Cotton fiber testing by shippers in Memphis, Tennessee

Jack R. Fontana

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

Fontana, Jack R., "Cotton fiber testing by shippers in Memphis, Tennessee. " Master's Thesis, University of Tennessee, 1959.
https://trace.tennessee.edu/utk_gradthes/8843

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:
I am submitting herewith a thesis written by Jack R. Fontana entitled "Cotton fiber testing by shippers in Memphis, Tennessee." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Agricultural Economics.

Cecil E. Fuller, Major Professor
We have read this thesis and recommend its acceptance:
B. D. Raskopf, Irving Dubov

Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School
(Original signatures are on file with official student records.)

To the Graduate Council:
I am submitting herewith a thesis written by Jack R. Fontana entitled "Cotton Fiber Testing by Shippers in Memphis, Tennessee." I recommend that it be accepted for nine quarter hours of credit in partial fulfillment of the requirements for the degree of Master of Science, with a major in Agricultural Economies.

We have read this thesis and recommend its acceptance:

Accepted for the Council:

COTTON FIBER TESTING BY SHIPPERS IN MEMPHIS, TENNESSEE

A THESIS

Submitted to
The Graduate Council of
The University of Tennessee in
Partial Fulfillment of the Requirements
for the degree of Master of Science

by
Jack R. Pontana

December 1959

TABLE OF CONTENTS

CHAPTER

page
I. INTRODUCTION 1
The problem 3
Importance of the study 4
Method and scope of the study 6
Review of related studies 6
Definition of terms 9
Organization of the study 17
II. THE EXTENT AND USE OF COTTON FIBER TESTS IN THE MEMPHIS
MARKET 19
Type and kind of test 22
Length of usage of fiber tests 23
Volume of cotton purchased and sold on fiber tests 25
Reasons for using flber tests 27
Considerations in purchasing cotton without fiber tests. 29
III. PRACTICES USED IN TESTIMO 33
Method of sampling 33
Operating practices with shipper owned instruments 33
Operating practices of commercial testing laboratories 36
Shippers' checking of own instruments 37
Instrument check by commercial laboratories 39
Location of fiber testing instruments 39
IV. USE OF FIBER TESTS IN BUYING COTTON 43
Source and origin of open-market purchased cotton 43
Use of fineneas teat in opun-marlet purchases 46
Use of the IInenoss test in Comendits Credit Corporetion parchases 54
Finenese of purchases of 1956 cotton arop 54
Prideling of purchases on basis of finoness test 54
Uat of the strength tost in opon-mariet purchases 62
Uee of the strength teat in Commodity Credit Corporation parchaees 67
Pricing of parchases on basis of strength test 68
Uee of other fiber teats in purchasing cotton 68
V. USE OF COTYON FIBER TESTS IN SELLINO COTTOM 71
Use of the fineness test in domostio and foradm sales 71
Vse of the strongth teat in domestie and oxport sales 76
Use of other fibar tenti in selling cotton 80
Finenese minimas and ranges used in sales to cottoh
…118 81
Finomese ranges apecifiod on rales 84
Lint at which cotton bocame too coarse for genoral
demand 87
Guality deternination of sale to domeatic mills 89
VI. THE COST OF GOTION FIBER TESTINO 92
Major cost ottogorles 93
Clatme resulting froa sales on Niber test values 96
The cost of the fiber teet 100

iv

CHAPTER

 PAGEVI. (continued)
The total cost of fiber testing 108
VII. SHIPPER APPRAISAL OF COTTON PIBER 111
The advantages and disadvantages of cotton fiber
testing 111
Shipper use of public reports on cotton fiber testing 112
Shipper attitudes toward incorporating fiber fineness
into the Smith-Doxey classification 113
The trend in the extent of use of fiber testing 113
VIII. THE USE OF COTTON FIBER TESTING BY MEMPHIS SHIPPERS COMPAREDWITH THEIR USE BY COTTON SHIPPERS THROUGHOUT THE UNITED
STATES 116
Ownership of instruments 116
Shipper use of commercial fee laboratories 117
Practices employed in shipper testing for fineness 117
Reasons for using fiber tests 117
Volume of cotton purchased and sold on fiber test values 118
Pricing of purchases on the basis of the fineness value 119
Fineness minimums and ranges specified on sales 119
Costs of cotton fiber testing 119
The advantages and disadvantages of cotton Piber
testing 120
The trend in cotton fiber testing 120
CHAPTER PAGE
IX. SUMMARY AND CONCLUSIONS 122
The extent and use of ootton fiber tests in the Memphis market 123
Practices used in testing 126
The cost of fiber testing 128
Shippers' appraisal of cotton fiber tests 129
Comparison of the use of fiber testing between the
Memphis and the entire United States market 130
The probable effects of fiber testing on cotton marketing 132
BIBLIOARAPHY 135
APPENDIX A 137

LIST OF TABLES

TABLE

 PAOEI. Wumber of Bales Purchased in the Opon-liaricet and from the
Comodity Credit Corporatiton, by origin of Cottion and
Size of Shipper, 46 shippers, August 1, 1956 to
งu2 31, 1957 7
II. Four Major Cotton Fiber Propertios Ourrontly Belng Molaured, the Instrumente or Mothod veed, and Factori of Spinning Porformance Affected 12
III. Thuber of Fiber Teating Instrumonts Owned, by Volune of Cotton Kandled, 46 Shippors, Momphis, Tennessee, August 1, 1956 to Mry 31, 1957 20
IV. Type and Find of Cotton Fiber Tost Omed and Veed, by Voluae of Cotton Hupdled, 46 shippers, Yophis, Tennessee, Auguet 1, 1956 to suly 31, 1957 21
V. Langth of Ueage of Flber Teating Devices Owned, by Volume of Cotton Handied, 46 8hippers, Memphis, Tonnessee, August 1 , 2956 to vely 31, 2957 24
VI. Volune of Cotton Purchased and Sold on Teat Speeirications,46 Ehippers, Maphis, Tennessee, August 1, 1956 toNul 31, 195726
VI. ReIative Importance of Reasons for Ueing Cotton Fiber Teats,by Volum of Cotton Handled, 46 Shippers, Momphis, Tonsessee,Argeat 1, 2956 to July 31, 2957 28
VIII. Proportion of Temnease and V. S. Cotton M118 Purehasing Cotton Partly on the Basis of Fiber Tente, by Type of Toat, 1944-45 and 1957-58 30

I工. Conaideration in Purohasing Cotton Whthout the Vse of Fibor Teste, 10 Shippers, Memphis, Tennescee, August 1, 1956 to taly 31, 2957 31
X. Praotice Ueed In Tosting Cotton on Shipper-Omped Instrusonte, by Volu of Cotton Handled, 31 Shippors, Mouphis, Fenneseec, Axguet 2, 2956 to july 31, 1957 34
XI. Use of Calibration smples on Shipper Owned Inturumants, by Volve Oreap, 27 shippers, Mmpile, Tonnescee, August 2, 1956 to dely 31, 1957 38
III. Loeation of shippormonaed Fiber Tosting Instruments, by

Volua of Cotton Findled, 31 Shippers, Mmphis, Tennessee,
Anguet 2, 1956 to july 32, 1957 40
IIII. Type of Market Source of Opon-Mathet Parchaced Bales, by Sise of Shipper, 46 Shippere, Memph1s, Tennessee, August 2, 1956 to Naly 31, 1957 H

IIV. Type of Opon-riartet Source, by Oeographical Origin of Cotten, 46 Shipperi, Momphie, Tomnesaee, Augast 1, 1956 to Juh 31, 1957 45
27. Use of the Fineness Test for Intorior Purchases, by Sise of Shipper and Method of sarpling, 46 shippers, Momphis, Tennesses, Augnet 1, 2956 to Jviv 31, 1957 48

> IVI. Use of the Finoness Test for Interior Purohases by Origin of Cotton and Method of sumpling, 46 shippers, Momphis, Tonnessee, August 1,2956 to Juiy $31,1957 \ldots .$. 49
XVI. Importance of the Fineness and strongth Teat for Purchases Throuth Brokerw, 46 Shtppere, Mamphis, Tonnessee, Auguet 1 , 1956 to suly 31, $1957 \ldots 51$
xVIII. Importance of the Finoness and strongth rest for Purchases frem Other shippers, 46 shippers, Memphis, Toancesee, Auguet 2, 1956 to vuly 31, 1957 52

ILX. Number of Bales Tested After Purchase from the Open Market and C.C.C. On shipper Owned Instruments and by Fee Laboratories, 46 atippers, Mumphis, Tenneasee, Augutt 1, 1956 to July 32, 195753
IX. The Nuber of Bales Tested Before and fifter Purchase frow the C.C.O. and Open Market for Finenese and 8trength, 46 Shippors, Momphis, Tennessee, Argust 1, 1956 to Jul 31, 1957 55
xX. The propertion of Shipper Purchases of the 1956 Cotton Grep Falling in Varioul Fineness Ranges, by Sise of Shippers, 146 shippers, Muphis, Tenneseee, Angust 1, 1956 to daly 31, 1957 56
XII. Discounts of Breesaively Fine Cotton by Fineness Reading of Fiber Bought on Sample Pro-Purchase Finenesa Reaults, 16 Shippere, Hemphie, Tennessee, Auguet 1, 1956 to July 31, 195758

XXIIT. Importance of Premiuns and Discounts on Cotton Purchased on the Basis of Individual Bales Test, 8 Shippers, Memphis, Tennessee, August 1, 1956 to July 31, 1957 60
XXIV. The Importance of Discounts on Purchases for Being Overly Coarse, 5 Shippers, Memphis, Tennessee, August 1, 1956 to July 31, 1957
XXV. Use of the Strength Test for Interior Purchases by Size of Shipper and Method of Sampling, 46 Shippers, Memphis, Tennessee, August 1, 1956 to July 31, 1957 64
XXVI. Use of the Strength Test for Interior Purchases by Origin of Cotton and Method of Sampling, 46 Shippers, Memphis, Tennessee, August 1, 1956 to July 31, 1957 65
XXVII. Importance of Premiuns and Discounts on Cotton Based on Strength Specifications, 46 Shippers, Memphis, Tennessee, August 1, 1956 to July 31, 1957 69
XXVIII. Major Sales Outlets by Size of Shipper and Origin of Cotton, 46 Shippers, Memphis, Tennessee, August 1, 1956 to July 31, 1957
XXIX. Number of Open-Market and C.C.C. Purchased Bales Sold on Specifications of Fineness in the Domestic and Export Market, 46 Shippers, Merphis, Tennessee, August 1, 1956 to suly 31,1957 . 74
XX. Wember of Openminrtet and C.C.C. Purchased Beles sold on Speoifications of Fineness in the Domestic and Ixport Market by Origin of Cotton, 46 Shippers, Meaphis, Tennessec, Auguet 1, 2956 to sul 31, 2957 75
xax. Wuiber of Open-Market and C.C.C. Purahased Beles Sold on Strength specifications by sise of shipper in the Domestic and Export Maxkot, 46 shippers, Momphis, Pomesees, Augest 1, 1956 to tuly 31, 1957 78

RXII. Junber of Open-Mariset and C.C.C. Purchased Bales Sold on Strength Speailications by origin of Cotton in the Esometic and Epport Maret, 46 Shippere, Maphie, Ternessee, August 1, 1956 to July 31, 1957 79
XXXIII. Fumber of Balee Sold on the Basis of Other Tests by Type of Tost and Origin of Cotton, Pive shippers, Hendling Oret 250,000 Beles, Hexphte, Tennessee, August 1, 1956 to July 32, 1957 82
XXXIV. The Volum of Cotton Sold on Varloue Speaified Pineness Minimuas in the Domeatic and Export Market by Volume of Cotton Mandled, 46 shippore, Memphis, Tennessee, Auguat 1, 1956 to July 31, 1957 83
XXIV. The Nubber of Bales Sold on Frequently Used Fineaess Manges in the Domestic and Doport Marizet, 酸 Bise of Shippor, 39 Shippere, Momphis, Tonneseee, August 1, 1956 to July 31, 1957 86
XXXVI. The Fineness Limit at Which Cotion Became Too Coarse for General Demand, by Size of Shipper, 46 Shippers, Memphis, Tennessee, August 1, 1956 to July 31, 1957 88
XXXVII. Methods of Quality Determination on Sales to Domestic Mills, by Size of Shipper, 46 Shippers, Memphis, Tennessee, August 1, 1956 to July 31, 1957 90
XXXVIII. Relative Importance to Shippers of Major Costs Associated with Merchandising Cotton on the Basis of Fiber Test Results, by Size of Shipper, 46 Shippers, Meruphis, Temessee, August 1, 1956 to July 31, 1957 94
XXXIX. The Number of Disputes, Their Method of Settlement and Cost Resulting from Cotton Sales on Fineness, 46 Shippers, Memphis; Tennessee, August 1, 1956 to July 31, 1957 97
XL. The Estimated Fixed Costs Incurred Through the Ownership of Cotton Fiber Testing Instruments, by Type of Instrument, 1959 102
XLI. The Proportion of Cotton Tested for Fineness and Strength During the 1954-55, 1955-56, and 1956-57 Seasons in the Domestic and Export Market, by Volume of Cotton Handled, 46 Shippers, Memphis, Tennessee, August 1, 1956 to July 31, 1957 114
TABLE PAOE
XLII. Number of Shippers Believing the Proportion of Sales Based on Fineness and Strength Would Increase Over Previous Seasons During the 1957-58 Season, by Volume of Cotton Handled, 46 Shippers, Memphis, Tennessee, August 1, 1956 to July 31, 1957 115

LIST OF FIGURES

FIGURE

PAGE

1. A Comparison of the Fineness Cost Per Sample of Testing Cotton with a Shipper-Owned Micronaire (NonAutomatic) and the Cost of Having the Test Performed by a Commercial Fee Laboratory 106

INTRODUCTION

Cotton has been marketed on the basis of some quality standard since it was first sold commereially. In the early nineteenth century, cotton was classified by origin of growth in both Europe and the United States. This system was inadequate because quality varied greatly among lots of cotton grown in the same area. Later, American spot and future markets established their own individual standards of quality. This resulted in much confusion and many arguments in inter-market sales. The industry and the federal government, recognizing the situation, took steps to standardize the various grading systems. The result was the establishment of compulsory standards for grade in 1914 and for staple length in 1918 by the United States Department of Agriculture. ${ }^{1}$ International standards for grade were adopted in 1924 by the exchanges in Europe and the United States. ${ }^{2}$

While these standards have been revised several times, grade and staple (as determined by the subjective evaluation of a trained cotton classer) are still the primary factors in determining the quality of cotton. Cotton classers now, knowing the grade and staple specifications, class within one thirty-second of an inch the average

[^0]length of the fiber, and make an evaluation of the color, leaf and trash content, and proparations the latter three being the main variables of dotermining grade.

As the induetry developed, epinners through experience and the United States Department of Agriculture through research, discovered that there were other qualities of ram ootton besides those included undor the hoading of grade and staple which affected the processing of cotton and 1ts ond-produot porformance. "Charecter" was the term given to describe such other qualt ties as fineness, tensile streagth, longth unifornity, maturity, color, nonlint contont, and nop count. These were recognized by the cotton classer and were ovaluatod by the use of such terms as "hardbodied," "fine flber," "strong cotton," "weak," "wasty," or "periehed, ${ }^{\prime \prime}$ 3 These subjective oraluations did not give the precise information needed by the spinner for efficiont processing and falled also to adequately difforentiate between these factor: of "oharacter," which varied in importance anong the endprodnote produoed. 4

To anewer this need for more objective information, instruments and teats were developed to evaluate acourately these qualities of character. The cotton induetiry has given these tests much attontion in efforta to meet competition in price and quality from forolgn ootton and from artificial fibers. More information 1s needed to determine present and future effects of these tests on the cotton
30. S. Departmant of Agriculture, op. cit., p. 38. 4500. oit.
industry, from producer to the vendor of the end-product. This study is concerned with effects of the tests on one particular geographical segment of the industry and with one link in the marketing chain, the Memphis cotton shipper.

The Problem

Several state and regional studies have been made of the buying practices of foreign and domestic spinning mills. These studies indicate that as early as 1945 many cotton mills and merchants were employing laboratory fiber tests to supplement grade, staple length, variety and area designations in buying, assembling, and selling cotton. 5 Since then, an increasing number of cotton merchants in Memphis have purchased instruments or have used laboratory techniques for appraising the factors that make up character.

This study is concerned with the present and the probable future effects of cotton fiber testing on the buying, assembling, and selling of cotton by shippers in the Memphis market. The problem may

[^1]be sub-divided into the following seven objeotiveas
2. To determine the extent and use of cotton fiber tests in the Momphis market.
2. To deterine the reasons for using cotton fiber teats.
3. To determine what operating prectices are used in testing cotton.
4. To deternine how fiber teats are used in buying and solling cotton.
5. To deterinine the oost of tiber teating.
6. To determine the shippere' appraisal of cotton fiber tests 1. marketing cotton.
7. To compare the use of fibar tests in the Memphis market wh their use in other areas of the country.

Inportance of The Study

The Mamphis market has supplied a conolderable portion of the cotton used by both domestic and foreign apinning aille. For the past ten yoars, the Monphis Cotton Exchange has handled an average of $4,240,000$ bales annually. In the $1956-57$ season, the exchange handled $5,129,601$ bales, which was equivalent to 40 percent of the United States production in 1956.6 An estimated lu percent of thi cotton was exported. 7

[^2]The markoting policies of the Momph1s shippers exert a strong Influence on the ontire cotton Industry, from the producer of cotton to the manufacturer of cotton products. The increased demand for cotton fiber tests by foreign and domestic wille in addition to grede and staple speciflcations on sales contracts has affected these pollcies. Shippers have purohased more testing instruments and have made increased use of the facilities of comercial testing laboratories. Wo economic evaluation has been made of these tests. Information is needed to dotermine the offects of these tests on the price structure, the direct and indirect costs of the tests, and their probable future use.

This study should prove useful in estimating the effects of cotton flber teste by showing what fiber propertios are considered most inportant by forelgn and domestic mills. Momphis ehippers may also observe how thelir use of the tests compares with that of ahippers in other sections of the country, and by shippers in other size groups. Any variation in the use of these tests on cotton originating in difforent geographical areas is also shown.

An incroasing reliance upon cotton fiber tests as a supplemont to grade and staple could alter the methods of production and merchandiadng of ootton and in so doing, affect the position of cotton in the highly competitive fiber market. Their use may also influence intraInduatry competition between the various cotton merkets and between the individual shippers. Information which may shed light on these vital areas should be of interest to all cotton merchants.

Method and Scope of the study

Schedules of information were secured by personal interviow from forty-aix Momphis shippers from June to August, 1957 (Appendix A). These firmes marketed $5,106,605$ beles purchesed from the open-market and the Commodity Credit Corporation during the season August 1, 1956 to July 31, 1957. These purchases were equivalent to more than 99 percent of all cotton handled on the Momphis exchange during that poriod.

A ootton shipper was defined as a merchant who purchased cotton in inixed lots, concentrated the cotton into even-running lots and sold to forelgn and/or domestic mills. The volume of cotton handled annually by the 46 shippere ranged from around 10,000 bales eech for two of the mallest to over 250,000 bales for five of the largest ohippers. For purposes of anelysis, shippers were divided into four volume groups, and the cotton was speoified as to 1 ts origin of purchase (Table I). No data were avallable on the origin of cotton purchased through the commodity Credit Corporations however, date were obtained on volume of purchases and on sales outlets of C.C.C. stooks.

Several of the shippers included in the atudy oporated offices in other states. Data from these shippors reflect only their buying and celling operations in the Memphis market.

Review of Related Studies

A study completed in 1957 by the Tonnessee Agricultural Bxperiment Station concerned the effects of cotton fliber tests in the
table I

Size of	$\begin{gathered} \text { of } \\ \text { shippers } \\ \hline \end{gathered}$	Geographical origin of open-market purchased cotton						C.C.C. purchases	Total urchases
(Bales handled)				les of	ttos)				
Undor 30,000	12	4200	175900	6100	3500	1200	190900	43900	234800
30,000-99,999	23	8865	707621	53767	73469	-	843722	327457	1271179
100,000-249,999	6	-	440575	32100	76000	5100	553775	332309	886084
250,000 and over	5	124181	576710	188584	250902	14000	1154377	1660165	2814542
Total	46	137246	1900806	280551	403872	20300	2742774	2363831	5106605

${ }^{2}$ Include all of Texas cotton in the Southmestern section.

intarnational cotton market. ${ }^{8}$ The principle objectives of this etudy were to deternine the axtent and use of these tests by foredgn firms and their main reasons for ueling them. Information on the coste of these tests, thoir offocts on the price strecture, and formign agency appreleal of them were also studied. The study perteine more to cotton allle than to alippors.

A bulletin was published in 2957 by the Arkansas Agricuitural Bxperiment Station on the use of cotton fibor teste by the following types of markoting agencies: shippers, shipper representatives, nill buyers, selling brokers, and local morehante. 9 Information was socured from firty-eight Arkangas firms ooncorning the extent and use of those tents, their costs, and their offects on cotton morchandising.

A roport similar in nature was poblished in 1958 by the Texas Agriculturel Experiment stetion. ${ }^{10}$ Thirty Toxes ehippers were interFiew to obtain informetion concorning the use of instrunont tests as a supplement to grade and staple in the merchandising of ootton.

The most extensive research report on this subjeot to dite is a Southorn Cooperative Sories Bullotin, 11 the date wore secured during

[^3]the $1956-57$ season from 164 shippers located throughout the United States. The three principle objectives of this autdy were to determine (1) the nsture and extent of the difforences in fineneas, strength, and other fliber properties in addition to grade and staple longth at various stages of the marketing proceses (2) the influence of these measurement: on prices paid for cottong and (3) oharges for, or astimatod costs of Ilber tests. The questiomaire used in this straty was the same one used Whth the Mauphis shippers. Frequent reforence will be made to this roport in the comparison of Inforation obtained from Momphis ahippere with that obtained from ohippery in other areas.

> Definition of Texas

Grade and staple are the prinaiple factors upon which almost all cotton transactions aro based. Then reference is made in this roport to parchases and sales on certain fiber teste, it is not meant at the saxiusion of grade and steple, bet as a supplement to them.

For purposes of analyais, the cottem-greming states are divided Into Plve sections. These sections and the states they include are as followes

Southeant	South Contral	Southwest	Hest	Mexico
Worth Carolina	Louisiana	Toxas	Wem Moxico	All sections
South Carolina	Tonnessee	Oklahose	Arizona	
Georgia	Arkansas		california	
Alabama	Hesouri			
	2iseleappl			

The term "cotton PIber teating" refers to a series of tests
mencuring fiber characterietioe (other than grade and etaple) wich
affect the mpinning quality of cotton and ite md-produot performance. These factors are referred to frequently as "eharacter." the tests most uted oy Maphis thippers in the ordor of their volume ingertenee are Ineness, atrength, length uniforit ty, naturity, nep couns, nonlint contont, and color. A deacription of these gualitios and the teats used for their evaluation follows.

Flber Pineneas

Fiber Anenese is the welght por Linear ingh. It is doternined by taking a epecimon of cotton welghing fifty grains, plaeing it in a Liber comprosion cylinder and paseing air through it at the constant pressure of six pounds per square inoh. A gauge measures the amount of realstance the sample offert. The finer the flbore, the greeter the resistance and subsequent amaller air Now through the flber mass. The gauge thowing the rolationolhip between rate of air how and diamater or thickness of the fiber is read in iderograne per inch. The United States Departmant of Agmicuiture has dovised the following seale for a prectical comparison of fiber fineness resulte:

道cronaire units	Fincmeas rating
Below 3.0	Vory finc
3.0-3.9	Fine
4.0-4.9	Average
5.0-5.9	Slightly coarse
6.0 and above	Coarse

Plber finesess has an effect on splnaing effloleney. Incrased nep count, mamifacturing waste, and ends dow, along with the production
of Imegular and noppy yam are associated with flber that is too fime. 12 The dyoing ability of the cotton is affected by the fineness of cotton. Fine Iibor ic also associated with jarn otreagth singe the finer cotton has more fibers per croas-secthon of yarn. Cotton which is extrwaly course or with a high ricronatre mending may cause excosuive ends dow and produce extromely weak yarns. Variations in mill mix of cotton تlth low and high imcronatre reading may produo a non-uniform produst, Wth color atreaks caused by the varying ability of the fiber to absorb dye. Outaide the two extreme IInenese groups, which are satefactory only for very linited uees, apinnors' demand for varloue fincesse viues w11 dopend upon the and-product of the ± 111.

The various flber properties, the names of the inatrumants uaed for their meacurement, and the factore of apinning performance affected are show in Table II.

Strength

Fiber etreagth is utualiy determined on a mechanical instrument oalled the Preasley Fiber Strongth Teater, which uses the flat bundle method. A mint of cotton is combed into a smooth bundle of parellel fiberw with each ond batng placed in a clanp. A aliding weight on a balance beam then increases the tension on the fibors until ther break. The breaking point, read to the nearest tenth of a pound, is then divided

[^4]
TABLE II

FOUR MAJOR COTTON FIBER PROPERTIES CURRENTLY BEING MEASURED, THE INSTRUNEXIS OR METHOD USED, AID PAGRORS OF SPIMIMC PERPORMANES AFFECTET

Tiber proparty and ingtirumata or zothode uned for texting.	Foretom of mplonth by A3bor aropurty

Pineness

Micronaire Arealometer Speedar
Port-Ar
Fibronalire

Blending and mixing
Finishing and dyoing
Tarn appearance
Nop count
Bods down
Cardtag speed
Yarn atrongth

Strength

Preasley
Stelometer
Cleseon flat bundle tester
Length unifornity
Sutar-ifebb aorter
Pibrograph

Yam atrongth
Spinaing and weaving quality

Iarn atrength
Machinery eottinge
Ende dom
Blonding and mixing
Maturity
Caustleaire

Nop count Dyoing
 Tarn trength and appoaranee Spiming waste
 Fintming and dyoing

Sourees Bart Johnson, Cotton Flber and Spinming Tents,
(Mattonal Cotton Council, Soptenor, 2950) and 0. S. Dopartiont of Agricultare, Cotton Testing Service, ANS Ho. 16 (Eavhingtons Goverrment Printing Office, February, 2955).
by the weight of the "tuft" giving the Pressley index in pounds per milligram per fixed length. 13

The United States Department of Agriculture has devised the following table for comparing various fiber strength roadingot

Thousund pounds	Strength ratin
(por oq. in.)	
Above 95	Very strong
$86-95$	Strong
$76-85$	Average
$66-75$	Feir
65 and below	Weak

The factor of strength in cotton is considered important begause It influences epinning quality and yarn strength. The names of the Instruments used to momeure flber mtrength with the effecte of this characteristic on processing are given in Table II,

Length Uniformity

This is a machine measure of the variation in the individual fiber langthe in a given sample of cotton. The classer rocogaiset thie wen he has dificulty in obtainigg a definite, mooth, rectangular "tuft" of cotton. The unifornity ratio is calculated in the following mammers the upper half mean length (which is the average length of the longer half of the IIber: by weight) is divided by the mean length (which is the average length of all Ifbers longer than 1/4 inoh). This percentage Agum is then maltipiled by 100 , giving the uniformty retio. The following table developed by the Onited

[^5]States Department of Agricultare may bo used for a prastieal comperseon of fiber uniforaity results.

Oniformity retio	Rating
Above 80	Uniform in ilber longth
$75-80$	Aroruge uniformity
74 and below	Irregular in fiber loagth

Length uniformity is important for its offects on manufacturing waste, yern strencth, and Jarn appearance. It is olosely rolated to spinning utility and influences carding and drafting settinge and onde dow in mpinning. The more irregular the cotton the greater the waste and adverse procesaing performane. The effecte of length uniformbty and the names of the instrumonts used to measure it are shom in Table II.

Maturity

Maturity refers to the thickness of the fiber wall in relation to the width of the lumon, or underdeveloped section ceataining protoplage located in the aiddle of the flber. The thlcker the wall the more mature the IIber. Fibers whose lumen width is less than twice that of the wall are considered mature. Those whose lumen is more than twice the wall width are considered imature, Thore are several methods of deterninias fiber maturity. Statiatical analyele of the resulta of empirionl teste have show the maturity values obtained by the Causticalre method have greater signifieance from the etendpoint of relationship to mpinning performance than naturit try values obtained by other available methods. If

[^6]This utilises a Meronaire or similar inotrument with a beain seale, In the following way: the raw flbers are tested flret. Then they are soaked in an 18 pereont otuatic soda solution and reteated. The maturity indox is the ratio of the untreated to the treated causticaire readinge multiplied by 100 . This value gives the degree of cell wall development through the entire length of the fiber. The United states Department of Agriculture has devised the following table for comparing the maturity of verioun cottons:

Meturity index	Rating
82 and above	Mature
$76-81$	Average
$70-75$	Inmature
Belew 70	Very immature

Piber meturity is important since imature flberw cause oxeessive neps and affeet yarn appoarance and the ability of the fiber to dye untormil. Increased manufacturing wanto is also asociatod with immature flbers. Maturity is clesely associated with fineness in American upland cotton. Cotton with a low Meronaire reading will usually have a large percentage of imature fibere. The processing faetors affected by cotton meturity and the test for measuring this oharactoriatis are hown in Table II.

Mop Count

This refers to the number of neps, which are tangled aasses of fine fibert, in 100 equare inches of web. A three graw ample is blended on mechanical blender and processed inte a thin web. The number of neps observed serve to classify cotton with respect to nep
count. The United States Dopartment of Agriculture devised the followIng standirds of the comparisen of nepplaess of cottons

(per $\frac{\text { Heber of nops }}{100 \text { aq. } 12.01}$ wob)	Bating
10 and below	Low
$11-20$ Average $21-30$ High 31 and above Fory high	

The number of neps affects splnaing quality, yarn appearanee, and the bleeching and dyeling properties. High nop counts dotract frow the appearanee of finished produete when they are to be dyod or pristed.

Nonlint Content

Monilnt conteat is expressed as the percentage of waate soparated from a cotton sample of known weight. The Shirloy Analyer makes an elmoet perfect separation of lint from tresh and this treeh contains practically no liber. The trash can then be analysed for varioue research purposes. The United Stetes Dopertmont of Agriculture, using white grede standards, devised the following scale to represent pereentages of nonlint removed irce different grades by the shiriey Anslyzors

Grade	Ponlint content percent
Strict Good Middring	2.0
Good Middling	2.4
Strict Mddling	2.9
Madling	5.1
Low midiling	7.6
Strict Good Ondinary	11.0
Good Ordinary	17.0

Nonlint content is considered an importnnt factor aince it inAuences grade, percent waste, spinning quellty, and yam appearance.

Color
This is an exaot measurement of one of the most inportant determinants of grade and is measured on an Instrument callod the HekereonHunter Cotton Colorimoter. This machine provides, on a two dimensional seale, valnes in terms of reflectance (Rd values), and the degree of yellowness (in terme of b values). The Rd soale measures percentage of reflectance fros zero to 100 and the b scale providon a measure from yellow to blue. Cotton with the least jellow and the greatest roRectance gives the best Jezn appearance and has the best bleaching gualltties. This type cotton will have a high value on the pd seale and a low reading on the Funter's b factor.

Other Tests

Testo for the evaluation of other fiber qualities which were not used by the Masphis shippers include the followings pieker and card wante, acid-alkaline values in terme in Ph unite, orddation, elongation, wax content, molstare regain, and yarn akeln atrength. These faotor: also have an effect on procesaling performance and the guality of the end-preduct. However, since these tente were not used by the Momphis ehippers, they will not be discuseed further in this stedy.

Orgenisation of the $s t u d y$

Chaptor I is a general introduction to the stady giving its in portance, 1 to objectives, and a defintion of the principle terme used. The scope of the study, the method used to secure the data, and a review of related studioe are also Included.

Chapters II and III show the extent and use of cotton fiber tosts In the Memphis market and review the operating practices employed in riber testing.

Chaptor IV is a coverage of the use of fiber teste in the purchase of opon maricet and Commodity Credit Corporation cotton through the use of commorcial fee laboretories and thipper-smed instramonte. Sampling proeedures and the effecte of these teste on price is amalyeod. The actual fineness of cotton purchased on the Momphis market is shows.

Chapter V covers the axtont and use of fiber tests in cotton eales. The demands and specifleations of mill are aphasised.

Chepter VI concerns the direct and indirect costs of cotton fiber testing and lists the major coste encountared and their relative importance. Clafre and thoir methode of sottlement is Inoluded, and a theow retical cost model is eateblished for shipper operation of the fineness test.

Chaptar VII gives the shippers' appradal of cotton fiber tests on such subjocts as thelr advantagos and ditadrantages, attitudes toward. placing the finoness value on Form I cards, and the usofulnese of present reports on fiber testing. ${ }^{15}$ A ahippers estimate of the volume of anles In the $1957-58$ season on test apecifications is given.

Chapter VIII compares the use made of fiber teste by ahippers in the Maphis merket with their use in other cotton markete of the cometry.

Chapter IX contains the sumary and conclusions of the study.

[^7]
GHAPTER II

THE EXTYII AND USE OF COTION FTBER TESTS IA THE MEMPYIS MAREET

The Sorty-six Memplais ohipper: oovered in the tady ouned ilfty nine Inetiruents for the measurement of cotton flber properthea (rable III). Serenty-ight percont of these instrumente, including the MeronArea and Portare, were for tenting Incaeas. About 17 poroont of the instruments, Including the Pressley and Stoloneter were used in testing for treagth. Ony 5 peroent of the Inatruments, the Plbrographe and Sater-Wobb Sorter, were noed in neacuring length and Lencth und forndty, There ras definite relationshp betwean the ise of the ahppar and the ownerphip of instruments. Twonty-nine instrumonts were owned by the five largost infppere. Those six handing between 100,000 and 249,000 bales had seven, thoes hadling from 30,000 to 99,999 bales had nineteon, and the ampler ohppore owned only four. There were no nexchante hanAlag less than 250,000 bales thet owned inetruments for testing Inber quallties other than finoness.

111 firas but one of the leven handling more then 100,000 bales owned instranamts. Fourtaen of the remaining thirty-Live ehippore did not ow then (Iable IV). Seven of the eleven Iargeet shippers owned more than one instrumant, one owning se many as nine. Only one thipper hunding leas than 100,000 bales had more than one instrument and these consisted of one Meronalre and two Port-Ars.

TABLE III

MUBER OF FIBER TESTING IMSTRUEENTS ONIED BI VOUNE OF COTYOU AहUUSI 1, 1956 T0 JULI 31, 1957

Type of inatirurent coned	10. or instrumate cinca by onippery handung				
	$\begin{aligned} & \text { 6ndor } \\ & 30,000 \end{aligned}$	$\begin{aligned} & 30,000 \\ & 99,999 \\ & \text { bele } \\ & \hline \end{aligned}$	$\begin{gathered} 100,009 \\ 249,999 \\ \text { bule } \end{gathered}$	$\begin{aligned} & 230,000 \\ & \text { and above } \\ & \text { bales } \end{aligned}$	$\begin{aligned} & \text { rogh } \\ & \text { ingtruente } \\ & \text { cunod } \end{aligned}$
Meronaire	4	17	6	4	4
Portmar	-	2	1	2	5
Preasley	-	-	-	9	9
Stolometer	-	-	-	2	2
Flbrograph	-	-	-	2	2
Suter-wiobb Sorter	-	-	-	1	2
Total instruments owned	4	19	7	29	59
No. of shippers roporting	12	23	6	5	46

TYPE AND KIND OF COTTON FIBER TEST ONNED AND USED, BI YOLOEE OF COHTON EANDLED, 46 SKTPPERS, METMPIIS, THMERSEE,

Avousi 1, 1956 т0 Jut 31,1957

Type and Kind of Test

Many shippers, rogardless of emerchip of instrumonts, made use
 One IIm roportod using the instrumonts of a compotitor. While comer$01 a 1$ Iaboratories were the excluaite source of tests for some shippors, eapecially the maller ones, most of the firm having instruments tested some cotton oomorcially as a check on their own instruments and to fulfill speoial contract obligations.

The forty-in Myaphis thippers had instruments or ato use of foe leboratories for the measuremant of aeven different fiber properties (Table IV). All of thas used teats for Ineness thirty-uix used toste for strength; seven used tests for leagth and longth uniformitys three used tests for 1 liber maturity; three used tosts for nonlint content; two used tests for colory and one used a test for nep count,

Thirty-six shippers used comercial laboretorios for soouning finenese information. Mifteon used them cacluoively and the reanining twaty-one used laboratory roperte to oupplemont theis own instrumant findings.

There were also thirty-six fins who used foe laboratorles for obtaining strength data. Only four of these shippers, all of them handling over 250,000 bales, orned inatrusents for testing strength.
of the seven hippore making teats for length and length ualformity, flve used the services of commercial laboratories. Only one of the flve owned an inatrument for masuring this quality.

The use of ecmarcial facilities was the only method used by shippera for teating fiber maturity, nonlint content, color, and nap
count. 121 whippere meking these teats, exeept one; handled over 250,000 bales annually.

There was some relationchip between the sise of the shipper and the number of firms testing cotton. With the exooption of the finenese test, 2 higher proportion of the largest shippers tested cotton for the various fiber characteristics (Table IV).

Iangth of Ueage of Piber Testa

Fecilities for tenting raw cotton for varions fiber propertiou have been available in Hamphis aince 1947. One comercial Inboratory was established in 1947 and another in 1949. Both laboratories were equipped for making fiber teats for fineness, strength, length and length uniformity, longation, naturity, nonlint content, color, and other apaclalised tost for nep ccunt, molsture, sugar or wax contont, damage by odidation, and extraction methods for measuring pli value (acidity or alkalinity), Although these facilities have been available to farmers, seed breadors, gimers, and cotton mill oporators, the cotton merchants have been the more important users.

Thirty-one shippers owned Micronaires which have been in use from one to ten years (Table V). Seventeen firns purchased these in the last three jears, eloven in the last four to six years, and only three had them soven or more years ago. Tro of these three were in the largent shipper group.

The four ahippers owning Port-Are have had them from one to three years. The Preasleys, amed by three of the four firms, had beon purchased

TABLE V

LENGH OF USAOE OF FIBEA TESTING DEVICES ONHED, BY VOLDE OF COTTOM HANDLED, 46 SHIPPIEAS, MENPHIS, EMMLESEE,
avoust 1, 2956 T0 JuLI 31, 1957

from seven to ton years ago. The firms owning the Stolonaters, Fibrographe, and Suter-wobb Sorter hed purahasod them in the last one to three yoarm.

The Increased number of firme purchauigg fiber teating Instrunente In the last one to three yeare given some indication of the growing rolianee of the thippers on Iiber test infornation as a supplenont to grade and staple.

Voluee of Cotton Purchased and Sold on Piber Teste

Table VI Illustrated the relative importance of Albor testing by showing the rolume of purchases and sales on the besis of fiber teste by the forty-dis Momphis ohippere. It may be summarised as followe:

Pineness

About 27 percent of shipper purchases wrere tested for fineness on a aample basis prior to being bought. After purchase, 77 percent of the bale were individually tested. Shippere' sales had fineness apealiieations on neerly 77 pervent of their volven.

Strangth

About 23.5 percont of the cotton was tested for strongth on a sample busis prior to parchese, and 3.6 percent individually toated after purchame. Hearly 24 percent of the shippers' salen were based on titrength speciflications.

TABLE VI

VOLINE OF COTTON PURCHASED AND SOLD ON TESI SPECIFTCATIORS, 46 SHIPPERS, MPMPIS, TEHNESSES, a 0005 2, 1956 T0 JUL 31, 1957

Trtant of cotton fibor toating	$\begin{array}{r} \text { tandor } \\ 30,000 \\ \hline \end{array}$	$\begin{aligned} & \text { B100 } \\ & 30,000 \\ & 99,999 \end{aligned}$	$\begin{aligned} & \frac{18 \text { cotten }}{100,000} \\ & 249,999 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { handled } \\ & 250,000 \\ & \text { and over } \end{aligned}$	111 shippere
Eumer of chtypers	12	$8)$	6	5	46
	(Bales)	(alce)	(Balea)	(Balee)	(Bales)
Total cotton purchaeed	234800	1171179	886084	28145142	5106605
Cotton tested for -					
Finemess: before parchase	41577 63156	688999	62295 375379	2819660	3947191
Strength: before parehase	20480	3205	11075	653595	688355
after purchase	13091	34873	27796	117691	183451
Length: aftor purohase	-	675	64	2000	2739
Maturity: After purchase - - - 500500					
content: after prurchase	-	4	-	500	504
Color: after purchase	-	-	-	1000	1000
Nep count: after parchase	-	-	-	2000	2000
cotton soll ea toot specirlantions for					
Fineness:	156107	940293	655481	2174057	3925938
Strength:	39830	356224	220786	599629	1216469
Length:	-	-	-	8000	8000
Maturity:	-	-	-	7500	7500
Nonlint					
content:	-	-	-	1500	1500
Color:	-	-	-	1000	1000
Nep count:	-	-	-	2000	2000

Data based on several different methods of sampling.

Zength, Maturity, Nonlint Contont, Color, and Hep Count
Only 6,749 bales or 0.1 pereent of shipper purchases were tested for these flber characteristice. Shipper sales on theae opeciflicationa were 20,000 bales or 0.4 percent.

A large proportion of purchases and sales of shippers handing lese than 240,000 bales were for finaneve and strength. However, oniy a fow balee in this group were teated for other Aber charecteristies. No bules in this volume group were sold on the basis of fiber teste other than Pineness and strongth.

More cotton was sold than purohased on test apealfleations for strength, length, maturity, and nonilnt content. This aituation oceurred since in many cases a sample of cotton was used for establl wing sales operiflcations.

Reasons for Uaing Fiber Tests

The forty-alx Momphis cotton shippers were asked to indicate the primary and secondary factors arfocting thoir decielon to use fiber tests. Regardless of the volume of cottion handled, the most impertant of these factors was the demand by mill cuttomers for cotton teating services (rable VII). Forty-two of the fortas-aix shippers gave this reason. Reasons of secondary inportanse given for udng flber teste were: to provide isproved quality evaluation, to better evaluate the cotton market, to avoid buying culle, and to do a better job of morchandislag.

The above findiags tic in closely wh the Increased reliance that ille have plaeed on laboratory tests in recent yeare as a means
table viI

RELATIVE IMPORTAMCR OF REASONS POR USIMO COTTON FIBER TESTS, DI VOLUE
 ABOUST 2, 1956 T0 JULT 31, 2957

1. Demand by mill customers for teating service	2nd	12	22	5	3	42 1
2. Provides improved	1st	-	1	1	1	3
quality evaluation	2nd	1	1	1	-	3
3. Obtain better evaluation of cotton -nytot	1at	-	-	-	1	1
4. Lnewematio to mverd	283	-	-	-	-	
buiny colle	24	2	1.	1	-	4
3. 40 antue 300 or	15	-	-	-	-	,
aottos merchendising	2nd	-	-	-	1	1
$\underline{11}$ zaipers		15	2	6		5

abales of cotton handied on the Namphis market.

TABLE VIII

PROPORTION OF TENNESSEE AND U. S. COTTON MILLS PURCHASING COTTON PARTLY ON THE BASIS OF FIBER TESTS, BY TYPE OF TEST, 1944-45 AND 1957-58a

Type of test	Tennessee		United States	
	1944-45	1957-58	1944-45	1957-58
	(Percent of mills using tests)			
Fineness	6	61	10	65
Strength	11	44	16	42
Length and length uniformity	11	39	12	29
Maturity	-	22	6	15
Nonlint content	-	11	1	14
Color	-	22	-	4

${ }^{\text {a Source: U. U. Department of Agriculture, Practices of Tex- }}$ tile Manufacturers in the Purchase of Cotton, Processed Report, Cotton Branch (Washington: Government Printing Office, February, 1952) and a 1958 study of fiber testing by cotton mills in the United States by the Tennessee Agricultural Experiment Station in cooperation with ten other states and the Agricultural Marketing Service, (unpublished to date).

TABLE IE

COMSIDERATIOMS IH PURCHASHO COHTON WITHOUT THE USE OF FIBER TES 28,10 SHIPPERS, MEMPHIS, THNESSEE, Lu005\% 1, 1956 T0 JULI 31, 1957

the ten shippery gave two considorations ach.
them sufficient information. No shipper handling over 250,000 bales annually bought cotton without obtaining some data as to its fiber charateteristics other than grade and staple longth.

CHAPTER III

PRACTICES USED IN TESTINO

The forty-dix shippers made fiber testo on their own instrymonte and through comercial laboratories. The following is a sumary of the practices used by shippers on theis own Instrumonte, and those used by tee labort toriea.

Method of sompling

Regardleas of who tested the oetton, sevorel difforent methods were employed by the forty-aix chippere in testing cotton fibor prope ortien before and after purchase of cotton. These wores (1) teating every bele of particular lots for one or more properties (2) testing overy bale of particular lots for some propertios, and a sample of the lot for other propertiesf (3) testing a fixed proportion of all purchases for one or more propertless (4) testing for one or more prop erties from bales anmpled throughout the season; (5) teating cotton purchased from cortain torritories onlys and (6) a coabination of two or more of the above methode.

Operating Practices With Shipper Orned Instrumonte

Fineness

411 thirty -one of the ohippari owning instrumants for porfor Ing fiber finenese test made one determination per test aample (rabla X). Twenty-one of these inciuded cotton from both sides of the bale in the

PRACTICES USED IN TESTIMO CORTON ON SHIPPER-CNNED INSTRUIENTS BY VOLUE OF COTTON HANDLED, 31 SHIPPEAS, MPYPHS, TEMNESSEE, Auoust 1, 1956 TO JULI 31, 1957

enmple. The reaining ten used cotton from one side only. Thore appeared to be no relationshlp between the sise of the shipper and the above two practices.

For twonty-air of the shippere, the fiber teat operator did not know the bale classification as to grado and staple. The Ifve operatore who knew this information were eaployed by shippere handing less than 100,000 bales annelly.

If a bale had been classed as "two sided, nl^{1} seven of the operatore were givon this information. Only two of the operators omployed by ehippers handling over 100,000 bales were given these date.

In testing these "two-sided" bales, aeventeen ahippors tested both aldes and used an average of the two readinge. $S i x$ tested the lew grede and staple side only, and olght said they gave these bales no apecial handling. There appeared to be no relationwhip between the volum of the shipper and the teating prosedure used for the bales excopt the sinilardty between unppere in the lower volume groaps, and the diesinilaylty between shippers in the two larger ones. None of the ehippers handling over 250,000 beles took a reading from the low grade and staple sides only.

Strength

111 four of the shippers owning Preasley testers used the serogange setting. The muber of breaks per sample ranged from one to six. Two flrms would use two and three breaks when the aample was a blend of

[^8]ten bales, and aix breaks when the teat was on an individual bele, The ahipper making oniy one break used an unblended sample. The thipper making six breake took them frcen six positions on the sample. Thether this sample was a blond was unknown.

Length and Langth Uniformity

411 three of the firms owning instrumants for this teat nade two or more doterminations per sample. Each test sample insluded cotton from both sides of the bale and the operators knew if the beles were "plated."

Oporating Practices of Comereial Testing Laboratories

The fiber testing practicen of the two comercial laboratories in Mamphis were vory similar and governed to some extent by the regueste of their patrons. Noither firn's operttore knew the clasalfication of the cotton from which the samples were taken and, censequently, did not know if the bales were Mplated." Whether the sample consisted of cotton from both sldes of the bale dopended upon the semple subuntted.

Pineness

Thirty-siz of the forty-01x shippers used these agoncies for testing flber flaeness. One laboratory employed one and two doterminations per test sample in about equal proportion, and the other usually made two determinations.

Thirtymilx firman used comercial facilities for this test. One Iaboratory made at least two breaks per aample and the other made an average of four brake.

Length and Length Uniformity

Two thippers used comereial facilities for this test. Two determinations por test sample were made on all cotton anbmitted to the fee laboratorles.

Matarity, Nonlint Content, Color, and Mep Count

Five flrme uned fee laboratorled for the above tests. The number of determinations mede por test sample varied dopending upon the requeat of the ohipper.

Shippery' Checiding of Own Instramants

Treaty-seven of the thirty-one shippere owning fiber testing Instruments used calibration samplea for checking instrumente (Table II). The number of shippers checking, by volume groups, ranged from all of the flve largest ahppers to three of the four amallest ones owning tosting devices for fineness.

For the tronty-beven ohippere parchasing calibration sampled for their fineness tests, the frequancy of checks on their instruments ranged from every hour to once per day for sixteen firms, to three times weckly for four others. Three shippers tested inatruments every timo used, and three varied the time between check:. In addition, one of the

TABLE XI

USE OF CALIBRATION SAMPLES ON SHIPPER ONNED IASTRUIEXTS BI VOLUIE GROUP, 27 SHIPPERS, MEPPIIS, TEMBESSES, avoust 1, 1956 т0 JUL 31, 1957

larger ahipper roported crose-oheoking between its four Hieronaires six time dally. There appeared to be no relationohip between the frequency of the check and the volume handled by the f1re.

Four of the above chippers testing for finenese also owned instirumonte for testing fiber strength. Two of the shippere oheoked their Pressley machines with the same frequency ae their Micronalres. The ohipper making six cheoks daily required the three breaks of eagh cheok to be within a certain plus or mime standard deviation of the calibration samplo.

Instrument Cheok by Commercial Laboratories

Both comercial laboratoris used calibration samples to tast the accuracy of their machines. One laboratory made a cheok before testing every lot of cotton. The other laboretery made a dally oalibration oheck and also ran soveral interoheck during the day betwoen its two Moronaires and two Prasalegs. One firm rechecked every teat finding before it was released. The operntorn of one laboratory were checked daily for the quality of their work.

Location of Fiber Teeting Instruments

Instruments owned by shippers were opereted in various parts of their eatablishment under a variety of condstions (Table III). Those shippers operating fiber teste under controlled atmosphoric conditions maintained a constant temperature of around 68 degrees Fahrenheit and a

TABLE XII

LOCATIOM OF SHIPPER-OWMED FIBER TESTINO INSTRUNENTS BY VOLME OF COTKOI RANDLED, 31 SHIPPRRS, MEMPHIS, TEMNESSEE, adoest 1, 1956 to July 31, 1957

Location and type of instrumat	galen of cotion Mandica				
	$\begin{aligned} & \text { bindor } \\ & 30,000 \end{aligned}$	$\begin{aligned} & 30,000- \\ & 99,999 \end{aligned}$	$\begin{aligned} & 100,000 \\ & 249,999 \end{aligned}$	$\begin{aligned} & 250,000 \\ & \text { and abover } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { chippert } \end{aligned}$
	(fumbor of ehippers oming instruminto roporting)				
Meronaipe	(4)	(17)	(5)	(5)	(31)
1. cotton room	1	3		1	5
2. Classing room	3	6	4	$3{ }^{4}$	16
3. Soparate rocm	-	1	1	,	2
4. Inboratory	-	2	-	${ }^{\text {b }}$	3
5. Office	-	5	-	-	5
Port-Ar	-	(1)	(2)	(2)	(4)
1. Wimemin in field	-	1	1	(2)	,
2. Cotton room	-	-	-	1	1
3. craseater meom	-	-	-	1	2
Presaley	-	-	-		(4)
2. 0045080	-	-	-	1	1
2. Petreter	-	-	-	36	,
Stalerater	-	-	-	(2)	(2)
1. Hovitis	-	-	-	3	2
Pibrograph	-	-	-	(2)	(2)
1. Cotion room	-	-	-	1	1
2. clavain rean	-	-	-		2
sutermmbl sorter	-	-	-	(1)	(2)
1. Hubxatin	-	-	-)	1

arwo of the three shippers have controlled tenperature and humidity.
bcontrol both huaidity and tomperature.
relative huaidity of 65 pereent. A11 testi conducted by the commereial Laboratories were conducted under controlled atmospheric conditions.

Locetion of Shipper Owned Instrumente

Meronaire. Sixteen of the thirty-ane shippore kopt this inetrument in their classing room (rable III). Tour of these shippere, all handling over 250,000 balos ammally, operated their machines under controlled atmompheric conditione. Other shippers had Mioronaires in their cotton room, soparate unconditioned rooms, and in their busineas offioes.

Port-Ax. Two of these Ifres had their Port-Ars with their field men and these were probably used under varied atmospherle conditions. The other two shippere owning this machine kept it in their cotton and clasaing rooms, both unconditioned for temperature and humdity.

Pressler. Three of the four shfppers owning Pressleys opersted thea in thelr fiber tosting laboratories under controllod atmopheric condithons. The fourth kopt his in an unoonditioned cotton room.

Stelomoter and Suter-Fobb Sortor. Both firm owning these 1notruments rept them in testing laboratories under controlled atmospheric conditions.

Plbrograph. Both shippers uaing the Fibrograph did so under uncontrolled atwospheric conditions.

Looation of Comarcial Liboratory Instrumants

The two Iaborttories operated their instrumants under controlled humidity and temporature. One laboratory kept the temperature at 70 degrees Pahrenheit and the other at 75 dogrees. Both maintained relative huadity at 65 percent. Tolerances from these epecifleations were limited
to 2 degrees Fahrenheit and 2 percent relative huaddity. Both firms 1asued official test roporte only after the cotton had been conditioned for a minimua of four hours. Some samples were not conditioned due to the necessity of apeed in returning the sample to the customer while some were conditioned for trenty-four hours.

USE OF FIBER TESTS IN BUIMG COTTON

The domand by mills for ootton meeting Ifnemess and streng th epecifloations enoouraged the shippere to make exteneive use of these two teats (Tables IV and VI). The amount sold to aills on other tost speolileations was such less, consequently these other charaeteristies were of less importance to shippere in their purehasing and aseembing operations.

Source and Origin of Open-thrket Purchased Cotton
of the $5,106,605$ bale of cotton handled by the forty-nix Memphie thippers, 2,742,774 beles were purchased in the open market. Of the open-market purchases, 61 percent were bought direstly from the interior, 39 pereent through brokers, and about 1 pensent from other shippere (2able IIII). The larger shippers purchased most of thelr cotton from the interior. For those handling lese than 100,000 bales anmully, brokers were the most important source. Highty-oight percent of the cotton purchaed from the Western and Southwestern states was from the interior conpared with 53 percoat from the South Central and Southeastern sections (rable IIV).

Cotton frow fourteon statee and Hoxlco was pruchased by the shippors in their Memphis operations. Mesiseippi, Arkansas, and Hissouri Fere the more important sources, supplying 23,20 , and 11 pareant reepectivily. Tennessee supplied slighty over 9 percent. The least

TABLE XIII

TYPE OF MARKET SOURCE OF OPEN-MARKET PURCHASED BALES BY SIZE OF SHIPPER, 46 SHIPPERS, MEMPHIS, TENNESSEE, AUGUST 1, 1956 TO JULY 31, 1957

Source of cotton	Und 30.000	ales	f cott 30, 99,	hand	ded by 100,0 249,9	shippe	rs, by 250,0 and ab	lume O0 ove	groups Tot ship	
	Number	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Number	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Number	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Number	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & \hline \end{aligned}$	Number	Per- cent
Interior	50889	26.7	392745	46.5	327534	59.1	904901	78.4	1676069	61.1
Brokers	139011	72	49877	53.3	226241	40.9	234605	20.3	1049734	38.3
Shippers	1000	0.5	1100	0.1			14871	1.3	16971	0.6

Total 190900100.0843722100 .0553775100 .01154377100 .02742774100 .0

TABLE XIV

TTPE OF OPEN-MARKET SOURCE BY OBOORAPHICAL ORIGIN OF COTTON, 46 SMIPPERS, MTMPIS, TMNTESSEE, AUGUST 1, 1956 to NJIE 31, 1957

$\begin{aligned} & \text { coupging on } \\ & \text { orlcla of } \\ & \text { cotton } \\ & \hline \end{aligned}$	Source of purchase			Total purchases
	Interior	Broker	Shipper	
	(Number of bales)			
Southeast	91245	44632	1369	137246
South Contrel	986385	910040	4381	1900806
Southwest	225149	49772	5630	280551
Weat	352990	45290	5591	403871
Yeaioo	20300	-	-	20300
Total	1676069	1049734	16971	2742774

Itportant suppliers, in desending order were Now Moxico, South Coroling, and Oklahome with two-tenthe of a percent aach.

Tennessee chippore form in important mariet for the cotton erop of several states. The propertion of different states' cotton produetion bought through the open-mayket operetion of the Memphis chippore gives some maarure of their importance to a region as a customer for their cotton. These flgares for the 1956-57 cotton crop are as followis

State
H3sours Porcent of crop purcheved

Tomesseo 66

Meal esippi 49
4. 41

Artansas 38
Louisiana 30
Arizona 19
Callfornia 17
Alabame 12
Texas
Georgia 6
North Cerolina 2
How Mexice 2
South Carolina 1
Meadico 1
Ollhom 1

This measure 1s far from ocmplete as it does not rellect the $2,363,81$ beles indirootly purchased from these states through the shippers' sequisitions of Comodity credit Corporation stooke.

Use of the Fineness Test in Open-larict Purchases

Fiber finones is an important fiber oharacteristic used to suppleaent grede and staple. Shippers, through the use of varlous aampling techufques, secured finences data on $1,390,258$ of the $2,742,774$ balea of cotton parehaeed in the open martet, and individually tested 1,930,390
bales after purchase. This duplication of tosting for finances wes largely for checking on the accureay of their sampling proeddure, for concontrating cotton of various qualities, and for the purpose of meetIng cotton nill contrect speciflcationt.

Fineness information was secured through the use of one of three sampling proesdures on 67 pereent of the $1,676,069$ beles purahesed from the interior (zeble IV). The most important was the talding of rundow pro-buying tests in the torritory and this was the basis for purchasing 886,222 beles. Shippers would anke fiber teste at apeolfled pointe in the territory and if the cotton mat the necessary requiremants, the firm would then byy cotton in that aren. The shippers handling over 250,000 beles tested 88 percent of their interior purchases in this manner while the other three groups used it for an average of 12 percont.

The proportion of cotton tested by this method ranged by origin between 79 percent from the Southeast to 42 percent from the South Cemtral section (rable XI).

The fineness epeotflations on 171,049 interior perohased bales were obtained by meing apot checke of actual samples from the different lote of cotton (Table IV). Tests would be taken on 5 to 10 perceat of the order and the result taken as belng ropreaentative of the ontire 10t. The highest proportion of ootton tested by this means originated In the South Contral territory and Mexico (Table XVI). Shippers handilng leas than 200,000 bales tested a greater percentage of thoir intorior purchases this way than the larger shippers (rable XV).

Alwost 61,000 bales were individually tested prior to parchase at the expense of eithor the buyer or seller (Table IVI). This method was

USE OF THE FINENESS TEST FOR INTERIOR PURCHASES BI SIZE OF SHIPPER AMD MEPHOD OF SMMPLINO, 46 SHIPPRES, MDMPHIS, TEMMESSEE, AUOUST 2, 1956 T0 गutil 31, 1957

TABLE XVI

USE OF THE FINMIESS TEST FOR INTERIOR PURCHASES BI ORTGIN OF COTTON AND MEHOD OF SAMPLING, 46 SHIPPIRS, MGMPHIS, tENIESSEE, ajobse 1, 1956 T0 JuI 31, 1957

$\begin{aligned} & \text { oricis } \\ & \text { of } \\ & \text { cotton } \end{aligned}$	Total interior purchases (balea)	Method of sampling cotton for fineness test Random pre- Prior spot Individual bale test buying tests chock of ac- at expanse of: in territory tual ample burou sallep							
		Beles	$\begin{aligned} & \text { Per } \\ & \text { cont } \end{aligned}$	Palos	$\begin{aligned} & \text { Por } \\ & \text { oent } \end{aligned}$	Balos	$\begin{aligned} & \text { Por } \\ & \text { cent } \end{aligned}$	Balos	$\begin{aligned} & \text { Fer } \\ & \text { oceat } \end{aligned}$
Western	352990	230053	65	6375	2	16505	5	8325	2
Southweatern	225149	158355	70	13533	6	750h	3	7400	3
South Central	986385	412743	42	148541	15	21766	1	5295	0.5
Southoastorn	91245	72471	79	-	-	2175	2	-	
Mexico	20300	12600	62	2600	13	-	-	-	
Total	1676069	886222	53	171049	10	39950	2	21020	1

used more for cotton parchased from the Western states and wes not ueed by ahippere in the anallest volume clasaification (Table IV and IVI). The $1,010,734$ baleo purchaed through brokers had flamese data on 25 percent of them (Yable XVII). Two methods were ueed to secure this information. The most inportant was the apot oheck of actual sanples by which 284,786 beles mere tested. The other was to test each individunl bale in a given lot of cotton. Over 81,000 bales were cheeked in this manner. The broker or seller pald for 86 pereent of these teste.

Thirty-three percent of the 16,971 bales purchased through other shippere was on the beele of guaranteed terme as to fineaess (Imble XVIII). Minety-nime percent of these guaranteed bales went to ohippere handling over 250,000 beles.

Rinety-four percent of the $1,930,390$ open-market purchased balea tested after purchase were teated by shippers ualng thelr own instruments (Table xIX). The largest shippers tosted all of their ootton aftor purchase on their own instrumente and had 5,218 belos retested bs foe laboratorles. The shippers handling lase than 30,000 bales tested 15 percent of this cotton on tholr own instruments and proportionaliy were the blggest user: of the fou laboratories which tested 13 percent of thatr cotton after parehase. The shippers handling between 30,000 and 249,000 balos tested 46 paronat of thelr beles on their own instruments and had 6 pereent of it tested by foe laboratories.

The variation of the amount of cotton tested after purchase by origin ranged from 11 percent of that from Louisiant to two-tenths of 1 parcent from Oklahoma. ${ }^{2}$

Data from tables not included in this study.

TABLE XVII

IIPORTAMCE OF THE FIMEXESS AMD STRDMOHH TEST FOR PURCHASES THROUOH BROKERS, 46 SHPPMRS, HEYPHIS, TENAESSEE,

4003st 1, 1956 T0 voli 31, 1957

sise of thippor and type of teat	Number of bales by sampling method			
	After individual bale After spot			
	tost at expense of:		check by	Total purchases threugh brokers
	Buyor	Sallor	buyer or seller	
Ender 30,000				139011
FInezest	8434	3200	16810	
frect	700	2200	7030	
Hismijis				43171
Manmmatil	26	1763	254	
Stued	-	-	171	
lughecola bu	2762	3 l	1180	2inin
8ixuer	87	3001	20	
0,034 min orar				170.0
Finoneas	-	45742	72323	
Stx-t	-	1200	7×27	
rort				1umind
Finenese	21424	70068	184786	
Strearth	700	30992	8148	

TABLE XVIII

IMPORTANCE OF THE FINENESS AND STRENGTH TEST FOR PURCHASES FROM OTHER SHIPPERS, 46 SHIPPERS, MEMPHIS, TENNESSEE, AUGUST 1, 1956 TO JULY 31, 1957

	Total purchases from shippers	Number of bales on Size of shipper	
Under 30,000	1000	53	-
$30,000-99,999$	1100	13	-
$100,000-249,999$	-	5673	Strength

TABLE XIX

NUMBER OF BALES TESTED AFTER PURCEASE FROM THE OPES MEEET AND C.C.C. OR SHIPPPER OUNED IMSTRUMEMIS AID BY FEE LABORATCAIES, 46 EHIPPRRS, MTYPHS, TMMESEEE, AUGUSI 1, 1956 TO JULI 31, 1957

Stwe of chipper and cotton origin	Number of bales tested for:				Total
	Finen		Strength		
	3nippos		shippor		
	Inotruens	010	nutrimen	$F 0$	tarchacen
Open market					
Under 30,000	29370	25361	-	9303	190900
30,000-99,999	472840	25523	-	25462	843722
100,000-249,999	163706	54095		6939	553775
250,000 and over	1154377	5118	50677	4645	1154377
Total open market	1820293	110097	50677	46349	2742774
C.C.C. stocks					
Under 30,000	3500	4925	-	3788	43900
30,000-99,999	169577	21056	-	9411	327457
100,000-249,999	113203	44375	-	10857	332309
250,000 and above	1649013	11152	55567	6802	1660165
Total C.C.C.	1935293	81508	55557	30858	2363831
Total open market					5106605
		I		1	

Use of the Fineness Test in Comodity Credit Corporetion Purchases
shippere purchased 2,363831 balee from the C.C.C. and tested 85 percent for fineness (Table xX). The main purpose of these teste whe In sorting and coneantreting bales fer shipmont. They were of no use as a buying gulde alnce all were made after purchase of the cotton. The largest shippers tested $a 11$ of their purchasee while those handing less than 30,000 bales tested ony 19 pereant. over 95 peroent of the cotton teated was cheoked on ahipper omned instrumants. Oniy the shippere handilag less than 30,000 bales had the mafority of their tests made by a fee laboratory (Table II).

Fineness of Purchases of 1956 Cotton Grep

The forty-six Memphia shippery purchased cotton in all fineness categories (Table xII). straty-three porcont of the cotton was in the average fineness range, and only i pareent fell above five, and 8 percont below three. Forty-seren pereent of the total purchases were between 4.0 and h. 4 . For all firms, regardiess of alse, more cotton fell into thie range than in any other clase. shippers handling less than 30,000 bales had the higheat proportion of purchases in the very fine eatogory.

Prictug of Purchases on Basis of Pineness Test

The total number of beles parchased on the basia of sample propurchaee fincneas testis by the forty-adx shippors was 2,247,796, stix teen of the fires buying this cotton discounted parchases they sensidered

TABLE XX

THE NUMBER OF BALES TESTED BEFORE AND AFTER PURCHASE FROM THE C.C.C. AND OPEN MARKET FOR FINENESS AND STRENOTH, 46 SHIPPERS MEMPHIS, TENNESSEE, AUGUST 1, 1956 to JULY 31, 1957

all tests on C.C.C. bales were made after purchase.
TABL: XII
THE PROPORTION OF SHIPPER PURCHASES OF THE 1956 COTTON CROP FALLIMG IIN VARIOUS

Size of shipper	Number and percent of purchases in fineness ranges											
		Average				Fine				Very fine		Total purchases
	$\frac{5.0-\mathrm{up}}{\text { Number }}$	$\frac{4.5-4.5}{\text { Number }}$	9	$\frac{4.0-4}{\text { Number }}$		$\frac{3.5-3 .}{\text { Number }}$		$\frac{3.0-3.1}{\text { Number }}$		$\frac{2.9-10 w}{\text { Number }}$		
Under $30,000$	8521	33354	14	87087	37	66093	28	26118	11	13627	6	234800
$\begin{array}{r} 30,000 \\ 99,999 \end{array}$	857587	272403	23	411299	35	310267	26	76614	7	14838	1	1171179
$\begin{array}{r} 100,000 \\ 249,999 \end{array}$	283393	164962	19	395211	45	226884	26	58686	7	12002	1	886084
$\begin{aligned} & 250,000 \\ & \text { and over } \end{aligned}$	101041	331478	12	1523630	54	637356	23	156125	6	64912	2	2814542
Total chippers	223659	802197	16	2417227	47	1240600	24	317543	6	105379	2	5106605

to be axcessively IIne. The average reading at whioh inippere started discounting cotton was 3.4 Micronaire units, with a range of 3.0 to 4.O. These interfirm differences of discount rates were caused largely by the varying demand of the ehippere' customers for different cotton oharacteriutios.

Three methods of diesounting cotton for fineness were roported (Table IXII). Pive of the shippors discounted all cotton equally thet was bolow a specified mintrun, and Ifve othere varied the diseount rate With the time of purchase and the finemeas of the cotton. Six thippore used opecifled discounts within different ranges of fiber fineness.

There was a wide variation of discounts taken for cotton having sindler fineness oheracteristics. For instance, the range of discounts for cotton testing under 3.0 for finenesa was from 50 to 500 pointe per pound (rable XIII). Three minimas betreen 3.0 and 3.5 , and four ranges eterting between these 11 nite, had discounts from 30 to 200 pointe. Minimans above 3.5 or rangee starting in this area had discounts from 25 to 100 pointe. There was a reletfonship betwoen the flneness of the cotton and the diseount taken by the shipper. ${ }^{2}$ The average of the diecounts taken or cotton under fineneas readinge of 3.0 was 228 pointe por pound. The average diseount for minimuse and ranges whose upper 11ndt varied from 3.2 through 3.5 was ninety-four pointa, and the average of all firn discounts for ootton above 3.5 was soventy points per pound.

A total of 80,327 bales were discounted for the amount of $\mathbf{3 3 4 , 3 8 9 \text { . }}$ This averaged \$4.16 per bule. The average bale discount by finenest

[^9]
TABLE XII

DISCOUITS OF RXCESSIVELI FINE CORTON BY FINEMESS READINO OF PIBER BOUOFT ON SAMPLE PRE-PURCHASE FINENESS RESUL28, 16 simiPPIns, wipits, TMnIESSEs, avoust 1, 1956 to गulx 31, 2957

$\begin{aligned} & \text { Mirw } \\ & \text { number } \\ & \hline \end{aligned}$	\qquad	Discount per peund (points)	$\begin{aligned} & \text { Average } \\ & \text { flizn } \\ & \text { disoount } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Bales } \\ \text { desonnted } \\ \text { (number) } \end{gathered}$	Monotary value of da secunte
2	2.5 \& below	350		276	- 4830
6	3.0-2.5	150		951	7133
2	3.0-2.5	150		2762	20715
10	Under 3.0	50-150		720	3600
38	Under 3.0	50-200	228	400	2500
12	Under 3.0	200		-	-
32	Undar 3.0	250		3900	48750
37	Praye 300	00		1	8
3	Preve 30	Facea		-	-
45	3.2-2.6	200		7500	75000
1	3.2-2.9	100		1402	7410
30	3.3	50		619	1548
12	$3.4-3.0$	100		52	260
18	3.1-3.0	100		500	2500
30	3.4	35	94	619	1083
40 per . 01 Meron-					
17	3.1-2.4	reading		1158	11580
6	$3.5-3.0$	50		8559	21398
2	3.5-3.0	50		27625	69238
11	3.5-3.0 \& below	4		440	1100
45	3.7-3.3	100		3750	18750
1	3.7-3.3	50		8890	22225
7	$3.7-3.0$ \& below	0-250	70	353	2206
12	3.8-3.4	50		260	650
46	3.8-3.0 a belew	Varles		-	-
6	$4.0-3.5$	25		9510	11888
16 firms				80327	334389

reading ranged from $\$ 9.72$ per bale for 9,010 bales under 3.0 , to $\$ 2.45$ per bale for the 22,763 bales whose discounts started above fineness 3.5 . Asturing the average bule was worth $\$ 150,6$ percent of the bales purchased on the besis of ample pre-purchase fineness tests were discounted for 3 percent of their value.

Thirteen other ahippere who bought cotton on pre-purchase fineness recults had no diecount system, Thoy biuply refuecd to bay cotton that did not meet the deaired speeifleations.

The forty-adz ohipper parohaed 142,462 baloe on the baele of Individual test for finenese. Eleven flrms discounted cotton for being too fine and three firme paid prouivms for apecified fineness readinge.

Information was obtained on one of the shippere paying prominns Ior incneae. He pald 3,342 on 7,290 bales. This avoraged 46 cents per bale for cotton above finenes 4,0 (rable XXII).

The same mothods of discounting based on atnimuns, ranges, and time of parchase were preaent here. Also, ae before, there was a wide variation betreon firm diecount rates for cotton of aluilas ilnonese. For minimua fineness betweon 3.0 and 3.5 , and two ranges starting between these $1 i$ altm, discounte ranged from 35 to 200 polate per pound. For cotton being discounted above fineness 3.5, the range was at least 85 pointe per pound, there appeared to be a relationmhlp betwean the firm discount rate and the Ifber fineness, the discount averaging 263 pointe for cotton under finoneas $3: 0,109$ for that between 3.0 and 3.5 , and around 55 polnte for cotton being disaounted above 3.5 Micronaire unite, ${ }^{3}$

[^10]
TABLE XXIII

IUPORTANCE OF PRTMIUMS AND DISCOUNTS ON COTTON PURCHASED ON THE BASIS OF INDIVIDUAL BALES TEST, 8 SHIPPERS, MEMPHIS, TENNESSEE, AUGUST 1, 1956 TO JULY 31, 1957

$\begin{gathered} \text { Pirm } \\ \text { number } \\ \hline \end{gathered}$	Fineness specifications in Mieronaire readings	Discounts or premiums per pound (points)	Bales discounted or given premium (number)	Monetary value of discounts
		(PRRMIUMS $^{\text {a }}$		
4	4.0-2.7	10	6075	\$ 304.00
4	4.8 \& above	50 SCOTNTS ${ }^{6}$	1215	3038.00
45	3.0 \& below	${ }_{400}$	-	
38	3.0 \& below	50-200	400	2500.00
4	3.2-3.0 \& below	200	2430	\$24300.00
30	3.2	70	265	928.00
1	3.2-2.9	100	194	970.00
30	3.2-2.7	200	265	2650.00
30	3.3	50	265	663.00
30	3.4	35	265	464.00
11	2.5-4.5	Unknown	-	-
45	3.7-3.3	100	-	-
1	3.7-3.3	50	1164	2910.00
6	$4.0-2.5$	15	951	713.00
25	$4.4-3.8$	Varies	21335	Unknown
9 firms			27534	\$36098.00

a Three other firms discounted cotton and two others paid premiums, but no information was obtained as to the amount of cotton discounted and the amount of the discounts.
biverage discount per bale figure disregarded 21,335 bales for which discount data unknown.

A total of 6,199 bales were discounted for a sum of $\$ 36,098.4$ This averages $\$ 1.66$ a bele higher than the discounts based on the sample fineness tente described previously. The average discount on cotton by fiber finenese also raried from those based on sampling techniques, being $\$ 6.25$ on cotton undor fineness 3.0 , $\$ 8.14$ on cotton between 3.0 and 3.5, and \$1.71 on cotton discounted above 3.5. Several factore could account for these differences, among them boing the large influence of firm number four, the unknown influence of four other firme, or morely that these discounts were based on more precise infomation and more teste were taken on a per bele bands, thus ontailing more total test cost.

Again, assuming the bale value at $\$ 105$, and the avorage discount of $\$ 5.82$ is correot, 19 percont of the purohases based on indiridual bale finoness tests were discounted for 4 percent of their value.

Pive other ahippers, rather than sot up a range of discounts, did not purchate cotton below a specifled finoness reading.

Combining the previous two tables, 8 poreant of the beles tested for finemess prior to purchase were discounted. If the avorage ditcounts are correot, then at least 107,861 beles were discounted for $\$ 494,657$ or 3 perceat of their value.

The diecounting of cotton for being overly coarse was not widely practiced. While there were 223,659 bales parchesed with a Pineness value over 5.0 , anly four shippers discounted 2,130 bales, and another

[^11]discounted an unknown quantity. There was no information on the amount of diseount, but the finenses readinge at which discounte were made varled (Table KIV). One firm diecounted 1,875 beles above finenese 4.9, while another discounted seventy-five bales that fell above 3.0. There were Iive shippere who knowingly did not buy cotton designated as too coares, one of then not buying cotton over 5.0 in finenes remaing.

Use of the Strongth Test in Opmoryarket Purchases

The strength of the cotton fiber was second in importanse to Ifnoness as a expplentat to grade and staple from the standpoint of volume teated for these Ilber qualitiew. Shippers, through the same sampling teohniques used to secure fineness data, terted 25 perceat of their opan-market cotton prior to purchase and 3.5 percent after its acquisition (2,ble X).

Strength information was available on 34 percent of parchaees from the interior (Table XXV). Again, the aampling proecdure nost extenvively employed was the taking of random pro-buying tests in the territory. This provided the basis for purchase of 515,785 bales. The largeat shippery tested 56 pereent of their interior purchases in this mamer wils the other three group used it for an average of 2 percent. The use of the randon sample techaique for detamining atreng th in cotton, originating in different torritories, ranged from 62 percent of the purohases from Moxico to 21 percont from the Southeastern area (3able IxI).

TABLE XXIV

THE IMPORTANCE OF DISCOUNTS ON PGHGHASES FOR BEING OVERLY
 A00ver 1, 1956 to suLI 31, $1957^{²}$

TABLE XXV

USE OF THE STRENOTH TEST POR DYTERIOR PURCHASES BY SIZE OF SHIPPER AND METHOD OF SAYPLING, 46 SHIPPRRS, MEMPHIS, TEMNESSER, aUcost 2, 1956 TO JULY 31, 1957

TABLE XXVI

USE OF THE STREMOTH TEST POR INTERIOR PURCHASES BY ORLOIN OF COTTOI AND METHOD OP SAMPLINO, 46 SHIPFSRS, MEPPHIS, TENIESSEE, ADGUST 3, 1956 To J0LI 31, 1957

Origin of cottion	Total interior parahesen	Number of purchased bales by sampling procedureRandom pre- Prior spot Individual bale testbuylag test chook of so- at exgonee of:						
Western	352990	104682	30%	6375	23	7544	2\%	
Southwestern	225149	90816	408	13524	64	2945	18	
south Centrel	986385	288116	29\%	5903	. 63	4991	.53\%	
Sontheastern	91245	19572	218			2175	28	
Hoxico	20300	12600	62\%	2600	138	-	-	
Total	1676069	515785	318	28402	23	17655	18	

Two pereont of the interior purchases were based on apot checks of actual samples. The mothod was proportionally the most important to thippers handling lose than 30,000 bales who tested 15 persent of their interior cotton in this manner (rable xav). Spot ohocking was the mont importent prosedure for testing cotton from Maxico and was not used for prechases from the Southeastern section (Table XXVI).

Only 1 peromet of the interios purchmses were individually teatod and the testing cost was borne by the buyor. The maxima proportion of cotton frow iny section tosted in this manner was 2 peroent and no balea. frem Moxico were individually tested (rable XXVI).

8 trength test informetion was aveilable on 120,839 of the bales parchased through brokers (Table XVII) of these, 39,691 were individually tested and all but 700 bales handled by the amallest ahipgere were at the expense of the seller. The range of this procedure among origins of cotton varied from 34 percont of the cotton from Oxlahom to 2 percent of the cotton from Mestentppt. ${ }^{5}$ Cotton purahased on the besie of a apot check at the expense of the buyer or seller was 81, 140 bales (rable XVII). Thirty-one percont of the largest shippore' purohasee through brokere were tested in this manner compared with an average of 1 percent for the other three groups.

Thirty-three perceat of the cotton purehased from other whippers was bought on guarenteed terms as to strength (rable XVIII). A11 of this guaranteed teat cotton went to shippers handling over 250,000 bales. This ranged by orgein of cotion fram 70 percent of that from the southwest

[^12]to 10 percent from the Southeast with no bales being purohaasd through shippers from Moxico. ${ }^{6}$

Fiftr-two percent of the 97,026 open-maritet purchaned bales teated after purchase were checked by the largeat shippers on their own instruments (Table XII). The romining 46,349 bales were tostod by comareial leboratories. The Iaboratorien were most ipportant to shippers handing less than 30,000 bales who tested 5 pereent of their purchases there, and least Leportant to the Largest ahippers who tested onir 0.4 poreant of their cotton in this manner. The varietion in the amount of cotton tested for atrength after purchases ranged from 5.5 percont of that from Oklahoma to 0.5 porcent from Alabama with the average for all gtates being 3.5 percent. 6

Use of the Strungth Test in Comeodity Credit Cerporation Purchases

Streagth test data was obtained on 86,425 bales bought frem the C.C.C. (Table IXX). sirty-four percent of these bales werv tested by the largest ohippers on their own instrusents. 411 remaining bales were teated by commercial laboratorles which were the onk souree of strength teats for the other groups. The largeat and the sallest ehippers tested 0.4 persent and 9 poreant of their C.C.O. parchasen reapectively, and the average for the two middle volume groups was 3 peroont (Tablo IIX).

[^13]Pricing of Purchases on Besis of strength Test

Only seven firme considered atrongth in the prieing of cotton purchases. Tive of them were shippery handling over 100,000 bales ammully and the others more than 30,000 .

Six shippers gave promium on the basis of fiber strength apecifleations (Table XXVII). At least four shippers varied the minimum strongth point at which premiums startod. 3wo of these had no sot rate, but the other two paid specified prowiuns for cotton falling within certaln atrongth limits. One paid tronty and the other 100 pointe for each 5000 pounds per square inch reading above a apecified minimum. Another firm paid firty pointe per pound for all cotion above some stated minimuz.

The four shippors who varied their minimum for basis of prociume also varied it for discount purposes (Table XXVII). They usod the same mothod for computing the mumber of discount polate as used in arriving at pronive paynonts. The one ahipper who did not give prealume diecounted all cotton with a tenelle strength below 75,000 pounde per square inch by 200 to 300 points per pound.

Use of Other Piber Tests In Parchaaing Cotton

Oniy 6,749 bales were tested for the charecteristice of loagth, matarity, monilint content, color, or nep count, and shippars handling over 250,000 bales tested 89 peroent of these (Table VI). 131 ohocks were made after purchase and the teste for length and nep count were the most mumerous. None of these tests were made by uhippors handling undor

TABLE XXVII

IMPORTANCE OF PREMIUMS AND DISCOUNTS ON COTTON BASED ON STRENOTH SPECIFICATIONS, 46 SHIPPERS, MEMPHIS, TENNESSEE, AUGUST 1, 1956 TO JULY 31, 1957

$\begin{gathered} \text { Firm } \\ \text { number } \end{gathered}$	Strength minimums in Pressley reading	Points per pound	Strength minimums in Pressley reading	Points per pound
1	Varied	Varied	Varied	Varied
2	Varied	20 points for 5000 psi above a specified minimum	Varied	20 points for each 5000 below a specified minimum
6	Varied	Varied	Varied	Varied
7	Unknown	Unknown	Unknown	Unknown
11	Unknown	50	--	-
30	Varied	100 points for each 5000 psi above minimum	Varied	100 points for each 5000 psi below minimum
45	-	--	75000 psi	200-300 points for all cotton under 75000
7 firms				

30,000 bales annually. No data are available on the origin of the cotton tested and some bales were tested for research purposes alone by the large shippers on their own instruments.

CHAPTER 7

USE OF COTTON FIBER TESTS In SELLTHO COTTON
of the $5,106,605$ bales sold by the forty-adx Tenneasee shippere, $2,864,360$ went to the donestic market and $2,242,21,5$ to forelgm outlota (Table xxyII). The five shippese handling over 250,000 bales seld 64 persent of all exports, and these foredgn ales accounted for 51 persent of their sales. Domestio seles for these same flve fime was 1,384,881 bales, making their total sales equal to 55 pereent of thome of the corty-dix shippera. The domeatic market was the most important ontlet for ash of the other three groups, with axporta boing only 35.4 percent of their corbined sales. There were nome differences between the origh of cotton and the proportion experted with the 1atter increasing as origh shifted from East to West. The range of proportion axported by origin of cotton was from 3 porcent of the Southeastern cotton to 72 peroent from the West. PLfty-seven percont of the C.C.C. cotton and 65 percent of that from Moxdeo rere also exported.

Use of the Fineness Test in Domentic and Foroicn Selee

Salen on flbor fineness were besed on oither a fineness mindmum or a finenese range. On the former, all cotton above apeaifled fineness reading would be accepted regardless of itw coarseness. When a Ifnemean range was aployed, the upper as well as the lower lindt of eseeptable cotton was spesified.

rable xivili

MAJOR SALES COTLEES BI SIZE OF SHIPPER AND ORIOIN OF COTHON, 46 SMIPPERS, MENPRIS, TEMARSSEES, AUGUST 1, 1956 T0 JULY 31, 1957

sise of ahippor and calem ontlet							
	contrna moaters whatera mexieo C.C.C. rotal (1nce of cotim)						
	3780 480	$\begin{array}{r} 258808 \\ 17092 \\ \hline \end{array}$	$\begin{array}{r} 2860 \\ 4240 \\ \hline \end{array}$	$\begin{array}{r} 1060 \\ 2419 \\ \hline \end{array}$	2200	$\begin{array}{r} 15320 \\ 36500 \\ \hline \end{array}$	$\begin{array}{r} 180828 \\ 53972 \\ \hline \end{array}$
$\begin{gathered} 30,000-99,999 \\ \text { Dementle } \\ \text { Porely } \\ \hline \end{gathered}$	5339	$\begin{array}{r} 463382 \\ 245239 \\ \hline \end{array}$	$\begin{aligned} & 33732 \\ & 20035 \\ & \hline \end{aligned}$	$\begin{aligned} & 37964 \\ & 35505 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 157657 \\ & 169800 \\ & \hline \end{aligned}$	$\begin{array}{r} 697274 \\ 473905 \\ \hline \end{array}$
$\begin{gathered} 100,000-249,999 \\ \text { Bonentic } \\ \text { Ponein } \\ \hline \end{gathered}$		$\begin{aligned} & 332579 \\ & \hline \end{aligned}$	$\begin{aligned} & 20690 \\ & 11 H 20 \end{aligned}$	$\begin{aligned} & 41200 \\ & 34800 \\ & \hline \end{aligned}$	5200	$\begin{array}{r} 206908 \\ 125402 \\ \hline \end{array}$	$\begin{aligned} & 60237 \\ & 206707 \end{aligned}$
$\begin{gathered} 250,000 \text { and over } \\ \text { Doneotile } \\ \text { Plorel } \\ \hline \end{gathered}$	$\begin{array}{r} 123931 \\ 250 \\ \hline \end{array}$	$\begin{array}{r} 503228 \\ 75482 \\ \hline \end{array}$	$\begin{array}{r} 86266 \\ 102328 \\ \hline \end{array}$	$\begin{array}{r} 34709 \\ 216193 \\ \hline \end{array}$	$\begin{array}{r} 7000 \\ 7000 \\ \hline \end{array}$	$\begin{array}{r} 631747 \\ 2028418 \\ \hline \end{array}$	$\begin{array}{r} 1384861 \\ 1429661 \\ \hline \end{array}$
Total Dompotise Popel	$\begin{array}{r} 133250 \\ \hline \end{array}$	$\begin{array}{r} 1454997 \\ 415809 \end{array}$	$\begin{array}{r} 142548 \\ 138003 \\ \hline \end{array}$	$\begin{aligned} & 214933 \\ & 288938 \\ & \hline \end{aligned}$	$\begin{array}{r} 7000 \\ \hline 23300 \\ \hline \end{array}$	$\begin{array}{r} 1011632 \\ 1352199 \\ \hline \end{array}$	$\begin{array}{r} 2864360 \\ 2242245 \\ \hline \end{array}$
Total anles	137246	1900806	280551	403871	20300	2363831	5106605

A total of $3,925,938$ bales out of the $5,206,605$ sold were based on finenes (rable xIX). This total mas made up of $2,348,611$ beles from the domestic market and 1,577,327 from foreign outlets. 81xtyeIx paroat of these bales were sold on a range mpeaification and the remeinder on a sinoness minimum.

The proportion of bales teated for finesess decreased as the oxigin of cotton shifted frow the anstern to the western United states, ranging from 92.2 percent of that from the Southeast to 70 percent from the Wett (rable zx). Myhty-one percent of the Imzicen cotton was teated aloug with 75.5 pereent of that from the C.C.C.

The propertion of cotton tested by sise of chipper ranged from 66.5 peroent for the twelve amallest shippers to 80.3 peroent for those handilig between 30,000 and 99,999 balea amually. All ohippere, regardless of aise, sold more cotton on a Iineness range than on a finenas minimana.

Domestic Sales

Of the $2,864,360$ bales wold in the domestic zariket, $2,358,611$ Inciuded finenese apect fleatione (Table IxIX). About 70 porcent of these were on a finenese range and the remeinder on a minimum. All shippers, regardlese of volvme, sold more on sange than on a minimua basis. The proportion of cotton tested by sise of shipper renged from 86 percent for the Ifve largeat shippers to 67 percent for the twelve handling less than 30,000 annully.

There was a difforentiation between the geographieal origin of cotton and the proportion tested, with the latter doareasing as the

NUMBER OF OPEN-MARKET AND C.C.C. PURCHASED BALES SOLD ON SPECIFICATIONS OF FINENESS IN THE DOMESTIC AND EXPORT MARKET, 46 SHIPPERS, MBMPHIS, TENNESSER, AJGUST 1, 1956 TO JULT 31, 1957

Size of shipper	Domestic sales			Export sales			Total sales on fineness	sales
	$\begin{aligned} & \text { Total } \\ & \text { sales } \end{aligned}$	Range	Minimum	Total sales	Range	Minimum		
			(Bales	of cotto				
Under $30,000$	180828	84436	36696	53972	1610	33365	156107	234800
$\begin{array}{r} 30,000- \\ 99,999 \end{array}$	697274	450103	146061	472905	199421	244708	940293	1171179
$\begin{array}{r} 100,000- \\ 249,999 \end{array}$	601377	408310	26999	284707	171188	48984	655481	886084
$\begin{aligned} & 250,000 \\ & \text { and above } \end{aligned}$	1384881	701030	494976	1429661	558478	419573	2174057	2814542
Total	2864360	$\frac{1643879}{2348}$	$\frac{704732}{8611}$	2242245	$\frac{930697}{1577}$	$\frac{646630}{7327}$	3925938	5106605

TABLE XX

NUBER OF OPRHMMRK BT AND C.C.C. PURCHASED BALES SOLD ON SPECIFICATIONS OF FIEENESS II THE DOHESTIC AND EXPORT MARKET ET ORIGTI OI COTMON, 46 SHLPPER8, MWPHT8, TENMESSES,

Avoust 1, 1956 to NUKI 31, 1957

$\begin{aligned} & \text { origin } \\ & \text { of costion } \end{aligned}$	b-2.10 dat			400\%			TotII sales on finomese	$\begin{array}{r} \text { Totas } \\ \text { celes } \\ \hline \end{array}$
		P1em	Mind	$\begin{aligned} & \text { Total } \\ & \text { cales } \end{aligned}$	Dana	Mnimam		
			(17100	o. cet	+5a)			
Sentheastern	133250	73460	48277	3996	1813	1647	125197	137246
South Contral	1454997	641126	336402	445809	197430	121095	1496053	1900806
South weatern	142548	39200	72313	138003	66226	41745	219484	280551
Westera	114933	50866	24400	288938	130309	77840	283415	403872
Meadeo	7000	350	3850	23300	6880	5400	16480	20300
C.C.C.	1011632	638877	219490	1352199	526039	398903	2785309	2363831
411								
oricins	2864360	1643879	704732	2242245	930697	64.6630	3925938	106605

origin moved from east to west (rable $x X X$). The pereentage ranged from 91 peroent of that from the Southeast to 65 persent from the Weat. About 60 percont of the Moxican cotton was tested along with 85 porcent frow the C.C.C. Only on cotton originating Prom Moxdco and the Southwest was the fineness minimu used more than the range as basis for domestic sales.

Enport Sales

of the $2,242,245$ belee sold in the export market, $2,577,327$ were sold on fincaess apooifications (Table IXIX). About 59 percent were on a Iineness range and lil porsent on a miniman. Only the twolve ahippers handling less than 30,000 balea anmally sold nore on a minimam than on a range specification. The proportion of cotton tested by alse of shipper varied from 65 percent for the twelve analleat to 77 porcent for the $51 x$ bippere handling betreen 100,000 and 249,999 bales anmally.

There was no Eignifiaant relationship between the argein of ootton and the proportion of export bales terted (Table IE). The proportion teated manged frea 87 percent of that from the Southeaat to 71 perceat from the South Central section. About 69 percent of the C.C.C. cotton wae teated slong with 92 percent of that from Mexico. More cotton exported, rogardiess of orlgin, was sold on a finemess range sather than on a finenese minizun.

Uee of the strength Tuat in Domestic and Export Sales

Sales on fiber atrength were based on a minimus reading. A range was not used since the cotton processing wat not adversely affocted
by cotton that was "too atrong," but by the weak fibers.
A toknl of $1,216,469$ out of the $5,206,605$ bales were sold on skrength specificatione (rable XxII). This total was made up of 708,243 beles going to the domostic market and 508,236 to the export markot. Unlike the test for fineness, thore appoared to be no relationship between the origin of the cotton and the proportion testod for strength (Table IXIII). The proportion tested ranged from 15 percent from the Southeast and Southwest sections to 26 persent from the South Central. Sales of Moxdean cotton was tested for 9 percent of 1te total and 24 percent of the total sales of C.C.C, ootton was tested.

There also appeared little relation between the propertion of total sales tested and volume handled by the shipper. This proportion varied from 17 percent of the trelve mallest mippers' eales to 30 pereant of sales by those handling between 30,000 and 99,999 beles amnul17.

Domestic Sales

of the $2,864,360$ bales sold in the domestic market, 708,143 were sold on atreagth apeolfications (Fable XxI). The proportion teated was the amallest for those firw hamding less than 30,000 bales and largest for the dx flrme handling between 100,000 and 249,999 annuliy.

There was no signifloant relationchip between the orlgln of the cotton and the perceatage of domestic sales on atrongth. This propore tion renged from 24 persent of thet from the South Contrel to 11 percent of the cotton originating from the Southwest (Table xxII). The highest proportion of all comestic sales on virength was for oetton purohesed

TABLE XXXI

MULBER OF OPEH-MARKEX ARD C.C.C. PURGRASED BALES SOLD ON STRENOKH SPECITICATIOMS BY SIZE OF SHIPPER IA THE DOHESTIC AND ExPORT MARKET, 46 sMPPRRS, MTMPHIS, THMLSSEE, A00UST 1, 1956 T0 3II 31, 1957

sise of shipere	benat cota cales	maxct Matma	2powt Hittot		$\begin{aligned} & \text { rocta } \\ & \text { asles on } \\ & \text { atreest } \end{aligned}$	Total cale
Under $30,000$	180828	13170	53972	26660	39830	234000
$\begin{array}{r} 30,000 \\ 99,999 \end{array}$	697274	183382	473905	172842	356224	2171179
$\begin{array}{r} 100,000 \\ 249,999 \end{array}$	601377	174112	284707	46675	220786	886084
$\begin{aligned} & 250,000 \\ & \text { and above } \end{aligned}$	1384881	337480	1429661	262149	599629	2814542
Total	2861360	708143	2242245	508326	1216469	5106605

TABLE XXXII

nouber or opsn-market aid c.c.c. purchised bales sold on strengit SPECIPICATIONS BI ORIGIN of COTTON IN TRE DONESTIC AID EXPORT MARKE, L6 SHIPPERS, MEMPHTS, TEMITRSEE, avorst 1, 1956 to Juli 31, 1957

origin of cotter	$\begin{aligned} & \text { Bomat1 } \\ & \text { Total } \\ & \text { cales } \end{aligned}$	70criot		Mrimam	$\begin{aligned} & \text { rodn } \\ & \text { cales on } \end{aligned}$ Atren 昆	$\begin{aligned} & \text { Tetay } \\ & \text { anden } \end{aligned}$
(axe a, cotri)						
Southeastern	133250	18494	3996	2357	20851	137246
South Contral	1454997	351209	445809	152395	503604	1900806
Southwestern	142548	15152	138003	26764	41916	280551
Western	214933	17195	288938	63908	82103	403871
Mexieo	7000	350	13300	1550	1900	20300
c.c.c.	1011632	305743	1352199	261352	567095	2363831
Total	2864360	708143	2242245	508326	1216469	5106605

from the C.C.C. (30 percent). Domestic sales of Mexican cotton were tested for 5 percent of their total.

Export Sales

Of the $2,242,245$ bale exportad, 508,326 were sold on btrongth speeifleation (rable XXXI). Unlike the import market, the malleat bippers tested the greatest proportion of their sales for atruagth with those handing less than 30,000 testing 49 percont of their sales, Enippers in the largest and aecond largent categoriea teated 18 and 16 percent of their sales rempetively.

A greater propertion of the cotton from the Southeastern and South Central sections was sold on strangth specifieations (34 pereent) than that from the Western and Scuthwestern sestions (21 poreont). Erport sales of Mexican cotton were sold on strength requirements for 12 peroent of thetr total, and 19 percent of the O.C.C. cotten exported was tested.

Use of Other Piber Tests in Selling Cotton

The 20,000 bales sold through consideration of other fiber charecteristion were handled by ohippers handling over 250,000 beles (Teble VI). This amounted to 0.7 percent of their total sales. The two testo most oxtonsively used were longth and langth uniformity which accountod for 8,000 bales, and the maturity teat for 7,500 bales. The rosaining 4,500 bales were teated for nop comnt, nonlint contont, and color in order of voluse tested.
of the total bales teated, 10,500 were exported (Table xucII). 411 teate, aseopt thet for color were present in both domeatic and axport sale. No cotton originating frow the Southenst was tested, and 73 peroent of the cotton tested was from the South Contral sectenon.

Finomess Minimus and Ranges Used in Sale to Cotton Mila

Sales contraots which incorporated Ineness requiremants, speoifled thea as to a minimu or a range. Scme shippers had salea baped oxclueively on a minimas and others only on a range. Many fires sold cotton both weys.

Finoness Minimm: Specified on Sales

Tronty-aine shippers sold $1,351,362$ bales of cotton on which finenees ainiman were specified (Table XXIV). Domestic mills ascounted for 704,732 bules and 646,630 went to foreign firms. More bales were sold on the minimums of 3.0 and 3.5 Mieronatre units than on any of the others. These two accounted for 295,362 bale and 194,178 rempectively. 8 teted minimama ranged from below 3.0 to 4.5 with the majority of them varying between 3.5 and 3.8 incluaive.

Fineness minimuns on domeatic asles. of the 704,732 bales sold domenticelly on a niniman basis, the most apeciried miniman was 3.5 Meronalre unite. Tronty-flive percent of the bales were sold on this (Table IEIV). There was some varistion in 1 te impertance and the volum handled by the shippes. Por shippors in the smallest and second umalloet categories, 52 and 36 percont, reaptotively, were sold on 3.5 Ineness reading. No sales were mado on this miniman by mippers handing

Table $x \times x$ II

NOMBR OF BALES SOLD ON THE BASIS OF OTEER TESTS BY TXPE OF TEST AMD ORIOIN OF COTTON, FIVE SHIPPERS RANDLIMO OVER 250,000 MLES, THPRIS, TMNESSEE, Auoust 1, 1956 T0 JuL 31, 1957

Type of test	Bales sold by origin of cotion and sales outlet						
	South Central		Southwest		West	Total	
	omest	Expor	mesti	Expor	Export Domestic Export		
Length and leagth							
$\begin{aligned} & \text { Monlint } \\ & \text { content } \end{aligned}$	-	500	1000	-	-	1000	500
Nop eount	-	-	500	1500	-	500	1500
manturity	3000	3500	1000	-	-	4000	3500
color	600	-	-	-	400	1000	
Total	6600	8000	2500	2500	400	9500	10500

the vorne or cottor soid on various spectpied pindess urwnuls min THE DOMESTLC AND EXPORT MARKET BY VOLUSE OF COTYON BAIDLED， 46 gHPPRRS，$⿴ 囗 十$ Avouse 1， 1956 to NUL 31， 1957

Finenose minimua and market outlot									Tota bar sold on fins nels mini	
	$\begin{aligned} & \text { Undor } \\ & 30,000 \end{aligned}$		$30,000$$95.999$		$\begin{aligned} & 100,000 \\ & 249,999 \end{aligned}$		$\begin{aligned} & 250,000 \\ & \text { and over } \end{aligned}$			
	number	Font	Tumber	Fow	Thumes	Per	Mumber	$\begin{aligned} & \text { Per } \\ & \text { ecnt } \end{aligned}$	Manber	$\begin{aligned} & \text { Perm } \\ & \text { ceant } \end{aligned}$
Total sales										
on miniman	70061	100	290769	100	75983	100	914549	100	1351362	100
Damestic	36696	100	146061	100	26999	100	494976	100	704732	100
Export	33365	100	144708	100	48984	100	419573	100	646630	100
Under 3.0	－		1445	0.5	－				1445	0．11
Domestle	－	－	738	0.5	－	－	－	－	738	0.10
Export	－	－	707	0.5	－	－	－	－	707	0.11
3.0	－	－	2154	0.7	－	－	－		2145	O．16
Domestic	－	－	1181	0.8	－	－	－	－	1181	0.17
Impert	－		21.	0.7	－	－	－		973	0.25
36	－	－	－	－	－	－	13：	6.0	31515	1．40
Domestic	－		－					－		
Export	－	－	－	－	－	－	54524	13.0	54524	8.4
3.4	－	－	－	－	－	－	51029	10.3	51029	3.8
Domestic	－	－	－	－	－	－	51029	5.6	51029	7.2
Export	－	－	－	－	－	－			－	
3.5	19217	27.4	69148	23.8	－	－	105813	11.6	194178	14.4
Dometha	19217	52.4	53044	36.3	－	－	105813	21.4	178074	25.3
Export	－	－	16104	11.1	－	－	－	－	16104	4.5
3.6	12364	17.7	7542	2.6	－	－	65007	7.1	84913	－6．3
Domeatle	12364	33.7	42	． 03	－	－	65007	13.1	77413	11．0
Export	－	－	7500	5.2	－	－	－	－	7500	1.2
3.7	9800	14.0	16541	5.7	－	－	107192	11.7	133533	9.9
Domestic	800	2.1	3652	2.5	－	－	52650	10.6	57102	8.1
Export	9000	27.0	12899	8.9	－	－	54542	13.0	76441	11.8
3.8	18600	26.3	47637	16.4	4500	5.9	224625	24.6	295362	21.9
Domestic	300	0.8	27593	18.9	4050	15.0	96254	19.4	128197	28.2
Export	18300	54.8	20044	13.8	450	0.9	128371	30.6	167165	25.9
3.9	－	－	－	－	8100	10.7	－		8100	0.6
Domentlo	－	－	－	－						
Export	－	－	－	－	8100	16.5	－		8100	1.3
4.0	50	0.07	51779	17.8	12062	15.9	28887	3.2	92778	－6．9
Domestic	50	0.15	6768	4.6	－		3264	0.7	10082	2 1．4
Export	－	－	45011	31.1	12062	24.6	25623	6.1	82696	12.8
4.2	－	－	1806	0.6	－	－	－	－	1806	0.13
Domestio	－	－	－	－	－	－	－	－		
Ereext	－	－	1806	2.2	－	－	－	－	215	9．26
405	－	－	425	4.6	－	－	－	－	3 32	0．35
Bemostle	－	－	3973	2.7	－	－	－	－	3973	0.56
T－rat	－	－	578	0.4	－	－	－	－	578	0．92

between 100,000 and 249,999 bales. While 3.5 was the most important single minimum for the five largest shippers, it accounted for only 21 percent of their domestic minimun sales,

While 3.5 was the most used minimum in domestic sales by volume, it was second in importance by number of shippers specifying it as the minimam most used. Eight shippers named 3.5 and eleven shippers 3.8 as being the most common minimum specified.

Fineness minimums on export sales. Of the 646,630 bales exported on a minimum basis, the one most specified was 3.8 which accounted for 167,165 bales (Table XXXIV). For all shippers, except those six handling between 100,000 and 249,999 bales annually, the minimum of 3.8 was the one most used. For those shippers in the latter group, a fineness minimum of 4.0 was the most important.

Of the twenty-eight firms exporting cotton on a minimum basis, twelve specified a minimum of 3.8 as being the one most used. The second most used minimum was 4.0 which was the most important to six firms and accounted for 82,696 bales.

Fineness Ranges Specified on Sales

Thirty-nine shippers sold $2,574,576$ bales on the basis of a fineness range (Table XXX). Twenty-eight of the thirty-five shippers handling less than 100,000 bales annually and all of those handling more than this number sold cotton on a range basis. These firms were asked to identify the range most used in domestic and foreign sales along with other ranges commonly specified. The volume sold on these ranges was obtained.

Thase were twenty-three separsto renges speoifled as boing the one most used by the thirty-nine shippors, None of these ranges had a mini mum of less than 3.5 or a maximum of more than 5.0 Mieronaire unite. The average length of these ranges was 0.97 with a variation frow 0.4 to 1.5. The fineness range of 3.8 to 4.8 was mentioned as the most common by five of the ahippers. The ranges of 3.8 to 5.0 and 3.8 to 4.5 were each apocified the most frequently used range by four other ahippers. Ranges with a minimum of 3.8 and with madimus varying between 4.2 and 5.0 were the most used ranges for nineteen ehippers. The most important range by volume sold for each aise group of ohippars had a maximw of 5.0 , with minimums varying from 3.5 through 3.8 (Fable wav).

There were fifteen addi tional renges 11 sted as beting in common use giving a total of thirty-eight sanges frequently used by the thirtynine ahsppars (rable XXXV). More bales were sold in both the donestie and export market on the fineness range of 3.8 to 5.0 then other. Only seven flres mentioned ranges whose ninimums did not fell from 3.5 through 4.0, and juat one shippor mentioned a range with a maxdmum above 5.0 micronaire units.

The five ranges in which the most bales were sold in ordor of Inportanee were as followat

Finoness range
3.8-5.0
3.5-5.0
3.7-5.0
3.6-5.0
$\frac{3.5-4.2}{10 \pi 2}$

Mumber of balez wold
723,923
328,212
190,276
161,900
131,038
1,535,349

Fineness range	$\begin{array}{r} \text { Under } \\ 30,000 \\ \hline \end{array}$			Bales of cotton handled											
				$\begin{aligned} & 30,000- \\ & 99,999 \end{aligned}$			$100,000-$249,999			$\begin{aligned} & 250,000 \\ & \text { and above } \end{aligned}$			Total bales		
	Domestic		Total	Domestic		Totay	Domestic	Efport	Total	Domestic	Export	Total	Donestic	Export	Total
3.0-3.7	-	-	-	7125	47	7172	-	-	-	-	-	-	7125	47	7172
3.0-4.0	6300	-	6300	,	-	,	-	-	-		-		6300		6300
3.0-4.4	800	-	800	-	-	-	-	-	-			-	800		800
3.2-4.5	1200	-	1200	-		-	-						1200		1200
3.5-3.7	-	-	-	-	-	-	-	-	-	13500	-	13500	13500		13500
3.5-4.0	-	-	-	2125	2000	4125	-	-	-		-		2125	2000	4125
3.5-4.2	-	-	-	-	-	$-$	-	-	-	65813	65225	131038	65813	65225	131038
3.5-4-3	-	-	-	4084	2426	6510	-	-	-				4048	24.26	6510
3.5-4.5	-	-	-	17054	4826	21880	11953	-	11953	-	-	-	29007	4826	33833
3.5-4.7	-	-	-	54		54	,	-	,	-	-	-	54	40.	54
3.5-4.8	-	-	-		12	19	-	-	-				7	12	19
3.5-5.0	12150	-	12150	19983	1142	21125	-	-	-	197437	97500	294937	229570	98642	328212
3.6-4.2	-	12	-	-	-		-	-	-	1721	2511	4232	1721	2511	4232
3.6-4.4	3344	21	3365	9	20	2500	-	-	-	-	2,		3344	21	3365
3.5-4.5	-	-		19550	22950	42500	-	-	-	-	-	-	19550	22950	42500
3.6-4.9	-	-	-	-	31390	31390	-	-	-	-	\sim	-		31390	31390
3.6-5.0	-	-	-	80950	80950	161900	-	-	-	-	-	-	80950	80950	161900
3.7-3.9	-	-	-	4126	6605	10731	-	-	-	-	-	-	4126	6605	10731
3.7-4.2	-	-	-		-		-	-	-	-	-		8	,	8
3.7-4.5	8550	-	8550	5752	-	5752	-	-	-	54000	60776	114776	68302	60776	129078
3.7-4.8	-	-	,	30492	-	30492	-	-	-	-	,		30492		30492
3.7-4.9	6000	-	6000	8248	2484	10732	$-$	101	-	-	-	-	8248	2484	10732
$3.7-5.0$	6000	-	6000	15	-	-	169782	14494	184276	-	-	-	175782	14494	190276
$3.8-4.0$	-	-		15525	-	15525	,	,	-	-	-	-	15525	1-4	15525
3.8-4.2	-	-	-			47	13875	-	13875		-	-	13875		13922
3.8-4.4	57	-	57	24.055	9435	33490		\square		-	-	- 070	24055	9435	33490
3.8-4.5	5775	-	5775	33959	13334	47793	12110	1812	13922	22500	28470	50970	74.344	44116	118460
$3.8-4.6$	-	-	-	-	17306	17306	-	-	-					17306	17306
$3.8-4.7$ $3.8-4.8$	$-$	8	-	-				-	-	3050	5022	8072	3050	5022	8072
3.8-4.8	11070	480	11550	102091	891	102982	-	-	-			,	113161	1371	114532
3.8-5.0	-	-	-	10800		10800	161856	12800	174656	273010	265457	538467	445656	278257	723923
$4.0-4.5$	-	-	-	11217	4426	15643	,		-	,	-	53016	11217	4426	15643
$4.0-4.7$	-	-	-	-			-	-	$-$	-	28470	28470	-	23470	28470
$4.0-4.8$ $4.0-5.0$	-	-	-	66	-		-	65534	65534	-	-	-	-	65534	65534
$4.0-5.0$ $4.1-4.5$	-	-	-	10646	42038	51684	-			-	-	-	10646	41038	51684
$4.1-4.5$ $4.1-5.2$	-	-	-	1800	-	1800	-	-	-	-	-	-	1800	-	1800
$4.1-5.2$ $4.6-5.0$	$-$	-	-	7623	-	7623	-	-	-	-	-	-	7623	-	7623
4.6-5.0	5700	5	5700	-		5	6	\%	2	,		,	5700		5700
Total	60889	501	61390	417274	241809	659083	369576	94640	464216	631031	553431	1184162	1478770	890381	2369151

The preceding mentioned ranges accounted for 61 percent of the beles sold on a range basis in the domestic market and 58 percent of the export market.

Linit At Which Cotion Became Too Coarse for Oenoral Demand

The forty-aiz shippers were asked at what limit cotton became too coaree for general demand. The range in answers was from h. 5 to 6.0 with oighteen shippers stating that cotton did not become "too coarse" for demand (Table XXXVI). These eighteen ahippers purchased a greater proportion of cotton above 5.0 micronaire units (5.6 pereent) than the forty-six ahippers considered as a group, whose purchases of cotton above 5.0 amounted to only 4 percent. The use of a coarseness maxdmua and its level on the fineness scale on purchase or sales contracte were probably deternined by the demands of the ehippors' customers.

The fineness linit mentioned by serenteen shippers was 5.0 Hicronaire units. This is elosely related to what was show in the provions seetion which indieated that the most important ranges volume wise for all ahippors had a maximum limit of 5.0. Oaly one shippor reported the use of a range maximam above 5.0 macronaire units. This linit was the one most commoniy speol fled by shippers in all sise groupt except those handling over 250,000 beles ammally. Asong the larger shippers, 4,8 was the lieit nost speeifled.

TABLE XXXVI

THE PINEXESS LIMTT AT WHICH COTTON BECAIT 200 COARSE POR GEMERAL DEMAND, BI SIZE OF SHIPPLA, 46 SHIPPLAS, MEMPIIS, TENHES3TE, AUGUST 1, 1936 TO JULT 31, 1957

(himber of shippere ropowting)

4.5	1	8.3	-	-	-	-	-	-	1	2.2
4.7	-	.	-	-	-	-	1	20	1	2.2
4.8	-	-	-	-	-	-	2	40	2	4.3
5.0	3	25.0	11	47.8	2	33.3	1	20	27	37.0
5.2	1	8.3	-	-	-	-	-	-	1	2.2
5.3	-	-	1	4.3	-	-	-	-	1	2.2
5.5	-	-	2	8.7	-	-	1	20	3	6.5
5.7	-	-	1	4.3	-	-	-	-	1	2.2
6.0		-			2	16.7	-	-	1	2.2
Hene	7	58.4	6	34.8	3	50.0	-	-	18	32.1
Total	12	100	23	200	6	300	5	100	16	100

Gaility Detormination of sales to Domestic Mils

The quality of cotton mpecified in domestic sales was detormined through three soparate mathodss submienton of netual samples by the sollerg private type amples rubaltted by the burver to the sellers and sales on doscription. Most thippere made sales on all three mothode.

In anles on actual sample, the seller took a sample from a given lot of cotton and submitted it to the buyer for canaination. The private type sample was submitted by the buyes to the sellor showing him the quality of cotton desired. Sales on desemption were just what the name iaplies written or oral requirenente as to grade, staple length, and In many cases other fiber chareoteristics such as fineness and strongth are subaltted to the seller to see if he can meet them. The soller may or may not send an "approval ample" to the byyer showing the ootton that he foels would moet the deseriptive requiramente.
of the $2,864,360$ bale sold dometieally, 869,655 were on actual sample, 599,817 on private type, and $1,394,888$ on description (Table XXVII). More sales were based on doscription for all sise clavifications of whippere axcept those handing lese than 30,000 beles anmully. For these twelve, most sales wore on sotral samples subaittod by the to the byger. Regardiess of the type of quality determination uged, the majority of sales using all three of these mothods were nade on fiber test tame.
sales on letal sanple
S1xty-seven percent of the 869,655 beles sold on actual amples aubuatted by the seller were made on test terms (Table XXIVII). The
TABLE XXXII

stijority of saloa by thippers in all tise classifleations except thoee six handling betweon 100,000 and 249,999 bales annually were on tent torins. The highest percentage of domestic sales on aetual samples tested were by the five shippers handing over 250,000 bales amually. The variation in proportion teeted by sise of ehipper ranged from 36 to 88 percent.

Seles on Private Type

Of the 599,817 beles aold on the submiseion of private type eamples to the celler, 81 percent were on fineness test termes. Oaly the twelve ohippere handling less than 30,000 bales annualy did not have the majory ty of tholr alles on this mathod teated. The rariation In amount teated ranged from 37 persent for these twelve to 88 percent for those shippere handling over 250,000 bele anmully.

Sales on Dosaription

of the $1,098,583$ bales sold on doseription, 79 percuat were on fineness test term. 411 ade groups of shippers had the majoutty of their doscriptive sales tented. The variation in proportion tested ranged from 54 peroent for those in the sualleat alse oategory to 8h pereent for those Ave shippers handLing over 250,000 beles annully. Approvel samples were subedtted on 30 percent of the sales not on finoness test terms, and 43 pereont of those on fineneas test values. The proportion of approval samples subnitted on dosoriptive sales of tested cotton was highor than on those not tested for all ohippers except those in the over 250,000 beles estegory.

THE COST OF COTTON FIBER TESTIM

The forty-adx ohippers were acked if they knew the cost of cotton fiber teating por bale, and if they did, what was this cost. Only nineteen could angwer this queation and there was wide ramiation in their entimates, ranging from one cent to $\$ 1.00$ per bele, or from a negigible Agure to twenty points per peand, 1 This was axpected because of the many factore which could rasy the cost betwen firms. Some of the more Important variables associated with difforencea in oost of fiber tentIng included, Gmorship or non-ownerehip of inatrumat, kind of instrument, type of test, number of determinations per teat sample, number of test amples or volume tostod, labor coste per hear, tenting facilities, frequency of testing instruments and cheoldig oporatore, requiromats of oustomers, and propertion of sales in domestic and export maricet.

The averago cont of all types of teats for the nineteen shippers was \$.185 per bele or 3.7 polate per pound. By volume groups, five ahippers hadlling less than 30,000 bales annually roperted the highent average of \$.3071 per bele. Two mippere from the largent velumo group had the second highest average cost of \$.2050 per bale. The lowett average cest per bale was $\$.035$ reported by two ehipperes in the 100,000 to 249,999 annual bule oategory. The ton ohippers reporting from the 30,000 to 99,999 bale category hed the ascond lowest cont of $\$.12$ per

[^14]bais. The relative high coat of the raallest thippors was probably due to the 10 volume tested and ite result of not boing able to take advantage of quantity diecounts. ${ }^{2}$ The cost of the largest thippers being higher than those of the two middle volume groups was probebly caused by their more axtensive use of tests other than thet for finoness which were more expencive.

Major Cost Categeries

In morchandising cotton on ifber test terme, shippers were faced with several types of both direct and indirect costs. Some of the major ones were: (1) actual cost of testing; (2) inoreased cost of selective byying in high cost territories where cotton was suitable for noods, (3) discounts on sales of stock with uppopular fiber test valuen, (4) cost of inereased claims or dibputes, (5) added cont of carrying, asambliss and concontrating cotton, and (6) added oost of All-ins. Each fim was asked to ostimate which of the above cost Items was the highest with regard to flber tasting. If more than on was important, they were to list them and give their relative rank.

Actual coat of Fibor Testing

This cost was felt to be the mont important by thirteon shippere, twelve of which handled less than 100,000 bales amnully. Fo shipper handling over 250,000 bales conoldered this cost as edther flrat or second in importance (Table xivIII). Only five of the above thirteon

[^15]TABLE XXXVIII
RELATTVE IMPORTANCE TO SHIPPERS OF MAJOR COSTS ASSOCIATED WITH MERCHANDISING COTTON
ON THE BASIS OF FIBER TEST RESULTS BY SIZE OF SHIPPKR, 46 SHIPPERS,
MRYPHIS, TENNESSEE, AUCUST 1,1956 TO JULY 31,1957

shippers owned fiber testing instruments. This meant that only 16 percent of the thirty-one shippers owning instruments compared with 53 percent of the fifteen shippers not owning instruments felt that the actual cost of testing was the greatest cost.

Increased Cost of Selective Buying

Thirteen shippers listed this as their greatest expense associated with fiber testing, five of which handled over 100,000 bales annually (Table XXXVIII). Only one shipper of the twelve handling less than 30,000 bales considered this cost as being significant. Two of the five largest shippers felt it was the most important cost.

Discounts on Sales

Ten of the forty-six shippers listed this as their primary cost associated with fiber testing. Three of the five largest shippers listed this in first place. While this cost was relatively unimportant to those shippers handling less than 100,000 bales annually, five out of the six shippers handling between 100,000 and 249,999 bales listed it as either of primary or secondary importance.

Cost of Increased Claims and Disputes

Oniy three shippers listed this as their primary cost and these were located in the two middle volume groups. Only one shipper each in the largest and smallest volume group even considered this cost significant and listed it third and second, respectively.

Added Costs of Carrying, Assembling, and Concentrating

All seven of the shippers listing this as their most important cost associated with fiber testing handled less than 100,000 bales
annually. Three shippers in each of the larger volume groups did consider it second or third in significance.

Added Cost of Fill-Ins

The least important cost was that of shipping substitute bales for cotton not meeting mill fiber test requirements. Only four shippers, and these handling less than 100,000 bales annually even considered it significant. None of them said it was their primary cost.

Claims Resulting From Sales on Fiber Test Values

Fineness

Proportion of sales disputed. Of the $2,401,639$ bales sold on the basis of fineness, 47,814 were subject to dispute or claim (Table XXXIX). This total consisted of 36,579 bales or 3 percent of domestic sales on fineness plus 21,235 bales or 1 percent of the export fineness sales. All shippers except those handling over 250,000 bales annually had the largest proportion of fineness sales disputed in the domestic market. Shippers handing between 30,000 and 99,999 bales had 7 percent of their bales sold on finezoss subject to dispute. This was higher than that encountered by any other voluae group. The Lowest proportion disputed was 0.1 percent of those six shippers handling between 100,000 and 249,999 bales annually.

Methods of settlement of claims. When disputes were encountered, they were settled by one of three methods: substition of other bales; a cash settlement; or the shipper's test values being accepted (Table XXXIX).
TABYE XXIX

Hubber, settilenent, and cost of claiss in the domputile and erpert markot	mior ex matemiter									
	$30,000$		$\begin{aligned} & 30,000 \\ & 99.999 \\ & \hline \end{aligned}$		$\begin{aligned} & 163860 \\ & 249.999 \end{aligned}$		$\begin{aligned} & 33060 \\ & \text { and ebove } \end{aligned}$		$\begin{aligned} & \text { Total } \\ & \text { chipopere } \end{aligned}$	
	$\begin{aligned} & \text { Pat } \\ & \text { eont } \end{aligned}$	nemer	$\begin{aligned} & \text { Fom } \\ & \text { cont } \end{aligned}$	In-bes	$\begin{aligned} & \text { For- } \\ & \hline \text { sent } \end{aligned}$	Homber	eent	Yubier	$\begin{aligned} & \text { Bos } \\ & \text { cent } \end{aligned}$	Muber
Propertion of sales on fineness										
subject to elaia	.94	858	6.7	28230	1	320	2.2	18406	2.0	47814
Domestic	1.8	622	12.6	26103	. 14	233	1.2	9621	2.9	36579
Export	.26	236	.96	2127	. 06	87	1.2	8785	1.0	11235
What propertion settled byt 1.0 212 1.2										
Substitation of other bales	60.7	521	67.6	19086	57.8	185	26.6	4885	51.6	24677
Demantie	47.1	293	69.6	18174	79.4	185	26.0	2526	57.9	21178
Paport	96.6	228	42.9	912			26.9	2359	31.1	3409
Canh cothlemat	18.9	162	16.4	4638	30.0	96	57.1	10519	32.2	15415
benestic	26.0	162	13.6	3547	3.9	9	57.2	5502	25.2	9220
Export	-	-	51.3	1091	100	87	57.2	5017	55.0	6195
Shipeop teat valuea boing seouptod	18.9	175	16.0	4506	12.2	39	16.3	3002	16.2	7722
Inmosile	26.8	16%	16.8	4382	16.7	39	16.5	1593	16.9	6281
Export	3.4	8	5.9	124	-	39	16.0	1409	13.7	1541
Propertica of disputes unofficially arbitrated										
arbitrated	47.2	405	50.7	14304	72.8	233	99.0	18215	69.3	33157
Domestic	65.1	405	50.8	13265	100	233	99.0	9521	64.0	23424
Export	-	- -	48.8	1039	-	150.00	99.0	8694	86.6	9733
Arount of clains paid (\%)	-	500.00	-	900.50	-	150.00	-	138.75	-	1689.25
bomeric	-	500.00	-	450.00	-	150.00	-	46.25	-	996.25
Frport	-	-	-	450.50	-	150.00	-	92.50		693.00
Total coet of all clatis, disputes,										
Bumestie	-	700.00	-	150.00	-	609.00	=	7042.25	-	$2040 y .25$
Treert	-	-	-	150.50	-	250.00	-	702.50	-	760.00

Fifty-two percent of the disputes or 24,677 bales were settled by the substitution of other bales. This was the principle method of settlement for all shippers except those five handling over 250,000 bales annually. The majority of domestic sales (58 percent) were settled in this manner. Por export sales, it was second in importance, being used in 31 percent of the disputes.

A cash settlement ended the disputes over 15,415 bales or 32 percent of the claims. This was the method most used by the five largest shippers in both domestic and export sales. For the fortysix shippers collectively, it was the method most used for settling disputes in export sales, and second in importance for domestic settlements.

Sixteen percent of the disputes were ended by the shipper's test values finally being accepted. Collectively, this was the least used solution in both the domestic and export mariet. For domestic disputes, it was second in importance for all shippers handling less than 250,000 bales annually. Only the twelve smallest shippers placed it second in importance in the export market, being the solution for 3.4 percent of their disputes.

Proportion of disputes unofficially arbitrated. When a dispute of a mercantile nature arose, the parties concerned could arbitrate it officially through the seven-man Committee of Arbitration established by the Memphis Cotton Exchange. The other alternative was unofficial arbitration between only the buyer and seller. Using this method, many times they would employ the services of a commercial fee laboratory, accepting the test reading of samples as the official decision.

Of the 47,814 bales subject to dispute, agreement was reached on 33,157 through unofficial arbitration (Table XXXIX) . Sixty-four percent of the domestic disputes and 87 percent of those in the export market were settled through this procedure. By volume groups, the proportion of disputes unofficially arbitrated decreased from 99 percent for the five shippers handling over 250,000 bales annually, to 47 percent for the twelve handling less than 30,000 bales. These latter twelve and the six handling between 100,000 and 249,999 annually did not settle any export disputes through the use of this procedure.

Cost of claims and disputes. Twenty-nine of the forty-six shippers were able to answer this question and they had a total cost from claims and disputes of $\$ 16,489.25$ (Table XXXIX). The two shippers reporting from the over 250,000 bale category accounted for $\$ 14,138.75$ of this total. The average expense to the twenty-seven shippers handling less than 250,000 bales was $\$ 87.00$ each. The average cost per bale handled and per bale tested by volune groups in the domestic and export market is shown below: ${ }^{3}$

Number of bales handled	Average cost per bale (in points)			
	Handled			Tested
	Domestic	Export	Total	
Under 30,000	67	-	51	77
30,000-99,999	11	16	13	9
100,000-249,999	9	5	8	11
250,000 and above	127	124	125	163
Total	49	$\frac{124}{54}$	$\frac{12}{51}$	$\frac{16}{75}$

Only those shippers handling 250,000 bales had a cost in excess of

[^16]\$. 01 per bale handled. This figure coincided closely with the findings in Table XXXVIII, which showed that only three of the forty-six shippers considered disputes as a primary cost of fiber testing. The average cost per bale sold on fineness was 75 points.

Other Fiber Tests

The forty-six shippers were asked to outline the nature, extent, method of settlement, and costs of disputes on cotton sold on other test values. Six shippers, two from each volume group except the 100,000 to 249,999 bale category, reported disputes on strength values. One of these shippers in the largest volume group also indicated a dispute relating to the test for nep count. Only the four shippers in the smaller volume groups knew the costs of these claims and they ranged from $\$ 20$ to $\$ 1,000$ with an average of $\$ 580$ per shipper. This gave an estimated average cost per bale handled of fifty-two points to the forty-six shippers' sales, and two hundred and nineteen points as the average cost per bale sold on strength.

The Cost of the Fiber Test

Few shippers had established adequate procedures to accurately compute the cost of the actual fiber test. Many variables were mentioned earlier in this chapter which might account for the variation in cost per bale. The more important were type of test, number of samples tested, and practices used in testing. The following cost analysis was an attempt to estimate the costs of a particular fiber test under the
separate conditions of ownership and non-ownership of the fiber testing instrument. The main value of this procedure is not to give an exact estimate of cost, but to illustrate the many variables involved in cost computation and their relative importance.

Costs of Ownership

When a shipper purchased an instrument, certain costs immediately became apparent. These costs were divided into the broad categories of fixed and variable.

Pixed costs. When a machine was purchased, the costs of depreciation, interest, repair, taxes, and Insurance were sustained. One of the more important variables in deternining their absolute and relative importance was the type of machine purchased. Table XL is a list of the testing instruments used in the Memphis market, their price, and the rates at which the various fixed costs were calculated. 4

Another fixed cost would be involved if air conditioning and humidifying equipment were installed. The accuracy and dependability of some fiber testing instruments are increased by maintaining a relative humidity of 65 percent and a temperature of 68 degrees Fahrenheit. The equipment to control the atmospheric conditions of an area comprising around 5000 cubic feet would require an investment between $\$ 2,000$ and $\$ 2,500$. Depreciating this equipment over a five-year period, a shipper would have the following expenses:
$\frac{\text { Depreciation }}{\$ 400.00} \frac{\text { Interest }}{\$ 72.00} \quad \frac{\text { Repair }}{\$ 30.00} \quad \frac{\text { Taxes }}{\$ 2.50} \frac{\text { Insurance }}{\$ 16.00} \frac{\text { Total cost }}{\$ 520.00}$

[^17]| Instrument | Price ${ }^{\text {a }}$ | $\begin{gathered} \text { Annual } \\ \text { depreciation } \end{gathered}$ | | $\begin{gathered} \text { Annual } \\ \text { interest }{ }^{\text {b }} \\ \hline \end{gathered}$ | | Annual | | $\begin{aligned} & \text { Annual } \\ & \text { taxes }^{\text {c }} \end{aligned}$ | | $\begin{aligned} & \text { Annual } \\ & \text { insurance } \end{aligned}$ | | Total annual fixed cost |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Amount | | Amount | Rate | Amount | Rate | Amount | Rate | Amount | |
| Fibronaire | 1000.00 | 208 | 200.00 | 6% | 36.00 | 1\% | 10.00 | 2.5\% | 12.50 | .8\% | 8.00 | 266.50 |
| micronaire | $800.00{ }^{\text {e }}$ | 20% | 160.00 | 6\% | 28.40 | 1\% | 8.00 | 2.5\% | 10.00 | .8\% | 6.40 | 212.80 |
| Automated | 1500.00 ${ }^{\text {e }}$ | 20% | 300.00 | 68 | 54.00 | 1% | 15.00 | 2.5\% | 18.75 | .8\% | 12.00 | 399.75 |
| Port-Ar | 685.00 | 20\% | 137.00 | 6\% | 24.66 | 1.2\% | 8.00 | 2.5\% | 8.56 | .8\% | 5.48 | 183.70 |
| Speedar | 1237.00 | 20\% | 247.40 | 68 | 44.53 | . 68 | 8.00 | 2.58 | 15.46 | .8\% | 9.89 | 325.28 |
| Arealometer | 858.00 | 20% | 171.60 | 6% | 30.89 | 1.5\% | 12.87 | 2.5\% | 10.73 | .8\% | 6.86 | 232.95 |
| Pressley | 465.00 | 20% | 93.00 | 68 | 16.74 | 1\% | 4.65 | 2.5\% | 5.81 | .8\% | 3.72 | 123.92 |
| Fibrograph | 2380.00 | 20\% | 476.00 | 6\% | 85.68 | 6.3\% | 150.00 | 2.58 | 29.75 | .8\% | 19.04 | 760.47 |
| Shirley Analyzer | $3500.00^{\text {b }}$ | 20% | 700.00 | 6% | 126.00 | 1.58 | 52.50 | 2.58 | 43.75 | . 88 | 28.00 | 950.25 |
| Colorimeter | 2900.00 | 20\% | 580.00 | 6\% | 104. 40 | 6.38 | 182.70 | 2.58 | 36.25 | .8\% | 23.20 | 926.55 |
| Stel | 675 | 20 | 135.00 | 6% | 24.30 | 1.5\% | 10.13 | 2.5\% | 8.44 | .8\% | 5.40 | 183.27 |

aprices are from 1959 price list.

the estimated fixed costs incurred through the ownership of cot ton

 FIBRR TESTINO INSTRUNENTS, BY TYPE OF INSTRUMENT, 1959
bcalculated by taking 6 percent o

bcalculated by taking 6 percent of the average yearly investment.
c Tax rate based on rate of $\$ 2.50$ per $\$ 100.00$ of value.
d Insurance rate based on $\$ 8.00$ per $\$ 1,000.00$ of value.
${ }^{\text {enstimated price of Mincronaire plus Shadowgraph and Compressor. }}$

Only three shippers operated their machines under controlled atmospheric conditions. Since tolerances or ranges were allowed on most sales, the need for exactness was lessened. Also, several types of machines do not require controlled atmospheric conditions for acceptable test results.

Variable cost. The largest cost in this category was the labor required to perform the tests. The larger shippers hired special operators for this task while to most of the smaller shippers it was another task assigned to present personnel. In the following cost model, it was assumed that a specialist was hired for this task for a period of six months out of the year. For those shippers not hiring special operators, labor cost could be computed on the basis of the number of hours spent by their personnel in machine operation.

The other important variable cost was electricity if the instruments were kept under controlled atmospheric conditions. Adequate conditioning equipment for a room of approximately 5,000 cubic feet would require one five-horsepower motor and two smaller ones of one-half horsepower each. 5 A system of this type would use about 6,200 watts per hour. Only three of the forty-six shippers operated their machines under these conditions. 6

Average cost per sample. The major factor that deternined average cost per sample was the number of samples tested. This, in turn, was a

[^18]function of the volume of cotton handled and tested, type of instrument, number of operators, and number of determinations per test samples. In the following illustration, a non-automatic lieronaire was used to illustrate the derivation of average cost. This same method of analysis could be used in determining the cost of the other instruments. For the sake of simplicity, the following conditions were assumed:

1. Instrument operator works a forty-hour week, twenty-eight weeks per year, at a wage rate of $\$ 1.50$ per hour.
2. Air conditioning equipment, if used, runs one-third of the time for twenty-eight weeks at a rate of $\$.015$ per killowatt.
3. One operator with one non-automatic Nicronaire, making one determination per test sample turns out 240 samples per day. 7
4. No extra space is rented for the fiber testing facility and no rent is charged against its use.

The average cost per sample was equal to the number of samples tested divided by total annual cost. The first step was to calculate total annual cost from previous given and assumed data.

Annual cost	Without Tariable	atmospheric control Fixed
	$\$ 1,680.00$	atmospheric control
Total	$\$ 1,892.80$	$\$ 1,784.00$
		$\$ 2,304.50$

The variation in average cost per sample was then shown by altering the number of samples tested annually.

7Based on the results of tests conducted at the Institute of Textile Technology, Charlottesville, Virginia.

Number of samples	Average cost per sample	
	Wi thout	With
	a tmospheric control	atmospheric control
500	\$3.766	\$4.609
1,000	1.893	2.305
3,000	. 631	. 768
5,000	. 378	. 461
10,000	. 189	. 230
20,000	. 095	. 125
30,000	. 063	. 077
35,000	. 054	. 066
40,000	. 047	. 058

By comparing the above table with one that gave the tariffs charged by two commercial fee laboratories, some conclusions were drawn as to the advisability of shipper purchases of fiber testing instruments.

Price schedules for two fiber test laboratories in Memphis, Tennessee Number of samples Price per sample Total samples tested Average cost

First 1,000	$\$.20$	1,000	$\$.200$
Next 4,000	.18	5,000	.184
Next 5,000	.17	10,000	.177
Next 20,000	.16	30,000	.166
Next 20,000	.15	50,000	.159
Next 50,000	.13	100,000	.145
Next 50,000	.11	150,000	.133
Next 50,000	.09	200,000	.122
For all over 200,000	.08	-	-

Bxeluding all other factors, and using the above cost calculations, it would have been cheaper for the shipper to purchase a Micronaire if the planned number of samples tested reached some point between 10,500 and 11,000 per year if purchase of air conditioner was not contemplated. If atmospheric conditions were to be controlled, the shipper would have had to tested between 13,000 and 13,500 samples to net a cheaper cost with a purchased instrument (Figure 1).

Other factors excluded above should be considered and their weights could alter the above mathematical model. They were:

Figure 1. A comparison of the fineness cost per sample
cotton with a shipoer-owned Micronaire (non-automatic) and the cost of
havitry the test performed'by a comferotal fee laboratory.

1. Commercial laboratories usually run more than one determination per test sample.
2. Commercial fee laboratory technicians are trained specialists.
3. All tests at commercial fee laboratories are conducted under controlled atmospheric conditions.
4. There was probably less ohance for mercantile disputes if commercial fee laboratories tested the cotton.
5. The commercial laboratories offered special discounts for an annual contract or volume commitment.
6. The importance of speed in deternining the fiber tests of cotton.

No attempt was made here to weigh the above factors since their relative importance would vary between shippers, between transactions, and by type of test and instrument used.

As an aid in the calculation of cost of the other fiber tests, the estimated absolute and relative speed of various fiber instrunents was shown. It was assumed that there was one operator per machine and this operator also prepared the sample for testing. The speed of the non-automatic Mieronaire was given the value of 1.00 per hour. ${ }^{8}$

Fiber testing instrument Sample turnout per hour Relative speed index

Micronaire, non-automatic	30	1.00
Automatic Micronaire	40	1.33
Port-Ar	52.5	1.75
Speedar	137.5	4.58

[^19]
Fiber testing instrument Sample turnout per hour Relative speed index

 (Continued)| Pressley | 18 | .60 |
| :--- | :--- | :--- |
| Stelometer | 16 | .53 |
| Fibrograph | 20 | .66 |
| Arealometer | 13 | .43 |

There are two important shorteomings in the preceding table. The first is that it fails to show the effects of automation on the speed of testing. Anderson, Clayton, and Company reported that a team of one Shadowgraph and one Mcronaire operator working together with an automatic conveyor belt would turn out 333 samples per hour. 9 The second shortcoming was that wile sone instruments are slower than others, they may give additional information. For example, it requires less time to make a test for fineness with the Micronaire or Speedar than with the Arealometer. However, the Arealometer in addition to fineness also gives an indication of the fiber's maturity. Another example is that the Stelometer, while being slower than the Pressley in giving strength data, also shows the elongation of the fiber.

The Total Cost of Fiber Testing

The following was an attempt to calculate the total cost of fiber testing, The six major costs were those listed in Table XXXVIII. It was assumed that the total cost of fiber testing was equal to the sum of these six costs. The cost model operated under the following conditions:

9The Cotton Trade Journal, October 15, 1954, p. 4.

1. Two non-automatic Micronaires were used.
2. One operator per instrument, working forty hours per week, six months per year at a wage of $\$ 1.50$ per hour.
3. Each operator turned out thirty samples per hour.
4. The fixed and variable cost data derived from the previous cost model was used.
5. The shipper model was in the 30,000 to 99,999 bale volume group and tested 67,200 samples.
6. The cost of claims and disputes was $\$ 87.00$ as shown in Table XXXIX.

No information was obtained on the four other major costs listed in Table XXXVVIII. The following method was used to convert their relative value to an absolute.

1. The average cost of the actual test was determined by dividing total annual fixed and variable cost by 67,200 , the number of samples tested.
2. Table XXXVIII showed there were five shippers in the 30,000 to 99,999 volume group choosing the actual cost of the test as the primary cost.
3. The derivation of the other costs was made by dividing the figure five into the number of shippers choosing the cost as first in importance. If none placed it in first, the number listing it as second was divided by two and the resulting quotient divided by five. This percentage was then multiplied by the annual cost of the actual fiber test and the resulting product was given as the absolute value of the particular cost involved.

The cost calculations were as follows:

Annual cost of the fiber test Fixed
 Variable

Increased cost of selective buying in high-cost territories for suitable cotton
(425.60
3,360.00
$\$ 3,785.60$
$7 / 5 \times \$ 3,785.60 \quad 5,299.84$

Discounts on sales with undesirable test values

Cost of increased claims and disputes
$5 / 5 \times \$ 3,785.60 \quad 3,785.60$
87.00

Added costs of carrying, assembling and concentrating

Added cost of shipping substitute bales
Total cost
$4 / 5 \times \$ 3,785.60 \quad 3,028.48$
$1 / 5 \times \$ 3,785.60$
757.12
$\$ 16,743.64$

The total cost was then divided by the number of samples taken and the resulting quotient was a cost of 24.9 cents per sample. The cost per bale in the above model would have depended upon what percent sample was taken by the shipper. Por example, if a 50 percent sample was taken, the per bale cost of those sold on fineness would have been 12.45 cents.

As in the previous model, the cost would also vary with the number of samples tested. The relative rank of the costs in different shipper groups would also affect a change in their absolute value.

CHAPTER VII

SHIPPER APPRAISAL OF COTTON FIBER TESTS

The Advantages and Disadvantages of Cotton Fiber Testing

The forty-six shippers were asked to list what they considered to be the principal advantages and disadvantages of cotton fiber testing. One main advantage given was that fiber testing permitted a more objective measurement of cotton quality. Some felt that the use of fiber testing would aid cotton in competition with the synthetic fabrics. The other advantage mentioned was that fiber tests were an aid in the buying and selling of cotton. In the latter case, some shippers stressed their use as a competitive weapon. Others felt their main contribution was their usefulness in sorting cotton into more even-running lots, Most shippers gave more than one reason.

Thirty-two shippers listed ten disadvantages of fiber testing. The principal complaint listed by sixteen was the added time, work, and cost involved. The majority of these shippers felt they bore the brunt of the costs and were not adequately compensated. Five shippers felt that fiber testing was being overemphasized. Three felt that the test demands by mills were unreasonable and three others oriticized the inaccuracy of the tests. Two shippers each made the following complaints: (1) the standardization of the testing procedures and of the premium and discount rates were inadequate, (2) fiber testing was difficult to conduct at interior points, and (3) fiber testing made it more difficult for
the smaller shippers to compete due to their low volume and the high cost of testing instruments. Three other ideas presented were: (1) the goverment should do all of the testing, (2) the cotton mills should do all the testing, and (3) fiber testing made it more difficult to dispose of "cull" cotton. The majority of the above complaints came from the smaller shippers.

Shipper Use of Public Reports on Cotton Fiber Testing

Twenty-seven of the forty-six shippers received one or more published reports on the fiber testing of cotton. Ten of the eleven shippers handling over 100,000 bales annually received this information compared with only two of the twelve shippers handing less than 30,000 bales. The source of these reports and the number of shippers receiving them is as follows:

Source of cotton quality report Mumber of shippers receiving reports

$$
\text { 1. U.S.D.A. } 22
$$

2. University of Texas 13
3. Lubbock Cotton Exchange 2
4. Princeton (Textile Research Institute) 1
5. Pecos Valley Association 1
6. N. C. State Department of Agriculture 1
7. Mid South Cotton Grower Association 1

Fifteen of the twenty-seven shippers receiving these reports
felt that they were helpful, while twelve found them of no value. Reports were received on the average of once per month and their primary use was as an aid in evaluating the quality of cotton from specific geographical areas.

Shipper Attitudes Toward Incorporating Fiber Fineness into the Smith-Doxey Classification

Eighteen of the forty-six shippers were for placing the fineness value on the Smith-Doxey Fom "1" card along with the bale grade and staple length. Twenty-four shippers were against this action, three had no opinion, and one was to have the fineness value recorded on california cotton only. Wineteen of the twenty-four against this use of fiber testing handled less than 100,000 bales annually. The remaining five were from the eleven shippers handling over 100,000 bales.

The Trend in the Extent of Use of Fiber Testing

The proportion of sales on fineness and strength for three consecutive seasons is shown in Table XLI. The proportion of bales sold on fineness has incrased at an increasing absolute rate for the entire period in both the domestic and export market. The percentage of sales on strength increased for all shippers in the domestic market over the three-year period, but decreased in the export market from the 1955-56 to the 1956-57 season for those shippers handing over 100,000 bales annually.

The shippers were asked if they felt that sales on test terms would increase again during the $1957-58$ season. Their answers were recorded in Table XLII. The majority of shippers in all size categories except those handling between 100,000 and 249,999 bales annually, felt that sales on fiber test values would increase.

TABLE XLI

THE PROPORTION OF COTTON TESTED FOR FINENESS AND STRENGTH DURING THE 1954-55, 1955-56, AND 1956-57 SEASONS IN THE DOUESTIC AND EXPORT MAREET, BY VOLUIE OF COTTON HANDLED, 46 SHIPPERS, MREXPHIS, TENNESSEE, AUGUST 1, 1956 TO JULI 31, 1957

Domestic
sales

$1954-35$	11.6	38.7	38.8	48.0	.42	4.5	10.3	14.6
$1955-56$	30.8	55.0	41.3	55.0	.83	7.1	12.0	12.0
$1956-57$	67.0	85.5	72.4	86.4	7.3	26.3	28.5	24.4

Foreign
sales

$1954-55$	4.6	20.0	45.5	39.6	1.7	5.1	35.0	12.4
$1955-56$	12.1	32.6	51.3	52.0	3.3	9.7	40.0	21.0
$1956-57$	64.8	72.6	77.3	68.4	49.4	36.5	16.4	18.3

TABLE XLII

> NUMBER OF SHIPPERS BELIEVING THE PROPORTION OF SALES BASED ON FINENESS AND STRENGTH WOULD INGREASE OVER PREVIOUS SEASONS DURINO THE
> $1957-58$ SEASON BY VOLUME OF COTTON HANDLED, 46 SHIPPERS, MEMPHIS, TENNESSEE, AUGUST 1,1956 TO JULY 31,1957

Sales based on whether fineness and strength would increase or decrease	Volume of cotton handled				Total shippers
	$\begin{aligned} & \hline \text { Under } \\ & 30,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 30,000= \\ & 99,999 \end{aligned}$	$\begin{aligned} & 100,000- \\ & 249,999 \end{aligned}$	$\begin{aligned} & 250,000 \\ & \text { and above } \end{aligned}$	
		Number	of shippe	reporting)	
Increase	7	15	1	3	26
Decrease	5	8	5	2	20
Total shippers	12	23	6	5	46

CHAPTER VIII

THE USE OF COTTON FIBER TESTING BY MKMPHIS SHIPPERS COMPARED WITH THEIR USE BY COTTON SHIPPERS FHROUGHOUT THE UNITED STATES

This chapter was an evaluation of the use made of cotton fiber tests by the forty-six. Memphis shippers compared to their use by 186 shippers located throughout the United States. The data on shippers located outside of Memphis were secured from a recently published Southern Cooperative Series bulletin. ${ }^{1}$

Ownership of Instruments

The following breakdown showed that the number and type of instrument owned was similar between Memphis shippers and those from the entire United States.

| Proportion | Memphis | | U. S. |
| :--- | :--- | :---: | :---: | :---: |
| | | | 65% |
| 1. Proportion of shippers owning instruments | | | |$)$

The number of instruments per shipper owning instruments was 1.9 in Momphis, compared with 2.5 for those from the entire United States. On a per shipper basis, it was 2.3 and 1.6 , respectively.

[^20]Shipper Use of Commercial Fee Laboratories

Seventy-eight percent of the Memphis shippers used fee laboratories for the evaluation of fiber fineness compared with 38 percent of the total United States shippers, A greater percentage of the Memphis shippers also used fee laboratories for measuring strength, the proportion being 78 and 52 percent, respectively.

Practices Employed in Shipper Testing for Fineness

All tests for fineness on shipper-owned instruments in Memphis were made on the basis of one determination per test sample. For the United States as a whole, 90 percent took one determination with the remaining shippers taking more than one. A comparison between the methods used by the Memphis shippers and all United States shippers in determining the fineness of a two-sided bale is shown below.

Procedure used for testing

two-sided bale

1. Average of both sides of bale
2. Test low-grade and staple side only
3. Test both sides and record the lowest fineness
4. Use a blended sample
5. No special procedure used

Reasons for Using Fiber Tests

The most important reason for using fiber tests for 91 percent of the Memphis shippers and 80 percent of the total United States shippers
was that this service was demanded by their mill customers.
Seven percent of the Memphis shippers listed fiber testing's use in providing improved quality evaluation as the principal reason for their using them. Twelve percent of the total United States shippers listed this as their principal reason.

Volume of Cotton Purchased and Sold on Fiber Test Values

Purchases Based on Pineness

The Memphis shippers tested 85 percent of their Commodity Credit Corporation cotton after purchase, compared with 73 percent tested by the 186 United States shippers. The Memphis shippers tested a smaller proportion of the cotton purchased in the open market, prior to purchase, than those of the United States as a whole, being 51 and 61 percent, respectively.

Purchases Based on Strength
The Memphis shippers tested 3.7 percent of the Commodity Credit Corporation cotton for strength which was about the same proportion as the 3 percent tested by all United States shippers. In their testing of open-market purchased cotton, the Memphis shippers tested about twice as much as the total United States shippers, the proportions being 29 percent and 14 percent, respectively.

Sales Based on Fineness and Strength
Approximately 77 percent of the total sales of the 46 Memphis shippers were based on fineness. This compared with about 64 percent
for the 186 United States shippers. Memphis shippers also tested 24 percent of their sales for strength, compared with 8 percent for the total United States shippers.

Pricing of Purchases on the Basis of the Fineness Value

The 186 United States shippers discounted about 7 percent of their purchases, compared with 6 percent discounted by the shippers in Memphis. In both the Memphis and other national cotton markets there were wide differences in what constituted cotton that was too fine. There was also a wide variation in the rate of discount taken for cotton of identical fineness value in both markets. Rather than discount cotton for boing too fine, many shippers simply refused to purchase the cotton.

Fineness Minimums and Ranges Specified on Sales

The readings of 3.5 and 3.8 Micronaire units were the most common Pineness minimums specified on sales by both the Memphis shippers and shippers from the entire United States. The ranges most commonly specified for both groups had a minimux from 3.5 to 3.8 Micronaire units with 5.0 as the maximun.

Costs of Cotton Fiber Testing

A list of the principal costs associated with cotton fiber testing and the proportion of shippers considering each the most important is shown on the following page.

Pringipal Itbor testing coste
2. The actual cost of testing
2. Increased sost of selective byying
3. Coste of increased sales and dieputes
h. Discounts on undestreble stocks
5. Added costs of carrying, asembining, and consentrating bales
6. Added cost of shipping substitute bales

Proportion of shippers stating the most important cost Memphis United States

The Advantages and Disedvantages of Cotton Fiber Pesting

The prinolpal disadvantages mentioned by shippers in both groupa were the added time, Iabor, and coot involved without adequato compensathon. Comnected closely with this was the second most impertant complatat from both groups of ahippers. This was of the unreasonable demands for fiber test valuea by the cotton mills.

The min advantage 11 sted by silppers in both sategories was that testing anabled them to sort cotton into more oven-running lote for sale. This in turn would aid mpinners in securing greater officieney which would help ootton to compete with the ayathetic IIberv.
sirty pereant of the total United states mippers felt that the Ifnenes value, in addition to grade and staple longth, should be recorded on the Form wiw aarde by govormont clasaing oftices. Only 39 percent of the Memphis shippere were for this actlon.

The Irend in Cotton Fiber Testing

Testing for Fineness

For United States chipper as a whole, the proportion of cotton tested during the $1955-56$ and $1956-57$ season for fincsess remained about
the same. However, this figure was approximately 20 percent higher than the proportion tested during the 1954-55 season.

The Memphis shippers showed an increase in the proportion tested during the entire period, averaging about an 11 percent increase in the testing of domestic sales and a 9.5 percent increase in export sales from the 1954-55 season to that of 1955-56. The increase in cotton tested from the 1955-56 season to that of 1956-57 was 32 percent in domestic sales and 34 percent in exports.

Testing for Strength
Shippers in both groups tested a greater percentage of their domestic sales for strength during the 1956-57 season than in the 195455 period. This was also true in exports except for the Memphis shippers handling between 100,000 and 249,999 bales annually which showed a slight decrease.

CRUPTER IX

SUAMAY AID CONCLUSIONS

Most modern cotton ellll oparations require that the 11 ber proper ties of ootton boing procoseed bo untrom in quality. Cotton mpinners, IIke other users of raw attarials, need to know these ppecifleations to set the procesuling equipmont properif and to eatimate the matorial's offect upon ond-product performanoe. Inperthat quality difforences are prowent in cotton of the same grade and staple length and instrumente have been doveloped to measure these flber properties objeatively. The requirement of cotton ills for ootton with epeelfie charactoristies has forced other segmente of the cotton industry to dovote more attemtion to various appects of cotton fiber teating.

The objective of this stuay was to doternine the procont and probable future effects of cotton fiber testing on the buying, assambling, and selling of eotton by ehippore in the vampis amset. The thippor is concornod primarily with three appete of fiber testings

1ts cast, (2) its offect upon his volum, and (3) Its effeet upon the domend for his prodnot or service. This ohepter sumarizes the reonlts of thie atndy and shows how these data may be used by ahippery to reach docisions on the three questions concerning the uae of flber teste.

The data for this stady were scoured by pereonal interview from forty-aix yomphis ehtppers frow June through August, 1957. Tmese firnts marketed $5,206,605$ bales of cotton during the season Amgat 2,2956 through saiy 31, 2957. This amount wes almost 40 poreont of Unitad States ' production in 1956.

The Extent and Use of Cotton Fiber Tests in the Memphis Market

Type and Number of Instruments Owned

The thirty-one of the forty-six shippers owning instruments had a total of fifty-nine cotton fiber testing machines. Seventy-eight percent of the instruments were used for measuring fiber fineness and 17 percent for fiber strength. All forty-six shippers, either through the use of their own instruments or through a commercial fee laboratory, tested some cotton for fineness. Through the same procedures, thirty-six shippers tested some cotton for strength. Some shippers had owned instruments for as long as ten years, but the majority of instruments had been purchased in the last three,

Volume of Cotton Purchased and Sold on the Basis of Fiber Tests

The forty-six Memphis shippers purchased and sold $5,106,605$ bales during the 1956-57 season. Of this total, 51 percent of the open-market cotton was tested for fineness and 25 percent for strength prior to purchase. After purchase, 70 percent was tested for fineness and 3.5 percent for strength. About 0.1 percent of shipper purchases were tested for other fiber characteristics after purchase. About 85 percent of Comodity Credit Corporation cotton was tested after purchase for fineness and 3.7 percent for strength. About 77 percent of shipper sales were on the basis of fineness and about 24 percent on strength. Sales on other fiber characteristics were about 0.39 percent.

The extensive use of fiber testing, especially in regard to fineness and strength in the domestic and export market illustrated that the use of fiber tests has been accepted and are an important facet in the
merchandising of cotton. Memphis shippers were forced to utilize them because of the demands of their mill customers. During the period covered by this study, it was the larger shippers who made the most use of these tests; and the trend in fiber testing by all shippers appeared to be increasing in the Memphis market. If this trend continues, all shippers in the Memphis area will probably be forced to supply their customers with Piber test data in addition to grade and staple length. The majority of shippers in all volume categories felt that the use of cotton fiber testing would increase with the exception of six shippers handling between 100,000 and 249,999 bales annually.

Minimums and Ranges Most Common in Shipper Purchases and Sales

While the forty-six shippers purchased some cotton in all fineness categories, 63 percent of the purchases were in the average fineness range. Forty-seven percent of the total purchases fell between 4.0 and 4.4 Micronaire units.

The average fineness reading at which shippers started discounting cotton was 3.4 with a range of 3.0 to 4.0 Micronaire units. Three separate methods of discounting were used: (1) discount all cotton equally under a certain fineness minimum, (2) vary the discount with time of purchase and fineness of cotton, and (3) have specified discounts within different ranges of fiber fineness.

A wide range of discounts for cotton of the same fineness value existed among the different shippers. This was largely the result of the different demands of shippers' customers. This varying of discount rates led to confusion on the value of cotton since cotton of equal
quality characteristics sold for different prices. If a set discount rate could be established, the efficiency of marketing would be increased since cotton of equal quality would be of equal price and this should result in cotton with certain characteristics going to those customers whose products demanded them. This would probably result in a higher quality product. A standardization of premium and discount rates should be established by the cotton industry.

In the Memphis market there was a relationship between the fineness of the cotton and the discounts taken by the shipper. The average discount for cotton under 3.0 Micronaire units was 228 points per pound; on cotton between 3.2 and 3.5 the average discount was 94 points; and on all cotton over 3.5 that was discounted, the average rate was 70 points per pound.

On shipper domestic sales, fineness minimums between 3.5 and 3.8 Micronaire units were the ones most frequently specified. In the export market, the most comon minimm was between 3.8 and 4.0 inclusive. Ranges with a minimum between 3.5 and 3.8 Micronaire units with a maximum of 5.0 were the ones most used. Shipper specifications and discounts on their purchases should adequately reflect those faced in their sales. If they do not, either the shipper or his supplier is receiving an unfair quality evaluation on their cotton. Only four shippers offered premiums on the basis of fineness.

Seven shippers discounted cotton on the basis of strength, and six offered premiums for cotton with specified strength minimums. No premiuns and discounts were made on the basis of other fiber characteristics.

Quality Determination in Purchases and Sales

Several methods for determining the quality of purchases were used, the one chosen being dependent upon the variability of cotton character in the buying territory, the dependability and knowledge of the supplier, and the requirements of the customer.

In purchasing cotton from the interior, the random sample method was used, testing cotton at various points throughout the area and over the season. The number of tests varied widely among the shippers.

Two other methods used with interior purchases were the spot check of 5 to 10 percent of actual samples, and the checking of every bale in certain lots. Both of these methods were used in testing purchases from brokers. Purchases from other shippers were usually on a guarantee basis.

The quality of cotton specified in shippers' domestic sales was determined through three separate methods: (1) submission of actual samples by the shipper, (2) private type samples submitted by the buyer to the seller, and (3) sales based on description. Most shippers made some sales on all three methods. The most important by volume was the use of the actual sample.

Practices Used in Testing

All thirty-one of the shippers testing for fineness on their own instruments made one determination per test sample. Twenty-one of these included cotton from both sides of the bale. The majority of the instrument operators did not know the grade and staple of the cotton, or if
the bale was plated. Three methods were used to deternine the fineness of plated bales: (1) take on average reading of both sides, (2) test only the low grade and staple side, and (3) give the bale no special handling.

All four of the shippers testing for strength used the zero gauge in testing. Their tests would show a higher correlation with yarn strength if they would shift to a one-eight inch gauge setting. Any shift, however, should be uniform among all of the shippers. The number of breaks per sample ranged from one to six and varied also with the type of sample used and in the number of places it was taken from the bale. A uniform testing procedure needs to be established in order to have an adequate standard of accuracy in the cotton industry. If this were done it probably would eliminate many of the contract disputes over the specifications of the cotton involved.

Shipper Checking of Own Instruments

Calibration samples were used by twenty-seven of the thirty-one shippers owning instruments but the frequency of the check varied widely. Another accuracy test was the cross-checking between machines.

Location of Fiber Testing Instruments
Shippers operated their instruments in various parts of their establishments: cotton room, classing room, laboratory, and office. Four of the shippers operating Mcronaires under controlled conditions of temperature and humidity. Three of the four shippers owning Pressleys, and all firms owning Stelometers, Suter-Webb Sorters, and Fibrographs operated then under controlled atmospheric conditions. All
tests by commercial fee laboratories were conducted under specific temperature and humidity readings.

The importance of controlled temperature and humidity varies with the type of test and instrument used. Many of the newer instruments on the market today do not require atmospheric control to give accurate results.

The Cost of Fiber Testing

Most shippers did not have a clear idea of the cost of fiber testing, however, from the small amount of data gathered it was known to vary widely among the shippers, being dependent upon the following variables: ownership and non-ownership of instruments, type of instrument, type of test, number of determinations per test sample, number of test samples or volume tested, labor costs per hour, testing facilities, frequency of testing instruments and operators, requirements of customers, and proportion of sales in the domestic and export market.

The above mentioned variables will determine the absolute and relative level of the following costs which combined should equal the total cost of fiber testing.

1. Actual cost of fiber testing.
2. Increased cost of selective buying.
3. Discounts of sale.
4. Costs of increased claims and disputes.
5. Added costs of carrying, assembling, and concentrating.
6. Added cost of fill-ins.

The procedure for calculating the actual cost of fiber testing and putting it on a bale basis is shown in Chapter VI. A comparison of the cost of using a shipper-owned instrument with the tariff charged by commercial fee laboratories will enable the shipper to determine whether it is cheaper to purchase his own instrument.

An estimate of the other costs is more difilcult and can best be determined by individual experience. One rough figure estimated by shippers handling between 30,000 and 99,999 bales annually was that the cost of making the actual test was about 25 percent of the total cost with the remaining five direct and indirect costs making up the remaining 75 percent. This was based on the very limited information and varied greatly between the shippers.

Shippers' Appraisal of Cotton Fiber Tests

The principal advantages listed were: (1) fiber testing allowed a more objective evaluation of cotton quality which should aid in competing with the synthetic fabries, and (2) they were an aid in buying and selling cotton through their use as a competitive weapon and in sorting cotton into more even-running lots for sale.

The major disadvantages listed centered around the increased time, labor, and cost involved for the shipper without adequate compensation. Coupled with this were criticisms of the lack of standards covering premiums and discounts and unreasonable demands by the cotton mills. If the cotton trade would establish a standard for premiums and discounts similar to that covering the pricing of cotton on grade and
staple length, the author feels that the above complaints would be alleviated. Buyers and sellers from the producer to the spinner would know the value of cotton with different characteristics and production and marketing would more adequately reflect the respective demands for these qualities. More research on the effects of these fiber characteristics on spinning efficiency and end-product performance should aid the industry in setting the premium and discount rates.

Shipper Use of Public Reports on Cotton Fiber Testing
Twenty-seven of the forty-six shippers received reports on fiber testing, the two principal sources being the United States Department of Agriculture and the University of Texas. Twelve of the shippers receiving these reports felt that they were of no value.

Abstract

Shipper Opinion Toward Placing the Fineness Value on Form "1" Card Only eighteen of the forty-six shippers were for placing the fineness value on the Smith-Doxey Form "1" card. Twenty-four were against this action, nineteen of them handling less than 100,000 bales annually. This appeared rather paradoxical since if the growing use of fiber testing is accepted, this action would be of greatest benefit to the small shipper who can least afford to purchase and use fiber test equipment.

Comparison of the Use of Fiber Testing Between the Memphis and the Entire United States Market

The proportion of Memphis shippers owning fiber testing instruments was 67 percent compared with 65 percent for all United States
shippers. For both groups of shippers, 78 percent of these instruments were used for measuring flneness. A greater proportion of shippers from the Memphis area used the services of commercial fee laboratories than did those from the rest of the country.

The practices employed in testing were similar for both groups with almost all shippers making one determination per test sample for fineness. In the testing of plated bales, Memphis shippers used an average of both sides of the bale to a greater extent than the entire United States shippers. The latter, however, employed two other procedures not used by the Memphis shippers.

The most important reason for using fiber tests for shippers in both categories was that this service was demanded of them by their mill customers.

The Xemphis shippers tested a greater proportion of their Commodity Credit purchases for fineness than did the shippers from the entire United States, but the latter tested a greater proportion of their open-market cotton prior to purchase. The propurtion of Commodity Credit Corporation cotton tested for strength was about equal between the two groups, but Memphis shippers tested about twice as much open-market cotton for strength than the United States shippers.

The shippers of Memphis tested a greater proportion of their sales for both fineness and strength than the shippers from the entire United States.

Both groups discounted about the same percentage of purchases, 6 and 7 percent, but there were wide variations in what was considered as cotton being too fine. In both cases, the amount of discounts for
cotton of equal quality varied widely. The most common minimums for both groups were between 3.5 and 3.8 Micronaire units. The most common ranges for cotton fineness in both categories had minimums from 3.5 to 3.8 with a maximum of 5.0 Micronaire units.

The actual cost of testing, the increased cost of selective buying, and discounts on undesirable stocks were the three major costs listed by shippers from the Memphis and entire United States area.

The principal disadvantage of fiber testing mentioned by shippers in both categories was the increased time, labor, and cost it involved. The main advantage was thought to be their aid in helping cotton to compete with the synthetic fibers.

Sixty percent of the shippers from the entire United States felt that fiber fineness should be recorded on the Form "1" cards. Only 39 percent of the Memphis shippers were for this action.

While shippers in both groups showed an increase in the use of testing for fineness from the 1954-55 season to that of 1956-57, the increase in the Memphis area was the greatest. The same was true in testing for strength.

The differences between the above two groups of shippers are probably due to the greater concentration of the larger shippers in the Memphis area.

The Probable Effects of Fiber Testing on Cotton Marketing

The first effect is that fiber testing, by giving a more accurate measure of various important fiber qualities may have strengthened cotton's competitive position with the artificial fibers. If testing
allows cotton to maintain and/or expand its markets, the whole cotton industry could benefit. By lowering the production costs of spinners and giving them a more standardized product, cotton may regain some lost markets. How these benefits would be shared is unknown. Certain questions as to who gives premiums, how much should certain cotton be discounted, and should premiums and discounts both be given remain unknown at this study's completion. These problems must be solved by the cotton industry before the total benefits of fiber testing may be utilized.
past history seems to indicate that the establishment of an adequate grading system requires cooperation on the national and international level between both industry and government. Until this happens an adequate system will probably not be developed. When such standards are developed, they will need to be altered due to new and changing uses of cotton. The important point is that uniformity of rates be established and that they accurately reflect the quality of the cotton.

The cotton shipper, to meet present and future competition, should accept the arrival of fiber testing. He must keep himself up to date on developments in this field and be in a position to compete with these new methods at his disposal.

BTBLTOARAPHY

Cable, Curtis C., Sro, and Holdor, Shelby fo Ibe of Pibor Tontine in Markotin Arkansas Cotton. Fayetteville: Aransias Agricultaral Maparimit Sthtion. BuIIetin 594, 1957.

RatkopR, B. D. Improvements Needed in Tennessee Cotton Quality and Marketing Practices to Moet Mill Requirements. Knoxville: Tennessee Agricultural Experiment Station. Agricultural Eoonomics Monograph 259, June 25, 1950.

Raskopf, B. D. and Fontane, J. R. Cotton Fiber Tonting in Foreim Countries. Fnoxvillet Tonnesseo Agricultaral Eperiment Station. BuLletin 272, september, 1957.

Southern Cooperative Sories. Buying Practices and Procedures of Cotton H118 is rive Sentheastorn Stries. Duliotin 28, August, 1952.

Southem Cooperntita Saries, Bee of Cotton Fher Tontw by Dalted statee Cotton Shippers. Balletin 6\%, Nane, 195\%\%
E. S. Dopertmont of Agriculture. Cotton Touting Sorvioc, A. M. s. 16. Wathingtom, Government Printing OiIIce. Noswary, 1955.
U. S. Dopartment of Apriculture. Preetices of Textile Mmafaeturere in the Purchase of Cotton, Procesmed Roport, Cotton Branch, Waningtont covermant Printing offlee. Pobruary, 1952.
U. 8. Dopartaent of Agricaltare. 峝e Cotton S1tuation, ©s-180. WabhIngton: Agrioultural muleting Sorvice January, 1959.
U. S. Depertaent of Agriculture. The Classifieation of Cotton, Mivecllaneow thbliention 310. Whehingtoni Govormaent Printing office. June, 1956.
"Use of Fiber Teste by United States Cotton yills" A bulletin propered by the southern Cooperative series to be ready for publiention in 1960.

Ward, \#, E, Eveluation of the Use of Fiber Tests in Marketing Cotton. Colloge Station: Texas Agricultural Experiment Station. Progress Roport 2040, April 28, 1958.

FIELD SCHEDULE

COTTON FIBER TESTING SHIPPER SCHEDULE, $1956-57$ SEASON

Name of firm

Town State
Information collected by: Date

1. Use of fiber tests: Did this firm use any actual fiber tests this season: In buying? Yes \square

No \square In selling?

Yes
 No If no, do you plan to use fiber tests in $1957-58$? \quad Yes \square No \square If yes, list reasons for change:
2. Considerations in determining when and where to buy cotton without use of fiber tests: (a) Experience \square (b) Ne "character" problems in buying territories \square (c) Immediate tests of purchases \square (d) Classer appraisal is sufficient \square (e) Use of publicly available reports of test data \square (f) Other \square (Specify)
3. List any publicly available reports of fiber test results received by your firm:

| Name of report | Source | Frequency |
| :--- | :--- | :--- | :--- | :--- |
| | $:$ | $:$ | No \square If yes, in what way?

4. Do you favor recording fineness values on Form 1 cards? Yes \square Wo \square
5. Practices in making all mill sales without use of fiber test specifications
(a) Were most sales made to accounts of long standing?
Yes

No \square
(b) Were advance samples of new crop cotton required by mill customers? Yes \square No \square
(c) Do you conduct a specialty business? Yes \square No \square If yes, specify:
(d) Proportion of domestic sales made according to s Private type Actual samples \% Description \qquad \%
(e) On what proportion of sales on description were approval samples subwitted prior to shipment \qquad
(f) Was cotton delivered against private types tested even though no test specifications were involved? Yes \square No \square
6. Bales purchased for sale during 1956-57 season (U.S. upland only)
(a) Bought through C.C.C. Export Sales Program (April 24, 1956 to date, NOD)
(b) A11 other purchases in 1956-57
7. Origin and source of cotton purchases exclusive of C.C.C. stocks, 1956-57 season

Origin	Purchasesby origin							
			Interio		Broker	proportion of data by source for each origin		${ }^{8}$
	Bales\%	8	Bales*	8	Bales*	\%	Bales*	\%
California								
Axizona								
New Mexico								
Texas:								
31 Paso								
Lubboak								
Other								
Oklahoma								
Missourn								
Arkansas								
Loutsiana								
Mississippi								
Tennessee								
Alabama								
Qeorgla								
North Carolina								
South Carolina								
Other (1ist)								

*Data on bales to be calculated later in tabulating.
8. Sales outlets by origin of cotton including CCC stocks, 1956-57 season

Origin	Outlet by origin				Origin	Outlet by origin		
	Domest		Expor			Domes	tic	Export
	Bales*	18	Bales*	\%		Boles*	1\%	B2les* 15
California					Arkansas			
Arizona					Louisiana			
New Mexico					Mississippi			
Rexas:					Tennessee			
E1 Paso					Alabana			
Lubbock					Georgia			
Other					North Carolina			
oklahoma					South Carolina			
Missour					C. C. C.			

*Data on bales to be calculated later in tabulating,
9. Fiber testing facilities and operations
A. Number and type of instruments at this office:

Instrument	Number	Season first used	Location	Instrument	Number	Season first used	Location
Micronaire							
Pressley							
Fibrograph							

B. Does this office have any branch buying offices? Yes \square No \square If yes, number of offices \qquad and number of instruments by types
C. Operating practices
(1) Tests for fineness: (a) Number of deteminations per test sample . In case of one, did test sample include cotton from each side of bale? Yes \square No 7 : (b) Did operator know class of bale at time of test? Yes \square No \square.
If bale had been classed as 2-sided, did operator know this? Yes $\square 70 / \square$ In either case, indicate testing procedure: Average of two sides \square Test only low grade or staple side \square Test both sides and record lower fineness, if any \square No special handling \square other \square (list)
(2) Tests for strength: (a) What gauge setting was used
(b) number of breaks per sample
(c) nature of test sample
(3) Do you buy calibration or check test samples? Yes \square No \square If yes, frequency of checks on instrunents used in measuring fineness? on instruments used in measuring strength?
10. Extent and timing of tests by origin in buying and assembling cotton, excluding CCC purchases, 1956-5? season

11. Other tests used in buying: State kind, extent, source of test, and origin of cotton

Kind of test	No. of tests	Source of test	Origins of cotton

12. Use of random prembuying tests as a guide in buying (complete question if any cotton was bought on basis of random test data as listed in items 10 and 11):

Number of samples collected at random in buying territories and tested on own instruments as advance pre-buying information? For fineness , For strength

For \qquad
 , For
\qquad
\qquad
\qquad
sales programs: Proportions of such individual bales tested for? \%
14. Use of fee tests:

Did you have any tests made on fee basis? Yes \square No \square If yes, complete the following:

15. Fineness of purchases of 1956 crop cotton (If more than 50% of individual bales were tested, list or estimate results):

Range in fineness	
5.0 and higher	
4.5 to 4.9	
4.0 to 4.4	
3.5 to 3.9	
3.0 to 3.4	
2.9 and lower	

Were above figures based on estimate?
16. Pricing of purchases in terms of test results:
a. Was any cotton bought on prepurchase general fineness results, discounted for being excessively fine? Yes \square No \square
If yes, list price discounts used at specified levels of fineness

Fineness range	Discount points	Proportion of total purchases made on prebuying information
to		
to		
to		

b. If any cotton was bought for which individual bales fineness results were known at time of purchase, list scale, if any, of premiums and discounts paid by fineness groups

Fineness range	Proportion of total pur- chases made on individual bale fineness tests	Points per pound	
to			Premium

c. If any, cotton was discounted for being overly coarse, explain circumstances and extent
d. If strength tests were used as a guide in buying, were prices varied for strength differences alone? Yes \square No If yes, explain price variations in relation to strength fineness
17. Terms of sale according to test results by outlets: a. Fineness and strength tests

$\begin{aligned} & \hline \text { Origins } \\ & \text { (list } \\ & \text { from } \\ & \text { Item 7) } \\ & \hline \end{aligned}$	Proportion of cotton sales from each origin by outlets and total terms									
		Domest			Export		Dom	stic		port
	None	Range	Minimum	None	Range	Minimum	None	3inimum	None	Minimum

b. Nature and extent of sales on other test specifications

Kind of test	Origin of cotton	Outlet		Export
	No. of bales			

18. Practices in selling to mills on fiber test terms;
a. Of sales to mills on minimum fineness, what fineness values were specifled most commonly?

Domestic		Foreign	
Fineness minimum	Percent of total sales on fineness minimum	Fineness minimum	Percent of total sales on fineness minimum

b. Of sales on ranges of fineness, what ranges were specified most commonly?

Domestic		Foreign	
Fineness range	Percent of total sales on range of fineness	Fineness range	Percent of total sales on range of fineness
to		to	
to		to	
to		to	

c. Quality determination of all sales to domestic mills:

Method	Percent of total sales made	
	Without any test	On test terms
Actual samples		
Private type		
Description		

In sales on description, approval samples were submitted on
 sales made on test value terms.
d. At what limit did cotton seem to be too coarse for general demand?
19. In merchandising cotton on fiber test terms, shippers face several types of both direct and indirect costs. A. Check the estimated major cost category experienced by this firm in selling on fiber test specifications: If more than one, indicate relative importance by ranking $1,2,3$, etc.
(1) Actual cost of testing.......
(2) Increased cost of selective
(2) Increased cost of selective where cotton was suitable for needs.
\square
(4) Cost of increased claims or
(5) Added costs of carrying, assembling, and consolidating cotton for shipment
(3) Discounts on sales of stocks with unpopular fiber test values \square
(6) Added costs of fill-ins
(7) Other \qquad
B. Do you know actual cost of fiber testing per bale? Yes \square No \square If yes, how much does it cost you per bale?
20. Claims resulting from sales on fiber test values:
A. Fineness

Domestic
Foreign
a. Proportion of sales on fineness which were the subject of dispute or claim. of such claims, what proportions were settled by:
(1) Substitution of other bales.
(2) Cash settlement.
(3) Your test values finally being accepted
b. Proportion of disputes unofficially abritrated
(1) Amount of claims paid (\$)
(2) Total cost all claims, disputes, and settlements
B. Outline nature, extent, method of settlement, and costs of disputes for cotton sold on strength terus \qquad
\qquad
C. Outline difficulties encountered in sales on other test terms
21. What proportion of sales was made on test terms in previous specifled seasons?

Kind of test and season	Proportion of sales	
	Domestic	Foreign
(2) $1955-56$		
B. Strength		
(1) $1954-55$		
(2) $1955-56$		

22. Do you estimate that sales on test terms in 1957-58 will inerease proportionately to 1956-57 sales? Yes \square No \square
23. Indicate the main factor in your decision to use fiber tests.
A. Demand by mill customers for service
B. Necessary in buying to avoid getting the "culls" \square
C. Provides improved quality evaluation \square
D. Other \square Specify
24. Comments on disadvantages and advantages of marketing cotton on fiber test specifications

[^0]: 1_{U}. S. Department of Agriculture, The Classification of Cotton, Miscellaneous Publication No. 310 (Washington: Government Printing Office, Revised June, 1956), p. 11.
 ${ }^{2}$ Robert L. Hunt, Smith-Doxey Classification, Fiber Testing, and Problems of the Cotton Trade, Texas Agricultural Experiment Station, Bulletin 832, 1956, p. 5 .

[^1]: 5B. D. Raskopf, Improvements Needed in Tennessee Cotton Quality and Marketing Practices to Meet Mill Requirements, Tennessee Agricultural Experíment Station, Monograph No. 259, June 25, 1950.
 B. D. Raskopf, and J. R. Fontana, Cotton Fiber Testing in Foreign Countries, Tennessee Agricultural Experiment Station, Bulletin No. 271, September, 1957.

 Regional Cotton Marketing Research Project SM-1, Buying Practices and Procedures of Cotton Mills in Five Southeastern States, Southern Cooperative Series, Bulletin No. 28, August, 1952.

[^2]: 6. S. Department of Agriculture, Agricultural Marketing Sorvice, The Cotton 81 tuation, CS-180 (Wachingtons Government Printing 0ffice, 1959), p. 25.

 7Besed on deta contained in this study.

[^3]: 83. D. Raskopf and J. R. Fontank, op. aft.

 9curtis c. Cable, Jr., and Shelby H. Holder, Oee of Flber tonting In Markoting Arkaneas cotton, Arkaneas Agricultaril Exporiment Station, Bullotin Mo. 594, 1957.

 10J. M. Wand, Eraluation of the Uee of Fiber Testa in Markoting Cotton, Texas Agricultural Experiment Station, Progress Roport $2040,1958$.

 13 Southorn Rogional Cotton marketing Research Comaittee, Uee of Cotton Piber fosts by Vaited States cotton shippery, Southera cooperitive Serios, gliekin Yo. 62, 1959.

[^4]: 12 made down refers to the nuber of breaks in the yarn por 1000 hours of epladle operation.

[^5]: 13this index can be convarted to tensile strength by the followIns formulas 10.8116 x Proseleg index - . 1200 = 1000 lbs. per square inch.

[^6]: 1.J. S. Departmont of Agyiculture, Agricultural marketing Service, Cotton Peating Sorvioe, AMS No. 16 (Warhingtong Govornment Printing ortice, Fobruary, 2955), p.13.

[^7]: 15 Poyn I cards are green colored cards showing the grade and ataplo of govermment classed bales. They are sometimes roforred to as "groen" cards.

[^8]: LBales whore the grade and/or staple length for ench side differe nteorially. They are also lenown as pplatedw beles.

[^9]: 2The correlation betweon the cotton fineness and the discount taken was $r=.846$ and $x^{2}=.72$.

[^10]: 3the correlation betreen the cotton Pineness and the discount taken was $x=.583$ and x^{2}. .34 , however, this could not be preven to be aignifleant to the 95 percent iovel of probability.

[^11]: LThe 21,335 bales for wich no discount data was know, was aubtracted from total bales and the result divided into $\$ 36,098$ to secure averege bale discount.

[^12]: Staformation from table not included in this publication.

[^13]: Graformation from table not included in this etudr.

[^14]: lone hundred pointe are equal in value to $\$.01$.

[^15]: 2see page 106 for charges by cemmeroial fee laboratories in Homphis.

[^16]: 3The proportion of shippers reporting in each volume group was used in securing the average for that group.

[^17]: 4The prices are from a 1959 price list.

[^18]: 5Based on estimate from the U.S.D.A. Fiber Testing Laboratory, Knoxville, Tennessee.
 $6_{\text {Based on calculations from the University of Tennessee Agri- }}$ cultural Ingineering Department.

[^19]: $8_{\text {This estimation was based on test results from the Institute of }}$ Textile Technology, Charlottesville, Virginia, and estimates from the U.S.D.A. Fiber Testing Laboratory and Spinlab Inc., Knoxville, Tennessee.

[^20]: ${ }^{1}$ Southern Cooperative Series Bulletin 62, Use of Cotton Fiber Tests by United States Shippers, Fayetteville: Arkansas Agricultural Experiment Station, 1959.

