new kink does not interfere
with other kinks, which simplifies the implementation. The complementary update
is to delete the kink and move the head back to the site from where the particle is
hopping from.
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proceeds as follows:

Insert kink before head:

0. Attempt update with probability pinsertKinkBeforeHead.

1. Randomly sample a nearest neighbor j of site i where the head resides with

probability 1/Nnn, where Nnn is the number of nearest-neighbor sites.

2. Randomly sample an imaginary time τkink ∈ [τmin, τh) with probability 1/(τh −
τmin).

3. Compute the diagonal energy differences ∆Vi = εwi−ε and ∆Vi = εwj−ε, where

the i, j subscripts denote the source and destination sites of the kink.

4. Sample a random and uniformly distributed number r ∈ [0, 1).

5. Check,

If r < RinsertKinkBeforeHead, insert kink into worldline configuration

Else, reject update and leave worldlines unchanged

Delete kink before head:

0. Attempt update with probability pdeleteKinkBeforeHead.

1. Compute the diagonal energy differences ∆Vi = εwi − ε and ∆Vi = εwj − ε.

2. Sample a random and uniformly distributed number r ∈ [0, 1).

3. Check,

If r < RdeleteKinkBeforeHead, delete kink from worldline configuration.

Else, reject update and leave worldlines unchanged.
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The Metropolis acceptance ratio for inserting a kink before a worm head becomes:

RinsertKinkBeforeHead = tnwje
(∆Vi−∆Vj)(τh−τkink)pdeleteKinkBeforeHead

pinsertKinkBeforeHead

(τh − τmin)Nnn (2.37)

where nwj is the number of particles in the segment of site j with the extra particle.

τmin is the lower bound of the sampling interval, defined such that the update does

not interfere with other kinks. Out of the possible candidates for the lower bound

in sites i, j it is the largest time: τmin = max{τprev,i , τprev,j}. Other variations of

this update, in which kinks can be inserted after a head, before a tail, and after a

tail, will adapt the notational conventions introduced here. For the complementary

update of deleting the kink before the head, the Metropolis acceptance ratio is just

the reciprocal:

RdeleteKinkBeforeHead =
1

RinsertKinkBeforeHead

. (2.38)

2.5.4 Insert/Delete kink after worm head

A kink can also be inserted or deleted after the worm head. The update is illustrated in

Fig. 2.5. The randomly sampled imaginary time τkink is now in the interval [τh, τmax).

The maximum time is chosen as the smallest of the upper bounds on both sites, such

that the inserted kink does not interfere with other kinks: τmax = min{τnext,i, τnext,j}.
Other than the kink now being at a later imaginary time than where the head is,

the procedure is analogous to inserting/deleting a kink before head. The Metropolis

acceptance ratio for insertion of a kink after the head is:

RinsertKinkAfterHead = tnwje
(−∆Vi+∆Vj)(τkink−τh)pdeleteKinkAfterHead

pinsertKinkAfterHead

(τmax − τh)Nnn (2.39)

and for deletion of a kink after the head:

RdeleteKinkAfterHead =
1

RdeleteKinkAfterHead

. (2.40)
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Figure 2.5: Insert/Delete kink after head. A kink is inserted between
neighboring sites i , j after the worm head at a randomly sampled time τkink ∈ [τh, τmax)
and the head moved to the site where the particle hops to. The upper bound of the
sampling interval τmax is chosen to be the smallest out of the two upper bounds of
the corresponding flat intervals. This ensures that the new kink does not interfere
with other kinks, which simplifies the implementation. The complementary update
is to delete the kink and move the head back to the site from where the particle is
hopping from.
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2.5.5 Insert/Delete kink before worm tail

The update is illustrated in Fig. 2.6. The imaginary time of the kink is now sampled

such that τkink ∈ [τmin, τt). The Metropolis acceptance ratio is:

RinsertKinkBeforeTail = tnwje
(−∆Vi+∆Vj)(τt−τkink) pinsertKinkBeforeTail

pdeleteKinkBeforeTail

(τt − τmin)Nnn. (2.41)

2.5.6 Insert/Delete kink after worm tail

The update is illustrated in Fig. 2.7. The imaginary time of the kink is now sampled

such that τkink ∈ [τt, τmax). The Metropolis acceptance ratio is:

RinsertKinkAfterTail = tnwje
(∆Vi−∆Vj)(τkink−τt) pinsertKinkAfterTail

pdeleteKinkAfterTail

(τmax − τt)Nnn. (2.42)

The updates proposed in this section satisfy ergodicity at finite temperature.

However, the set of additional updates shown in Section 2.6 are required to satisfy

ergodicity at T = 0.

2.6 New updates for T = 0

At finite temperature, both the imaginary time and the spatial direction are subject

to periodic boundary conditions, resulting in configurations living on the surface of

a D + 1 dimensional hypertorus. However, at T = 0, only the spatial directions may

be periodic and configurations instead live on a cylinder of length β →∞. As such,

the minimum set of updates needed to allow the random walk to visit all worldline

configurations is different for T > 0 and T = 0 simulations. By proposing two new

complementary pairs of updates, ergodicity can be satisfied for paths defined on the

β-cylinder.
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Figure 2.6: Insert/Delete kink before tail. A kink is inserted between
neighboring sites i , j before the worm tail at a randomly sampled time τkink ∈ [τmin, τt)
and the tail moved to the site where the particle hops from. The lower bound of the
sampling interval τmin is chosen to be the largest out of the two lower bounds of the
corresponding flat intervals. This ensures that the new kink does not interfere with
other kinks, which simplifies the implementation. The complementary update is to
delete the kink and move the tail back to the site from where the particle is hopping
to.
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Figure 2.7: Insert/Delete kink after tail. A kink is inserted between neighboring
sites i , j after the worm tail at a randomly sampled time τkink ∈ [τt, τmax) and
the tail moved to the site where the particle hops from. The upper bound of the
sampling interval τmax is chosen to be the smallest out of the two upper bounds of the
corresponding flat intervals. This ensures that the new kink does not interfere with
other kinks, which simplifies the implementation. The complementary update is to
delete the kink and move the tail back to the site from where the particle is hopping
to.
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2.6.1 Insert/Delete worm from τ = 0

The first pair of updates required for a T = 0 simulation is the insertion and deletion

of a worm or antiworm that extends from τ = 0 to some time in the first flat region

of the site (i.e., the flat region of the site that has lower bound τ = 0). To insert

a worm from τ = 0, a time is randomly sampled within the bounds of the first flat

region, [0, τnext), a worm head is then inserted at the sampled time, and a particle is

added to the path segment that extends from τ = 0 to the worm head. For the case

of an antiworm, a worm tail is instead inserted at the randomly sampled time, then

a particle destroyed from the segment preceding it. If one such worm or antiworm

is present in the configuration, its deletion could also be proposed. The update is

illustrated in Fig. 2.8 and proceeds as follows:

Insert worm from τ = 0:

0. Attempt update with probability pinsertFromZero. This is the bare probability of

attempting this move from amongst the entire pool of possible updates. Every

other update will have a similar bare attempt probability.

1. Randomly sample site of insertion with probability 1/M , where M = LD is the

number of total sites.

2. Randomly choose to insert a worm or antiworm with probability ptype. If no

worm ends are present, sample either worm end with probability ptype = 1/2.

If there is one end present, select to insert the other type with probability

ptype = 1.

3. Randomly sample insertion time τnew inside the flat region with probability

1/τnext. If a worm has been chosen, then the sampled time corresponds to the

time of a worm head, τnew = τh. For an antiworm, τnew = τt and the update is

rejected if there are no particles to destroy in the flat region.
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Figure 2.8: Insert/Delete worm from τ = 0. A worm is inserted at the τ = 0
edge by inserting a worm head at a randomly sampled time τh ∈ [0, τnext) and adding
a particle to the segment spanning the interval τ : [0, τh). An antiworm can instead
be inserted by placing a worm tail at the sampled time and destroying a particle in
the segment τ : [0, τt).
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4. Calculate diagonal energy difference ∆V ≡ εw − ε, where εw is the diagonal

energy of the segment of path inside the flat region with more particles, and ε

the diagonal energy in the segment with less particles.

5. Sample a random and uniformly distributed number r ∈ [0, 1).

6. Check,

If r < RinsertFromZero, insert worm from τ = 0 into worldline configuration.

Else, reject update and leave worldlines unchanged.

Delete worm from τ = 0:

0. Attempt update with probability pdeleteFromZero.

1. Randomly choose which of the worm ends present to delete with probability

pwormEnd. This can be 1/2 if there are two worm ends present and 1 if there is

only one worm end.

2. Calculate diagonal energy difference ∆V ≡ εw − ε.

3. Sample a random and uniformly distributed number r ∈ [0, 1).

4. Check,

If r < RdeleteFromZero, delete worm from τ = 0 from worldline configuration.

Else, reject update and leave worldlines unchanged.

The acceptance ratios for the insertion from τ = 0 is:

RinsertFromZero =


Cαw
Cα

η
√
nwe

−(εw−ε)τnew pdeleteFromZero

pinsertFromZero
pwormEndτnext

M
ptype

worm

Cα
Cαw

η
√
nwe

+(εw−ε)τnew pdeleteFromZero

pinsertFromZero
pwormEndτnext

M
ptype

anti

(2.43)
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and for deletion from τ = 0:

RdeleteFromZero =
1

RinsertFromZero

. (2.44)

Note the appearance of the expansion coefficients of the trial wavefunction Cαw

and Cα, with the former corresponding to the Fock State at τ = 0 with an extra

particle on site i. For all simulations reported in this work, we have used a constant

trial wavefunction, such that the ratio of coefficients becomes unity. The effect of

changing the trial wavefunction might be an avenue for further exploration to improve

convergence in imaginary time.

2.6.2 Insert/Delete worm from τ = β

In analogy with insertion/deletion at τ = 0 we also need to consider the opposite

end of the β-cylinder at τ = β (i.e, the flat region bounded from above by τ = β).

A worm from τ = β is added by inserting a worm tail in the flat region [τprev, β),

where τprev is the time of the last kink on that site, then adding a particle to the

path segment between the worm tail and the end of the flat region at τ = β. For an

antiworm insertion, a worm head is instead inserted, then a particle destroyed from

the path segment between the head and τ = β. This update is illustrated below in

Fig. 2.9 and it proceeds as follows:

Insert worm from τ = β:

0. Attempt update with probability pinsertFromBeta.

1. Randomly sample site of insertion with probability 1/M , whereM is the number

of total sites.

2. Randomly choose to insert a worm or antiworm with probability ptype. If no

worm ends are present, sample either worm end with probability ptype = 1/2. If

there’s one end present, select to insert the other type with probability ptype = 1.
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Figure 2.9: Insert/Delete worm from τ = β. A worm is inserted at the τ = β
edge by inserting a worm tail at a randomly sampled time τt ∈ [τprev, β) and adding
a particle to the segment spanning the interval τ : [τt, β). An antiworm can instead
be inserted by placing a worm head at the sampled time and destroying a particle in
the segment τ : [τh, β).
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3. Randomly sample insertion time τnew inside the flat region with probability

1/(β− τprev). If a worm has been chosen, then the sampled time corresponds to

the time of a worm head, τnew = τt. For an antiworm, τnew = τh and the update

is rejected if there are no particles to destroy in the flat region.

4. Calculate diagonal energy difference ∆V ≡ εw − ε.

5. Sample a random and uniformly distributed number r ∈ [0, 1).

6. Check,

If r < RinsertFromBeta, insert worm from τ = β into worldline configuration.

Else, reject update and leave worldlines unchanged.

Delete worm from τ = β:

0. Attempt update with probability pdeleteFromBeta.

1. Randomly choose which of the worm ends present to delete with probability

pwormEnd. This can be 1/2 if there are two worm ends present and 1 if there is

only one worm end.

2. Calculate diagonal energy difference ∆V ≡ εw − ε.

3. Sample a random and uniformly distributed number r ∈ [0, 1).

4. Check,

If r < RdeleteFromBeta, delete worm from τ = β from worldline configuration.

Else, reject update and leave worldlines unchanged.

The acceptance ratios for the insertion/deletion from τ = β update is:

RinsertFromBeta =


Cαw
Cα

η
√
nwe

−(εw−ε)(β−τnew) pdeleteFromBeta

pinsertFromBeta
pwormEnd(β − τprev) M

ptype
worm

Cα
Cαw

η
√
nwe

+(εw−ε)(β−τnew) pdeleteFromBeta

pinsertFromBeta
pwormEnd(β − τprev) M

ptype
anti

(2.45)
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RdeleteFromBeta =
1

RinsertFromBeta

(2.46)

The new moves described above, in combination with the original Worm Algorithm

moves described for reference in Section 2.5, will allow for an ergodic PIMC simulation

on the lattice at T = 0. In practice we weight all update attempt probabilities equally

such that pupdateType = 1/Nupdates but these could be optimized to improve simulation

efficiency.

2.7 Energy benchmarks

To test the validity of the PIGSFLI algorithm, ground state energies have been

estimated in a one dimensional Bose-Hubbard model consisting of 8 sites that is

amenable to an exact solution. The ground state expectation value of the total

energy:

〈H〉0 ' 〈H0〉MC + 〈H1〉MC (2.47)

where the subscript MC indicates a Monte Carlo average over the weighted

configuration space of worldlines. The potential energy estimator 〈H0〉MC is derived

in Section 2.9 and can be calculated by averaging the on-site interaction over an

imaginary time window of size ∆τ , centered around τ = β/2:

〈H0〉MC =
1

∆τ

〈∫ β/2+∆τ

β/2−∆τ

U

2

∑
i

ni(τ)(ni(τ)− 1)

〉
MC

(2.48)

where the chemical potential contribution has been neglected as simulations have

been performed in the canonical ensemble. The subscript MC has been added to

distinguish Monte Carlo averages from usual quantum mechanical expectation values.

The kinetic energy estimator is derived in Section 2.8 and is given by

〈H1〉MC = −〈Nkinks〉MC

∆τ
(2.49)
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where 〈Nkinks〉MC is average number of kinks inside an imaginary time window of

width ∆τ , centered around τ = β/2.

Both of these estimators become stochastically exact in the limit β → ∞ and a

suitable extrapolation procedure is described in Section 3.8. In the limit β → ∞,

the energy estimators are independent of the window size ∆τ . For finite β there will

be additional systematic error from using a larger ∆τ due to lack of convergence to

the ground state; decreasing ∆τ will generally increase the statistical errors due to

a reduction in the imaginary time averaging. To balance these competing effects we

set the window size to 0.2β.

Fig. 2.10 shows the relative error between the exact and estimated ground state

kinetic and potential energies, respectively, for a one-dimensional Bose-Hubbard

lattice of L = 8 sites at unit-filling as a function of βt for three different values of the

on-site repulsion U/t = 0.5, 3.3, 10 corresponding to the superfluid, critical point, and

insulating phases. We would like to mention that the value of the quantum critical

point for this system has been extensively studied throughout the years, with various

methods giving slightly different estimates for it [24–39]. It is customary to report

the interaction strengths in the dimensionless form U/t, which is the reason why the

projection length is rescaled as β → βt. In practice, we set the tunneling parameter

to t = 1.0 for all simulations and only adjust the potential U and projection length

β. In all of these regimes, the relative error decays exponentially as a function of β

as indicated by solid lines corresponding to the form:

Eerr(β) = C1e
−βtC2 ≡ C1e

−βC2 (2.50)

where C1 and C2 are fitting parameters, Eerr denotes the relative error in either of

the energies. Notice that for U/t = 10.0, the relative error in the energies becomes so

small for the largest β values that it becomes difficult to resolve the error bars on this

scale to high accuracy. This is due to the fact that in the presence of a finite energy

gap, the exact ground state can be projected out from the trial wavefunction much
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Figure 2.10: Relative error of the ground state kinetic energy (left) and potential
energy (right) as a function of βt for a Bose-Hubbard chain of L = 8 sites at unit-
filling. As β increases, the relative error decays exponentially to zero, as evidenced by
the fits (solid lines). Regimes where the interaction strength is large possess a sizeable
energy gap and more accurate results can be obtained at lower βt values, since the
ground state is projected out of the trial wavefunction much faster. The different
shapes and colors correspond to different interaction strengths. The interactions
strengths U/t = 0.5, 3.3, 10.0 represent values in the superfluid phase, the 1D critical
point, and the Mott phase, respectively. The measurement window is ∆τ = 0.2βt.
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faster via Eq. (2.1). Conversely, near the superfluid phase, where interactions are low,

the energy gap is much smaller and the error decays slowly in comparison. Formally,

the superfluid phase will be gapless in the thermodynamic limit. In this regime the

gap scales polynomially in the system size and thus we must increase β accordingly

to identify the exponential behavior of observables as a function of projection length.

This behavior is also expected when computing other ground state expectation values.

In the last two sections, we describe how to derive estimators for the kinetic and

potential energies in a form that is amenable to computation in PIMC.

2.8 Kinetic Energy

In the Heisenberg representation, the kinetic energy operator, which is also just the

off-diagonal term of the Bose-Hubbard Hamiltonian in Eq. (2.14), is:

H1(τ) = eτHH1e
−τH (2.51)

where τ is an imaginary time. The ground state expectation value is, in principle,

obtained in the usual way, by sandwiching H1(τ) in between the ground state |ψ0〉:

〈H1(τ)〉 = 〈ψ0|H1(τ) |ψ0〉 . (2.52)

In practice, the expression above cannot be computed directly since the ground state

is not exactly known. Instead, an estimator is needed that can be computed using

our algorithm. Recall the projection relation: |ψ0〉 = limβ→∞ e−
β
2
H |ψT 〉, where |ψT 〉

is a trial wavefunction. Substituting this projection, the expectation value becomes:

〈H1(τ)〉 = lim
β→∞

〈ψT | e−(β
2
−τ)HH1e

−(β
2

+τ)H |ψT 〉 . (2.53)

In general, for a path-integral Monte Carlo algorithm, it is desirable to first write the

estimator in terms of imaginary-time propagators. To do this, rewrite the expectation
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value in terms of the trial wavefunction expansion in the Fock basis: |ψT 〉 =
∑

αCα |α〉
and then insert some resolutions of the identity:

〈H1(τ)〉 = lim
β→∞

∑
αβα′′α′α0

〈ψT |αβ〉 〈αβ| e−(β
2
−τ)H |α′′〉 〈α′′|H1 |α′〉 〈α′| e−(β

2
+τ)H |α0〉 〈α0|ψT 〉 .

(2.54)

Rewriting the wavefunction coefficients as 〈ψT |αβ〉 = C∗αβ and 〈α0|ψT 〉 = Cα0
, the

kinetic energy matrix elements as Hα′′,α′
1 = 〈α′′|H1 |α′〉, and the short-time imaginary

propagator between two states over an interval τ as: ρ(α, α′; τ) = 〈α | e−τH |α′〉 =

〈α′| e−τH |α 〉, the ground state expectation value of the kinetic energy becomes:

〈H1(τ)〉 = lim
β→∞

∑
α0α′′α′αβ

C∗αβCα0
ρ(αβ, α

′′;
β

2
− τ)Hα′′α′

1 ρ(α′, α0;
β

2
+ τ) (2.55)

Using Eq. (2.12), each of the propagators in the equation above can be expanded

in the number of kinks inside the time interval they span (i.e, [β/2 + τ, β] for the

leftmost propagator and [0, β/2 + τ ] for the rightmost one).

In Eq. (2.55), the rightmost propagator will propagate the state α0 from τ = 0

to state α′, at τ = β/2 + τ , the time of the matrix element Hα′′,α′
1 . The leftmost

propagator can be thought of as propagating in the direction of decreasing time,

taking the state αβ at τ = β to state α′′, at τ = β/2 + τ , which is an interval of size

β/2 − τ . If the two states α′′ and α′ differ only by a particle hop from one site to

an adjacent site, the matrix element Hα′′,α′
1 is just a kink connecting the states, and

zero otherwise, according to the kinetic matrix element in Eq. (2.19). In Eq. (2.55),

take the example of expanding the leftmost and rightmost propagators up to orders
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Q− and Q+, respectively. The propagator on the right gives:

ρ(αβ, α
′′;
β

2
+ τ) =

∑
α+1 ...αQ+−1

∫ τQ++1=β

0

dτQ+

∫ τQ+

0

dτQ+−1· · ·
∫ τ2+

0

dτ1+

×
[

(−1)Q+e
−εα0+ τ1+

Q+∏
q+=1

e−εαq+ (τq++1−τq+ )H
αq+ ,αq+−1

1

]
.

(2.56)

The propagator on the left gives:

ρ(α′, α0;
β

2
− τ) =

∑
α−1 ...αQ−−1

∫ τQ−+1=β
2

+τ

0

dτQ−

∫ τQ−

0

dτQ−−1· · ·
∫ τ2−

0

dτ1−

×
[

(−1)Q−e
−εα0− τ1−

Q−∏
q−=1

e−εαq− (τq−+1−τq− )H
αq− ,αq−−1

1

]
.

(2.57)

The subscripts −,+ can be dropped in favor of an ”absolute” enumeration

of the imaginary times, which will be relative to the total number of kinks Q:

τ1+ → τ1, τ2+ → τ2, . . . , τQ− → τQ. Under this new enumeration, the contribution to

the kinetic energy from expanding the left and right propagators to orders Q−, Q+,

respectively, becomes:

〈H1(τ)〉Q−Q+ = lim
β→∞

∞∑
Q=0

∑
α0...αQ

∫ τQ+1=β

0

dτQ

∫ τQ

0

dτQ−1 . . . { }· · ·
∫ τ2

0

dτ1

×
[
C∗αβCα0

(−1)Q−1e−εα0τ1
Q∏
q=1

e−εαq (τq+1−τq)H
αq ,αq−1

1

]
(2.58)

where the matrix elements and times associated to the states α′,α′′ are now not

explicitly written since they’ll be contained in the product and summations over

kink indices. The empty braces above are used to exaggerate the fact that, upon

careful inspection, there is actually one integral missing. That is, there’s only Q− 1
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integrals, rather than Q of them. This missing integral is due to the previously

discussed propagators not having the time of the ”special kink” Hα′,α′′
1 as one of the

integration variables. Instead, each of the propagators has integration variables for

each of the kinks extending from τ = 0 up to but not including the special kink, and

from τ = β down to, but once again not including the special kink. This is also the

reason for the exponent of the factor (−1)Q−1.

Note also that at the moment, the time τ has been constant. Instead, we would

like to average the kinetic energy over a ∆τ -sized interval τ : [−∆τ/2,∆τ/2]. This

window-averaged kinetic energy becomes:

〈H1〉Q−Q+ = − 1

∆τ
lim
β→∞

∞∑
Q=0

∑
α0...αQ

∫ τQ+1=β

0

dτQ

∫ τQ

0

dτQ−1 . . .

{∫ ∆τ/2

−∆τ/2

dτ

}
. . .

×
∫ τ2

0

dτ1

[
C∗αβCα0

(−1)Qe−εα0τ1
Q∏
q=1

e−εαq (τq+1−τq)H
αq ,αq−1

1

]
.

(2.59)

We can work with the absolute time of the special kink, as measured from τ = 0,

rather than τ , the deviation from β/2, by performing the substitution τq∗ = β/2 + τ :

〈H1〉Q+Q− = − 1

∆τ
lim
β→∞

∞∑
Q=0

∑
α0...αQ

∫ τQ+1=β

0

dτQ

∫ τQ

0

dτQ−1 . . .

{∫ ∆τ/2+β/2

∆τ/2−β/2
dτq∗

}
. . .

×
∫ τ2

0

dτ1

[
C∗αβCα0

(−1)Qe−εα0τ1
Q∏
q=1

e−εαq (τq+1−τq)H
αq ,αq−1

1

]
.

(2.60)

By averaging over the time of the special kink τq∗ , there are now a total of Q integrals.

Moreover, notice that the kinetic energy starts to look like the configurational

weight W0(Q,αQ, τQ) from Eq. (2.22), summed (and integrated) over all worldline

configurations. The main difference is the limits of integration of the τq∗ integral. The

integration limits can be rewritten as going from τq∗ = 0 to τq∗ = τq∗+1 by multiplying

the integrand by the box-car function, which can be defined to be zero for all values

60



of the special kink τq∗ ,except inside the interval τq∗ : [∆τ/2−β/2,∆τ/2+β/2], where

it will be one. Formally, the box-car function can be written as:

B∆τ (τq∗) = H(τq∗ −∆τ/2 + β/2)−H(τq∗ −∆τ/2− β/2) (2.61)

where H(x) is the Heaviside step-function. By multiplying the integrand of the τ ∗q

integral by this box-car function, the integration limits can be changed the span

a larger and arbitrary interval of imaginary times, while leaving the overall result

unchanged. Changing the interval to τ ∗q ∈ [0, τ ∗q+1]:

〈H1〉Q+Q− = − 1

∆τ
lim
β→∞

∞∑
Q=0

∑
α0...αQ

∫ τQ+1=β

0

dτQ

∫ τQ

0

dτQ−1 . . .

{∫ τq∗+1

0

dτq∗B∆τ (τq∗)

}
. . .

×
∫ τ2

0

dτ1

[
C∗αβCα0

(−1)Qe−εα0τ1
Q∏
q=1

e−εαq (τq+1−τq)H
αq ,αq−1

1

]
(2.62)

where τq∗+1 denotes the time of the kink after the special kink. Eq. (2.62) is actually

only the contribution to the kinetic energy coming from expanding the left propagator

to order Q− and the right one to Q+ in Eq. (2.55). There will be contributions

coming from every possible combination of expansion orders of each propagator, with

the result looking similar to Eq. (2.62), except with the location of the special kink

being different. For example, there are three possible combinations of the propagator

expansion orders that lead toQ = 3 kinks, and these are (Q−, Q+) : (2, 0), (1, 1), (0, 2),

for which the special kink (i.e, the one that connects the two propagators) is at

τq∗ : τ1, τ2, τ3, respectively. Thus, the total average kinetic energy can be written as:

〈H1〉 = − 1

∆τ
lim
β→∞

∑
Q,αQ

∫
dτQ [

Q∑
q∗=1

B∆τ (τq∗)C
∗
αβ
Cα0

(−1)Qe−εα0τ1
Q∏
q=1

e−εαq (τq+1−τq)H
αq ,αq−1

1 ].

(2.63)
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Recall that W0(Q,αQ, τQ) = C∗αβCα0
(−1)Qe−εα0τ1

∏Q
q=1 e

−εαq (τq+1−τq)H
αq ,αq−1

1 is the

weight of a ground state configuration of worldlines. In terms of these weights, the

average kinetic energy is:

〈H1〉 = − 1

∆τ
lim
β→∞

∑
Q,αQ

∫
dτQ [W0(Q,αQ, τQ)

Q∑
q∗=1

B∆τ (τq∗)] (2.64)

= − 1

∆τ
lim
β→∞

∑
Q,αQ

∫
dτQ [W0(Q,αQ, τQ)Nkinks]. (2.65)

Recall that the box-car function B∆τ (τq∗) is one when the special kink is inside the

time window ∆τ , centered around β/2, and zero otherwise. Thus, the summation∑Q
q∗=1 B∆τ (τq∗) ≡ Nkinks will measure how many kinks are inside the window for

a worldline configuration with Q total kinks. The set of summations and integrals

shown above correspond to a sum over all possible ground state configurations of

wordlines. The ground state expectaion value of the kinetic energy is therefore:

〈H1〉MC ≈ −
〈Nkinks〉MC

∆τ
(2.66)

where 〈Nkinks〉 is the average number of kinks inside the window. This expression for

the kinetic energy can be easily computed in our path-integral Monte Carlo simulation

and is exact in the limit of β →∞.

2.9 Potential Energy

The ground state expectation value of the potential energy can be obtained via:

〈H0(τ)〉 = 〈ψ0|H0(τ) |ψ0〉 . (2.67)
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Rewriting the ground state in terms of the trial wavefunction and inserting various

resolutions of the identity operator like it was done for the kinetic energy:

〈H0(τ)〉 = lim
β→∞

∑
αβ ,α′′,α′,α0

C∗αβCα0
〈αβ| e−β/2 |α′′〉 〈α′′|H0(τ) |α′〉 〈α′| e−β/2 |α0〉 (2.68)

where H0(τ) = eτHH0e
−τH . Recall that H0 is also the diagonal part of the

Hamiltonian, such that H0 |α〉 = εα, where εα is the potential energy of state α,

and the specific form of these matrix elements is given in Eq. (2.18). Acting with

H0(τ) on the state α′, a Kronecker-delta function is picked up, which will get rid of

the α′′ summation:

〈H0(τ)〉 = lim
β→∞

∑
αβ ,α′,α0

εα′(τ)C∗αβCα0
〈αβ| e−β/2 |α′〉 〈α′| e−β/2 |α0〉 . (2.69)

Due to the convolutional property of propagators:

∑
α′

〈αβ| e−β/2 |α′〉 〈α′| e−β/2 |α0〉 = ρ(αβ, α0; β). (2.70)

Using then the definition of the propagator in Eq. (2.12) and the configurational

weight in Eq. (2.22), it is seen that:

〈H0(τ)〉 = lim
β→∞

∑
Q,αQ

∫
dτQ εα′(τ)W0(Q,αQ, τQ) = lim

β→∞
〈εα′(τ)〉. (2.71)

At the moment, the potential energy is only at a time τ away from β/2. Averaging

over a time window of size ∆τ centered around β/2, the potential energy gives:

〈H0〉 =
1

∆τ
lim
β→∞

∫ ∆τ/2

−∆τ/2

dτ〈εα′(τ)〉 =
1

∆τ
lim
β→∞

∫ β/2+∆τ/2

β/2−∆τ/2

dτ〈εα′(τ)〉. (2.72)
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where the transformation τ → β/2 + τ was used. Therefore, the estimator for the

average ground state potential energy is:

〈H0〉MC ≈
1

∆τ

∫ β/2+∆τ/2

β/2−∆τ/2

dτ〈εα′(τ)〉MC (2.73)

where εα′(τ) = U
2

∑
i n

α′
i (τ)(nα

′
i (τ)− 1)− µ∑i n

α′
i (τ). The operator ni(τ) counts the

number of particles at site i and imaginary time τ , for a Fock state α′, which can be

computed directly in the simulation. The potential energy estimator becomes exact

in the limit β →∞.

In the next chapter, this algorithm is extended to a two-replica configuration space

in which entanglement entropies can be sampled.
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Chapter 3

Rényi entanglement entropies in

lattice PIGS

With a working Path Integral Monte Carlo algorithm at T = 0 at hand, we will

now introduce a method to perform estimates of quantum entanglement in the

Bose-Hubbard model under a spatial bipartition. This approach will allow for the

investigation of the entanglement properties of much larger systems than those

that can be studied with exact diagonalization and is based on extensive previous

algorithmic development in quantum Monte Carlo based on the replica trick [7–

9, 11, 13–16, 85, 86, 88, 102–108]. The goal is to recast the measurement of the

Rényi entanglement entropy in terms of a local expectation value of an operator that

can be sampled with our Monte Carlo method.

3.1 Entanglement Entropy

Entanglement quantifies the non-classical correlations present in a joint state of a

quantum system. Its characterization requires defining a partition of the system into

subsystems; here we only consider a bipartition into a spatial subregion A and its

complement B, however other types of bipartitions are also interesting, including in
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terms of particles (see e.g.[3, 7, 41, 43]). Given a pure state |Ψ〉, the reduced density

matrix of the A subsystem is defined to be:

ρA = TrB |Ψ〉 〈Ψ| . (3.1)

In general, ρA describes a mixed state due to entanglement between A and B which

can be quantified by the Rényi entanglement entropy (EE):

Sα(ρA) =
1

1− α ln Tr ραA . (3.2)

For α → 1, the Rényi entanglement entropy reduces to the von Neumann

entanglement entropy: S1(ρA) = −Tr ρA ln ρA. Despite the fact that Sα as defined in

Eq. (4.1) is not in the form of an expectation value of an observable, computational

methods have been developed to compute Eq. (4.1) for many-body systems in Monte

Carlo simulations [8]. Moreover, certain experimental many-body systems have the

capability to directly experimentally measure Eq. (4.1) [96, 97].

The entanglement entropy has been studied in a wide array of quantum many-body

systems [109], providing important insights into the nature of quantum correlations.

In particular, for the ground states of interacting many-body systems, the scaling

of the entanglement entropy with subsystem size can display universal features of

phases of matter [110]. Generically, ground states display an “area-law“ scaling, where

the entanglement entropy grows with the size of the boundary between subregions

[62, 63, 111]. For systems with gapless excitations, additional terms appear in

the entanglement entropy that either scale logarithmically with the boundary, or

are independent of boundary size; the dimensionless coefficients of these terms

characterize universal features of such phases of matter, such as the number of

Goldstone modes [66–68] or the central charge of the underlying conformal field theory

[112].
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3.2 Symmetry-resolved and accessible entangle-

ment entropies

In physical systems which conserve particle number (such as trapped ultracold gases),

the amount of entanglement that is operationally accessible using local operations and

classical communications (LOCC) is limited by the superselection rule that forbids

creating superpositions of different particle number [21]. For α = 1, the von Neumann

accessible entanglement entropy is simply a weighted average of the entanglement

entropies for ρA projected onto a fixed subsystem particle number, known as the

symmetry-resolved entanglement entropies S1(ρAn) [98]:

Sacc
1 (ρA) =

∑
n

PnS1(ρAn). (3.3)

In Eq. (3.3) n is the number of particles in subregion A, Pn is the probability of A

having n particles Pn ≡ Tr (ΠnρAΠn), where Πn is a projector onto the subspace of

A with n particles, and ρAn is the reduced density matrix of A, projected onto fixed

local particle number n:

ρAn =
1

Pn
ΠnρAΠn. (3.4)

For the Rényi entropy [22] for general α, the operationally accessible entanglement is

Sacc
α (ρA) =

α

1− α ln

[∑
n

Pne
1−α
α
Sα(ρAn )

]
, (3.5)

which reduces to Sacc
1 for α→ 1.

Sacc
α represents an experimentally relevant bound on the entanglement that may

be extracted from systems of indistinguishable and itinerant non-relativistic particles.

The quantification of the symmetry-resolved and accessible entanglement entropies

has garnered much interest recently in systems of both non-interacting and interacting

particles [22, 41, 42, 78, 98, 99, 113–145]. We show in Section 3.4 that both the
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symmetry resolved entanglement entropy, Sα(ρAn), and the accessible entanglement

entropy, Sacc
α , can be computed for interacting boson systems using Monte Carlo

methods, opening up a number of exciting potential avenues of study.

3.3 Entanglement entropy estimator

We can compute the Rényi entanglement entropy in quantum Monte Carlo by

performing simulations of two (or more) identical and non-interacting copies of the

system. For α = 2, we’ll consider the system |Ψ〉 and a replica
∣∣∣Ψ̃〉, and note that

S2(ρA) can be related to the expectation value of the unitary SWAPA operator [8] that

acts on the replicated Hilbert space. An example replicated worldline configuration

is shown in Fig. 3.1.

Defining {|a〉} and {|b〉} to be bases of states that are localized to subregion A and

its complement, respectively, the SWAPA operator is defined on the tensor product

states |a, b〉 ≡ |a〉⊗|b〉 to exchange the states of the subsystem A between the replicas.:

SWAPA

[
|a, b〉 ⊗

∣∣∣ã, b̃〉] ≡ |ã, b〉 ⊗ ∣∣∣a, b̃〉 (3.6)

For an arbitrary state |Ψ〉 =
∑

a,bCab |a, b〉, the expectation value of SWAPA takes

the following form:

〈SWAPA〉 ≡ 〈Ψ0| ⊗
〈

Ψ̃0

∣∣∣ SWAPA |Ψ0〉 ⊗
∣∣∣Ψ̃0

〉
= 〈Ψ0| ⊗

〈
Ψ̃0

∣∣∣∑
a,b

Cab
∑
ã,b̃

Cãb̃ |ã, b〉 ⊗
∣∣∣a, b̃〉 =

∑
a,ã

(∑
b

C∗ãbCab

)∑
b̃

C∗
ab̃
C
ãb̃


=
∑
a,ã

ρA(ã, a)ρA(a, ã) = Tr ρ2
A

where ρA(ã, a) = 〈ã| ρA |a〉 are elements of the reduced density matrix.
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Figure 3.1: Example of worldlines in the two-replica space in which entanglement
entropies will be measured. A special type of kink between replicas that we refer to
as a SWAP kink can now be inserted or deleted at τ = β/2 on the sites that belong
to subregion A. In this example, two SWAP kinks are shown on sites i = 0 and i = 1.
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The second Rényi EE can then be computed from the expectation value of SWAPA

as

S2(ρA) = − ln〈SWAPA〉 . (3.7)

To measure the SWAPA estimator, two non-interacting replicas of the worldline

configuration space are sampled. The sampling weight of these statistically indepen-

dent sets of worldlines is the product of their weights W (Q,αQ, τQ)W̃ (Q̃, α̃Q, τ̃Q),

where the tilde vs non-tilde refers to quantities in different replicas. For the

measurement of entanglement, the sampled ensemble also allows for the possibility

of kinks occurring at τ = β/2 that connect the spatial subregion A of each of the

replicas.

In the replicated configuration space, the ground state can be projected out of a

trial wavefunction by generalizing the projection relation in Eq. (2.1) as:

|Ψ0〉 ⊗
∣∣∣Ψ̃0

〉
= lim

β→∞
e−

β
2
H⊗1 |ΨT 〉 ⊗ e−

β
2
1⊗H

∣∣∣Ψ̃T

〉
. (3.8)

Where the operator structure reflects operation on the system (replica).

〈SWAPA〉 = lim
β→∞

∑
α0,αβ/2−
α̃0,α̃β/2−

∑
αβ/2+,αβ
α̃β/2+,α̃β

C∗αβC
∗
α̃β
Cα0

Cα̃0ρ(αβ, αβ/2+; β/2)ρ̃(α̃β, α̃β/2+; β/2)

×
〈
αβ/2+ ⊗ α̃β/2+

∣∣ SWAPA

∣∣αβ/2− ⊗ α̃β/2−〉 ρ(αβ/2−, α0; β/2)ρ̃(α̃β/2−, α̃0; β/2) ,

(3.9)

where αβ/2− and αβ/2+ denote the Fock state immediately before and after β/2,

respectively. Defining the bipartitioned Fock states |α〉 = |a, b〉

〈
αβ/2+ ⊗ α̃β/2+

∣∣ SWAPA

∣∣αβ/2− ⊗ α̃β/2−〉
=
〈
aβ/2+, bβ/2+ ⊗ ãβ/2+, b̃β/2+

∣∣∣ãβ/2−, bβ/2− ⊗ aβ/2−, b̃β/2−〉
= δaβ/2+,ãβ/2−δãβ/2+,aβ/2− . (3.10)

70



Where the Kronecker-Delta functions are understood as the product of individual

δ-functions over the sites in spatial subregion A. The ground state expectation value

is then given by:

〈SWAPA〉 = lim
β→∞

∑
Q−,αQ−

∫
dτQ− W0(Q−,αQ− , τQ−)

∑
Q+,αQ+

∫
dτQ+ W0(Q+,αQ+ , τQ+)

×
∑

Q̃−,α̃Q̃−

∫
dτ̃ Q̃− W̃0(Q̃−, α̃Q̃− , τ̃ Q̃−)

∑
Q̃+,α̃Q̃+

∫
dτ̃ Q̃+

W̃0(Q̃+, α̃Q̃+
, τ̃Q+)

×
(
δaβ/2+,ãβ/2−δãβ/2+,aβ/2−

)
(3.11)

The expression above is in the form of a statistical average over paths of the product

of δ-functions δaβ/2+,ãβ/2−δãβ/2+,aβ/2− , up to a normalization factor. The estimator of

the expectation value of the SWAPA operator finally becomes:

〈SWAPA〉MC = 〈δaβ/2+,ãβ/2−δãβ/2+,aβ/2−〉MC . (3.12)

In practice, this expectation value can be computed by building a histogram of the

number of times each possible number of SWAP kinks was measured. This number of

SWAP kinks will range from 0 to some maximum number mA. One then takes the bin

corresponding to the desired spatial partition size, and normalizes it by dividing by

the bin corresponding to zero SWAP kinks measured. Histograms are only updated

when both replicas have the same number of total particles.

3.4 Accessible and symmetry-resolved entangle-

ment estimators

The second Rényi accessible entanglement entropy is:

Sacc
2 (ρA) = −2 ln

[∑
n

Pne−
1
2
S2(ρAn )

]
, (3.13)
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where ρAn is the reduced density matrix of spatial partition A, projected onto the

subspace of local fixed particle number n. Recall that one obtains this projected

reduced density matrix via Eq. (3.4): ρAn = ΠnρAΠn/Pn, where Πn are projection

operators onto the n subspace and the projected reduced density matrix is normalized

by dividing by Pn, the probability of measuring a configuration with n particles in

subregion A. Formally, one can define the projection operators as:

Πn =
∑
a(n)

|a(n)〉〈a(n)|, (3.14)

where the summation runs over all possible configurations of the A subregion with

fixed local particle number n. Recall that the reduced density matrix of subsystem A

is obtained by taking the outer product of a wavefunction |Ψ0〉 with itself and taking

the partial trace with respect to subregion B:

ρA =
∑
b

〈b|Ψ0〉 〈Ψ0|b〉 , (3.15)

where the summation is carried over the set of possible configurations in B.

The ground state of a spatially bipartitioned subsystem can be expressed as a

Schmidt decomposition as:

|Ψ0〉 =
∑
a,b

Cab |a, b〉 , (3.16)

where the summation is carried over all configurations in A and B, and Cab is the

complex expansion coefficient for the bipartitioned configuration |a, b〉. In terms of

this Schmidt decomposition, the reduced density matrix becomes:

ρA =
∑
a,a′

(∑
b

CabC
∗
a′b

)
|a〉〈a′| . (3.17)
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One can now project the reduced density matrix onto the subspace of fixed local

particle number n using Eq. (3.4) and Eq. (3.14):

ρAn =
1

Pn

∑
a(n),a′(n),b(N−n)

Ca(n)b(N−n)C
∗
a′(n)b(N−n)|a(n)〉〈a′(n)|. (3.18)

Notice that the sum over B states now runs over configurations that have fixed local

particle number N − n. This can be done without loss of generality since fixing

the local particle number A, also fixes the local particle number in B. The matrix

elements of the projected reduced density matrix can be identified as:

ρAn
(
a(n), a′(n)

)
≡
〈
a(n)
∣∣ ρAn ∣∣a′(n)

〉
=

1

Pn

∑
b(N−n)

Ca(n)b(N−n)C
∗
a′(n)b(N−n) . (3.19)

Now that the matrix elements have been identified, the next step is to build the

replicated ground state wavefunction, akin to the one that shows up in Eq. (3.6), but

for a ground state projected onto the n local particle number subspace. This can

be done by first taking the Schmidt decomposition of a single replica wavefunction

shown in Eq. (3.16), expanding it, and regrouping the terms that have same local

particle number:

|Ψ0〉 =
∑

a(0),b(N)

Ca(0)b(N)|a(0)〉|bN〉+
∑

a(1),b(N−1)

Ca(1)b(N−1)|a(1)〉|bN−1〉+ . . . (3.20)

Then, acting with the projection operator in Eq. (3.14), only the part of the

wavefunction that contributes to the n-particle sector is projected out:

∣∣∣Ψ(n)
0

〉
= Πn |Ψ0〉 = N−1

∑
a(n),b(N−n)

Ca(n)b(N−n)|a(n)〉|b(N−n)〉 (3.21)

where N−1 is a normalization constant, as the wavefunction may lose normalization

after projection. The replicated ground state in the n subsector is represented by the

tensor product of the state above and an identical copy of itself:
∣∣∣Ψ(n)

0

〉
⊗
∣∣∣Ψ̃(n)

0

〉
,
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where the tilde is used to distinguish between the two replicas. Now acting with the

SWAPA operator on the replicated ground state, as was done in Eq. (3.6):

SWAPA|Ψ(n)
0 ⊗Ψ̃

(n)
0 〉 =

∑
a(n),b(N−n)

∑
ã(n),ã(N−n)

Ca(n)b(N−n)Dã(n)b̃(N−n)

∣∣ã(n)
〉 ∣∣b(N−n)

〉
⊗
∣∣a(n)

〉 ∣∣∣b̃(N−n)
〉
.

(3.22)

Taking the expectation value in the replicated projected space:

〈
Ψ

(n)
0 ⊗ Ψ̃

(n)
0

∣∣∣ SWAPA

∣∣∣Ψ(n)
0 ⊗ Ψ̃

(n)
0

〉
=

N−1
∑

a(n),ã(n)

( ∑
b(N−n)

C∗ã(n)b(N−n)Ca(n)b(N−n)

) ∑
b̃(N−n)

D∗
a(n)b̃(N−n)Dã(n)b̃(N−n)

, (3.23)

where, using Eq. (3.19), the factors in parentheses can be replaced by unnormalized

reduced projected density matrix elements:

〈
Ψ

(n)
0 ⊗ Ψ̃

(n)
0

∣∣∣ SWAPA

∣∣∣Ψ(n)
0 ⊗ Ψ̃

(n)
0

〉
= N−1

∑
ã(n)

PnP̃n

〈
ã(n)
∣∣ ρAn

(∑
a(n)

∣∣a(n)
〉 〈

a(n)
∣∣)ρAn

∣∣ã(n)
〉
,

(3.24)

where the sum over a(n) has been moved near the outer product
∣∣a(n)

〉 〈
a(n)
∣∣ to

explicitly illustrate that there is now a resolution of the identity operator present.

The expectation value of the SWAPA operator in the replicated and projected

configuration space is thus:

〈SWAPAn〉 ≡
〈

Ψ
(n)
0 ⊗ Ψ̃

(n)
0

∣∣∣ SWAPA

∣∣∣Ψ(n)
0 ⊗ Ψ̃

(n)
0

〉
= N−1

∑
ã(n)

〈
ã(n)
∣∣ ρ2

An

∣∣ã(n)
〉
,

(3.25)

where Pn and P̃n have been absorbed into the normalization constant. Recognizing

that the operation above is a trace, the expectation value can be simplified to

〈SWAPAn〉 = N−1 Tr ρ2
An

. (3.26)
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The second Rényi entanglement entropy for local particle number n becomes (i.e, the

symmetry-resolved entanglement entropy):

S2(ρAn) = − ln
[
N−1〈SWAPAn〉

]
. (3.27)

Finally, substituting into Eq. (3.13), the α = 2 operationally accessible Rényi entan-

glement entropy becomes:

Sacc
2 (ρA) = −2 ln

[∑
n

Pn[Tr ρ2
An ]

1/2

]
= −2 ln

[∑
n

Pn [N〈SWAPAn〉]1/2
]
. (3.28)

This expression is now amenable to estimation in the PIGSFLI algorithm.

3.5 Improved accessible entanglement estimator

given limitations of sampling particle number

sectors

In practice, the probability of measuring most local particle number sectors is small,

and many of these sectors will not be visited in a given simulation. This can cause

the argument of the natural logarithm in Eq. (3.28) to become vanishingly small, and

the accessible entanglement estimator to be undefined. Additionally, if Pn is finite

but very small, configurations with a certain number of SWAP kinks in that n-sector

will not be sampled, again making Eq. (3.28) undefined.

To address this situation in practice, the summation in Eq. (3.28) can be expanded

into two terms: the sum of all particle number sectors n that were measured more

frequently in the simulation and have good statistics, and the contribution from ñ-

sectors that were only rarely measured with poor statistics:

Sacc
2 (ρA) ≈ −2 ln

[∑
n

Pn
[
Tr ρ2

An

]1/2
+
∑
ñ

Pñ
[
Tr ρ2

Añ

]1/2]
. (3.29)
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In practice, the second term can be discarded without consequence since it will be

much smaller than the statistical error of the first term. Using the expansion

ln(x+K) ≈ ln(K) +
x

K
−O(x2) , (3.30)

the accessible entanglement in Eq. (3.29) can be approximated as:

Sacc
2 (ρA) ≈ −2

[
ln
∑
n

Pn
[
Tr ρ2

An

]1/2
+

∑
ñ Pñ

[
Tr ρ2

Añ

]1/2∑
n Pn

[
Tr ρ2

An

]1/2
]
. (3.31)

Since Tr ρ2
An
≤ 1 and Pñ < 1, the second term is bounded from above by the sum of

“bad“ (i.e., poorly measured) probabilities:

∑
ñ

Pñ
[
Tr ρ2

Añ

]1/2
/
∑
n

Pn
[
Tr ρ2

An

]1/2
<
∑
ñ

Pñ . (3.32)

The first term of Eq. (3.31) is computed as a QMC average, with some associated

statistical error σ. Thus the quantity
∑

ñ Pñ can be compared to this statistical error

and discarded if it is much smaller in comparison. To confirm this, a ratio between

the so-called “throwaway error” and statistical error bar may be computed to confirm

the relative accuracy of the procedure. For example, for the results presented in this

work, the contribution to the second accessible Rényi Entropy coming from the poorly

sampled n-sectors was thrown out if:
∑

ñ Pñ/σ < 0.1.

In summary, the above scheme allows for the calculation of the second accessible

Rényi entanglement entropy by discarding data coming from poorly sampled n-sectors

that can result in undefined results.

3.6 Entanglement entropies via PIGSFLI

In order to measure estimators for the Rényi entanglement entropy (Eq. (3.7)),

the symmetry-resolved entanglement entropy (Eq. (3.27)), and the operationally

76



accessible entanglement entropy (Eq. (3.28)), the simulation configuration space needs

to be modified to include replicated wordlines [8] and additional updates are needed

to sample the insertion of connections (SWAP kinks) between them. We will focus

on the case of the 1d and 2d Bose-Hubbard hypercubic lattices shown in Fig. 3.2

3.7 SWAP Updates

3.7.1 Insert/Delete SWAP kink

The first pair of updates that need to be added is to insert/delete a pair of kinks, one

for each replica, at τ = β/2 that connects worldines between replicas. This pair of

kinks can only originate/terminate from lattice sites inside subregion A. SWAP kinks

are only inserted or deleted whenever the number of particles in the site at τ = β/2

is the same for both replicas.

The update is illustrated in Fig. 3.3 and proceeds as follows:

Insert SWAP kink:

0. Attempt update with probability pinsertSWAPKink.

1. Systemically choose a subregion site that has no kinks and get particle number

on the site at τ = β/2 in both replicas. There is no unique way of systemically

choosing the site. In 1D one can, for example, always choose to insert at site

i + 1 if site i already has a SWAP kink. In 2D, where the subregion is also a

square, one can propose insertions on a row i in the same way as the 1D case,

and when full, move to the next row i + 1, then i + 2, etc . . . Fig. 3.2 shows

example lattices in one and two dimensions, with the subregion in which SWAP

kinks will be inserted in pink.

2. Insert SWAP kink at τ = β/2 with unity acceptance rate if the on-site particle

number at τ = β/2 is the same for both replicas.
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A

B

BA

Figure 3.2: Example systems: (left) 1D chain under equal spatial bipartitions of
size ` and (right) a square lattice with square spatial subregion of linear size `. The
total number of sites in the subregions is m ≡ `D. Periodic boundary conditions are
used in all cases.

Figure 3.3: Insert/Delete SWAP kink. The number of particles at the center of
the path, τ = β/2, is measured for the same site on the two different replicas. If the
number of particles is the same, then the SWAP kink is inserted. The kinks are shown
to form an “X” in the diagram for visual clarity, but they both exist at exactly β/2.
Kink deletion occurs if the number of particles at β/2 is the same for site i of both
system and replica. In the figure, the replicas are labeled R and R̃.

78



Delete SWAP kink:

0. Attempt update with probability pdeleteSWAPKink.

1. Choose site at which last SWAP kink was inserted and get particle number on

the site at τ = β/2 in both replicas.

2. Delete SWAP kink at τ = β/2 with unity acceptance rate if the on-site particle

number at τ = β/2 is the same for both replicas.

The reason that the acceptance rate is unity for these updates is due to the

restriction that local particle number be the same on both replicas at the SWAP

kink insertion/deletion site. Since the number of particles will be unchanged at any

path segment, there is no energetic difference for configurations post and pre update

and the ratio of configurational weights post and pre update is one: W ′/W = 1.

The probability ratio of proposing a SWAP deletion to SWAP insertion also is unity:

P (x′ → x)/P (x→ x′) = 1. This is due to the systematic way in which the insertion

and deletion sites are chosen. Taking the product of both ratios, then the Metropolis

acceptance ratio is also unity: R = 1.

3.7.2 Advance/Recede along SWAP kink

This update can be seen in Fig. 3.4 and is a direct generalization of the advance/recede

move of the original Worm Algorithm updates (see Section 2.5.2) to the case where a

worm end is moved across a SWAP kink connecting the system and replica. Thus, the

upper and lower imaginary time bounds of the flat interval will now be in different

replicas. And in the same way as its single-replica counterpart, the new time of the

worm end (τnew) is sampled from the truncated exponential distribution in Eq. (2.33)

to yield an acceptance ratio of unity.

The PIGSFLI algorithm has been now fully described. In the next section,

entanglement entropy, symmetry resolved entanglement entropy and operationally

accessible entanglement results obtained with the algorithm are presented.
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Figure 3.4: Advance/Recede along SWAP kink. If a worm end, either head or tail
is adjacent to a SWAP kink, it can be shifted in the imaginary time direction and
moved to the other replica if the new randomly sampled time goes across β/2. The
diagram above shows the example of advancing/receding a worm head, at time τh,
along a SWAP kink and moved to the other replica to a new time, τnew.
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3.8 Large Imaginary Time Projection of Entangle-

ment

Since the time of a simulation scales proportionally with LDβ, performing mea-

surements with sufficiently small systematic error will become difficult for large

systems. To bypass this and still have a good estimate of the measurement, a three-

parameter exponential fit in β can be performed, from which the large β result can

be extrapolated. For the case of the second Rényi Entropy, this fit looks like:

S2(β) = S
(β→∞)
2 + C1e

−C2β (3.33)

where C1, C2, and S
(β→∞)
2 are fitting parameters. The parameter S

(β→∞)
2 is the

extrapolation of the entanglement entropy in the asymptotic limit of β. Fig. 3.5

illustrates the three-parameter exponential fit to S2 data obtained from the PIGS

simulation. Various interaction strengths U/t are chosen for this benchmark and the

fit works well for all. For each of the interactions, extracting S
(β→∞)
2 from the fits

gives estimates for the entanglement entropy that are always within one standard

deviation of the exact value, computed with exact diagonalization.

3.9 Results

Previous numerical studies of entanglement in the Bose-Hubbard model have mostly

focused on small system sizes using exact diagonalization [41, 99, 146, 147] or matrix

product based methods [24, 148–151] which enforce an occupation restriction on the

local Hilbert space for soft-core bosons. Results in two spatial dimensions exist

[69, 152, 153], but they are more scarce, especially for the symmetry resolved and

accessible entanglements.

We begin by benchmarking the capability of the PIGSFLI algorithm for entangle-

ment quantification. The relative error of the second Rényi entanglement entropy for
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Figure 3.5: Full second Rényi Entropy for a one-dimensional lattice of L = 16
sites at unit-filling under an equal spatial bipartition of size ` = 8. Three-parameter
exponential fits in βt (solid lines) have been performed on the Monte Carlo results
(markers). The dashed horizontal lines denote exact diagonalization values for each of
the various interaction strengths. The three-parameter exponential fits the data well
and can be used to extrapolate the large β limit results of measurements of interest.
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a small system of L = M = 8 in one dimension as a function of the projection length

β is shown in Fig. 3.6 for a maximal spatial bipartition with ` = L/2 = 4. Here,

the error is calculated using the exact result via a ground state diagonalization of the

full Hamiltonian. The Monte Carlo estimates have been obtained by averaging over

many seeds and using the jackknife method for error bar estimation.

We report results for interaction strengths U/t = 0.5, 3.3, 10.0, characteristic of

the superfluid phase, the critical point, and Mott insulating phases, respectively. Due

to the small energy gap in the superfluid phase, it is seen that the exact result is

projected out via QMC at a much slower rate when increasing β than compared to

regimes where the energy gap is large. However, for all three interaction strengths

considered, good accuracy is achieved, with < 1% relative error.

Moving to larger system sizes, and verifying how entanglement changes at

quantum phase transitions, we show the second Rényi entropy in Fig. 3.7 across

the phase diagram. The left panel displays results for a 1D Bose-Hubbard chain of

L = 16 sites at unit-filling, under an equal spatial bipartition composed of ` = 8

sites. For this 16 particle system, exact diagonalization can still be employed, and

the exact result is included as a solid line. QMC results are obtained for a range of

projection lengths β at each interaction strength. At small interactions U/t� 1, deep

in the superfluid phase, and up to a value of U/t ≈ 10, the systematic error falls as β

increases. Deeper in the insulating phase, even though in principle this exponential

decay of the systematic error is still happening, all data points are seen to collapse

onto the exact result on this scale. This is again due to the finite energy gap causing

the exact ground state expectation values to be projected out much faster (i.e., for

smaller β) from the trial (constant) wavefunction. Improved projection behavior

could be obtained by tuning the trial state as a function of U/t.

The β →∞ asymptotic value of S2 can be systematically obtained by performing

a three-parameter exponential fit of QMC data to the form:

S2(β) = S
(β→∞)
2 + C1e

−C2β , (3.34)
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Figure 3.6: β-scaling of relative error of full entanglement S2 for a 1D lattice of
L = 8 sites at unit-filling. The system is bipartitioned into equally sized subregions
A,B of size ` = 4 sites. The relative error of S2 decays as a function of βt. The solid
lines are simple exponential fits.
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Figure 3.7: (left) Full Rényi Entanglement Entropy S2 for a 1D Bose-Hubbard
lattice with L = 16 sites at unit-filling under an equal spatial bipartition of size ` = 8
at various interaction strengths U . The entropies were measured from simulations
at four different values of βt. As expected, the exact ground state value (solid black
line) is approached as βt increases. The vertical dashed line at U = 3.3 is the exact
value of the 1D Superfluid-Mott Insulator phase transition. The solid circles are large
βt extrapolations of S2 obtained from a three-parameter exponential fit of S2 results
at βt = 4, 6, 8, 10, 12. (right) Full Rényi Entanglement Entropy S2 for a 1D Bose-
Hubbard lattice with L = 256 sites at unit-filling under an equal spatial bipartition
of size ` = 128 at various interaction strengths U/t.
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where S
(β→∞)
2 , C1, and C2 are fitting parameters. The extrapolated second Rényi

entanglement entropies are shown as solid circles. All extrapolations were observed

to fall within one standard deviation of the exact result, and the range of β needed

to access this exponential scaling regime is dependent both on interaction strength

and system size.

The right panel of Fig. 3.7 shows the same interaction sweep, but for a 1D Bose-

Hubbard ring of L = 256 lattice sites at unit-filling under an equal spatial bipartition

of ` = 128 sites. Here we only include results extrapolated to β →∞. For this larger

system size, the phase transition is more clearly seen near its thermodynamic limit

value (U/t)c ≈ 3.3 [24–39] via an accompanying reduction in the spatial entanglement

as signature of the adjacent insulating phase for strong repulsive interactions. In this

regime, due to unit-filling, the ground state approaches a product state with one

localized boson per site; thus the entanglement vanishes as U/t→∞. The behavior

of S2 across the transition sweep is similar to what was seen in Ref. [18] for 87Rb

atoms on a L = 4 site lattice. Access to larger systems sizes opens the window for an

accurate determination of the quantum critical point via a finite size scaling analysis

using the second Rényi entropy, as it was done in Ref. [38] using a measurement based

on the von Neumann entropy.

One of the main benefits of our QMC approach is that it can be easily adapted to

general spatial dimension D, with spatial connections (e.g. hopping or interactions)

in the Hamiltonian being encoded through an adjacency matrix. In Fig. 3.8, we

show the scaling of the α = 2 Rényi entanglement entropy for the two dimensional

Bose-Hubbard model with linear size L = 32, corresponding to M = 32× 32 = 1024

total sites at unit-filling. Using the extrapolation method discussed above (and in

Section 3.8), S2 was determined a function of `, the linear size of a square subregion.

QMC calculations were performed at a single value of the interaction, U/t ≈ 16.7,

near the 2D critical point [27, 154, 155]. Subregions with linear sizes ` = 1, . . . , 20

were investigated, and we observe the scaling S2 ∼ ` as expected due to the presence

of an entanglement area law [10, 62–64]. We fit the entanglement to the general
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Figure 3.8: Finite-size scaling of the second Rényi Entropy in a square lattice of size
M = 32× 32 at unit-filling for various subregion sizes. The subregions are made up
of lattice sites arranged as squares of linear sizes ` = 1, 2, . . . , 20. The entanglement
is seen to increase linearly with the boundary of the subregion. The data is fit to a
linear model with a sub-leading correction term that is logarithmic in `, as shown in
Eq. (3.35), yielding a ≈ 0.2, b ≈ 0.5, and c ≈ −0.6. The interaction strength was fixed
to a value near the 2D critical point. The inset shows a plot of S2 minus the leading
term in Eq. (3.35), exposing the logarithmic dependence in ` of the subleading term.
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scaling form:

S2(`) = a`+ b ln `+ c, (3.35)

where we ignore corrections of O(1/`), which we are unable to resolve with our current

dataset. By subtracting off the dominant linear term in ` scaling after fitting, we can

investigate the sub-leading logarithmic correction as a function of subsystem linear

size `, with the results shown in the inset of Fig. 3.8. In systems with a continuous

symmetry breaking in the thermodynamic limit, the logarithmic correction, b, and

constant, c, of Eq. (3.35) can contain universal information about the number of

Goldstone modes, and the central charge of the underlying conformal field theory [66,

66, 67, 69–72, 156, 157]. Extracting this information will require access to the large

system sizes possible with PIGSFLI, which opens up the door for further exploration

of entanglement properties and scaling in the ground states of bosonic lattice models.

Having explored the α = 2 Rényi entanglement entropy, we now turn to the

accessible entanglement entropy, named in this way due its original definition in terms

of entanglement in a quantum many-body system accessible via local operations and

classical communication [21]. In Fig. 3.9, we show results for a 1D Bose-Hubbard

model of N = 8 bosons at unit-filling under an equal size bipartition. Similar results

have already been reported in the literature [41, 99], and these should be considered as

demonstrating the utility of PIGSFLI in computing this important quantity. Quantum

Monte Carlo results (symbols) are shown as a function of projection length along

with values computed via exact diagonalization (solid line) for the same interaction

strengths and system sizes (L = N = 8) studied in Figs. 2.10 and 3.6. The accessible

entanglement entropy Sacc
2 is bounded from above by the full Rényi entanglement

S2 and we find that it is considerably smaller, by a factor of 2 to 3 times in the

Mott insulating phase and over 100 times in the superfluid phase. This is due to

the fact that it is known to only be large near the quantum phase transition in this

system [41] and goes to zero for the case of non-interacting bosons (U/t→ 0) where
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Figure 3.9: β-scaling of the accessible entanglement Sacc
2 in a 1D chain of L = 8

sites at unit-filling under equal bipartition of size ` = 4. In contrast to the full Rényi
entanglement entropies, larger values of β are needed to achieve similar accuracy,
especially in the superfluid phase. The solid horizontal lines denote the exact value
of the accessible entanglement at the respective interaction strength.

89



all entanglement is due to number fluctuations, or vanishes in the insulating phase,

where the entanglement is non-accessible.

In Fig. 3.10, the symmetry-resolved entanglement entropy as a function of

projection length is shown for the sector where the local particle number distribution

Pn is maximal, nmax, and it’s two adjacent sectors, nmax−1 and nmax+1, with their

corresponding exact diagonalization values shown as a solid horizontal line. Results

are included for the same L = N = 8 system from Fig. 3.9 with interaction strengths

U/t = 0.5, 3.3, 10. For reference, the local particle number distributions, Pn, are

shown for each value of the interaction strength. For U/t = 10, due to the strong

repulsion between particles, the ground state configuration tends to an insulating

state with one boson per site at unit-filling. Since the subregion is of size ` = 4, it is

seen that Pn is sharply peaked at a maximal value of nmax = 4. In the superfluid phase

with U/t = 0.5 there are considerably larger particle number fluctuations, resulting

in a broader Pn, although with the peak still at nmax = 4.

The symmetry-resolved entropies corresponding to nmax−1 and nmax+1 are equiv-

alent, up to statistical fluctuations due to the chosen partition and the symmetries

of the Bose-Hubbard model [41]. When particle fluctuations are large, the symmetry

resolved entanglement is nearly identical for n = nmax, nmax ± 1, whereas in the

insulating phase, nmax may not correspond to maximal entanglement. For example,

at U/t = 10, the contribution coming from the maximal sector is 10× smaller than the

neighboring sectors, although their probability is much lower. This is because in the

nmax sector, the ground state in the Mott insulating phase is |Ψ0〉nmax

Mott = |1, 1, . . . , 1〉A⊗
|1, 1, . . . , 1〉B, which is unentangled. In the nmax − 1 sector, the particles will once

again try to repel each other, but there will be a vacancy in one of the A sites. The

ground state then becomes a superposition of the only two possible states that have

a hole in the A subregion that is adjacent to a doubly occupied site in the B subre-

gion: |Ψ0〉nmax−1
Mott = (|1, 1, . . . , 0〉A ⊗ |2, 1, . . . , 1〉B + |0, 1, . . . , 1〉A ⊗ |1, 1, . . . , 2〉B)/

√
2,

which can be shown to have a second Rényi entanglement entropy of S2 = ln 2 ≈
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Figure 3.10: Imaginary time projection length β-scaling of the symmetry-resolved
entanglement S2(ρAn) in a 1D Bose-Hubbard chain of L = 8 sites at unit-filling
under an equal spatial bipartition of size ` = 4. From top to bottom, the rows
correspond to interaction strengths in the superfluid phase (U/t = 0.5), at the phase
transition (U/t = 3.3), and in the Mott phase (U/t = 10). The first three columns
correspond to entanglement entropies in the maximal local particle number sector
nmax (i.e., with the largest probability), and the two neighboring sectors nmax − 1
and nmax + 1. The solid horizontal lines are the exact diagonalization values for each
symmetry resolved entanglement entropy. The rightmost column shows the local
particle number distribution Pn at each of the three interaction strengths.
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0.69 . . . For the case of the insulating phase in the nmax + 1 sector, an equivalent

argument can be applied to understand the value of the entanglement entropy.

As a practical matter, large β values are required in Fig. 3.9 and Fig. 3.10 for the

PIGSFLI algorithm to converge on results with small relative errors, however in all

interaction regimes, we find agreement with the exact result. Improved sampling

procedures can be directly implemented (e.g. performing parallel simulations in

different restricted n-sectors) to improve efficiency and statistical convergence. These

results represent the first quantum Monte Carlo measurement of the Rényi generalized

accessible entanglement in the Bose-Hubbard model.

Fig. 3.11 shows results for the symmetry-resolved entanglement entropy as a

function of local particle number sector n for a 1D Bose-Hubbad model with N = 64

bosons at at unit filling under an equal spatial bipartition of size ` = 32 near the

quantum critical point, U/t = 3.3. This result demonstrates the capability of our

algorithm to compute the symmetry-resolved entanglement entropy in much larger

systems than have been previously possible, even in strongly interacting quantum

many-body systems. The bottom panel of Fig. 3.11 shows the probability distribution

of local particle number in the A subregion. Notice that due to the onset of Mott

insulating behavior, a similar behavior to Fig. 3.10 is observed, where the symmetry-

resolved entanglement entropy at the maximal sector, nmax = 32, is actually smaller

than it’s two adjacent neighbors. In principle, the symmetry-resolved entanglement

entropy is generally finite for the rest of the local particle numbers not shown, however

as sectors outside of this range occur with increasingly vanishing probability, in

practice they cannot be sampled without large statistical errors. This is apparent

in the figure as |n− nmax| > 1. The non-monotonic dependence of S2(ρAn) with the

minimum occurring at nmax can be interpreted as originating from the presence of

holon and doublon quasiparticles when the subsystem is away from unit-filling, on

the insulating side of the phase transition .
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3.10 Conclusion

In this chapter, we have introduced a ground state lattice Path Integral quantum

Monte Carlo algorithm to compute the entanglement properties of interacting

bosons at zero temperature. The algorithm was further expanded to allow for the

calculation of the full, operationally accessible, and symmetry resolved spatial Rényi

entanglement entropies where we again provided benchmarks against exact results

across the phase diagram of the 1D Bose-Hubbard model. As has been previously

reported, we observe that entanglement is sensitive to the quantum phase transition

between the insulating and superfluid phases. To highlight the O
(
LD
)

performance

of the quantum Monte Carlo implementation for a D-dimensional lattice of linear

dimension L we reported new results of spatial entanglement for a D = 1 chain

of L = 256 sites at unit-filling. Moving beyond D = 1, we also demonstrated the

entanglement scaling with boundary size for a D = 2 system of M = 32× 32 = 1024

lattice sites at unit-filling, with square subregions that ranged from as small as `D =

1× 1 to `D = 20× 20. These results are consistent with the entanglement boundary

law, S2 ∼ `. Finally, by utilizing the superselection rule corresponding to fixed

total particle number, we computed the accessible entanglement for a D = 1 Bose-

Hubbard chain, as well as highlighting its value for a few symmetry resolved subsectors

corresponding to n particles in the subsystem near the peak of the particle number

distribution. While we have only studied these quantities in small systems, they

demonstrate proof-of-principle calculations that can be straightforwardly extended to

uncover the finite size scaling of this experimentally important entanglement measure.

Our implementation, dubbed PIGSFLI, has been released as open source [80].

Further development of this algorithm can be pursued in future work, including

incorporating optimizations such as the “ratio method” [8, 12] that have been

previously utilized to improve sampling statistics in larger systems by building up the

entanglement from a ratio of estimators for smaller spatial subregions. The addition

of different lattice connectivities or moving to extended range Bose-Hubbard models
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(both hopping and interactions) presents no fundamental algorithmic challenge and

will allow for the measurement of entanglement in the ground states of a large class of

interacting lattice Hamiltonians. Moving to higher order Rényi entropies with α > 2

is also possible by including additional replicas and the updates required to insert

and remove SWAP kinks between them. Finally, it may also be possible to extend

the algorithm to study entanglement measures more suitable for mixed states, such

as the negativity.
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Chapter 4

Finite Size Scaling of Entanglement

in the 1D Bose-Hubbard Model

In this chapter, we apply our new lattice PIGS algorithm, PIGSFLI, to investigate

the entanglement scaling with subsystem size in the one-dimensional Bose-Hubbard

model. We derive scaling forms with subsystem size for the symmetry-resolved and

accessible entanglement entropies in the Bose-Hubbard model for itinerant bosons

[23]. PIGSFLI simulations [158] will allow for the numerical confirmation of the

derived scaling forms in systems of up to N = 64 bosons at unit filling both near

the quantum critical point and in the superfluid phase, where weak interactions

allowing large particle number fluctuations causing DMRG to be prone to large errors

in the accessible and symmetry-resolved entanglement [41]. Additionally, numerical

estimates for the central charge underlying the conformal field theory (CFT) and for

the Luttinger parameter are extracted and shown to agree with the predictions from

their underlying theories.

96



4.1 Entanglement Measures

The entanglement between a partition of a system,A, and it’s complement, B, can be

computed via the Rényi entanglement entropy:

Sα(ρA) =
1

1− α ln Tr ραA. (4.1)

For a pure state, |Ψ〉, the reduced density matrix of subsystem, ρA, is obtained by

tracing out the degrees of freedom of the complementary subregion from the full

density matrix, ρA = TrB |Ψ〉 〈Ψ|. In the limit α→ 1, the Rényi EE becomes the von

Neumann entropy: S1 = −Tr(ρA ln ρA), a quantum information theory equivalent of

the Shannon entropy. The second Rényi EE, S2 = − ln Tr ρ2
A, has garnered much

interest since the purity, Tr ρ2
A, can be rewritten as a quantum expectation value

of a local SWAPA operator [8] that is tractable in quantum Monte Carlo (QMC)

[9, 9–11, 158] and even experimentally [18–20] .

Conformal field theory (CFT) predicts an asymptotic scaling form for the spatial

Rényi entanglement entropy in an infinite 1d system with subregion A comprised of `

sites that is logarithmic in subsystem size, with non-universal O(1) corrections [73] :

Sα|1D CFT =
c

6

(
1 +

1

α

)
ln

`

a0

+ cα, (4.2)

where c is the central charge underlying the CFT, a0 is a short-distance cutoff, and cα

is a non-universal constant. If the system is subject to periodic boundary conditions,

Eq. (4.2) is then rewritten in terms of a cord length, D(`) = L/π sin(π`/L), where

L is the total system size, by replacing ` → D(`) to account for distances measured

around a ring.

Particle number superselection rules restrict the amount of entanglement opera-

tionally accessible as a resource for quantum information processing [21, 22]. The

quantification of this accessible entanglement was originally introduced as an average

of von Neumann entropies over sectors of fixed local particle number in the subsystem:
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Sacc
1 (ρA) =

∑
n PnS1(ρAn) [21] and has since been generalized in terms of Rényi

EE’s [22]:

Sacc
α (ρA) =

α

1− α ln

[∑
n

Pne
1−α
α
Sα(ρAn )

]
. (4.3)

The quantity Sα(ρAn) is the symmetry-resolved entanglement for fixed particle

number sector n and it is obtained as a Rényi EE, Eq. (4.1), for projections of the

reduced density matrix onto the subspace of fixed n:

ρAn =
ΠnρAΠn

Pn
, (4.4)

where Πn is a projection operator onto the subspace of fixed n and Pn = Tr ρAn gives

the probability of subsector n. The quantification of the symmetry-resolved and

accessible entanglement entropies is an active field of research [22, 41, 42, 78, 98, 99,

113–145]. This quantity is important as its average over symmetry-resolved sectors,

the accessible entanglement, sets an upper bound on the amount of entanglement that

can be transferred via LOCC from a quantum many-body system to a qubit register

[99]. With PIGSFLI, we now have the capability to compute the symmetry-resolved

EE in any regime of the phase diagram of interacting bosonic lattices.

4.2 Bose-Hubbard Model

The Bose-Hubbard model for itinerant bosons on a lattice [23] is:

H = −t
∑
〈i,j〉

b†ibj +
U

2

∑
i

ni(ni − 1)− µ
∑
i

ni , (4.5)

where t is the tunneling between neighboring lattice sites 〈i, j〉, U > 0 is a

repulsive interaction potential, µ is the chemical potential, and b†i (bi ) are bosonic

creation(annhilation) operators on site i, satisfying the commutation relation:[
bi , b

†
j

]
= δi,j, with ni = b†ibi the local number operator.
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This model exhibits a Berezinskii–Kosterlitz–Thouless (BKT) quantum phase

transition from a superfluid phase, where particle interactions are weak, into a Mott

insulator, where strong repulsive interactions cause the bosons to become highly

localized, with the system tending to one particle on each site for the case of unit

filling and U/t→∞. The exact location of the quantum critical point is not known,

but it has been approximated with a diverse array of methods [24–39], with recent

estimates suggesting that (U/t)c ' 3.3. In this chapter, the subsystem scaling of the

symmetry-resolved entanglement is numerically confirmed via our PIGS algorithm

[158] in systems up to N = 64 bosons at unit filling (L = N), much larger than what

is possible with exact diagonalization (ED), at interaction strengths of U/t = 3.3,

near the superfluid-insulating critical point, and at U/t = 2.0, inside the superfluid

phase, where the accessible entanglement can be prone to large errors using DMRG

[41], since the maximum on-site number of particles needs to restricted but in this

phase weak interactions allow large particle number fluctuations.

4.3 Scaling of operationally accessible entangle-

ment

For 1d systems described by Tomonaga Luttinger Liquid (TLL) theory [4], such

as the superfluid phase of the Bose-Hubbard model, the amount of non-accessible

entanglement, ∆Sα = Sα− Sacc
α , can be related to the local particle number variance

or bipartite fluctuations, σ2 [42]. Moreover, in the limit `� 1, bipartite fluctuations

scale with subsystem size as [39] :

σ2 ≡ 〈n2〉 − 〈n〉2 =
K

π2
ln
D(`)

a0

, (4.6)

where K is the Luttinger parameter and, due to periodic boundary conditions,

` → D(`) is taken to account for distances measured around a ring, where D(`) =

L/π sin(π`/L) is the subsystem cordlength. The difference between full and accessible
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entanglement entropies, referred to here as non-accessible EE, has been previously

seen to be related to bipartite fluctuations [42]:

∆Sα ≡ Sα − Sacc
α =

1

2
lnσ2 +

1

2
ln
[
2πα1/(α−1)

]
. (4.7)

Combining Eq. (4.6) and Eq. (4.7) for α = 2, a scaling form for the non-accessible

second Rényi entanglement entropy is obtained:

∆S2(`) = S2(`)− Sacc
2 (`) =

1

2

[
ln ln

D(`)

a0

+ lnK + ln
4

π

]
. (4.8)

The scaling with subsystem size of the first term, S2(`), which is the full second Rényi

EE is obtained from its CFT prediction, Eq. (4.2), by taking α = 2:

S2|1D CFT(`) =
c

4
lnD(`) + c̃2, (4.9)

where the short-distance cutoff has been absorbed into the additive constant, c̃2.

Solving Eq. (4.8) for Sacc
2 (`), the subsystem size scaling of the accessible

entanglement then becomes:

Sacc
2 (`) =

c

4
lnD(`)− 1

2
ln ln

D(`)

a0

+ cacc
2 , (4.10)

where additive constants have been absorbed into cacc
2 . Eq. (4.10) constitutes a new

result that to our knowledge has not been presented before in the literature.

In Fig. 4.1, accessible entanglement results as a function of cordlength obtained

by performing simulations using PIGSFLI are shown. The data is fitted to Eq. (4.10),

excluding smaller subsystem sizes to minimize finite size effects, good agreement is

seen for both interaction strengths.

Due to the equivalence between the superfluid and Tomonaga Luttinger Liquid,

the central charge of the CFT is expected to be c = 1 [4, 75], a result obtained

with PIGSFLI, within error bars. The larger values of Sacc
2 for U/t = 3.3, compared
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Figure 4.1: Accessible entanglement scaling with subsystem cordlength. The system
consists of L = 64 sites at unit filling with interaction strengths U/t = 2.0, in the
superfluid phase, and U/t = 3.3, near the superfluid-insulating quantum critical point.
The data points were obtained from PIMC and are fitted to Eq. (4.10), shown as a
solid line. Fit parameters are shown as annotations, with the central charge agreeing
with the CFT prediction, c = 1.
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to U/t = 2.0, are reflective of the previously observed result that the accessible

entanglement is maximal near the superfluid-insulating phase transition [41]. The

Monte Carlo estimates have been obtained by averaging over many seeds and using

the jackknife method for error bar estimation.

In the next section, we derive this symmetry-resolved scaling, but from relation-

ships between entanglement entropies and bipartite fluctuations.

4.4 Scaling of symmetry-resolved entanglement

Due to the block diagonal structure of ρA, the purity of a reduced density matrix

projected onto the subspace of fixed local particle number n can be written:

Tr ρ2
An =

Tr(Πnρ
2
AΠn)

P 2
n

, (4.11)

where Πn is a projection operator onto the subspace of fixed local particle number n

and Pn is the probability of n particles in the subsystem. The negative of the natural

logarithm of this quantity can be identified as the symmetry-resolved second Rényi

entanglement entropy for particle sector n:

s2(n) = − ln Tr ρ2
An = − ln

[
Tr(Πnρ

2
AΠn)

P 2
n

]
, (4.12)

where we use the short-hand notation S2(ρAn) ≡ s2(n). The local particle number

distribution, Pn, in critical 1d systems described by Luttinger liquid theory (or, more

generally, for CFT’s with conserved U(1) current), such as the superfluid phase of

the BH model, is Gaussian [98] with mean 〈n〉 and variance σ2. In Ref [42], it was

shown that the trace in the numerator of Eq. (4.12) can be related to an auxiliary

local particle number distribution Pn,α, defined:

Pn,α =
Tr(Πnρ

α
AΠn)

Tr ραA
, (4.13)

102



that is also Gaussian with the same mean, 〈n〉, but modified variance σ2
α = σ2/α [42].

Solving Eq. (4.13) for Tr(Πnρ
α
AΠn), it is seen that:

Tr(Πnρ
α
AΠn) = Pn,α Tr ραA. (4.14)

Substituting this result into Eq. (4.12) with α = 2, the second Rényi symmetry-

resolved EE can be rewritten in terms of Pn,Pn,2, and Tr ρ2
A:

s2(n) = − ln

[
Pn,2
P 2
n

Tr ρ2
A

]
. (4.15)

The trace inside the logarithm can be computed by recalling that the second Rényi

EE is S2 = − ln Tr ρ2
A and thus Tr ρ2

A = e−S2 . Substituting this result into Eq. (4.15),

the symmetry-resolved EE can be written in terms of the full second Rényi EE:

s2(n) = S2 − ln

[
Pn,2
P 2
n

]
. (4.16)

The second term in Eq. (4.16) can be found to scale with system size by first

expressing the distributions Pn and Pn,2 explicitly in Gaussian form:

Pn =
1√

2πσ2
e−

(n−〈n〉)2
2σ2 , (4.17)

and

Pn,2 =
1√

2πσ2
2

e
− (n−〈n〉)2

2σ22 . (4.18)

The ratio arising in the logarithm of Eq. (4.16) then becomes a function of bipartite

fluctuations:
Pn,2
P 2
n

=
√

4πσ2. (4.19)

Substituting the scaling forms for the bipartite fluctuations, Eq. (4.6), and second

Rényi EE, Eq. (4.9), into Eq. (4.16), the subsystem scaling of the symmetry-resolved
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entanglement is then given by:

s2(`, n) =
c

4
lnD(`)− 1

2
ln ln

D(`)

a0

+ cSRE
2 , (4.20)

where additive constants have been absorbed into cSRE
2 . The symmetry-resolved

entanglement scaling with subsystem size in systems with Gaussian local particle

number distributions is then independent of particle number sector, a property

previously referred to as entropy equipartition [78, 79]. Comparing Eq. (4.10) and

Eq. (4.20), we arrive to the surprising result that the accessible and symmetry-

resolved entanglement possess identical leading and sub-leading scaling forms, up

to O(1) corrections.

Fig. 4.2 shows lattice PIMC results for the scaling with cordlength of the

symmetry-resolved entanglement for the sector where the local particle number

probability distribution, Pn, is maximal, nmax, and adjacent sector, nmax − 1. The

system consists of 64 particles at unit filling, for interaction strengths U/t = 3.3 and

U/t = 2.0, near the quantum critical point and in the superfluid phase, respectively.

The Monte Carlo data points and fit show good agreement, the scaling is seen to be

valid for both local particle number sectors, and the central charge obtained from

fitting gives an estimate close to the expected c = 1.

The symmetry-resolved and accessible entanglement subsystem scaling forms have

allowed for the estimation of the central charge underlying the CFT in the finite

sized systems shown. In the next section, we show how the Luttinger parameter K

can be estimated from a relation obtained from the scaling form of the difference

∆S2 = S2 − Sacc
2 .
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Figure 4.2: Scaling of the symmetry-resolved entanglement with subsystem scaling.
The results shown correspond to the local particle number sector where the probability
distribution, Pn, is maximal, nmax, and adjacent sector, nmax − 1. Monte Carlo data
points are fitted to Eq. (4.20) and the corresponding fit parameters are shown as
annotations.
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4.5 Luttinger parameter extraction from non- ac-

cessible entanglement

In the derivation that led to the accessible entanglement scaling, Eq. (4.10), the scaling

for the difference, ∆S2, the non-accessible entanglement, was obtained in Eq. (4.8).

Doubling this scaling then taking its exponential, the following expression is obtained:

e2∆S2(`) =
4K

π
lnD(`) + c∆

2 . (4.21)

With this result, the Luttinger Parameter can be extracted by performing a simple

linear fit in lnD(`). Moreover, plotting as a line provides an easier way of appreciating

the effectiveness of the fit across its domain. Fig. 4.3 shows PIMC results for e2∆S2(`),

with the data fitted to Eq. (4.21). The Tomonaga-Luttinger parameter obtained

from this fit is K ≈ 2.1, close to but slightly above the Luttinger Liquid theory

predicted result at the superfluid-insulating critical point, Kc = 2 [4]. This result

suggests that to get closer to the critical interaction strength, we need to slightly

increase U/t = 3.3, since the Luttinger parameter has been previously seen to decrease

monotonically as a function of U/t in the Bose-Hubbard model [39]. A more accurate

determination of this quantum critical point can be a future research avenue. This

method showcases a supplementary approach for the estimation of K to those that

depend on the calculation of the correlation function and bipartite fluctuations [39].

4.6 Conclusion

In this chapter, we have found scaling forms for the accessible and symmetry-

resolved entanglement entropies in 1d systems with Gaussian local particle number

distribution. The scaling of the symmetry-resolved entanglement was seen to be

independent of local particle number. Additionally, both the accessible and the

symmetry-resolved entanglement were seen to possess identical subsystem scaling
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forms, up to O(1) corrections. These scaling forms were numerically confirmed

in one dimensional Bose-Hubbard lattices of 64 particles at unit filling via lattice

PIGS simulations near the superfluid-insulating phase transition and deep in the

superfluid phase. The central charge underlying the CFT was obtained to excellent

agreement with the expected result, c = 1 for the superfluid phase and near the

phase transition. Moreover, a scaling form for the difference ∆S2, the amount of

non-accessible entanglement, was obtained. From this, a linear form in lnD(`) was

derived that allowed for Luttinger parameter estimation from a fit to its slope. Near

the quantum critical point, we obtained K ≈ 2.1, close to the TLL prediction of 2.0,

suggesting that the interaction strength U/t = 3.3 is near, albeit slightly lower than

the actual critical point. In the superfluid phase, the extracted K was larger, agreeing

with TLL theory, which predicts that this value increases with decreasing interaction

strength.

Some avenues of future exploration that open up based on the results reported

here are to investigate the Luttinger parameter across a range of interaction strengths

in thermodynamic limit, and obtaining scaling forms in two dimensional lattices, for

which the new lattice PIGS algorithm used here has been shown to be a viable tool

for numerical exploration.
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Chapter 5

Improving autocorrelation times

via direct sampling of the

truncated exponential distribution

5.1 Introduction

Sequential samples obtained in the random walk of a Markov Chain Monte Carlo

(MCMC) simulation generally exhibit statistical correlations. The quality of a

statistical estimate is directly related to the number of effectively uncorrelated samples

obtained. A key challenge in the development of MCMC methods is therefore the

reduction of computational time required to generate well-decorrelated samples.

One of the most ubiquitous MCMC methods is the Metropolis Algorithm [54, 159–

161], where samples are obtained from a probability distribution that is often non-

trivial to sample. In this algorithm, the principle of detailed balance leads to a non-

negative acceptance ratio, R, for determining if randomly proposed configurations

are accepted or rejected. Proposed configurations are only kept when this acceptance

ratio is larger than a random number drawn from the uniform distribution, r ∼
U (0, 1), such that r < R, and rejected otherwise. In most applications it is common
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to encounter cases in which the acceptance ratio is small, leading to an inefficient

Markov Chain as most proposed configurations are rejected. By carefully choosing

the underlying probability distribution from which random variates in a Monte Carlo

update are sampled, the acceptance ratio can be increased and even become unity so

that every new configuration is accepted, thus improving the dynamics of the random

walk and decreasing the correlation between subsequent samples.

In our recently developed Path Integral Monte Carlo (PIMC) algorithm [1], the

acceptance ratio of most updates, depends on drawing random variates from a one

or two dimensional truncated exponential distribution – an exponential distribution

restricted to a finite domain. In this chapter, we describe how to directly sample

two random variates from a two dimensional truncated exponential distribution, and

apply this sampling strategy in PIMC. The resulting method leads to a reduction of

autocorrelation times and therefore faster convergence of statistical averages to their

exact values.

The chapter is organized as follows: In Section 5.2 we review how to sample

variates from a one dimensional probability distribution by inverting the cumulative

distribution function (CDF) of a probability density function (PDF). We will do

this in the context of the one dimensional truncated exponential distribution. In

Section 5.3, this method is then generalized to the non-trivial case of directly sampling

two random variates from a two dimensional truncated exponential distribution. The

direct sampling of variates from both one and two dimensional truncated exponential

distributions is then applied to the PIGSFLI algorithm for the simulation of bosonic

lattices at zero temperature and it is shown that direct sampling results in decreased

autocorrelation times for the kinetic and potential ground state energies at no

performance cost.
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5.2 Direct sampling of 1D truncated exponential

distribution

The one dimensional (1D) truncated exponential distribution is defined as:

P1(x) =
1

Z e
−c(x−a) =

ce−c(x−a)

1− e−c(b−a)
, (5.1)

where a and b are the lower and upper bounds of the finite domain, respectively, c

is a scale parameter, and x is a random variable in the truncation interval satisfying

a ≤ x ≤ b. The factor Z has been chosen to ensure that the distribution is normalized:∫ b
a

dxP1(x) = 1. The cumulative distribution function (CDF) of P1(x) is,

F1(x) ≡
∫ x

a

dx′ P1(x′) =
1− e−c(x−a)

cZ . (5.2)

The inverse transform sampling method inverts the functional dependence y =

F1(x) to obtain samples from the target distribution x ∼ P1(x) of Eq. (5.1). The first

step is to sample a random variable y uniformly between 0 and 1. We denote this

random variable y ∼ U(0, 1). Then x = F−1
1 (y) yields a random variable with the

desired target distribution, x ∼ P1(x). Inverting the CDF in Eq. (5.2) we find:

x(y) = a− ln (1− cZy)

c
. (5.3)

When the CDF cannot be analytically inverted, a common practical approach

attributed to von Neumann is rejection sampling [162, 163], which allows for the brute

force sampling of P1(x) on a finite domain with P1,max ≡ maxa≤x≤b P1(x) through the

sequential comparison of two independently sampled random numbers.
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Rejection Sampling

1. Sample a random number from the uniform distribution x ∼ U(a, b).

2. Sample independently another random number from the uniform distribution

χ ∼ U(0, P1,max).

3. If χ < P1(x) then accept x. Otherwise, reject the proposal and return to step

1.

The value x returned by this procedure will be a good sample from the distribution

P1. Note, however, that if P1 deviates strongly from U(a, b) then there are likely to

be many rejections before a good sample is returned.

While rejection sampling is not necessary here due to the existence of the inverse,

to setup our analysis of the 2D case, we compare direct and rejection sampling by

generating a histogram of random samples x ∼ P1 using both methods. The results

are shown in Fig. 5.1 for 8× 105 samples. Both histograms agree with the expected

result in Eq. (5.1), but fluctuations are larger for the rejection sampling case.

This can be attributed to the large number of good samples in the direct sampling

dataset, since random variates obtained from Eq. (5.1) are always accepted. In

contrast, a significant fraction of iterations for the rejection sampling method did

not lead to a good sample.

For a one dimensional probability distribution, such as P1(x), a Kolmogorov-

Smirnov (KS) test can be used to quantify how well the random variate dataset

follows the target distribution. Fig. 5.2 shows the KS-distance or KS-statistic, which

measures the maximum difference between empirical and theoretical CDFs, as a

function of the number of samples in the dataset. For the direct sampling dataset,

the KS-distance decays much faster than for the rejection sampling dataset. This is

expected, because the rejection sampling dataset contains fewer statistical samples

from Eq. (5.1).
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Figure 5.1: One dimensional truncated exponential distribution Eq. (5.1) generated
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shown (800, 000), both methods successfully generate the desired one dimensional
truncated exponential distribution of the random variate x. The direct sampling
data is closer to the exact distribution (solid curve) because it includes more good
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Having reviewed the standard methods of direct inversion and rejection sampling

for the 1D truncated exponential distribution, we now generalize to the 2D case which

is relevant for Path Integral quantum Monte Carlo simulations.

5.3 Direct sampling of 2D truncated exponential

distribution

The probability distribution Eq. (5.1) can be generalized to two random variables

x1, x2 as:

P2(x1, x2) =
1

ZJ
e−c(x2−x1), (5.4)

where a ≤ x1 < x2 ≤ b and the distribution is normalized by:

ZJ =
e−c(b−a) − ac+ bc− 1

c2
. (5.5)

The random variables x1 and x2 can be sampled sequentially by decomposing Eq. (5.4)

into a product of marginal and conditional probabilities

P2(x1, x2) = P2(x1)P2(x2|x1), (5.6)

where

P2(x1) =

∫ b

x1

dx2 P2(x1, x2) =
1− e−c(b−x1)

cZJ
(5.7)

and P2(x2|x1) is a one dimensional truncated exponential distribution in the variable

x2 ∈ [x1, b].

The CDF of the marginalized distribution is

F2(x1) =

∫ x1

a

dx′1P2(x′1)

=
1

c2ZJ
[
e−c(b−a) − e−c(b−x1) − c(a− x1)

]
. (5.8)

115



Denote y = F2(x1). To generate samples from the marginalized distribution x1 ∼
P2(x1), one can sample y ∼ U(0, 1) uniformly and then calculate x1 by inverting F2:

x1 = F−1
2 (y). (5.9)

An analytic solution for x1 is possible in terms of the Lambert (product log)

functions [164], which are defined to invert the functional dependence f(α) = αeα.

Since this map is not injective, its inverse

Wk(αe
α) = α, (5.10)

has multiple solution branches k. When α is real there are two solution branches;

these are conventionally labeled k = 0 for α ≥ −1, and k = −1 for α ≤ −1.

Now we will perform a series of algebraic manipulations on Eq. (5.9). Begin by

defining B = −e−cb, and transform the dependent variable y to a new one,

u = yc2ZJ +Beca + ca. (5.11)

Referring to Eq. (5.8), this yields the simplified constraint equation,

u = Becx1 + cx1, (5.12)

or equivalently,

(u− cx1)e(u−cx1) = Beu. (5.13)

Next, apply Wk to both sides and use Eq. (5.10) with α = u− cx1. The result is,

x1 =
1

c
[u−Wk(Be

u)] . (5.14)
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Using Eq. (5.12), we may write α = − exp[−c(b− x1)]. Since b−x1 > 0, the condition

α ≷ −1 coincides with c ≷ 0. It follows that we should select:

k = 0 if c ≥ 0, or k = −1 if c ≤ 0. (5.15)

Substitution of Eq. (5.11) into the right of Eq. (5.14) then gives our final closed form

solution for x1(y). Note that the limit c → 0 is a removable singularity, for which

x1 → b− (b− a)
√

1− y.

Our final procedure for sampling both (x1, x2) from the joint distribution P2(x1, x2)

can now be summarized as follows. Begin by generating a uniform random sample

y ∼ U(0, 1). Next, use the analytical solution of Eq. (5.14) with Eq. (5.11) to generate

a sample x1 ∼ P2(x1), where x2 has been marginalized out. Here, one may use an

existing numerical subroutine to efficiently evaluate the Lambert function, W0 or

W−1 [165]. With x1 fixed, the second random variate, x2 ∼ P2(x2|x1), can be directly

sampled from the one dimensional truncated exponential distribution, Eq. (5.1), with

the lower bound set to a→ x1 and keeping the upper bound as b.

Fig. 5.3 shows results for samples drawn from the two dimensional probability

distribution P2(x1, x2), Eq. (5.4), for a fixed set of parameters a, b, and c. The leftmost

heatmap shows the exact probability distribution P2(x1, x2) for comparison with the

results obtained from rejection and direct sampling sampling for 8 × 105 random

samples of x1 and x2 each. For a dataset of this size, both methods sample the

exact distribution well. Looking at the relative error heatmaps corresponding to each

sampling method, most regions are within 10% of the exact distribution, with some

areas in the top left having larger error due to the low sampling probability of this

region.

Due to the similarity between the rejection and direct sampling results in Fig. 5.3,

it is not straightforward to determine directly which method is more efficient

in reproducing the two dimensional truncated exponential distribution, Eq. (5.4).

Kolmogorov-Smirnov tests in higher dimensions have been proposed [166, 167], but
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technical issues make them highly non-trivial to implement, so we opt to compute

running averages for the three quantities 〈x1〉, 〈x2〉, and 〈x1x2〉 as a function of number

of samples, with the results shown in Fig. 5.4. For all three quantities, the running

average of the samples obtained via direct sampling converges faster to the exact

values (obtained using Eq. (5.4), denoted by the horizontal line), than the rejection

sampling dataset.

In the next section, we show how sampling random variates from truncated

exponential distributions, in both one and two dimensions, can improve the efficiency

of some Quantum Monte Carlo simulations by reducing autocorrelation times between

the samples.

5.4 Application: Lattice Path Integral Quantum

Monte Carlo

Markov chain Monte Carlo applications based on the Metropolis-Hastings algorithms

create a Markov chain from configurations drawn according to a probability density

function π(ν) = W (ν)/Z, where ν denotes a configuration defined by the problem

space. Stochastic transition probabilities T (ν → ν ′) from a configuration ν to a

new configuration ν ′ should be independent of the history of the random walk. This

is achieved via an ergodic set of Monte Carlo updates that satisfy the principle of

detailed balance: π(ν)T (ν → ν ′) = π(ν ′)T (ν ′ → ν). Transition probabilities can

be factored into a product of a selection probability P (ν → ν ′) and an acceptance

probability A(ν → ν ′). From the principle of detailed balance, the acceptance ratio

of a general Monte Carlo update can be expressed as:

A(ν → ν ′)

A(ν ′ → ν)
=
W (ν ′)P (ν ′ → ν)

W (ν)P (ν → ν ′)
≡ R. (5.16)
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faster to the exact result (horizontal line).
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The M configurations generated via the MCMC process can be utilized to approxi-

mate expectation values of observables:

〈O〉 =
∑
ν

O(ν)π(ν) ' 1

M

M∑
i=1

Oi, (5.17)

where Oi = O(νi). In practice, random samples ν ∼ π(ν) making up the finite

Markov chain {ν1, . . . , νM} may not be independent, leading to correlations in Oi and

Oj, i.e. 〈OiOj〉 6= 〈Oi〉〈Oj〉. This can be quantified for observable O via the integrated

autocorrelation time TO:

TO = 1 + 2
M∑
τ=1

CO(τ)

CO(0)
, (5.18)

where the autocorrelation function is defined to be

CO(τ) =
1

M − τ
M−τ∑
i=1

(Oi − 〈O〉)(Oi+τ − 〈O〉) . (5.19)

Thus, truly independent measurements can only be performed for samples separated

by TO MCMC steps, and any algorithmic improvement leading to a reduction in TO
will improve the overall efficiency of a simulation.

In Chapters 2 and 3, we introduced a path integral Monte Carlo algorithm for

the simulation of bosonic lattice models at zero temperature (T = 0), inspired by

the finite temperature PIMC Worm Algorithm [57]. We direct the reader to these

for complete details of the algorithm which can be used to evaluate ground state

expectation values:

〈O〉 ≡ 〈Ψ|O|Ψ〉〈Ψ|Ψ〉 (5.20)

by projection of a trial state |ΨT 〉, with a large power of the density operator: |Ψ〉 =

limβ→∞ e−βH |ΨT 〉, where H is the system Hamiltonian, and β is the projection length.

Using the path integral formulation of quantum mechanics, the target configura-

tion space can be represented as a set of paths, known as worldlines, that propagate

in imaginary time (characterized by β) and space. An example configuration of
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worldlines for a Bose-Hubbard lattice in one dimension with N = 2 bosons on

L = 4 sites is shown in Fig. 5.5 The vertical direction represents imaginary time

and the lattice sites span the horizontal direction. In this diagram, line widths

are proportional to number of particles on a site, with dotted lines representing

an empty site. The set of imaginary times {τi} labeled on the left side of the

figure correspond to times at which the Fock state (|n1, n2, n3, n4〉) has changed

(right side), where nj counts the number of particles on site j. Local changes in

occupation can occur via either kinks representing particle hops between adjacent

sites, or via the insertion or deletion of a special type of truncated worldline known

as a worm [58, 61, 89, 92]. Formally, the worm tail and head represent bosonic

creation and annihilation operators, respectively. The entire configuration space can

be sampled by performing updates on the worm.

The acceptance ratio for the insertion of a worm into the worldline configuration

has the form:

R = const× 1

P(τh, τt)
× e−c(τh−τt) (a ≤ τt < τh ≤ b), (5.21)

where τt and τh denote the imaginary times of the worm tail and head, respectively,

and are randomly sampled from a joint probability distribution, P (τh, τt). By choosing

this distribution to be the two dimensional truncated exponential distribution,

Eq. (5.4), the exponential factor in Eq. (5.21) cancels, leaving just a constant factor

as the acceptance ratio:

R = const× 1

e−c(τh−τt) × e−c(τh−τt) = const, (5.22)

where the normalization constant of the two dimensional truncated exponential from

which τt, τh are drawn has been absorbed into const. We expect that this constant

acceptance ratio can be further optimized by implementing a pre-equilibration stage

that tunes simulation parameters via iterative methods, similarly to approaches for
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Figure 5.5: Example of a worldline configuration in Path Integral Monte Carlo for
2 particles on 4 lattice sites. The paths propagate in the direction of imaginary time
(vertical) and space (horizontal). Three kinks are shown at imaginary times τ1, τ2, τ3

and occur due to a particle hopping between adjacent sites. More configurations can
be sampled by performing updates on the worm shown with tail at τ4 and head at
τ5. Some estimators, like the kinetic energy, involve averaging a quantity, such as the
number of kinks, over a window of user defined width centered around τ = β/2.
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the tuning of the chemical potential, µ, to set the average number of particles [101,

168]. The acceptance ratios of the rest of the updates, which are related to either

insertions and deletions of kinks or shifting worm ends in the imaginary direction, can

also be reduced to a constant by sampling imaginary times from the one dimensional

truncated exponential distribution, Eq. (5.1). For updates that shift worm ends in

the imaginary time direction, sampling from this distribution actually leads to perfect

direct sampling [1, 57] (R = 1).

In the discussion that follows, results for which imaginary times have been sampled

from a truncated exponential distribution, such that the acceptance ratios take the

form of Eq. (5.22), will be referred to as direct sampling. The conventional rejection

scheme instead involves sampling each of the imaginary times from a rescaled uniform

distribution, τ ∼ U(a, b), where a, b are the lower and upper bounds of the interval.

Thus, the joint probability distribution for this case is P (τh, τt) = 1/(b−a)2. However,

both schemes still involve a Metropolis sampling step in which updates will be

accepted by comparing if a random number, r ∼ U(0, 1), satisfies r < R, and rejected

otherwise. Formally, the sampled distribution is the same using both schemes, up to

a pre-factor.

We benchmark the proposed direct sampling approach on a ground state quantum

Monte Carlo simulation of the Bose-Hubbard model for itinerant bosons on a

lattice [23]:

H = −t
∑
〈i,j〉

b†ibj +
U

2

∑
i

ni(ni − 1)− µ
∑
i

ni , (5.23)

where t is the tunneling between neighboring lattice sites 〈i, j〉, U > 0 is a

repulsive interaction potential, µ is the chemical potential, and b†i (bi ) are bosonic

creation(annhilation) operators on site i, satisfying the commutation relation:

[bi , b
†
j] = δi,j, with ni = b†ibi the local number operator. Simulations were performed in

the canonical ensemble, in which µ is a simulation parameter. This model exhibits a

quantum phase transition from a superfluid, at low interactions, to a Mott insulator,

at strong repulsive interactions, where bosons become highly localized. The accurate
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determination of the quantum critical point has motivated much research [24–39] and,

below, we report on simulations at a fixed interaction strength of U/t = 3.3, which

is representative of the quantum critical regime where both spatial and temporal

correlation lengths diverge, causing the well known problem of critical slowing

down [169] where correlations between MCMC samples can be large.

The kinetic energy estimator is non-diagonal in the Fock basis and is determined

from the average number of kinks in the measurement window of Fig. 5.5 [1]:

〈K〉 = −〈Nkinks〉
∆β

(5.24)

where ∆β is the window width. The potential energy estimator is diagonal in the

Fock basis and is obtained by measuring

〈V 〉 =
U

2

∑
i

〈ni(ni − 1)〉 (5.25)

at imaginary time τ = β/2.

To understand the role of direct vs. rejection sampling in our quantum Monte

Carlo algorithm, we performed simulations of the one dimensional Bose-Hubbard

model at unit-filling, L = N , with L the number of sites and N the number

of particles, for different values of L and computed the integrated autocorrelation

time in Eq. (5.18) using both sampling methods at U/t = 3.3, near the superfluid-

insulating critical point. The results are shown in Fig. 5.6 where the autocorrelation

times were computed using the emcee Python library [170], which is based on the

methods described in Refs. [171, 172]. For system sizes up to L = 26 = 64, the

autocorrelation time for both the kinetic and potential energy was lower for the case in

which imaginary times were directly sampled from truncated exponential distributions

when performing worm updates. The insets show the ratio of autocorrelation times

sampling from truncated exponential distributions (direct) over autocorrelation times

sampling from uniform distributions (rejection), T D/T R, as a function of system size.
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Figure 5.6: Integrated autocorrelation times for the ground state kinetic (top) and
potential (bottom) energy estimators of the one dimensional Bose-Hubbard model
obtained via path integral Monte Carlo as a function of system size, L at unit filing:
L = N . Lower is better. The insets show the ratio of autocorrelation times obtained
by sampling using direct and rejection (uniform distribution) methods for the one
and two dimensional truncated exponential distributions.
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A ratio less than unity indicates a decrease in correlations amongst samples, and

improvements of ∼ 15% are observed for the largest system sizes studied.

Direct sampling has a larger effect on the autocorrelation time of the kinetic energy

estimator as the simulation dynamics of the average number of kinks is directly related

to improved worm dynamics in the simulation (see Fig. 5.5). Error bars represent

the standard error of the mean autocorrelation time computed from 80 independent

simulations.

Since the lattice ground state PIMC algorithm described in Ref. [1] is a projection

algorithm, it is subject to a systematic error that decreases with increasing projection

length, β. Due to this, reliable estimates of observables are obtained by performing

simulations for various values of β, and extrapolating the exact value, within error

bars, from an exponential fit in β plus an additive constant: 〈O(β)〉 = C1e
−βC2 + 〈O〉,

where C1, C2, and 〈O〉 are fitting parameters. Thus, to understand the role of direct

sampling on the β extrapolation, we plot β dependent autocorrelation times for the

kinetic and potential energies for a fixed system size L = 12 and U/t = 3.3 in Fig. 5.7.

The autocorrelation times are once again seen to improve by sampling imaginary

times directly from truncated exponential distributions, with the insets showing time

reductions of approximately 20% for the largest β values.

The above results demonstrate that sampling directly from truncated exponential

distributions results in decreased autocorrelation times for estimators in the algorithm

presented in [1]. However, for our implementation of the algorithm, it was also seen

that wall clock times in the direct sampling of truncated exponential distributions

were no slower than the original version, where imaginary times where sampled from

uniform distributions. In other words, the direct sampling scheme can be implemented

without impacting practical run times. For a system of L = N = 12 bosons at

U/t = 3.3 and β = 16, we performed 10 simulations, each starting from different

random seeds, and observe that the fraction of wall clock times using both sampling

schemes was tD/tR = 1.02 + / − 0.01. The fraction of wall times for each seed, for

the direct over rejection methods, tD/tR, are shown in Fig. 5.8. The new sampling
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scheme has thus successfully reduced autocorrelation times without slower wall times,

resulting in an effective speedup of the quantum Monte Carlo application discussed.

All code, scripts and data needed to confirm the results presented in this section

are available in open source repositories [80, 82, 84].

5.5 Conclusions

In this chapter, we have shown how to directly obtain random variates from two

dimensional truncated exponential distributions via a two step inverse sampling

method. The dataset of random variates obtained directly from truncated exponential

distributions, in both one and two dimensions, better reproduced the target

distribution for a finite number of samples. Direct sampling of the truncated

exponential distribution was then applied to lattice path integral Monte Carlo, where

this distribution appears in the acceptance probability of worm updates and enabled

the efficient sampling of the imaginary time worldline configuration space. The direct

sampling approach leads to reduced integrated autocorrelation times for the kinetic

and potential energy estimators, while keeping the simulation wall times practically

the same between both sampling schemes. For the system sizes considered, overall

efficiency gains of 15% are identified.

Future avenues for research include implementing iterative methods to optimize

non-physical algorithmic parameters that appear in the now constant worm update

acceptance ratio to further improve dynamics and approach the ideal sampling limit.
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Figure 5.8: Wall clock times for path integral Monte Carlo simulations for a 1D
Bose-Hubbard lattice of size L = N = 12 at U/t = 3.3 using rejection (R) and
direct (D) sampling of the truncated exponential distribution. Results are shown for
10 independent runs for each method starting from different random seeds and 106

samples of the kinetic and potential energies were collected. The wall times did not
change significantly when using different sampling schemes, with an average ratio of
wall times tD/tR = 1.02 + /− 0.01.
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Chapter 6

Discussion and Future Work

In this thesis, a novel lattice Path Integral Monte Carlo algorithm that is sign problem

free for bosonic models at zero temperature has been introduced.

After introducing some of the inspiration that led us to pursue this research project

in chapter 1, we developed the path-integral formalism underlying our PIGSFLI

algorithm in chapter 2. Our derivation of the propagator and configurational weights

in the path-integral formalism differed from existing, finite temperature derivations,

in that at T = 0, the imaginary time direction is not subject to periodic boundary

conditions, where worldlines wrap around a toroidal topology. Instead, our worldlines

wrap around the surface of an infinitely-long β-cylinder. Due to the breaking of

imaginary time translational invariance, it was seen that additional Monte Carlo

updates had to be added to satisfy ergodicity. These updates consisted in inserting

and deleting worm ends (i.e, bosonic creation or annihilation operators) near the

ends of the β-cylinder, at τ = 0 and τ = β. Implementing these new T = 0 updates,

alongside the original set of T > 0 updates, was enough to satisfy ergodicity in our

algorithm such that conventional estimators, such as the kinetic and potential ground

state energies, can be sampled. We performed benchmarks of both of these quantities,

where PIMC estimates were compared to exact diagonalization values (ED), resulting

in relative errors of 10−2 at worst, and as small as 10−4. These errors can be made
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arbitrarily small by a combination of increasing the simulation time, increasing the

projection length, β, and by choosing better trial wavefunctions.

After a successful implementation of PIGSFLI in single-replica spaces, we extended

the algorithm to work in a replicated configuration space consisting of two copies of

the system. The idea of this extension was to compute Rényi entanglement entropies.

We derived path-integral estimators for the: 1) second Rényi entanglement entropy,

2) accessible entanglement, and 3) symmetry-resolved entanglement entropies. These

three quantities were benchmarked by comparing with exact values from ED and

excellent agreement was seen at interaction strengths representative of the superfluid

phase, near the quantum critical point, and in the Mott insulating phase. For all

estimators, it was seen that converging to the exact result in the superfluid phase

required simulations at large values of the projection length, β, due to this phase

being gapless. On the other hand, the Mott insulating phase only needed small β

values for the estimators to converge to their exact value, since the energy gap allows

for faster projection of the exact ground state when acting with a power of the density

operator on the trial state.

Access to large system sizes also allowed us to generate a set of results that have

never been seen before. For a 1d Bose-Hubbard system of L = 256 particles at unit

filling and under an equal spatial bipartition, ` = L/2, we were able to explore the

second Rényi EE as a function of interaction strength, U/t, across all phases of the

Bose-Hubbard model. The results were similar to those obtained previously in an

experiment [18] with optical lattices of L = 4 Rb87 atoms, where the entanglement

vanished in the insulating phase due to the state being a product state, and increased

as we move across the transition into the highly non-localized superfluid phase. We

were also able to apply PIGSFLI to simulate a large system in 2d. For a square

lattice of 32 × 32 = 1024 sites at unit filling, with an embedded square subregion

of varying linear size `, and near criticality, we saw that the entanglement followed

a boundary law and that sub-leading logarithmic corrections can be investigated to

potentially obtain universal quantities, such as Goldstone modes. Nevertheless, due
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to the contribution of sharp corners to the sub-leading logarithmic correction, the

number of Goldstone modes could not be accurately determined for this geometry

and system size. This can be a future avenue of study and the code admits other

types of subregion geometry, such as a strip geometry, for which there are no corner

effects and for which these universal numbers can be more accurately studied.

For a one dimensional system of L = 64 bosons at unit filling near the critical

point, we were able to use PIGSFLI to compute the symmetry-resolved entanglement

as a function of local particle number sector. We saw that near criticality, the

symmetry-resolved entanglement of the particle number sector where the underlying

probability distribution is maximal, is not itself the maximal entanglement sector.

This was explained by the onset of Mott insulating behavior, where the entanglement

for the maximal sector vanishes, whereas the adjacent sectors (i.e, nmax ± 1) have

entanglement of ln 2. This result was derived from analyzing the form of the ground

state at large interaction strengths in these two sectors in terms of holon-doublon

quasiparticle interactions across subregion boundaries.

After successfully extending the PIGSFLI algorithm to a two replica space

where entanglement entropies can be estimated, in chapter 4 we developed and

numerically confirmed subsystem scaling forms for the accessible and symmetry-

resolved entanglement entropies in the 1d Bose-Hubbard model. These scaling forms

were obtained from previously known relationships between entanglement entropies

and bipartite fluctuations of local particle number in a subregion. It was seen that

the accessible entanglement and symmetry-resolved entanglement possess the same

subsystem scaling ; Sacc
2 ∼ s2(n) ∼ c/4 ln(D(`)) − 1/2 ln ln( D(`)/a0), up to O(1)

corrections. These scaling forms were numerically confirmed using PIGSFLI, for

1d systems with Gaussian local particle number distribution, by calculating each

entanglement measure as a function of the cordlength of the subsystem size. For a

system of 64 bosons at unit filling both in the superfluid phase and near the superfluid-

phase transition, the Monte Carlo data followed the scaling predictions. Using the

obtained scaling forms, we were able to obtain physical quantities such as the central
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charge underlying the CFT and the Luttinger parameter. For the symmetry-resolved

entanglement entropy, it was seen that the subsystem scaling is independent of local

particle number sector, a property known as entropy equipartition [78].

In chapter 5, a method for the direct sampling of two dimension truncated

exponential distributions was introduced. By implementing this direct sampling into

PIGSFLI, autocorrelations were reduced. The inspiration for this project came from

the fact that the acceptance ratios of most Monte Carlo updates in our algorithm

contained an exponential factor in one or two random imaginary times that could be

cancelled by sampling these random variates instead from either 1d or 2d truncated

exponential distributions. The new sampling resulted in acceptance ratios that now

depended only on a constant that can be tuned in a pre-equilibration stage of the

simulation, and could even be unity in some updates, resulting in perfect direct

sampling. Although direct sampling of the 1d truncated exponential distribution

has been implemented previously in finite temperature lattice PIMC, our method to

sample the 2d case represents a new contribution to the method. The new sampling

scheme resulted in a less correlated dataset, for which convergence of ground state

energies to their exact values now required fewer samples than with rejection sampling.

Our method did not affect the actual wall clock run time compared to the original,

and thus an effective speed up was obtained of up to 20/% for the systems shown, a

noticeable improvement for simulations that commonly run for days or even weeks.

This project illustrates the importance of continuing algorithmic development so

PIGSFLI can be employed for the simulation of larger systems and the measurement

of estimators with higher statistical uncertainty, such as the accessible entanglement

entropy.

Throughout this thesis, we have thus developed the theoretical framework and

the computational implementation of lattice Path Integral Monte Carlo at T = 0.

It was shown how this algorithm can be used to compute conventional estimators

and also entanglement estimators in a replicated configuration space. This tool

allowed us to numerically confirm new subsystem scaling forms for the acessible
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and symmetry-resolved entanglement entropies. And finally, by implementing a new

direct sampling method for the 2d truncated exponential distribution, we showed how

algorithmic development will be an essential element throughout the development

cycle of the PIGSFLI algorithm for the simulation of even more complicated systems

and estimators.

6.1 Future Work

In this section, we discuss some future avenues of research that we would like to

pursue with the PIGSFLI algorithm.

6.1.1 Luttinger Parameter Estimation

The fluctuations in local particle number, n, in a subregion of a bipartite 1d system,

scale with subsystem size, `, as:

F (`) ≡ 〈n〉2 − 〈n2〉 ' K

π2
ln

(
`

a0

)
, (6.1)

where K is the Luttinger parameter and a0 is a short-distance cutoff. For

systems with periodic boundary conditions, ` is replaced by the cordlength, D(`) =

L/π sin(π`/L), by replacing ` → D(`) to account for distances measured around a

ring. These bipartite fluctuations are computationally inexpensive to obtain with

various algorithms, such as DMRG and our own lattice PIGS. This has led to

this quantity being used for accurate estimations of the Luttinger parameter and

quantum critical points [39], and they have even been shown to be equivalent to an

entanglement measure [76, 77]. Previous numerical studies of bipartite fluctuations

rely on their computations via DMRG, for which 1d Bose-Hubbard lattices of up to

L = 512 sites have been studied, for the case of open boundary conditions [39]. Our

PIGSFLI algorithm can simulate these system sizes, with the added benefit that it

can operate in not only the insulating phase, but also deep into the superfluid phase,
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where large DMRG errors might occur due to weak interactions allowing large particle

number fluctuations, and with a periodic boundary, for which DMRG also has higher

error in large systems.

Fig. 6.1 shows the bipartite fluctuation scaling with cordlength in a subregion

of a 1d Bose-Hubbard chain of L = 64 sites at unit filling with periodic boundary

conditions at an interaction strength of U/t = 3.5. The data was obtained using

PIGSFLI and has been fitted to Eq. (6.1), showing excellent agreement. The first

two system sizes have been excluded from the fit in order to minimize finite size

contributions. These finite size corrections are in and of itself a future avenue of

research and have been previously computed for other 1d models [76].

Note that the Luttinger parameter obtained for the system in Fig. 6.1, K =

1.967(3), is slightly below the critical value expected from Luttinger Liquid theory,

Kc = 2. This suggests that, up to finite size effects, the critical interaction strength is

located at a value close to, albeit slightly lower than U/t = 3.5. In chapter 4, a value

of U/t = 3.3 was considered to be close enough to the superfluid-insulating transition,

but the Luttinger parameter extracted in this case was K ≈ 2.1. This suggests that

the critical interaction strength should be at a larger value. With PIGSFLI, we plan

to compute K from bipartite flucutations in large systems to obtain a more accurate

estimate of the superfluid-insulating transition.

6.1.2 Symmetry-resolved entanglement interaction depen-

dence

In this thesis, we have studied the symmetry-resolved entanglement at fixed values

of the interaction strength, representative of the superfluid phase, near the phase

transition, and in the insulating phase. We have obtained functional forms for scaling

with subsystem size and confirmed them numerically. Nevertheless, a study of the

symmetry-resolved entanglement entropy as a function of interaction strength has not

been performed yet. The PIGSFLI algorithm opens the door for the investigation of
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Figure 6.1: Scaling of bipartite fluctuations with the log of the cordlength for a
1d Bose-Hubbard chain of 64 bosons at unit filling, subject to periodic boundary
conditions, and at interaction strength U/t = 3.5, near the phase transition. The
extracted Luttinger parameter is close to the prediction from Luttinger Liquid theory
near the critical point, Kc = 2. Finite size scaling analyses can be performed to
extract a more accurate location of the superfluid-insulating phase transition.

137



this interaction dependence for system sizes larger than what can be obtained with

exact diagonalization and in the superfluid phase, where DMRG error is large.

Fig. 6.2 shows the symmetry-resolved entanglement as a function of interaction

strength for some small systems available with ED. From top to bottom, the

symmetry-resolved entanglement results shown correspond to the following particle

number sectors: nmax, nmax − 1, and nmax − 2, where nmax is the sector at which the

probability distribution of local particle number in the subregion, Pn, is maximal.

For all systems, the partition size has been set to half of the total system size,

` = L/2. The nmax − 1 curve illustrates a result that has been confirmed in this

thesis analytically and numerically with PIGSFLI, that s2(nmax − 1) vanishes in the

superfluid phase and it becomes ln 2 deep into the Mott phase. Note that even for

these small systems, some interesting behavior is already exhibited. The nmax and

nmax − 2 curves exhibit peaks near the phase transition, denoted by the vertical line,

that grow larger with system size. A peak has also been previously identified for the

accessible entanglement as a function of interaction strength in the 1d Bose-Hubbard

model [41]. The PIGSFLI algorithm will allow for the simulation of much larger

systems that may help understand any potential scaling of these peaks.

6.1.3 Accessible and symmetry-resolved entanglement in two

dimensions

In chapter 3, to show the effectiveness of the PIGSFLI algorithm in higher dimensions,

the second Rényi entanglement entropy was computed for a 2d system of square

geometry with an embedded square subregion. For this result, the entanglement was

seen to obey a boundary law scaling near the superfluid-insulating phase transition.

For the accessible and symmetry-resolved entanglement entropies in 2d, there is

no theory for the scaling of these quantities and no numerical results in the literature.

One of our goals moving forward will be to use PIGSFLI to simulate large 2d systems,

and eventually 3d, and investigate the finite size scaling of both of these quantities.
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Figure 6.2: Interaction dependence of the symmetry-resolved entanglement. These
results have been obtained via exact diagonalization (ED). The maximal sector,
nmax, and the nmax − 2 sector peak near the superfluid-insulating phase transition
(vertical line) although at different sides of it. We would like to use PIGSFLI to
better understand the scaling of these peaks. For the nmax− 1 sector, the symmetry-
resolved entanglement saturates at ln 2 in the insulating phase and vanishes in the
superfluid, a result seen and explained in chapter 3 of this thesis.
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Although not shown here, in the current version of our implementation, the geometry

of the subregion can be also set to a strip extending from top to bottom of the square

system, rather than a square, for which the width can be varied. For this type of

geometry, previous QMC results have shown how the entanglement is constant as a

function of system size, since changing the width of the strip does not change the

boundary size between subregions [66]. Thus, our current implementation of the

PIGSFLI algorithm will allow for one of the first studies of accessible and symmetry-

resolved entanglement entropies for two dimensional Bose-Hubbard models, with

different types of subsystem geometries, and across any regime of the phase diagram.

We hope that our new algorithm introduced in this thesis opens up these and many

more new exciting avenues of research in ultra cold lattice systems in the context of

quantum information, condensed matter, and beyond.

140



Bibliography

[1] E. Casiano-Diaz, C. M. Herdman, and A. D. Maestro. “A path integral ground

state Monte Carlo algorithm for entanglement of lattice bosons.” SciPost Phys.

14, 054 (2023).

https://scipost.org/10.21468/SciPostPhys.14.3.054 vii, 6, 11, 110, 124,

125, 127

[2] E. Casiano-Diaz, K. Barros, Y. W. Li, and A. D. Maestro. “Reduction of

autocorrelation times in lattice path integral quantum monte carlo via direct

sampling of the truncated exponential distribution.” (2023). vii, 15

[3] H. Barghathi, E. Casiano-Diaz, and A. Del Maestro. “Particle partition

entanglement of one dimensional spinless fermions.” J. Stat. Mech. Theory

Exp. 2017, 083108 (2017).

https://doi.org/10.1088/1742-5468/aa819a viii, 1, 11, 66

[4] T. Giamarchi. Quantum Physics in One Dimension (Oxford University Press,

2003). ISBN 9780198525004.

https://doi.org/10.1093/acprof:oso/9780198525004.001.0001 xxi, 19,

20, 99, 100, 106, 107

[5] M. Thamm, H. Radhakrishnan, H. Barghathi, B. Rosenow, and A. Del Maestro.

“One-particle entanglement for one-dimensional spinless fermions after an

interaction quantum quench.” Phys. Rev. B 106, 165116 (2022).

https://link.aps.org/doi/10.1103/PhysRevB.106.165116 1

141

https://scipost.org/10.21468/SciPostPhys.14.3.054
https://doi.org/10.1088/1742-5468/aa819a
https://doi.org/10.1093/acprof:oso/9780198525004.001.0001
https://link.aps.org/doi/10.1103/PhysRevB.106.165116


[6] H. Radhakrishnan, M. Thamm, H. Barghathi, B. Rosenow, and A. D. Maestro.

“A scaling function for the particle entanglement entropy of fermions.” (2023).

[7] C. M. Herdman, P. N. Roy, R. G. Melko, and A. Del Maestro. “Particle

entanglement in continuum many-body systems via quantum Monte Carlo.”

Phys. Rev. B 89, 140501 (2014).

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.140501

1, 6, 11, 17, 24, 65, 66
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Appendix A

Obtaining and Running the Code

In the spirit of promoting open science, the PIGSFLI source code has been made

public and can be obtained from the Del Maestro Group code repository [80] via:

git clone https :// github.com/DelMaestroGroup/pigsfli.git

After compiling the code following the instructions in the repository [80], the

executable pigsfli.e will be generated and simulations can now be performed. An

example call would be:

./ pigsfli.e -D 1 -L 4 -N 4 -l 2 -U 1.995 --mu 1.998 --beta 2.001 --seed 1968

In the call above, only some parameters have been set from the command-line,

with the rest being set to their default values. The full list of parameters can be

found on the code repository or can be seen by calling ./pigsfli.e --help .

In the first stage of the code, the chemical potential (µ) is updated using the

method in [101] until the average number of particles is at least within 33% of the

target number N . To improve sampling efficiency, worldline updates are rejected if

they would take the total particle number outside the interval [N − 1, N + 1]. In

this stage, we also simultaneously perform a coarse tuning of the worm fugacity (η).

We have chosen the coarse tuning to be η ≈ 1/〈Nflats〉, where 〈Nflats〉 is the average

number of flat regions sampled each time that a distribution P (N) was built.

A fine tuning of η is then performed until the fraction of worldline configurations

with no worm ends, or diagonal fraction (Z-frac in the code output shown) is within
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a desired window. This fraction needs to be low enough that physical observables can

be measured, but high enough that worm ends are present to help push the dynamics

of the worldline configuration forward. We’ve chosen a window between 40% and

45% for the target value of the diagonal fraction. The η updating is performed by

asymmetrically increasing or decreasing its value by some multiplicative constant.

For example, if the fraction is too low, we decrease η by 50% and if too high, increase

it by 45%. Note that we still keep updating µ in this stage in case that the new η

causes the average total particle number to stray too far away from the target value.

After tuning µ and η, there is an equilibration stage where worldline updates are

performed for a chosen number of Monte Carlo sweeps, but no measurements are

performed. The number of equilibration sweeps is set to a default value but can also

be set from the command line.

And finally, the last stage is the main Monte Carlo loop, where not only worldline

updates are performed, but also measurements of the desired quantities. After the

main loop, the number of times that each update was accepted over the number of

times it was proposed is shown. Notice that the “forward” and “backward” updates

of each pair of complementary updates is accepted roughly the same time, as expected

from the principle of detailed balance.

The code output for the example call above is:

_ __ _ _

(_) / _| (_)

_ __ _ __ _ ___| |_| |_

| ’_ \| |/ _‘ / __| _| | |

| |_) | | (_| \__ \ | | | |

| .__/|_|\__, |___/_| |_|_|

| | __/ |

|_| |___/

Path -Integral Ground State (Monte Carlo) For Lattice Implementations

Stage (1/3): Determining mu and eta...

mu: 1.998 eta: 0.5 Z-frac: 13.004%

N P(N)

4 **
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5 ******************************************************************************

<N>: 4.98985

mu: -0.291113 eta: 0.153571 Z-frac: 18.221%

N P(N)

3 ************

4 *************************************************************

5 *****************************

<N>: 4.16743

Fine tuning eta ... (Want: 10% < Z-frac < 15%)

mu: -0.291113 eta: 0.16197 Z-frac: 20.453%

N P(N)

3 ***

4 ****************************************************

5 **********************************************

<N>: 4.4351

mu: -1.02474 eta: 0.0809852 Z-frac: 29.8528%

N P(N)

4 ****************************************************************************

5 *************************

<N>: 4.24996

mu: -1.02474 eta: 0.0404926 Z-frac: 54.4598%

N P(N)

3 **********************

4 ****************************************************************

5 ****************

<N>: 3.94856

mu: -1.02474 eta: 0.0587143 Z-frac: 40.3%

N P(N)

3 *****

4 **********************************************************************

5 **************************

<N>: 4.2089

Stage (2/3): Equilibrating ...

Stage (3/3): Main Monte Carlo loop ...

-------- Detailed Balance --------

Insert Worm: 38470/2772581

Delete Worm: 36544/44720

Insert Anti: 37646/2090863

Delete Anti: 35628/39821
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InsertZero Worm: 396535/6277132

DeleteZero Worm: 398573/475282

InsertZero Anti: 433392/4407244

DeleteZero Anti: 435430/522308

InsertBeta Worm: 396510/6280347

DeleteBeta Worm: 398416/476129

InsertBeta Anti: 432507/4409839

DeleteBeta Anti: 434413/519043

Advance Head: 1572275/1578564

Recede Head: 1572292/1597065

Advance Tail: 1573978/1598309

Recede Tail: 1575285/1581400

IKBH: 1508373/3785551

DKBH: 1509684/1697842

IKAH: 946308/3783103

DKAH: 945886/1120626

IKBT: 945858/2638223

DKBT: 945478/1119408

IKAT: 1508438/3787390

DKAT: 1507908/1697276

SWAP: 5932134/14723038

UNSWAP: 5932132/14811285

SWAP Advance Head: 313417/321052

SWAP Recede Head: 313426/344143

SWAP Advance Tail: 312995/342388

SWAP Recede Tail: 312737/319738

Elapsed time: 13.5167 seconds

In Stage (1/3), histograms of the total particle number distribution are shown,

where each of the asterisks (*) represents a normalized count. For canonical ensemble

simulations, like the one shown above, the only particle numbers visited are N−1, N ,

and N + 1, where N is the target number of particles. A grand canonical simulation

will show histograms with more particle numbers than these. Once the peak of the

distribution is at N , and it’s at least 33
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Stage (2/3), the code is ran without taking any measurement as a en equilibration

step. The number of equilibration steps are currently determined by the sweeps

parameter from the command line.

Finally, Stage (3/3) is where measurements are performed and samples collected.

Once the desired number of samples are collected, the simulation stops. Near the

bottom of the terminal output above, the number of times that each of the updates is

accepted and proposed are shown as a fraction. The number of times that the update

is accepted is shown in the numerator, whereas the times that it was proposed is

shown in the denominator.

The total run time of equilibration and Main Monte Carlo loops is shown at the

bottom of the output, in seconds.
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