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ABSTRACT 

Functional and quantitative metagenomic profiling remains challenging and limits 

our understanding of host-microbe interactions. This body of work aims to mediate these 

challenges by using a novel quantitative reduced representation sequencing strategy 

(OmeSeq-qRRS), development of a fully automated software for quantitative 

metagenomic/microbiome profiling (Qmatey: quantitative metagenomic alignment and 

taxonomic identification using exact-matching) and implementing these tools for 

understanding plant-microbe-pathogen interactions in maize and sweetpotato. The next 

generation sequencing-based OmeSeq-qRRS leverages the strengths of shotgun whole 

genome sequencing and costs lower that the more affordable amplicon sequencing method. 

The novel FASTQ data compression/indexing and enhanced-multithreading of the 

MegaBLAST in Qmatey allows for computational speeds several thousand-folds faster 

than typical runs. Regardless of sample number, the analytical pipeline can be completed 

within days for genome-wide sequence data and provides broad-spectrum taxonomic 

profiling (virus to eukaryotes). As a proof of concept, these protocols and novel analytical 

pipelines were implemented to characterize the viruses within the leaf microbiome of a 

sweetpotato population that represents the global genetic diversity and the kernel 

microbiomes of genetically modified (GMO) and nonGMO maize hybrids. The 

metagenome profiles and high-density SNP data were integrated to identify host genetic 

factors (disease resistance and intracellular transport candidate genes) that underpin 

sweetpotato-virus interactions Additionally, microbial community dynamics were 

observed in the presence of pathogens, leading to the identification of multipartite 
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interactions that modulate disease severity through co-infection and species competition. 

This study highlights a low-cost, quantitative and strain/species-level metagenomic 

profiling approach, new tools that complement the assay’s novel features and provide fast 

computation, and the potential for advancing functional metagenomic studies. 
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A compelling theory in biology is that an organism’s genome is not the only factor 

that drives gene and phenotypic expression. While phenotypes are often studied only within 

the context of the genome and abiotic cues, there is growing evidence that it is more of a 

collaborative effort between the host and all the microorganisms (i.e., bacteria, viruses, and 

eukaryotes) that live on and within hosts. This host-metagenome interaction and the 

underlying coevolution between the host and associated microbes is the basis for the 

holobiont theory. In turn, previous research has shown that the structure of the microbiome, 

a community of microorganisms, is influenced by the environment and host genetics 

(Gopal and Gupta 2016). The most common type of microbiome research is the influence 

of a diseased state on the species diversity and abundance. By investigating these 

differences, scientists can uncover microbes that either enhance (synergism) or inhibit 

(antagonism) the pathogen(s) causing the disease.  

Changes in the metagenome in relation to the host phenotype are believed to be 

both an effect of host response and the cause of the host phenotype. The human gut 

microbiome has been found to differ in composition between healthy patients and those 

with IBS (Menees and Chey 2018). In animal rumen microbiome research, bacteria have 

been found to be correlated with methane emission (Hess et al. 2020). In plants, the soil 

and rhizosphere (root) microbiomes are often the go-to when researching how to improve 

agronomic traits, including increasing yield components and disease resistance (Marques 

et al. 2014; Pérez-Jaramillo et al. 2018). Often, the microbes found to be beneficial for 

plant growth and that are antagonistic to pathogens are often sold commercially as 

biocontrols. While the market for biocontrols and the idea of using fecal transplant for 
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animal/human gut health is growing, results are mixed because these products do not 

account for the background metagenome and complex host-microbe-microbe interactions. 

Regardless of the type of microbiome/metagenome research being conducted towards 

understanding these multipartite interactions, there are similar limitations that exist due to 

the current extraction protocols, sequencing technologies and bioinformatic pipelines 

available. 

Extracting high quality DNA and/or RNA for metagenome analysis starts with 

understanding the research question. If the research will be focused on bacteria or fungi 

only, such for amplicon based sequencing projects, one might choose an extraction 

protocol that is optimized for only one over the other. The physical differences between 

bacteria and fungi, including the composition of cell membranes, means that a protocol 

optimized for fungi DNA extraction has the potential to degrade bacterial DNA before it 

can be collected. In metagenomics, which expands microbiome research to include 

domains beyond bacteria and fungi, DNA extraction protocols are optimized to evenly 

degrade and capture microbes while also removing inhibitors of PCR and high throughput 

sequencing (HTS). However, these same protocols can also be biased against certain types 

of microbial species based on their lysis approach and time. Mechanical lysis through bead 

beating has been shown to produce better quality microbial DNA from soil for PCR than 

enzymatic lysis as it better degrades cell walls, exposing DNA to extraction buffers (Yeates 

et al. 1998). The lysis method and time needs to be a happy medium. If you bead beat for 

too long, you run the risk of potential degradation of gram-negative bacterial DNA and an 

underrepresented bacterial population. But if you bead beat for too short, you run the risk 
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of not degrading gram positive bacteria and fungi enough, thus also underrepresenting the 

microbial population. (Brauer and Bengtsson 2022). 

In microbiome and metagenome research, the type of next generation sequencing 

used is also influenced by the original research question. If you are only interested in 

identifying the prokaryotes or eukaryotes, exclusively, amplicon sequencing provides 

sufficient read depth and coverage of the target sequence (i.e., 16S rRNA or ITS) for a 

reasonable price. However, since the library preparation for amplicon sequencing is 

dependent on amplicon-specific PCR primers, there is potential to introduce bias due to 

PCR bias and primers that will often anneal targets with a few base mismatches (Acinas et 

al. 2005). There is also the possibility of a high positive rate in low biomass samples and 

taxonomic resolution only to genus level (Liu et al. 2021). Therefore, an alternative to 

amplicon sequencing that mitigates PCR bias is shotgun whole genome sequencing 

(WGS). WGS is more expensive than amplicon sequencing due to the higher number of 

unique genomes present within individual samples that need to be sequenced. To obtain 

sufficient coverage of all the genomes present, WGS has to be sequenced more “deeply,” 

which increases the price 10-20X more than amplicon sequencing. More recently, reduced 

representation sequencing (RRS) now leverages the strength of amplicon and shotgun 

sequencing at costs (~$20) lower than amplicon sequencing and without compromising the 

high taxonomic profiling resolution associated with medium to high read depth shotgun 

sequencing. The RRS method and a newer approach that is quantitative (OmeSeq-qRRS) 

captures several genes in a genome-wide manner and uses only diagnostic genes for 

taxonomic profiling down to strain level. Since only a fraction of genes and partial gene 
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sequence in a genome (less than 0.5% of the DNA content) are sufficient taxonomic 

identification, this results in significant cost-savings with the added advantage of reducing 

multiple testing problems associated with shotgun metagenome data. Additionally, it 

allows for metagenomic sequencing and profiling of endophytic microbial communities 

without the need to build subtractive libraries that skew community composition and 

estimates of abundance. 

RRS achieves subsampling of the component genomes restriction enzyme digest 

followed by selection of fragments within a size range (size selection) and that are flanked 

both sides by one or two unique restriction enzyme motifs. Various proportions of these 

reads (partial gene sequence) will be diagnostic are different taxonomic levels with 

proportion smallest at strain level and highest at phylum level. This is because, oftentimes 

only one base polymorphism (SNP) differentiates strains within a species (i.e., high percent 

identity), while the percent identity of alignment decreases from species to phylum level 

and allows for more diagnostic reads to be used. RRS is appealing to the microbiome and 

metagenome research community because it’s an alternative to the more expensive WGS 

and recovers more than one domain of life as opposed to amplicon sequencing that is often 

limited to genus-level and strictly prokaryotes and with some success for fungi. 

Additionally, compared to shotgun, RRS datasets provide better estimates of abundance 

than shotgun probably since reads are flushed (i.e., begin and end with the same motifs). 

While designing an experiment, simulations are often used to establish parameters 

amenable to specific research questions. While simulating metagenomic sequencing and 

metagenomic analyses identify members of the community and abundance estimates, this 
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is a no effort to test the prediction accuracy of the abundance estimates. Through 

simulation, you would be able to see the predicted read lengths and thus genome coverage 

you would be able to recover. However, the correlation between simulation and 

experimental results depends on the quality of the reference genome used and how effective 

the extraction method is at recovering whole genome DNA. If the various parameters are 

not robust enough to capture the nuance in real life experimental conditions, the simulated 

results may appear too good to be true.  

For 16S and ITS amplicon sequencing, the preferred method is to generate 

operational taxonomic units (OTUs) based on clustering similarity thresholds. While OTUs 

generated after aligning to a reference (closed reference OTUs) are held to be more 

appropriate than de-novo OTUs, closed reference OTUs rely on well populated reference 

databases (i.e., SILVA for 16S rRNA sequencing data and UNITE for ITS sequencing 

data). Quantitative Insights Into Microbial Ecology (QIIME) (Caporaso et al. 2010) and 

mothur (Schloss et al. 2009) are the most popular pipelines for amplicon analysis but are 

limited to resolution at genus level. In more recent years, OTUs have been replaced with a 

newer taxonomic profiling approach known as amplicon sequence variants (ASVs). The 

process to generate ASVs is reference free and distinguishes between biological nucleotide 

sequence differences and sequencing error (Callahan, McMurdie, and Holmes 2017). The 

most popular pipeline for generating ASVs is the R package Divisive Amplicon Denoising 

Algorithm 2 (DADA2) (Callahan et al. 2016). For identification and quantification of non-

amplicon sequencing (WGS), the bioinformatic approaches are more computationally 

intensive due to the nature and size of the data. However, current WGS metagenomic 
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bioinformatic pipelines, such as Kraken2 and MEGAN, still suffer from a multiple testing 

problem as methods to determine the best hit for a sequence (i.e., lowest common ancestor) 

limits resolution due to elevated false negative rates (Huson et al. 2007; Wood and Salzberg 

2014). Consequently, “quantitative metagenomic alignment and taxonomic identification 

using exact-matching” or Qmatey was created with the novel intent of an exact-matching 

algorithm at strain level and exact-matching of consensus sequences algorithm from 

species to phylum level. After profiling, Qmatey performs a cross-rank validation to 

identify spurious identifications not found at higher taxonomic level which tend to suffer 

less from multiple testing problems. 

As next generation sequencing technologies used in microbiome and metagenomics 

evolve, so should the bioinformatic resources and pipelines used to analyze them. 

Contamination in genome assemblies existing in uncurated and curated databases is a 

major problem for microbiome and metagenome studies (Eisenhofer et al. 2019). For 

exact-matching algorithms, a microbial sequence that aligns to both a microbial genome 

and eukaryotic genome mistakenly containing the bacterial sequence would be discarded 

from the analysis. If no other diagnostic sequence is available for that microbe, then it 

wouldn’t be reported as part of the microbial community (Cornet and Baurain 2022). 

Besides, errors in assemblies, database submissions or curations can cause problems 

through misidentifications. For example, transgenic organisms that contain genes from 

other taxa may have the transgene annotated with the transgenic organism’s taxonomic ID, 

hence, causing confusion (Aragonés et al. 2019). Also, taxonomic profiling pipelines will 

need to consider chimeric reads and gene duplicates that inflate quantification (Beszteri et 
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al. 2010). Besides the quality of reference databases, bioinformatic pipelines for taxonomic 

assignment should be optimized for resolution down to species and strain level. Taxonomic 

resolution is particularly important when performing functional microbiome or 

metagenomic research as there can be SNP-level differences between agricultural 

important microbes (Bush et al. 2020). Plant viruses can lead to significant economic losses 

but unless they cause observable symptoms, such as leaf discolorations and distortions, 

they often go undetected (Scholthof et al. 2011). Therefore, molecular tests and pipelines 

for taxonomic assignment are important not only to determine viral presence but also the 

specific microbial strain/isolate. For microbes in general, there can be phenotypic 

differences between strains of the same species, ranging from pathogenic to commensal 

strains (Van Rossum et al. 2020). 

With respect to agriculture, microbiome and metagenome research is primarily 

focused on discovering microbial associations between disease and non-diseased states. In 

a typical experiment, there will be two treatments: a non-inoculated host plant and a host 

plant that was inoculated with a pathogen. By observing the differences in diversity and 

abundance, you can discover microbes in the diseased samples that are associated with 

decreased disease symptoms- indicating the microbes are involved in the modulation of the 

defense response based on their interaction with the host and/or pathogen. However, to 

prove causation, a follow up inoculation experiment with the specific microbial strain is 

needed to prove the biocontrol properties of the microbe of interest. Unfortunately, most 

studies test these biocontrols without consideration for the multi-way interactions context 

that can make the efficacy most robust across multiple environmental conditions to present 
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variability in biotic and abiotic components. Consequently, biocontrols still tend to be hit-

or-miss.  In some cases, the potential biocontrol is engineered to either enhance or decrease 

gene activity to further increase its biocontrol abilities (Liu et al. 2019). Commercial 

companies such as AgBiome have capitalized on the idea of biocontrols by selling synthetic 

microbial communities to combat chemically resistant pathogens. Synthetic microbial 

communities can also help in cases where the host plant doesn’t have the genetic factors to 

recruit microbes beneficial to disease resistance and desirable phenotypic traits. 

Studies have already shown that host genetics plays a role in microbiome and 

metagenome recruitment (Gopal and Gupta 2016). These studies use a modified form of 

genome-wide association (GWA) studies where instead of focusing on a physical 

phenotype, the abundances of individual microbes are used as the trait. In the case of a 

pathogen, the GWAS may reveal specific genes involved in disease resistance, such as 

resistance (R) genes or salicylic-acid–jasmonic-acid/ethylene signaling, as being 

associated with lower disease severity (Jones and Dangl 2006). However, under the 

holobiont theory, a host’s gene expression can be influenced by environmental factors, 

including interactions within the host’s microbiome (Hassani, Durán, and Hacquard 2018). 

This means the statistical power of detection in GWA studies could be hindered by 

confounding factors that mask genetic effects. Therefore, including the full or a subset of 

correlated microbes within the metagenome as a covariate in the mixed linear models can 

increase the power of detection and elimination of spurious hits due to the confounding 

effect of microbe-microbe interaction. 
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After proving the candidate gene does lead to desirable phenotypes, the candidate 

gene can be incorporated into a marker-assisted selection (MAS) strategies in breeding 

programs. MAS allows for accelerated homozygosity in populations for combinations of 

desired traits that otherwise have low combined heritability using standard breeding 

techniques (Collard and Mackill 2007). For example, breeders would be more interested in 

developing populations using markers that target both increased yield and disease 

resistance. However, given that MAS relies primarily on genotyping through 

presence/absence of molecular markers, simple traits controlled through one locus have 

been favored over complex traits controlled through multiple loci (Ashraf et al. 2012). 

Therefore, researchers have used genomic selection as both an alternative and as a 

supplement to MAS to not only test the predictive breeding values of complex allelic 

combinations, but also their heritability across a diverse population (Juliana et al. 2019). 

While selective breeding is seen as a process to improve the economic value of agricultural 

crops, advancements in microbiome and metagenomic research provide the opportunity to 

explore the selectivity and predictability of microbial composition in relation to the same 

agronomic traits targeted through traditional breeding methods. 

The realm of metagenomic research is just approaching the mountain top as new 

studies continue to reveal the importance of host-microbe interactions on genetic and 

phenotypic expression patterns. Fortunately, next generation sequencing costs have 

decreased over time and new innovative bioinformatic pipelines are readily developed to 

interpret the increasing amount of metagenome data being curated. There is still room for 
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improvement, however, but with the current state of resources, metagenomic research has 

proven its ability to produce economic, agricultural, and health relevant results. 
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CHAPTER I 
 

QMATEY: A FAST AND AUTOMATED PIPELINE FOR EXACT 

MATCHING-BASED ALIGNMENT AND TAXONOMIC 

PROFILING OF METAGENOMES. 
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ABSTRACT 

 

NGS-based metagenomic profiling is a powerful high-throughput tool for 

understanding organismal interactions, however, fast, quantitative, and accurate analyses 

remain challenging. We present Qmatey, a fast, user-friendly, and automated pipeline that 

implements an exact matching algorithm for quantitative taxonomic profiling down to 

strain-level resolution. The workflow implements best practices while integrating multiple 

and novel quality controls. Using experimental and simulation studies, we highlight 

Qmatey’s utility for amplicon, quantitative reduced representation (RRS), and shotgun 

metagenome sequencing datasets. It mitigates limiting factors such as multiple testing and 

misclassification problems. The subsampling of shotgun data, which mimics RRS, led to 

improvements marked by high recovery rates (85-100%), high prediction accuracy of 

abundance (r=0.62-0.92), and low false positive rates (0-8%). Reads with lower stringency 

quality filtering resulted in higher FPR and loss of taxa. The exact matching method 

outperformed the OTU/ASV based method, while overlap of identified taxa across all 

metagenomic/microbiome sequencing methods validated Qmatey’s accuracy. The broad-

spectrum taxonomic profiles (viruses to eukaryotes) at species/strain-level and the 

CCLasso-based correlation network analysis allows for robust understanding of 

multipartite interactions.  
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INTRODUCTION 

 

Metagenomics facilitates the high-throughput study of micro-ecosystems based on 

the analysis of DNA sequence data derived from a community of organisms (Aguiar-Pulido 

et al. 2016). This method is essential for estimating diversity, abundance, and biotic 

interactions within ecosystems found in various hosts and environments (Lepage et al. 

2013; Pepe-Ranney et al. 2019). While the organisms usually profiled are prokaryotes and 

fungi, there is growing interest in other groups of unicellular and multicellular organisms, 

such as viruses, protists, nematodes, and insects, that play critical roles within community 

of organisms. In recent years, metagenomic sequencing and analysis is being used to 

uncover how microbes functionally contribute to host or ecosystem health and 

productivity, hence, establishing the importance of host-microbiome and microbe-microbe 

interactions (Berendsen et al. 2012). The development of high-throughput technologies and 

library preparations is steadily improving metagenomic profiling of complex communities. 

This in turn necessitates the need for development of fast, reproducible, and accurate 

analytical pipelines for taxonomic identification and quantification. Furthermore, 

variability in metagenomic library preparation, base calling errors, chimeric reads, and 

nuances in the curation of databases shape considerations for downstream computational 

analysis that remain challenging.  

Currently, the two dominant library preparation methods for profiling biotic 

communities are amplicon sequencing and shotgun metagenomic sequencing. Amplicon 

sequencing profiles community members by using PCR amplification of target genic 

sequence(s), typically the rRNA gene. Primers are designed within highly conserved 
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regions that flank variable regions between taxonomic groups, and consequently used as 

diagnostic markers for taxonomic classification (Poussin et al. 2018). Computational 

analysis of data derived from amplicon sequencing-based libraries are typically limited to 

genus-level resolution since sequences of high similarity (about 97%) are clustered into 

operational taxonomic units (OTUs) that represent a group of classified and related 

microbial organisms (Nguyen et al. 2016). Bioinformatic pipelines such as DADA2, 

QIIME 2, and MOTHUR process amplicon sequencing data with OTU clustering and more 

recently, amplicon sequence variant (ASV)-based methods (Schloss et al. 2009; Callahan 

et al. 2016; Bolyen et al. 2019). Although clustering-based analysis of amplicon sequencing 

data is computationally more straightforward and less expensive compared to analysis of 

shotgun metagenomic data, there are several factors that limit their applications for drawing 

functional inference (Langille et al. 2013).  Accurate microbial quantification is also 

hindered due to PCR bias, copy number variation of rRNA genes and oligo design 

(Poretsky et al. 2014; Nguyen et al. 2016; Zhou et al. 2010). Additionally, quantification 

of all species/strains clustered within OTUs are lost after aggregating abundance values at 

genus level and higher taxonomic levels. Furthermore, amplicon sequencing strategies are 

often focused on bacterial and/or fungal microorganisms, restricting the analysis of other 

important taxonomic groups such as virus, protista, and higher-order eukaryotes.   

In contrast to amplicon sequencing, shotgun metagenomic sequencing attempts to 

holistically evaluate the metagenome and maximize the amount of sequenced genomic 

material. Tools such as MetaPhlAn2, Kraken2, and HUManN2 integrate user-directed 

genome databases that are based on de novo assembled metagenomes or curated reference 
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databases (Wood and Salzberg 2014; Truong et al. 2017; Franzosa et al. 2018). The 

downstream binning and taxonomic classification, the most basic step in metagenomic 

profiling/classification, is not a trivial task due to factors such as size of data, chimeric 

assemblies, use of short read data, and predominance of unassembled reads when using de 

novo assembled metagenome references. The alignment-based approach, adopted by most 

software, is a straightforward approach that evaluates similarity of query (i.e., reads, kmer, 

translated protein) to reference sequences using algorithms such as NCBI BLAST tools, 

BLAT and Hidden Markov Models (HMM)-based homology search. Due to large datasets 

generated from metagenome sequencing and the high computational burden associated 

with BLAST, tools favor less sensitive and faster alignment-based approaches.  

The best hit approach following alignments also suffers from a scenario where 

multiple best hits from several taxa lead to elevated false positive rates. While highly 

similar reads can be derived from different taxa, they are often artifacts generated from 

base calling errors in a unique read and consequently matching taxa that are absent in 

metagenome but present in the database. While the lowest common ancestor (LCA) method 

is widely implemented (e.g., MG-RAST server, MEGAN, Kraken), it does not resolve this 

false positive problem and only addresses it by reducing profiling resolution (Huson et al. 

2007; Wood and Salzberg 2014; Keegan, Glass, and Meyer 2016). While shotgun 

metagenomic sequencing can improve taxonomic resolution down to strain-level 

resolution, analysis is limited due to a lack of reproducibility associated with widespread 

computational algorithms and a lack of standardization (Sczyrba et al. 2017; Doster et al. 

2019). Additionally, the presence of eukaryotic paralogs and variability in genome size 
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limits the accuracy of shotgun metagenomic sequencing for quantification (Beszteri et al. 

2010). Several factors impose limitations on metagenomic analysis and the variability in 

quality control and best practices necessitates a need for analytical tool benchmarking to 

determine reproducibility of results. To establish a ground truth, mock/synthetic 

metagenomic communities can be simulated in silico from whole genome assemblies. 

Nevertheless, to more accurately capture the nuance associated with NGS library 

preparation and sequencing, mock communities can be constituted from microbial cultures. 

An example of such a mock community is the Mock Bacteria ARchaea Community 

(MBARC-26) used in previous studies (Singer et al. 2016). The MBARC-26 shotgun 

sequencing data was used for benchmarking Qmatey in this study. 

Oftentimes, large reference database (e.g., NCBI databases) create challenges since 

the volume of data increases computational load and time, as well as the presence of 

genomes of phylogenetically related and environmentally overlapping species/strains that 

can lead to elevated false positive rates (FPR) (The 1000 Genomes Project Consortium 

2015; Klemesten et al. 2018; Meyer et al. 2022). While the use of minimal custom 

databases does decrease computational burden, false negative (FNR) rates are increased in 

experimental studies where community members are usually unknown. The FNR problem 

is obvious in taxa not represented in the database. The FPR problem is typically persistent 

since the best-hit alignment can match something phylogenetically similar in both minimal 

and large database. 

In this study, we address limitations of microbiome and metagenomic profiling by 

implementing an automated and fast exact matching algorithm in Qmatey (Quantitative 
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Metagenomic Alignment and Taxonomic Exact matching), as well as multiple novel 

quality control methods (Fig. 1, S1). Improved speeds are achieved during an optimized 

multiprocessing MegaBLAST search that entails joint alignment of singletons within and 

across samples. We present the utility of Qmatey using multiple databases and input data 

derived from multiple microbiome and metagenome sequencing methods, including a 

novel quantitative reduced representation sequencing method. Qmatey’s strain-level 

profiling is achieved with an exact matching algorithm, while profiling at higher taxonomic 

levels (phylum to species) is achieved based on the extension of the exact matching 

algorithm, termed exact matching of consensus sequence (EMC). These novel algorithms 

ensure that only a taxon-specific diagnostic sequence drawn from single gene assays 

(16S/ITS amplicon sequencing data) or from the abundance of genome-wide data is used 

for taxonomic identification. This method, including a new cross-rank validation method, 

reduces false positive rates. 

MATERIALS AND METHODS 

 

Maize wild type and mutant rhizosphere 

Experimental data derived from metagenomic communities were obtained from the 

rhizosphere of mutant and wild type maize inbred lines (2 wild type, B73 and H95, and 2 

mutant genotypes, B73-Rp1D21 and H95-Rp1D21) grown under field condition in 2020 

at ETREC, Knoxville, TN. The mutant lesion mimic phenotype caused by an out-of-control 

hypersensitive response is driven by a mutation in the Rp1D21 R-gene that underlies 

resistance to the maize rust disease (Karre et al. 2021). The four inbred lines used in this 

study is a subset of a trial based on an augmented randomized incomplete block design 
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with six repeated checks. Within this larger trial, the four inbred lines used in this study 

were replicated 3 times. DNA extraction from the rhizosphere soil samples was based on a 

modified SDS-based protocol (Pang et al. 2008).  

Maize rhizosphere DNA library preparation protocols and sequencing 

The DNA samples were quantified with the Invitrogen Quant-iT™ PicoGreen™ 

dsDNA Assay and used for NGS library preparation based on amplicon sequencing (16S 

sequencing) and genome-wide sequencing (OmeSeq-qRRS and shotgun sequencing). The 

16S library preparation and amplicon sequencing was performed at the Genomic Sciences 

Laboratory, NCSU, by targeting the 16S V3 and V4 region. The PCR primer sequences 

were previously published by Klindworth et al. (2013). The Illumina adapter overhang 

sequences were added to the gene specific sequences and the full length forward and 

reverse primer sequences are TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCC-

TACGGGNGGCWGCAG and GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA-

GGACTACHVGGGTATCTAATCC, respectively. The NGS 16S amplicon sequencing 

was performed on a MiSeq v3 300x2 PE flow cell. The shotgun sequencing library was 

prepared with the Illumina Truseq Nano DNA library prep kit and sequenced on a lane of 

NovaSeq 6000 150x2 PE S4 flow cell. The reduced representation sequencing library 

preparation (OmeSeq-qRRS patent pending; Yencho and Olukolu, 2022) was performed 

as previously described (Kuster, Yencho, and Olukolu 2021) and sequenced along with 

other DNA samples on a lane of NovaSeq 6000 150x2 PE S4 flow cell. 

 

 



22 

 

MBARC-26 mock community NGS data 

The fastq file for the Illumina HiSeq shotgun sequences of the MBARC-26 mock 

community were downloaded from the NCBI Sequence Read Archive (SRA ID 

SRX1836716 and run ID SRR3656745). Five MBARC-26 species (Clostridium 

thermocellum, Desulfotomaculum gibsoniae, Meiothermus silvanus, Pseudomonas 

stutzeri, and Spirochaeta smaragdinae) were identified through their synonym species 

name (Acetivibrio thermocellus, Allomeiothermus silvanus, Desulfoscipio gibsoniae, 

Sediminispirochaeta smaragdinae, and Stutzerimonas stutzeri) after running the 

metagenome profiling and taxonomic identification in the Qmatey pipeline and against the 

NCBI nt database. A Pearson correlation analysis was performed to determine the 

prediction accuracy between Qmatey’s abundance estimates of the MBARC-26’s 23 

bacterial and 3 archaeal species and the expected abundance computed from the percentage 

of total mapped reads for each species (Singer et al. 2016, Supplementary Table 1). 

Genome assemblies of each of the 26 species of MBARC-26 mock community were 

downloaded from NCBI to simulate next-generation sequencing using Qmatey. Three 

simulated NGS datasets were generated in Qmatey to mimic shotgun metagenome 

sequencing and quantitative reduced representation sequencing (qRRS) following a 

complete and partial digest of component genomes. 

NGS data demultiplexing and quality filtering 

The sequencing data from all library preparation methods was demultiplexed and 

quality filtered using ngsComposer (Kuster, Yencho, and Olukolu 2021). With 

ngsComposer’s automated pipeline, the first six bases (buffer sequence) of the reads were 
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trimmed off, the samples were demultiplexed with a mismatch of 1 (minimum edit distance 

of 3 between barcodes sequences), only reads with intact restriction site motifs (NsiI and 

NlaIII) were retained, quality-based end trimming was performed with a minimum end 

quality score of 30 within a 10 bp sliding window and then only reads with minimum read 

length of 64 bps were retained, adapter contamination removal was performed based on a 

k-mer option using 12 bp substrings, and finally a quality filtering step along entire reads 

that is based on a minimum score of 30 for at least 80% of bases within each sequence 

read. The MBARC-26 mock community was quality filtered with the same parameters as 

described above for other libraries. 

ASV based microbiome profiling using 16S data 

We used DADA2 (Callahan et al. 2016) to perform an amplicon sequencing variant 

(ASV) based microbiome profiling of the maize rhizosphere 16S sequence data. We 

followed the standard workflow of filtering for ambiguous bases, primer removal with 

cutadapt, quality filtering, learning error rates, dereplicating, denoising, and merging of 

paired end data (minimum overlap of 12 bases and zero mismatches). To assign taxonomy 

to our ASVs, the SILVA nr99 database was used (version 138.1 with species training set). 

ASVs that were not of bacterial origin were removed. We did not rarefy our samples after 

ASV filtering to account for differences in library sizes since we are more concerned with 

profiling the total community (Willis 2019). 

Qmatey automated pipeline 

The Qmatey pipeline completely automates metagenome alignment, taxonomic 

identification, network correlation analysis, and visualization, using quality filtered data as 
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input. It is designed to handle various metagenome sequencing library methods including 

amplicon sequencing (16S/ITS), shotgun metagenome sequencing, and reduced 

representation sequencing (RRS such as GBS, RADdseq, ddRADseq and Omeseq-qRRS). 

Qmatey integrates multiple quality controls, described below, to mitigate typical and 

challenging problems that lead to type I and type II errors in metagenome/microbiome 

profiling. 

Building database: Qmatey uses a single or combination of databases downloaded from 

ftp://ftp.ncbi.nlm.nih.gov/blast/db/ or builds custom databases within the pipeline using the 

NCBI makeblastdb. Based on the former, the NCBI database types are typically matched 

to the type of microbiome/metagenomic data i.e., nt, nr or refseq databases for shotgun and 

RRS metagenomic datasets and 16S/18S/28S/ITS rRNA databases for amplicon 

sequencing datasets. To build custom databases with the NCBI makeblastdb, a fasta file 

containing genome assembly sequences and a file containing the associated taxa IDs are 

placed within a user-defined folder that is specified within the config.sh file or upon a 

prompt during job submission. Example files can be found within the Qmatey examples 

folder included in download and NCBI’s website 

(https://www.ncbi.nlm.nih.gov/books/NBK569841/). 

Simulation of Next-Generation sequencing: Qmatey simulates NGS reads and relative 

abundance of metagenomic community members based on random shearing and restriction 

enzyme-based fragmentation (complete or partial digest) during shotgun and RRS library 

preparation, respectively. The expected coverage, E(C), (i.e., number bases across genomes 

covered by at least one sequencing read) represented by the simulation of any of the 
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fragmentation and library preparation method is computed based on the extension of the 

Lander-Waterman equation, which accounts for discontinuities and position-based 

sampling biases or edge effect (Lander and Waterman 1986, Wendl and Barbazuk 2005). 

The equation is 

𝐸(𝐶) = 2𝑖 (𝜆 − 1 −∑𝑒−𝑥𝑛/𝛱
𝜆−1

𝑥=1

) + 𝑖(𝜎 − 2(𝜆 − 1))(1 − 𝑒−𝑛𝜆/𝛱) 

where i is the number of filtered genomic islands, σ is the size of a filtered genomic island, 

λ is the length of a sequencing read and is less than or equal to σ/2, n is the number of 

sequencing reads processed, and п is derived from i(σ- λ+1) and is the total number of 

possible placements over whole targets within a library. The term x defines the nucleotide-

based island coordinate system, where the origin is the boundary to the left. For a read 

which no overlapping read will extend beyond the right end of the genomic island, the 

coordinate range is x ϵ {1, 2, 3, …, σ - 2(λ - 1)}. For a read which one or more overlapping 

reads extend beyond the right end of the genomic island, the coordinate range is x ϵ {σ - 

2(λ - 1) + 1, …, σ - λ}. For a read that exists on the extreme right of an island, its position 

is x = σ - λ + 1. 

For the simulation function in Qmatey, a sequencing read length range is defined 

for expected read length from short or long read sequencing platforms. The frequency and 

span of gaps between genome islands are variable depending on the fragmentation and 

library preparation and method being modeled. Complete and partial digests during RRS 

can be specified with single or multiple restriction enzymes. Following fragmentation, 

partially digested and randomly sheared libraries produce multiple partially overlapping 
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and variable length reads that span a genomic island. Reads from completely digested 

libraries overlap completely and are flushed on both ends for each locus. Randomly sheared 

libraries produce the least number of gaps and provide higher coverage of the genome, 

while digested libraries produce more gaps since the aim is to sample only a fraction of the 

genome.  

Each genome (taxon) in the metagenomic community is replicated to simulate the 

sequencing coverage for each taxon and consequently the abundance estimate. The mean 

depth of sequencing coverage is theoretically defined as LN/G, where L is the sequencing 

read length, N is the total number of reads and G is the haploid genome size. The abundance 

of all the taxa in a community are scaled relative to the rarest taxon. Each replicated 

genome is fragmented independently to simulate the expected random fragmentation 

during genome shearing or partial digestion. To simulate deep sequencing often associated 

with NGS datasets, a parameter is set to perform a second round of replication of the entire 

dataset across the metagenome (default is skim sequencing at 3x coverage). Only fragments 

within the sequence read length range are retained.  For partial digests, the restriction 

enzyme sequences are randomly selected until fragment size is within the read length 

range. Only reads flanked by any combination of the restriction site motif(s) on both ends 

are retained.  

Sequence data compression and indexing: To improve the speed of MegaBLAST search, 

joint alignments of singletons within and across samples were performed following read 

compression and indexing of read depth values and associated sample IDs for each 

singleton. Since sequence reads are often redundant within and across samples, 
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compression, and indexing of reads are performed for joint-alignment, hence speeding up 

MegaBLAST by several hundred- or thousand-folds depending on the level of read 

redundancy within and across samples. The index is used to assign read depth to each 

sample for each singleton read after the MegaBLAST search. Subsequently, the read depths 

of diagnostic sequence reads are used to compute absolute abundance (average of 

diagnostic sequence read depth), relative abundance estimates (using normalization factor 

described below), standard error, and relative standard error (RSE). Additional speed 

improvement was achieved by implementing an optimized multiprocessing to ensure 80-

100% CPU resource allocation to MegaBLAST. Using a multicore processor, a batch of 

reads (up to 1000) are processed on each core. While the number of sequences in each 

batch can be user-defined, the optimal number of sequences per batch/core has been hard-

coded for various data types. Genome-wide data alignments are set to 1000 reads/batch. 

Since 16S/ITS amplicon data are highly conserved and return a lot of hits, only 20 

reads/batch used to avoid overwhelming the RAM.  

Exclusion of host-derived sequencing reads: For endophytic metagenome data derived 

directly from host tissue, if a user provides a host reference genome in the “norm_ref” 

folder, Qmatey automatically excludes sequencing reads that match the host reference 

genome, assuming these are assemblies of the nuclear organelle genomes. These are 

excluded from the metagenome analysis. If multiple reference genomes are provided, all 

references are concatenated. Alignment and removal of mapped reads are performed with 

BWA-MEM and samtools, respectively. Picard tools are used for reference genome 

indexing and sorting SAM files. Since the host tissue associated metagenome can constitute 
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as low as ~2% of total DNA, excluding host DNA will significantly improve analytical 

speed. Nevertheless, caution should be taken since host genome assemblies can be 

contaminated by a significant amount of microbial sequence that will also be excluded 

from the metagenome analysis. 

Normalization and estimation of relative abundance: To normalize the metagenomic data 

and compute relative abundance, Qmatey computes normalization factors which are then 

used to multiply the abundance for each diagnostic sequence. The normalization can be 

based on (i) using spike-in standard as internal control, which is preferably based on 

recombinant cells that contain unique synthetic tags or organisms that typically do not exist 

within the metagenomic community (Hardwick et al. 2017), (ii) using a host-derived DNA 

as internal control, where metagenomic DNA is derived from host tissue and the total DNA 

has been normalized before library preparation, and (iii) in the absence of any form of 

internal control, the total number of reads from each metagenomic sample can be used, 

although it is the less preferred method. To compute the normalization factor, a novel 

hybrid approach, Relative Sum Scaling (RSS), is implemented in Qmatey and as an 

extension of the Trimmed mean of M-values (TMM) and Total Count (TC) methods 

(Pereira et al. 2018). The RSS calculates the normalization factor Nj based on the 

assumption that most genes/sequences are not differentially abundant between samples. 

This is particularly true of metagenome data (compared to metatranscriptome data) and 

genomes composed of mostly single copy genes/sequences. Like the cumulative sum 

scaling (CSS) method, the RSS method is robust for metagenomic datasets where high-

dimensional sparse data and genome-wide undersampling (i.e., only diagnostic sequences) 
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are common features, particularly in amplicon-based methods (Paulson et al. 2013). The 

equation below describes the computation of the normalization factor Nj: 

Nj = 𝑆𝑗
(𝑟)∑ 𝑌𝑖𝑗

𝑚
𝑖=1  

where the total read count S is obtained for each sample j, a sample r indicating the sample 

with lowest total read count that is used as a reference sample, Yij is the counts for gene i 

= 1,...,n , m in sample j = 1, ... , n. To compute normalization factor Nj in experiments with 

internal controls, absolute abundance is obtained on a sample-by-sample basis using the 

unique tags of the spike in controls as reference sequence. The entire reads from the spike-

in standard DNA can also be used to validate the accuracy of estimating relative abundance 

(by comparing the expected and observed abundance of the taxa within the spike-in 

standards). On a sample-by-sample basis, all reads are mapped to the reference 

genomes/sequences (host or spike-in standard) with BWA-MEM and the mapped reads 

matching host or spike-in control DNA/tags are obtained and used to estimate the 

normalization factor using the RSS method. The normalization factor is calculated for each 

sample by dividing the number of reference-aligned reads to the total number of reads; a 

sample’s ratio is subsequently used as a normalization factor and used to multiply the 

absolute abundance. 

Sequence alignment: A single FASTA file is obtained after two rounds of data compression 

and indexing within and then across samples. The resulting file is split so that multiple 

instances of MegaBLAST search can be multi-processed. The alignments can be performed 

against local (custom or NCBI) and remote NCBI databases. The MegaBLAST parameters 
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were set to default except for maximum target sequence of 10,000 (maximum number of 

aligned sequences to keep), percent identity of 95% and the percent query coverage per hsp 

of 50%. These thresholds to restrict search or results can also be redefined by users with 

the Qmatey parameters (Altschul et al. 1990). The high maximum target sequence 

threshold ensures that all hits are exhaustively sampled from the database. The top best hits 

can be missed if the threshold is set too low. 

Reformatting the NCBI Ranked Lineage File: The NCBI taxonomic ranked lineage file is 

required for fetching taxa names and lineage track information from taxid. While this is 

very useful for metagenomic at various taxonomic rank levels, the curation requires 

reformatting to inconsistency in standard nomenclature. The species and genus column are 

often designated “NA” when, the species and genus name can be extracted from the 

taxname (“organism name”). Not all entries, particularly viruses and environmental or 

uncultured organisms, in the ranked lineage follow Linnean binomial nomenclature. Thus, 

for viruses, species designated “NA” are replaced with the taxname. 

Decompressing the combined, compressed, and indexed MegaBLAST results: Upon 

completion of MegaBLAST search, entries in the combined and compressed MegaBLAST 

results are assigned to samples along with the read depth using the index information 

created during compression. Eventually, two files are generated per sample. Regardless of 

the library type, the reads and corresponding alignment information are separated into 

“uncultured” and “cultured”. These files are used to produce two independent 

metagenomic profiles so that profiles of uncultured microbes can be evaluated separately 

if it is of interest to users. The theory behind delineation is to produce metagenomic profiles 
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from only reliable (preferably cultured) sources and well annotated taxa. The exception to 

this rule is those designated Candidatus since they are well researched and sequenced 

organisms despite being unculturable for in vitro studies (Pallen 2021). If a library type is 

anything other than amplicon, there is a parameter to leave out ribosomal DNA from 

taxonomic identification and abundance estimation since organisms tend to have variable 

number of rDNA sequences in their genomes. 

Exact matching based taxonomic profiling at strain-level: Metagenomic reads are 

stringently filtered for strain level taxonomic identification. Only reads match only a single 

taxid at 100% identify and reads with at least a query coverage of 32 bases are retained for 

downstream analysis. Taxonomic rank lineage is obtained from the rank lineage file for 

each taxonomic ID and abundance is estimated based on the average read depth of the 

filtered diagnostic reads associated with each organism. If the normalization factor was 

previously calculated, then the abundance estimated derived from the average read depth 

per taxa is multiplied by the sample-by-sample normalization factor. The quantification 

accuracy for each taxon in each sample is calculated based on the standard error (SE) of 

the read depths of the diagnostic reads. The relative standard error (RSE) is also computed 

by dividing the SE by the mean value and multiplied by 100. A RSE over 25% is prone to 

sampling error and should be used with caution.  

Taxonomic profiling at species-to-phylum level using EMC method: The exact matching 

of consensus sequence algorithm for species- to phylum-level profiling is similar for each 

level except for the percent identity threshold (i.e., 99% for species, 98% for genus, 97% 

for family, 96% for order, and 95% for class and phylum). A minimum query coverage of 
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32 bases is also used, similar to strain level profiling. Taxonomic rank lineage if obtained 

from the rank lineage file for each taxonomic ID, information at lower taxonomic rank 

eliminated, and abundance is estimated based on the average read depth of the filtered 

diagnostic reads associated with each taxon (e.g., species at species-level profiling and 

genus at genus-level profiling). Following these, the next step retains only reads that match 

one or more taxa within a single taxon at the taxonomic rank being profiled. For example, 

at genus-level profiling, a diagnostic read can match multiple species (Pseudomonas 

aeruginosa and Pseudomonas putida) but only within the genus (Pseudomonas). 

Abundance, relative abundance, SE and RSE are computed in a similar manner described 

above at strain-level.  

Controlling for multiple testing problems with genome-size scaling: If the genome scaling 

parameter is set to true, the expected number of unique diagnostic sequences for a group 

of individuals at phylum level (genome size within are relatively narrow range) are 

computed within a range of the 5th and 95th percentiles of the distribution of the observed 

number of unique diagnostic reads. Taxa with values outside this range are considered to 

be spuriously identified taxa. This only applies to metagenomic sequencing methods 

(shotgun and RRS) that sample sequences in a genome-wide manner. Additionally, except 

for 16S/ITS amplicon sequencing, taxon supported by less than two unique diagnostics 

reads across all samples are excluded from the analysis. Since only one diagnostic sequence 

might delineate strains, particularly for organisms with very small genomes (e.g., viruses), 

strain-level profiles are provided with a minimum unique diagnostic sequence threshold of 

1. 
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Controlling for multiple testing problems with cross-rank validation: In a successive 

manner, starting from strain to class, higher taxonomic ranks are used as a “reference” and 

the immediate lower rank as the “test”. Taxa in the “test” that are absent in the reference 

rank are excluded from the results. The results are reported as validated and unvalidated 

and saved to different directories. Since viruses do not strictly follow the binomial 

nomenclature, viruses are not cross-rank validated.  

Metadata for downstream metatranscriptome analysis: The gene annotation of diagnostic 

sequences across all samples are retrieved from the MegaBLAST output. This is also 

provided on a sample-by-samples basis along with the relative abundance of each gene. If 

the relative abundance of the genes is derived from metatranscriptome data, this will 

approximate the gene expression levels rather than the abundance of cells in the community 

in the case of metagenomic data (assuming gene is single copy).  

Visualizations: Visualization of results include: (i) box plots; (ii) sunburst chart showing 

taxa at user-specified taxonomic ranks; (iii) visualization of the network correlation 

analysis; and (iv) line plots for sensitivity and false positive rates based on cross-rank 

validation. The interactive box plots show distribution of number of unique diagnostics 

reads, abundance, relative abundance, standard error, and relative standard errors for each 

taxon (color-coded based phylum) across samples. Generated using the R package plotly 

(Sievert 2020), a minimum of 3 samples are required for these boxplot visualizations. Two 

versions of the interactive sunburst chart, using the R package plotme 

(https://github.com/yogevherz/plotme), are generated metagenomic profiling at each 

taxonomic rank to visualize the diversity (unweighted) and abundance (weighted by 
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relative or absolute abundance estimate) of metagenomic community members. The 

sunburst default shows 2 or 3 layers/circles, which include the outer (only at strain- and 

species-level; default is species), middle (default is genus) and inner (default is phylum) 

circle. The correlogram is based on the correlation coefficients computed using the 

CCLasso method (Fang et al. 2015), which accounts for the multi-interactions in the 

compositional data. A minimum of 24 samples are required for the correlation analysis and 

visualization. Multiple correlograms are produced based on combinations of positive and 

negative correlations coefficients. Multiple versions of the correlograms are also created 

based on as well as based on the thresholds for limit the level of zero-inflation (e.g., at 20% 

threshold, only taxa with relative/absolute abundance greater than 0 in a minimum of 20% 

of samples are retained for analysis). Multiple versions of the boxplots, sunburst is also 

created with different levels of zero-inflated data. Following cross-rank validation 

sensitivity and false positive rates metrics are computed and plotted to show trends across 

taxonomic ranks. 

RESULTS 

 

Comparison of 16S (DADA2 vs. Qmatey), OmeSeq-qRRS, and shotgun data 

To assign taxonomic IDs to the quality filtered 16S NGS reads derived from 

Rp1D21 mutant and wild type maize inbred lines, we implemented the ASV-based method 

with DADA2 (Callahan et al. 2016) and an exact matching-based algorithm with Qmatey. 

DADA2 identified 116 ASVs, which were assigned taxonomic IDs using the SILVA 

database. Of the 116 bacterial ASVs, 103 ASVs were assigned down to genus level (25 

genera) and 20 were assigned to 7 species. Qmatey identified 1.8 times more phyla (18), 
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6.9 times more bacterial genera (172), and 18.7 times more bacterial species (131). Results 

from Qmatey confirmed 4 of 7 species and 16 of 25 genus identified with DADA2 (Fig. 

2A, B). Of the three NCBI reference database (16S, refseq, or nt) used for taxonomic 

assignment in Qmatey, the 16S database produced the best results (Fig. 3A, B). While 

cross-rank validation was used to further reduce false positive rates in Qmatey, cross-rank 

validation could not be performed on the DADA2 result since OTU/ASV-based analyses 

don’t perform independent analysis at different taxonomic levels. 

Using Qmatey, the shotgun and OmeSeq-qRRS metagenome data identified 450 

and 195 strains, respectively. As expected, there were no strains found with the 16S data 

except for 4 strains that are the only taxa in representing the species in the database. A total 

of 701, 271, and 131 bacterial species were identified with shotgun, OmeSeq-qRRS, and 

16S data, respectively. Excluding bacterial species, a total of 42 and 48 species were 

identified with shotgun and OmeSeq-qRRS, respectively. While shotgun identified more 

bacteria species, OmeSeq-qRRS identified more non-bacterial species (Fig. 3G, H).  

Quality performance metrics of 16S, OmeSeq-qRRS and shotgun metagenomic data 

To assess the performance of Qmatey’s taxonomic profiling algorithm after cross-

rank validation, we computed the false positive rate (FPR) and taxa recovery rate 

(sensitivity). The performance metrics are also computed before cross-rank validation. Our 

results indicated that regardless of library preparation method, sensitivity increases and 

FPR decreases at higher taxonomic rank (Fig. 3). OmeSeq-qRRS and shotgun sequencing 

both had a consistently high and similar sensitivity and outperformed 16S at species and 

strain level by 25-40%. Sensitivity at higher taxonomic levels were similar across all 
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sequencing methods (Fig. 3). With regards to the reference database used for metagenomic 

profiling, the 16S and refseq databases outperformed the nt database for 16S amplicon 

sequencing data, whereas the nt database outperformed the refseq database for OmeSeq-

qRRS and shotgun sequencing (Fig. 3A). For all sensitivity comparisons, cross-rank 

validation marginally improved sensitivity rates (0-5%) in the rhizosphere experimental 

data set.  

We defined our false positive rates (FPR) as the percent of lower rank taxon missing 

in the higher rank during cross-rank validation. The FPR tends to decrease as rank increases 

(Fig 3B). When comparing the sequencing type regardless of the reference database, qRRS 

and shotgun sequencing have lower FPR than 16S at species level. From the genus level 

on, all the sequencing types have similar/comparable FPRs (within a margin of 5%). 

Arguably, 16S against the nt database has the highest FPR overall. As expected, cross-rank 

validation led to FPRs of zero. 

When comparing reference databases for 16S sequencing, the curated databases 

(refseq and 16S) have moderate FPRs at species level that sharply decrease at genus and 

then continue to stay low. In comparison, 16S against the nt database had the highest FPR 

at each taxa level until order (Fig. 3B). The NCBI nt database also led to species annotation 

that was not as precise as the results using the 16S or refseq reference databases, as over 

half of the species were defined as a “sp.” or “bacterium” of a genus (Fig. S2). Additionally, 

the strain/taxa level results were overwhelmed with environmental samples such as 

“bacterial soil clones” that were removed through cross-rank validation (Fig. 3C, D). Thus, 
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we do not recommend using the NCBI nt database for profiling of 16S sequencing data 

below genus level.  

Metagenomic profiling of experimental and simulated MBARC-26 mock community 

shotgun data 

Shotgun data obtained from Illumina NGS short read sequencing of the MBARC-

26 mock community (Singer et al. 2016) were subjected to 3 levels of subsampling to 

capture various proportions of the genome, which were then consequently used for 

metagenome profiling (Table 1). Subsampling was based on in silico digestion of reads 

and selection of ensuing reads that were flanked the restriction enzyme motifs (RE1: NsiI 

and RE2: NlaIII). Subsampling of genomic regions was achieved by selecting reads flanked 

by both motifs (RE1::RE2), flanked by 3 combinations of motifs (RE1::RE1, RE2::RE2, 

and RE1::RE2). Metagenome profiling was also performed on reads that where not 

subsampled. As seen in Table 1, when the MBARC-26 mock community shotgun data is 

in-silico digested to mimic RRS, the low density digestion (RE1::RE2 only) produced 

better quality metrics overall than the high-density digestion (RE1/2::RE1/2) but had a 

lower prediction accuracy of abundance estimates than when no subsampling was used on 

the quality filtered data. In cases where the metagenomic profile derived from sampling 

higher proportion of the genome sometime performed better at taxa recovering, there was 

a high FPR and low prediction accuracy of the abundance estimate. The rare microbial 

members, Nocardiopsis dassonvillei DSM_43111 and Escherichia coli K12_MG1655 that 

represent 0.0001% and 0.0019% of the community, respectively, were not recovered under 

most parameter settings at both strain- and species-level in experimental data and at strain-
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level in simulated data but were recovered at species-level in the simulated data for most 

parameter settings (Table 1 and 2). In experimental data, these microbial strains were 

recovered in the MegaBLAST alignment output but did not pass Qmatey’s taxonomic 

filtering parameters. At strain-level and in the experimental data, two more rare strains, 

Corynebacterium glutamicum ATCC_13032 and Salmonella bongori NCTC_12419 that 

represent 0.0031% and 0.0015% of the community, respectively, were not recovered. 

However, bacteriophages annotated to be specifically derived from this species were 

identified. Prediction accuracy of abundance was only estimated at strain- and species-

level since such a metric at higher taxonomic level would be based on an aggregate value 

that would provide little biological significance. 

As shown in Table 2, Qmatey had both high recovery and low true negatives at 

strain and species level for the detection of the MBARC-26 species when the community 

structure is simulated based on reference genomes. Strain level profiles had lower recovery 

than species level and higher FPRs when high proportions of the genomes were 

subsampled. The low-density subsampling had the highest prediction accuracies and 

lowest FPRs. Overall, the complete digestion had the best performance. Often the missing 

MBARC-26 mock community species at species and strain level were the same ones 

missing from the Qmatey results using the real experimental data. Additionally, most true 

negatives were bacteria-hosted viruses or bacteriophages of bacteria within the MBARC-

26 communities. 
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DISCUSSION 

Qmatey performs metagenomic profiling with high sensitivity independent of 

sequencing method. In this study, we used real experimental data sequenced by 16S, 

OmeSeq-qRRS and WGS shotgun to test Qmatey’s novel implementation of metagenomic 

exact matching algorithm. We found that the reference database used for metagenomic 

assignment had an influence on sensitivity and FPR. The qRRS and shotgun data both have 

higher sensitivity and capture taxa at all taxonomic levels (strain to phylum level) and 

taxonomic groups (i.e., virus to eukaryotes). The genome-wide and unbiased sequencing 

approach uses of multiple genes and increases the chance of finding diagnostic genes that 

delineate taxa, particularly in complex metagenomic communities and in case where very 

similar strains/species exist with the community. On the other hand, the amplicon 

sequencing lacks sensitivity at strain and species level and lower sensitivity at higher 

taxonomic levels. Also, taxa identification is limited to prokaryotes (16S and fungi (ITS). 

The ability to confidently identify taxa at species-level and recover more taxa at genus- 

level using Qmatey for metagenomic profiling with 16S amplicon sequencing data 

highlights the superior approach of exact matching compared to OTU/ASV methods. It’s 

important to note that one of reasons for differences in taxa found between using DADA2 

and Qmatey is that the SILVA database will combine similar genera into one entry, such 

as Burkholderia-Caballeronia-Paraburkholderia, whereas NCBI’s 16S database treats 

them as separate entries with unique taxids.  

In this study, we tested Qmatey’s ability to recover the 26 known species of the 

MBARC-26 mock community (Table 1). At strain level, 22-24 of 26 species were 
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recovered. At species level, only two of the rarest (i.e., representing only 0.0001% and 

0.0019% of the community) species were not recovered. Other rare strains accounting for 

as low as 0.0015% were identified. Despite the low proportion (0.05% and 0.24%) of the 

metagenome subsampled, with minimal penalty on recovery rate due to the low-density 

subsampling, these datasets produced the highest prediction accuracy of abundance and no 

FPR (0.66-0.76).Simulating sequencing data for species of interest can provide information 

to support one’s decision to perform a specific type of enzymatic digestion. In simulating 

the MBARC-26 mock community at the species level, we found that subsampling WGS 

shotgun data at low density recovered more species and had higher predictive accuracies 

than when the WGS shotgun data is subsampled too much or not at all.  In simulating the 

MBARC-26 mock community at the strain level, although partial digestion had the highest 

recovery, it recovered more true negatives that were removed through cross-rank 

validation. When compared to the experimental MBARC-26 mock community results from 

Qmatey, the simulated results are comparable but not better. The discrepancy between the 

results could be from lower sequencing error rate modeled in the simulated NGS reads or 

the fact that the WGS data was quality filtered before processed with Qmatey.  

Qmatey is a step in the right direction for metagenomic analysis 

Qmatey’s modular workflow encourages robust metagenomic analysis, integrating 

NGS data regardless of metagenomic library preparation or short-read sequencing 

platform. The modular decision to profile metagenomes with (i) exact matching of 

consensus sequences for species to phylum-level profiling or (ii) exact matching for strain-

level profiling encourages researchers to choose the profiling algorithm best suited for their 
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sequencing platform and library preparation strategy. The utility of these profiling 

algorithms is further enhanced by a cross-rank validation filtering module, increasing the 

profiling stringency of the metagenomic data. By implementing these functions in a 

modular fashion, the user has significant control over profiling stringency, increasing 

taxonomic precision relative to accuracy or vice versa. In addition to Qmatey’s modular 

profiling and filtering algorithms, Qmatey’s novel reference normalization strategy 

facilitates accurate metagenomic quantification for researchers with spike-in standards and 

host-associated reference genomes. The metadata produced by Qmatey can be used for 

downstream metatranscriptome analysis and the pipeline’s pairwise correlation matrix 

shows promise for predicting inter-microbial interactions, identifying co-occurrence 

relationships across input samples.  

SOFTWARE AND DATA AVAILABILITY 

The Qmatey pipeline is written in bash and R scripting languages (excluding 

dependencies). It is open source and available on github 

(https://github.com/bodeolukolu/Qmatey) with a comprehensive set of example datasets 

differentiated by amplicon, shotgun, and reduced representation sequencing strategies.   
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APPENDIX: FIGURES 

 
Figure 1: Flow chart of the Qmatey pipeline.  
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Figure 2: Sunburst showing diversity of taxa at species level (from center to outer ring: 

phylum, genus, and species) for DADA2 (A) and Qmatey (B) based on microbiome 

profiling of 16S NGS paired-end reads aligned against the SILVA and NCBI 16S database, 

respectively, OmeSeq-qRRS sequences reads (C) aligned against the NCBI nt database, 

and shotgun WGS sequencing reads (D) aligned against the NCBI nt database. Sequence 

data are derived from rhizosphere of Rp1D21 mutant and wild type maize inbred lines. 

Venn Diagrams (E-H) show the overlap of taxa at certain levels and between different 

methods. 

 



47 

 

 

 

Figure 3: Analysis of sensitivity (A, E), false discovery rate (B, F), and number of taxa 

found per level with and without cross-rank validation (C, D, G, H). Lines are color 

coded by type of sequencing data and the database(s) used for taxonomic assignment of 

Rp1D21 mutants.  
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APPENDIX: TABLES 

Table 1: Quantitative metagenome profiling of MBARC-26 mock community using 

various types of subsampling depths. Quality performance metrics (FPR, recovery rate, 

and prediction accuracy of abundance) allow for comparison of Qmatey’s results with 

experimental parameters. 

Taxa 

Level 

Quality 

filtered 

reads 

  

Subsampled 

fragments 
Genome 

coverage 

(%) 

FPR 

(%) 

Recovery 

Rate 

(%) 

  

Prediction 

accuracy 

  
of 

abundance 

Strain 

Yes 

RE1::RE2 0.24 0 85 0.76 

RE1/2::RE1/2 3.2 4 85 0.63 

No subsample 70.16 8 85 0.92 

No 
RE1::RE2 0.87 31 85 0.71 

RE1/2::RE1/2 11.48 92 96 0.62 

Species 

Yes 

RE1::RE2 0.24 0 92 0.74 

RE1/2::RE1/2 3.2 0 92 0.68 

No subsample 70.16 0 92 0.92 

No 
RE1::RE2 0.87 52 96 0.66 

RE1/2::RE1/2 11.48 94 100 0.66 
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Table 2: Quantitative metagenome profiling and simulation of short read next-generation 

sequencing of 26 genome assemblies (MBARC-26 mock community). NGS simulation is 

based on various genome fragmentation methods (shotgun/random, complete digest, and 

partial digest) while subsampling (restriction enzyme double-digest) simulates 

quantitative reduced representation sequencing (qRRS). Quality performance metrics 

(FPR, recovery rate, and prediction accuracy of abundance) allow for comparison of 

simulation and subsampling parameters. 

Taxa 

Level 

Subsampled 

fragments 

Genome 

coverage 

(%) 

Simulation 

fragmentation 

method 

FPR 

(%) 

Recovery 

Rate 

(%) 

  

Prediction 

accuracy 

of 

abundance 

Strain 

RE1::RE2 

0.05 shotgun + complete digest 0 77 0.66 

1.35 complete digest 0 85 0.53 

97.37 partial digest 0 92 0.58 

RE1/2::RE1/2 

1.43 shotgun + complete digest 4 88 0.49 

20.75 complete digest 0 92 0.43 

99.52 partial digest 4 96 0.57 

No subsample 84.04 Shotgun 5 81 0.47 

Species 

RE1::RE2 

0.05 shotgun + complete digest 0 92 0.66 

1.35 complete digest 0 100 0.53 

97.37 partial digest 0 100 0.65 

RE1/2::RE1/2 

1.43 shotgun + complete digest 0 100 0.42 

20.75 complete digest 0 100 0.42 

99.52 partial digest 0 100 0.58 

No subsample 84.04 Shotgun 0 85 0.53 
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APPENDIX: SUPPLEMENTAL FIGURES 

 

Figure S1: Project directory set up. 
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Figure S2: Diversity sunburst plots of species level (from center to outer ring: phylum, 

genus, and species) validated Rp1D21 maize results produced by Qmatey when using 

16S sequencing against the nt database (A), 16S sequencing against the refseq database 

(B), and OmeSeq-qRRS against the refseq database (C). Relative abundance sunburst 

plots of species level (from center to outer ring: phylum, genus, and species) validated 

Rp1D21 maize results produced by Qmatey when using OmeSeq-qRRS sequencing 

against the nt database (D), OmeSeq-qRRS against the refseq database (E), and shotgun 

WGS against the nt database (F). 
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CHAPTER II 

 

QUANTITATIVE REDUCED REPRESENTATION SEQUENCING 

OF LEAF METAGENOMES REVEALS THAT SWEETPOTATO 

DEFENSE RESPONSE, TRANSPORT, AND CHROMATIN 

REMODELING GENES DRIVE PLANT-VIRAL INTERACTIONS 
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ABSTRACT 

 

Sweetpotato, Ipomoea batatas, is an important crop for food security that can 

experience up to 50% of yield loss due to viral infection. Besides the host genetic control 

of disease resistance, host-associated biotic factors (microbe-microbe interactions) can also 

explain a significant proportion of variation in disease severity, hence reducing the utility 

of breeding models for crop improvement. To develop a robust and predictive model to 

dissect the impacts of the holobiont (i.e., host-genetics and associated microbe-microbe 

interactions) on phenotypic expression, high-density SNP data was integrated with meta-

data derived from the leaf microbiomes of 767 sweetpotato accessions. The species/strain-

level metagenomic profiles were obtained by quantitative reduced representation 

sequencing (OmeSeq-qRRS) and processed with ngsComposer and Qmatey. Ten 

sweetpotato viruses were identified along with several pathogenic and beneficial 

organisms. Using 80,000 genome-wide SNPs, GWASPoly identified SNPs/genes 

underlying host-viral interactions while modeling all dosage-based additive and dominance 

SNP effects. Plausible functions of candidate genes co-localized with significantly 

associated SNPs are described based on functional annotations of gene orthologs. An initial 

inquiry revealed associations between viral presence and enrichment of host genes that 

function in intracellular signaling, transport, and disease resistance. The comprehensive 

insight into multi-way interactions within the microbiome holds great promise for precision 

breeding by providing more accurate models that account for both host and metagenome 

genetic factors. 
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INTRODUCTION 

 

Endophytic microbial communities typically represent a complex niche where 

member microbes have often co-evolved with the host to form a holobiont and act as a 

secondary genome that plays a key role in the gene and phenotypic expression of the host 

(Vandenkoornhuyse et al. 2015). While understanding the genetic basis for specific host-

microbe interactions are often confounded by microbe-microbe interactions, a multipartite 

model involving the host, microbes, pathogens, and pests is crucial to understanding and 

accurately modeling traits such as resistance to complex diseases and disease complexes 

(Floc’h et al. 2020). For example, pathogens have been documented to infect host tissue 

without disease symptoms and remain in a latent state until poorly understood cues trigger 

pathogenicity (Roossinck 2010). Techniques for metagenome and microbiome profiling 

continue to advance and have reached a point where inexpensive high-throughput, 

quantitative and strain-level profiling is now possible following interrogation with 

genome-wide diagnostic sequences in component genomes. Until now, in addition to being 

expensive and computationally intensive, quantitative metagenomic profiling remains 

challenging partly due to the requirement for SNP-level resolution during strain-level 

taxonomic identification while avoiding false positive and false negative errors due to base 

calling errors (Simmonds et al. 2017; Rubio, Galipienso, and Ferriol 2020). To underscore 

the latter point, while viruses have a high point mutation rate, only a few of these mutations 

persist and are fixed in populations. Consequently, microbial strains are typically 

delineated by only a few SNPs across their genomes (Bush et al. 2020). Nonetheless, 

accurate and inexpensive diagnostic and quantitative assays are crucial given their 
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economic impact on crop production and human health (Mumford, Macarthur, and 

Boonham 2016).  

Current serological and molecular techniques, such as enzyme-linked 

immunosorbent assay (ELISA), DNA/RNA amplification through quantitative polymerase 

chain reaction (qPCR or RT-qPCR) and isothermal amplification (LAMP-PCR) are reliant 

on having prior knowledge of the viral genome to design antibodies and primers, 

respectively. When designing antibodies and primers, the genetic variability within and 

among viral species need to be accounted for to optimize detection while reducing false 

positives (Rubio, Galipienso, and Ferriol 2020). High-throughput sequencing (HTS) of 

metagenomes that use shotgun next-generation sequencing (NGS) (Bulgarelli et al. 2015) 

and NGS-based reduced representation sequencing (Hess et al. 2020), however, do not 

require prior knowledge of the viral genome sequences or virome composition except 

during downstream read alignment to sequences in databases for taxonomic identification. 

These assays provide the ability to sequence the virome present in a host and provide 

estimates of relative abundance (Rubio, Galipienso, and Ferriol 2020). When compared to 

serological and molecular techniques, HTS NGS-based profiling techniques are more 

broad-spectrum in their diagnostic abilities, have unbiased identifications, and can be more 

cost efficient (Maree et al. 2018).  

Compared to NGS-based amplicon sequencing that use the rRNA sequence for 

profiling only bacteria and fungi, genome-wide sequencing of metagenomes is a more 

robust approach for viral detection and quantification since viruses lack rRNA sequences 

in their genomes (Wooley, Godzik, and Friedberg 2010). The ability to quantitatively 
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capture a broad spectrum of organisms, including viruses, bacteria, protista, fungi, and 

higher eukaryotes offers a great appeal for a holistic understanding of multipartite 

interactions within complex metagenomic communities. This robustness and broad-

spectrum also extends to profiling endosymbionts that are now known to play critical roles 

in hosts’ biological processes, such as regulation of immunity and reproductive success 

(Hedges et al. 2008).  

Recent advancements in computational algorithms and sequencing platforms have 

enhanced metagenomic profiling’s ability to functionally study multipartite relationships 

involving community members and their hosts at the most fundamental genomic level 

(Wooley, Godzik, and Friedberg 2010). One improvement is the ability to quantitatively 

profile metagenomes and use this for genome-wide marker-phenotype associations 

(GWAS), where the relative abundance of cells estimated from preferably unique gene 

sequences are used to determine how well a host genetic background recruits an organism 

or how successful an organism can colonize and proliferate within a host. The community 

members can include both microorganisms and multicellular organisms like nematodes and 

insects. The GWA analysis can provide an opportunity to discover the host genetic factors 

that drive these interactions, while correlation network analyses that are robust for 

compositional data can detect potential interactions between and among (within microbial 

hubs) community members (Matchado et al. 2021). Within the last decade have there been 

reviews published discussing the importance of microbiome genome-wide association 

studies (mGWAS) and metagenome-wide association studies (MWAS) in understanding 

host-microbe relationships in plant phyllosphere research and human gut research, 
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respectively (Wang and Jai, 2016; Awany et al. 2019; Beilsmith et al. 2019). Amplicon 

sequencing has been used for mGWAS to discover host-genetic factors in the recruitment 

and/or assembly of crop microbiomes (Sutherland et al. 2022; Tan et al. 2022). In this 

study, we present a novel implementation of using metagenomic data generated through a 

quantitative reduced representation sequencing approach (OmeSeq-qRRS) to enhance 

GWAS.  

Interpreting GWAS results is not always straightforward since there can be 

significant confounding factors (e.g., population structure, host-pathogen-microbe 

interactions, long range linkage disequilibrium, and errors in variant calling) that can lead 

to spurious associations (Hussman et al. 2011; Wang et al. 2018; Park 2019; Nicholls et al. 

2020). With respect to using quantitative metagenomic profiles as trait data for GWAS, it 

is expected that the relative abundance of community members is driven by both the 

genetic factors of the host and other members of the metagenome that play a role in multi-

way biotic and abiotic interactions (Hassani, Durán, and Hacquard 2018). Consequently, 

using component members of the metagenome as a covariate might help minimize spurious 

association and improve statistical power. Recent studies are now exploring the utility of 

microbiomes as a biosensor for obvious and hidden biotic stress (Zolti et al. 2020). For 

example, a positive correlation between a virus and a fungus might indicate the viral 

infection’s ability to compromise the host immunity and consequently make the host 

susceptible to other pathogens (Tang et al. 2019). In this study, we introduce a metagenome 

enhanced GWA by using correlated community members as covariate to improve statistical 

power.  
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Ipomoea batatas, commonly known as sweetpotato, is a staple food crop grown 

through vegetative propagation (Loebenstein and Thottappilly 2009). Like other 

vegetatively propagated crops produced, the planting stocks tends to accumulate several of 

the at least 30 viruses identified to infect sweetpotato (Loebenstein and Thottappilly 2009; 

Clark et al. 2011). The most common methods for viral detection in sweetpotatoes are 

serological- or PCR-based and in the case where virus titer is low, grafting to Brazilian 

morning glory, I. setosa (Clark et al. 2011). Emerging methods for viral detection in 

sweetpotatoes include LAMP-PCR/rolling-circle amplification (RCA) and deep-

sequencing of small RNAs (siRNAs) (Paprotka et al. 2010; Cao et al. 2017). While many 

sweetpotato viruses can be identified by their phenotypic effects (i.e., curling of leaves, 

color change from a green to a yellow shade), some viruses appear symptomless and would 

only be confirmed through molecular techniques (Kim et al. 2015). The early detection of 

sweetpotato viruses either through molecular techniques or observed symptoms can 

facilitate efforts to mitigate significant yield losses.  

In this study, we propose a novel quantitative metagenomic profiling assay 

(OmeSeq-qRRS: quantitative reduced representation sequencing of component genomes) 

to catalog and quantify the viruses found across 767 sweetpotato accessions. Using the 

relative abundance of viral titer (mimicking methods like RT-qPCR/qPCR and LAMP-

PCR) as the phenotype for GWAS, we present candidate genes underlying plant-viral 

interactions with implications for breeding disease resistance to viral pathogens. These 

candidate genes are enriched in leucine-rich-repeat motifs, JA-dependent defense pathway 

(wound-responsive proteins) that acts upstream of viral infection and during insect vector 
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herbivory, and host cellular transport pathway co-opted by the virus for intercellular and 

intracellular movement. This study highlights a metagenome-assisted genome-wide 

association analysis that models the multipartite interactions that modulate viral diseases 

in sweetpotato.   

MATERIALS AND METHODS 

Sweetpotato greenhouse samples 

The entire USDA sweetpotato germplasm (767 sweetpotato accessions or 

“diversity population”) were obtained from tissue culture plant materials (virus-tested) that 

were maintained at the USDA gene bank in Griffin, GA. The plantlets were obtained in 

test-tubes and grown under greenhouse conditions at the USDA Vegetable Laboratory in 

Charleston, South Carolina. Leaves were sampled, freeze-dried, and then stored at -20C. 

DNA extraction, library preparation, and sequencing 

Sweetpotato leaf microbiome DNA was extracted using a CTAB DNA extraction 

protocol (Doyle and Doyle 1990). Library preparation and sequencing was performed as 

described in Wadl et al. 2018. The library preparation technique is known as GBSpoly 

(renamed OmeSeq-qRRS after modifications and to emphasize its use for quantitative 

reduced representation sequencing). An updated version of the bioinformatic pipelines 

described in Wadl et al. 2018 were used for NGS data demultiplexing (ngsComposer), read 

quality filtering (ngsComposer), variant calling (GBSapp), and variant filtering (GBSapp) 

(Kuster, Yencho, and Olukolu, 2021). Consequently, a total of 80,000 dosage-based (6x) 

variants (SNPs and InDels) were identified across the 767 sweetpotato accessions. 
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Quantitative metagenomic profiling 

The metagenomic profiling of the diversity sweetpotato leaf population was 

performed using a bioinformatic pipeline, Qmatey (Quantitative Metagenomic Alignment 

and Taxonomic Exact matching), which uses a novel implementation of an exact-matching 

algorithm for strain level identification and an exact-matching of consensus sequencing for 

species to phylum level identification. The NCBI nucleotide (nt) database was used as the 

reference for alignment using the NCBI MegaBLAST. The two purported ancestral diploid 

reference genomes (I. trifida and I. triloba) were provided to remove host-specific 

sequencing reads and retain host-associated metagenomic sequence reads (Wu et al.  2018). 

The quantitative abundance profiles (normalized gene counts based on a relative sum 

scaling; RSS) produced by Qmatey were used in the GWA analysis, with the viral load as 

the phenotype and the correlated members of the metagenome as the covariate. All pairwise 

correlations were computed based on a CCLasso method that accounts for the 

compositional nature of the data (i.e., multi-way interactions) (Fang et al. 2015).  

Genome-wide association study (GWAS) 

An R script was written to automate the GWA analysis. The initial variables 

determined trait of interest, minimum proportion of taxa present across sweetpotato 

accessions, kinship/relationship Matrix method for polyploid organisms (VanRaden or 

Slater), and the use of covariates within the mixed linear model. The GWA analysis was 

performed using the R package GWASpoly (Rosyara et al. 2016) based on the following 

dosage models: “additive”, “1-dom alt”, “1-dom ref”, “2-dom alt”, “2-dom ref”, “3-dom 

ref”, and “3-dom alt”. The genotypic information used for the GWA analysis is the 6x 
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dosage-based variant data generated by GBSapp, which filtered to a total of 80,000 SNPs 

and Indels. Filtering included maf > 0.02, sample missing rate < 0.3, and SNP missing rate 

< 0.3. A read depth threshold of 45 was used and evaluated on each genotype call rather 

than average read depth for each variant. Genotype calls below this threshold were re-

coded as missing before missing rate filtering. The phenotypic information used for the 

GWAS was based on the relative abundance of the metagenomic profiles derived from 

Qmatey. The strategy of using sequenced DNA or DNA/RNA titer as proxy for phenotype 

data, has been employed in fields such as cancer research (Zukowski, Rao, and 

Ramachandran, 2020) and particularly for viral diseases (using qPCR/RT-qPCR or LAMP-

PCR assays) 

Identifying SNPs and candidate gene function 

For candidate gene analysis, we first identified the gene-dosage model that 

provided the best (statistically speaking) results- low background noise on the Manhattan 

plot and had a QQ-plot whose line didn’t deviate significantly. For most viruses, the 

additive model was chosen to pursue. The SNPs that were identified as being significantly 

associated were evaluated for co-localization or proximity to candidate genes using the I. 

trifida Jbrowse (Wu et al. 2018). While evaluating the local LD around the SNP region, if 

the SNP was not within the coding or promoter region of a gene, the closest genes were 

considered as plausible genes based on indirect association. The threshold to determine 

significantly associated SNPs was based on the Bonferroni and FDR significance 

thresholds. Each genome-wide scan was evaluated to estimate the false discovery rate using 

the QQ-plots. If the Jbrowse returned genes for hypothetical proteins, we performed a 
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NCBI blastn and explored conserved motifs using the NCBI conserved domain database 

(CDD) search. Literature review, online gene catalogs (such as UniProt and TAIR), and 

the STRING database (Szklarczyk et al. 2023) were used to establish the function of the 

candidate genes. 

RESULTS 

Sweetpotato virome profiles 

A total of 269 viral strains were identified across the 767 sweetpotato leaf 

metagenome. Bacteriophages were the most abundant kind of virus found in the 

population, followed by Geminiviridae plant viruses. At a threshold of 10% (i.e., at least 

77 of the 767 accessions have the virus in their metagenome), six sweetpotato viruses 

(Sweetpotato badnavirus B, Sweetpotato badnavirus C, Sweetpotato leaf curl Canary virus, 

Sweetpotato leaf curl virus, Sweetpotato pakakuy virus, and Sweetpotato symptomless 

virus 1) and eight bacteriophages (Acinetobacter phage Ab1656 2, Acinetobacter phage 

AbTJ, Acinetobacter phage YMC11/11/R3177, Caudovirales sp., Escherichia phage P1, 

Myoviridae sp., Podoviridae sp., and Siphoviridae sp.) were detected and further analyzed 

for host-microbe and microbe-microbe interactions (Table 3A). However, there were four 

additional sweetpotato viruses (Sweetpotato badnavirus A, Sweetpotato golden vein 

associated virus, Sweetpotato leaf curl Japan virus, and Sweetpotato leaf curl South 

Carolina virus) between a threshold of 5-10% that we chose to include given their 

economic importance (Table 3B). Human viruses were excluded from our analysis since 

these were probably environmentally derived. 
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Since the version of the library prep protocol (GBSpoly) used in this study was 

designed to capture only DNA viruses or RNA viruses with DNA intermediates, the 

presence of the Watermelon mosaic virus (WMV) within the metagenome was unexpected. 

WMV is single stranded positive-sense RNA with no known DNA intermediate. Upon 

further analysis of the MegaBLAST results, although the tax id (146500) identifies it as 

WMV, the diagnostic sequence used for identification is listed as “Mutant Watermelon 

mosaic virus isolate Vera-crtB.” This WMV strain is engineered to express the Pantoea 

ananatis phytoene synthase (crtB) (Aragonés et al. 2019). The diagnostic sequence used 

for the identification also matched the crtB gene sequence in a manual MegaBLAST. The 

fact that WMV has strong, positive correlations with several strains of Pantoea ananatis 

further confirmed that WMV was a spurious result (Fig. S3). Thus, we excluded WMV 

from our virome analysis. 

Insect-transmitted sweetpotato viruses dominate leaf metagenome 

There were three major types of sweetpotato viruses found within the leaf 

metagenome and all are transmitted by insects. Badnaviruses are spread by both horizontal 

transmission with a mealybug or aphid species and through seed transmission and grafting 

(Kreuze et al. 2020). The virus that was found in the most accessions was the Sweetpotato 

badnavirus B (SPPV-B) (Table 3A). SPPV-B is recognized as a variant of the species 

Sweetpotato pakakuy virus (SPPV), alongside Sweetpotato badnavirus A (SPPV-A) and 

Sweetpotato badnavirus C (SPPV-C), which all were also found in the population. The pea 

aphid, Acyrthosiphon pisum, a Badnavirus host, was detected within the metagenome (Ng 

and Zhou 2015). Badnaviruses are considered cryptic viruses since they can be detected by 
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high throughput sequencing in otherwise healthy-looking crops (Roossinck 2015). The 

second most frequently seen virus was the leafhopper-transmitted Sweetpotato 

symptomless virus 1 (SPSMV-1) (Table 3A; Cao et al. 2017). While a leafhopper species 

was not detected within the metagenome, the brown plant hopper, Nilaparvata lugens, was 

detected. Begomoviruses are spread from plant to plant by vegetative propagation, seed 

transmission, and by the insect vector Bemisia tabaci (Kim et al. 2015). Sweetpotato leaf 

curl virus (SPLCV) is a well-defined and recognized Begomovirus that can cause up to a 

30% decrease in yield (Clark and Hoy, 2006). Since SPLCV can be found worldwide, 

SPLCV is often given an isolate name for where the symptoms were observed, and the 

viral DNA was isolated and sequenced. For example, Sweetpotato leaf curl Canary virus 

(SPLCCaV) was detected in the Canary Island off the coast of Spain, Sweetpotato leaf curl 

Japan virus (SPLCJV) was first isolated in Japan, and Sweetpotato leaf curl South Carolina 

virus (SPLCSCV) was discovered from isolates in South Carolina, USA (Zhang and Ling 

2011), which also happens to be the state where this population of Sweetpotato accessions 

were maintained. Another type of Begomovirus, Sweetpotato golden vein associated virus 

(SPGVaV) was also detected but is less characterized in literature (Kil et al. 2014). 

Bacteriophages are present in about half of the sweetpotato leaf viromes 

As expected, a large portion of the virome (~46%) was composed of tailed 

bacteriophages. Tailed bacteriophages are related through the Order Caudovirales but 

differ in tail structure as defined by their Family (Maniloff and Ackermann 1998). The 

presence of such tailed bacteriophages in the sweetpotato leaf virome were further 

confirmed by the presence of their bacteria hosts, such as Pseudomonas (present in 99.9% 
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of accessions) and Bacillus (present in 44% of accessions), within the full metagenome 

results (Maniloff and Ackermann 1998). Two types of host-specific tailed bacteriophages 

were specifically identified in the top 10% of the results- three Acinetobacter strains and 

one Escherichia strain.  

Significant virus-microbe correlations 

To discover biological interactions between the ten sweetpotato viruses, various 

kinds of bacteriophages and other microbes in the leaf metagenome, we calculated 

CCLasso correlations based on relative abundance data. The results were filtered for 

significance (p < 0.05) and magnitude of the correlation coefficient (|r|>0.1) (Fig. 4A, B). 

As expected, the variants of sweetpotato leaf curl viruses were positively correlated with 

one another. Interestingly, there was a negative correlation between SPLCV and SPPV. 

None of the plant viruses had significant correlations with any of their known insect vectors 

above the threshold. The viruses primarily had positive correlations with pathogenic fungi, 

such as Alternaria alternata and Fusarium oxysporum. The negative correlations more so 

appear between bacteria that are known biocontrols of the pathogenic fungi, such as 

Acinetobacter and Pseudomonas species. These results suggest a synergistic relationship 

between viral and fungal infections, of which beneficial bacteria could be used to combat 

both. Additionally, these results suggest that sweetpotato viruses do not always have the 

same type of relationship with metagenome community members, a distinction made 

apparent when grouping virus-microbe interactions by viral Genus. 
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Significant phage-microbe correlations 

We also calculated CCLasso correlations for the selected bacteriophages with the 

results filtered for significance (p < 0.05) and magnitude of correlations coefficient (|r|>0.1) 

(Fig. 5, S4). As expected, bacteriophages had both positive and negative correlation 

coefficients with their known bacteria hosts (i.e., Acinetobacter, Bacillus, and 

Pseudomonas). The positive and negative correlations might be indicative of types of 

interactions, including but not limited to resistance mechanisms and how long a virus stays 

in the latent vs. lytic phase. Additionally, the correlation seen between the bacteriophage 

and its host is modulated by the host’s relationship with other community members. For 

example, the most dominant Pseudomonas strains found in the metagenome have more 

negative than positive correlations with other non-Pseudomonas strains (Fig. S5). 

Metagenome-assisted GWAS improves statistical power of detection  

GWAS was performed using viral abundance as the phenotype, while members of 

the metagenome that are correlated with the virus of interest were used as covariates. All 

the sweetpotato viruses except for SPBV-C had significant correlations (|r|>0.1, p-value 

<= 0.05) with other microbes (Fig. 4A, B). The number and strength of the correlations 

corresponded to how much the statistical power of detection for associated SNPs changed 

during the metagenomic-enhanced GWAS. There do appear to be virus-specific cases 

where using covariates overcorrected the dosage model and lead to a decrease in associated 

SNPs as seen in the QQ-plots (Fig. S7). When comparing the GWAS results with and 

without metagenomic covariates, although the noise in the covariate results was reduced 

and allowed for the detection of SNPs not previously identified, the use of covariates did 
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not significantly change the overall result in most viruses. In addition, through the 

comparison, we were able to see SNPs that persisted, indicating they had a true significance 

to the associated phenotype.  

Bacteriophages have no direct interaction with Sweetpotato 

Although the GWAS results for all the tailed bacteriophages had reduced noise 

when using the metagenome as a covariate, there were still too many significant SNPs 

above the Bonferroni threshold to declare any significant associations. The QQ-plots 

further confirmed the SNPs as spurious hits as the lines deviated very early, indicating high 

false positive rates. Consequently, we elected not to do candidate gene analysis on the 

GWAS results from the tailed bacteriophages since they do not seem to interact directly 

with the host plant. 

Sweetpotato express strain-specific multi-chromosomal SNPs in response to viral 

infection 

The results of the GWAS revealed multiple genes and various chromosomes 

underlying control of viral infection (Fig. 6). The exception is SPSMV-1, which has a 

significant association to a single hotspot on chromosome 14 that harbors a cluster of 

disease resistance (R) genes. Despite being variants of sweetpotato Badnavirus, SPBV-A, 

SPBV-B, SPBV-C and SPPV have no overlap in significantly associated SNPs. The same 

goes for all four types of SPLCV. These results indicate that sweetpotato’s defense 

response is strain specific.  
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Hypothetical and uncharacterized proteins are significantly associated with sweetpotato 

viruses 

All the sweetpotato viruses, except for SPPV, had significantly associated SNPs in 

a gene or near a gene described as a hypothetical protein or a protein of unknown function. 

After performing a MegaBLAST using the nt database, we were able to find orthologs in 

related species for most of the uncharacterized genes. However, since there are still several 

yet to be characterized gene products found in at least two dosage models, these gene 

products still may have a role in defense response. For example, a hypothetical gene on 

Chromosome 7 (position 350325) in I. trifida is yet to be characterized but has a strong 

association with SPBV-A that was discovered with four gene dosage models. 

Significantly associated SNPs for sweetpotato viruses are in or linked to Resistance (R) 

genes, cellular transport, and chromatin remodeling 

While most of the significant SNPs for all the sweetpotato viruses rarely overlap, 

the candidate genes have similar motifs, fall within similar gene functions and defense 

response pathways (Fig. 6). Leucine motifs, such as leucine-rich-repeats (LRR or CC-

NBS-LRR), basic leucine zippers (bZIP), and LRR protein kinases, were the most observed 

motifs and are characteristic of defense response genes (Jones and Dangl, 2006). The 

second most common type of motif was a peptide repeat, such as tetratricopeptide repeat 

(TPR) and pentatricopeptide repeat (PPR) proteins. These peptide repeats are known to 

mediate protein-protein interactions across numerous cellular functions, including 

responding to plant hormone signaling (Schapire, Valpuesta, and Botella 2006). However, 

given the wide vast array of functions, it’s hard to pinpoint what the proteins with these 
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motifs are specifically associated with in terms of disease response. A third common type 

of motif was NB-ARC domain-containing, characteristic of R-coded disease resistance 

proteins (van Ooijen et al. 2008). Besides binding motif proteins, there were several 

candidate genes found that are involved in intracellular transport, from nuclear entry 

(nucleoporins) to vesicle movement (class XI myosins), and chromatin remodeling (SNF2) 

(Ryan and Owen-Hughes 2011; Talts et al. 2016).  

DISCUSSION 

 

In this study, we presented a novel sequencing protocol (OmeSeq-qRRS) and a 

taxonomic profiler (Qmatey) to enhance future metagenomic research. With the combined 

use of these tools, we were able to not only detect strain level taxa within sweetpotato leaf 

viromes but also capture the prokaryotic and eukaryotic community members they interact 

with. The sweetpotato viruses we recovered have great interest to the agricultural 

community as they cause significant yield losses. The CCLasso correlations produced by 

Qmatey revealed that microbes, particularly pathogenic ones, within the leaf metagenome 

are modulating viral abundance. Through a GWAS using the metagenome as a covariate 

to control for the multipartite interactions within the community, we discovered the genetic 

factors in sweetpotato involved in viral disease response but also the genetic factors 

hijacked during viral infection. These candidate genes provide a basis for future work in 

marker-assisted selection in sweetpotato breeding programs. 

Bacteriophages experience indirect interactions through their host bacteria 

Tailed bacteriophages are primarily hosted by Entero- and related bacteria (i.e., 

Acinetobacter, Aeromonas, Pseudomonas, and Vibrio). After subsetting our 20% of 
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samples based on thresholds to minimize zero-inflation, the remaining members of the 

metagenome were all potential bacterial hosts. However, not all the interactions are 

positive, indicating that the interaction between the tailed bacteriophage and the bacterial 

host is also mediated by multi-way microbe-microbe interactions within the metagenome. 

For example, although Pseudomonas rhizosphaerae is a potential host of Caudovirales sp. 

and promotes plant growth through solubilizing phosphates, the presumed biocontrol 

abilities of P. rhizosphaerae against Botrytis cinerea modulates the microbe-phage 

relationship (Fig. S6).  

Genus of sweetpotato plant viruses determines their relationship to pathogenic fungi 

The CCLasso correlation results indicate a synergistic relationship between 

sweetpotato viruses and fungi pathogens. As the taxa in the metagenome was increasingly 

subsetted from 5% to 20% based on the number of samples where the taxa were found 

(reduces effect of zero-inflation), variants of SPLCV and SPGVaV were consistently 

positively correlated with Fusarium. Fusarium strains colonize roots and cause wilt 

diseases of stems and leaves by disrupting xylem function (Michielse and Rep 2009). 

Causal species of Fusarium wilt in sweetpotatoes, such as Fusarium oxysporum, were 

detected in the metagenome (Scruggs and Quesada-Ocampo 2016; Mphela et al. 2022). 

Variants of SPLCV were also consistently positively correlated with Pseudomonas and 

Sphingomonas. Pseudomonas is a common bacterial endophyte of sweetpotato plants 

(Khan and Doty 2009). With respect to viruses, some Pseudomonas species have been 

found to be effective biocontrol agents and induce systemic resistance in response to viral 

infection (Al-Ani and Tawfik 2011; Khalimi and Suprapta 2011). In contrast to 
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Begomoviruses, the Badnaviruses and Mastrevirus were more often negatively correlated 

with Pseudomonas species, especially P. oryzihabitans, and positively correlated with non-

Fusarium pathogenic fungi. Diaporthe batatas is the causal agent of dry root in 

sweetpotatoes, Alternaria species, such as A. alternata, cause necrotizing leaf spots and 

stem blight, and Botrytis cinerea causes grey rot/mold in sweetpotato storage facilities (van 

Bruggen 1984; Arinze and Smith 1982; Qian et al. 2016; Fujiwara et al. 2021). While 

sweetpotatoes are already susceptible to these and other pathogenic fungi, we expected co-

infections with the viruses to result in more severe fungal disease symptoms. This virus-

fungi co-infection trend has been observed in Asparagus officinali and Nicotiana tabacum 

(Evans and Stephens 1989; Tang et al. 2019). 

Since the library protocol used in this study was optimized for DNA only, the 

sweetpotato viruses detected in our results are DNA viruses, but they differ by genus in 

DNA structure and genome segmentation. Begomoviruses and Mastreviruses (family 

Caulimoviridae) both have single stranded closed circular DNA structures. The genomes 

of Begomoviruses (family Geminiviridae) are usually segmented while the genomes of 

Mastreviruses are not. In contrast, Badnaviruses have circular double stranded DNA 

structure and their genomes are non-segmented. Geminiviridae and Caulimoviridae plant 

viruses have been found to incorporate into their host genomes as endogenous viral 

elements (EVEs). Research into EVEs’ effect on host gene expression in plants is recent 

but has been explored in vegetables such as brinjal eggplant and tomato. Caulimovirid 

EVEs, for example from a Badnavirus, have been found to be inserted within and disrupt 

the function of R1, an NBS-LRR gene involved in resistance against the causal agent of 
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potato late blight, Phytophtora infestans (Serfraz et al. 2021). Given that our results reveal 

sweetpotatoes also have NBS-LRR genes used in defense response, it would be intuitive 

to reason that these genes are also at risk from disruption given the susceptibility of 

sweetpotatoes to Badnavirus infection.  

The relationship between sweetpotato viruses and pathogens also involves the 

viruses’ insect host. Insect vectors can infect hosts that live or feed on with several types 

of microorganisms. Studies on two Begomovirus hosts found in the sweetpotato-associated 

metagenome, Aphis gossypii and Myzus persicae, found that their bacterial communities 

are enriched with endosymbiont Buchnera aphidicola but do contain Pseudomonas and 

Sphingomonas (Gallo-Franco, Duque-Gamboa, and Toro-Perea 2019). Therefore, the 

positive correlation between SPLCVs and SPGVaV and Pseudomonas and Sphingomonas 

species is part of a multipartite interaction involving the aphid vectors, plant hosts, and the 

viruses and bacteria they both host (Fig. 4A, B). Additionally, the positive correlation 

between Begomoviruses and Fusarium is a multipartite interaction as aphid infestation has 

been shown to correlate with Fusarium disease severity in wheat (Drakulic et al. 2016). In 

contrast to Begomoviruses, SPBV-C and SPPV had a negative correlation with 

Pseudomonas, which has been shown to be a biocontrol against white flies, the insect 

vector of Badnaviruses (Qessaoui et al. 2020). Although leafhopper microbiomes have 

been characterized, no viruses had any association with any known leafhopper 

endosymbiont. The sweetpotato metagenome results did reveal a parasitic fungus (aka 

zombie fungus), Ophiocordyceps species, that parasitizes insects and is also found in 

several leafhopper species (Nishino et al. 2016). The role of Ophiocordyceps species as an 
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entomopathogen has been documented in multiple species of Ophiocordyceps and 

leafhoppers. 

Sweetpotato viruses are primarily recognized through R-gene encoded receptors 

Plants have two primary immune responses: an immune response triggered by 

pathogen elicitors and an immune response triggered by R-gene encoded receptors (Jones 

and Dangl 2006). Both immune responses often activate a hypersensitive response that 

leads to accumulation of reactive oxygen species. Viral coat proteins have been found to 

be effective elicitors as well as avirulence (Avr) gene products recognized by R proteins. 

The results of our metagenome-assisted GWAS revealed that the primary class of R 

proteins involved in the recognition of sweetpotato viruses have LRR and NB-ARC 

domains (van Ooijen et al. 2008). Regardless of the model used, the metagenome-assisted 

GWAS using SPSMV-1 indicated a strong association on Chromosome 14 with an R gene 

cluster (Fig. 6). At this locus, there are several copies of R genes within the NB-ARC and 

CC-NBS-LRR class and bZIP transcription factors. Our results also suggest the activation 

of reactive oxygen species accumulation as a defense response to viruses through the 

identification of candidate genes that function in oxidative stress or as oxidases. Ascorbate 

oxidase is a copper-containing enzyme found exclusively in plants and fungi that has been 

suggested to participate in redox reactions to aid in survival under stress conditions (De 

Tullio, Guether, and Balestrini 2013). Before sweetpotato viruses are recognized by the 

immune system, the plant may initiate an ET/JA-mediated defense response after being 

wounded by the insect hosts. This response to herbivory might be the first line of defense 

to viral infection. Wound-responsive proteins, such as pectin methylesterase, were found 
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to be significantly associated with SPBV-A and SPLCV-C (Savatin et al. 2014). Plant 

pectin methylesterases play a critical role in multiple plant–microbe interactions and stress 

responses through cell wall modulation (Coculo and Lionetti 2022). Both virus’s insect 

hosts are known to cause physical damage during their feeding (Guerrieri and Digilio 2008; 

Padilha et al. 2021).  

Sweetpotato viruses hi-jack cell machinery for replication and transport 

Plant viruses rely on a host for replication. Caulimoviridae viruses, such as 

sweetpotato Badnaviruses, replicate first in the nucleus from an RNA template derived 

from virion DNA and then in the cytoplasm through reverse transcription (Harper et al. 

2002). Our metagenome-assisted GWAS results revealed candidate genes that function in 

nuclear transport. Nucleoporin is an essential component of nuclear pore complexes 

(NPCs) and nuclear transport factor 2 (NTF2) participates in the nucleo-cytoplasm 

transport of proteins (He et al. 2010; Khan et al. 2020). Geminiviruses have been reported 

to integrate into host genomes and manipulate the cell cycle to control its own replication 

(Bejarano et al. 1996; Bhattacharjee and Hallan 2022). Candidate genes that function in 

chromatin remodeling (SNF2) were found and possibly contribute to the mechanism of 

how sweetpotato viruses initiate genome insertion or is part of the defense mechanism to 

prevent it (Ryan and Owen-Hughes 2011).  

Beside replication, plant viruses rely on the host for intracellular transport. The 

Endosomal Sorting Complex Required for Transport (ESCRT) pathway has been 

implicated in viral budding and functions within regulated cell death. The essential partners 

for ESCRT are called vacuolar sorting proteins (Vsps) (Yang et al. 2022). The specific Vsp 
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found through the metagenome-assisted GWAS, Vps51, is one of the subunits of the Golgi-

associated retrograde protein (GARP) complex. Mutation analysis of homologs of Vps51 

in Arabidopsis revealed a role of GARP in leaf shape (Pahari et al. 2019). Other transport-

related candidate genes found included SNARE associated Golgi proteins, Endoplasmic 

reticulum vesicle transporter proteins and myosin-like protein XI-F (Avisar et al. 2009). 

Besides vesicles, viruses rely on microtubules for intracellular transport so distorting the 

cytoskeleton can limit a viral infection (Naghavi and Walsh 2019).  

Sweetpotato hypothetical proteins are targets for further experimental study on response 

to viral infection 

When annotating reference genomes, the gene sequences that have a predicted an 

open reading frame but have a yet to be characterized gene product are labeled as 

hypothetical proteins. If the uncharacterized gene sequence is found in several 

phylogenetic lineages, the gene is referred to as a conserved hypothetical protein. In the 

early 2000s, there was a call to action for bioinformaticians to help identify conserved 

hypothetical proteins so they can be targets for experimental research (Galperin and Kooin 

2004). Recent advancements in next generation sequencing, mass spectrometry, and gene 

editing tools have not only allowed for the identification of new conserved hypothetical 

proteins but have proposed a function for them (Ijaq et al. 2015). With respect to 

sweetpotato research, dedicating time to perform functional analysis on conserved 

hypothetical proteins, such as the ones identified in this study, may lead to advancements 

in breeding for virus resistance.  
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APPENDIX: FIGURES 

 
Figure 4A: CCLasso correlations between selected sweetpotato leaf viruses (x-axis) and 

the metagenome, filtered for |r| > 0.1, p-value < 0.05, and at a missingness of 5%. Size of 

data point is inversely proportional to associated p-value. 
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Figure 4B: CCLasso correlations between selected sweetpotato leaf viruses (y-axis) and 

the metagenome, filtered for |r| > 0.1, p-value < 0.05, and at a missingness of 10 and 20%. 

Size of data point is inversely proportional to associated p-value. 
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Figure 5: CCLasso correlations between selected bacteriophage Families (y-axis) and 

Entero- and related bacteria hosts, filtered for |r| > 0.1, p-value < 0.05, and at a missingness 

of 5, 10, and 20%. Size of data point is inversely proportional to associated p-value. 
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Figure 6: Annotated metagenome-assisted GWAS (with covariates) Manhatten plots of 

selected sweetpotato viruses. Dashed horizonal lines indicate the Bonferroni significance 

threshold (red) and the false discovery rate threshold (black). Dosage model is listed on the 

right y-axis.  
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APPENDIX: TABLES 

Table 3A: Percent occurance (>10%) and taxonomic information of selected viruses 

within the leaf metagenome of the diversity sweetpotato panel. 
Percent 

Occurance 

in DIV 

Population 

Strain Species Genus Family 

88.27 Sweetpotato 

badnavirus B 

Sweetpotato  

badnavirus B 

Badnavirus Caulimoviridae 

70.14 Siphoviridae sp. Siphoviridae sp. NA Siphoviridae 

59.45 Sweetpotato 

symptomless 

virus 1 

Sweetpotato 

symptomless  

virus 1 

Mastrevirus Geminiviridae 

53.59 Sweetpotato 

leaf curl virus 

Sweetpotato  

leaf curl virus 

Begomovirus Geminiviridae 

53.59 Myoviridae sp. Myoviridae sp. NA Myoviridae 

35.72 Sweetpotato 

pakakuy virus 

Sweetpotato  

pakakuy virus 

Badnavirus Caulimoviridae 

23.21 Caudovirales sp. Caudovirales sp. NA NA 

21.25 Podoviridae sp. Podoviridae sp. NA Podoviridae 

20.34 Acinetobacter 

phage Ab1656 2 

Acinetobacter  

phage Ab1656 2 

NA NA 

16.56 Acinetobacter 

phage AbTJ 

Acinetobacter 

phage AbTJ 

NA Myoviridae 

15.38 Sweetpotato  

leaf curl  

Canary virus 

Sweetpotato  

leaf curl 

 Canary virus 

Begomovirus Geminiviridae 

13.56 Escherichia  

phage P1 

Punavirus P1 Punavirus NA 

11.99 Human 

gammaherpes-

virus 4 

Human 

gammaherpesvirus 4 

Lymphocrypto

-virus 

Herpesviridae 

10.82 Sweetpotato 

badnavirus C 

Sweetpotato  

badnavirus C 

Badnavirus Caulimoviridae 

10.30 Acinetobacter 

phage 

YMC11/11/ 

R3177 

Vieuvirus R3177 Vieuvirus NA 
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 Table 3B: Percent occurance (5-10%) and taxonomic information of selected viruses 

within the leaf metagenome of the diversity sweetpotato panel. 
Percent 

Occurance 

in DIV 

Population 

Strain Species Genus Family 

9.00 Sweetpotato 

badnavirus A 

Sweetpotato  

badnavirus A 

Badnavirus Caulimoviridae 

8.87 Sweetpotato  

leaf curl  

South Carolina 

virus 

Sweetpotato  

leaf curl  

South Carolina  

virus 

Begomovirus Geminiviridae 

8.47 Sweetpotato 

golden vein 

associated virus 

Sweetpotato  

golden vein 

associated virus 

Begomovirus Geminiviridae 

8.34 Watermelon 

mosaic virus 

Watermelon  

mosaic virus 

Potyvirus Potyviridae 

7.04 Human immuno-

deficiency virus 1 

Human immuno-

deficiency virus 1 

Lentivirus Retroviridae 

6.52 Sweetpotato leaf 

curl Japan virus 

Sweetpotato leaf 

curl Japan virus 

Begomovirus Geminiviridae 
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APPENDIX: SUPPLEMENTAL FIGURES 

 
 

Figure S3: CCLasso correlations between selected Watermelon mosaic virus (y-axis) and 

the metagenome, filtered for |r| > 0.1, p-value < 0.05, and at a missingness of 5%. Size of 

data point is inversely proportional to associated p-value.  
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Figure S4: CCLasso correlations between selected bacteriophages (y-axis) and the 

metagenome, filtered for |r| > 0.3, p-value < 0.05, and at a missingness of 10%. Size of 

data point is inversely proportion to associated p-value. 
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Figure S5: Bar plots of the percent of negative (red) and positive (blue) interactions 

between Pseudomonas and non-Pseudomonas microbes within the sweetpotato leaf 

metagenome. The correlations were filtered for |r| > 0.1, p-value < 0.05, and at a 

missingness of 5, 10, and 20%. Correlations were filtered to remove Pseudomonas-

Pseudomonas interactions.  
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Figure S6: CCLasso correlations between selected Pseudomonas rhizosphaerae (y-axis) 

and the metagenome, filtered for |r| > 0.1, p-value < 0.05, and at a missingness of 20%. 

Size of data point is inversely proportional to associated p-value. 
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Figure S7: QQ plots of GWAS results for Sweetpotato leaf curl Japan virus with (B) and 

without (A) using the metagenome as a covariate. 

 

 

 



92 

 

CHAPTER III 

 

CATALOG OF KERNEL-ASSOCIATED METAGENOMES AND 

MICROBE-MICROBE INTERACTIONS IN NON-GMO AND BT 

MAIZE HYBRIDS EVALUATED FOR FUSARIUM EAR ROT. 
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ABSTRACT 

 

Maize hybrids have been genetically modified (GMO) to express proteins from 

Bacillus thuringiensis (Bt) that are toxic to certain insect pests. Consequently, lower insect 

damage in Bt-maize can lower the severity of Fusarium ear rot (FER). This study aims to 

evaluate FER resistance, the role of the kernel-associated metagenomes, and the impact of 

FER on yield. Analyses of data from three GMO (Dekalb) and three nonGMO (Spectrum) 

hybrids were performed independently since the transgene is not in the same different 

genetic background as the nonGMOs. A significant difference was observed across 

environments, hybrids, and   treatments (inoculated and non-inoculated) for FER and the 

alpha and beta diversity indices of the kernel metagenomes. As expected, this confirms that 

FER severity and metagenomes were controlled by both environmental and genetic 

components. While there was no significant difference for yield between treatments, yield 

was negatively correlated with FER. Results confirm that Bt-toxins prevent infection under 

natural infection conditions. This is evident in the relative abundance of the major pathogen 

causing FER, Fusarium verticillioides (Fv), with 1.7 times and 6 times more Fv abundance 

in inoculated treatments for nonGMO and GMOs. Trends between nonGMO and Bt 

hybrids suggests that Bt toxin plays a significant role in metagenome composition and 

abundance. Microbes that were negatively correlated with Fv were identified as potential 

biocontrols (specific strains of Pantoea, Talaromyces, Acinetobacter, and Klebsiella), 

including antagonistic Fusarium strains (F. graminearum, F. mangifera, F. subglutinans, 

F. vanetteni, F. venenatum, and F. coffeatum) that probably suppress Fv through 

competition. The documented interactions between Aspergillus and Fusarium strains in 
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maize was confirmed but results suggest indirection interaction with Fv through 

multipartite interactions involving synergy between Aspergillus and non-pathogenic 

Fusarium strains. Identifying host genetic factors and host-pathogen-microbe interactions 

are crucial for a sustainable strategy in breeding that is robust across environments. 
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INTRODUCTION 

 

Zea mays (Maize) is a crop of worldwide importance and is grown on almost every 

continent. It is grown across the largest acreage in the United States and has a wide range 

of uses including livestock feed, food products and industrial products, such as, starch, 

sweeteners, corn oil, alcohol, and fuel ethanol (McConnel 2021). Similar to other crops, 

maize is susceptible to several yield- and quality-impacting fungal diseases caused by 

pathogens such as Fusarium and Aspergillus. Fusarium is one of the most economically 

important maize fungal pathogens due to its impact on yield and toxigenic capacity. Fifteen 

Fusarium spp. have been found to produce a group of mycotoxins called fumonisins 

(Rheeder, Marasas and Vismer 2002). 

While F. verticillioides is the major causal pathogen of Fusarium ear rot (FER) in 

maize, other Fusarium species, including F. proliferatum, F. subglutinans, F. moniliforme, 

and F. graminearum, have sometimes been suggested to produce similar symptoms and 

accumulate fumonisins (Cotten and Munkvold 1998; Mesterházy, Lemmens and Reid 

2011). Temperature, moisture, and drought stress affect the range and severity of Fusarium 

spp. that cause FER infection (Miller 2001). Hot and dry weather conditions typical of the 

southern United States and lowland tropics are optimal for ear rot caused by F. 

verticillioides and F. temperatum, while the F. graminearum prefers cool and wet 

conditions (Pfordt et al. 2020). Besides fumonisin, these Fusarium species are also 

responsible for producing a wide variety of mycotoxins such as deoxynivalenol and 

zearalenon (Pfordt et al. 2020). These favorable climates across the globe are also home to 

the primary plant-wounding insect vectors Ostrinia nubilalis (European corn borer) and 
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Helicoverpa zea (corn earworm) (Henderson, Bennett, and McQueen 1966; Clements et al. 

2003; Bibb et al. 2018). Host resistance for Fusarium infections is controlled by several 

host genes that each contribute small effects to total phenotypic variation (Zila et al. 2014; 

Lanubile et al. 2017). The complex mode of inheritance underlying resistance and the 

various pathogenic isolates that likely interact in unpredictable ways make breeding and 

crop improvement challenging (Robertson-Hoyt et al. 2006). In addition to mycotoxin 

contamination, which reduces the market value of the crop, the disease can typically lead 

to about 10% yield loss and as much as 30% under severe conditions (Logrieco et al. 2002; 

Czembor et al. 2019). Mycotoxins can persist through seeds harvested from infected crops 

(Bhat and Reddy 2017). When compared to other plant tissue-associated metagenomes, the 

kernel metagenome is one of the least studied, but research has shown that seed microbiota 

is related to overall plant fitness (Nelson 2018; Simonin et al. 2022). 

Fusarium infection can occur in multiple ways, including: (1) fungal spores landing 

on silks, germinating, growing, and infecting kernels and cobs; (2) wounding caused by 

animal and hail damage; and (3) systemic infection after root wounding, which allows the 

infection to travel through the stalk and to the ears (Mesterházy, Lemmens and Reid 2011). 

Besides seed borne pathogens, the initial infection is mostly derived from Fusarium that 

has overwintered in soil and plant materials (Freije 2016). Previous studies have shown 

that FER infections are associated with damage due to insects feeding as little as 10 to 15 

days after maize plants silk (Pfordt et al. 2020). As the plant reallocates resources for kernel 

development, their defense responses may possibly weaken and leave certain tissues, such 

as the stalk, susceptible to fungal infections (Pfordt et al. 2020).  
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While breeding resistance against these complex fungal diseases continues, 

genetically modified (GMO) maize hybrids expressing Bt gene products, such as the δ-

endotoxins (Cry proteins), which are toxic to some insect pests, have been considered as 

an alternative to control FER and thus making it popular among US maize producers (Ostry 

et al. 2010; Dinon et al. 2011; Fernandez-Cornejo and Wechsler 2013). Disease studies on 

Bt-toxin maize hybrids have shown lower incidence of FER, indicating that insect damage 

is a significant driver of FER (Munkvold, Hellmich, and Showers 1997). By preventing 

insect damage, infection through wounding sites can be limited. However, the extent of 

FER resistance in Bt-toxin maize hybrids or how their resistance compares to nonGMO 

maize hybrids is not fully known. Findings on fumonisin contamination between Bt and 

nonGMO maize are mixed, suggesting Bt-toxin may only be effective against FER under 

conditions of low Fusarium infection potential (Abbas et al. 2013). Since the pathogens 

can also infect maize ears through the silk channel and other sources of wounding, avoiding 

wounding-induced infection by specific insects as a strategy to control the disease can be 

limited to various extents. For example, selection for genotypes with drooping ears at 

maturity have been suggested to reduce disease severity (Alakonya, Monda, and Ajanga 

2008). Nevertheless, breeding for innate host resistance is a desirable and robust strategy 

for controlling the disease (Afolabi et al. 2007). 

Bacteriocins, such as Cry proteins, have been found to control microbial population 

dynamics through antimicrobial activity (Subramanian and Smith 2015). Bt-produced 

bacteriocins inhibit the growth of gram-negative bacteria and fungi such as Aspergillus 

niger (Salazar-Marroquín et al. 2016). However, in Bt-maize hybrids, bacteriocins are 
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released into the environment through root metabolites or through above-ground insect 

damage. Recent studies have found that phyllosphere and rhizosphere composition did not 

significantly differ between Bt and non-Bt cultivars when grown under natural (healthy) 

conditions (Mashiane et al. 2017; Chen et al. 2022). There has not been a study, however, 

which investigates the differences in the kernel metagenomes of Bt and non-Bt cultivars 

under different disease treatments. 

Field trials were conducted across various agro-ecological regions of Tennessee to 

evaluate resistance to FER, the impact of FER disease on yield, and characterize the kernel 

metagenomes. The maize hybrids tested consisted of three GMOs (expressing Cry1A.105 

and Cry2Ab2 Bt proteins and herbicide roundup ready) and three nonGMOs. To measure 

the impact of Fusarium disease on yield and yield components, a toothpick inoculation (via 

wounding and silk channel) method was used to control infection of ears. Our results 

indicate that the environment had a consistent impact on yield and disease severity. By 

performing artificial wounding-induced infection, we were able to evaluate the innate host 

resistance of Bt-maize and nonGMO hybrids and discover FER severity is strongly 

correlated with yield losses. Through characterizing the kernel metagenomes of the Bt-

maize and nonGMO hybrids, we learned that the environment, again, had a major impact 

on species diversity and that there are different multipartite interactions involving 

Fusarium depending on the genetic background. 
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MATERIALS AND METHODS 

Experimental design 

Maize plants were grown in 2-row plots measuring 30 feet long by 5 feet wide 

(9.144 meters long by 1.524 meters wide) with 150 plants per plot. The trials were based 

on a completely randomized factorial design (CRD) with 3 replications and 2 factors: 

hybrid (6 different hybrids) and inoculation treatment (natural infection through non-

inoculation (NI) and artificial infection through ear inoculation (EI)). To prevent cross 

contamination between experimental plots, the plots were separated by 2-row buffer plots 

sown with a GMO hybrid (Dekalb 62-89). The same GMO hybrid was used in 2 border 

plots. Experiments were conducted across 5 environments in various agroecological zones 

of Tennessee: Milan (RECM; 35°55’27°N, 88°42’43°W; Grenada soil type), Knoxville 

(ETREC 2020: 35°53’45°N, 83°57’38°W and ETREC 2021: 35°53’51°N, 83°57’38°W; 

shady whitwell complex soil type), and Springfield (HREC; 36°28’01°N, 86°50’19°W; 

Dickson Silt Loam soil type) (USDA web soil survey) (Fig. 7). 

Field trials were conducted at all 3 locations in 2020 and 1 location for the 2 trials 

at ETREC in 2021. Trials were planted in the second week of April in West TN (RECM) 

and HREC, and at the second week of May for ETREC 2021a. The trials at ETREC were 

planted in the second week of June in 2020 and 2021b. ETREC and RECM were irrigated 

using a sprinkler system, while HREC was not irrigated. For ETREC trials in 2020, seeds 

were sowed in a field that was tilled. In the 2020 trials at RECM and HREC, and 2021 at 

ETREC, seeds were sowed in a no-till fields. The plants were all grown in fields that were 
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previously cultivated with soybean. Herbicides and Fertilizer application rates are shown 

in Tables S1 and S2.  

Environmental conditions 

According to the Tennessee State Climate Summary in 2020 (Tollefson and Joyner 

2020), the 3 locations experienced similar temperatures from May to July as temperatures 

increased from lower to above normal range as the growing season progressed. From 

August to October, RECM experienced below normal temperatures whereas HREC and 

ETREC experienced above normal temperatures. These temperature trends in 2020 and 

2021 were similar at ETREC. The year 2020 was a wetter year on record than 2021 for 

Tennessee (Tollefson and Joyner 2021) due to landfall of multiple tropical storms. 

Precipitation at ETREC in 2021 was lower than normal. More detailed weather information 

for average temperatures and total precipitation for each field experiment is shown in 

Figure S8 (obtained from NOAA Online Weather Data). 

Experiment factors 

Six hybrids (three GMO and three nonGMO) and 2 inoculation treatments (natural 

infection through non-inoculation (NI) and artificial infection through ear inoculation (EI)) 

were evaluated during the field trial. The GMO hybrids used were selected based on the 

2019 TN corn grain hybrid variety trials (Sykes et al. 2019). Dekalb 62-53 (DK62-53), 

Dekalb 63-57 (DK63-57), and Dekalb 64-35 (DK64-35), have been previously evaluated 

to have high, moderate, and low resistance to FER, respectively. The nonGMO hybrids 

used were Spectrum 6228 (SP6228), Spectrum 6416 (SP6416) and Spectrum 6775 

(SP6775) and have unknown FER disease rating.  
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Inoculum 

Inoculum was prepared from maize kernels that were collected from multiple 

locations across Tennessee and that visually had FER symptoms, including white to pinkish 

coloration and the typical starburst pattern (Lanubile et al. 2017). In 2020, the Fusarium 

isolates were taken from corn research plots at RECM and WTREC after being harvested 

in Fall of 2019. The kernels were surface disinfected (soaked in 10% bleach solution for 

60 seconds then rinsed in distilled water for 30 seconds), and then plated onto potato 

dextrose agar (PDA) (IBI Scientific) with 5 kernels per plate. Isolates were re-plated to 

grow as single pure isolates on PDA. Plugs were transferred from original PDA plates to 

malachite green agar (MGA; MP Biomedicals LLC) plates and incubated at 23°C to 

selectively grow Fusarium (Castellá, G et al. 1997). The MGA recipe included 15g of 

Peptone, 1g of Potassium Phosphate (KH2PO4), 0.5g of magnesium sulfate heptahydrate 

(MgSO4 •7H2O), 2.5mg of Malachite green oxalate, and 20g of Agar into 1 L of H2O. The 

solution was autoclaved and cooled to 65°C before adding 20 ml of streptomycin and 12 

ml of chloramphenicol. Plugs from MGA plates with observable growth were transferred 

to new MGA plates and then to PDA plates. The PDA plates were then maintained in an 

incubator (23°C) with transfers to fresh media, as needed. Eight isolates of differing visual 

morphologies were selected for the 2020 inoculum cocktail (Fig. 8C).  To make the 

inoculum cocktail, the selected isolates were washed off the PDA plates and mixed in equal 

amounts of spores. 

In the 2021 trials, Fusarium isolates were obtained from infected kernels from the 

2020 field trials at RECM, HREC, and ETREC. The kernels were placed on MGA plates 
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and incubated at 23°C (Fig. 8A). Once fungal growth was observed (1-2 weeks), several 

hyphal samples from a single plate were transferred to a second MGA plate and kept in an 

incubator at 23°C until colony formation (Fig. 8B). Once colony formation was observed 

(2-3 weeks), hyphal samples were transferred to PDA plates and kept in the incubator for 

2 to 4 weeks to achieve maximum fungal growth. Nine isolates of differing visual 

morphologies were selected for the 2021 inoculum cocktail (Fig. 8D). To make the 

inoculum cocktail, we again washed the selected isolates off the PDA plates and mixed in 

equal amounts of spores. 

Inoculation techniques 

A toothpick method was used to inoculate the maize ears. Before use, toothpicks 

were prepared by boiling 3 times for 30 minutes and straining the water each time to 

remove residue chemicals, sterilized in an autoclave on a wet cycle (121℃ for 20 minutes 

at 15-17 psi) and left to dry. Once the toothpicks were dry, they were bundled using rubber 

bands then autoclaved again. Toothpick bundles were directly placed in 1000 mL beakers 

containing PDA media that had been inoculated with 1 mL of the inoculum cocktail. The 

toothpick-containing beakers were incubated at 23℃ for 4 weeks prior to inoculation (Fig. 

9A). 

Inoculation 

All plants in the plot were inoculated in the ear (EI) inoculated plots, while the non-

inoculated plots (NI) received no inoculum. Inoculation occurred 10 days after silking. For 

EI plants, one toothpick was stabbed and left in the side of the cob, while a second toothpick 

was inserted into the silk channel (Fig. 9B).  
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Sample collection and phenotyping 

At full maturity and harvest time, ears from 10 plants were collected for disease 

ratings in each plot. Afterwards, plots were then harvested using a plot combine for yield 

data. All ears were subsequently photographed. FER disease ratings were conducted 

visually using a 1-7 scale where 1 = 0% (except inoculated kernel), 2 = 1-3%, 3 = 4-10%, 

4 = 11-25%, 5 = 26-50%, 6 = 51-75%, and 7= 76-100% of infected area (Pierce 2016; Fig. 

9C). The ears from the 10 plants in each plot were hand-harvested, air-dried, shelled, and 

the kernels were weighed to obtain 10-plant and 100-seed weights.  

Kernel wash and DNA extraction  

A kernel wash was performed on collected kernels to capture the kernel-associated 

metagenome.  Kernels were collected up to the 35 mL line in a 50mL falcon tube. To wash 

the kernels, 10 mL of 4°C double-autoclaved ddH2O was added to the sample falcon tube 

and shaken vigorously for ten minutes. Afterwards, the kernels and other debris were 

removed from the falcon tube and the supernatant was spun down using a centrifuge (4°C, 

3220 RCF for 5 minutes). After centrifugation, the supernatant was decanted and 20uL of 

20% glycerol was added to the pellet, transferred to a 2 mL centrifuge tube, and stored in 

a -80°C freezer until DNA extraction was performed.  

For DNA extractions, an optimized “uniform lysis” protocol was used. This 

protocol utilizes the extraction buffer from Pang et al. (2008) and contains lysozyme, 

proteinase K and RNase A. SDS (20% w/v) is used as the lysis buffer for incubation at 

65°C for 30 minutes. After incubation, samples are centrifuged and the supernatants are 

transferred to a new clean, labeled tube. Once the supernatant is transferred, PEG 
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8000/MgCl is used to precipitate DNA. DNA pellets are resuspended in a TE buffer 

(containing RNase A). The resuspension is cleaned by adding equal volume of 

chloroform:isoamyl alcohol and mixing for two minutes by inversion. After centrifuging, 

the upper aqueous phase is transferred to a clean tube, after which DNA is pelleted using 

5M NaCl. The protocol ends with the DNA being washed with 70% ethanol and then 

resuspending the sample in a 30µL TE buffer.  

NGS library preparation and sequencing  

The reduced representation sequencing library preparation (OmeSeq-qRRS) was 

performed as previously described (Rico et al. 2022) and sequenced on an Illumina 

NovaSeq 6000 S4 flow cell at the Genomic Sciences Laboratory, North Carolina State 

University. 

Quality filtering and demultiplexing 

The demultiplexing and quality filtering of the sequenced libraries were performed 

with ngsComposer (Kuster, Yencho, and Olukolu 2021).  The ngsComposer parameters 

for quality filtering included demultiplexing with a maximum of 1 mismatch, trimming of 

6 bases of the buffer sequence flanking the NsiI-HF and NlaIII restriction enzyme motifs, 

filtering based on intact restriction enzyme motifs, trimming of individual reads based on 

an end quality score threshold of 20 within a 10-base sliding window, minimum read length 

of 64 after trimming, adapter removal at a minimum of 12 bases match, and a minimum Q 

score of 20 for 80% of a sequencing read. 
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Taxonomic profiling 

The metagenomic profiling of the collected kernels was performed using a 

bioinformatic pipeline, Qmatey (Quantitative Metagenomic Alignment and Taxonomic 

Exact matching), which uses a novel implementation of an exact-matching algorithm for 

strain level identification and an exact-matching of consensus sequencing for species to 

phylum level identification. The NCBI nt database was used as the reference for alignment 

using the NCBI MegaBLAST and a Zea mays reference genome was provided to filter out 

non-metagenomic reads. The quantitative abundance profiles (normalized gene counts 

based on a relative sum scaling; RSS) produced by Qmatey were used for visualizations, 

diversity indexes, and for pairwise Spearman correlations. 

Statistical analysis and visualizations 

To determine significant differences in yield, yield components and disease 

ratings, an analysis of variance and group means comparison based on Duncan’s multiple 

range test were performed in R Version 4.1.1. The FER disease rating was analyzed 

across all 5 environments based on ears from 10 plants. The yield, 100-seed weight, and 

moisture content data on a plot-basis were analyzed across all 5 environments in non-

inoculation treatment and across 3 environments for both ear inoculated and non-

inoculated treatments. The 10-plant based yield component data was analyzed across all 5 

environments under ear inoculated and non-inoculated treatments. Pairwise Pearson and 

Spearman correlation coefficients were computed in R and among all traits. FER and 

yield data from GMO and nonGMO plants were analyzed independently since the Bt-

toxin gene was in a different genetic background from the nonGMO plants. The R 
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package “vegan” was used for alpha diversity analysis (Oksanen et al. 2022) and the R 

package “plotme” was used for visualizations (https://github.com/yogevherz/plotme). A 

principal coordinate analysis was performed for beta diversity using the Bray Curtis 

Dissimilarity index. 

RESULTS 

Environment is a significant driver of Fusarium ear rot severity 

As expected, FER ratings were observed to be significantly different between 

inoculated and non-inoculated treatments across environments. The greatest FER severity 

was observed in fields with late planting in the second week of June (ETREC in 2020 and 

2021b; Fig. 10A). Based on trials planted within the normal planting window, disease 

severity was significantly higher at ETREC compared to trials at HREC and RECM. 

RECM at West TN had a significantly lower FER severity (Fig. 10A). A plausible 

causation for the higher disease severity at ETREC in 2020 is that the field was tilled 

according to the previous experiment’s protocol, which unintentionally led to activation of 

dormant fungal spores.  

Inoculation treatment is an important factor driving Fusarium ear rot severity within 

GMOs more than in nonGMOs 

There was a significant difference in FER score based on the treatment within GMO 

and nonGMO hybrids, which were analyzed independently. Under non-inoculated 

conditions where we expect a low FER disease pressure, using the Duncan multiple range 

test, the hybrids were not significantly different within the GMO and nonGMO trials. 

Although not genetically similar to the GMOs, the nonGMO SP6416 had significantly 

https://github.com/yogevherz/plotme
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lower FER scores under both treatments, is similar to FER score of GMOs under non-

inoculated treatment, and lower FER score than all hybrids under inoculated conditions. 

Consequently, the innate host resistance in SP6416 matches the indirect protective 

properties (i.e., prevents infection mediated by insects) of the Bt-toxin in the GMO hybrids 

(Fig. 10B). Upon inoculation, the GMO DK63-57 and nonGMO SP6416 had the lowest 

mean and median FER severity among GMO and nonGMO inoculated plants, respectively. 

There was no significant difference in the FER scores between inoculated and non-

inoculated conditions of nonGMOs SP6228 and SP6775 (Fig. 10B). However, there was a 

significant difference in FER scores for all GMO hybrids between inoculated and non-

inoculated conditions (Fig. 10B).  

Yield on plot-basis is significantly different across environments but does not differ 

significantly within GMOs and nonGMOs 

We can only compare yield on plot-basis across all the 5 environments under non-

inoculated conditions, since only 3 environments received a full plot inoculation. There 

was a significant difference in yield on plot-basis across environments but no significant 

difference within GMO and nonGMO hybrids except for the GMOs at ETREC 2021b (Fig. 

11A). For yield on plot-basis evaluated across the 3 environments with both inoculated and 

non-inoculated treatments, ETREC 2020 had a significantly low mean yield and ETREC 

2021a had the highest (nonsignificant from ETREC 2021b) mean yield (Table 4 A, B and 

Fig. 11B). Based on the Duncan multiple range test, there is no significant difference in 

treatment within GMO and nonGMO hybrids (Fig. 11B). For the yield component on a 10-

plants and 100-seeds basis across the three environments with both inoculated and non-
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inoculated treatments, environment and samples were both significantly different (Table 

4A, B). GMO hybrids were not significantly different despite inoculation whereas the 

nonGMO SP6416 had the highest yield on a 10-plants basis under both inoculated and non-

inoculated conditions (Fig. 11C). For the yield component on a 100-seed basis, both the 

GMO and nonGMO hybrids significantly differed under inoculation conditions (Fig. 11D). 

The GMO DK64-35 had the highest mean values under inoculated and non-inoculated 

conditions. The nonGMO SP6416 also had the highest mean and median values under 

inoculated conditions and second highest under non-inoculated conditions.  

Fusarium ear rot has a significantly negative correlation with yield and yield 

components 

Correlation estimates among FER, yield, and yield components followed expected 

trends (Fig. 12). While yield was not significantly different among most of the maize 

hybrids in these trials, FER severity was revealed to impact yield negatively. This trend 

was consistent in analyses based on (i) only inoculated samples, (ii) only non-inoculated 

samples, and (iii) combination of both inoculated and non-inoculated samples for GMO 

and nonGMO hybrids. As expected, the highest negative correlation was observed under 

inoculated conditions (Fig. 12B, E). The yield component based on 10-plants from GMO 

hybrids had a stronger correlation (0.69-0.75) with yield on plot-basis than nonGMO 

hybrids (0.5-0.71). Yield components based on 100-seeds only had a moderate correlation 

(0.52 for nonGMO, 0.62 for GMO) with yield on plot-basis under inoculated conditions. 

Under non-inoculated conditions, there was a slight correlation between moisture and FER 

severity (0.34 for GMO, 0.42 for nonGMO) (Fig. 12A, D). 
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Environment drives alpha and beta diversity in kernel ear metagenomes 

To evaluate the influence of environment on kernel ear metagenomes, the species 

level metagenomic results were subsetted for species in at least 5% of samples. When the 

metagenomic results are parsed by environment and GMO status, alpha and beta diversity 

metrics differed significantly (Fig. 13). As seen in the alpha diversity indices (Fig. 13A-D) 

and the beta diversity index plotted as a PCoA (Fig. 13E) based on the Bray Curtis 

dissimilarity index, the distributions and confidence ellipse indicate that the environment 

is a more important factor for driving diversity than hybrid genetic backgrounds, i.e., 

environments have the least overlap. By having two years of data from one location 

(ETREC), observations revealed significant influence of year-to-year environmental 

conditions on kernel ear metagenome composition.  

To investigate the overlap in species diversity at ETREC, venn diagrams were 

plotted using the full metagenomic results and a subset of the metagenome based on taxa 

occurring in at least 5% of samples (Fig. 14). While looking at the 5% metagenome subset, 

75% of the species from ETREC 2020 were also found in both ETREC 2021 environments. 

Interestingly, ETREC 2020 had a 11% overlap with ETREC 2021b but a 1% overlap with 

ET21a, indicating these species may be correlated to planting date. The 13% of species 

unique to ETREC 2020 could be due to year-specific influences, including tillage. For 

ETREC 2021a, there was a higher overlap with ETREC 2021b (61%) than with ETREC 

2021b and ETREC 2020 (31%), indicating the same year of planting has a greater effect 

on metagenome similarity than the same environment across different years. Despite 

ETREC 2021b having nearly double the total number of species as the two other ETREC 
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environments, it shares its greatest overlap (24%) with ETREC 2021a. As expected, all 

three ETREC environments shared more metagenome similarity with each other than the 

other two locations, HREC 2020 and RECM 2020 (Fig. 14).  

GMO and nonGMO maize hybrids do not differ significantly in alpha and beta diversity 

With respect to overall metagenomic composition and relative abundance, overall 

trends tend to be similar between GMO and nonGMO hybrids (Fig. 15), nevertheless there 

are marked key differences for relative abundance within some taxonomic groups. Bacteria 

was the dominant domain, followed by Eukaryota. Pseudomonadota and Ascomycota were 

the most common Phyla of bacteria and fungi, respectively. Often, the only non- 

Ascomycota fungus found was Ustilago maydis (or corn smut), which was observed in all 

environments (Ferris and Walbot 2021). The common species with high relative abundance 

seen in both GMO and nonGMO species are well-documented known endophytes of Zea 

mays (Johnston-Monje and Raizada, 2011).  

The species-level metagenomic results produced from Qmatey were used to 

investigate differences in alpha and beta diversity of the kernel metagenomes of the GMO 

and nonGMO maize hybrids. Since the environment was a key driver for differences in 

kernel ear metagenome, each environment was analyzed separately (Fig. 16). In terms of 

observed species richness, GMOs and nonGMOs did not significantly differ under 

inoculated conditions. However, GMOs did tend to have a larger richness increase on 

average when inoculated compared to non-inoculation, the exception being RECM 2020. 

In terms of Shannon’s Equitability, which measures how similar the abundance of species 

is within a community, inoculation led to higher evenness in all the GMOs except at HREC 
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2020 and lower evenness in all the nonGMOs except at ETREC 2020. In terms of beta 

diversity using the Bray Curtis similarity, the PCoAs reveal no clear distinction between 

nonGMO and GMO samples with and without inoculation in any environment (Fig. S2). 

When the metagenome is parsed between GMO and nonGMO hybrids, F. 

verticillioides, Fusarium musae, and Brucella pseudogrignonensis are the most abundant 

species in terms of relative abundance, as well as percent of samples where it is found (Fig. 

15, 17). F. verticillioides was detected in 94% of the nonGMO samples and 93% of the 

GMO samples. In fact, the species found in the GMO and nonGMO metagenomes 

overlapped by 60% and 65%, respectively (Fig. 18). When the metagenome is subsetted to 

species appearing in at least 5% of samples, the overlap percentages increased to 72% and 

94%, respectively. When looking at species that are unique to either GMO or nonGMO 

samples, the species were only in one to five samples, indicating these species are not major 

contributors to the native metagenome composition. However, when the metagenome is 

subsetted to species appearing in at least 5% of samples, previous species that appeared in 

both GMO and nonGMO samples now appear unique (Fig. 15C, D). For example, 

Clavispora lusitaniae becomes unique to nonGMO samples and Diaporthe citri becomes 

unique to GMO samples. Changes in the most abundant species based on relative 

abundance differed between inoculated and non-inoculated treatment (Fig. 17).  

By observing differences between the GMO and nonGMO maize metagenomes, 

differential microbial recruitment was discovered to be influenced by host genetics and 

environmental conditions (Fig. 17). Given that the Cry proteins in Bt-maize have been 

found to have antimicrobial properties against gram-negative bacteria and Aspergillus 
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fungi (Salazar-Marroquín et al. 2016), we investigated the species abundance differences 

between GMO and nonGMO hybrids. Gram-negative Enterobacteriaceae bacteria and 

Aspergillus species were least abundant in GMO non-inoculated samples compared to 

GMO inoculated hybrids and nonGMO with both treatments.  

Fusarium ear rot severity correlates more with Fusarium diversity than abundance 

When the metagenome is subsetted to only Fusarium species that appear in at least 

5% of samples, it was observed that GMO and nonGMO hybrids differ in response to 

inoculation (Fig. 19). For nonGMO hybrids that did not receive inoculation, F. 

verticillioides, F. musae, F. fujikuroi, and F. graminearum had high relative abundance. 

These same species are still highly abundant (except for reduced F. graminearum) in the 

inoculated samples but also included F. coffeatum and F. mangiferae. For GMO hybrids 

that did not receive inoculation, only F. fujikuroi was highly abundant. In the inoculated 

samples, F. verticillioides and F. musae appeared more abundant. Also, the GMO hybrids 

have a higher Fusarium number of species found and evenness particularly in the non-

inoculated treatment. 

Observations of insects within kernel ear metagenomes 

Although the fields were treated with insecticide, a total of 70 Arthropoda (Insecta 

or Arachnida) species were found within the kernel ear metagenomes (Fig. 15). DNA from 

the corn earworm, the target insect of Bt-maize, was not detected within any of the 

metagenomes. Of the 70 species detected, only four were found in at least 5% of the sample 

population- Gryllus bimaculatus (7.8%), Rhagoletis pomonella (7.2%), Othophagus taurus 

(5.5%) and Nysson spinosus (5%). Crickets, such as Gryllus bimaculatus, are a major pest 
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of agricultural crops and were observed causing field damage during the trials (Masson et 

al. 2020).  R. pomonella is known as the apple maggot, O. taurus is the bull-headed dung 

beetle, and N. spinosus, is the large-spurred digger wasp.  

Correlations within the kernel ear metagenomes of GMO and nonGMO maize hybrids 

Spearman correlations were performed among the species found in at least 5% of 

the GMO and nonGMO hybrids. The correlations were then subsetted to focus on 

Fusarium species and their interactions with potential biocontrols (Acinetobacter, 

Talaromyces, Pantoea, and Klebsiella) as well as Aspergillus and all Fusarium that are 

pathogenic and non-pathogenic in maize (Fig. 20, 21). Some of the Fusarium species that 

were negatively correlated with F. verticillioides were also positively correlated with A. 

niger and A. sclerotioniger. In the GMO hybrids, F. verticillioides had negative 

correlations with F. vanettenii, F. coffeatum, F. venenatum, F. subglutinans, F. mangiferae, 

and F. graminearum (Fig. 20).  In the nonGMO hybrids, F. verticillioides had negative 

correlations with F. subglutinans (Fig. 21). The correlations also reveal multipartite 

interactions of pathogenic fungi (i.e., Aspergillus niger and a recent novel causal agent of 

maize ear rot in China, Talaromyces funiculosus (Liu et al. 2021)) encouraging growth of 

inhibitors of F. verticillioides.  

DISCUSSION 

There is limited information regarding FER resistance in maize hybrids and 

breeding for resistance has remained challenging due to various biotic and abiotic factors 

(Robertson-Hoyt et al. 2006). Bt-toxin maize hybrids suppress some insect pests and have 

been considered to potentially lower FER disease by preventing wounding-induced 
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infections that are specifically caused by insect damage (Ostry et al. 2010; Dinon et al. 

2011; Fernandez-Cornejo and Wechsler 2013). Similar to our observations, a previous 

study revealed significantly lower insect damage and FER in Bt-maize (de la Campa et al. 

2005). Results were mixed on Fumonisin contamination, suggesting Bt-toxin may only be 

effective against FER under conditions of low Fusarium infection potential (Abbas et al. 

2013). Evaluating the impact of Bt-toxin on yield and FER disease incidence and severity 

are not easily accessible due to the difficulty in obtaining known agronomically 

comparable hybrids with varying levels of pest and FER resistance (Peterson and Higley 

2001).  

Fusarium infections can be reduced by using good agricultural practices to reduce 

biotic and abiotic stress, such as, soil and crop residue management, growing resistant 

varieties, crop rotation, fertilization, insect management, irrigation, and planting time 

(Jacobsen 2014). Using Bt maize is an effective way to control the European corn borer 

(Ostrinia nubilalis (Hubner)), as it can reduce F. verticillioides infections and fumonisin 

accumulation (Gatch and Munkvold 2002; Folcher et al. 2010; Parsons and Munkvold 

2010; Abbas et al. 2013). Unfortunately, Bt maize can only be effective in controlling 

contamination that occurs because of insect damage. It does not mitigate all factors that 

lead to FER infection. Intense use of Bt maize over time has resulted in insect populations 

resistant to Bt genes. To prevent losing benefits of Bt-toxin due to pests evolving resistance, 

some laws now require planting of non-Bt maize in refuge alongside Bt maize to serve as 

resistance insurance. However, contamination of these refuges with low to moderate levels 
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of Bt-toxin have been reported through pollen-mediated gene flow resulting in kernels of 

non-Bt maize expressing Bt-toxin (Chilcutt and Tabashnik 2004).  

Since the inoculated samples had a significantly higher FER rating than the non-

inoculated samples, we can confirm that the toothpick inoculation was successful in 

inducing infection. Our experimental design allowed us to also test the influence of 

planting date on yield, disease severity, and kernel metagenome composition and our 

statistical analyses revealed that the environment played a significant role in driving the 

differences in all three variables. With reference to the yield and yield components, ETREC 

2020 underperformed compared to all other locations. We believe this might be due to the 

late planting at ETREC 2020, consequently leading to lower levels of photosynthate 

(limited exposure to light due to reduced day length). We confirmed this conclusion in the 

late planting at ETREC 2021b, which also had lower yield than early planting at ETREC 

and RECM.  

Our statistical analysis revealed that when we look at the hybrids with reference to 

presence or absence of Bt expression, there was no statistical difference in yield under both 

inoculated and non-inoculated conditions. However, within the context of overall 

performance, nonGMO SP6416 consistently performed well for both yield and yield 

components, while maintaining the lowest FER disease ratings compared to both GMO 

and nonGMO hybrids (Fig. 10B and 11B). Disease severity was statistically different 

between inoculated and non-inoculated in both the GMO and nonGMO hybrids (Fig. 10B). 

Our results suggest that the genetic backgrounds of two of the three GMOs were 

susceptible to FER, thus eliminating the protective properties of the Bt-toxin under artificial 
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inoculation. This study shows an inherent host resistance in the DK63-57 GMO genetic 

background, despite the wounding-induced infection that would have rendered the Bt-

toxin’s protective property null. Nevertheless, this GMO DK63-57 was shown to have the 

highest yield penalty upon infection (Fig. 11B). This is probably because more resources 

are devoted to Bt-toxin expression and elevated defense response in the genetic background 

of DK63-57. Elevated and constitutive defense response genes have been shown to lead to 

yield penalties (Karasov et al. 2017). Therefore, it is required for crop improvement 

strategies to maintain hemostasis between defense response pathways and resource 

allocation for accumulation of photosynthate in plant sink materials that result in greater 

yields.  

Investigating the differences in kernel metagenome composition between GMO 

and nonGMO hybrids revealed that environment is the driving factor (Fig. 13). GMO and 

nonGMO hybrids did not differ significantly in alpha and beta diversity metrics with GMO 

status and inoculation treatment was used as a factor when looking at each environment 

individually (Fig. 16). GMO hybrids samples did tend to have higher abundance of species 

that were negatively correlated with F. verticillioides than nonGMO hybrids, especially 

under inoculated conditions (Fig. 17, 20, 21). Among these species, Acinetobacter and 

Klebsiella have previously been associated with Fusarium-infected plant tissue and have 

been engineered as possible biocontrols for Fusarium wilt in bananas (Liu et al. 2019). We 

also discovered that on par with previous studies of Cry proteins modulating gram-negative 

bacteria, GMO hybrids were less abundant in Enterobacteriaceae species than nonGMO 

hybrids. Given that Arthopoda was a small percent of metagenomes and insecticide was 
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used in the field, it’s possible that there was a low insect damage pressure that made these 

results look insignificant. Although DNA from the corn earworm did not show up in our 

results, they were frequently found in maize ears of a neighboring trial. Furthermore, we 

discovered multipartite interactions driving F. verticillioides abundance, indicating a 

possible competitive-based antagonistic interaction between some Fusarium species and 

pathogenic Fusarium species. This suggests that the well-documented antagonistic 

interaction between Aspergillus and pathogenic Fusarium might be mediated through the 

positive interaction between Aspergillus and some Fusarium species (Chatterjee et al. 

2016).  

In conclusion, while Bt-maize hybrids have been shown to provide long-term 

sustainable benefits, including improving yield performance, and minimizing problems 

associated with pesticide use, deploying host genetic resistance remains a more desirable 

strategy for preventing FER. As confirmed by results in this study, constitutive expression 

of Bt-toxin can also lead to yield penalty, particularly under high FER disease pressure or 

infection via other means besides wound-mediated infection by insects. To provide robust 

resistance to FER in addition to the benefits of Bt-toxin, it is necessary to breed for host 

resistance in genetic backgrounds that maintain plant homeostasis and balanced resource 

allocation between the defense response pathway and photosynthate in sink materials that 

impact crop yield. With the increasing resistance to commercially available fungicides, it 

is also necessary to breed for genetic backgrounds that optimize beneficial microbial 

recruitment. 
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APPENDIX: FIGURES 

 

Figure 7: Photos of field work at RECM 2020 (A), ETREC 2020 (B), HREC 2020 (C), 

ETREC 2021a (D) and ETREC 2021b (E). Panel F shows the aftermath of harvesting 

ETREC 2021 samples. 
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Figure 8: Fusarium infected kernels growing on malachite green agar (A), Fusarium 

colony formation (B), and visual Fusarium isolate morphologies in 2020 (C) and 2021 (D). 
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Figure 9: Toothpick coated with a mixture of Fusarium isolates (A); inoculation with 

spore-coated toothpicks by inserting toothpick into silk channel (B) and stabbing ear with 

toothpick (B). FER disease severity ratings on a scale of 1-7 (C). 
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Figure 10: Boxplot showing Fusarium Ear Rot (FER) disease severity for ear-inoculated 

(EI) and non-inoculated (NI) ears across five environments (A) and six maize hybrids (B). 

Means comparison based on the Duncan multiple range test are indicated in lower case 

letters. Environments include Milan in 2020 (RM20), Knoxville in 2020 and 2021 (ET20, 

ET21a, and ET21b), and Springfield in 2021(HR20). 
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Figure 11: Boxplot showing yield on a plot-basis across all environments without 

inoculation (A). Boxplots showing yield on a plot-basis across 3 environments.at ETREC, 

Knoxville (B), yield based on 10-plant across 5 environments (C), and yield based on 100-

seed weight across 5 environments (D) between inoculated and non-inoculated conditions. 

Means comparison based on the Duncan multiple range test are indicated in lower case 

letters. 
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Figure 12: Pearson correlation coefficients among Fusarium ear rot disease severity, yield 

on plot-basis, and yield components. To investigate influence of inoculation, data is 

separated by nonGMO (A, B, C) and GMO (D, E, F) status with (B, E) and without (A, D) 

inoculation treatment. Significance is based on p-values < 0.05 and only significant 

estimates are shown (larger colored circles corresponds to lower p-value). Blue and red 

cells indicate positive and negative correlations coefficient values, respectively. 
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Figure 13: Boxplots showing richness (A), Shannon’s diversity (B), Simpson’s diversity 

(C), Shannon’s equitability (D) and a PCoA using the Bray Curtis Dissimilarity index (E) 

for samples on an environment by GMO status. Metagenome results were subsetted to 

species in at least 5% of samples. 
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Figure 14: Venn diagrams showing the overlap in species between environments across 

all inoculation treatments. 
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Figure 15: Relative abundance sunburst plots of species level (from center to outer ring: 

phylum, genus, and species) validated GMO (A, C) and nonGMO (B, D) maize hybrid 

kernel metagenomes across all environments and all treatments with the top row (A, B) 

showing full metagenomic results and the bottom row (C, D) showing metagenomic results 

subsetted for species appearing in at least 5% of samples. 
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Figure 16: Boxplots showing richness, Shannon’s diversity, Simpson’s diversity, 

Shannon’s equitability for GMO and nonGMO maize hybrids with and without treatment 

per environment. Metagenome results were subsetted to species in at least 5% of samples. 

 

 



132 

 

 

Figure 17: Relative abundance sunburst plots of species level (from center to outer ring: 

phylum, genus, and species) validated GMO (A, C) and nonGMO (B, D) maize hybrid 

kernel metagenomes across all environments for non-inoculated (A, B) and inoculated (C, 

D) samples. Metagenomic results shown were subsetted for species appearing in at least 

5% of samples. 
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Figure 18: Venn diagrams showing the overlap in species diversity between GMO and 

nonGMO maize hybrid metagenomes across all environments. 
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Figure 19: Boxplots showing Fusarium species (subsetted for being in at least 5% of all 

samples) abundance in non-inoculated (A) and inoculated (B) GMO and nonGMO maize 

hybrid metagenomic samples. Outliers are omitted. 
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Figure 20: Spearman correlations of selected species that appear in at least 5% of GMO 

maize hybrid metagenomic samples, respectively, filtered for r ≤ -0.2, r ≥ 0.3 and p-value 

< 0.05. Size of data point is inversely proportional to associated p-value. 
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Figure 21: Spearman correlations between species that appear in at least 10% of nonGMO 

maize hybrid metagenomic samples, respectively, filtered for r ≤ -0.2, r ≥ 0.3 and p-value 

< 0.05. Size of data point is inversely proportional to associated p-value. 
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APPENDIX: TABLES 

Table 4A: Analysis of variance for FER, yield, and yield components for GMO maize 

hybrids. 

Significance levels: ns = not significant, <0.05 = *, <0.01 = **, <0.001 = ***; df: degrees 

of freedom; MS: mean square 
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Table 4B: Analysis of variance for FER, yield, and yield components for nonGMO maize 

hybrids. 

Significance levels: ns = not significant, <0.05 = *, <0.01 = **, <0.001 = ***; df: degrees 

of freedom; MS: mean square 
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APPENDIX: SUPPLEMENTAL FIGURES 

 

Figure S8: Line graph showing the minimum and maximum temperatures (℃), and total 

precipitation (cm) across duration of field trials in 2020 and 2021 for each environment. 

Environments include Milan (RECM 2020), Knoxville (ETREC 2020, ETREC 2021a, 

and ETREC 2021b), and Springfield (HREC 2020). 
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Figure S9: PCoAs using the Bray Curtis dissimilarity index for GMO and nonGMO maize 

hybrids with and without treatment per environment for all environments. Metagenome 

results were subsetted to species in at least 5% of samples. 
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Figure S10: Boxplots showing Fusarium species (subsetted for being in at least 5% of all 

samples) abundance in non-inoculated (A) and inoculated (B) GMO and nonGMO maize 

hybrid metagenomic samples. Outliers are included. 
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APPENDIX: SUPPLEMENTAL TABLES 

Table S1: Field herbicide management at each environment. 

Location 

Pesticide 

Type Pesticide Rate Timing 

RECM Herbicide Roundup PowerMax 32 oz Burndown 

RECM Herbicide Sterling Blue 12 oz Burndown 

RECM Herbicide Atrazine 4L 32 oz Pre-emergence 

RECM Herbicide Dual II Magnum 16 oz Pre-emergence 

RECM Herbicide Karate 1.6 oz Pre-emergence 

RECM Herbicide Gramoxone SL 2 40 oz Pre-emergence 

RECM Herbicide Atrazine 4L 48 oz Post 

RECM Herbicide Callisto 30 oz Post 

RECM Herbicide Dual II Magnum 20 oz Post 

HREC Herbicide Slam 54 Extra 32 fl oz Burndown 

HREC Herbicide Bicep II Magnum 51.2 fl oz Pre-emergence 

HREC Herbicide Slam 54 Extra 40 fl oz Pre-emergence 

HREC Herbicide Atrazine 16 fl oz Post 

HREC Herbicide Steadfast Q 1.5 oz Post 

HREC Herbicide Laudis 3 fl oz/ac Post 

ETREC Herbicide Princep 4L 2 qt/ac Pre-emergence 

ETREC Herbicide Dual II Magnum 21 fl ozac Pre-emergence 

ETREC Herbicide Roundup Powermax 32 fl oz/ac Pre-emergence 

ETREC Herbicide Callisto 4 fl oz/ac Post 

ETREC Herbicide Aatrex 1 pt/ac Post 

ETREC_21 Herbicide Roundup Powermax 23 fl oz/ac Burndown 

ETREC_21 Herbicide Dual II Magnum 21 fl ozac Pre-emergence 

ETREC_21 Herbicide Princep 4L 2 oz/ac Pre-emergence 

ETREC_21 Herbicide Callisto 3 fl oz/ac Post 

ETREC_21 Herbicide Aatrex 1 pt/ac Post 
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Table S2: Field fertilizer management for each environment. 

Location Type N P K Other Rate 

HREC Fertilizer 120 80 160  633 lbs/ac 

HREC Fertilizer 14 0 0  304 lbs/ac 

RECM Fertilizer 44 90 90 10S 196, 150, 42 lbs 

RECM Fertilizer 200 0 0  600 lbs 

ETREC_20 Fertilizer 10 10 10  600 lbs/ac 

ETREC_20 Fertilizer 46 0 0  350 lbs/ac 

ETREC_21 Fertilizer 10 10 10  600 lbs/ac 
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CONCLUSION 
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The advancements in next generation sequencing and bioinformatic pipelines have 

helped scientists investigate the genetic factors in agricultural crops contributing to disease 

resistance, abiotic and biotic stress tolerance, and yield components. However, given the 

complex nature of most plant genomes, bringing genetically enhanced crops to the market 

is a years-long effort. The genetically modified Bt maize hybrids used in my Chapter III 

were first introduced in 1996 after a decade of trials. The years it takes to establish an 

effective population containing the gene of interest falls in line with natural selection and 

selective breeding practices used since the dawn of agriculture. The difference now is since 

the discovery of transmission genetics, we have developed techniques to speed up 

evolution. 

The results presented in my Chapter II are like many genome-wide association 

studies because I am using next generation sequencing and bioinformatics to present 

candidate genes for future plant breeding research. However, since I am not a sweetpotato 

breeder, my work is fruitless without the further involvement of the scientific community. 

I expect that first, my candidate genes would be used to create PCR primers to help in the 

selection of appropriate genotypes. Next, once accessions are selected, the genotypes will 

be bred over several generations to establish a homozygous locus, and then subjected to 

virus inoculation to test for enhanced disease resistance. However, since my research 

showed that multiple genes are underlying viral abundance in sweetpotato, molecular tests 

could quickly become time consuming and expensive since each locus target would need 

a unique PCR primer. Therefore, I can utilize genomic prediction to see how various 

combinations of alleles predict a genotype’s ability to respond to viral infection. In the 
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event there are alleles with high predictive power and the genotype can be obtained for 

breeding, then breeding for virus resistance in sweetpotatoes could be accelerated. 

However, if traditional breeding is too complex, one proposed method is to enhance 

phenotypic expression by targeting a plant’s secondary genome- the microbiome. 

Traditional studies have targeted bacterial and fungal microbiomes identified 

through amplicon sequencing. By cataloging microbiomes under different environment 

conditions, scientists have been able to determine the type of beneficial microbes that 

plants recruit. The two main categories recruited help with nutrient allocation and disease 

resistance. In both cases, commercial companies have capitalized on the knowledge of 

plant microbiomes to sell fertilizers and biocontrols. Through my analysis of sweetpotato 

viruses, I discovered their symbiotic interactions with pathogenic fungi through immune 

system repression and/or diversion. Therefore, by understanding the virus-fungi 

interactions, we can thus use known biocontrols of the pathogenic fungi to co-control viral 

infection. Although my work in maize did not involve viruses, it did involve Fusarium 

which is a pathogen to both maize and sweetpotato. Thus, the metagenomic results from 

my Chapter III can be used to further the results from my Chapter II. My thesis presented 

henceforth for graduation provides proof of concept that quantitative reduced sequencing 

produced through the OmeSeq-qRRS protocol and the novel implementation of exacting 

match of consensus sequences in Qmatey’s pipeline are both effective methodologies to 

further metagenomic analysis. 
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