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Abstract:  

Let 𝐾, 𝐹 be fields where 𝐹 ⊆ 𝐾. The field 𝐾 is called an extension field over 𝐾 denoted by 𝐾/𝐹. In this 

research, we assume 𝐾/𝐹 to be a Galois extension with its Galois group 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹). Using the properties 

of 𝐾/𝐹 as a Galois extension, we will show that there is a one-one correspondence between the set of all 

intermediate subfields of 𝐾/𝐹  and the set of all subgroups in 𝐺 . Furthermore, we will give some basic 

properties related to Galois correspondence. 
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1. Introduction 

Let 𝐹,𝐾  be fields. The field 𝐾  is called an extension field of 𝐾  if 𝐹 ⊆ 𝐾  (denoted by 𝐾/𝐹)  [3]. 

Therefore, 𝐾 can be viewed as a vector space over 𝐹. Suppose 𝐵 is a basis of 𝐾. Therefore, the number of 

elements in 𝐵  is called the dimension of 𝐾  denoted by [𝐾: 𝐹] . In particular, if [𝐾: 𝐹] < ∞  then 𝐾/𝐹  is 

called a finite extension field [1]. 

Moreover, we form the set of all automorphisms of 𝐾 defined by 

𝐴𝑢𝑡(𝐾/𝐹) = {𝜎: 𝐾 → 𝐾 𝑎𝑢𝑡𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚|𝜎(𝑥) = 𝑥 (∀𝑥 ∈ 𝐹)}. 

The set 𝐴𝑢𝑡(𝐾/𝐹) is a group under the composition operation [1]. The order of 𝐴𝑢𝑡(𝐾/𝐹) is the number 

of elements consisted in 𝐴𝑢𝑡(𝐾/𝐹) denoted by |𝐴𝑢𝑡(𝐾/𝐹)|. In particular, an extension field 𝐾/𝐹 is called 

Galois extension if |𝐴𝑢𝑡(𝐾/𝐹)| = [𝐾: 𝐹] . Moreover if 𝐾/𝐹  is a Galois extension 𝐴𝑢𝑡(𝐾/𝐹)  is commonly 

written as 𝐺𝑎𝑙(𝐾/𝐹) and is called Galois group of 𝐾/𝐹. 

  Suppose 𝐾/𝐹  be a Galois extension with its Galois group 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹 ).  Let 𝐸  be an 

intermediate field in 𝐾/𝐹 that is 𝐹 ⊆ 𝐸 ⊆ 𝐾. Therefore, we can form two extension fields 𝐸/𝐹 and 𝐾/𝐸. 

It shows that 𝐾/𝐸 is also a Galois extension [2]. However, 𝐸/𝐹 is not always a Galois extension. For example, 

let 𝐾/𝐹 with an intermediate field 𝐸 where 𝐾 = ℚ(√3
4
, 𝑖), 𝐹 = ℚ, and 𝐸 = ℚ(√3

4
), we know that 𝐾/𝐸 

is Galois while 𝐸/𝐹 is not a Galois extension.  

 In this paper, we will assume 𝐾/𝐹 be a Galois extension with its Galois group 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹). We will 
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show that there is a one-one correspondence between the set of all intermediate subfields of 𝐾/𝐹 and the 

set of all subgroups in 𝐺 . Moreover, we will discuss basic properties related to Galois correspondence. 

Furthermore, we will give a condition for 𝐸/𝐹 to be a Galois extension using the Galois correspondence. The 

correspondence of Galois group has been developed especially in Hopf algebra and in [3],[4],[5],[6]. 

 

We refer to [7],[8],[9],[10] for some basic theories including groups in particular automorphism group and 

vector spaces. For extension fields in particular Galois extension fields, this research is based on [11],[12] .  

2. SOME RESULTS 

 Finite Extension Fields 

In this part we will discuss extension fields in particular finite extension fields. We will also give some 
properties of finite extension fields. We first study the role of an extension field as a vector space. 
 
Definition 1[1] 
Let 𝐹 and 𝐾 be fields where 𝐹 ⊆ 𝐾. The field 𝐾 is called an extension field of 𝐹 (denoted by 𝐾/𝐹). 
 
Example 2 

i. ℝ is an extension field of ℚ. 

ii. ℚ(√2) = {𝑎 + 𝑏√2|𝑎, 𝑏 ∈ ℚ} is an extension field of ℚ. 

iii. ℚ(√2,√3) = 𝑎 + 𝑏√2+ 𝑐√3 + 𝑑√6|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ} is an extension field of ℚ. 

 
 Let 𝐾/𝐹 be an extension field. We know that 𝐾 can be viewed as a vector space over 𝐹 and has a basis 
where the dimension of 𝐾 over 𝐹 is denoted by [𝐾: 𝐹]. Next, we will give the definition of a finite extension 
field. 
 
Definition 3 [1] 
Let 𝐾/𝐹 is an extension field. The field 𝐾 is called a finite extension of 𝐹 if [𝐾:𝐹] < ∞. 
 
In other words, the extension field 𝐾/𝐹 is called finite if the number of the basis of 𝐾 is finite. Next, we will 
give an example of a finite extension field.  
 
Example 4 

i. Let ℚ(√2)/ℚ be an extension field. Every 𝑥 ∈ ℚ(√2) can be expressed by 

𝑥 = 𝑎 + 𝑏√2 

for some 𝑎, 𝑏 ∈ ℚ. So, 𝑥 can be written as a linear combination of {1, √2}. It is clear that {1,√2} is 

linearly independent over ℚ. So, 𝐵 = {1, √2} is a basis for ℚ(√2) over ℚ. Hence, [ℚ(√2):ℚ] = 2.  

ii. Given ℚ(√2,√3)/ℚ an extension field where every element in ℚ(√2,√3) can be written as 

𝑦 = 𝑎 + 𝑏√2+ 𝑐√3 + 𝑑√6 

for some 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ.  Note that 𝐶 = {1,√2,√3,√6}  is a basis of ℚ(√2,√3) over ℚ . Hence, 

[ℚ(√2,√3):ℚ] = 4  

 

Therefore, ℚ(√2)/ℚ and ℚ(√2,√3)/ℚ are finite extensions. 

 
Next, we will assume that an extension field 𝐾/𝐹 as a finite extension field. 
 
Suppose 𝐾/𝐹 is an extension field and 𝐸 is a subfield in 𝐾 containing 𝐹 i.e. 𝐹 ⊆ 𝐸 ⊆ 𝐾. Thus, we obtain 
extension fields 𝐾/𝐸 and 𝐸/𝐹. We will give a property of [𝐾: 𝐸] and [𝐸: 𝐹] in the following Lemma. 
 
Lemma 5[1] 
If 𝐾, 𝐸, 𝐹 are fields where 𝐹 ⊆ 𝐸 ⊆ 𝐾 then [𝐾: 𝐹] = [𝐾: 𝐸]. [𝐸: 𝐹]. 
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Proof 
Suppose [𝐾: 𝐸] = 𝑚  and [𝐸: 𝐹] = 𝑛  where 𝑚, 𝑛 ∈ ℕ . Next, we will show that [𝐾: 𝐹] = [𝐾:𝐸]. [𝐸: 𝐹] =
𝑚𝑛. Let 𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑚} and 𝐶 = {𝑣1, 𝑣2, … , 𝑣𝑚} be a basis for 𝐾/𝐸 and 𝐸/𝐹, respectively. It is clear 
that 𝐾 is a vector space over 𝐸 so that any 𝑥 ∈ 𝐾 can be expressed as 

𝑥 = 𝛼1𝑣1 + 𝛼2𝑣2 +⋯+ 𝛼𝑚𝑣𝑚. 
for 𝛼1, 𝛼2, … , 𝛼𝑚 ∈ 𝐸. Note that 𝐸 is a vector space over 𝐹, we get 

𝛼𝑖 = 𝛽𝑖1𝑤1 + 𝛽𝑖2𝑤2 +⋯+ 𝛽𝑖𝑛𝑤𝑛 
for 𝑖 = 1,2,… ,𝑚. We have 

𝑥 = (𝛽11𝑤1 + 𝛽12𝑤2 +⋯+ 𝛽1𝑛𝑤𝑛)𝑣1 +⋯+ (𝛽𝑚1𝑤1 + 𝛽𝑚2𝑤2 +⋯+ 𝛽𝑚𝑛𝑤𝑛)𝑣𝑚 
= 𝛽11𝑣1𝑤1 + 𝛽12𝑣1𝑤2 +⋯+ 𝛽1𝑛𝑣1𝑤𝑛 +⋯+ 𝛽𝑚1𝑣𝑚𝑤1 + 𝛽𝑚2𝑣𝑚𝑤2 +⋯+ 𝛽𝑚𝑛𝑣𝑚𝑤𝑛. 

 
Write 𝐵 = {𝑣𝑖𝑤𝑗|𝑖 = 1,2,… ,𝑚, 𝑗 = 1,2,… , 𝑛}.  Thus, 𝐾 is generated by 𝐵.  Moreover, we will show that 

𝐵 is linearly independent. Suppose that 
𝑐11𝑣1𝑤1 + 𝑐12𝑣1𝑤2 +⋯+ 𝑐1𝑛𝑣2𝑤𝑛 +⋯+ 𝑐𝑚1𝑣𝑚𝑤1 + 𝑐𝑚2𝑣𝑚𝑤2 +⋯+ 𝑐𝑚𝑛𝑣𝑚𝑤𝑛 = 0. 

We have 
(𝑐11𝑤1 + 𝑐12𝑤2 +⋯+ 𝑐1𝑛𝑤𝑛)𝑣1 +⋯+ (𝑐𝑚1𝑤1 + 𝑐𝑚2𝑤2 +⋯+ 𝑐𝑚𝑛𝑤𝑛)𝑣𝑚 = 0. 

Since {𝑣1, 𝑣2, … , 𝑣𝑚} is linearly independent, we obtain 𝑐𝑖1𝑤1 + 𝑐𝑖2𝑤2 +⋯+ 𝑐𝑖𝑛𝑤𝑛 = 0 for 𝑖 = 1,2,… ,𝑚. 
Also, since {𝑤1, 𝑤2, … , 𝑤𝑛}  is linearly independent, it implies 𝑐𝑖1 = 𝑐𝑖2 = ⋯ = 𝑐𝑖𝑛 = 0 . Thus, 𝑐𝑖𝑗 = 0  for 

𝑖 = 1,2,… ,𝑚 and 𝑗 = 1,2,… , 𝑛. Therefore, 𝐵 is a basis of 𝐾 over 𝐹. Hence, 𝐵 = {𝑣𝑖𝑤𝑗|𝑖 = 1,2, … ,𝑚, 𝑗 =

1,2,… , 𝑛} and [𝐾: 𝐹] = 𝑚𝑛.  ◼ 
 
 

 Galois Extension Fields 

In this part , we will explain Galois extension fields. First, we will describe the automorphism group from an 
extension field 𝐾/𝐹. 
 
Let 𝐾/𝐹 be an extension field. We form the set of all automorphism of 𝐾 which is defined by 

𝐴𝑢𝑡(𝐾/𝐹) = {𝜎:𝐾 → 𝐾 automorphism |𝜎(𝑥) = 𝑥 , for all 𝑥 ∈ 𝐹  }. 
𝐴𝑢𝑡(𝐾/𝐹) is a group under the operation of composition and is called the automorphism group of 𝑲/𝑭 
[5]. 
 
Next, we will give an example of 𝐴𝑢𝑡(𝐾/𝐹) of an extension field 𝐾/𝐹. 
 
Example 6 

Suppose an extension field 𝐾/𝐹  where 𝐾 = ℚ(√2), 𝐹 = ℚ  with its basis 𝐵 = {1,√2} . We can form an 

automorphism of 𝐾 defined by 

𝜌: 𝐵 → ℚ(√2). 
The function will then be extended to  

𝜌′:ℚ(√2) → ℚ(√2) 

𝑎 + 𝑏√2 ↦ 𝑎𝜌(1) + 𝑏𝜌(√2) 

for all 𝑎 + 𝑏√2 ∈ ℚ(√2). Since 𝜎 ∈ 𝐴𝑢𝑡(ℚ(√2)/ℚ), we have 

𝜎(1) = 1 so that 𝜎(𝑎) = 𝜎(1. 𝑎) = 𝑎. 𝜎(1) = 𝑎. 1 = 𝑎 
for every 𝑎 ∈ ℚ. Note that,  

0 = 𝜎(1) = 𝜎 ((√2)
2
− 2) = 𝜎(√2)2 − 2. 

So, 𝜎(√2)2 = 2 and 𝜎(√2) = √2 or −√2. So, we get two automorphisms of ℚ(√2) which is defined by 

𝜎1: 𝐵 → ℚ(√2) 

1 ↦ 1 

√2 ↦ √2 
and 

𝜎2: 𝐵 → ℚ(√2) 
1 ↦ 1 

√2 ↦ −√2. 
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Then, those two functions are extended to  

𝜎1′:ℚ(√2) → ℚ(√2) 

𝑎. 1 + 𝑏.√2 ↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(√2) 
and 

𝜎2:ℚ(√2) → ℚ(√2) 

𝑎. 1 + 𝑏. √2 ↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(−√2) 

Therefore, 𝐴𝑢𝑡(ℚ(√2)/ℚ) = {𝜎1′, 𝜎2′} = {𝑖𝑑, 𝜎2}. 
 
Next, we will give a property of automorphism group of an extension field 𝐾/𝐹. 
 
Proposition 7[5] 
If {𝜎1, 𝜎2, … , 𝜎𝑛}  is the set of automorphisms of 𝐾  then {𝜎1, 𝜎2, … , 𝜎𝑛}  is linearly independent (i.e. if 
𝛼1𝜎1 + 𝛼2𝜎2 +⋯+ 𝛼𝑛𝜎𝑛 = 0 then 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑛 = 0). 
Proof. 
Suppose that {𝜎1, 𝜎2, … , 𝜎𝑛} is the set of automorphisms of 𝐾. We will prove that {𝜎1, 𝜎2, … , 𝜎𝑛} is linearly 
independent using the induction method on 𝑘 elements of the given set. 
i. For 𝑘 = 1. We take any 𝜎𝑖  for 𝑖 = 1,2,… , 𝑛 where  𝛼𝑖𝜎𝑖 = 0. It means (𝛼1𝜎1)(𝑥) = 𝛼1(𝜎1(𝑥)) = 0.  

Note that 𝐾 is a field and 𝜎𝑖  is an automorphism, then we have 𝜎1(𝑥) ≠ 0 for every nonzero 𝑥 ∈ 𝐾. 
Therefore, 𝛼𝑖 = 0. 

ii. It holds for 𝑘 where {𝜎1, 𝜎2, … , 𝜎𝑘} is linearly independent. 
iii. We will prove that also holds for 𝑘 + 1. Suppose that  

𝛼1𝜎1 + 𝛼2𝜎2 +⋯+ 𝛼𝑘+1𝜎𝑘+1 = 0 
where 𝛼1, 𝛼2, … , 𝛼𝑘+1 ∈ 𝐹. So, for every 𝑥 ∈ 𝐾 

(𝛼1𝜎1 + 𝛼2𝜎2 +⋯+ 𝛼𝑘+1𝜎𝑘+1)(𝑥) = 0. 
Thus,  

𝛼1𝜎1(𝑥) + 𝛼2𝜎2(𝑥) +⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥) = 0.              (1) 
  
 Because {𝜎1, 𝜎2, … , 𝜎𝑛}  are distinct, there is a nonzero 𝑦 ∈ 𝐾  such that 𝜎1(𝑦) ≠ 𝜎2(𝑦).  Using 
equation (1), we obtain 

⟺𝛼1𝜎1(𝑥𝑦) + 𝛼2𝜎2(𝑥𝑦) +⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥𝑦) = 0 
⟺𝛼1𝜎1(𝑥)𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) +⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦) = 0   (2) 

 From (1), we obtain 
 𝛼1𝜎1(𝑥) = −𝛼2𝜎2(𝑥) −⋯− 𝛼𝑘+1𝜎𝑘+1(𝑥)            (3) 
 
 Then, we substitute (iii) to (ii)  
 

⟺ (−𝛼2𝜎2(𝑥)−𝛼3𝜎3(𝑥) − ⋯− 𝛼𝑘+1𝜎𝑘+1(𝑥) )𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) +⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦) = 0 
⟺−𝛼2𝜎2(𝑥)𝜎1(𝑦)−𝛼3𝜎3(𝑥)𝜎1(𝑦)…− 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) +⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦)

= 0 
⟺−𝛼2𝜎2(𝑥)𝜎1(𝑦)−𝛼3𝜎3(𝑥)𝜎1(𝑦) −⋯−𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) + 𝛼3𝜎3(𝑥)𝜎3(𝑦) +⋯

+𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦) = 0 
⟺𝛼2𝜎2(𝑥)(𝜎2(𝑦) − 𝜎1(𝑦)) + 𝛼3𝜎3(𝑥)(𝜎3(𝑦) − 𝜎1(𝑦))…+ 𝛼𝑘+1𝜎𝑘+1(𝑥)(𝜎𝑘+1(𝑦) − 𝜎1(𝑦)) = 0 

⟺𝛼2(𝜎2(𝑦) − 𝜎1(𝑦))𝜎2(𝑥) + 𝛼3(𝜎3(𝑦) − 𝜎1(𝑦))𝜎3(𝑥) +⋯+ 𝛼𝑘+1(𝜎𝑘+1(𝑦) − 𝜎1(𝑦))𝜎𝑘+1(𝑥) = 0 

⟺ (𝛼2(𝜎2(𝑦) − 𝜎1(𝑦))𝜎2 + 𝛼3(𝜎3(𝑦) − 𝜎1(𝑦))𝜎3…+ 𝛼𝑘+1(𝜎𝑘+1(𝑦) − 𝜎1(𝑦))𝜎𝑘+1) (𝑥) = 0 

 
Using the assumption for 𝑘, we obtain 
𝛼2(𝜎2(𝑦) − 𝜎1(𝑦)) = 𝛼2(𝜎2(𝑦) − 𝜎1(𝑦)) = ⋯ = 𝛼𝑘+1(𝜎𝑘+1(𝑦) − 𝜎1(𝑦)) = 0. 

 
Note that 𝛼2(𝜎2(𝑦) − 𝜎1(𝑦)) = 0 and (𝑦) ≠ 𝜎1(𝑦), so we have 𝛼2 = 0. Moreover, using (i) and 𝛼2 =

0, we also have 
⟺𝛼1𝜎1(𝑥) + 𝛼3𝜎3(𝑥)…+ 𝛼𝑘+1𝜎𝑘+1(𝑥) = 0 
⟺ (𝛼1𝜎1 + 𝛼3𝜎3 +⋯+ 𝛼𝑘+1𝜎𝑘+1)(𝑥) = 0. 
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Therefore, 𝛼1𝜎1 + 𝛼3𝜎3 +⋯+𝛼𝑘+1𝜎𝑘+1 = 0 . Again, using the assumption for 𝑛 = 𝑘 , it implies that 
that  𝛼1 = 𝛼3 = ⋯ = 𝛼𝑘+1 = 0. Hence, {𝜎1, 𝜎2, … , 𝜎𝑛} is linearly independent over 𝐹. ◼ 

 
Next, we will give the relation between |𝐴𝑢𝑡(𝐾/𝐹)| and [𝐾: 𝐹] in the proposition below. 
 
Proposition 8 [1] 
If 𝐾/𝐹 is an extension field then |𝐴𝑢𝑡(𝐾/𝐹)| ≤ [𝐾: 𝐹]. 
 
Proof 
Write 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). Suppose 𝐺 = {𝜎1, 𝜎2, … , 𝜎𝑛} so that |𝐺| = 𝑛. Let [𝐾: 𝐹] = 𝑛 and the basis of 𝐾/𝐹 
is  𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑑} for some 𝑑 ∈ ℕ. We will prove that  𝑛 ≤ 𝑑 using a method of contradiction. 
Suppose 𝑛 > 𝑑. We form a linear equation system i.e. 

𝜎1(𝑣1)𝑥1 + 𝜎2(𝑣1)𝑥2 +⋯+ 𝜎𝑛(𝑣1)𝑥𝑛 = 0 
𝜎1(𝑣2)𝑥1 + 𝜎2(𝑣2)𝑥2 +⋯+ 𝜎𝑛(𝑣2)𝑥𝑛 = 0 

⋮ 
𝜎1(𝑣𝑑)𝑥1 + 𝜎2(𝑣𝑑)𝑥2 +⋯+ 𝜎𝑛(𝑣𝑑)𝑥𝑛 = 0. 

Note that there are more variables than the number of equations. It implies there is a nonzero solution, 

(

𝑥1
𝑥2
⋮
𝑥𝑛

) = (

𝑐1
𝑐2
⋮
𝑐𝑛

) where 𝑐𝑖 ≠ 0 for some 𝑖 ∈ {1,2,… , 𝑛}. Let 𝑤 ∈ 𝐾/𝐹. It means 𝑤 can be expressed as 

𝑤 = 𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑 
where 𝑎1, 𝑎2, … , 𝑎𝑑 ∈ 𝐹. Then, we multiply 𝑎𝑖 to the system of equations. Thus, 

𝑎1𝜎1(𝑣1)𝑥1 + 𝑎1𝜎2(𝑣1)𝑥2 +⋯+ 𝑎1𝜎𝑛(𝑣1)𝑥𝑛 = 0 
𝑎2𝜎1(𝑣2)𝑥1 + 𝑎2𝜎2(𝑣2)𝑥2 +⋯+ 𝑎2𝜎𝑛(𝑣2)𝑥𝑛 = 0 

⋮ 
𝑎𝑑𝜎1(𝑣𝑑)𝑥1 + 𝑎𝑑𝜎2(𝑣𝑑)𝑥2 +⋯+ 𝑎𝑑𝜎𝑛(𝑣𝑑)𝑥𝑛 = 0. 

Therefore,    
(𝑎1𝜎1(𝑣1) + 𝑎2𝜎1(𝑣2) +⋯+ 𝑎𝑑𝜎1(𝑣𝑑))𝑐1 + (𝑎1𝜎2(𝑣1) + 𝑎2𝜎2(𝑣2) + ⋯+ 𝑎𝑑𝜎2(𝑣𝑑))𝑐2 +⋯+ (𝑎1𝜎𝑛(𝑣1)

+ 𝑎2𝜎𝑛(𝑣2) +⋯+ 𝑎𝑑𝜎𝑛(𝑣𝑑))𝑐𝑛 = 0 
and 
𝜎1(𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑). 𝑐1 + 𝜎2(𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑). 𝑐2 +⋯+ 𝜎𝑛(𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑). 𝑐𝑛

= 0. 
 
So, 𝑐1. 𝜎1(𝑤) + 𝑐2. 𝜎2(𝑤) +⋯+ 𝑐𝑛𝜎𝑛(𝑤) = 0  and (𝑐1𝜎1 + 𝑐1𝜎2 +⋯+ 𝑐𝑛𝜎𝑛)(𝑤) = 0.  It holds for every 
𝑤 ∈ 𝐾/𝐹 . It implies that 𝛼1𝜎1 + 𝛼2𝜎2 +⋯+𝛼𝑛𝜎𝑑 = 0 . Note that there is 𝑐𝑖 ≠ 0  for some 𝑖 = 1,2, … , 𝑛. 
Hence,  {𝜎1, 𝜎2, … , 𝜎𝑛} is linearly independent. It implies contradiction with Proposition 7. Hence, 𝑛 ≤ 𝑑 
that is |𝐺| ≤ [𝐾:𝐹]. ◼ 

 
Definition 9[2] 
Let 𝐾/𝐹 be a finite extension field. 𝐾 is called Galois extension over 𝐹 if |𝐴𝑢𝑡(𝐾/𝐹)| = [𝐾: 𝐹].  
 
It is common to write the automorphism 𝐴𝑢𝑡(𝐾/𝐹) as 𝑮𝒂𝒍(𝑲/𝑭) when 𝐾/𝐹 is a Galois extension. Next, 
we will give an example of a Galois extension and a non-Galois extension in these following examples. 
 
Example 10 

Suppose an extension field 𝐾/𝐹 where 𝐾 = ℚ(√3
4
, 𝑖), 𝐹 = ℚ where 

ℚ(√3
4
, 𝑖) = {𝑎 + 𝑏√3

4
+ 𝐶. √3 + 𝑑. √27

4
+ 𝑒. 𝑖 + 𝑓. √3

4
𝑖 + 𝑔. √3𝑖 + ℎ. √27

4
𝑖 |𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ ∈ ℚ}. 

Therefore, 𝐵 = {1, √3
4
, √3, √27

4
, 𝑖, √3

4
𝑖, √3𝑖, √27

4
𝑖} is a basis of 𝐾. Therefore, [𝐾: 𝐹] = 8. Next, we will use 

the same way from Example 6 to find all automorphisms of 𝐾. Take any 𝜎 ∈ 𝐴𝑢𝑡(𝐾/𝐹). Using the properties 
of 𝐴𝑢𝑡(𝐾/𝐹), we have these possibilities 

𝜎(31/4) = 31/4, 𝜎(31/4) = 31/4𝑖, 𝜎(31/4) = −31/4𝑖, 𝜎(31/4) = −31/4 
and 

𝜎(𝑖) = i or  𝜎(i) = −𝑖. 
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Then, we form 𝜎, 𝜏 ∈ 𝐴𝑢𝑡(𝐾/𝐹)  where 𝜎(31/4) = 31/4𝑖  and 𝜏(𝑖) = −𝑖.  Note that 𝜎4 = 𝜏2 = 𝑖𝑑  and 
𝜏−1 = 𝜎−1𝜏𝜎. It can be computed that 

𝐴𝑢𝑡(𝐾/𝐹) = 〈𝜎, 𝜏|𝜎4 = 𝜏2 = 𝑖𝑑,𝜏−1 = 𝜎−1𝜏𝜎〉 
= {𝑖𝑑, 𝜎, 𝜎2, 𝜎3, 𝜏, 𝜏𝜎, 𝜏𝜎2, 𝜏𝜎3}. 

Therefore, 𝐴𝑢𝑡(𝐾/𝐹) is the dihedral group 𝐷8 so that |𝐴𝑢𝑡(𝐾/𝐹)| = 8. Thus, 𝐾/𝐹 is a Galois extension 
with its Galois group 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹) = 𝐷8. 
 
 
 
 
Example 11 

Suppose an extension field ℚ(√3
4
)/ℚ where 

ℚ(√3
4
) = {𝑎. 1 + 𝑏. √3

4
+ 𝑐. √9

4
+ 𝑏. √27

4
}. 

So, {1, √3
4
, √9
4
, √27
4

} is a basis of ℚ(√3
4
) = {𝑎. 1 + 𝑏. √3

4
+ 𝑐. √3 + 𝑏. √27

4
} over ℚ and [ ℚ(√3

4
):ℚ] = 4. 

We construct all automorphisms in ℚ(√3
4
) defined by 

𝜌:𝐵 → ℚ(√3
4
). 

We obtain 𝜎(1) = 1 and 𝜎(𝑎) = 𝜎(1. 𝑎) = 𝑎. 𝜎(1) = 𝑎. 1 = 𝑎 for every 𝑎 ∈ ℚ. So,  

0 = 𝜎(0) = 𝜎((√3
4
)4 − 3) = 𝜎((√2

3
))4 − 𝜎(2) = 𝜎(√3

4
)
4
− 3. 

So, 

𝜎(√3
4
)
4
= 3. 

We know that the roots of 𝑥4 − 3 = 0 are √3
4
, −√3

4
, √3
4
𝑖, and−√3

4
𝑖. Note that √3

4
𝑖, −√3

4
𝑖. ∉ ℚ(√3

4
) so that 

𝜎(√3
4
) = √3

4
 or 𝜎(√3

4
) = −√3

4
. 

Since √9
4
= (√3

4
)2  and √27

4
= (√3

4
)3 , we have 𝜎(√9

4
)  and 𝜎(√27

4
)  are depending on 𝜎(√3

4
) . Hence, 

there are only two automorphisms in 𝐴𝑢𝑡(ℚ(√3
4
)/ℚ) defined by  

𝜎1: 𝐵 → ℚ(√2
3
) 

1 ↦ 1 

√3
4
↦ √3

4
 

√9
4
↦ 9 

√27
4

↦ √27
4

 
 
and 

𝜎2: 𝐵 → ℚ(√2
3
) 

1 ↦ 1 

√3
4
↦ −√3

4
 

√9
4
↦ 9 

√27
4

↦ −√27
4

 
 

In conclusion, we obtain |𝐴𝑢𝑡(ℚ(√3
4
)/ℚ)| = 2 while [ ℚ(√3

4
):ℚ] = 4. Hence, ℚ(√3

4
)/ℚ is not a Galois 

extension. 
 
Next, we assume that 𝐾/𝐹 is a Galois extension field with its Galois group 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹). Moreover, we will 
give some properties of 𝐾/𝐹 related to its Galois group. We will first discuss the fixed field of an extension 
field. 
 
Let 𝐾/𝐹 be a Galois extension with its Galois group 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹).  We form a subset of 𝐾 defined by 

𝐾𝐺 = {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥, ∀𝜎 ∈ 𝐺}. 
Note that ∀𝑎, 𝑏 ∈ 𝐾𝐺 dan 𝜎 ∈ 𝐺, we obtain  

𝜎(𝑎 − 𝑏) = 𝜎(𝑎) − 𝜎(𝑏) = 𝑎 − 𝑏 
and 

𝜎(𝑎𝑏−1) = 𝜎(𝑎)𝜎(𝑏−1) = 𝜎(𝑎)(𝜎(𝑏))−1 = 𝑎𝑏−1. 
 

Therefore, 𝐾𝐺 is a subfield in 𝐾 and is called the fixed field of 𝑲/𝑭 [5]. 
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Next, we will give an example on finding the fixed field of a Galois extension using Example 4. 
 
Example 12 

Let ℚ(√2)/ℚ be a Galois extension where its Galois group 𝐺𝑎𝑙(ℚ(√2)/ℚ) = {𝑖𝑑, 𝜎2′}. We obtain, 

𝑖𝑑:ℚ(√2) → ℚ(√2) 

𝑎 + 𝑏√2 ↦ 𝑎 + 𝑏√2 
and 

𝜎2′:ℚ(√2) → ℚ(√2) 

𝑎 + 𝑏√2 ↦ 𝑎 − 𝑏√2 

Thus, 𝑖𝑑(𝑎) = 𝑎 and 𝜎2
′(𝑎) = 𝑎 where 𝑎 ∈ ℚ. Hence, 𝑄(√2)

𝐺
= ℚ. 

 
Lemma 13[5] 
Let 𝐾/𝐹  be a Galois extension field with its Galois group 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹) . If 𝑆 ⊆ 𝐺  then 𝐾𝑆  is an 
intermediate subfield of 𝐾/𝐹 i.e. 𝐹 ⊆ 𝐾𝑆 ⊆ 𝐾  
Proof 
Note that for every 𝑎, 𝑏 ∈ 𝐾𝑆 dan 𝜎 ∈ 𝑆, we have  

𝜎(𝑎 − 𝑏) = 𝜎(𝑎) − 𝜎(𝑏) = 𝑎 − 𝑏 
and 

𝜎(𝑎𝑏−1) = 𝜎(𝑎)𝜎(𝑏−1) = 𝜎(𝑎)(𝜎(𝑏))−1 = 𝑎𝑏−1. 
Thus, 𝐾𝑆 is a subfield in 𝐾 containing 𝐹. 
 
Moreover, for every 𝑆 ⊆ 𝐺, we called 𝐾𝑆as the fixed field of 𝑺. ◼ 
 
Let 𝐾/𝐹 be a Galois extension with its Galois group 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹) where  

𝐾𝐺 = {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥, ∀𝜎 ∈ 𝐺}.  
is the fixed field of 𝐾/𝐹. It is obvious that 𝐹 ⊆ 𝐾𝐺. Furthermore, we will give the properties of 𝐾/𝐹 related 
to its fixed field 𝐾𝐺.  
 
Theorem 14 [2] 
Let 𝐾/𝐹 be an extension field where [𝐾: 𝐹] < ∞. If 𝐾𝐺 = 𝐹 then [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. 
Proof. 
Let [𝐾: 𝐹] = 𝑑 and |𝐴𝑢𝑡(𝐾/𝐹)| = 𝑛. Based on Proposition 8, we have 𝑑 ≥ 𝑛. Next, we will prove that 𝑑 ≤
𝑛, using a method of contradiction. 
Suppose 𝑑 > 𝑛 . Thus, there exist 𝑛 + 1  elements 𝑣1, 𝑣2, … , 𝑣𝑛+1  which are linearly independent over 𝐹 . 
Then, we construct the following system of the equations 
 

𝜎1(𝑣1)𝑥1 + 𝜎1(𝑣2)𝑥2 +⋯+ 𝜎1(𝑣𝑛+1)𝑥𝑛+1 = 0 
𝜎2(𝑣1)𝑥1 +𝜎2(𝑣2)𝑥2 +⋯+𝜎2(𝑣𝑛+1)𝑥𝑛+1 = 0 

⋮ 
𝜎𝑛(𝑣1)𝑥1 + 𝜎2(𝑣2)𝑥2 +⋯+ 𝜎𝑛(𝑣𝑛+1)𝑥𝑛+1 = 0. 

Note that there are more variables than the number of equations. It implies there is a non-trivial solution, 
(𝑥1 𝑥2  ⋮  𝑥𝑛+1  ) = (𝛼1 𝛼2  ⋮  𝛼𝑛+1  )  where 𝛼𝑖 ≠ 0  for some 𝑖 ∈ {1,2,… , 𝑛 + 1} . Among all non-trivial 
solutions, we choose 𝑟 as the least number of non-zero elements. Moreover, 𝑟 ≠ 1 because 𝜎1(𝑣1)𝛼1 = 0 
implies 𝜎1(𝑣1) = 0 and 𝑣1 = 0. 

i. We will prove that there exists a non-trivial solution where 𝛼𝑖 are in 𝐹 for any 𝑖 ∈ {1,2,… , 𝑛 + 1}. 

Suppose 

(

 
 
 

𝛼1
𝛼2
⋮
𝛼𝑟
0
⋮
0 )

 
 
 
  is a non-trivial solution with 𝑟  non-zero elements where 𝛼1, 𝛼2, … , 𝛼𝑟 ≠ 0 . We 
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obtain a new non-trivial solution by multiplying the given solution with 
1

𝛼𝑟
  which is 

(

 
 
 
 

𝛽1
𝛽2
⋮
𝛽𝑟
0
⋮
0 )

 
 
 
 

=

(

 
 
 
 

𝛼1/𝛼𝑟
𝛼2/𝛼𝑟
⋮
1
0
⋮
0 )

 
 
 
 

. Thus,    

       𝛽1𝜎𝑖(𝑣1) + 𝛽2𝜎𝑖(𝑣2) +⋯+ 1. 𝜎𝑖(𝑣𝑛+1) = 0            (4) 
 
 For 𝑖 = 1,2,… , 𝑛. Now, we will show that 𝛽𝑖 are in 𝐹 for any 𝑖 ∈ {1,2,… , 𝑛 + 1} using a method of 

contradiction. Suppose there exists 𝛽𝑖 ∉ 𝐹 , say 𝛽1 . We know that 𝐹 = 𝐾𝐺  so that 𝛽1  is not an 
element of the fixed field. In other words, there exists 𝜎𝑘 ∈ 𝐺 where 𝜎𝑘(𝛽1) ≠ 𝛽1. So, 𝜎𝑘(𝛽1) − 𝛽1 ≠
0 . Since 𝐺  is a group, it implies 𝜎𝑘𝐺 = 𝐺 . It means for any 𝜎𝑖 ∈ 𝐺 , we obtain 𝜎𝑖 = 𝜎𝑘𝜎𝑗   for 𝑗 =

1,2,… , 𝑛. Applying 𝜎𝑘 to the expressions of (4) 
⟺𝜎𝑘(𝛽1𝜎𝑗(𝑣1) + 𝛽2𝜎𝑗(𝑣2) +⋯+ 1. 𝜎𝑗(𝑣𝑟)) = 0 

⟺𝜎𝑘(𝛽1). 𝜎𝑘𝜎𝑗(𝑣1) + 𝜎𝑘(𝛽2). 𝜎𝑘𝜎𝑗(𝑣2) +⋯+ 𝜎𝑘𝜎𝑗(𝑣𝑟) = 0 

 for 𝑗 = 1,2, … , 𝑛 so that from 𝜎𝑖 = 𝜎𝑘𝜎𝑗 . We obtain  

       𝜎𝑘(𝛽1). 𝜎𝑖(𝑣1) + 𝜎𝑘(𝛽2). 𝜎𝑖(𝑣2) +⋯+ 𝜎𝑖(𝑣𝑟) = 0.      (5) 
 
 Subtracting (4) and (5), we have 

(𝛽1 − 𝜎𝑘(𝛽1)𝜎𝑖(𝑣1) + (𝛽2 − 𝜎𝑘(𝛽2)𝜎𝑖(𝑣2) +⋯+ (𝛽𝑟−1 −𝜎𝑘(𝛽𝑟−1)𝜎𝑖(𝑣𝑟−1) + 0 = 0 
 which is non-trivial solution because 𝜎𝑘(𝛽1) ≠ 𝛽1 and is having 𝑟 − 1 non-zero elements, contrary 

to the choice of 𝑟 as the minimal number. Hence, 

(

 
 
 
 

𝛽1
𝛽2
⋮
𝛽𝑟
0
⋮
0 )

 
 
 
 

 is a non-trivial where all 𝛽𝑖 ∈ 𝐹 for any 

𝑖 = 1,2,… , 𝑛. 
ii. Using (i), we obtain a nonzero solution with all elements in 𝐹. So, using the first equation in the 

system, we obtain 
⟺𝜎1(𝑣1)𝛽1 + 𝜎1(𝑣2)𝛽2 +⋯+ 𝜎1(𝑣𝑟)𝛽𝑟 = 0 
⟺𝜎1(𝛽1𝑣1 + 𝛽2𝑣2 +⋯+𝛽𝑟𝑣𝑟) = 0. 

Because 𝜎1 is an automorphism, we obtain 𝛽1𝑣1 + 𝛽2𝑣2 +⋯+𝛽𝑟𝑣𝑟 = 0  where 𝛽1, 𝛽2, … , 𝛽𝑟  are 
nonzero elements in 𝐾. It is contrary to 𝑣1, 𝑣2, … , 𝑣𝑛+1 which are linearly independent over 𝐹. 

 
Thus, we have 𝑑 ≤ 𝑛. Hence, 𝑑 = 𝑛 i.e. [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. ◼ 
 
Theorem 15[2] 
An extension 𝐾/𝐹 is a Galois extension field with its Galois group 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹) if and only if 𝐾𝐺 = 𝐹. 
Proof 
(⟹) Suppose 𝐾 is a Galois extension over 𝐹 where [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. Next, we will show that 𝐾𝐺 =
𝐹. Based on the previous Lemma know that 𝐾𝐺 is a subfield of 𝐾 and 𝐹 ⊆ 𝐾𝐺 ⊆ 𝐾.  
Using Lemma 5, we have 

[𝐾: 𝐹] = [𝐾:𝐾𝐺] = [𝐾: 𝐹]/[𝐾𝐺: 𝐹]. 
It implies [𝐾𝐺: 𝐹] = 1. Hence, 𝐾𝐺 = 𝐹.  
(⟸)Let 𝐾𝐺 = 𝐹. Based on Theorem 14, we have [𝐾: 𝐹] = [𝐾: 𝐾𝐺] = |𝐴𝑢𝑡(𝐾/𝐹)|. Thus, 𝐾/𝐹 is Galois. ◼ 
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Let 𝑲/𝑭 be a Galois extension and 𝑬 is an intermediate field in 𝑲/𝑭 i.e. 𝑭 ⊆ 𝑬 ⊆ 𝑲. Note that, we can 
form an extension field 𝑲/𝑬 and 𝑬/𝑭. In this section , we will show that 𝑲/𝑬 is always Galois. 

Lemma 16[12] 
Let 𝑲/𝑭 be a Galois extension with its Galois group 𝑮 = 𝑮𝒂𝒍(𝑲/𝑭). If 𝑬 is an intermediate field in 𝑲/𝑭 
where 𝑭 ⊆ 𝑬 ⊆ 𝑲 then 𝑲/𝑬 is Galois with Galois group 𝑯 = 𝑮𝒂𝒍(𝑲/𝑬). 
Proof. 
Let 𝑲/𝑭  be a Galois extension where 𝑮 = 𝑮𝒂𝒍(𝑲/𝑭) . We will show that 𝑲/𝑬  is Galois i.e. [𝑲:𝑬] =
|𝑨𝒖𝒕(𝑲/𝑬)|.  
Suppose 𝑯 ⊆ 𝑮 where 𝑬 is the fixed field of 𝑯 i.e. 𝑬 = 𝑲𝑯. First, we will prove that 𝑯 ⊆ 𝑨𝒖𝒕(𝑲/𝑬).  
Next, we will prove that 𝑯 = 𝑨𝒖𝒕(𝑲/𝑬). Take any 𝒉 ∈ 𝑯. Because 𝑬 is the fixed field of 𝑯, we obtain 

ℎ(𝑥) = 𝑥 
for every 𝒙 ∈ 𝑬. Thus, 𝒉 fixes all element in 𝑬 so that 𝒉 ∈ 𝑨𝒖𝒕(𝑲/𝑬) and 𝑯 ⊆ 𝑨𝒖𝒕(𝑲/𝑬). Thus, 𝑯 ≤
|𝑨𝒖𝒕(𝑲/𝑬)|. Based on Proposition 8 and Theorem 14, we obtain 

|𝑯| ≤ |𝑨𝒖𝒕(𝑲/𝑬)| ≤ [𝑲:𝑬] = [𝑲:𝑲𝑯] = |𝑯|. 
Hence, |𝑨𝒖𝒕(𝑲/𝑬)| = [𝑲:𝑬]. Therefore, 𝑲/𝑬 is Galois. ◼ 
 
 
Let 𝑲/𝑭 be a Galois extension and 𝑬 is an intermediate field in 𝑲/𝑭 i.e. 𝑭 ⊆ 𝑬 ⊆ 𝑲. Note that, we can 
form an extension field 𝑲/𝑬 and 𝑬/𝑭. However, the extension field 𝑬/𝑭 is not always Galois. Using 
Example 10 and Example 11, for 𝑲 = ℚ(𝟑𝟏/𝟒, 𝒊), 𝑭 = ℚ, and 𝑬 = ℚ(𝟑𝟏/𝟒), we know that 𝑲/𝑬 is Galois but 
𝑬/𝑭 is not a Galois extension. 
 

 Galois Correspondence 

Let 𝑲/𝑭 be a Galois extension with its Galois group 𝑮 = 𝑮𝒂𝒍(𝑲/𝑭). In this part, we will discuss about Galois 
correspondence between the set of all subgroups in 𝑮 and the set of all intermediate field 𝑬 of 𝑲/𝑭 i.e. 
𝑭 ⊆ 𝑬 ⊆ 𝑲. We will also give a condition for 𝑬/𝑭 to be a Galois extension using Galois correspondence.  
 
Let 𝐾/𝐹 be a Galois extension field with its Galois group 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹). We know that for every subgroup 
𝐻 in 𝐺, we can form a subfield 𝐾𝐻. Suppose 

ℋ is the set of all subgroups in 𝐺, and 
ℱ is the set of all intermediate field of 𝐾/𝐹. 

We can form a function between ℋ and ℱ defined by 
𝜌:ℋ → ℱ 
𝐻 ↦ 𝐾𝐻 

for all 𝐻 ∈ ℋ. In other words, 𝐻 is mapped to its fixed field 𝐾𝐻. Next, we will show that there is a one-
one correspondence between ℋ and ℱ that is 𝜌 is bijective. 
 
Theorem 17[5] 
Let 𝐾/𝐹  be an extension field. If 𝐾  is a Galois extension then there is an one-one correspondence 
between intermediate field 𝐸 of 𝐾/𝐹 and subgroups 𝐻 of 𝐺 defined by 

𝜌:ℋ → ℱ 
𝐻 ↦ 𝐾𝐻 . 

Proof 
Let 𝐾/𝐹 be a Galois extension field where 𝐴𝑢𝑡(𝐾/𝐹) is the automorphism group of 𝐾/𝐹. we will show 
that there is a one-one correspondence between ℋ and ℱ that is 𝜌 is bijective. 

i. Suppose 𝐸 is an intermediate field. From Lemma 16, we have 𝐾/𝐸 is a Galois extension with its 
Galois group 𝐻 = 𝐴𝑢𝑡(𝐾/𝐸). We know that 𝐻 is a subgroup in 𝐺. Thus, 𝐸 is the fixed field of 𝐻 
that is 𝐸 = 𝐾𝐻 = 𝜌(𝐻). Hence, 𝜌 is surjective. 

ii. Let 𝐻1, 𝐻2 ∈ ℋ  where 𝐺  where 𝜌(𝐻1) = 𝜌(𝐻2)  that is 𝐾
 𝐻1 = 𝐾  𝐻2 .  Note that 𝐾/𝐾  𝐻1  and 𝐾/

𝐾  𝐻2 are Galois extensions by Lemma 16. Based on Theorem 14, we obtain, 𝐻1 = 𝐴𝑢𝑡(𝐾/𝐾
 𝐻1) and 

𝐻2 = 𝐴𝑢𝑡(𝐾/𝐾
 𝐻2).  Also, note that 𝐾  𝐻1 = 𝐾  𝐻2  so that 𝐾  𝐻1  is the fixed field of 𝐻2 . Thus, 𝐻2 ⊆

𝐴𝑢𝑡(𝐾/𝐾  𝐻1) = 𝐻1 .  Analogously, 𝐾
 𝐻2 = 𝐾  𝐻1 . We have, 𝐾  𝐻2  is the fixed field of 𝐻1 . Therefore, 

𝐻1 ⊆ 𝐴𝑢𝑡(𝐾/𝐾
 𝐻2) = 𝐻2. Therefore, 𝐻1 = 𝐻2. Hence, 𝜌 is injective. ◼ 
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Let 𝐾/𝐹  be an extension field. If 𝐾  is a Galois extension then there is an one-one correspondence 
between intermediate subfield 𝐸 of 𝐾/𝐹 and subgroups 𝐻 of 𝐺 defined by 

𝜌:ℋ → ℱ 
𝐻 ↦ 𝐾𝐻 . 

It implies 𝐻 is corresponding to its fixed field 𝐾𝐻 i.e. 𝐻 = 𝐴𝑢𝑡(𝐾/𝐾𝐻). Moreover, we will construct the 
inverse of 𝜌:ℋ → ℱ  that is 𝜑:ℱ → ℋ . Note that for every intermediate subfield 𝐸 , we obtain 𝐸 =
𝜌(𝐻) = 𝐾𝐻 for some 𝐻 ∈ ℋ. Next, we will determine the subgroup 𝐻. Based on Lemma 16 and Theorem 
14, we have these following conditions  

i. 𝐾/𝐸 is Galois with its Galois group 𝐴𝑢𝑡(𝐾/𝐸); 
ii. 𝐸 is the fixed field of 𝐴𝑢𝑡(𝐾/𝐸) i.e. 𝐸 = 𝐾𝐴𝑢𝑡(𝐾/𝐸) . 

Thus, 𝐸 = 𝐾𝐴𝑢𝑡(𝐾/𝐸)  and 𝐸 = 𝜌(𝐻) = 𝐾𝐻 . Using the fact that 𝜌  is bijective, we have 𝐻 = 𝐴𝑢𝑡(𝐾/𝐸) . 
Therefore, we also can construct 𝜑 defined by  

𝜑:ℱ → ℋ 
𝐸 ↦ 𝐴𝑢𝑡(𝐾/𝐸). 

Next, we will give some properties related to Galois correspondence. 

Theorem 18[2]  
Let 𝑲/𝑭 be a Galois extension with its Galois group 𝑮 = 𝑮𝒂𝒍(𝑲/𝑭) and 𝝈 ∈ 𝑮. If 𝑬 is correspondent to 
𝑯 then 𝝈(𝑬) is correspondent to 𝝈𝑯𝝈−𝟏. 
Proof. 
Suppose an intermediate field 𝐸 of 𝐾/𝐹 and subgroups 𝐻 of 𝐺. We obtain, 

𝜑:ℱ → ℋ 
𝐸 ↦ 𝐺𝑎𝑙(𝐾/𝐸) = 𝐻. 

Next, we will show that 𝝈(𝑬) is mapped to 𝝈𝑯𝝈−𝟏 . 
i. First, we will show that 𝜎𝐻𝜎−1 ⊆ 𝐺𝑎𝑙(𝐾/𝜎(𝐸)).  Let ℎ ∈ 𝐻 and 𝛼 ∈ 𝐸, we have 

𝜎ℎ𝜎−1(𝜎(𝛼)) = 𝜎ℎ(𝛼) = 𝜎(𝛼). 

Therefore, 𝜎ℎ𝜎−1  fixes all elements in 𝜎(𝐸) . So, 𝜎ℎ𝜎−1 ∈ 𝐺𝑎𝑙(𝐾/𝜎(𝐸))  so that 𝜎𝐻𝜎−1 ⊆
𝐺𝑎𝑙(𝐾/𝜎(𝐸)).   

ii. Note that the restriction of 𝜎 to 𝐸 where 
𝜎|𝐸: 𝐸 → 𝜎(𝐸) 

is an isomorphism. Therefore, we have [𝑬/𝑭] = [𝝈(𝑬)/𝑭]. We have,  
[𝑲:𝑬] = [𝑲:𝑭]/[𝑬:𝑭] 

= [𝑲:𝑭]/[𝝈(𝑬):𝑭] 
= [𝑲:𝝈(𝑬)] 

Based on Lemma 16, we have 𝑲/𝑬 and 𝑲/𝝈(𝑬) are Galois so that 
|𝑯| = |𝑨𝒖𝒕(𝑲/𝑬)| = [𝑲:𝑬] = [𝑲:𝝈(𝑬)] = |𝑨𝒖𝒕(𝑲/𝝈(𝑬))| 

From group properties, we also get 
|𝐻| = |𝜎𝐻𝜎−1|. 

Therefore, we have |𝜎𝐻𝜎−1| = |𝐴𝑢𝑡(𝐾/𝜎(𝐸))|. 
From (i) and (ii), we have 𝜎𝐻𝜎−1 ⊆ 𝐺𝑎𝑙(𝐾/𝜎(𝐸))  and |𝜎𝐻𝜎−1| = |𝐴𝑢𝑡(𝐾/𝜎(𝐸))| . Hence, 𝜎𝐻𝜎−1 =
𝐺𝑎𝑙(𝐾/𝜎(𝐸)). ◼ 
 
Theorem 19[12] 
Suppose 𝐾/𝐹  be a Galois group and 𝐸  is an indeterminate field of 𝐾/𝐹  with its Galois group 𝐻 =
𝐴𝑢𝑡(𝐾/𝐸). If 𝐻 is a normal subgroup in 𝐺 then 𝐸/𝐹 is a Galois extension with its Galois group 𝐺𝑎𝑙(𝐸/𝐹). 
Proof. 
Suppose 𝐻 is normal. 
Take any 𝜎 ∈ 𝐺𝑎𝑙(𝐾/𝐹). Since 𝐻 is normal, we have 𝜎𝐻𝜎−1 = 𝐻. Based on Theorem 18, we get 𝜑(𝐸) =
𝐻 and 𝜌(𝜎(𝐸)) = 𝜎𝐻𝜎−1 = 𝐻 . Because 𝜑 is bijective, it implies 𝐸 = 𝜎(𝐸) . Note that 𝜎(𝑥) ∈ 𝐸  for all 
𝑥 ∈ 𝐸 so that 

𝜎|𝐸: 𝐸 → 𝐸 
and 𝜎|𝐸 ∈ 𝐴𝑢𝑡(𝐸/𝐹). Therefore, we can form a group homomorphism  

𝜓:𝐺𝑎𝑙(𝐾/𝐹) → 𝐴𝑢𝑡(𝐸/𝐹) 
𝜎 ↦ 𝜎|𝐸. 



Tensor : Pure and Applied Mathematics Journal | Volume 4 | Nomor 1 | Hal. 1-12     11 

 
 

 

 

i. First we will show that 𝐺𝑎𝑙(𝐾/𝐸) = 𝐾𝑒𝑟(𝜓). For any 𝑔 ∈ 𝐺𝑎𝑙(𝐾/𝐸), we have 𝑔(𝑥) = 𝑥 for 
every 𝑥 ∈ 𝐸. Therefore, 𝑔|𝐸 = 𝑖𝑑 and 𝑓 ∈ 𝐾𝑒𝑟(𝜓). 

Moreover, take 𝑓 ∈ 𝐾𝑒𝑟(𝜓). It means 𝜓(𝑓) = 𝑓|𝐸 = 𝑖𝑑. So, 𝑓(𝑥) = 𝑥 for every 𝑥 ∈ 𝐸 and 

𝑓 ∈ 𝐺𝑎𝑙(𝐾/𝐸). Hence, 𝐴𝑢𝑡(𝐾/𝐸) = 𝐾𝑒𝑟(𝜓). 
ii. Next, we will prove that 𝐸/𝐹 is Galois that is 𝐴𝑢𝑡(𝐸/𝐹) = [𝐸:𝐹] 

Using the homomorphism theorem, we have 
𝐺𝑎𝑙(𝐾/𝐹)/𝐺𝑎𝑙(𝐾/𝐸) ≅ 𝑖𝑚(𝜓). 

 So, 

⇔ |𝑖𝑚(𝜓)| ≤ 𝐴𝑢𝑡(𝐸/𝐹) 

⇔ |𝐺𝑎𝑙(𝐾/𝐹)/𝐺𝑎𝑙(𝐾/𝐸)| ≤ 𝐴𝑢𝑡(𝐸/𝐹) 

⇔ |𝐺𝑎𝑙(𝐾/𝐹)|

|𝐺𝑎𝑙(𝐾/𝐸)|
 

≤ 𝐴𝑢𝑡(𝐸/𝐹) 

⇔ [𝐾: 𝐹]

[𝐾: 𝐸]
 

≤ 𝐴𝑢𝑡(𝐸/𝐹) 

⇔ [𝐾: 𝐹]

[𝐾: 𝐸]
 

≤ 𝐴𝑢𝑡(𝐸/𝐹) 

⇔ [𝐸: 𝐹] ≤ 𝐴𝑢𝑡(𝐸/𝐹). 
Based on Proposition 8, 𝐴𝑢𝑡(𝐸/𝐹) ≤ [𝐸: 𝐹] . Therefore, 𝐴𝑢𝑡(𝐸/𝐹) = [𝐸:𝐹] . Hence, 𝐸/𝐹  is Galois 
extension with its Galois group 𝐺𝑎𝑙(𝐸/𝐹). ◼ 

 
Here, we will give an application on finding Galois extension 𝐸/𝐹 related to Galois correspondence using 
Example 10. 
 
Example 20 
Based on Example 10, we obtain a Galois extension Suppose an extension field 𝐾/𝐹 where 𝐾 =

ℚ(√3
4
, 𝑖), 𝐹 = ℚ and its Galois 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹) = 𝐷8 where  

𝐺𝑎𝑙(𝐾/𝐹) = 〈𝜎, 𝜏|𝜎4 = 𝜏2 = 𝑖𝑑,𝜏−1 = 𝜎−1𝜏𝜎〉 
= {𝑖𝑑, 𝜎, 𝜎2, 𝜎3, 𝜏, 𝜏𝜎, 𝜏𝜎2, 𝜏𝜎3}. 

Using the previous Theorem, we can obtain a Galois 𝐸/𝐹 by computing the normal subgroups in 𝐺. Note 
that the proper normal subgroups in 𝐺 are 

𝐻1 =< 𝜎 >= {𝑖𝑑, 𝜎, 𝜎
2, 𝜎3} 

𝐻2 =< 𝜏, 𝜎
2 >= {𝑖𝑑, 𝜏, 𝜎2, 𝜏𝜎2} 

𝐻3 =< 𝜏𝜎, 𝜎
2 >= {𝑖𝑑, 𝜏𝜎, 𝜎2, 𝜏𝜎3} 

𝐻4 =< 𝜎
2 >= {𝑖𝑑, 𝜎2}. 

Using the Galois correspondence, we can compute the Galois extensions by finding indeterminate subfields 
𝐸1, 𝐸2, 𝐸3, and 𝐸4 of 𝐾/𝐹 where its Galois group is 𝐻1, 𝐻2, 𝐻3, and 𝐻4. Thus, based on the correspondence, 
we have 

𝜌:ℋ → ℱ 
𝐻 ↦ 𝐾𝐻 . 

So, 𝐸𝑖 = 𝐾
𝐻𝑖  for all 𝑖 = 1,2,3,4. Note that for 𝐻1 =< 𝜎 >, we get 𝜎(𝑖) = 𝑖 so that 𝜎

2(𝑖) = 𝑖 and 𝜎3(𝑖) =
𝑖 . Thus, every element in 𝐻1  fixes all element in ℚ  and 𝑖 . Hence, the fixed field of 𝐻1  i.e. 𝐾

𝐻1 = ℚ(𝑖) .  

Note also for 𝐻2 =< 𝜏, 𝜎
2 > , 𝜏(√3𝑖) = √3𝑖  and 𝜎2(√3𝑖) = √3𝑖  . Therefore, 𝜏𝜎2(√3𝑖) = √3𝑖  so that 

every element in 𝐻2 fixes ℚ and √3𝑖. It implies, 𝐾𝐻2 = ℚ(√3𝑖). Using the same way, we obtain 𝐾𝐻3 =

ℚ(√3) and 𝐾𝐻4 = ℚ(√3, 𝑖). 

Therefore, we obtain Galois extension ℚ(𝑖)/ℚ), ℚ(√3𝑖)/ℚ, ℚ(√3)/ℚ, and ℚ(√3, 𝑖)/ℚ. 

 
 
3. Conclusion 

Let 𝐾/𝐹 be Galois extension field with its Galois group 𝐺 = 𝐺𝑎𝑙(𝐾/𝐹). Suppose 𝐸 be an intermediate 
field of 𝐾/𝐸 that is 𝐹 ⊆ 𝐸 ⊆ 𝐾. 

1. There is an one-one correspondence between the set of all intermediate subfield of 𝐾/𝐹 and the 
set of all subgroup in 𝐺 defined by 
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𝜌:ℋ → ℱ 
𝐻 ↦ 𝐾𝐻 

for all subgroups 𝐻 in 𝐺 where 𝐾𝐻 is the fixed field of 𝐻. 
2. 𝐾/𝐸 is a Galois extension with its Galois group 𝐻 = 𝐺𝑎𝑙(𝐾/𝐸).  
3. 𝐸/𝐹 is a Galois if and only if 𝐻 = 𝐺𝑎𝑙(𝐾/𝐸) is a normal subgroup in 𝐺.  
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