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ABSTRACT 

Effects of climate change and landscape-scale forest management on  

avian communities, abundance, and nest success in the Appalachian Mountains 

 

Hannah L. Clipp 

 

Birds are integral components of ecosystems and account for billions of dollars in 

tangible benefits to humans. As such, recent continental declines of bird species have ecological 

and economic consequences, providing the impetus for my dissertation research. I identified 

knowledge gaps and proposed novel questions about how birds in the Appalachian Mountains 

are influenced by changing environmental conditions due to climate change and forest 

management. The Appalachian Mountains encompass an important biogeographical region with 

high conservation value due to its myriad habitats and corresponding bird species diversity. 

Thus, there is a critical need to evaluate the effects of shifting climate factors and land 

management decisions on long-term trends in bird populations in this region. I designed my 

dissertation research to fulfill that need, developing 4 chapters that investigate the effects of 

temperature, precipitation, land cover, and management actions on Appalachian forest bird 

communities. 

The first 2 chapters of my dissertation emphasize the role of climate in the Appalachian 

Mountains. In Chapter 1, I determined the potential effects of both climate and land cover 

change on forest songbirds breeding in the Appalachian Mountains region by conducting a 

comprehensive review of published literature and presenting a novel case study. The literature 

review focused on synthesizing documented and predicted changes in bird species distributions, 

populations, and communities in response to changes in climate and land cover across the 

Appalachian Mountains. I concluded by noting the dearth of studies from the Appalachian 

Mountains that track long-term avian responses, particularly population dynamics, to changing 

climate and land cover. For my case study, I used 20 years of North American Breeding Bird 

Survey data from 322 survey routes within the Appalachian Mountains Bird Conservation 

Region to model the regionwide abundance and distributions of 14 songbird species, disentangle 

the influences of climate versus land cover change, and predict the consequences of future shifts 

in climate and land cover patterns. I found that both climate and land cover variables were 

important in shaping forest songbird distributions. However, the proportions of land cover types 

tended to be more influential and had higher effect sizes than temperature or precipitation 

variables. When predicting future distributions of the 14 focal forest songbird species within the 

Appalachian Mountains, the future climate and land cover combination scenarios had varying 

but limited impacts on projected relative abundance, regional occupancy, and shifts in the 

distribution of relative abundance, with the strongest consistent effects on cold-associated 

species and the 2 warmest scenarios resulting in the greatest differences between contemporary 

and future projections. Overall, the net projected impact of climate change on breeding forest 

songbirds within the Appalachian Mountains was modest at a broad spatiotemporal scale, but 

there may be cause for conservation concern for cold-associated species if greenhouse gas 



 

 

emissions remain high. Furthermore, based on the importance and effect sizes of land cover 

variables in my case study, land use changes that result in reduced forest cover and increased 

urban cover may pose a more immediate threat than climate change to forest songbirds in this 

region. 

The second chapter of my dissertation takes a finer-scale approach compared to Chapter 

1 and investigates whether the influence of climate change on forest songbirds in the 

Appalachian Mountains is mediated by latitude and elevation. In Chapter 2, I quantified 

differences in how forest songbird communities are affected by climate factors and additionally 

explored concurrent temporal trends across latitudinal and elevational gradients within the 

Appalachian Mountains. My specific objectives were to apply interactions with both latitude and 

elevation in quantifying how temperature, precipitation, and other temporal factors influence 

climate-related guild richness and the abundance of specific focal species during the breeding 

season. I used nearly 30 years of bird survey data from 1,733 sites at various elevations in 

National Forests located within the Northern, Central, and Southern Appalachians to model 

responses in guild richness and focal species abundance to climate factors and long-term 

temporal trends. I found that guild-specific relationships varied among latitudinal regions and 

along elevational gradients within the Appalachian Mountains. The results of this study are 

valuable for understanding historical effects of changing climate factors and improving 

predictions of future climate change impacts on forest songbirds in the Appalachian Mountains 

by verifying and delineating the dynamic nature of the relationships with temperature and 

precipitation across latitudinal and elevational gradients. My findings will also help to inform 

forest songbird conservation efforts in the Appalachian Mountains because they quantify the 

regional effects of temperature and precipitation on climate-related guilds and forest songbird 

species, and identify specific latitudes and elevations at which they are at the highest risk from 

climate change and other temporal factors. Based on my models, climate mitigation strategies for 

forest songbirds in the Appalachian Mountains are most needed for cold-associated species and 

for low elevations in the Southern Appalachians. 

My final 2 chapters focus on the role of land management decisions within the Central 

Appalachian region. In Chapter 3, I used 17 years of historical bird survey data to fill a 

knowledge gap about long-term bird responses to landscape-scale forest management by 

investigating how avian diversity, abundance, and population dynamics changed over time in 2 

Central Appalachian forested landscapes with varying levels of timber harvest intensity. My 

specific objectives were to examine the influence and effect of interactions between time and 

landscape-scale timber harvest intensity on breeding season songbird guild richness, focal 

species abundance, and focal species nest success. I found that guild richness and focal species 

abundance tended to be consistently higher in the actively harvested landscape, and trends in 

guild richness and species abundance over time were consistently positive in the actively 

harvested landscape and negative in the minimally harvested landscape. In particular, early-

successional / edge-associated species and forest-gap species were found in higher numbers and 

exhibited positive temporal trends in the actively harvested landscape. However, a holistic 

assessment that included trends in reproductive success highlighted long-term declines in nest 

success for a forest-interior species of regional conservation concern within the actively 

harvested landscape but not the minimally harvested landscape. Thus, there are important trade-

offs to consider when using landscape-scale forest management to promote songbird 

communities and populations in forested landscapes. 



 

 

The fourth chapter of my dissertation addresses specific management efforts to promote 

target game birds and a diversity of breeding and post-breeding songbirds in heavily forested 

landscapes. In Chapter 4, I collected extensive data from 335 wildlife openings within the 

Monongahela National Forest, and then quantified how a suite of site-level and landscape-level 

wildlife opening attributes relate to multi-species occupancy of 3 game birds (wild turkey, ruffed 

grouse, and American woodcock) during the game bird courtship season and songbird guild 

richness during the breeding and post-breeding seasons. I found that game bird species 

occupancy in wildlife openings may be best explained by management actions and local habitat 

attributes. My findings further indicated that it is feasible to manage wildlife openings for the 

mutual benefit of different species groups across seasons. I presented a set of management 

recommendations to maximize occurrence of wild turkey, ruffed grouse, and American 

woodcock in concordance with breeding and post-breeding songbird occurrence within wildlife 

openings, with considerations for minimizing negative impacts to breeding songbirds in adjacent 

forests. These actions can be applied by private landowners, non-governmental organizations, 

and government agencies to simultaneously meet management goals and promote avian diversity 

in forest ecosystems. 

Combining all 4 chapters, my dissertation research generates critical knowledge needed 

to manage and conserve important natural resources that are ecologically and economically 

valuable, particularly in the Appalachian Mountains region. My first 2 research studies advance 

understanding of climate change effects and underscore the significance of the Appalachian 

Mountains to regional bird communities, especially cold-associated bird species, with important 

implications for mitigating large-scale threats to biodiversity. The final 2 research studies 

provide specific management considerations and recommendations for Central Appalachian 

forests that will holistically benefit and sustain many forest bird species, including target game 

birds and species of regional conservation concern.
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CHAPTER 1 

Effects of climate and land cover change on forest songbirds of the  

Appalachian Mountains: A literature review and case study 

 

INTRODUCTION 

Global climate change effects on birds 

Global climate change is implicated as a factor in declines of avian populations. Defined 

as the unprecedented rate of increase in Earth’s surface temperature during the 20th and 21st 

centuries, due primarily to human activity (Karl and Trenberth 2003), global climate change can 

elicit a myriad of avian responses, including shifts in phenology, distributions, and communities; 

population responses to altered weather; and evolutionary changes (Oliver and Morecroft 2014). 

Impacts to birds can occur either directly or indirectly (Trautmann 2018). Direct mortality of 

migrating birds can occur when encountering storms, which are increasing in frequency and 

intensity under global climate change (Zumeta and Holmes 1978, Newton 2007). Temperature 

can interact with landscape factors to lower songbird productivity (Cox et al. 2013a), and 

increasing temperatures may elevate rates of nest failure caused by snakes and avian predators 

(Cox et al. 2013b). In terms of indirect effects, there is strong evidence that rising temperatures 

cause phenological mismatches between birds, vegetation budding dates, and emergence or peak 

abundances of insect prey (Visser et al. 2006, Waite and Strickland 2006). In North America, the 

interval between spring green-up and arrival of migratory passerine species has increased, with 

certain species unable to keep pace (Mayor et al. 2017). Changes in phenology of migration and 

breeding are particularly prevalent in response to climate change (Both et al. 2004, 2006, Crick 

2004, Møller et al. 2008). For instance, arrival dates of Australian and European migratory birds 

at their breeding grounds are advancing, and departure dates from their breeding grounds for 

some species are delayed (Beaumont et al. 2006, Jonzén et al. 2006). Meanwhile, the clutch 

initiation dates of a multitude of migratory bird species, including tree swallows (Tachycineta 

bicolor) and pied flycatchers (Ficedula hypoleuca), are similarly advancing (Winkler et al. 2002, 

Both and Visser 2005). These phenological changes can have fitness consequences (Møller et al. 

2008); species that advance their migration or breeding phenology to track changes in climate 

may benefit from a longer breeding period and possibly increased recruitment, but species with 

limited phenological plasticity may be facing an increasing mismatch between timing of food 

requirements and food availability (Both et al. 2009), lowering reproductive success. For 

instance, species that advance their egg-laying dates the least in response to increasing spring 

temperatures over time exhibit the most negative population trends (Franks et al. 2018). In 

addition to direct and indirect impacts to populations and phenology, global climate change is 

affecting avian biogeographical patterns. 

There is evidence linking global climate change to long-term changes in avian 

distributions and geographical ranges (Chen et al. 2011). Many bird species in North America 

and Europe have expanded or contracted their wintering and/or breeding ranges northward 

(Thomas and Lennon 1999, Hitch and Leberg 2007, La Sorte and Thompson 2007, Virkkala et 
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al. 2008), but both latitudinal and altitudinal shifts have been documented and projected (Pounds 

et al. 1999, Rodenhouse et al. 2008, Maggini et al. 2011, Flousek et al. 2015). High-elevation 

species are particularly vulnerable to climate change (Siegel et al. 2014, Flousek et al. 2015, 

Freeman et al. 2018). As little as 1 °C warming could reduce suitable habitat for certain high-

elevation bird species by more than 50% (Rodenhouse et al. 2008). Meanwhile, low-elevation 

species are expanding upslope (DeLuca and King 2017, Freeman et al. 2018). However, along 

elevational gradients, climate change can cause potentially heterogeneous range shifts, as rising 

temperatures push species upslope while increased precipitation pulls them downslope (Tingley 

et al. 2012). Global climate change can further affect avian distributions indirectly by altering 

tree species distributions (Iverson et al. 2008), as well as the frequency, intensity, duration, and 

timing of forest disturbances, which can alter habitat quality during both breeding and non-

breeding seasons (Dale et al. 2001). Looking into the future, both latitudinal and altitudinal shifts 

in North American bird distribution are predicted to continue, in conjunction with tree species 

responses to climate change (Matthews et al. 2011). 

It is likely that climate change plays a role in declining forest songbird populations 

through direct, indirect, and synergistic effects (Jenouvrier 2013, Oliver and Morecroft 2014, 

Northrup et al. 2019), with consequences potentially greatest for long-distance migrants in 

seasonal habitats (Lemoine and Böhning-Gaese 2003, Both et al. 2010, Flousek et al. 2015, 

Zurell et al. 2018). In fact, migrant passerine species are projected to encounter novel climates 

throughout most of their annual cycle in the future (Zurell et al. 2018), which may adversely 

affect their survival rates (La Sorte et al. 2018). As the climate continues to warm, certain birds 

may even face extirpation and extinction (Schwartz et al. 2006, Sekercioglu et al. 2008, Tayleur 

et al. 2016, Freeman et al. 2018). Alternatively, some species are predicted to expand their 

distributions (Tayleur et al. 2016), and resident species may benefit from warmer winters 

(Rodenhouse et al. 2008). Ultimately, changes in bird communities are likely to result from 

climate change (Rodenhouse et al. 2008, Stralberg et al. 2009, Davey et al. 2012, Lindström et 

al. 2013), in part due to expanded ranges and increased relative abundance of habitat generalists 

(Davey et al. 2013); specifically, habitat specialists and cold-associated species tend to decline in 

numbers and are more negatively affected by higher temperatures than southerly distributed 

species associated with warm temperatures (La Sorte and Jetz 2010, Davey et al. 2012, Pearce-

Higgins et al. 2015, Tayleur et al. 2016, Freeman et al. 2018). 

Landscape change as an additional factor 

Many studies addressing global change are focused on anthropogenic climate change, but 

it is important to also consider that landscapes have been altered significantly in the last century. 

Broad-scale trends are spatially and temporally variable, with some regions within the United 

States (e.g., West Virginia) experiencing no change or increases in forest area within the past 5 

decades (Childs 2005, Morin et al. 2016). However, cumulative historical changes in land cover 

and land use, landscape composition, and landscape configuration over hundreds of years have 

tended to result in forest habitat loss, fragmentation, and decreased connectivity, which affect 

forest songbird populations and distributions (Villard et al. 1999). Certain forest songbirds 

require large tracts of relatively mature forest, which makes them sensitive to landscape change 

(Moenkkoenen and Welsh 1994). Losses in suitable forest habitat directly lead to subsequent 

declines or absences of associated forest bird populations (Pimm and Askins 1995, Trzcinski et 

al. 1999). Conversion of preferred habitat to less suitable habitat can also lead to population 
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declines and reductions in species richness (Gaston et al. 2003, Aratrakorn et al. 2006, Zurita et 

al. 2006). For instance, urbanization and energy development tend to negatively impact native 

forest bird populations and communities (Nilon et al. 1995, Rottenborn 1999, Er et al. 2005, 

Farwell et al. 2016). 

Forest habitat fragmentation is a landscape-scale process involving the simultaneous loss 

of forest, reduction in forest patch size, increase in the number of forest patches, and increased 

isolation of forest patches (Fahrig 2003). Previous studies using land cover datasets with 

moderate resolution (e.g., 30 m cell size) indicate that fragmentation generally has non-

significant or positive relationships with overall species abundance and richness (Fahrig 2017, 

Fahrig et al. 2019). However, forest habitat fragmentation may also have negative effects on 

forest-interior species, such as ovenbirds (Seiurus aurocapillus) (Bayne et al. 2005) and red-eyed 

vireos (Vireo olivaceus) (Keller and Yahner 2007), and forest gap species, such as cerulean 

warblers (Setophaga cerulea) (Weakland and Wood 2005). For instance, forest-interior and 

forest gap guild abundances decreased after specific thresholds in area of timber harvested within 

a heavily forested landscape in the central Appalachian Mountains (Becker et al. 2011). 

Similarly, forest-interior species abundance responded negatively to core forest (i.e., >100 m 

from a non-forest edge) loss, forest loss, and increased edge density after alteration of landscape 

structure by mountaintop removal activities (Becker et al. 2015). In fragmented forest habitat 

patches, forest-interior songbirds and long-distance migratory birds are subject to increased risk 

of nest predation and parasitism (Wilcove 1985, Robinson et al. 1995, Hobson and Bayne 2000, 

Donovan et al. 2012). Distance to edge, edge type, and type of timber harvest also influence 

nestling growth rates (Duguay et al. 2000, Kaiser and Lindell 2007). Ultimately, forest-interior 

songbird populations in severely fragmented landscapes can become extirpated (Temple and 

Cary 1988). However, the overall effects of forest fragmentation vary by species, with some 

(e.g., edge-associated species) increasing in abundance and others showing no response (Uezu et 

al. 2005, Becker et al. 2015). 

Because landscape change (encompassing changes in land cover and land use) can have 

significant impacts on bird populations, communities, and distributions (Rittenhouse et al. 2012), 

it is worth considering as an additional factor when evaluating avian responses to global climate 

change. In general, climate change may have greater influence on bird distributions than land 

cover change, as it likely affects range limits while land cover affects where species occur within 

those ranges. For instance, Sohl (2014) found that climate variables (i.e., mean annual 

temperature and precipitation) contributed more than land cover variables to models of 50 North 

American bird distributions in 2001, and that projected climate change resulted in larger overall 

range changes than projected land cover change. However, Sohl (2014) concluded that both 

climate and land cover variables are important for modeling contemporary and potential future 

species ranges, and other studies emphasize the importance of land cover change in driving bird 

population trends (Eglington and Pearce-Higgins 2012). At regional scales, adding vegetation 

cover / land cover / land use in species distribution models can create more refined projections 

(Seoane et al. 2004). For example, including tree species has been demonstrated to improve 

models for breeding bird species in the eastern United States (Matthews et al. 2011). 

Furthermore, the importance of including land cover change in projections of future avian ranges 

on a global scale was highlighted by models that coupled climate and land use change together 

(Jetz et al. 2007); they projected range reductions in many bird species, with land use change in 

the tropics responsible for range contractions of species currently not recognized as imperiled. 
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Therefore, it is important to incorporate changing land cover and land use in conjunction with 

global climate change, especially given that an altered climate regime itself can precipitate 

changes in vegetation communities and land cover types. 

Significance of the Appalachian Mountains 

Changes in climate and land cover patterns are occurring within the Appalachian 

Mountains region, with likely consequences for its bird communities. The Appalachian 

Mountains, which first formed ~480 million years ago during the Ordovician Period, are a 

dominant land feature of the eastern United States. They contain a range of elevations and 

primarily forested habitats, from temperate deciduous forests at lower elevations / latitudes to 

boreal coniferous forests at higher elevations / latitudes. The biota in this extensive region 

reflects that habitat diversity, with forest songbird communities comprising species from a 

plethora of families. The Appalachian Mountains are a key component influencing contemporary 

species’ ranges, and they serve as the southern-most limit for many breeding songbird species, 

such as black-throated blue warblers (Setophaga caerulescens) and Canada warblers (Cardellina 

canadensis). Looking forward, the Appalachian Mountains will likely play an important role in 

shaping future distributions of birds, particularly those whose regional distributions seem to be 

influenced heavily by elevation and concomitant climatic conditions. As the climate warms over 

time, the elevational gradient of the Appalachian Mountains may enable them to serve as refugia 

for bird species (Keppel et al. 2012) or as a dispersal corridor that enables the northward 

migration of southerly species (Lawler et al. 2013, Zhu et al. 2021). However, the Appalachian 

Mountains region is also experiencing and projected to undergo rapid land cover change in some 

areas (Ordonez et al. 2014, Leonard et al. 2017), in part due to energy extraction (e.g., coal 

mines, wells and pipelines for natural gas) or production (e.g., wind turbines) and urban 

development (Lawler et al. 2014). Given the significance of the Appalachian Mountains and the 

potential impact on high-elevation species, there is a clear need to focus on this specific region 

and assess bird responses to the relative and cumulative effects of global climate change and land 

cover change. Greater understanding of how avian populations, communities, and species 

distributions in the Appalachian Mountains have been changing and will change over time will 

inform conservation and management efforts in this region. 

Purpose and objectives 

To determine the potential effects of both climate and land cover change on forest 

songbirds of the Appalachian Mountains, I conducted a comprehensive review of published 

literature and investigated a novel case study. The specific objectives of the review and case 

study were to: (1) provide a synthesis of documented and predicted changes in forest songbird 

species distributions, population dynamics, and communities in the Appalachian Mountains in 

response to climate and land cover change; (2) determine the relative influence of climate change 

and land cover change on 14 forest songbird distributions in the Appalachian Mountains over a 

20-year period (1997–2017); and (3) project future distribution changes based on expected 

scenarios of climate change and land cover change. 
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LITERATURE REVIEW: CLIMATE AND LAND COVER CHANGE IN THE 

APPALACHIAN MOUNTAINS AND ASSOCIATED FOREST SONGBIRD RESPONSES 

Historical and contemporary changes in climate and land cover 

The impacts of global climate change are already being experienced in the Appalachian 

Mountains. Over the last several decades, this region has become warmer and wetter (Hayhoe et 

al. 2007, IPCC 2007, Huntington et al. 2009), although there is spatial variation in how 

precipitation has changed over time. Evidence of climate change in the northeastern USA, which 

encompasses the northern Appalachian Mountains (hereafter, Northern Appalachians), is 

extensive (Hayhoe et al. 2007, Huntington et al. 2009). Temperatures in the Northern 

Appalachians have risen over the last several decades (Rogers et al. 2016). This region has 

experienced an average increase in annual temperatures of ~0.08 °C per decade over the last 

century, with the rate increasing to ~0.25 °C per decade since 1970 (Hayhoe et al. 2007). 

Average annual temperatures in the 1990s were 0.6 °C warmer than the 1900–1999 long-term 

mean, with higher disparities in winter than summer (Hayhoe et al. 2007). In addition to 

warming temperatures, the Northern Appalachian region has seen accompanying increases in the 

number of extremely high temperature days (i.e., exceed the 95th percentile threshold for daily 

maximum temperature) and in warm minimum temperature extremes, as well as decreases in 

extremely cold temperature days (DeGaetano and Allen 2002) and in the ratio of snow to total 

precipitation (Huntington et al. 2004). However, broadly observed changes in precipitation in the 

northeast USA over the last century are speculated to be primarily driven by natural variability 

rather than a long-term climate trend (Hayhoe et al. 2007). Specific points within the Northern 

Appalachians echo broader regional trends; weather stations in the mountains of New Hampshire 

and Vermont have also reported increases in average annual temperatures and increases in 

precipitation since the 1960s (Beckage et al. 2008, Seidel et al. 2009, DeLuca and King 2017). 

In the central Appalachian Mountains region (hereafter, Central Appalachians), annual 

temperatures are rising, and annual precipitation may be increasing. One study found non-

significant but warming trends in maximum temperatures and significant increases in minimum 

temperatures, which averaged a difference of +0.2 °C over 31 years, as well as non-significant 

increases in precipitation by an average of 34 mm (Gaertner et al. 2019). A report from the 

USDA Forest Service on observed climate change in the Central Appalachians also reported 

increases in annual and seasonal mean temperature and particularly minimum temperatures, with 

non-significant increases in annual mean precipitation and spatial variation in precipitation 

patterns (Butler et al. 2015). Another study looking at a specific site within the Central 

Appalachians yielded the same general trends: average and minimum annual air temperatures 

increased significantly since the 1950s, and mean annual precipitation increased non-

significantly (Young et al. 2019). A fourth study also found that mean annual temperatures in the 

Central Appalachians have increased significantly, but there were no significant changes in mean 

annual precipitation (Mathias and Thomas 2018). In particular, Mathias and Thomas (2018) 

noted that mean April temperatures increased by 0.06 °C per year from 1989 to 2014 and were 

0.72 °C warmer during 1989–2014 than during 1940–1989. Within the Central Appalachians, the 

mid-Atlantic highlands (comprising most of Pennsylvania and West Virginia and the western 

portions of Maryland and Virginia) experienced relatively stable mean temperatures over the past 

century, while changes in precipitation have been spatially variable, with an increase in high-

intensity precipitation events (Pitchford et al. 2011). Specifically within West Virginia, changes 
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from 1900 to 2016 show that both minimum temperatures in the summer and annual 

precipitation are increasing, with an accelerated rate in the increase of precipitation since 1959 

(Kutta and Hubbart 2019). 

In the southern Appalachian Mountains region (hereafter, Southern Appalachians), 

temperatures have increased by 0.6 °C and precipitation has increased by 10% during the last 

century (IPCC 2007). One study that assessed temperature and precipitation metrics from 1931 

to 2004 in the Southern Appalachian region of North Carolina found that temperatures during 

both the cool and warm seasons increased slightly between the 1960s and 2004, but there were 

no long-term changes in precipitation (Warren and Bradford 2010). Another study found that, 

since the late 1970s, air temperatures have increased significantly, drought severity and 

frequency have increased, and the distribution of precipitation has become more extreme 

(Laseter et al. 2012). Burt et al. (2018) also note major periods of drought and a tendency for 

increased variability in annual rainfall totals over time at a site in the Southern Appalachians. 

More recently, minimum and maximum temperatures in the Southern Appalachians both 

significantly increased in the winter and minimum temperatures additionally increased in the 

summer from 1980–2008 (Hawkins and Smith 2011). Changes in precipitation likely reflect 

regional variation, ranging from no significant changes (Warren and Bradford 2010) to decreases 

in certain seasons (Hawkins and Smith 2011) to general increases across most seasons 

(Sayemuzzaman and Jha 2014). 

Land cover and land use in the Appalachian Mountains have also changed over the past 

50 years, encompassing a history of timber harvest across the region; reforestation leading to 

increases in forest cover, particularly in the Northern Appalachians; conversion from forest to 

mining in the Central Appalachians; and increases in developed areas, especially in the Southern 

Appalachians (Brown et al. 2005, Sleeter et al. 2012, Sayler et al. 2016). All ecoregions within 

the Appalachian Mountains experienced net declines of up to 5% in forest and agricultural cover 

and net increases of up to 60% in developed land cover between 1973 and 2000 (Sleeter et al. 

2013). Conversions from upland forest to developed land cover between 1973 and 2011 also 

occurred in all ecoregions (Auch et al. 2016). In addition, exurban development (i.e., rural sprawl 

or rural residential development) increased between 1970 and 2000 throughout the Appalachian 

Mountains region, accompanied by reductions in cropland (Brown et al. 2005). 

The U.S. Geological Survey prepared a comprehensive report on the status and trends of 

land cover and land use change from 1973 to 2000 in the eastern United States, detailing changes 

in land cover and land use classes during 4 time periods (1973–1980, 1980–1986, 1986–1992, 

and 1992–2000) in individual ecoregions (Figure 1) (Sayler et al. 2016). In the Northeastern 

Highlands Ecoregion, declines in forest cover was the greatest land cover change between 1973 

and 2000, whereas the Northern Appalachian Plateau and Uplands Ecoregion experienced initial 

declines in forest cover, followed by a slight increase for no net gain, and declines in agricultural 

land (Figure 1) (Sayler et al. 2016). In both ecoregions, timber harvest, grassland / shrubland, 

and developed land increased. The 3 ecoregions that lie primarily within the Central 

Appalachians (North Central Appalachians Ecoregion, Western Allegheny Plateau Ecoregion, 

and Western Allegheny Plateau Ecoregion) and the Ridge and Valley Ecoregion, which extends 

through both the Central and Southern Appalachians, all experienced declines in forest cover and 

agricultural land between 1973 and 2000, as well as increases in timber harvest and developed 

land (Figure 1) (Sayler et al. 2016). During this time period, mining land decreased in the 
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Western Allegheny Plateau Ecoregion but increased in the North Central Appalachians 

Ecoregion and especially in the Central Appalachians Ecoregion, and grassland / shrubland 

increased in the Western Allegheny Plateau Ecoregion and Central Appalachians Ecoregion. In 

the 2 primary ecoregions of the Southern Appalachians (Southwestern Appalachians Ecoregion 

and Blue Ridge Mountains Ecoregion), forest cover and agricultural land declined, whereas 

timber harvest and developed land increased between 1973 and 2000 (Figure 1) (Sayler et al. 

2016). In addition, the proportion of mining land declined, while the proportion of grassland / 

shrubland increased in the Southwestern Appalachians Ecoregion, perhaps because reclaimed 

mines may be re-classed to grassland over time. 

Data from other sources and time periods agree with and build on these land cover trends, 

although there is scarce literature pertaining to land cover change within the past decade (2013–

2023). In the Northern Appalachians, some forested land has been converted to open land, which 

consists of non-forested areas such as fields, highways, clear-cuts, and developed areas (Miller et 

al. 2010). Net increases in developed land cover ranged from 10–40% between 1973 and 2000 

(Sleeter et al. 2013). Meanwhile, the Central Appalachians are characterized by surface mining 

and reclamation as the dominant driver of land cover change (Townsend et al. 2009), with 

additional forest cover decline in favor of urbanization in recent years (Rosenberger et al. 2018). 

Net increases in developed land cover ranged from 10–20% between 1973 and 2000 (Sleeter et 

al. 2013). Within the north-central Appalachian region specifically, the primary change has been 

conversion of forests to mining, shale gas development, and urban lands (Napton et al. 2003). 

However, Gallant et al. (2004) modeled little overall change in relative abundance of land cover 

types in the North Central Appalachians Ecoregion from 1973 to 2000, with a gain of only 5 ha 

per year of urban development. In the Southern Appalachians, forest cover increased and forest 

fragmentation declined overall between 1950 and 1990, but areas at lower elevations and on 

more gentle terrain tended to remain in non-forest cover and experience recent losses of forest 

cover (Wear and Bolstad 1998, Turner et al. 2003). Meanwhile, the abundance of agricultural 

cover and developed areas in the Southern Appalachians has changed over time with shifting 

patterns of land use, with decreases in percent agriculture and increases in percent urban cover 

(Wear and Bolstad 1998, Gragson and Bolstad 2006). Specifically, the main change in land 

cover in recent decades has been an increase in urban development, particularly at higher 

elevations and in rural residential areas (Wear and Bolstad 1998, Turner et al. 2003, Gragson and 

Bolstad 2006). Net increases in developed land cover ranged from 10–60% between 1973 and 

2000 (Sleeter et al. 2013). Correspondingly, the number and density of buildings in forested 

areas has increased, while forest cover in rapidly developing areas has declined (Turner et al. 

2003). Often, urban development results in forest loss and fragmentation in the Southern 

Appalachians (Lumpkin and Pearson 2013). 

Multiple studies focused on land cover change in the Blue Ridge Mountains Ecoregion in 

the Southern Appalachians. Napton et al. (2010) found only 2% of the ecoregion changed land 

cover from 1973 to 2000, with forest cover slowly declining, net agricultural land remaining 

stable, and developed land increasing at an annual rate of 0.35% until the 1990s when it 

increased to 0.54% annual change. Griffith et al. (2003) also looked at landscape patterns in the 

Blue Ridge Mountains from 1973 to 2000, with percent forest cover declining by ~1.3%, forest 

fragmentation increasing, percent agricultural land declining by ~0.8%, and percent urban cover 

increasing by ~0.8%. In a single county within the southern Blue Ridge province, development 

trends have increased in housing density from rural to exurban to suburban from 1906 to 2009, 
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and the rate of development in forested areas increased between 1990 and 2009 (Kirk et al. 

2012). 

Projected future changes in climate and land cover 

Relative to 1986–2005, global surface temperature changes are predicted to increase by 

an average of ~4 °C by 2081–2100 under a high greenhouse gas emissions scenario, with even 

higher predictions (ranging ~4–7 °C) for the United States (IPCC 2014). Across the entire 

Appalachian Mountains range, projections tend towards warmer temperatures by the end of the 

century (IPCC 2014); for instance, Rogers et al. (2016) reported that temperatures in the 

Appalachian Mountains are projected to increase by 2.2–3.0 °C by 2055 and 2.7–4.6 °C by 2080. 

Higher greenhouse gas emissions scenarios result in greater temperature increases (Iverson et al. 

2008, Zhu et al. 2021). It is worth noting that these temperature increases exceed long-term 

global targets of staying under 1.5 °C of warming (IPCC 2018). In terms of precipitation, 

projected changes in precipitation patterns across the Appalachian Mountains include increased 

frequency of moderate to heavy (>12.5 mm) and widespread, heavy (>25 mm) precipitation 

events by 2050 (Rastogi et al. 2020). However, different projections vary in their predictions of 

whether average annual precipitation will increase or decrease. Some indicate drier conditions in 

the future (Elguindi and Grundstein 2013); however, most predict variable but generally higher 

precipitation amounts (IPCC 2014, Rogers et al. 2016). Furthermore, projections across the 

entire Appalachian Mountains range show varying regional trends in precipitation amounts and 

seasonality, with some scenarios predicting the highest increases in annual precipitation in the 

northeast region (Fernandez and Zegre 2019).  

Overall trends (e.g., increasing temperatures, variable precipitation) are consistent across 

the entire range of the Appalachian Mountains, but there is regional variation in specific 

predictions. The Northern Appalachians are predicted to experience a warmer, wetter climate, 

with increased variability in weather and increased likelihood of extreme weather events 

(Hayhoe et al. 2007, Huntington et al. 2009). Under higher greenhouse gas emissions scenarios, 

projected increases in annual regional surface temperature average 5.3 °C by 2070–2099, relative 

to 1961–1990 (Hayhoe et al. 2007). Additionally, precipitation and drought events will increase 

in variability and magnitude (IPCC 2014). Meanwhile, the Central Appalachians will experience 

substantial warming, with projections of mean, minimum, and maximum annual temperatures 

increasing by 7.7–7.8 °C from 2000 to 2100 under a high greenhouse gas emissions scenario 

(Butler et al. 2015). Annual precipitation overall is only projected to increase by 5–51 mm, 

depending on the emissions scenario, but there is both temporal and spatial variation in 

precipitation patterns (Butler et al. 2015); in addition, the Central Appalachians may experience 

2–4 more days of heavy (>76 mm) precipitation annually by the end of the century (Diffenbaugh 

et al. 2005). Consistent with the other 2 regions, climate in the Southern Appalachians is also 

projected to become warmer; for example, mid- to high-elevation areas may experience increases 

of 3.5 °C in the next 100 years (Schultheis et al. 2010). Although there is consensus that 

temperatures will increase regionwide within the Southern Appalachians (Mearns et al. 2003, 

Ingram et al. 2013, McDonnell et al. 2013, Wu et al. 2014), there is uncertainty regarding 

whether long-term annual precipitation will increase or decrease (Karl et al. 2009, Ingram et al. 

2013). Some estimates indicate increased precipitation (IPCC 2007, Wu et al. 2014) and higher 

frequencies of extreme precipitation events (Ingram et al. 2013), whereas others predict less 
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precipitation overall, including large decreases in summer precipitation but also increases in 

spring precipitation (Mearns et al. 2003). 

Looking specifically at long-term (30-yr average from 2070–2099), downscaled, monthly 

projections (Iverson et al. 2019) for the avian breeding season in the Appalachian Mountains, 

mean temperatures and total precipitation in June are predicted to generally increase from 2000 

to 2100, with varying regional trends depending on the emissions scenario (i.e., representative 

concentration pathway 4.5 vs. 8.5) (Figures 2–3). Under a low greenhouse gas emissions 

scenario for 2100, increases in June temperature range from ~2.0–2.6 °C, with the highest 

differences concentrated in the Central Appalachians (Figure 3). In the same scenario, there is 

less precipitation in the northern and southwestern Appalachian Mountains and increased 

precipitation in the southeastern region (i.e., western Virginia and western North Carolina). In 

contrast, a high greenhouse gas emissions scenario for 2100 predicts increases in June 

temperature ranging from ~5.5–7.0 °C, with the difference from 2000 increasing with latitude, 

such that the greatest increases in temperature are in the Northern Appalachians (Figure 3). 

Precipitation in the 2100 high greenhouse gas emissions scenario increases across most of the 

Appalachian Mountains, with the highest increases in the Southern Appalachians. 

Although most studies that project future land cover in the Appalachian Mountains region 

have focused on the Southern Appalachians, estimates of the rates of climate and land cover 

change across the United States until 2050 indicate that the entire Appalachian Mountains region 

will experience relatively high rates of land cover change (Ordonez et al. 2014). Specifically, a 

study of projected land cover across the United States shows increases in cropland (particularly 

under a future scenario with high crop demand) and urban areas, decreases in pastureland, and a 

mix of increases and decreases in forest cover by 2051 (Lawler et al. 2014). The highest 

increases in developed and agricultural land and decreases in forest cover within the Appalachian 

Mountains from 2000 to 2100 are predicted under the highest emissions or most extreme climate 

change scenarios (Sleeter et al. 2012); in contrast, the lowest greenhouse gas emissions scenarios 

predict reduced or no change in developed land, decreased agricultural land, and reduced change 

or gains in forest cover. 

In addition, forest cover patterns and structure in the southeastern USA are projected to 

experience dramatic changes during the next 50 years due to population growth and demand for 

wood products (Wear and Greis 2002). In the Southern Appalachians, reforestation is likely in 

less populated regions, but building density in forest habitats is projected to increase in the 

region in the future (Kirk et al. 2012), with declining forest cover in rapidly developing areas 

(Turner et al. 2003). In addition, conifer forests in the southernmost region are projected to be 

disturbed due to timber cuts or converted to another land cover class by 2050 (Sohl and Sayler 

2008). Rapid urbanization is projected to occur in the Southern Appalachians, with the highest 

urbanization probability in the next 50 years in parts of western North Carolina (e.g., around 

Asheville), eastern Tennessee (e.g., around Knoxville), northwest South Carolina (e.g., around 

Greenville), northern Georgia (e.g., around Atlanta), and north-central Alabama (e.g., around 

Birmingham and Huntsville), resulting in corresponding losses in agricultural and forested areas 

(Terando et al. 2014). 

Looking at future land cover data from projections produced by the U.S. Geological 

Survey Earth Resources Observation and Science Center (Sohl et al. 2007), the Appalachian 
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Mountains region will remain heavily forested, but will experience notable increases in urban 

development by 2100, particularly under a higher greenhouse gas emissions scenario (Figures 4–

5). Areas of urban expansion include around cities and/or major highways in southern New 

York, northern New Jersey, southeastern Pennsylvania, southwestern Pennsylvania, western 

Virginia, western North Carolina, and northern Alabama (Figure 5). Forest loss is relatively 

limited in the low greenhouse gas emissions scenario but more widespread and severe in the high 

greenhouse gas emissions scenario (Figure 5). 

Documented and predicted forest songbird responses to changing climate and land cover 

Species distributions, occupancy, and abundance 

It is well-established that both climate and land cover factors affect the occupancy and 

abundance of forest songbirds, even when focusing solely on species and study sites occurring in 

the Appalachian Mountains. However, there is limited literature from the Appalachian 

Mountains that incorporates both climate and land cover variables in models of forest songbird 

responses. One of the few examples of this found that both climate and forest habitat influence 

bird abundance in the Northern Appalachians, with evidence for direct and indirect climate 

effects (Duclos et al. 2019). Temperature had a positive direct effect on 2 of the 13 focal species, 

a negative direct effect on 1 species, a positive indirect effect on 5 species, and a negative 

indirect effect on 5 species, whereas precipitation had a positive direct effect on 5 of the 13 focal 

species, a negative direct effect on 4 species, a positive indirect effect on 7 species, and a 

negative indirect effect on 2 species (Duclos et al. 2019). In another study, both urban 

development and temperature were important predictors of bird species occupancy in the 

Southern Appalachians; Lumpkin and Pearson (2013) reported that both building density and 

mean temperature were included in the top occupancy models for 19 of 36 focal species and an 

interaction between the 2 factors was included in models for 8 bird species. In their study, forest-

interior species and Neotropical migrants responded more strongly and negatively to urban 

development compared to forest canopy cover or mean temperature, whereas habitat generalists 

and resident species responded positively to temperature (Lumpkin and Pearson 2013). 

Even fewer studies actually track forest songbird species responses to changes in climate 

or land cover at sites in the Appalachian Mountains over time, rather than measure the responses 

at sites that cover a gradient of those factors. For example, DeLuca and King (2017) studied 

forest songbirds in the Northern Appalachians from 1993 to 2009 and concluded that shifting 

ranges and changing abundances of low- and high-elevation species along an elevational gradient 

was likely due to increasing temperatures and changing precipitation regimes. One-third of the 9 

low-elevation species in their study significantly expanded their upper elevational boundary 

higher and a single species expanded lower; the majority (N = 7) of the species also significantly 

shifted their center of occurrence higher, while the same single species shifted lower (DeLuca 

and King 2017). Of the 11 high-elevation species, a minority (N = 3) significantly shifted their 

upper elevational boundary lower and only 1 species shifted higher; 6 species also shifted their 

lower elevational boundary downslope, perhaps in response to the regrowth of spruce-fir forests 

following historic logging (DeLuca and King 2017). Similarly, Kirchman and Van Keuren 

(2017) also documented shifting boundaries of altitudinal breeding ranges for 42 species in the 

Northern Appalachians over a period of 40 years (1974 to 2015), although they found a 

preponderance of uphill shifts which could be correlated with a regional trend toward warmer 



11 

 

summers; specifically, the shift of abundance-weighted mean altitudes across their focal species 

was 82.8 m upslope. At a third study area in the Northern Appalachians, Glennon et al. (2019a) 

examined changes in occupancy patterns for 8 species of boreal birds over a decade (2007–2016) 

and assessed the relative contribution of climate and non-climate drivers in determining 

colonization and extinction rates. Six of the species showed patterns of declining occupancy, and 

occupancy patterns were best described by climate drivers; their focal species appeared most 

likely to colonize sites with lower levels of precipitation, and they tended to persist in sites that 

were warmer in the breeding season and had low and less variable precipitation in the winter 

(Glennon et al. 2019a). In the Central Appalachians, the probability of occurrence and mean 

abundance of 2 forest songbird species (ovenbird and cerulean warbler) declined in response to 

expanding unconventional shale gas development from 2008 to 2017 (Farwell et al. 2019), and 

the relative abundance of forest-interior and forest gap guild species declined over 3 time periods 

(1996–1998, 2001–2003, and 2007–2009) due to forest cover loss from timber harvest (Becker et 

al. 2011). 

Predicted changes in temperature, precipitation, and land cover in the next several 

decades will likely result in further shifts in species’ ranges and occupancy or abundance 

patterns. As such, several attempts have been made to project bird distributions in the future, 

especially under various scenarios of climate change. Although none of the efforts have focused 

primarily on the Appalachian Mountains (and instead encompass the entire eastern USA or 

contain parts of the Appalachian Mountains), observations can still be made from relative 

abundance maps for certain species or groups of species. For instance, Rodenhouse et al. (2008) 

projected the relative abundance of bird species in the northeastern USA, which includes the 

Northern Appalachians. In terms of range, they predicted that more bird species will maintain or 

increase their ranges than experience contractions, but the projected relative abundance of 

individual species of Nearctic-Neotropical migrants varied, with 24–47% of the 63 species 

projected to decline, 13–43% of the species projected to remain stable, and 33–40% of the 

species projected to increase as a result of climate change (Rodenhouse et al. 2008). Looking at 

associations with various habitat types, 36–54% of the 50 focal forest species are expected to 

decline in relative abundance, depending on the future climate scenario; in contrast, 8–38% of 

the species are expected to remain stable and 26–38% of the species expected to increase in 

relative abundance (Rodenhouse et al. 2008). More recently, Ralston and Kirchman (2013) used 

GIS-based climate niche models to project geographic distributions of 15 boreal forest bird 

species for the year 2080 under 2 emissions scenarios to predict the extent to which ranges will 

shift. They found that climate suitability for all species was predicted to shift northward by 772–

934 km, with 12 of the 15 species expected to become extirpated (99–100% decrease in suitable 

area) in New York, Vermont, and New Hampshire by 2080 (Ralston and Kirchman 2013).  

At a larger scale, the USDA Forest Service Climate Change Bird Atlas made projections 

across the eastern USA, encompassing the entirety of the Appalachian Mountains range. Within 

those projections, higher latitude and higher elevation (i.e., cold-associated) species, such as 

black-throated blue warbler, black-throated green warbler (Setophaga virens), Blackburnian 

warbler (Setophaga fusca), Canada warbler, Nashville warbler (Leiothlypis ruficapilla), least 

flycatcher (Empidonax minimus), purple finch (Haemorhous purpureus), red-breasted nuthatch 

(Sitta canadensis), veery (Catharus fuscescens), and winter wren (Troglodytes hiemalis), were 

predicted to decline in both occurrence and relative abundance due to climate change (Landscape 

Change Research Group 2014). A more extreme case was the projection for Swainson’s thrush 



12 

 

(Catharus ustulatus), which was virtually extirpated from the Appalachian Mountains under the 

highest emissions scenario (Landscape Change Research Group 2014). Cerulean warblers, which 

are a mid-elevation and mid-latitude species, also experienced projected declines in relative 

abundance, but more southern latitude and low elevation (i.e., warm-associated) species like 

Kentucky warbler (Geothlypis formosa) and summer tanager (Piranga rubra) were projected to 

increase significantly in range (Landscape Change Research Group 2014). Meanwhile, some 

common and/or widespread (i.e., climate generalist) species such as wood thrush (Hylocichla 

mustelina) and red-eyed vireo declined in relative abundance, while others like eastern wood-

pewee (Contopus virens) and worm-eating warbler (Helmitheros vermivorum) shifted in their 

distribution of relative abundance (Landscape Change Research Group 2014). Overall, projected 

shifts in the distribution of relative abundance for 147 bird species averaged a distance of ~100–

200 km in the north-northeast direction (Matthews et al. 2011). 

There were few studies that explicitly projected the distributions or occupancy / 

abundance patterns of forest songbirds in the Appalachian Mountains in relation to changing 

land cover in the future. Landscape capability models have been specifically developed for the 

northeastern United States and were designed to apply in modeled future landscapes and climate 

scenarios as part of conservation planning (Loman et al. 2018), but such applications are still in 

progress and have yet to be published. Preliminary results from McGarigal et al. (2018) indicate 

a projected decline in landscape capability for Blackburnian warblers and blackpoll warblers 

(Setophaga striata) across the northeastern United States by 2080 in response to a change in 

climate only. In addition, Lumpkin and Pearson (2013) speculate that the abundance of forest-

interior species and Neotropical migrants is likely to decline as urban development expands in 

the Southern Appalachians and throughout the entire region. However, the severity of those 

declines probably depends upon the pattern of future urban development (e.g., expansion of 

already developed areas vs. establishment of new developed areas in forested landscapes). 

Ultimately, there is a clear need for research that focuses on or incorporates land cover changes 

into future projections of bird distributions and abundance in the Appalachian Mountains. 

Population dynamics 

A limited number of studies have examined population dynamics of forest songbird 

species in the Appalachian Mountains in relation to ongoing or future climate and land cover 

change (i.e., studies that track survival and reproduction at sites undergoing changes in both 

climate and land cover over time), and they tend to be speculative rather than quantitative. For 

instance, Rodenhouse et al. (2008) predicted that mid-elevation species in the Northern 

Appalachians may experience declines in habitat quality due to climate change, which could 

affect demography. Although global climate change and land cover change have been shown to 

impact distributions and abundances of forest songbirds, the underlying mechanisms are not well 

understood and clearly need more investigation, especially focusing on effects on survival and 

reproduction. 

Communities and species composition 

As avian species shift in distribution due to climate and land cover change, avian 

communities may shift in composition. Global climate change has been implicated in changes in 

community-level indices, such as species richness (Davey et al. 2012, McDonald et al. 2012, 
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Lindström et al. 2013). Species richness in the Appalachian Mountains varies along an 

elevational gradient, in part due to land cover, temperature, and precipitation, with the strongest 

association with land cover heterogeneity (Dillon and Conway 2021). At a broad scale, 

McDonald et al. (2012) documented an increase and northward shift in bird diversity in eastern 

North America between 1966 and 2010, which was best explained by an increase in regional pre-

breeding season temperature. At a single study area in the Northern Appalachians, there have 

been temporal changes in avian community composition from 2007 to 2016, with boreal species 

exhibiting the largest changes in occupancy compared to the larger avian community (Glennon et 

al. 2019b). Looking into the future, Rodenhouse et al. (2008) predicted large changes in bird 

communities of the Northern Appalachians resulting from climate change, with areas 

simultaneously gaining and losing bird species and changes most dramatic under a high 

emissions scenario. In particular, Ralston and Kirchman (2013) predict a severe loss of diversity 

in boreal forest bird species across the Northern Appalachians by 2080. 

Conclusions 

Here, I present a literature review focused on the effects of climate change and land cover 

change on forest bird distributions in the Appalachian Mountains. This region is characterized by 

high bird diversity and corresponding high conservation value, but it is relatively understudied in 

terms of focusing on forest bird responses to changes in both climate and land cover across its 

range. My literature review covers documented and predicted changes in bird species 

distributions, population dynamics, and communities, and I find that climate and land cover have 

significant impacts. However, I also highlight the dearth of studies that track avian responses 

over long periods of time (>2–3 years) and incorporate elements of population dynamics (e.g., 

survival, recruitment). Identifying areas within the Appalachian Mountains that are associated 

with stable or increasing long-term trends in forest songbirds and determining climate and land 

cover factors that may be driving those trends would be valuable for conservation practitioners. 

Furthermore, the extent to which climate vs. land cover limits forest songbird species in the 

Appalachian Mountains has major implications for the conservation and management of those 

species, such as determining whether wildlife managers should focus on climate refugia 

preservation or management of particular landscape-level characteristics relating to land cover 

and land use (Stralberg et al. 2019, Ralston and Deluca 2020). 

CASE STUDY: INFLUENCE OF CLIMATE AND LAND COVER CHANGE ON 14 

FOREST SONGBIRD DISTRIBUTIONS IN THE APPALACHIAN MOUNTAINS 

As a case study, I used North American Breeding Bird Survey (BBS) data from the 

Appalachian Mountains Bird Conservation Region (AMBCR; Figure 6) to evaluate how climate 

and land cover influence contemporary and future distributions of forest songbirds in the 

Appalachian Mountains. Specifically, I determined the relative importance and effects of 4 

climate and 3 land cover variables on the current distributions and relative abundance of 14 

forest songbirds, and then explored potential future changes in those metrics based on expected 

scenarios of changing climate and land cover patterns. 
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Methods 

Study area 

My study area was the AMBCR, which includes portions of 13 states in the eastern 

United States (Figure 6), extending from the Allegheny Plateau in New York to the Talladega 

Mountains in Alabama and Blue Ridge Mountains in Georgia. The AMBCR encompasses most 

of the Appalachian Mountains range, covering nearly 42 million ha and stretching across a 

latitudinal range of 1,260 km. It comprises 4 main physiographic provinces (Appalachian 

Plateau, Ridge and Valley, Blue Ridge, and Piedmont), contains 8 ecoregions (Figure 1) 

(Omernik 1987), and broadly forms the Appalachian Highlands physiographic division 

(Fenneman 1917). Elevation within the AMBCR ranges from below sea level to ~2,025 m above 

sea level. Mean breeding season precipitation and temperature vary widely across latitudes and 

elevations. 

The dominant land cover type within the AMBCR is mature forest (Figure 4). Tree 

diversity reflects local and regional geology, latitude, elevation, and moisture availability. 

Coniferous forests with pines (Pinus spp.), eastern hemlock (Tsuga canadensis), red spruce 

(Picea rubens), and firs (Abies spp.) tend to dominate the northern latitudes and high elevations. 

At middle and lower latitudes and elevations, deciduous tree communities include mixed 

mesophytic, northern hardwood, oak (Quercus spp.)-hickory (Carya spp.), and oak-pine forests 

(Turner et al. 2003). In the southernmost reaches of the AMBCR, there are also pockets of pine 

stands in the lowlands (Ruefenacht et al. 2008). The diversity in forest types at varying 

elevations supports a high diversity of forest bird species and allows for trailing-edge 

populations of species that usually breed at higher latitudes (e.g., boreal forests of Canada). 

Focal species 

I focused on 14 forest songbird species that are considered passerines (i.e., Order 

Passeriformes), use mature forest as primary breeding habitat, and are readily detectable via 

roadside surveys; in total, they span 5 families and 11 genera, and comprise 12 species of 

regional conservation concern (Table 1). Mature forest as breeding habitat was kept consistent in 

part because between-habitat differences (e.g., forest vs. grassland) in species sensitivity to 

climate factors can confound the detectability of broad-scale climate change vs. land cover 

change impacts (Clavero et al. 2011). For each species, I assigned 1 of the following 3 climate 

classifications based on its occurrence and general range patterns within just the study region: 

cold-associated (i.e., primarily found at higher elevations or higher latitudes within the AMBCR; 

N = 5), warm-associated (i.e., primarily found at lower elevations or lower latitudes within the 

AMBCR; N = 4), or climate generalist (i.e., found throughout the AMBCR; N = 5). 

Bird count data 

I obtained 1997–2017 count data for the 14 individual bird species from BBS routes 

located within the AMBCR (Figure 6). The BBS is a long-term, large-scale, international avian 

monitoring program initiated in 1966 to track the status and trends of North American bird 

populations (Sauer et al. 2013); it is coordinated by the U.S. Geological Survey's Patuxent 

Wildlife Research Center and Environment Canada's Canadian Wildlife Service. Following a 
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rigorous protocol, BBS data are collected by thousands of participants along randomly 

established roadside survey routes. Each survey route is approximately 40 km long, with 50 stops 

separated by ~800 m. At each stop, a 3-minute point count survey is conducted. During the 

survey, a single observer records every bird seen or heard within a 400-m radius. Surveys start 

30 minutes before local sunrise and continue for 5 hours. 

For this case study, all statistical analyses were conducted at the route-level, as point-

level location data were only available for the first stop along a route (representing 2% of the 

points). I downloaded data from all BBS routes within the AMBCR with at least 1 year of data 

during the 20-year period, for a total of 322 routes. I then calculated the summed count for each 

of the 14 focal species from each BBS route in each year to obtain 20 years of route-level annual 

total species counts, which served as the response variable in my analyses. 

Environmental data compilation 

I summarized all environmental data within regular hexagons with vertices at 0°, 60°, 

120°, 180°, 240°, and 300° that were spaced approximately 24 km from the centerpoint of the 

hexagon (Figure 7). Hexagons were used to keep shape consistency between the first and second 

objectives of the case study and because hexagonal grids have advantages over square grids 

when applied to ecological networks or systems at this broad scale (Birch et al. 2007, Nhancale 

and Smith 2011), such as reduced edge effects and better fit to curved surfaces. As part of the 

first study objective, I generated 322 individual sampling hexagons that were centered on the 

first stop of each BBS route (the only points along the BBS route for which there were location 

data; Figure 7) and then compiled the corresponding environmental data from 1997–2017, using 

spatial analysis approaches in Program R (R Core Team 2022). I determined the dimensions of 

the sampling hexagon to ensure that the entire BBS route was fully encompassed within the 

hexagon (i.e., every route was completely contained within its corresponding hexagon). As part 

of the second study objective, I created 346 individual hexagons that formed a non-overlapping 

grid that encompassed the AMBCR (Figure 7), within which I summarized contemporary (2000) 

and future (2100) environmental data. The hexagonal grid cells used for prediction matched the 

dimensions of the sampling hexagons used for model building (Figure 7); thus, contemporary 

and future environmental data were compiled and projected at the same resolution across the 

entire study.  

Contemporary environmental data 

I considered 9 environmental covariates as contemporary predictor variables (Table 2): 

latitude, median elevation, mean breeding season (May–June) temperature, mean temperature 

difference between the growing (March–April) and breeding seasons, mean total growing season 

precipitation, mean total breeding season precipitation, and proportions of deciduous and mixed 

forest, conifer forest, and developed land. Latitude and elevation were included to account for 

their known effects on bird occupancy and abundance. Mean breeding season temperature and 

mean total breeding season precipitation were meant to assess direct climate effects on birds, 

while mean temperature difference between the growing and breeding seasons (i.e., temperature 

variability) and mean total growing season precipitation may have indirect effects via vegetation 

growing conditions. Proportions of the 2 forest types represent habitat cover, whereas proportion 

of developed land represents non-habitat cover. Correlations among the 9 environmental 
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covariates ranged from -0.55 to 0.51, which is below the threshold of concern for collinearity 

(Dormann et al. 2013). 

I used land cover data from the National Land Cover Database (NLCD), which had a 

resolution of 30 m and were available for the years 2001, 2004, 2006, 2008, 2011, 2013, and 

2016. For the 3 land cover classes, I used various combinations of 8 NLCD land cover 

categories, such that: (1) deciduous and mixed forest was comprised of 3 NLCD land cover 

categories: deciduous forest, mixed forest, and woody wetlands; (2) conifer forest corresponded 

directly with the NLCD land cover category of evergreen forest; and (3) developed land was 

comprised of 4 NLCD land cover categories: developed – open space, developed – low intensity, 

developed – medium intensity, and developed – high intensity. Developed land was unlikely to 

be used as breeding habitat and served as a proxy of urban development (Soifer et al. 2021). 

To determine the relative importance and effects of climate and land cover variables on 

the current distributions and relative abundance of 14 forest songbirds (i.e., first study objective), 

I calculated latitude of the hexagon centerpoint and median elevation, means of the climate 

variables, and proportions of the land cover variables within each sampling hexagon. Central 

latitude and median elevation (derived from Shuttle Radar Topography Mission digital elevation 

data; Table 2) were static across the sampling period, but climate variables were calculated from 

PRISM Climate Group monthly temperature and precipitation data (Daly et al. 2008) 

corresponding to each year and land cover variables were derived from NLCD data (Jin et al. 

2019), using the closest year available (i.e., 2001 land cover data was associated with 1997–2002 

BBS data, 2004 land cover data was associated with 2003–2004 BBS data, 2006 land cover data 

was associated with 2005–2007 BBS data, 2008 land cover data was associated with 2008–2009 

BBS data, 2011 land cover data was associated with 2010–2012 BBS data, 2013 land cover data 

was associated with 2013–2014 BBS data, and 2016 land cover data was associated with 2015–

2017 BBS data). Note that the years 2005, 2007, and 2012 were equally close to 2004 vs. 2006, 

2006 vs. 2008, and 2011 vs. 2013, respectively; I chose to use the 2006 NLCD data for both 

2005 and 2007, and I chose to use the 2011 data for 2012 because those were when on-the-

ground conditions were originally measured and ensured the most overall consistency. 

To evaluate potential future changes in bird distributions and relative abundance across 

the AMBCR (i.e., second study objective), I used the year 2000 as the baseline (i.e., 

contemporary projection). Thus, I compiled data for each hexagonal grid cell using 

environmental metrics corresponding to just the year 2000. I calculated latitude of the 

centerpoint, median elevation, means of the climate variables from 2000 PRISM data, and 

proportions of the land cover variables from 2001 NLCD data.  

Future environmental data 

To project future distributions of counts across the AMBCR, I used the same 9 

environmental covariates that I considered when estimating contemporary distributions (Table 2) 

and summarized projected conditions in the same manner as previously described.  

For calculations of mean climate conditions in 2100, I used long-term (30-yr average 

from 2070–2099), downscaled, monthly data from 3 general circulation model outputs (Iverson 

et al. 2019): the Community Earth System Model 4.0 (CCSM; Gent et al. 2011) from the 
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National Center for Atmospheric Research, the Geophysical Fluid Dynamics Laboratory model 

3.0 (GFDL; Donner et al. 2011) from the National Aeronautics and Space Administration, and 

Hadley GEM2-ES (HAD; Collins et al. 2011) from the UK Hadley Centre. I further considered 2 

representative concentration pathways (RCPs), 4.5 and 8.5, that reflect lower and higher levels of 

greenhouse gas emissions, respectively. These data were compiled into a 10-km2 grid (Iverson et 

al. 2019), from which I extracted area-weighted means for each hexagonal cell. For analysis 

purposes, I averaged the 3 circulation models for each RCP to yield an average low (ALE: 

average 4.5 RCP) and average high (AHE: average 8.5 RCP) emissions set of climate predictors. 

In addition to the 2 averages, I modeled the coolest scenario (COOL: CCSM-4.5 RCP) and 

warmest scenario (WARM: GFDL-8.5 RCP) to represent the 2 extreme possible outcomes from 

the climate analysis. These 4 scenarios all project a warmer, generally wetter eastern United 

States, with the higher greenhouse gas emissions scenarios resulting in greater increases in 

temperature by 2100 (Iverson et al. 2008). 

To calculate future proportions of land cover, I used projections produced by the U.S. 

Geological Survey Earth Resources Observation and Science Center (Sohl et al. 2007). The 

Earth Resources Observation and Science Center used a modeling framework that forecasts 

scenarios of land cover change out to 2100 based on 3 greenhouse gas emissions scenarios: A1b, 

which assumes that current emission trends continue for several decades without modification 

and incorporates a balanced emphasis on all energy sources; A2, which assumes that current 

emission trends continue without modification and with regionally oriented economic 

development; and B1, which assumes that emissions will be reduced. Corresponding to the 2 

RCPs of the future climate change scenarios, I used the higher (A1b) and lower (B1) emissions 

scenarios for projecting land cover change. 

Combining the projected climate and land cover data together, I focus on 4 future 

scenarios: (1) the coolest (COOL) scenario combines the CCSM general circulation model with a 

4.5 RCP and land cover change based on B1 emissions; (2) the average low emissions (ALE) 

scenario incorporates the averaged outputs of the 3 general circulation models with a 4.5 RCP 

and land cover change based on B1 emissions; (3) the average high emissions (AHE) scenario 

incorporates the averaged outputs of the 3 general circulation models with a 8.5 RCP and land 

cover change based on A1b emissions; and (4) the warmest (WARM) scenario combines the 

GFDL general circulation model with an 8.5 RCP and land cover change based on A1b 

emissions. 

Data analysis 

I modeled each of the 14 focal species individually, with the route-level annual total 

counts assumed to be a negative binomial random variable and the predictor variables consisting 

of the 9 environmental covariates described previously. Based on species-specific a priori 

predictions of relationships, latitude was specified as an orthogonal polynomial with either 1 

degree (i.e., linear) or 2 degrees (i.e., quadratic) to allow for nonlinear relationships, and 

elevation was specified as an orthogonal polynomial with either 1 degree or 4 degrees to allow 

for multimodal relationships (Table 3). For 6 species (BTBW, BHVI, CAWA, LEFL, SUTA, 

VEER; 4-letter codes correspond to species in Table 1) whose relationship with elevation may 

vary with latitude (e.g., species with trailing-edge populations in the southern Appalachian 

Mountains), I modeled the route-level annual total counts as a function of latitude + elevation + 
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latitude × elevation, plus the climate and land cover variables (Table 3). For the remaining 8 

species (CERW, EAWP, KEWA, REVI, SCTA, SWWA, WEWA, WOTH), which generally had 

a widespread distribution or whose relationship with elevation was generally constant across 

latitudes, I modeled the route-level annual total counts as a function of latitude2 + elevation4, 

plus the climate and land cover variables (Table 3). For all models, the 4 climate variables were 

specified as orthogonal polynomials with 2 degrees to allow for nonlinear relationships and the 3 

land cover variables were specified as orthogonal polynomials with 1 degree, based on an 

expectation for linear relationships with habitat vs. non-habitat cover types. Because my data 

included repeated observations at each route over time, all models also included a random site 

effect for log expected count. 

It was important to ensure that these models based on contemporary data had good fit 

before I used them to project distributions in the future. To improve goodness-of-fit of the initial 

models, I incrementally added structural elements. First, I decided to account for spatial 

autocorrelation in species count distributions by building models with spatial dependence. Ten of 

the focal species exhibited spatial structure in their distribution (e.g., concentrated in the 

northern, central, or southern latitudes) and required spatial models to ensure that predictions 

followed the regional clustering patterns. To incorporate spatial relatedness among route-level 

annual total counts into these models, I included spatial random effects and assumed that the 

spatial process followed an exponential covariance structure (Banerjee et al. 2003, Royle and 

Wikle 2005). Adding spatial structure resolved model fit issues for 10 species; however, 4 of the 

focal species were abundant and widespread across the study region, with over-dispersed counts 

and non-constant variance across space, so spatial models for them still yielded a poor fit. For 

these species, I next constructed models without spatial dependence but incorporated site-level 

random effects for the negative binomial dispersion parameter because they exhibited substantial 

regional variation in counts, and this allowed for site-level changes in count variance. With these 

2 final sets of models, all 14 focal species achieved adequate model fit. 

I used a Bayesian framework for inference and prediction, implemented with Markov 

chain Monte Carlo methods. For all parameters in each model, I used prior distributions which 

were meant to provide little information; all gamma prior distributions, such as for the dispersion 

parameter, had a shape parameter of 0.01 and rate parameter of 0.01, and all Gaussian prior 

distributions, such as for slope coefficients for each site covariate, had a mean of 0 and precision 

of 0.01 (Appendix A1). I fit the models in JAGS (Plummer 2003) using the “jagsUI” package 

(Kellner and Meredith 2021) in Program R (R Core Team 2022). I used the “autojags” function 

to run 3 chains for each model with a burn-in of 25,000 iterations, thinning rate of 50 iterations, 

and iteration increment of 50,000; models iteratively ran until reasonable convergence (R̂ ≤ 1.1) 

was achieved (Gelman et al. 2014), resulting in a range of 3,000 to 21,000 posterior draws (Table 

3). 

Model goodness-of-fit was assessed with posterior predictive checks that compared 

parameter sets derived from the original data with those derived for a replicate (simulated data 

set); significant differences between the observed and simulated data would indicate that model 

assumptions were not being met (Conn et al. 2018). To compare the 2 data sets, I used the sum of 

squared Pearson residuals as a test statistic; if the Bayesian p-value was between 0.05 and 0.95, I 

considered the model fit to be good (Gelman et al. 2014). 
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To determine the relative influence of climate change and land cover change on the 14 

focal species, I compared variable importance and the marginal effects on expected count among 

the climate and land cover variables. Variable importance was determined by looking at whether 

credible intervals of the beta coefficient values overlapped 0; if the credible intervals did not 

overlap 0, the variable was considered important. To compare the marginal effects of each 

climate and land cover variable overall and for each species, I calculated the absolute difference 

between the maximum mean expected count and minimum mean expected count across all 

values of each covariate (while holding all other variables at their mean value), and then plotted 

the change in expected count from the minimum value to the maximum value of the covariate. 

Because some of the focal species had higher expected counts than others, which would lead to 

higher absolute differences, I also calculated a proportional difference for each covariate (Table 

4), which is the absolute difference between the maximum and minimum mean expected species 

counts across all values of the individual predictor variable, divided by the maximum mean 

expected species count across all predictor variables. Thus, if the absolute difference is equal to 

the maximum mean expected count for a species, then that covariate would have a proportional 

difference of 1. 

Once I ascertained that all the negative binomial models exhibited good fit, I used them 

to predict contemporary species counts (based on climate and land cover data associated with the 

year 2000) and future (2100) species counts (based on the 4 different future climate and land 

cover combination scenarios: COOL, ALE, AHE, and WARM) to the hexagonal grid covering 

the study area. I then quantified 3 indices of changes: (1) differences in the total projected count 

of individuals across the entire study region; (2) differences in the total number of occupied 

hexagonal grid cells (i.e., for which the expected count was >0) across the entire study region; 

and (3) shifts (measured by distance and angle) in the spatial mean-center of count distributions 

between 2000 and 2100 for each species, which was determined by calculating the count-

weighted mean latitude and longitude values. All predicted counts were assumed to be an index 

of abundance. 

Statistical significance of the changes in total projected counts and total number of 

occupied hexagonal grid cells were determined by whether the 95% credible interval of the 

distribution of differences between expected counts in 2000 and 2100 overlapped 0. Statistical 

significance of the shifts in count-weighted mean-center of the projected distributions was 

determined by whether the count-weighted mean-center in 2000 fell within a 95% isopleth 

around the projected 2100 count-weighted mean-centers from the posterior iterations. 

Results  

I ran a total of 14 models (Table 3), with model fit ranging from 0.211 to 0.839 

(indicating good model fit for all species). The total number of important (i.e., 95% credible 

interval for any of the associated beta coefficients did not overlap 0) environmental predictor 

variables for each species ranged from 1 for Swainson’s warbler (Limnothlypis swainsonii) to 8 

for wood thrush (Table 3; Figure 8). Latitude and elevation were included to account for their 

known effects and were important for all species except Swainson’s warbler (for which neither 

were important) and cerulean warbler (for which only elevation was important). 
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Relative influence of climate vs. land cover variables based on variable importance 

To determine the relative influence of climate change and land cover change on the 14 

focal species, I first compared variable importance on expected count among the climate and 

land cover variables. Based on the model results, all predictor variables of interest (i.e., climate 

or land cover variables) were important for at least 1 of the focal forest songbird species. Across 

all species, the most frequently important predictor variables were proportion of deciduous and 

mixed forest (N = 10 species), followed by temperature difference (N = 8 species). The least 

frequently important predictor variable was the proportion of conifer forest (N = 3 species). 

Among the 5 cold-associated species, all predictor variables were important for 1–2 species 

except for mean May–June temperature, which was unimportant for those species (i.e., 95% 

credible interval for the associated beta coefficients overlapped 0). For the warm-associated 

species, the proportion of deciduous and mixed forest was important for all 4 species, and the 2 

temperature variables were important for 3 of the 4 species, whereas both mean March–April 

precipitation and proportion of developed land were unimportant for all 4 species. Among the 5 

climate generalist species, the proportion of deciduous and mixed forest and the proportion of 

developed land were important for most species (N = 4), but the proportion of conifer forest was 

not important for any species.  

Land cover variables were more frequently important for the focal species overall and 

specifically for cold-associated species compared to climate variables. Across all 14 species, at 

least 1 climate variable was important for 11 species, and at least 1 land cover variable was 

important for 13 species (Table 3). In terms of the climate classifications, at least 1 climate 

variable was important for 3 of the 5 cold-associated species, 3 of the 4 warm-associated species, 

and all 5 climate generalist species, while at least 1 land cover variable was significant for 4 of 

the 5 cold-associated species, all 4 warm-associated species, and all 5 climate generalist species. 

Across the 3 climate classifications, climate variables were important for a higher percentage of 

climate generalist species (100%) than warm-associated species (75%) or cold-associated species 

(60%). Similarly, land cover variables were important for a higher percentage of climate 

generalist species (100%) and warm-associated species (100%) compared to cold-associated 

species (80%). Within each climate classification, I calculated the average percentage of species 

for which the individual predictor variables were important (e.g., May–June temperature was 

important for 60% of the climate generalist species) and found that the 3 land cover variables had 

higher average influence than the 4 climate variables for cold-associated species but equal 

average influence for the warm-associated and climate generalist species. 

Focusing on variable importance for individual species, all 4 climate variables were 

important for wood thrush (climate generalist) and 3 of the 4 climate variables were important 

for 3 species: Kentucky warbler (warm-associated), summer tanager (warm-associated), and 

eastern wood-pewee (climate generalist). There was no species for which all 3 land cover 

variables were important, but 2 of the 3 land cover variables were important for 6 species: black-

throated blue warbler (cold-associated), cerulean warbler (warm-associated), summer tanager 

(warm-associated), red-eyed vireo (climate generalist), scarlet tanager (climate generalist), and 

wood thrush (climate generalist).  
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Relative influence of climate vs. land cover variables based on marginal effects 

To aid in determining the relative influence of climate change and land cover change on 

the 14 focal species, I also compared the marginal effect sizes of the climate and land cover 

variables on expected count. For each species, I calculated the absolute and proportional 

differences between the maximum and minimum mean expected counts corresponding to each 

covariate (Table 4). Across all species, changes in the proportion of conifer forest resulted in the 

greatest average absolute difference in mean expected count (primarily driven by its high 

modeled effect size on Swainson’s warbler and blue-headed vireo [Vireo solitarius]), followed 

by changes in the proportion of developed land and the proportion of deciduous and mixed 

forest. Changes in the proportions of conifer forest, deciduous and mixed forest, and developed 

land also resulted in the 3 highest average proportional differences, respectively. The proportion 

of conifer forest had a significant negative effect on 2 warm-associated species and a positive 

effect on 1 cold-associated species. The proportion of deciduous and mixed forest had a 

significant positive effect on 10 focal species, whereas the proportion of developed land had a 

significant negative effect on 5 of the 6 species for which it was an important predictor variable. 

Meanwhile, the lowest average absolute and proportional differences were associated with 

changes in mean total May–June precipitation, the mean temperature difference between March–

April and May–June, and the mean total March–April precipitation. 

Among the 5 cold-associated species, changes in the proportion of conifer forest had the 

greatest average effect (with generally positive relationships), followed by changes in the 

proportion of developed land (with generally negative relationships), and changes in mean total 

May–June precipitation had the least average effect. For the warm-associated species, changes in 

the proportion of conifer forest also had the highest magnitude effects (with generally negative 

relationships), whereas changes in mean total March-April precipitation and the mean 

temperature difference between March–April and May–June had little impact. However, the 

model for Swainson’s warbler produced a relatively high estimate for maximum mean expected 

count across the gradient of proportion of conifer forest, which drove the influence patterns for 

the warm-associated species group; excluding Swainson’s warbler, the highest average absolute 

and proportional changes in mean expected counts for the remaining 3 warm-associated species 

were associated with changes in the proportion of deciduous and mixed forest (with positive 

relationships). Among the 5 climate generalist species, changes in the proportion of deciduous 

and mixed forest resulted in the highest average difference in mean expected counts (with 

positive relationships), and changes in mean total May–June precipitation corresponded to the 

smallest average difference. 

When comparing the mean marginal effect sizes across the 4 climate variables vs. the 

mean marginal effect sizes across the 3 land cover variables, the average effects of land cover 

changes on the mean expected count had higher magnitude overall (i.e., across all species), 

across the 3 climate classifications, and for all individual species (Table 4). Across all 14 species, 

the average absolute differences resulting from changes in land cover proportions were 7 

(excluding Swainson’s warbler) to 62 (including Swainson’s warbler) times higher than the 

average absolute differences resulting from changes in the 4 climate variables. The average 

proportional differences varied by a magnitude of 4.6–5.2 times. Cold-associated, warm-

associated, and climate generalist species all showed a similar pattern of higher average impacts 

from the land cover variables. Furthermore, across the 3 climate classifications, changes in both 
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climate and land cover variables tended to have a higher average effect on climate generalist 

species than warm-associated species or cold-associated species, perhaps because climate 

generalist species were the most abundant of the focal species (Table 4). 

Looking at individual species and predictor variables, the largest absolute differences in 

expected mean counts were for Swainson’s warbler and blue-headed vireo across the gradient of 

proportion of conifer forest and for Swainson’s warbler and veery across the gradient of 

proportion of developed land (Table 4, Figure 9). However, more species were impacted the 

most by changes in the proportion of deciduous and mixed forest (N = 8) compared to the 

proportions of conifer forest (N = 4) and developed land (N = 2). Specifically, changes in the 

proportion of deciduous and mixed forest corresponded to the highest proportional differences 

across the full set of climate and land cover variables for black-throated blue warbler (cold-

associated), Canada warbler (cold-associated), cerulean warbler (warm-associated), Kentucky 

warbler (warm-associated), summer tanager (warm-associated), red-eyed vireo (climate 

generalist), scarlet tanager (climate generalist), and wood thrush (climate generalist). All 

relationships with proportion of deciduous and mixed forest were positive. Although the 4 

climate variables as a group had lower magnitude effects for all species, breeding season 

temperature tended to be the most impactful (Table 4); among just the climate variables, changes 

in mean May–June temperature produced the highest absolute differences in mean expected 

counts for 7 of the focal species and resulted in 1.7–2.3 times the proportional difference in mean 

expected counts compared to the next most impactful climate variable for 3 species: cerulean 

warbler (warm-associated), eastern wood-pewee (climate generalist), and scarlet tanager (climate 

generalist). 

Projected climate and land cover differences in 2100 

The 4 future climate and land cover combination scenarios varied slightly in predicted 

mean growing and breeding season temperatures and precipitation amounts in 2100 (Table 5). 

The COOL scenario combined the CCSM global circulation model with a 4.5 RCP and was 

among the driest of the future scenarios, whereas the WARM scenario combined the GFDL 

global circulation model with an 8.5 RCP and was among the wettest scenarios. The difference 

in mean temperatures between the COOL and WARM scenarios was 3.72 °C in the growing 

season and 3.09 °C in the breeding season, while the difference in mean precipitation amounts 

was 26.79 mm and 21.79 mm in the growing and breeding seasons, respectively. The differences 

between the ALE and AHE scenarios were less pronounced. In all 4 future climate and land 

cover combination scenarios, mean temperatures increased, mean total precipitation amounts 

stayed the same or increased, and the proportion of developed land increased from 2000 to 2100 

(Table 6). 

Projected contemporary (2000) distribution 

Projections of each species’ distribution in 2000 using contemporary environmental data 

were largely consistent with the raw results from the BBS data (Figure 10). Spatial patterns were 

captured well for the 5 cold-associated species with trailing-edge populations in the central and 

southern Appalachian Mountains and the 4 most populous climate generalist species, but the 

model for the least common species, Swainson’s warbler, uniformly predicted low counts across 
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the study region (although the model fit was good). In general, the modeled results for species 

with more significant predictor variables appeared to better visually match the raw BBS data. 

Projected differences in total species counts from 2000 to 2100 

There were statistically significant differences in the total counts across the entire study 

region between 2000 and 2100 for 7 species (Table 7), which consisted of at least 2 species from 

each of the 3 climate classifications. Of the 2 cold-associated species, blue-headed vireo was 

projected to increase by 7.17% in total species count in the AHE scenario, and least flycatcher 

was projected to increase by 7.47–12.36% in all 4 future scenarios, with the lowest percent 

increase in the COOL scenario and the highest percent increase in the WARM scenario. Of the 2 

warm-associated species, all 4 future scenarios resulted in a slight percent decrease in Kentucky 

warbler total count and relatively large percent decrease in summer tanager total count. Of the 3 

climate generalist species, worm-eating warbler and scarlet tanager were both projected to 

slightly decrease in the WARM scenario, and wood thrush was projected to slightly decrease in 

the ALE, AHE, and WARM scenarios. Of the 4 species projected to undergo a >5% decline 

(black-throated blue warbler, Canada warbler, summer tanager, and veery), changes in land 

cover, such as increased proportions of developed land and decreased proportions of deciduous 

and mixed forests, may have had a stronger influence than changes in climate on corresponding 

changes in relative abundance. 

Across all species and all projections, there was an average change in total counts of -

2.2% from 2000 to 2100, and the average change decreased in magnitude from the coolest (-

2.5%) to the warmest (-1.9%) future climate and land cover combination scenario (Table 7). 

Among the climate classifications, warm-associated species experienced the greatest average 

declines (-3.7%) across the 4 future scenarios and in each future scenario. However, the decline 

in warm-associated species was largely driven by summer tanager, which was projected to 

significantly decline by an average of 12.5% across future climate and land cover combination 

scenarios from 2000 to 2100. The total counts for the other 3 warm-associated species remained 

relatively stable over time. Cold-associated species declined an average of 3.1% across the 4 

future scenarios, but there was a high amount of variation in trends among the 5 species. Least 

flycatcher was the only species projected to consistently and significantly increase in total count 

from 2000 to 2100. In contrast, black-throated blue warbler and veery were projected to decline 

by an average of 12.4% and 10.4%, respectively, across the 4 future scenarios (although their 

changes in expected total count were not statistically significant). Meanwhile, the trends for 

blue-headed vireo and Canada warbler depended on the future scenario; for instance, Canada 

warbler total counts were projected to remain relatively stable in the COOL and ALE scenarios 

but decline by an average of 8.5% in the AHE and WARM scenarios. For both of the warmest 

scenarios, 3 of the 5 cold-associated species were projected to decrease in total count from 2000 

to 2100. Projections for climate generalist species, both as a group and individually, were 

relatively stable across all 4 future scenarios, with an average change of <0.12% across all 5 

species and 4 future scenarios. 

Among the cold-associated species, 3 of the 5 species showed a similar regional pattern 

of changes in expected species counts across the study region (Figures 11–12). For black-

throated blue warbler, blue-headed vireo, and least flycatcher, the steepest declines were 

concentrated in the southern portion of their range and the highest increases were concentrated in 
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the northern portion of their range. There did not appear to be a consistent regional trend for the 

warm-associated species, but 3 of the 5 climate generalist species (scarlet tanager, red-eyed 

vireo, and wood thrush) exhibited a distinct pattern of declines along the edges of the southern 

half of their ranges, particularly the southeastern edge. 

Projected differences in species occurrence from 2000 to 2100 

There were no statistically significant differences for any species regarding the total 

number of occupied hexagonal grid cells across the entire study region between time periods 

(Table 8). In addition, no consistent trends in this metric emerged among the 3 climate 

classifications. The largest expansion (an average 5.0% gain across the 4 future scenarios) was 

projected for black-throated blue warbler, but the other 4 cold-associated species showed either 

no net change in range or a net gain / loss of only 1 hexagonal grid cell. The most contraction (an 

average of -2.8% across the 4 future scenarios) was projected for summer tanager. For the 

remaining warm-associated species and 4 of the 5 climate generalist species, the total number of 

occupied hexagonal grid cells did not change at all. 

In terms of regional changes in occurrence, there were certain spatial patterns among the 

climate classifications. Four of the 5 cold-associated species expanded their range either 

exclusively or predominantly in the northern half of their range (Figures 11–12). For 3 of the 4 

warm-associated species, contractions in range tended to be due to loss of occurrence in 

hexagonal grid cells that bordered unoccupied hexagonal grid cells (e.g., those on the edges or 

outskirts of the range). Three of the 5 climate generalist species neither expanded nor contracted 

their range anywhere within the study region, and the remaining 2 showed no consistency in 

regional trends concerning changes in occupancy. 

Projected shifts in spatial distributions from 2000 to 2100 

There were no statistically significant shifts in the count-weighted mean-center of the 

projected species distributions from 2000 to 2100 (Table 9). However, the furthest projected shift 

was for veery and exceeded 1,000 km in a generally southwestern direction. In terms of the 

climate classifications, cold-associated species had the highest average shift distances (470 km 

across the 4 future scenarios), with consistent movement in the northeastern direction for 4 of the 

5 species. In addition, for 4 of the 5 cold-associated species, the shift distances projected for the 

COOL and ALE scenarios tended to be less than those for the AHE and WARM scenarios. 

Warm-associated species had an average shift distance of 81 km across the 4 future scenarios, 

always in the northeastern or eastern direction. Climate generalist species had the lowest average 

shift distances (21 km across the 4 future scenarios), which was less than half the width of a 

single hexagonal grid cell. 

Synthesis of overall results 

Based on variable importance and their marginal effects on expected species counts, both 

climate and land cover covariates were important in shaping forest songbird distributions. 

However, the proportions of land cover types tended to be more influential and had higher effect 

sizes than temperature or precipitation amount across all species and across the 3 climate 

classifications. Furthermore, there was minimal deviance from this overall pattern when 
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comparing among the cold-associated, warm-associated, and climate generalist species; as a 

group, species from each of the 3 climate classifications responded more strongly to the 3 land 

cover variables than the 4 climate variables. The magnitude and direction of differences between 

species distributions projected in 2000 vs. 2100 varied by species, but there were some consistent 

trends within the climate classifications. Cold-associated species were projected to experience 

slight declines in relative abundance, with the steepest declines concentrated in the southern 

portion of their ranges within the AMBCR, but there was little projected change in their overall 

ranges, with any expansions occurring predominantly in the northern half of their ranges. 

Correspondingly, the mean-center of projected distributions for cold-associated species shifted 

the greatest average distance, with consistent movement in the northeastern direction. Under the 

warmest future climate and land cover combination scenarios, the declines in relative abundance 

and shifts in distributions were more pronounced. Meanwhile, the relative abundance and ranges 

for warm-associated species either declined or remained similar in the future, with range 

contractions tending to be on the edges and modest distribution shifts in the northeastern or 

eastern direction. Climate generalist species appeared to be least affected by future climate and 

land cover changes; there was little to no change in overall projected relative abundance or 

range, and very little to no shifts in their distribution; however, there was a distinct regional 

pattern of declining relative abundance along the edges of the southern half of their ranges within 

the AMBCR. In general, the 4 future climate and land cover combination scenarios had varying 

but limited impacts on projected relative abundance, regional occupancy, and shifts in the 

distribution of relative abundance corresponding to the 14 focal forest songbird species, with the 

strongest consistent effects on cold-associated species and the 2 warmest scenarios resulting in 

the greatest differences between contemporary and future projections. 

Discussion 

This novel case study furthers our understanding of the potential effects of both climate 

and land cover change on forest songbirds of the Appalachian Mountains. Here, I quantified the 

relative influence of climate change and land cover change on 14 forest songbird distributions 

during the breeding season and explored differences between their contemporary and future 

distributions, using 4 projections of climate and land cover conditions in 2100. At a broad 

spatiotemporal scale, the net projected impact of climate change on breeding forest songbirds 

within the Appalachian Mountains was modest. Based on the importance and effect sizes of land 

cover variables in this case study, I suspect that land use changes that result in reduced forest 

cover and increased urban cover may pose a more immediate threat than climate change to forest 

songbirds in this region. Conservation efforts might be better focused on landscape-scale 

strategies to maintain and manage mature forest habitat rather than implementing climate change 

strategies for individual species. 

Effects of global climate change and land cover change on forest songbirds in the 

Appalachian Mountains 

This case study reinforces how critical it is to conservation efforts to investigate the long-

term potential effects of global climate change and land cover change simultaneously on bird 

distributions and communities. Mountain ranges in particular are globally important areas for 

biodiversity (La Sorte and Jetz 2010, Rodríguez-Rodríguez et al. 2011, Lehikoinen et al. 2019), 

and the Appalachian Mountains are no exception, with diverse wooded habitats that arise in part 
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from steep elevational gradients and support populations of more than 100 forest-breeding bird 

species. A handful of previous studies have focused on the effects of changing climate and land 

cover regimes on birds occupying mountain ranges in other parts of the world (e.g., Chamberlain 

et al. 2013, Harris et al. 2014, Scridel et al. 2018, Lehikoinen et al. 2019) and in other regions of 

the United States (e.g., Siegel et al. 2014). However, results from other mountainous regions may 

not be applicable to the Appalachian Mountains, which are dominated by temperate forest. In 

addition, rather than hosting elevation-restricted or purely montane bird species, the Appalachian 

Mountains serves as the southern-most limit of many boreal forest bird species’ breeding ranges 

by supporting trailing-edge populations at higher elevations (Merker and Chandler 2020). To my 

knowledge, no previous study had investigated the impacts of both climate and land cover 

change across the majority of the Appalachian Mountains range; therefore, this case study takes 

an important step in filling some of that knowledge gap and adding to the literature on this 

subject. My data were able to address a series of questions pertaining to the potential effects of 

both climate and land cover change on forest songbirds of the Appalachian Mountains, and my 

findings are largely congruent with other studies. 

Are both climate and land cover important in determining forest songbird distributions, and is 

one more influential than the other? 

I confirmed that both climate and land cover were important for the 14 focal forest 

songbird species within the AMBCR, which is consistent with expectations. Within the past 

decade, studies have increasingly acknowledged and integrated the effects of both climate and 

land cover on bird distributions and abundance (Chamberlain et al. 2013, Mantyka-Pringle et al. 

2015, Jarzyna et al. 2016, Betts et al. 2019, Northrup et al. 2019, Fumy and Fartmann 2021). 

Factors such as the amount and availability of suitable land cover can mediate species responses 

to climate change (Virkkala et al. 2005, Jarzyna et al. 2015, 2016, Bateman et al. 2016); 

alternatively, climate change can mediate or exacerbate the effects of land cover change 

(Chamberlain et al. 2013, Mantyka-Pringle et al. 2015, Northrup et al. 2019). 

By comparing the relative influence of climate vs. land cover variables based on variable 

importance and marginal effects, I further distinguished that land cover change tended to be 

more influential, due to the importance of the proportion of deciduous and mixed forest to most 

of the focal forest songbird species. Land cover variables may have been more important than 

climate variables in this case study due to the study region and selection of focal forest songbird 

species. When modeling bird species responses to climate variables, it is usually better to 

consider as much of their range as possible (Chamberlain et al. 2013, Barbet-Massin and Jetz 

2015). All 14 focal species have ranges that extend outside of the AMBCR, some quite 

significantly so (e.g., Canada warbler, summer tanager, red-eyed vireo). Within this portion of 

their range, it is reasonable that the relationships between these forest songbirds and the 

proportion of deciduous and mixed forest were truly stronger than their relationships with the 

temperature and precipitation variables used in this case study. This finding indicates the 

importance of maintaining mature forest cover in the landscape. Furthermore, there is evidence 

for strong effects of land cover change on avian species richness, abundance, and population 

trends (Eglington and Pearce-Higgins 2012, Rittenhouse et al. 2012). Other studies that also used 

North American Breeding Bird Survey data have consistently found that land cover variables 

influence distributions and impact population dynamics of forest songbird species (Venier et al. 

2004, LeBrun et al. 2017, Betts et al. 2019, Northrup et al. 2019).  
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Although the 3 land cover variables in my case study were more frequently important and 

had higher effect sizes, the 4 climate variables were still important for many of the focal species. 

Climate can exert direct influences on bird abundance (Duclos et al. 2019, Ceresa et al. 2021), 

and there is plentiful evidence that climate plays a key role in shaping distributions and 

populations of bird species (Luoto et al. 2007, Zurell et al. 2018, Howard et al. 2020, Ramesh et 

al. 2022), particularly in North America (Jiménez-Valverde et al. 2011). Previous studies have 

found that climate has more influence than land cover on occupancy and abundance patterns 

(Venier et al. 2004, Sohl 2014, Stralberg et al. 2015, Glennon et al. 2019a). Accordingly, climate 

change is thought to have greater influence on bird species distributions than land cover change. 

However, many of these studies tend to incorporate even larger spatial scales than this case 

study; for instance, Jetz et al. (2007) found that climate change was the principal driver of bird 

species range contractions at higher latitudes across the world. Indeed, the relative importance of 

climate and land cover variables may be a simple matter of scale. Trends in the differential 

influence of climate vs. land cover likely arise because climatic conditions often determine 

overall range limits, whereas land cover patterns dictate where species occur within those ranges. 

For example, Luoto et al. (2007) suggest that the determinants of bird species distributions are 

hierarchically structured such that climate variables operate at a large-scale (>40 km) and then 

land cover variables secondarily operate at finer resolutions (<20 km); this scale-dependent 

hierarchy is supported by findings from other studies, such as Sohl (2014) and Brambilla et al. 

(2019). Although scientific understanding of the relative importance of climate vs. land cover is 

still incomplete (Heikkinen et al. 2006), there is ultimately a consensus that bird distribution 

models perform better and produce more accurate results when both climate and land cover 

variables (or other measures of habitat) are included (Luoto et al. 2007, Sohl 2014, Chamberlain 

et al. 2016, Betts et al. 2019, Duclos et al. 2019, Ceresa et al. 2021).  

Will forest songbird species experience changes in relative abundance, range, and distribution 

in the future due to changes in climate and land cover patterns? 

By comparing the projected relative abundance, overall range, and distribution of relative 

abundance of the 14 focal forest songbird species in 2000 vs. 2100, I noted that responses tended 

to vary by species and future scenario, but most species experienced little to no changes within 

the Appalachian Mountains region. For those species that did show differences between the 2 

time periods, more species were projected to undergo a >5% decline (N = 4) than a >5% increase 

(N = 2), there was less change in range than in relative abundance, and the majority of >50 km 

distribution shifts were in the northeastern or eastern direction. 

Many of these findings are in agreement with previous research. For example, other 

studies have emphasized that avian responses to climate and land cover change are usually 

species-specific (Jetz et al. 2007, Lindström et al. 2013, Sohl 2014, Stralberg et al. 2015, 

Bateman et al. 2016, Lehikoinen and Virkkala 2016, Tayleur et al. 2016, Northrup et al. 2019, 

Ralston and Deluca 2020, Bradter et al. 2022). In addition, previous research has found bird 

species distributions remaining stable in response to climate change (Chamberlain et al. 2013), 

with forest birds in particular responding weakly to changes in temperature and precipitation 

(Jarzyna et al. 2016, LeBrun et al. 2017). LeBrun et al. (2017) point out that time frames greater 

than 100 years may be required for climate-related effects to be seen for some species. However, 

declines in populations and abundance in conjunction with warming temperatures are common in 

studies that look at montane bird species (e.g., Lehikoinen et al. 2014, Harris et al. 2014); for 
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example, 9 of 14 montane bird species in northern Europe declined significantly in numbers as 

summer temperatures increased (Lehikoinen et al. 2014). Additionally, greater changes in 

relative abundance compared to overall range is consistent with previous studies (e.g., 

Rodenhouse et al. 2008, Harris et al. 2014). Although few studies examined the changes in the 

mean center of weighted species abundance or densities in response to climate change, their 

results were notably consistent with my findings. A study that used count data on a 1000 km 

south–north gradient in Finland found that between 1970–1989 and 2000–2012, 128 bird species 

shifted their densities an average of 37 km towards the north-northeast, with forest birds in 

particular shifting towards a north-eastern direction and declining montane species moving in the 

same direction as the highest and coldest montane areas (Lehikoinen and Virkkala 2016). 

Although my case study cannot be compared directly to the Finland study, the similar pattern is 

interesting to note and has been documented in eastern North America, where projected shifts in 

the distribution of relative abundance for 147 bird species averaged a distance of ~100–200 km 

in the north-northeast direction (Matthews et al. 2011). 

I speculate that the temperate conditions and/or trailing-edge bird populations of the 

Appalachian Mountains may have contributed to the limited response to climate and land cover 

change in my study. Other investigations from across the world have noted more pronounced 

effects from climate and land cover change, but they are usually at more northern latitudes, 

within mountain ranges that are oriented east to west, and focused on northern or strictly 

montane bird species. For example, a study from Sweden found that both range contractions of 

cold-associated species and range expansions of warm-associated species have occurred over a 

15-year period of increasing temperatures (Tayleur et al. 2016). Looking into the future, climate 

change is expected to cause range declines of 74–84% for boreal and arctic species in northern 

Europe (Virkkala et al. 2008), as well as up to 47% decreases in range area and 61% decreases in 

population size for mid-elevation and high-elevation bird species in Indonesia (Harris et al. 

2014). Indeed, it makes sense that climate change will have profound effects on species that are 

adapted to the coldest environments or to the highest elevations and lesser effects on more 

temperate species that are not as range-restricted. In addition to a disparity in study regions and 

focal species, differences in effect size of changes compared to my case study may be due to 

varying spatiotemporal scales, climate models, and future emissions scenarios. There is strong 

spatial and species variability in the impacts of climate change (Northrup et al. 2019). At 

increasingly larger spatial scales, Langham et al. (2015) warned that 314 North American bird 

species are projected to lose more than half of their current geographic range by 2099, Zurell et 

al. (2018) projected strong summer range contractions in 83% of 715 long-distance migratory 

birds of the Holarctic, and Jetz et al. (2007) projected that over 900 species across the world will 

undergo >50% range reductions by 2100. 

Are forest songbird species belonging to certain climate classifications more strongly or 

negatively affected than others? 

There were several key differences in climate vs. land cover influence and 2000 vs. 2100 

projections among the 3 climate classifications. Compared to warm-associated species and 

climate generalist species, cold-associated species tended to: be more influenced by land cover 

variables; be more likely to decline overall in relative abundance in the future, particularly in the 

southern portion of their range; experience the highest increases in relative abundance and 

expansions in occupancy within the northern half of their range; and shift both in the 
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northeastern direction and the greatest distances in their mean-center of relative abundance 

distribution. In contrast, climate variables were more likely to be important for a higher 

percentage of climate generalist species, perhaps because they had higher abundances and 

reduced uncertainty compared to cold- or warm-associated species. Projections for climate 

generalist species showed little to no change in relative abundance and overall range, with the 

lowest average shift distances. 

It is important to note that the species that I classified as cold-associated are primarily 

associated with higher latitudes and elevations specifically within the AMBCR, not range-wide; 

thus, it may be more accurate to say that their trailing-edge populations at the southern limits of 

their range are cold-associated, but not the species overall. That distinction may explain the 

trends for the cold-associated species despite their limited response to climate variables. Outside 

of my study region, the vulnerability of cold-associated species (encompassing species that are 

primarily found at high latitudes or high elevations) to climate change is well-documented and 

frequently considered, with examples from across the world. Northern (i.e., high latitude) species 

are experiencing or projected to experience range shifts and losses. A study looking at changes in 

the mean weighted latitude of density of 94 bird species in Finland found that northern species 

shifted northward more than southern species (Virkkala and Lehikoinen 2014). In northern 

Europe, boreal and arctic species are expected to experience large-scale range reductions due to 

climate change (Virkkala et al. 2008). For long-distance migratory birds of the Holarctic, 

summer range loss was predicted to be higher for migrants that breed further north, and species 

with small environmental niches were at a higher risk from summer range loss (Zurell et al. 

2018). Montane (i.e., high elevation) species are particularly at risk. A prevalence of studies 

agree that high-elevation specialist and montane bird species are likely to be more vulnerable to 

climate change (Rodenhouse et al. 2008, La Sorte and Jetz 2010, Freeman et al. 2018, Sierra-

Morales et al. 2021). A meta-analysis focusing on future distribution shifts suggested that 

montane bird species, particularly those whose breeding distributions are largely restricted to 

mountains, are more likely to be negatively impacted than other species (Scridel et al. 2018). 

Indeed, climate change has greater negative effects on high-elevation endemics in Indonesia, 

compared to mid-elevation bird species (Harris et al. 2014), and montane bird species 

populations across Europe are declining (Lehikoinen et al. 2014, 2019), perhaps due to higher 

summer temperatures, with species breeding at higher elevations having more negative trends 

than species breeding at lower elevations (Flousek et al. 2015). Ultimately, climate change is 

thought to have a larger impact on montane birds due their shrinking climatic niche (Lehikoinen 

et al. 2019), which is limited by elevation (Sekercioglu et al. 2008), but that does not appear to 

be the case for cold-associated, trailing-edge forest songbird populations in the Appalachian 

Mountains.  

Do higher emission scenarios result in stronger or more negative effects on forest songbird 

species? 

Among the 4 future climate and land cover combination scenarios, there were differences 

in the effect size between the 2 low greenhouse gas emissions scenarios (COOL and ALE) 

compared to the 2 high greenhouse gas emissions scenarios (AHE and WARM). For most 

species, regardless of climate classification, changes in relative abundance and overall range 

from 2000 to 2100 tended to have higher magnitude under the high emissions scenarios, and the 

shift distances projected for the high emissions scenarios tended to be greater than those for the 
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low emissions scenarios. This is consistent with other studies, where higher greenhouse gas 

emissions scenarios generally have more negative or severe consequences for bird species. More 

extreme climate scenarios (i.e., warmer temperatures, higher emissions) have been forecasted to 

result in greater range declines of boreal and arctic species in northern Europe (Virkkala et al. 

2008), higher percentages of population declines and range losses for mid-elevation and high 

elevation bird species in Indonesia (Harris et al. 2014), greater losses in bird species richness and 

increases in the number of species with declining ranges and declining incidence across the 

northeastern United States (Rodenhouse et al. 2008), more severe range shifts of bird species in 

the United States (Sohl 2014), and higher vulnerability of bird species to habitat loss across the 

world (Mantyka-Pringle et al. 2015). Additionally, an assessment of risk to North American 

birds from future climate change found that the global warming scenario of 3.0 °C was 

associated with more widespread and intense climate-related threats compared to 1.5 °C 

(Bateman et al. 2020). 

What are possible explanations for the effect sizes of climate and land cover change on forest 

songbirds in the Appalachian Mountains? 

At a broad scale, the findings from this case study indicate that climate and land cover 

change will result in subtle net differences in the distribution and relative abundance of breeding 

forest songbirds within the AMBCR over the next 80 years. There are several possible 

explanations for the lack of dramatic changes, including the range of expected climate and land 

cover changes, the role of forests in moderating the impacts of climate warming, and the 

possibility that the Appalachian Mountains are acting as a climate refuge. 

The minimal to modest responses of the 14 focal bird species to future changes in climate 

and land cover may be explained by the contemporary comparative range of conditions 

experienced across the entire study region relative to the projected differences in those 

conditions in the future. Across the AMBCR, mean breeding season temperatures ranged 12.7 

°C, from 13.6 °C to 23.4 °C in 2000, with the lowest temperatures in the north or at high 

elevations and the highest temperatures in the south at low elevations (Figure 3). Meanwhile, 

under the warmest scenario, the maximum mean breeding season temperature in 2100 was 28.5 

°C and the maximum increase in mean breeding season temperatures in any given area within the 

AMBCR from 2000 to 2100 was 6.7 °C (Table 6). Thus, there was a definite rise in absolute 

temperature, but for many locations within the AMBCR, any increase was likely well within the 

contemporary temperature range of most of the species, particularly those with larger latitudinal 

gradients. In fact, for all temperature, precipitation, and land cover metrics considered in this 

case study, the maximum absolute value in 2100 may have increased from 2000, but the 

maximum difference in that value in 2000 vs. 2100 in any given area within the AMBCR was 

always less than the regionwide range of values (Table 6). It seems probable that most changes 

in these metrics in 2100 across the study region were still within a tolerable range for the focal 

forest songbird species, whose relatively large geographic distributions suggest correspondingly 

wide climatic niches (Barnagaud et al. 2012, Jarzyna et al. 2015, 2016) and high tolerances for 

thermal stress (Jiguet et al. 2006). 

In addition, forests and montane regions may have the capacity to buffer the impacts of 

climate warming compared to open habitat or lowlands. Multiple studies have found that forest 

bird species are affected less by climate change than open habitat species (e.g., Chamberlain et 
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al. 2013, Jarzyna et al. 2016), and there is some evidence that old growth forests have the 

capacity to buffer the negative effects of climate change for bird species that are sensitive to 

temperature increases (Frey et al. 2016, Betts et al. 2018, De Frenne et al. 2019). Trees intercept 

solar radiation and reduce direct sunlight below the canopy (De Frenne et al. 2021); therefore, 

thermal conditions beneath forest canopies are typically less extreme than those in open habitats 

(Suggitt et al. 2011, Betts et al. 2018), and canopy cover is associated with warmer minimum and 

cooler maximum temperatures (Gilbert et al. 2022). Dense forest canopies may moderate the 

impact of macroclimate warming by facilitating cooler microclimatic conditions during the 

summer (Suggitt et al. 2011, De Frenne et al. 2013, 2019, 2021). In fact, surface temperatures in 

the spring and summer decline as the proportion of forest increases, especially in landscapes with 

spatially extensive forests (Wickham et al. 2013). Specifically, old growth forests in montane 

regions appear to have a strong, thermally insulating (i.e., cooling) effect on under-canopy air 

temperatures during the avian breeding season (Frey et al. 2016). Thus, the expansive mature 

forests of the Appalachian Mountains may provide microclimates that are uncoupled from 

regional thermal regimes and thus exert a modulating effect from changing climatic conditions in 

the future (Frey et al. 2016, Jarzyna et al. 2016, Betts et al. 2018, De Frenne et al. 2019). In 

addition, the forest habitats in the Appalachian Mountains are comprised of tree species with 

relatively long average life spans; with this inherent inertia, or lag in how quickly they will 

respond to changing climatic conditions, the long-lived nature of these forests may additionally 

enable them to serve as a buffer for species under rapid climate changes in the future (Duclos et 

al. 2019). 

A further element to consider is the elevational gradient of the Appalachian Mountains, 

since cooler temperatures at higher elevations may allow species to track their climatic niches by 

moving upslope (Tingley et al. 2012, Freeman et al. 2018). Although temperature warming can 

be especially pronounced at higher elevations (Pepin et al. 2015), certain regions within 

mountain ranges can still provide climate refugia for cold-associated bird species in the future 

(Stralberg et al. 2015, Brambilla et al. 2022). Sites identified as climate refugia are likely to 

preserve suitable ecological conditions and thus allow the persistence of species and habitats at 

risk from climate change (Morelli et al. 2020). Indeed, regions within the Appalachian 

Mountains have been identified by Stralberg et al. (2018) as prime locations for microrefugia for 

songbirds in the eastern United States. 

Scope and context 

Case study limitations 

I want to acknowledge certain limitations to this case study that contextualize my 

findings. Like many previous and concurrent studies that cover such a large geographic region 

within the United States, I used count data from the North American Breeding Bird Survey, 

which has known biases due to its roadside methods (Keller and Scallan 1999, Betts et al. 2007, 

Harris and Haskell 2007) and serves as an index of abundance rather than true abundance. My 

models incorporated the effects of changes in climate and land cover on bird relative abundance 

but assumed otherwise stable populations in the interval between 2000 and 2100. It is also 

important to note that my model projections make the same assumptions as any other species 

distribution model (Heikkinen et al. 2006): (1) historical predictor-response relationships remain 

constant through time; (2) the predictors used are comprehensive and ecologically relevant to 
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birds; (3) the models of bird-habitat associations are able to capture the distribution of a species 

rather than spurious spatial associations; (4) biotic interactions with other species do not change 

the outcomes; and (5) there are no major changes in forest dynamics. As with all species 

distribution models, violations of any of these assumptions could lead to model deficiencies. In 

addition, although I was using some of the best available data and models for contemporary and 

future climate and land cover, they are imperfect and have associated levels of intrinsic error. 

Finally, none of the focal forest songbird species have breeding ranges that were fully 

encompassed by the study region; for many of the species, such as Canada warblers, I only 

captured a small portion of their breeding habitat proportional to their entire range. A broader 

scale evaluation of these species would have likely involved larger temperature and precipitation 

gradients and may have predicted greater shifts in abundance or distribution. My results were 

limited in spatial scope to the Appalachian Mountains Bird Conservation Region. Given the 

inherent constraints of the data and models, this case study nonetheless represents a robust 

analytical approach. Data were aggregated and modeled at a broad scale, with an intentional 

matching of spatiotemporal scales for both the data and analyses, and my models incorporated an 

honest assessment of uncertainty that is not often achieved by other similar modeling attempts. 

At least some of the non-significance of variables, relationships, and trends was due to high 

uncertainty in the predictions; despite this, there were a few consistent patterns among the 

species and climate classifications. Therefore, this case study is meant to provide a general, 

broad-scale perspective of relationships with climate or land cover and potential changes in the 

future due to changing conditions, and the model results should not be examined or interpreted at 

fine scales or beyond the boundaries of the study region. 

Additional ecological context 

There are several key components that support the limited magnitude of climate effects 

but could also significantly affect the ecological implications of this case study. It is likely that 

several of the focal forest songbird species are more strongly influenced by fine-scale habitat 

factors than by the broad-scale climate variables used in this investigation. I draw this conclusion 

based in part on the observation that climate variables were more important for a higher 

percentage of climate generalist species compared to more specialist species, and changes in both 

climate and land cover variables tended to have a higher average effect on climate generalist 

species than warm-associated species or cold-associated species. It seems that alternate factors, 

such as fine-scale habitat characteristics, have greater influence on species that were not climate 

generalists. In support of this notion, other studies have found that local habitat exceeded climate 

in better explaining model variation (Chamberlain et al. 2016) or trends in range shifts or 

abundance along elevation gradients (DeLuca and King 2017, Ceresa et al. 2021). Five of the 

focal forest songbird species in this case study (black-throated blue warbler, Canada warbler, 

Swainson’s warbler, veery, and worm-eating warbler) had significant relationships with 2 or 

fewer climate or land cover variables. Each of these species has known preferences for local 

habitat factors that were not accounted for within my models. For example, all 5 species prefer 

breeding habitat with well-developed understory vegetation, relatively thick undergrowth, and/or 

dense patches of shrubs (Anich et al. 2020, Heckscher et al. 2020, Holmes et al. 2020, Reitsma et 

al. 2020, Vitz et al. 2020). Canada warblers additionally tend to occupy areas near water and 

with a developed layer of moss and uneven forest floor (Reitsma et al. 2020), while Swainson’s 

warblers are typically found in sites with abundant leaf litter and little herbaceous ground cover 

(Anich et al. 2020). Veeries further have a strong preference for moist or riparian habitat 
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(Heckscher et al. 2020), and worm-eating warblers occur regularly on forested hillsides with 

moderate to steep slopes (Vitz et al. 2020). The presence of understory vegetation and other 

species-specific factors likely better explains the distribution of these 5 species when the climate 

and land cover variables are within tolerable levels. 

Compounding the importance of fine-scale habitat factors, climate may have indirect 

effects on birds through its effects on vegetation (e.g., forest) composition, structure, and 

processes (Iverson et al. 2008, Matthews et al. 2011, Duclos et al. 2019, Ceresa et al. 2021). 

Multiple studies in montane regions have found that bird species experience both direct and 

indirect effects of climate (Duclos et al. 2019, Ceresa et al. 2021); for many of those species, the 

primary mechanism by which climate influenced their abundance across an elevational gradient 

was via an indirect pathway, mediated by vegetation or forest habitat. Climate change could 

further affect other biotic components that influence bird distributions, such as interspecific 

interactions, invasive species, and disease. As a final consideration, it is important to remember 

that all organisms have limits in their tolerance of habitat conditions, including climate and land 

cover. In this case study, I focused on average seasonal conditions and assumed that the focal 

forest songbird species can persist when breeding season temperatures increase to 28.5 °C, 

precipitation amounts increase to 178 mm, and proportions of developed land rise to 0.771. 

However, avian responses to extreme weather events associated with climate change and/or 

unknown thresholds in tolerance could alter my results. It is possible that future temperature, 

precipitation, or land cover conditions may surpass biological thresholds and cause avian 

responses to change dramatically. 

Future directions 

It is important to consider scale when incorporating scientific knowledge into 

conservation and management plans. An interesting exercise would be to conduct similar 

analyses as this study at multiple spatial scales, from focal landscapes to the range-wide scale for 

the focal species, and then compare how results may vary. New insights could also result from 

finer resolution datasets. For my study, fine-scale changes may be just as important in 

determining spatial distributions of forest songbirds in the Appalachian Mountains. In the future, 

our understanding of climate and land cover change effects on bird species would be improved 

by finer-scale analyses that explicitly consider changes along the extensive latitudinal and 

elevational gradients of this region. Indeed, other studies of climate change, elevational range 

shifts, and bird extinctions have noted the urgent need for high-resolution measurements of 

shifting elevational ranges of bird species, particularly to improve the precision of climate-

induced extinction estimates (Sekercioglu et al. 2008). Furthermore, several of the focal species 

in my case study (e.g., black-throated blue warbler, Canada warbler, Swainson’s warbler, veery, 

worm-eating warbler) were likely responding more strongly to habitat-level factors, such as 

vegetative structure, ground cover, or moisture regimes. Therefore, it would be beneficial when 

possible to construct models at finer spatiotemporal scales that can incorporate interactions 

between species (Heikkinen et al. 2006, 2007, Ralston and Deluca 2020) and interactions 

between climate change and habitat (Duclos et al. 2019), as climate warming could change 

habitat composition (Beckage et al. 2008, Stralberg et al. 2015), suitability (Matthews et al. 

2011), and/or quality (Rodenhouse et al. 2008). For example, warmer growing seasons could 

elevate mountain ecotones and confine high-elevation wildlife communities to higher, small, and 

more isolated patches (Rodenhouse et al. 2008). It is also critical to investigate both broad-scale 
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and fine-scale trends in survival and recruitment of cold-associated, warm-associated, and 

climate generalist species in relation to changing climate and land cover patterns, as populations 

may be in decline but persist on the landscape. Any knowledge gained about avian biogeography 

and population dynamics in the Appalachian Mountains must be applied to identify areas of 

habitat that should be prioritized for protection and inform regional conservation efforts. 

Conclusions 

Developing effective conservation plans and planning management actions requires 

knowledge of predicted climate and land cover changes, the role of additive and interacting 

factors, and how those changes will affect species in the region at multiple spatiotemporal scales. 

This case study serves as an example of a broad-scale analysis addressing these research needs. 

The impact of projected climate change may be mediated in the Appalachian Mountains by their 

mature forests and elevational gradient, which potentially buffer the impacts of climate warming 

for forest songbird species. Combined with the greater relative importance and higher effect sizes 

of land cover change on the focal forest songbird species, it seems evident that conservation 

efforts in the Appalachian Mountains should incorporate prioritizing, preserving, and promoting 

mature forest habitat. 
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TABLES 

Table 1. List of the 14 focal forest songbird species used in the case study, including climate 

classification, common and scientific names, 4-letter species code, and taxonomic family. 

Climate classifications were assigned based on the species’ occurrence and general range 

patterns within just the Appalachian Mountains Bird Conservation Region: cold-associated (i.e., 

primarily found at higher elevations or higher latitudes; N = 5), warm-associated (i.e., primarily 

found at lower elevations or lower latitudes; N = 4), or climate generalist (i.e., found throughout 

the study region; N = 5). An asterisk (*) following the common name indicates a species of 

regional conservation concern (i.e., listed as an Appalachian Mountains Joint Venture Priority 

Species or North American Bird Conservation Initiative’s Watch List species). 

Climate Classification 
Common Name  

(Scientific Name) 
Code Family 

 

Cold-associated 
 

Black-throated blue warbler 

(Setophaga caerulescens) 

 

BTBW 
 

Parulidae 

 Blue-headed vireo 

(Vireo solitarius) 

BHVI Vireonidae 

 Canada warbler* 

(Cardellina canadensis) 

CAWA Parulidae 

 Least flycatcher 

(Empidonax minimus) 

LEFL Tyrannidae 

 Veery 

(Catharus fuscescens) 
 

VEER Turdidae 

 

Warm-associated 
 

Cerulean warbler* 

(Setophaga cerulea) 

 

CERW 
 

Parulidae 

 Kentucky warbler* 

(Geothlypis formosa) 

KEWA Parulidae 

 Summer tanager* 

(Piranga rubra) 

SUTA Cardinalidae 

 Swainson’s warbler* 

(Limnothlypis swainsonii) 
 

SWWA Parulidae 

 

Climate generalist 
 

Eastern wood-pewee* 

(Contopus virens) 

 

EAWP 
 

Tyrannidae 

 Scarlet tanager* 

(Piranga olivacea) 

SCTA Cardinalidae 

 Red-eyed vireo 

(Vireo olivaceus) 

REVI Vireonidae 

 Worm-eating warbler* 

(Helmitheros vermivorum) 

WEWA Parulidae 

 Wood thrush* 

(Hylocichla mustelina) 
 

WOTH Turdidae 
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Table 2. List of variables used in the case study, with detailed descriptions including units and 

identification of data sources including the spatial resolution of the dataset. Variables are 

organized by time period (1997–2017 vs. 2100). 

Variable Description (Unit) Data Source (Resolution) 

Latitude 

Latitude (decimal degrees) of the starting 

point of the Breeding Bird Survey route 

(also the center of the sampling hexagon) 

or of the central point of a hexagonal grid 

cell 

North American Breeding 

Bird Survey route data, U.S. 

Geological Survey 

Elevation 
Median elevation (m) within sampling 

hexagon or within hexagonal grid cell 

Shuttle Radar Topography 

Mission digital elevation 

data (~20–25 m), 

Consultative Group on 

International Agricultural 

Research – Consortium for 

Spatial Information 

Time Period: 1997–2017 

Mean May–June 

temperature 

Mean (°C) of mean monthly temperatures 

in May within sampling hexagon and 

mean monthly temperatures in June 

within sampling hexagon 
PRISM Climate Group 

monthly temperatures (4 km) 

Temperature 

difference 

Difference (°C) between mean March–

April temperature (calculated as described 

above but for March and April) and mean 

May–June temperature 

March–April 

precipitation 

Mean (mm) of total monthly precipitation 

in March within sampling hexagon and 

total monthly precipitation in April within 

sampling hexagon 
PRISM Climate Group 

monthly precipitation (4 km) 

May–June 

precipitation 

Mean (mm) of total monthly precipitation 

in May within sampling hexagon and total 

monthly precipitation in June within 

sampling hexagon 

Deciduous and 

mixed forest 
Proportion of each land cover class within 

the sampling hexagon 

National Land Cover 

Database (30 m; 1:60,000 

scale), U.S. Geological 

Survey 

Conifer forest 

Developed land 
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Table 2. Continued. 

Variable Description (Unit) Data Source (Resolution) 

Time Period: Future (2100) 

Mean May–June 

temperature 

Mean (°C) of area-weighted mean 

monthly temperatures in May within 

hexagonal grid cell and area-weighted 

mean monthly temperatures in June within 

hexagonal grid cell 

Long-term (30-yr average), 

downscaled, monthly 

temperature data from 3 

general circulation model 

outputs and 2 representative 

concentration pathways (10 

km), USDA Forest Service 

Northern Research Station 

Temperature 

difference 

Difference (°C) between mean March–

April temperature (calculated as described 

above but for March and April) and mean 

May–June temperature 

March–April 

precipitation 

Mean (mm) of area-weighted mean total 

precipitation in March within hexagonal 

grid cell and area-weighted mean monthly 

precipitation in April within hexagonal 

grid cell 

Long-term (30-yr average), 

downscaled, monthly 

precipitation data from 3 

general circulation model 

outputs and 2 representative 

concentration pathways (10 

km), USDA Forest Service 

Northern Research Station 
May–June 

precipitation 

Mean (mm) of area-weighted mean total 

precipitation in May within hexagonal 

grid cell and area-weighted mean monthly 

precipitation in June within hexagonal 

grid cell 

Deciduous and 

mixed forest 
Proportion of each land cover class within 

the hexagonal grid cell 

Projections from the 

Forecasting Scenarios 

(FORE-SCE) of Land Use 

model (250 m), U.S. 

Geological Survey 

Conifer forest 

Developed land 
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Table 3. Measures of prevalence based on North American Breeding Bird Survey data from routes surveyed in 1997–2017, model 

type and model fit, the number of iterations in the posterior distribution, and statistical significance of predictor variables for the 14 

focal forest songbird species (see Table 1 for species codes). “Routes” is the total number of routes across years where at least 1 

individual was detected, and “Count” is the total count across years (i.e., the total number of individuals detected across all routes and 

years). Model type refers to whether the negative binomial model included spatial dependence (1) or not (0). Model fit was assessed 

with posterior predictive checks. Predictor variables (latitude [LAT], elevation [ELEV], interaction between latitude and elevation 

[L×E], mean May–June temperature [MJT], difference between mean March–April temperature and mean May–June temperature 

[TD], mean total March–April precipitation [MAP], mean total May–June precipitation [MJP], and proportions of deciduous and 

mixed forest [DF], conifer forest [CF], and developed land [DL]) are marked with an X if the credible interval of their beta 

coefficient(s) did not overlap 0 (which indicates statistical significance) and with a 0 if their beta coefficient(s) did overlap 0. 

Horizontal lines delineate the cold-associated species (N = 5), warm-associated species (N = 4), and climate generalists (N = 5). 

Species Routes Count 
Model 

Type 

Model 

Fit 
Iterations LAT ELEV L×E MJT TD MAP MJP DF CF DL 

BTBW 857 3,016 1 0.725 18,000 X X X 0 0 0 0 X 0 X 

BHVI 1,768 6,995 1 0.313 15,000 X X 0 0 X X 0 0 X 0 

CAWA 411 1,041 1 0.41 15,000 X X X 0 0 0 0 0 0 0 

LEFL 1,352 5,299 1 0.452 21,000 X X X 0 X X 0 X 0 0 

VEER 1,590 11,441 1 0.679 6,000 X X X 0 0 0 X 0 0 X 

CERW 904 2,761 1 0.448 3,000 0 X --- X X 0 0 X X 0 

KEWA 1,317 3,575 1 0.647 3,000 X X --- X X 0 X X 0 0 

SUTA 826 3,078 1 0.839 15,000 X X 0 X X 0 X X X 0 

SWWA 114 183 1 0.616 18,000 0 0 --- 0 0 0 0 X 0 0 

EAWP 3,933 20,348 0 0.459 3,000 X X --- X X 0 X 0 0 X 

REVI 4,481 140,488 0 0.317 3,000 X X --- 0 X X 0 X 0 X 

SCTA 4,034 34,152 0 0.413 3,000 X X --- X 0 0 0 X 0 X 

WOTH 4,412 56,553 0 0.211 3,000 X X --- X X X X X 0 X 

WEWA 1,274 3,648 0 0.519 6,000 X X --- 0 0 X 0 X 0 0 
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Table 4. Minimum and maximum of the mean expected species counts (see Table 1 for species codes) across all values of each 

predictor variable (latitude [LAT], elevation [ELEV], mean May–June temperature [MJT], difference between mean March–April and 

mean May–June temperature [TD], mean total March–April precipitation [MAP], mean total May–June precipitation [MJP], and 

proportions of deciduous and mixed forest [DF], conifer forest [CF], and developed land [DL]) and the corresponding absolute 

difference and percent proportional difference (i.e., the difference between the maximum and minimum mean expected species counts 

across all values of the individual predictor variable divided by the maximum mean expected species count across all predictor 

variables, then multiplied by 100%) for the 14 focal forest songbird species. Horizontal lines delineate the cold-associated species (N 

= 5), warm-associated species (N = 4), and climate generalists (N = 5). 

Species Count Metric LAT ELEV MJT TD MAP MJP DF CF DL 

BTBW minimum 0.000 0.000 0.006 0.007 0.007 0.007 0.002 0.007 0.001 

 maximum 0.077 5.011 0.008 0.011 0.008 0.008 0.021 0.014 0.016 

 difference 0.077 5.011 0.001 0.004 0.001 0.001 0.019 0.007 0.015 

 % difference 1.5 100.0 0.0 0.1 0.0 0.0 0.4 0.1 0.3 

BHVI minimum 0.083 0.042 0.182 0.182 0.166 0.242 0.150 0.166 0.244 

 maximum 0.524 10.560 0.369 0.352 0.266 0.323 0.368 8.522 0.461 

 difference 0.441 10.518 0.187 0.170 0.099 0.081 0.218 8.355 0.217 

 % difference 4.2 99.6 1.8 1.6 0.9 0.8 2.1 79.1 2.1 

CAWA minimum 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.001 0.000 

 maximum 0.036 1.731 0.001 0.001 0.001 0.001 0.005 0.003 0.001 

 difference 0.036 1.731 0.000 0.000 0.000 0.001 0.005 0.003 0.001 

  % difference 2.1 100.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 

LEFL minimum 0.000 0.006 0.030 0.031 0.024 0.043 0.016 0.041 0.016 

 maximum 2.686 2.725 0.060 0.047 0.046 0.051 0.090 0.144 0.058 
 difference 2.685 2.719 0.030 0.016 0.022 0.008 0.073 0.103 0.042 
 % difference 98.5 99.8 1.1 0.6 0.8 0.3 2.7 3.8 1.6 

VEER minimum 0.000 0.002 0.021 0.024 0.025 0.023 0.024 0.022 0.014 

 maximum 2.692 8.590 0.026 0.031 0.031 0.030 0.030 0.244 2.782 

 difference 2.692 8.588 0.005 0.007 0.006 0.006 0.006 0.222 2.768 

 % difference 31.3 100.0 0.1 0.1 0.1 0.1 0.1 2.6 32.2 
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Table 4. Continued. 

 Species Metric LAT ELEV MJT TD MAP MJP DF CF DL 

CERW minimum 0.018 0.010 0.030 0.015 0.021 0.035 0.001 0.001 0.010 

 maximum 0.052 0.056 0.092 0.039 0.039 0.072 0.350 0.067 0.054 

 difference 0.034 0.046 0.063 0.024 0.018 0.036 0.349 0.067 0.044 

 % difference 9.8 13.0 17.8 6.9 5.1 10.4 99.7 19.1 12.6 

KEWA minimum 0.051 0.029 0.113 0.037 0.126 0.129 0.031 0.132 0.097 

 maximum 1.283 0.210 0.258 0.155 0.144 0.259 0.357 0.255 0.155 

 difference 1.233 0.181 0.145 0.118 0.018 0.130 0.326 0.123 0.058 

 % difference 96.0 14.1 11.3 9.2 1.4 10.2 25.4 9.6 4.5 

SUTA minimum 0.000 0.000 0.008 0.004 0.009 0.009 0.001 0.000 0.002 
 maximum 11.450 0.341 0.018 0.011 0.009 0.016 0.046 0.014 0.013 
 difference 11.449 0.341 0.010 0.006 0.001 0.008 0.046 0.014 0.011 
 % difference 100.0 3.0 0.1 0.1 0.0 0.1 0.4 0.1 0.1 

SWWA minimum 0.059 0.065 0.057 0.063 0.056 0.059 0.001 0.034 0.058 
 maximum 0.117 0.154 0.188 0.095 0.199 0.249 3.288 160.543 47.534 
 difference 0.058 0.089 0.131 0.033 0.143 0.190 3.287 160.509 47.477 

  % difference 0.0 0.1 0.1 0.0 0.1 0.1 2.0 100.0 29.6 

EAWP minimum 0.555 0.490 0.681 0.855 0.998 0.951 0.870 0.485 0.296 

 maximum 1.333 1.471 1.176 1.110 1.014 1.093 1.297 1.110 1.237 

 difference 0.778 0.980 0.495 0.255 0.016 0.141 0.427 0.625 0.941 

 % difference 52.9 66.7 33.7 17.3 1.1 9.6 29.0 42.5 64.0 

REVI minimum 0.600 0.503 0.951 0.974 0.984 0.917 0.457 0.974 0.430 

 maximum 1.102 1.232 1.056 1.157 1.172 1.005 1.611 1.327 1.160 

 difference 0.502 0.729 0.105 0.183 0.188 0.088 1.154 0.353 0.730 

 % difference 31.1 45.3 6.5 11.3 11.7 5.5 71.6 21.9 45.3 
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Table 4. Continued. 

Species Metric LAT ELEV MJT TD MAP MJP DF CF DL 

SCTA minimum 0.309 0.487 0.763 0.996 0.888 0.964 0.326 0.964 0.489 
 maximum 1.311 1.222 1.048 1.039 1.012 1.037 1.976 1.496 1.142 
 difference 1.003 0.735 0.285 0.043 0.125 0.073 1.650 0.532 0.652 
 % difference 50.7 37.2 14.4 2.2 6.3 3.7 83.5 26.9 33.0 

WEWA minimum 0.061 0.050 0.117 0.129 0.114 0.128 0.019 0.108 0.113 

 maximum 0.228 0.329 0.138 0.166 0.148 0.140 0.465 1.064 0.657 

 difference 0.167 0.279 0.021 0.037 0.034 0.011 0.446 0.956 0.544 

  % difference 15.7 26.2 1.9 3.5 3.2 1.1 41.9 89.8 51.2 

WOTH minimum 0.584 0.428 0.722 0.846 0.521 0.845 0.571 0.731 0.530 

 maximum 1.288 1.494 1.034 1.019 1.033 1.078 1.411 1.051 1.121 

 difference 0.704 1.066 0.312 0.173 0.511 0.232 0.840 0.320 0.592 

 % difference 47.1 71.4 20.9 11.6 34.2 15.6 56.2 21.4 39.6 
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Table 5. Mean and standard deviation (SD) of growing season (March–April) and breeding 

season (May–June) temperatures (°C) and precipitation (mm) in 2100 predicted by the 6 

combinations of 3 general circulation models (Community Climate System Model [CCSM], 

Geophysical Fluid Dynamics Laboratory model [GFDL], and Hadley GEM2-ES [HAD] model) 

and 2 representative concentration pathways (RCP) that correspond to lower (4.5) and higher 

(8.5) levels of greenhouse gas emissions, as well as the averages of the 3 general circulation 

models for each RCP (ALE: average 4.5 RCP, AHE: average 8.5 RCP). 

Climate scenario 

March–April 

Temperature 

May–June 

Temperature 

March–April 

Precipitation 

May–June 

Precipitation 

Mean SD Mean SD Mean SD Mean SD 

CCSM-4.5 RCP 9.90 3.09 20.75 2.14 102.42 17.65 112.10 8.86 

CCSM-8.5 RCP 11.87 3.07 22.86 2.18 114.95 22.41 111.30 13.65 

GFDL-4.5 RCP 11.02 2.86 22.05 1.92 122.34 21.90 130.67 14.81 

GFDL-8.5 RCP 13.62 2.68 23.84 1.91 129.21 17.32 133.89 14.19 

HAD-4.5 RCP 11.87 2.91 21.71 2.08 117.11 23.28 113.44 10.90 

HAD-8.5 RCP 13.43 2.85 23.81 2.44 124.18 17.97 117.94 10.95 

ALE 10.93 2.95 21.50 2.05 113.96 20.73 118.73 10.83 

AHE 12.97 2.87 23.50 2.17 122.78 18.63 121.04 10.50 
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Table 6. Range in values of mean March–April (MAT) and May–June (MJT) temperatures (°C), 

mean total March–April (MAP) and May–June (MJP) precipitation (mm), and proportions of 

deciduous and mixed forest (DF), conifer forest (CF), and developed land (DL) across the 

AMBCR in 2000 and 2100, using the 4 future climate and land cover combination scenarios 

(COOL: CCSM-4.5 RCP, ALE: average of lower emissions, AHE: average of higher emissions, 

and WARM: GFDL-8.5 RCP), as well as the mean and maximum differences in values. 

Variable Metric  2000 COOL ALE AHE WARM 

MAT Minimum 2.1 3.9 5.1 7.3 8.3 
 Maximum 14.8 16.5 17.3 19.1 19.5 
 Range 12.7 12.6 12.2 11.8 11.2 
 Mean difference from 2000 --- 1.6 2.7 4.7 5.4 

  Max difference from 2000 --- 2.0 3.2 5.5 6.7 

MJT Minimum 13.6 16.0 16.9 18.8 19.5 
 Maximum 23.4 25.6 26.3 28.5 28.5 
 Range 9.8 9.6 9.4 9.8 9.0 
 Mean difference from 2000 --- 2.4 3.2 5.2 5.5 

  Max difference from 2000 --- 2.6 3.7 5.9 6.7 

MAP Minimum 67.4 66.6 75.6 86.4 99.8 
 Maximum 143.5 150.0 166.1 171.9 173.9 
 Range 76.1 83.4 90.5 85.5 74.1 
 Mean difference from 2000 --- 2.8 14.3 23.2 29.6 

  Max difference from 2000 --- 13.0 33.5 40.3 45.9 

MJP Minimum 81.9 79.5 83.3 84.1 87.9 
 Maximum 143.2 144.9 157.8 164.8 178.0 
 Range 61.3 65.4 74.5 80.7 90.1 
 Mean difference from 2000 --- 0.0 6.6 8.9 21.8 

  Max difference from 2000 --- 12.9 20.9 29.9 37.1 

DF Minimum 0.199 0.202 0.202 0.153 0.153 
 Maximum 0.968 0.976 0.976 0.943 0.943 
 Range 0.769 0.774 0.774 0.790 0.790 
 Mean difference from 2000 --- -0.010 -0.010 -0.084 -0.084 

  Max difference from 2000 --- 0.075 0.075 0.035 0.035 

CF Minimum 0.002 0.002 0.002 0.002 0.002 
 Maximum 0.297 0.302 0.302 0.277 0.277 
 Range 0.295 0.301 0.301 0.275 0.275 
 Mean difference from 2000 --- -0.002 -0.002 -0.011 -0.011 

  Max difference from 2000 --- 0.024 0.024 0.004 0.004 

DL Minimum 0.001 0.001 0.001 0.001 0.001 
 Maximum 0.493 0.627 0.627 0.771 0.771 
 Range 0.493 0.626 0.626 0.771 0.771 
 Mean difference from 2000 --- 0.028 0.028 0.050 0.050 

  Max difference from 2000 --- 0.358 0.358 0.489 0.489 
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Table 7. Total projected count of individuals for each species (see Table 1 for species codes) 

across the entire study region (“Count”) in 2000 and 2100, based on the 4 future climate and land 

cover combination scenarios (COOL: CCSM-4.5 RCP, ALE: average of lower emissions, AHE: 

average of higher emissions, and WARM: GFDL-8.5 RCP), as well as the percent change from 

2000 to 2100 (“%”). Bolded text indicates a statistically significant difference between years. 

Horizontal lines delineate the cold-associated species (N = 5), warm-associated species (N = 4), 

and climate generalists (N = 5). 

Species 
2000 COOL ALE AHE WARM 

Count Count % Count % Count % Count % 

BTBW 471 416 -11.68 417 -11.46 410 -12.95 408 -13.38 

BHVI 711 696 -2.11 695 -2.25 762 +7.17 736 +3.52 

CAWA 2,048 2071 +1.12 2,072 +1.17 1,855 -9.42 1,891 -7.67 

LEFL 348 374 +7.47 375 +7.76 379 +8.91 391 +12.36 

VEER 1,179 1,015 -13.91 1,014 -13.99 1,098 -6.87 1,100 -6.7 

CERW 72 71 -1.39 71 -1.39 71 -1.39 72 0.00 

KEWA 110 108 -1.82 108 -1.82 109 -0.91 109 -0.91 

SUTA 1,393 1,206 -13.42 1,244 -10.70 1,189 -14.64 1,236 -11.27 

SWWA 1 1 0.00 1 0.00 1 0.00 1 0.00 

EAWP 1,194 1,195 +0.08 1,194 0.00 1,194 0.00 1,192 -0.17 

REVI 8,057 8,057 0.00 8,057 0.00 8,057 0.00 8,059 +0.02 

SCTA 1,839 1,838 -0.05 1,837 -0.11 1,837 -0.11 1,833 -0.33 

WEWA 197 198 +0.51 197 0.00 197 0.00 195 -1.02 

WOTH 3,550 3,551 +0.03 3,541 -0.25 3,544 -0.17 3,525 -0.70 
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Table 8. Total number of occupied hexagonal grid cells (i.e., where projected species count >0; 

“Cells”) for each species (see Table 1 for species codes) across the entire study region in 2000 

and 2100, based on the 4 future climate and land cover combination scenarios (COOL: CCSM-

4.5 RCP, ALE: average of lower emissions, AHE: average of higher emissions, and WARM: 

GFDL-8.5 RCP), as well as the percent change from 2000 to 2100 (“%”). There were no 

statistically significant differences between years. Horizontal lines delineate the cold-associated 

species (N = 5), warm-associated species (N = 4), and climate generalists (N = 5). 

Species 
2000 COOL ALE AHE WARM 

Cells Cells % Cells % Cells % Cells % 

BTBW 55 57 +3.64 58 +5.45 58 +5.45 58 +5.45 

BHVI 142 142 0.00 142 0.00 143 0.70 143 0.70 

CAWA 75 76 +1.33 76 +1.33 74 -1.33 74 -1.33 

LEFL 108 108 0.00 108 0.00 108 0.00 108 0.00 

VEER 135 134 -0.74 134 -0.74 134 -0.74 134 -0.74 

CERW 2 2 0.00 2 0.00 2 0.00 2 0.00 

KEWA 63 63 0.00 63 0.00 63 0.00 63 0.00 

SUTA 80 78 -2.5 78 -2.5 77 -3.75 78 -2.5 

SWWA 0 0 0.00 0 0.00 0 0.00 0 0.00 

EAWP 346 346 0.00 346 0.00 346 0.00 346 0.00 

REVI 346 346 0.00 346 0.00 346 0.00 346 0.00 

SCTA 346 346 0.00 346 0.00 346 0.00 346 0.00 

WEWA 154 153 -0.65 153 -0.65 153 -0.65 151 -1.95 

WOTH 346 346 0.00 346 0.00 346 0.00 346 0.00 
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Table 9. Distance (km) and angle (consisting of the degree, where 0 is directly east and 90 is 

directly north, and corresponding cardinal direction) of the shift in count-weighted mean-center 

of the projected distribution for each species (see Table 1 for species codes) from 2000 to 2100, 

based on the 4 future climate and land cover combination scenarios (COOL: CCSM-4.5 RCP, 

ALE: average of lower emissions, AHE: average of higher emissions, and WARM: GFDL-8.5 

RCP). There were no statistically significant differences between years. Horizontal lines 

delineate the cold-associated species (N = 5), warm-associated species (N = 4), and climate 

generalists (N = 5). 

Species 
COOL ALE AHE WARM 

Distance Angle Distance Angle Distance Angle Distance Angle 

BTBW 407 45 

(NE) 

416 45 

(NE) 

513 46 

(NE) 

528 46 

(NE) 

BHVI 71 53 

(NE) 

89 50 

(NE) 

46 61 

(NNE) 

84 52 

(NE) 

CAWA 32 254 

(SSW) 

66 238 

(SSW) 

74 47 

(NE) 

20 34 

(ENE) 

LEFL 250 41 

(NE) 

233 42 

(NE) 

283 39 

(NE) 

313 35 

(NE) 

VEER 1,111 211 

(WSW) 

1,114 211 

(WSW) 

1,921 215 

(SW) 

1,828 215 

(SW) 

CERW 154 29 

(ENE) 

59 24 

(ENE) 

75 28 

(ENE) 

57 10 

(E) 

KEWA 71 46 

(NE) 

71 40 

(NE) 

24 67 

(NNE) 

37 17 

(ENE) 

SUTA 72 19 

(ENE) 

62 21 

(ENE) 

82 10 

(E) 

67 9 

(E) 

SWWA 70 33 

(ENE) 

61 43 

(NE) 

82 59 

(NNE) 

257 48 

(NE) 

EAWP 32 200 

(WSW) 

6 79 

(NNE) 

17 181 

(W) 

9 21 

(ENE) 

REVI 15 208 

(WSW) 

10 216 

(SW) 

11 219 

(SW) 

28 220 

(SW) 

SCTA 16 206 

(WSW) 

9 61 

(NNE) 

8 130 

(NW) 

31 53 

(NE) 

WEWA 44 219 

(SW) 

9 203 

(WSW) 

12 157 

(WNW) 

38 55 

(NE) 

WOTH 31 197 

(WSW) 

34 45 

(NE) 

13 130 

(NW) 

51 35 

(NE) 
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Figure 1. Map of the 8 ecoregions (color-coded and labeled) located within the Appalachian Mountains in the eastern United States, 

and graphs of land cover change corresponding to each ecoregion. The bar graphs were created by Sayler et al. (2016) as part of a U.S. 

Geological Survey report on the status and trends of land change from 1973 to 2000 in the eastern United States, detailing changes in 

land cover classes during 4 time periods (1973–1980, 1980–1986, 1986–1992, and 1992–2000). The graphs indicate changes in the 

area (measured as the percent of the ecoregion; y-axis) of 9 land cover classes (see legend for categories and color designations) 

within each ecoregion during the 4 time periods covered by the report (x-axis): T1 = 1973–1980, T2 = 1980–1986, T3 = 1986–1992, 

and T4 = 1992–2000. 
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Figure 2. Mean June temperature in degrees Celsius (first row: A, B, C) and total June precipitation in mm (second row: D, E, F) 

across the eastern United States in 2000 (first column: A, D) and projected to 2100 under lower (second column: B, E) and higher 

(third column: C, F) greenhouse gas emissions scenarios, with the Appalachian Mountains Bird Conservation Region outlined in 

black. Contemporary and future monthly climate projections were calculated and compiled by Iverson et al. (2019).
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Figure 3. Mean June temperature in degrees Celsius and mean total June precipitation in mm 

within the Appalachian Mountains Bird Conservation Region (hexagonal grid extent) in 2000 

and projections of changes in those climate metrics in 2100 under low and high greenhouse gas 

emissions scenarios. Contemporary and future monthly climate projections were calculated and 

compiled by Iverson et al. (2019). 
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Figure 4. Land cover of the eastern United States in (A) 2000 and projected to 2100 under (B) lower and (C) higher greenhouse gas 

emissions scenarios. Within the Appalachian Mountains Bird Conservation Region (black outline), shades of green represent different 

types of forest (deciduous, mixed, and conifer), red represents developed land, and shades of yellow or orange represent agriculture 

(cropland and hay / pasture land). Future land cover projections were produced by the U.S. Geological Survey Earth Resources 

Observation and Science Center (Sohl et al. 2007). 
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Figure 5. Proportion of developed land and proportion of deciduous and mixed forest within the 

Appalachian Mountains Bird Conservation Region (hexagonal grid extent) in 2000 and 

projections of changes in those proportions in 2100 under low and high greenhouse gas 

emissions scenarios. Future land cover projections were produced by the U.S. Geological Survey 

Earth Resources Observation and Science Center (Sohl et al. 2007). 
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Figure 6. Location and extent of the Appalachian Mountains Bird Conservation Region (shaded 

in dark gray) in the eastern United States, along with the starting point associated with 322 North 

American Breeding Bird Survey routes (black points; Sauer et al. 2013) within the study region. 
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Figure 7. Sampling hexagons (left) corresponding to the 322 North American Breeding Survey 

routes (black points; Sauer et al. 2013) and hexagonal grid (right) covering the Appalachian 

Mountains Bird Conservation Region (outlined in black). All hexagons, whether sampling 

hexagons or hexagonal grid cells, were regular shapes with vertices at 0°, 60°, 120°, 180°, 240°, 

and 300° that were spaced approximately 24 km from the centerpoint of the hexagon (see center 

diagram); thus, the hexagonal grid cells (right) used for prediction matched the dimensions of the 

sampling hexagons (left) used for model building. 
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Figure 8. Whisker plots for each species (Table 1), displaying the slope coefficients of the 

predictor environmental variables (LAT = latitude [1 or 2 parameters], ELEV = elevation [1 or 4 

parameters], LAT×ELEV = latitude × elevation interaction [1 parameter], MJT = mean May–

June temperature [2 parameters], TD = temperature difference [2 parameters], MAP = mean 

March–April precipitation [2 parameters], MJP = mean May–June precipitation [2 parameters], 

DF = deciduous and mixed forest [1 parameter], CF = conifer forest [1 parameter], DL = 

developed land [1 parameter]), with a point at the mean values for the posterior distributions and 

whiskers encompassing the 95% credible intervals. For the first 6 species (BTBW, BHVI, 

CAWA, LEFL, SUTA, VEER), latitude and elevation were both specified as linear and a simple 

interaction between latitude and elevation was included. For the latter 8 species (CERW, EAWP, 

KEWA, REVI, SCTA, SWWA, WEWA, WOTH), latitude was specified as an orthogonal 

polynomial with 2 degrees (i.e., quadratic), elevation was specified as an orthogonal polynomial 

with 4 degrees, and there was no interaction between latitude and elevation. Points with filled 

circles indicate statistical significance (i.e., credible intervals do not overlap 0). The color of the 

4-letter species code and plot elements indicates the climate classification of that species (blue = 

cold-associated, red = warm-associated, orange = climate generalist). 
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Figure 9. Plots of the relationships between the predictor variables (Table 2) and the mean 

expected count (red line) for each of the 14 focal forest songbird species (Table 1), with 95% 

credible intervals (black lines). The predictor variables are scaled, such that 0 is the mean value, 

and reflect the range of the data. Predictor variables with bolded and colorful font have 

statistically significant beta coefficients (i.e., credible intervals do not overlap 0). The color of 

the 4-letter species code and plot elements indicates the climate classification of that species 

(blue = cold-associated, red = warm-associated, orange = climate generalist). 
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Figure 10. Maps of the projected contemporary (2000) distribution of each focal species (Table 

1) across the study region, overlaid with white circles representing the 322 North American 

Breeding Bird Survey routes. The color of each hexagonal grid cell reflects the expected count 

from the model corresponding to each species (see Table 3 for model details), and the size of the 

white circles reflect the mean route-level total counts across years, with the maximum value 

presented for each species. The color of the 4-letter species code and figure elements indicates 

the climate classification of that species (blue = cold-associated, red = warm-associated, orange 

= climate generalist). 
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Figure 11. Maps of the projected contemporary (2000) and future (2100) distributions of each 

focal species (Table 1) across the study region. Future distributions were modeled based on 4 

future climate and land cover combination scenarios, the coolest (COOL) and warmest (WARM) 

scenarios and the average low (ALE) and average high (AHE) emission scenarios. The color of 

each hexagonal grid cell reflects the expected count from the model corresponding to each 

species. The color of the 4-letter species code indicates the climate classification of that species 

(blue = cold-associated, red = warm-associated, orange = climate generalist). 
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Figure 12. Maps of the percent differences in projected contemporary (2000) and future (2100) 

distributions of each focal species (Table 1) across the study region. Future distributions were 

modeled based on 4 future climate and land cover combination scenarios, the coolest (COOL) 

and warmest (WARM) scenarios and the average low (ALE) and average high (AHE) emission 

scenarios. The color of each hexagonal grid cell reflects the expected count in 2000 on the left 

and the percent changes in the expected counts from 2000 and 2100 on the right. The color of the 

4-letter species code indicates the climate classification of that species (blue = cold-associated, 

red = warm-associated, orange = climate generalist). 
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CHAPTER 2 

Effects of climate and temporal trends in forest songbird communities and abundance 

along latitudinal and elevational gradients in the Appalachian Mountains 

 

INTRODUCTION 

Wildlife populations naturally fluctuate over time from local to regional scales. However, 

consistent and widespread changes in abundance over long time periods are likely connected to a 

particular set of environmental or anthropogenic drivers, as may be the case for bird species 

breeding in the forests of eastern North America. Prevailing evidence suggests that forest 

songbird populations have been decreasing in abundance during the past century. These are 

passerine and near-passerine species that primarily breed in mature forest habitat, often nesting 

in trees and feeding on tree-associated insects (e.g., Lepidopteran larvae). Past qualitative 

investigations note that numbers of certain forest songbird species breeding in eastern deciduous 

forests declined from the mid-1930s to the 1970s (Temple and Temple 1976, Ambuel and 

Temple 1982). Long-term data from annual, nationwide breeding bird surveys indicate that 

numerous bird species, many of which breed in forests (Robbins et al. 1989), have experienced 

decreases in their populations throughout the eastern United States from 1966 to 2019 (Sauer et 

al. 2020). Additionally, a recent quantitative study using data from multiple and independent 

monitoring networks demonstrated bird population losses across much of North America since 

1970, including a negative change within the range of -15.6% to -19.2% in birds breeding in 

eastern forests, with 63.5% of those species in decline (Rosenberg et al. 2019). The U.S. Fish & 

Wildlife Service considers a statistically significant (p ≤ 0.1) population trend of -15% to -50% 

during this time period to be a “possible large decrease” and has identified 12 songbird species 

that breed in forests of eastern North America as “birds of conservation concern” (U.S. Fish & 

Wildlife Service 2021). Without targeted conservation action, there is concern that consistent 

declines in these and other bird populations will continue, with the potential for species to 

become endangered or even become extirpated (i.e., locally or regionally extinct) (Rosenberg et 

al. 2019). 

In addition to multiple other factors, global climate change may contribute to declining 

populations of forest songbirds in eastern North America (Stephens et al. 2016, Rosenberg et al. 

2019). Rising temperatures associated with climate change can negatively impact birds through 

direct and indirect interactions (Trautmann 2018). Warmer temperatures directly affect behavior 

(e.g., activity levels), thermoregulation, and incubation (Robbins 1981, Crick 2004), and 

temperature variability can affect energy expenditure, with consequences for reproductive output 

(Pendlebury et al. 2004). Temperature can also interact with landscape factors to lower songbird 

reproductive success (Cox et al. 2013a), and increasing temperatures may elevate rates of nest 

predation (Cox et al. 2013b). Furthermore, there is strong evidence that rising temperatures cause 

phenological mismatches between birds, vegetation budding dates, and emergence of / peaks in 

their insect prey (Visser et al. 2006, Waite and Strickland 2006). In North America, the interval 

between spring green-up and arrival of migratory passerine species has increased, with certain 

species unable to keep pace (Mayor et al. 2017). These phenological changes can have fitness 
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consequences; species populations may begin to decline if they fail to advance their egg-laying 

dates in response to increasing spring temperatures over time (Pearce-Higgins et al. 2015, Franks 

et al. 2018, Koleček et al. 2020). Changing precipitation patterns associated with climate change 

may also have direct and indirect negative effects on bird populations. Precipitation directly 

affects thermoregulation (Leech and Crick 2007), nest site selection (Martin 2001), and nest 

success and juvenile survival (Sherry et al. 2015). In the northeastern United States, precipitation 

was determined to influence bird species abundance (Duclos et al. 2019). Previous studies have 

also found lagged correlations between bird population trends and precipitation from the prior 

year (Pearce-Higgins et al. 2015). Overall, climate change appears to play a role in declining 

forest songbird populations in eastern North America through synergistic effects of changing 

temperatures and precipitation patterns.  

However, climate change is unlikely to affect all forest songbird species in the same way. 

Negative impacts from warming temperatures may be most pronounced for cold-associated 

species (i.e., those that breed primarily in regions with colder temperatures, such as northern 

latitudes or high elevations), whereas climate generalist species (i.e., those that breed in regions 

with wide-ranging temperatures, without a strong association with particular latitudes or certain 

elevations) and warm-associated species (i.e., those that breed primarily in regions with warmer 

temperatures, such as southern latitudes or low elevations) may have a neutral or positive 

relationship with temperatures. For instance, studies often indicate that cold-associated species 

that occur at high elevations are particularly vulnerable to climate change (Rodenhouse et al. 

2008, Siegel et al. 2014). In contrast, there is evidence of the distributions of warm-associated, 

low-elevation species expanding in regions where mean temperatures are rising (DeLuca and 

King 2017). Overall, climate change is expected to result in changes in the numbers of cold-

associated species vs. climate generalist species vs. warm-associated species (i.e., climate-related 

guild richness) (Rodenhouse et al. 2008, Stralberg et al. 2009), with climate specialists and cold-

associated species likely to be more negatively affected by higher temperatures than climate 

generalists or warm-associated species (Pearce-Higgins et al. 2015). In extreme circumstances 

(e.g., crossing unknown thresholds in tolerable climate conditions), certain cold-associated 

species could be at risk of extirpation from sites or regions within their current range as 

temperatures continue to warm (Schwartz et al. 2006, Sekercioglu et al. 2008, Tayleur et al. 

2016, Freeman et al. 2018). 

Although it may be possible to broadly predict the effects of rising temperatures on forest 

songbird species based on their climate guild, there is less certainty concerning the additional 

effects of precipitation, particularly across latitudinal and elevational gradients. The importance 

of considering latitude and elevation in combination with climate change has been highlighted by 

multiple studies that track shifts in bird species distributions over time. Previous evidence 

suggests that species distributions are shifting northward in response to climate change (Thomas 

and Lennon 1999, Hitch and Leberg 2007, La Sorte and Thompson 2007), and simultaneous 

latitudinal and elevational shifts have been documented and projected for the future (Pounds et 

al. 1999, Rodenhouse et al. 2008). For instance, populations of cold-associated, high-elevation 

species are likely to decline and warm-associated, low-elevation species may begin to expand 

into higher elevations in response to increasing temperatures (Forero-Medina et al. 2011, Tingley 

et al. 2012). However, elevational shifts are not always upward; along elevational gradients, 

climate change has caused heterogeneous range shifts, as rising temperature pushes species 

upslope while increased precipitation pulls them downslope (Tingley et al. 2012). A common 
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assumption in these studies is that relationships with temperature and precipitation are static 

across latitudinal and elevational gradients. However, to accurately predict how climate change 

will affect forest songbirds in the future and to better inform conservation efforts, it is imperative 

to verify whether the influence of changing temperatures and precipitation amounts is mediated 

by latitude and elevation. 

Looking forward, there is a critical need to address this research question, as climate 

change is affecting and will continue to affect the forest songbirds of eastern North America. 

Over the last several decades, this region has become warmer and wetter (Hayhoe et al. 2007, 

Huntington et al. 2009), though there is spatial variation in precipitation patterns. These trends of 

increasing temperatures and precipitation amounts are projected to continue in the future 

(Trenberth 2011, Rogers et al. 2016, Fernandez and Zegre 2019). To understand the role that 

temperature and precipitation have played in the ongoing declines in forest songbird populations 

in eastern North America and to predict the effects of future climate change, we need to evaluate 

historic temporal changes in abundance of individual species and in diversity of avian 

communities (Magurran et al. 2010, Rittenhouse et al. 2010) across both latitudinal and 

elevational gradients, such as provided by the Appalachian Mountains. 

The Appalachian Mountains, which first formed ~480 million years ago during the 

Ordovician Period, are a dominant land feature of the eastern United States. They span ~2,000 

km from Maine in the north (latitude: ~47.3° N) to Alabama in the south (latitude: ~34.4° N), 

include a broad range of elevations (38–2,037 m), and contain primarily forested habitats, from 

temperate deciduous forests at lower latitudes/elevations to boreal coniferous forests at higher 

latitudes/elevations. The biota in this extensive region reflects that habitat diversity, with forest 

songbird communities comprising species from a plethora of families. With their elevational 

variability and latitudinal range, the Appalachian Mountains provide a twofold gradient over 

which to study avian communities and allow for the opportunity to simultaneously study 

multiple climate-related guilds. Within the Appalachian Mountains, there are cold-associated 

species that can be divided into 2 sub-categories: (1) northern species, which occur only in the 

northern and central latitudinal gradient of the mountain range (hereafter, Northern and Central 

Appalachians), and (2) trailing species, which have core populations in the northern latitudes and 

trailing-edge populations at higher elevations in the central and southern latitudes (i.e., Central 

and Southern Appalachians). Warm-associated species in the Appalachian Mountains comprise 

southern species which occur only in the Central and Southern Appalachians, and climate 

generalist species can be found throughout the entire mountain range. 

Purpose, objectives, and hypotheses 

The purpose of this collaborative study was to quantify potential differences in how 

forest songbird communities are affected by climate factors and to additionally explore 

concurrent temporal trends across latitudinal and elevational gradients within the Appalachian 

Mountains. My specific objectives were to apply interactions with both latitude and elevation in 

quantifying how temperature, precipitation, and other temporal factors influence climate-related 

guild richness and the abundance of specific focal species during the breeding season. To better 

capture the potential effects of climate factors and limit habitat variability, I focused exclusively 

on sampling points located in mature, primarily deciduous or mixed forests that had not been 
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harvested in >60 years (similar to Duclos et al. [2019] but incorporating multiple study regions 

that spanned the Appalachian Mountains). 

In this study, I tested the hypothesis that the effects of climate change on forest songbird 

communities during the breeding season are mediated by latitude and elevation. I predicted that 

relationships with climate factors and long-term temporal trends would vary by guild 

designation, latitude, and elevation. For example, I expected increasing temperatures to 

negatively affect northern and trailing species but positively affect southern species, and I 

expected increasing temperature variability (i.e., temperature extremes) and precipitation 

amounts to negatively affect all guilds. Furthermore, I conjectured that the magnitude of effect 

would increase near range limits, such that northern species would respond most strongly at 

lower elevations in the Central Appalachians, trailing species would respond most strongly at 

lower elevations in the Southern Appalachians, and southern species would respond most 

strongly at higher elevations in the Central Appalachians. Taking a holistic approach, I assessed 

statistical significance and effect sizes of interactions with both latitude and elevation for overall 

species richness, 4 guild designations, and 16 focal forest songbird species (Table 1). 

METHODS 

Study area 

Sampling points for this study were located throughout 3 study regions within the 

northern, central, and southern Appalachian Mountains (Figure 1). I used data from a total of 

1733 sampling points (Figure 2), consisting of 373 sampling points in the Hubbard Brook 

Experimental Forest (HBEF) in the White Mountains of New Hampshire (~43.9° latitude), 1,149 

sampling points in the Monongahela National Forest (MNF) in the Allegheny Mountains of West 

Virginia (~38.5° latitude), and 211 sampling points in the Pisgah and Nantahala National Forests 

(PNF / NNF; collectively referred to as NCNF hereafter) in the Blue Ridge Mountains of North 

Carolina (~35.2° latitude). All sampling points used in this study were located in forest stands 

that had not been harvested during the 60 years prior to sampling, and distances between 

sampling points were at least 200 m. 

Located in north-central New Hampshire, the HBEF was the source of data for the 

Northern Appalachians study region. The experimental forest was established in 1955 by the 

USDA Forest Service and consists of a 3,160-ha bowl-shaped valley within the White Mountains 

National Forest. The HBEF lies in the New England physiographic province, specifically the 

Northern Appalachian and Atlantic Maritime Highlands ecoregion, and is characterized by 

sloping and steep terrain, ranging from 222–1,015 m in elevation. The majority of the HBEF 

consists of second-growth, uneven-aged, and unmanaged northern hardwoods that grade into 

boreal forests at higher elevations (Holmes 2011). The forest has remained uncut since the early 

1900s, but periodic severe weather events, such as ice storms, contribute to heterogeneity in 

forest structure (Rhoads et al. 2011). Average annual precipitation is ~140 cm, of which 25–33% 

is snow. Vegetation consists primarily of sugar maple (Acer saccharum), American beech 

(Fagus grandifolia), and yellow birch (Betula alleghaniensis), with white ash (Fraxinus 

americana) on lower and middle slopes and eastern hemlock (Tsuga canadensis) near stream 

drainages. At high elevations, red spruce (Picea rubens), balsam fir (Abies balsamea), and white 
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birch (Betula papyrifera var. cordifolia) are common. The understory contains seedlings and 

saplings of the major tree species, as well as hobblebush (Viburnum alnifolium), striped (Acer 

pensylvanicum) and mountain maple (A. spicatum), and various ferns and forbs (Holmes 2011). 

Located in east-central West Virginia, the MNF was the source of data for the Central 

Appalachians study region. The national forest was established in 1920 and encompasses 

371,906 ha of public, federally owned land. It stretches across a latitudinal range of nearly 200 

km and lies within 2 ecoregions / physiographic provinces, the Central Appalachians (Allegheny 

Mountains) and the Ridge and Valley. The eastern section, which overlaps the Ridge and Valley 

physiographic province, lies in the rain shadow of the Allegheny Mountains, so it receives 

significantly less precipitation (~75 cm per year) compared to the rest of the forest, which 

experiences 115–150 cm per year (Clarkson 1966). Elevation ranges 275–1480 m. The MNF 

hosts high regional tree diversity, with 4 major forest zones (mixed mesophytic, northern 

hardwoods, red spruce, and dry oaks) (McCay et al. 1997, DeMeo 1999). Mixed mesophytic 

forests are present at low elevations (<900 m), with northern red oak (Quercus rubra), sugar 

maple, hickory (Carya spp.), and tulip-poplar (Liriodendron tulipifera) as the dominant species 

(Madarish et al. 2002). Northern hardwoods, including sugar maple, American beech, and black 

cherry (Prunus serotina), dominate mid-elevations (Stephenson 1993). At the highest elevations 

(>1150 m), remnant boreal forest ecosystems consist of red spruce. Dry oaks are common in the 

Ridge and Valley area, consisting of white (Quercus alba), chestnut (Q. prinus), scarlet (Q. 

coccinea), and black (Q. velutina) oaks, as well as pines (Pinus spp.). Forest stands in the MNF 

were generally 70–100 years old at the start of the study period. 

Located in western North Carolina, the NCNF (i.e., combined PNF and NNF) were the 

sources of data for the Southern Appalachians study region. The USDA Forest Service 

established the PNF in 1911, and it comprises >20,200 ha of primarily hardwood forest, whereas 

the NNF was established in 1920 and covers ~214,950 ha in area. Both national forests have 

elevations ranging 360–1770 m and lie within the Blue Ridge ecoregion and physiographic 

province, with a mean annual precipitation of 152 cm. Vegetation in the NCNF consists of 

mature (i.e., >75 years since last logging) southern Appalachian hardwood forest dominated by 

oaks and other hardwood species, including yellow birch, black birch (Betula lenta), sugar 

maple, and American beech. 

Guild designations 

To assess climate relationships and temporal trends for overall species richness and guild 

richness, I used a specific subset of forest songbird species. Although a total of 153 bird species 

were detected across all surveys in all years from all 3 study regions, I limited the richness 

analyses to 40 species (see Appendix B1 for full list) in Order Passeriformes that were mature 

forest obligates with breeding ranges that overlapped at least 1 of the 3 study regions. I enacted 

these species restrictions for several reasons: (1) the bird count data were from avian point count 

surveys, which are primarily designed to detect passerines (i.e., songbirds); (2) this study focused 

on breeding birds rather than migrants; and (3) by concentrating on bird species with similar 

breeding habitat requirements or preferences, I sought to minimize differences in species 

responses due to forest habitat change, since the primary variables of interest were climate 

factors.  
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Climate-related guild designations for the 40 forest songbird species were assigned based 

on their ranges within the Appalachian Mountains and comprised 4 mutually exclusive 

categories (Appendix B1): north, south, trailing, and general. Species in the north guild were 

only found in the Northern or Central Appalachians study regions, whereas species in the south 

guild were only found in the Southern or Central Appalachians study regions. Species in the 

trailing guild could be found in all 3 study regions in the Appalachian Mountains but had 

trailing-edge populations that were most abundant in the Northern Appalachians and at higher 

elevations in the Central or Southern Appalachians study regions. In contrast, species in the 

general guild were found throughout all 3 study regions in the Appalachian Mountains. 

Focal species 

To assess climate relationships and temporal trends for focal species belonging to each 

guild designation, I selected 16 forest songbird species commonly found within the Appalachian 

Mountains (Table 1). In addition to limiting the focal species by taxonomic order, breeding 

range, and primary breeding habitat as described above for the richness analyses, I considered 

only long-distance migrants to keep migration status consistent and selected at least 3 relatively 

abundant (i.e., >250 detections; Appendix B1) species from the 3 taxonomic families (Parulidae, 

Turdidae, and Tyrannidae) with the most species meeting all the criteria. These selection 

decisions were made to ensure that models would run efficiently and to compare any potential 

differences between the 4 guilds within taxonomic families. 

Bird count data 

Avian point count survey data for the 3 study regions were collected in 1999–2002 and 

2005–2019 at 373 HBEF sampling points, in 1993–2013 and 2017–2020 at 1,149 MNF sampling 

points, and in 1997–2018 and 2020 at 211 NCNF sampling points. Avian point count surveys 

were not completed every year at every sampling point. The number of years of data associated 

with each sampling point ranged 1–19 years (mean = 17.5 ± 1.6 years) in the HBEF, 1–17 years 

(mean = 4.6 ± 3.9 years) in the MNF, and 8–23 years (mean = 17.6 ± 3.3 years) in the NCNF. 

Within a year that avian point count survey data were collected, the number of repeated visits 

(i.e., replicate surveys) ranged from 1–5 visits (mean = 3.0 ± 0.8 visits) in the HBEF and 1–4 

visits (mean = 1.2 ± 0.4 visits) in the MNF; in the NCNF, only 1 avian point count survey was 

completed per year. I included all replicate surveys per sampling point per year in my data 

analyses, for a total of 29,610 replicate surveys across 15,494 site × year combinations. 

Avian point count surveys were conducted from mid-May to early July (i.e., during the 

bird breeding season) and consisted of 10-minute stationary counts, during which a single 

observer recorded the species and number of all birds heard or seen. Up to 4 detection covariates 

were recorded for each survey: date, start time, wind code or wind speed, and sky code. For data 

standardization, any recorded wind speed measurements were converted to wind codes using the 

Beaufort wind scale. While date was recorded for all surveys, a subset of surveys was missing 

start times (55% of MNF data, 4% of NCNF data), wind codes or wind speeds (59% of MNF 

data, 7% of NCNF data), or sky codes (<1% of HBEF data, 60% of MNF data, 7% of NCNF 

data). However, all surveys began within 30 minutes of sunrise and continued until 

approximately 4 hours after sunrise, and no surveys were conducted on days with rain, heavy 

fog, or high wind speed, following the guidelines of Ralph et al. (1993). 
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The 10-minute point count survey was divided into 3 time intervals (i.e., within-survey 

replicates): 0:00–3:20, 3:21–6:40, and 6:41–10:00 minutes (HBEF); 0:00–3:00, 3:01–5:00, and 

5:01–10:00 minutes (MNF); or 0:00–3:59, 4:00–5:59, and 6:00–10:00 minutes (NCNF). For each 

individual bird that was detected, observers recorded the corresponding time interval and 

distance band (≤50 m or >50 m). During point count surveys within the HBEF, each 3:20-minute 

interval was treated as a new sampling period (i.e., the presence of an individual bird would be 

recorded 3 separate times if the bird sang in all 3 time intervals), but observers indicated if a bird 

appeared for the first time or not during a time interval. Thus, I was able to convert all HBEF 

data to a removal sampling format prior to data analyses. During point count surveys within the 

MNF and NCNF, individual birds were only recorded the first time they were observed, 

following removal sampling methods. To limit detection variability due to distance, I restricted 

all data analyses to birds detected within 50 m. 

Environmental data 

The full set of site covariates included year of data collection, latitude, elevation, 4 focal 

climate variables, and 4 environmental variables that were included to control for their known 

effects (Table 2). Latitude corresponded to the location of the sampling point. Mean elevation 

within 50 m of each sampling point was calculated using Shuttle Radar Topography Mission 

digital elevation data, which had a resolution of ~20–25 m (Table 2). The focal climate variables 

consisted of mean breeding season (i.e., 15 May to 30 June) temperature during the year of data 

collection (hereafter mean temperature), standard deviation of mean breeding season temperature 

(hereafter SD temperature), and mean total breeding season precipitation during the year of data 

collection and during the previous year (hereafter current precipitation and previous 

precipitation, respectively). All climate data were calculated from PRISM Climate Group daily 

temperature and precipitation data (Daly et al. 2008) corresponding to 15 May through 30 June 

of each survey year. The 4 environmental variables consisted of aspect, topographic position 

index (TPI), dominant (i.e., occupying the greatest proportion of area within 50 m of the 

sampling point) forest type (deciduous, mixed, or coniferous), and proportion of any type of 

mature forest cover within 1 km of the sampling point. Mode aspect and mode TPI within 50 m 

of each sampling point were derived from Shuttle Radar Topography Mission digital elevation 

data. To determine the dominant forest type and proportion of forest cover, I used land cover 

data from the National Land Cover Database (NLCD), which has a resolution of 30 m and is 

available for the years 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019. All calculations 

were made using land cover data from the closest year available (i.e., I used the 2001 NLCD data 

for surveys conducted in 2002 or earlier, 2004 NLCD data for surveys conducted in 2003 or 

2004, 2006 NLCD data for surveys conducted in 2005–2007, 2008 NLCD data for surveys 

conducted in 2008 or 2009, 2011 NLCD data for surveys conducted in 2010–2012, 2013 NLCD 

data for surveys conducted in 2013 or 2014, 2016 NLCD data for surveys conducted in 2015–

2017, and 2019 NLCD data for surveys conducted in 2018 or later). Note that the years 2005, 

2007, and 2012 were equally close to 2004 vs. 2006, 2006 vs. 2008, and 2011 vs. 2013, 

respectively; I chose to use the 2006 NLCD data for both 2005 and 2007, and I chose to use the 

2011 data for 2012 because those were when on-the-ground conditions were originally measured 

and ensured the most overall consistency. 
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Data analysis 

Determining overall species and guild richness from a hierarchical community model 

To calculate overall species richness and guild richness at each sampling point in each 

year sampled, I estimated the individual species occupancy of the 40 forest songbird species 

simultaneously in a hierarchical community model (see Appendix B2 for JAGS code) and then 

derived the corresponding sums for all species and each guild designation (Zipkin et al. 2010). 

The hierarchical community model facilitated a multi-species approach to estimating individual 

species occurrence probabilities (Dorazio and Royle 2005, Dorazio et al. 2006). Following the 

modeling framework of Zipkin et al. (2010), species-specific occurrence and detection processes 

within the hierarchical community model were related through a community-level hierarchical 

component, which assumed that each of the species parameters were random effects, governed 

by “hyper-parameters” (i.e., drawn from a community-level distribution). Linking individual 

species occurrence probabilities through this community-level hierarchical component leads to 

improved precision of species-specific estimates (Kéry and Royle 2008, Zipkin et al. 2009). 

Occurrence Zs,y,sp was defined as a binary variable in which Zs,y,sp = 1 if species sp 

occurred within 50 m of sampling point s in year y. The occurrence state was assumed to be the 

outcome of a Bernoulli random variable, denoted by: 

Zs,y,sp ~ Bernoulli(Ψs,y,sp) 

where Ψs,y,sp is the probability that species sp occurred at sampling point s in year y. I further 

used a logit link to model linear relationships between occurrence probability (Ψs,y,sp) and 6 site 

covariates, which consisted of latitude, elevation, aspect, TPI, dominant forest type, and 

proportion of forest. All continuous site covariates were centered and scaled prior to analysis. 

Due to missing detection data and inconsistencies in time intervals of avian point count 

survey periods among the 3 study regions, I had to customize the species-specific detection 

model within the hierarchical community model. Given the observed data Ys,y,r,sp, where r is a 

within-survey replicate (i.e., time interval during the point count survey period) across all survey 

replicates (i.e., repeated visits to the sampling point during the sampling year), I defined the 

detection model for species sp at sampling point s in year y during replicate r as: 

Ys,y,r,sp ~ Bernoulli(ps,y,r,sp × Zs,y,sp) 

where ps,y,r,sp is the probability of detecting species sp at least once during the rth within-survey 

replicate at sampling point s in year y, given that species sp is present at sampling point s in year 

y. Note that the detection probability (p) was calculated in such a way as to handle uneven timing 

(ranging 2–5 minutes) among the within-survey replicates, which corresponded to the 3 time 

intervals during the avian point count survey period; I initially modeled detection probability of 

species sp at sampling point s in year y during replicate r for 1 minute (p1) and then I used an 

approach similar to the logistic exposure model (Shaffer 2004) to calculate the probability that an 

individual is detected at least once during the entire time interval t of the within-survey replicate 

r (e.g., 2, 3, or 5 minutes), using the following equation: 

ps,y,r,sp = 1 – (1 – p1
s,y,r,sp)

t 
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I further used a logit link to model linear relationships between detection probability (ps,y,r,sp) and 

4 detection covariates, which consisted of ordinal day (centered and scaled prior to analysis), 

time since sunrise (measured as decimal hours, and centered and scaled prior to analysis), a 

dummy variable for wind (0 = wind codes of 0, 1, or 2; 1 = wind codes >2), and a dummy 

variable for sky (0 = sky codes of 0, 1, or 2; 1 = sky codes >2). I imputed study region-specific 

detection covariates for avian point count surveys that were lacking data on time, wind code, or 

sky code. I assumed that time since sunrise was a Gaussian random variable with region-specific 

prior mean and variance, and that the wind and sky dummy variables were Bernoulli random 

variables with region-specific probabilities of success. Imputation was informed by the observed 

data and accounted for uncertainty, with values drawn from a posterior distribution of each 

detection variable (Gelman et al. 2014).  

The hierarchical community model yielded species-specific estimates of latent occupancy 

(Zs,y,sp) for species sp at each sampling point s in each year y based on observed data from 

replicate surveys. I then derived the overall species richness for each sampling point in each year 

sampled by summing the occupancy of the 40 forest songbird species, as in the following 

equation: 

∑ 𝑍𝑠,𝑦,𝑠𝑝

40

𝑠𝑝=1

 

Similarly, I derived guild-specific richness by summing the occupancy of the subset of forest 

songbird species that belonged to each guild designation. 

I was able to integrate distinct detection processes and explicitly account for the effects of 

different sampling methods in each study region within the hierarchical community model by 

using a Bayesian framework, implemented with Markov chain Monte Carlo methods. For all 

community-level and species-specific parameters, I used prior distributions which were meant to 

provide little information; all gamma prior distributions, often used for variance parameters, had 

a shape parameter of 1 and rate parameter of 1, and all Gaussian prior distributions, such as for 

the community-level slope coefficients for each site covariate, had a mean of 0 and precision of 

either 0.1 or 1 (Appendix B2). I fit the models in JAGS (Plummer 2003) using the “jagsUI” 

package (Kellner and Meredith 2021) in Program R (R Core Team 2022). I used the “jags” 

function to run 3 chains for the hierarchical community model with a burn-in of 2,500 iterations, 

thinning rate of 1 iteration, and iteration increment of 1,000, which resulted in 3,000 posterior 

draws and reasonable convergence (R̂ ≤ 1.1) (Gelman et al. 2014). 

Determining relationships with climate factors and temporal trends for overall species and 

guild richness 

After I derived detection-corrected overall species and guild richness from the 

hierarchical community model, I then incorporated those estimates into corresponding 

generalized linear mixed effects models, with overall species or guild richness as the response 

variable and incorporating the 4 climate variables as predictor variables. To propagate 

uncertainty from the original hierarchical community model results, I ran 3,000 iterations of the 

generalized linear mixed effects models for overall species richness and for each guild 
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designation, cycling through the values from each of the 3,000 posterior draws. The models 

yielded a posterior distribution of 3,000 for each slope coefficient, from which I derived the 

mean and 95% credible intervals. Thus, the estimated effects on overall species and guild 

richness were calculated as derived quantities (Kery and Royle 2016). 

For each generalized linear mixed effects model, I assumed the number of species at each 

site in each year (i.e., overall species richness or guild richness) to be a Poisson random variable 

and used a log link to model relationships with controlling habitat factors and interactions 

between year, latitude, and elevation. All continuous predictor variables were centered and 

scaled prior to analysis. The total number of slope coefficients was 25 (resulting in a ratio of 

~620 sites to 1 slope coefficient; Bolker et al. 2008), corresponding to 9 single site covariates 

(year, latitude, elevation, mean temperature, SD temperature, current precipitation, previous 

precipitation, dominant forest type, and proportion of forest), 11 two-way interactions (latitude × 

year, latitude × elevation, latitude × mean temperature, latitude × SD temperature, latitude × 

current precipitation, latitude × previous precipitation, elevation × year, elevation × mean 

temperature, elevation × SD temperature, elevation × current precipitation, and elevation × 

previous precipitation), and 5 three-way interactions (latitude × elevation × year, latitude × 

elevation × mean temperature, latitude × elevation × SD temperature, latitude × elevation × 

current precipitation, and latitude × elevation × previous precipitation). All of the generalized 

linear mixed effects models also incorporated a random site effect for log expected richness to 

account for repeated observations at each sampling point over the course of multiple years. 

I fit all generalized linear mixed effects models using the “lme4” package (Bates et al. 

2015) in Program R (R Core Team 2022). Specifically, I used the “glmer” function with family = 

“poisson”, optimizer = “bobyqa” (i.e., a specific optimizing function used by the model), and 

nAGQ = 0. The nAGQ is the number of points per axis for evaluating the adaptive Gauss-

Hermite approximation to the log-likelihood. A value of 0 uses a form of parameter estimation 

for generalized linear mixed effects models by optimizing the random effects and the fixed-

effects coefficients in the penalized iteratively reweighted least squares step. 

Determining relationships with climate factors and temporal trends for individual focal 

species 

To quantify and compare how temperature, precipitation, and other temporal factors 

influenced specific focal species during the breeding season across latitudes and elevations, I 

estimated the abundance of 16 forest songbird species (Table 1) independently in stacked N-

mixture models (Royle 2004) (see Appendix B2 for JAGS code). For the abundance model 

within the hierarchical stacked N-mixture model, I assumed that species count was a Poisson 

random variable and used a log link to model relationships with controlling habitat and 

topographical factors and interactions between year, elevation, and latitude. All continuous 

predictor variables were centered and scaled prior to analysis. The total number of slope 

coefficients was 27, corresponding to 11 single site covariates (year, latitude, elevation, mean 

temperature, SD temperature, current precipitation, previous precipitation, aspect, TPI, dominant 

forest type, and proportion of forest) and the same 11 two-way interactions and 5 three-way 

interactions as in the generalized linear mixed effects models. The stacked N-mixture models 

also incorporated a random site effect for log expected count to account for repeated 

observations at each sampling point over the course of multiple years. 
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Due to missing detection data and inconsistencies in time intervals of avian point count 

survey periods among the 3 study regions, I had to customize the detection model within the 

hierarchical stacked N-mixture model. I assumed that the observed count was a binomial random 

variable and modeled the adjusted probability of detection for the entire time interval of each 

within-survey replicate, using the same methods and equation as for the hierarchical community 

model. I further used a logit link to model linear relationships between detection probability and 

4 detection covariates, which consisted of ordinal day (centered and scaled prior to analysis), 

time since sunrise (measured as decimal hours and centered and scaled prior to analysis), a 

dummy variable for wind (0 = wind codes of 0, 1, or 2; 1 = wind codes >2), and a dummy 

variable for sky (0 = sky codes of 0, 1, or 2; 1 = sky codes >2). I used the same methods as for 

the hierarchical community model to impute study region-specific detection covariates for avian 

point count surveys that were lacking data on time, wind code, or sky code. 

The stacked N-mixture models were constructed in a Bayesian framework, implemented 

with Markov chain Monte Carlo methods. For all model parameters, I initially used prior 

distributions which were meant to provide little information; gamma prior distributions had 

shape and rate parameters of 0.01 or 0.1, and Gaussian prior distributions had a mean of 0 and 

precision of 0.01 or 0.1 (Appendix B2). For 2 species (blackpoll warbler [Setophaga striata] and 

yellow-bellied flycatcher [Empidonax flaviventris]) with relatively low abundance and restricted 

ranges, I used Gaussian prior distributions with precision values of 1. I fit the models in JAGS 

(Plummer 2003) using the “jagsUI” package (Kellner and Meredith 2021) in Program R (R Core 

Team 2022). I used the “autojags” function to run 3 chains for each model with a burn-in of 

2,000–137,000 iterations (Appendix B3), thinning rate of 3 iterations, and iteration increment of 

3,000–30,000; models iteratively ran until reasonable convergence (R̂ ≤ 1.1) was achieved 

(Gelman et al. 2014), resulting in 3,000–30,000 posterior draws. 

Determining significance of interactions 

For all of the guild richness models and focal species abundance models, relationships 

with individual variables were considered significant when the 95% credible intervals of their 

slope coefficient values did not overlap 0 (Table 3, Figures 3–4). Similarly, interactions with 

latitude and elevation (Tables 4–5, Figures 3–4) were considered significant when the 95% 

credible intervals of their effective slope coefficient values did not overlap 0 (Tables 6–7). I 

defined an effective slope coefficient as the effect of a 1-unit change in 1 predictor variable given 

specific levels of the 2 interacting variables (i.e., northern vs. central vs. southern latitudes and 

low vs. mid vs. high elevations). Given the varying elevational gradients of the 3 study regions, I 

used 3 sets of low vs. mid vs. high elevation values, corresponding to the 15th, 50th, and 85th 

percentiles of the elevation data across all sampling points within the HBEF (Northern 

Appalachians; low = 461.4 m, mid = 609.1 m, high = 773.1 m), the MNF (Central Appalachians; 

low = 706.7 m, mid = 927.3 m, high = 1226.4 m), and the NCNF (Southern Appalachians; low = 

546.4 m, mid = 977.4 m, high = 1566.3 m). 
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RESULTS 

Variation in effects of temperature across latitudinal and elevational gradients 

Overall species richness, north guild richness, south guild richness, trailing guild 

richness, general guild richness, and each of the 16 focal forest songbird species had an average 

of ~4.9 effective slope coefficient values (range: 1–9) that were significant for mean temperature 

at various levels of latitude and elevation, with the direction and/or magnitude of the effects of 

mean temperature depending on latitude and elevation (Table 6, Figure 5). As predicted, 1 of the 

3 northern species (Swainson’s thrush [Catharus ustulatus]), trailing guild richness, and 3 of the 

6 trailing species (Blackburnian warbler [Setophaga fusca], black-throated green warbler [S. 

virens], and black-throated blue warbler [S. caerulescens]) responded negatively to increasing 

mean temperature across most of the Appalachian Mountains, and south guild richness and 2 of 

the 3 southern species (hooded warbler [Setophaga citrina] and worm-eating warbler 

[Helmitheros vermivorum]) tended to respond positively, particularly in the Central 

Appalachians. General guild richness also had an overall positive relationship with mean 

temperature. However, contrary to expectations, I found a positive effect of mean temperature on 

north guild richness at low to mid elevations and on 2 of the 3 northern species (blackpoll 

warbler and yellow-bellied flycatcher), and I found a negative effect of mean temperature on 

south guild richness and 2 of the 3 southern species (hooded warbler and Acadian flycatcher 

[Empidonax virescens]) at low elevations in the Southern Appalachians. After determining the 

regions with the highest magnitude effects for each guild and focal forest songbird species, I was 

mostly correct in my original predictions regarding range limits. North guild richness and 1 of 

the 3 northern species (Swainson’s thrush) responded most strongly at low elevations in the 

Central Appalachians; trailing guild richness and 5 of the 6 trailing species (Blackburnian 

warbler, black-throated green warbler, black-throated blue warbler, Canada warbler [Cardellina 

canadensis], and least flycatcher [Empidonax minimus]) responded most strongly at either low or 

high elevations in the Southern Appalachians; and south guild richness responded most strongly 

at high elevations in the Central Appalachians. Interestingly, all 3 southern species (hooded 

warbler, worm-eating warbler, and Acadian flycatcher), general guild richness, and 3 of the 4 

climate generalist species (American redstart [Setophaga ruticilla], ovenbird [Seiurus 

aurocapilla], and wood thrush [Hylocichla mustelina]) had the highest magnitude responses at 

either low or high elevations in the Southern Appalachians, similar to trailing guild richness and 

most of the trailing species. Furthermore, the steepest negative effects for south guild richness, 2 

of the 3 southern species (hooded warbler and Acadian flycatcher), trailing guild richness, 3 of 

the 6 trailing species (Blackburnian warbler, black-throated blue warbler, and least flycatcher), 

general guild richness, and all 4 climate generalist species (American redstart, northern parula 

[Setophaga americana], ovenbird, and wood thrush) occurred at low elevations in the Southern 

Appalachians. 

Overall species richness, north guild richness, south guild richness, trailing guild 

richness, general guild richness, and 13 of the 16 focal forest songbird species had an average of 

~4.3 effective slope coefficient values (range: 1–8) that were significant for SD temperature at 

various levels of latitude and elevation, with the direction and/or magnitude of the effects of SD 

temperature depending on latitude and elevation (Table 6, Figure 5). As predicted, SD 

temperature had a negative effect on north guild richness, all 3 northern species (blackpoll 

warbler, Swainson’s thrush, and yellow-bellied flycatcher), 1 of the 3 southern species (Acadian 
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flycatcher), trailing guild richness, and 4 of the 6 trailing species (Blackburnian warbler, black-

throated green warbler, black-throated blue warbler, and Canada warbler). Contrary to 

expectations, south guild richness and 1 of the 3 southern species (worm-eating warbler) had 

positive relationships with SD temperature in the Central Appalachians, and general guild 

richness and 1 of the 4 climate generalist species (ovenbird) responded positively to SD 

temperature across most of the Appalachian Mountains. After determining the regions with the 

highest magnitude effects for each guild and focal forest songbird species, I was again mostly 

correct in my original predictions regarding range limits. North guild richness and 1 of the 3 

northern species (Swainson’s thrush) responded most strongly at low elevations in the Central 

Appalachians; trailing guild richness and 2 of the 6 trailing species (Blackburnian warbler and 

black-throated blue warbler) responded most strongly at low elevations in the Southern 

Appalachians; and south guild richness responded most strongly at high elevations in the Central 

Appalachians. Furthermore, the steepest negative effects for overall species richness, 3 of the 

climate-related guilds, and 7 of the focal forest songbird species (all 3 northern species: blackpoll 

warbler, Swainson’s thrush, and yellow-bellied flycatcher; 3 of the 6 trailing species: 

Blackburnian warbler, black-throated blue warbler, and Canada warbler; and 1 of the 4 climate 

generalist species: American redstart) occurred at low elevations. 

Variation in effects of precipitation across latitudinal and elevational gradients 

Overall species richness, north guild richness, south guild richness, trailing guild 

richness, general guild richness, and 13 the 16 focal forest songbird species had an average of 

~3.7 effective slope coefficient values (range: 0–8) that were significant for current precipitation 

at various levels of latitude and elevation, with the direction and/or magnitude of the effects of 

current precipitation depending on latitude and elevation (Table 7). As predicted, north guild 

richness, 1 of the 3 northern species (Swainson’s thrush), south guild richness, all 3 southern 

species (hooded warbler, worm-eating warbler, and Acadian flycatcher), and 2 of the 4 climate 

generalist species (ovenbird and wood thrush) had negative relationships with current 

precipitation. However, contrary to expectations, current precipitation positively affected trailing 

guild richness and 4 of the 6 trailing species (Blackburnian warbler, black-throated green 

warbler, black-throated blue warbler, and Canada warbler). After determining the regions with 

the highest magnitude effects for each guild and focal forest songbird species, I was partially 

correct in my original predictions regarding range limits. North guild richness and 1 of the 3 

northern species (Swainson’s thrush) responded most strongly at low elevations in the Central 

Appalachians, and south guild richness and 1 of the 3 southern species (hooded warbler) 

responded most strongly at high elevations in the Central Appalachians. In contrast, trailing guild 

richness responded most strongly in the Northern Appalachians, and trailing species tended to 

respond most strongly at high elevations. Specifically, current precipitation exhibited the highest 

magnitude effects on black-throated blue warbler abundance at high elevations in the Northern 

Appalachians, on Blackburnian warbler and veery [Catharus fuscescens] abundance at high 

elevations in the Central Appalachians, and on black-throated green warbler abundance at high 

elevations in the Southern Appalachians. The steepest negative effects for overall species 

richness, 3 of the 4 climate-related guilds, and 5 of the focal forest songbird species (Swainson’s 

thrush, hooded warbler, worm-eating warbler, veery, and ovenbird) occurred in the Central 

Appalachians. 
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Overall species richness, north guild richness, south guild richness, trailing guild 

richness, general guild richness, and 15 of the 16 focal forest songbird species had an average of 

~4.0 effective slope coefficient values (range: 0–8) that were significant for previous 

precipitation at various levels of latitude and elevation, with the direction and/or magnitude of 

the effects of previous precipitation depending on latitude and elevation (Table 7). Unlike my 

original prediction, previous precipitation had a mixed effect on overall species richness and 

guild richness, although all 3 southern species (hooded warbler, worm-eating warbler, and 

Acadian flycatcher), 2 of the 6 trailing species (black-throated green warbler and veery), and 2 of 

the 4 climate generalist species (ovenbird and wood thrush) tended to respond negatively as 

predicted. North guild richness had a positive relationship with previous precipitation at high 

elevations, south guild richness had a negative relationship at high elevations and a positive 

relationship at low to mid elevations in the Southern Appalachians, and trailing guild richness 

had a positive relationship in the Northern and Central Appalachians. After determining the 

regions with the highest magnitude effects for each guild and focal forest songbird species, the 

results did not generally support my original predictions regarding range limits. Although 4 of 

the 6 trailing species (Blackburnian warbler, black-throated blue warbler, veery, and least 

flycatcher) did respond most strongly to previous precipitation at low elevations in the Southern 

Appalachians, the strongest response for both north and trailing guild richness was at high 

elevations in the Northern Appalachians and for south guild richness was at low elevations in the 

Southern Appalachians. Furthermore, the steepest negative effects for overall species richness, 2 

of the 4 climate-related guilds, and 4 of the focal forest songbird species (hooded warbler, black-

throated green warbler, ovenbird, and wood thrush) occurred at high elevations in the Southern 

Appalachians. 

Variation in temporal trends across latitudinal and elevational gradients 

Temporal trends in overall species richness, north guild richness, south guild richness, 

trailing guild richness, general guild richness, and 15 the 16 focal forest songbird species varied 

among latitudes and elevations, with differences among the 4 guild designations (Table 7). 

Across most of the Appalachian Mountains, trailing guild richness, 4 of the 6 trailing species 

(Blackburnian warbler, black-throated green warbler, black-throated blue warbler, and veery), 

and 1 of the 4 climate generalist species (ovenbird) increased over time. For both north and south 

guild richness, temporal trends tended to be negative in the northern portion of their ranges 

(Northern and Central Appalachians, respectively) and positive in the southern portion of the 

ranges (Central and Southern Appalachians, respectively). Trailing guild richness and 4 of the 6 

trailing species (Blackburnian warbler, black-throated green warbler, black-throated blue 

warbler, and veery) had the strongest temporal trends at low elevations in the Southern 

Appalachians, and all 3 southern species (hooded warbler, worm-eating warbler, and Acadian 

flycatcher) decreased the most in abundance over time at high elevations in the Central 

Appalachians. Otherwise, the regions with the strongest and most negative temporal trends 

varied among and within guilds, with low consistency in patterns. 

DISCUSSION 

This study quantified the effects of climate factors on forest songbird communities and 

species abundance during the breeding season across latitudinal and elevational gradients within 
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the Appalachian Mountains. I also investigated concurrent long-term temporal trends beyond 

climate change and determined how they varied at different latitudes and elevations. Model 

results supported the hypothesis that climate effects on forest songbird communities during the 

breeding season are mediated by latitude and elevation. My prediction that relationships with 

climate factors and long-term temporal trends would vary by climate-related guild designation, 

latitude, and elevation was supported. The 4 guilds showed distinct trends that varied among 

latitudinal regions and along elevational gradients within the Appalachian Mountains (Figure 5). 

Because temperatures are expected to rise and precipitation patterns will be altered in the future 

due to climate change (Trenberth 2011, Rogers et al. 2016, Fernandez and Zegre 2019), it is 

critical to incorporate this new understanding of dynamic relationships with climate factors 

across latitudinal and elevational gradients to improve region-specific predictions of how climate 

change will affect cold-associated, warm-associated, and climate generalist species. In addition, 

variation in temporal trends among guild designations, latitudes, and elevations indicates the 

potential need for additional research and conservation efforts for certain climate-related guilds 

in specific regions. 

I had originally predicted that warming temperatures would negatively affect northern 

and trailing species but positively affect southern species, but my results only partially support 

that prediction. Broadly, temperature influenced guild richness and focal forest songbird species 

as expected, but there were notable exceptions. Of the 3 northern species, blackpoll warbler and 

yellow-bellied flycatcher responded positively rather than negatively to increasing temperatures. 

The breeding occurrence of both species is essentially restricted to the Northern Appalachians 

within the entire study area, with the vast majority of their ranges comprising the boreal forests 

of Canada (and Alaska in the case of blackpoll warblers). It is possible that the deviance from the 

expected response to temperature may be due to a quadratic rather than linear relationship within 

the Northern Appalachians or a correlation between temperature and a local habitat variable that 

was not accounted for in my models. Other cases where my prediction was not supported were 

due to changes in the relationship with temperature along latitudinal and elevational gradients. 

For example, the effect of mean temperature was positive for north guild richness at low 

elevations, positive for trailing guild richness and 4 of the 6 trailing species (Blackburnian 

warbler, black-throated blue warbler, Canada warbler, and least flycatcher) at high elevations in 

the Southern Appalachians, and negative for south guild richness and 2 of the 3 southern species 

(hooded warbler and Acadian flycatcher) at low elevations in the Southern Appalachians. These 

relationships are perhaps indicative of trailing and southern species shifting from lower 

elevations in more southerly latitudes to higher elevations or higher latitudes, due to warming 

temperatures (Hitch and Leberg 2007, Ralston and Kirchman 2013, Rushing et al. 2020). 

Another possibility is that temperature is correlated with particular tree species or vegetative 

communities at those latitudes and elevations (e.g., McKenney et al. 2007). 

I had also predicted that the highest magnitude effects would be experienced near range 

limits, such as low elevations in the Central Appalachians for northern species, low elevations in 

the Southern Appalachians for trailing species, and high elevations in the Central Appalachians 

for southern species. This prediction was consistently supported by the guild richness results and 

many of the focal species results, particularly for temperature effects. In addition, general guild 

richness tended to have the strongest responses at high elevations in the Central and Southern 

Appalachians, which could be considered the peripheries of their range along an elevational 

gradient. 
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The findings from my study build upon the previous literature focused on climate change 

and forest songbirds in various portions of the Appalachian Mountains. Duclos et al. (2019) 

explored direct and indirect effects of climate on bird abundance along elevational gradients in 

the Northern Appalachians, with an overlap in 7 of the focal forest songbird species from my 

study. They found that climate exerts direct influences on bird abundance, as well as indirect 

influences mediated by vegetation composition and structure (Duclos et al. 2019). Although 

there were differences in methodology and metrics, climate relationships with abundance of 4 

focal species were consistent with my results (e.g., positive direct effect of precipitation on 

yellow-bellied flycatcher and black-throated green warbler, negative indirect effect of 

temperature on Swainson’s thrush, positive indirect effect of temperature and negative direct 

effect of precipitation on ovenbird). DeLuca and King (2017) also focused on forest songbirds in 

the Northern Appalachians, noting both upslope and downslope shifts in elevational boundaries. 

In agreement with my study results that show decreasing abundance in certain focal forest 

songbird species at lower elevations in the Northern Appalachians in response to warming 

temperatures, DeLuca and King (2017) documented upward movement of the upper elevational 

boundary of black-throated blue warblers over time and overall upslope shifts in occurrence for 

Blackburnian warblers, black-throated blue warblers, and ovenbirds. Their study corroborated 

the importance of elevational gradients when considering the impacts of climate change, as did a 

climate mitigation review article focusing on the Southern Appalachians (Conroy et al. 2011). 

The authors of the latter paper predicted that both latitudinal and elevational gradients might 

mediate the influence of climate, such that birds at lower elevations near the edge of their 

southern range would be especially sensitive to climate drivers, which is what my study showed 

for both northern and trailing species. 

Overall species richness exhibited a strong positive response to rising temperatures at low 

elevations throughout the Appalachian Mountains and within the Southern Appalachians, with 

mixed responses to increases in temperature variability and precipitation. Therefore, at a broad 

scale, climate change that involves increased mean temperatures, temperature variability, and 

precipitation amounts could potentially result in a slight increase in net overall species richness 

at sites across the Appalachian Mountains. However, results from this study underscore the 

importance of climate-related guild designation, with models indicating that the 4 guilds in the 

Appalachian Mountains would respond differently to climate change across the entire region 

(Figure 5). When applying the guild-level results in considerations of the potential effects of 

climate change, northern species and trailing species seem to be most at risk. Based on the 

modeled responses to temperature, trailing guild richness should decline in much of the 

Appalachian Mountains as temperatures warm, and both north and trailing guild richness and 

northern species abundance is likely to decline as temperatures become more variable. Increasing 

precipitation amounts may lead to further declines in north guild richness, but it may benefit 

trailing guild richness and trailing species, as precipitation generally had a positive effect on 

them. Other studies have also concluded that northern and high-elevation species are most at risk 

from warming temperatures (Rodenhouse et al. 2008). In contrast, general guild richness is most 

likely to respond positively to climate change. Increasing mean temperature and temperature 

variability both had a positive effect on general guild richness across most of the Appalachian 

Mountains, whereas increasing precipitation had mixed impacts. 

In addition, the strength of this study is being able to determine specific regions (based on 

latitude and elevation) within the Appalachian Mountains where declines in overall species and 
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guild richness and focal species abundance are mostly likely to occur in response to climate 

change (Figure 5). Assuming relationships with climate factors remain stationary through time 

and that future climate conditions do not surpass unknown biological thresholds in tolerance, I 

would expect the cumulative effects of warming temperatures and increasing temperature 

variability to result in the steepest decreases in southern species, trailing species, and climate 

generalist species at low elevations in the Southern Appalachians. Species occurring at low 

elevations in the Northern and Central Appalachians may also be vulnerable to increasing 

temperature variability. The effects of increasing precipitation were more variable and therefore 

less predictable. As a note, my study estimates and compares the relative magnitude of 

temperature and precipitation effects on guild richness and focal species abundance at varying 

levels of latitude and elevation; thus, it focuses on modeling relationships rather than measuring 

absolute changes based on site-specific conditions. To make precise predictions and identify 

regions where changes in guild richness or focal species abundance may pass specific thresholds, 

my results should be integrated with fine-scale, spatially explicit maps of contemporary and 

future temperature and precipitation patterns. 

Just as with relationships with climate factors, temporal trends in guild richness and focal 

species abundance were mediated by latitude and elevation, although the direction of changes 

over time seemed primarily correlated with latitude (Table 7). For example, overall species 

richness decreased over time in the Southern Appalachians, northern species decreased over time 

in the Northern Appalachians, and southern species decreased over time in the Central 

Appalachians. Although there did not appear to be any other discernible prevailing regional 

patterns in decreasing or increasing richness over time, other studies and datasets suggest similar 

temporal trends in the abundance of the 16 focal forest songbird species and have documented 

regional variation in those trends along latitudinal gradients. For example, my results regarding 

temporal trends in the 3 northern species align with those of a study that used data from 1993–

2003 from the White Mountains of New Hampshire (King et al. 2008). As another example, 

Wilson et al. (2011) used North American Breeding Bird Survey data from 1982–2007 and 

detected a difference in percent change in mean abundance per year in the Atlantic Northern 

Forest Bird Conservation Region (which contains the HBEF study region) vs. the Northern 

Appalachian Mountains Bird Conservation Region (which contains the MNF study region) vs. 

the Southern Appalachian Mountains Bird Conservation Region (which contains the NCNF 

study region). In those regions, mean abundance of American redstarts tended to be declining, 

which was also reflected in my study results. When compared to regional temporal trends in the 

abundance of the 16 focal forest songbird species from 1993–2019 North American Breeding 

Bird Survey data (Ziolkowski et al. 2022) and 2007–2021 eBird trends data (Fink et al. 2022), 

which both aggregated their data across larger spatial regions, my results were in general 

agreement. Disparities in individual species trends over time were likely due to differences in 

spatial scales, since North American Breeding Bird Survey data were summarized by bird 

conservation regions and states, whereas my data reflected patterns in focal forest songbird 

species abundance at my 3 specific study regions within the Appalachian Mountains. 

Indeed, it is important to note that my findings were extrapolated from protected, 

federally owned forests that have a history of minimal timber harvest within the past 60 years. 

Although I accounted for topographical factors, forest type, and proportion of mature forest in 

the surrounding landscape in my models, the results regarding temporal trends may not 

accurately represent the status of forest songbirds breeding on privately owned properties that 
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involve large-scale or high-intensity timber harvest operations. Future research could investigate 

whether long-term trends in guild richness and species abundance along latitudinal and 

elevational gradients in the Appalachian Mountains vary across ownership types (i.e., private vs. 

public), disturbance regimes (e.g., timber harvest, prescribed fire), and/or forest habitat quality 

metrics. In contrast to temporal trends, the ecological relationships with climate factors at the 

various latitudes and elevations examined in my study are more likely to be broadly applicable to 

the mature forested landscapes that dominate the Appalachian Mountains region. 

Conclusions 

Here, I establish that the influence of temperature and precipitation on guild richness and 

abundance of forest songbirds breeding in the Appalachian Mountains is mediated by latitude 

and elevation. The results of this study are valuable for understanding historical effects of 

changing climate factors and improving predictions of future climate change impacts on forest 

songbirds in the Appalachian Mountains by verifying and delineating the dynamic nature of the 

relationships with temperature and precipitation across latitudinal and elevational gradients. 

They will also help to inform forest songbird conservation efforts in the Appalachian Mountains 

because they quantify the regional effects of temperature and precipitation on climate-related 

guilds and forest songbird species and identify specific latitudes and elevations at which they are 

at the highest risk from climate change and other temporal factors. Based on my models, climate 

mitigation strategies for forest songbirds in the Appalachian Mountains are most needed for 

cold-associated species and for low elevations in the Southern Appalachians. 
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TABLES 

Table 1. List of the common name, scientific name, 4-letter species code, taxonomic family, and 

climate-related guild designation of the 16 forest songbird species used in the focal species 

analyses. Climate-related guild designations for the 40 forest songbird species were assigned 

based on their ranges within the Appalachian Mountains and comprised 4 mutually exclusive 

categories (Appendix B1): north (only found in the Northern or Central Appalachians study 

regions), south (only found in the Southern or Central Appalachians study regions), trailing 

(found in all 3 study regions in the Appalachian Mountains but with trailing-edge populations 

that are limited to higher elevations in the Central or Southern Appalachians study regions), and 

general (found throughout all 3 study regions in the Appalachian Mountains). An asterisk (*) 

following the common name indicates a species of regional conservation concern (i.e., listed as 

an Appalachian Mountains Joint Venture Priority Species or North American Bird Conservation 

Initiative’s Watch List species). 

Common Name  Scientific Name Code Family Guild 

Blackpoll warbler* Setophaga striata BLPW Parulidae north 

Swainson's thrush Catharus ustulatus SWTH Turdidae north 

Yellow-bellied flycatcher*  Empidonax flaviventris YBFL Tyrannidae north 

Acadian flycatcher* Empidonax virescens ACFL Tyrannidae south 

Hooded warbler* Setophaga citrina HOWA Parulidae south 

Worm-eating warbler* Helmitheros vermivorum WEWA Parulidae south 

Blackburnian warbler* Setophaga fusca BLBW Parulidae trailing 

Black-throated blue warbler Setophaga caerulescens BTBW Parulidae trailing 

Black-throated green warbler Setophaga virens BTNW Parulidae trailing 

Canada warbler* Cardellina canadensis CAWA Parulidae trailing 

Least flycatcher Empidonax minimus LEFL Tyrannidae trailing 

Veery Catharus fuscescens VEER Turdidae trailing 

American redstart Setophaga ruticilla AMRE Parulidae general 

Northern parula* Setophaga americana NOPA Parulidae general 

Ovenbird Seiurus aurocapilla OVEN Parulidae general 

Wood thrush* Hylocichla mustelina WOTH Turdidae general 
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Table 2. List of temporal (N = 1), spatial (N = 2), climate (N = 4), topographical (N = 2), and 

habitat (N = 2) variables with detailed descriptions including units, identification of data sources 

including the spatial resolution of the dataset, and notes on the type of variable and its 

corresponding range in values. 

Variable Description (Unit) Data Source (Resolution) 
 

Year 
 

Year of data collection; variable type: 

discrete; range: 1993–2020 
 

 

Bird survey data 

 

Latitude 

 

Latitude (decimal degrees) of the sampling 

point; variable type: continuous; range: 

35.00585–43.95997 
 

 

Bird survey data 

 

Elevation 
 

Mean elevation (m) within 50 m of each 

sampling point; variable type: continuous; 

range: 240–1881 m 

 

Shuttle Radar Topography 

Mission digital elevation 

data (~20–25 m), 

Consultative Group on 

International Agricultural 

Research – Consortium for 

Spatial Information 
 

 

Mean Temperature 
 

Average of daily mean temperatures (°C) 

from 15 May–30 June (i.e., breeding 

season) corresponding to the year of bird 

data collection within 50 m of the sampling 

point; variable type: continuous; range: 

12.2–24.0 °C 

 

PRISM Climate Group 

daily temperatures (4 km) 

 

SD Temperature 
 

Standard deviation of daily mean 

temperatures (°C) from 15 May–30 June 

corresponding to the year of bird data 

collection within 50 m of the sampling 

point; variable type: continuous; range: 

1.3–5.7 °C 
 

 

PRISM Climate Group 

daily temperatures (4 km) 

Current 

Precipitation 

Sum of daily total precipitation (mm) from 

15 May–30 June corresponding to the year 

of bird data collection within 50 m of the 

sampling point; variable type: continuous; 

range: 42–808 mm 
 

PRISM Climate Group 

daily precipitation (4 km) 

Previous 

Precipitation 

 

 

Sum of daily total precipitation (mm) from 

15 May–30 June from the year prior to the 

year corresponding to the bird data 

collection within 50 m of the sampling 

point; variable type: continuous; range:  

42–808 mm 
 

PRISM Climate Group 

daily precipitation (4 km) 
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Table 2. Continued. 

Variable Description (Unit) Data Source (Resolution) 

Aspect Mode aspect (degrees) within 50 m of each 

sampling point; variable type: continuous; 

bounded between 0 and 360 degrees 

Shuttle Radar Topography 

Mission digital elevation 

data (~20–25 m), 

Consultative Group on 

International Agricultural 

Research – Consortium for 

Spatial Information 
 

Topographical 

Position Index 

(TPI) 

Mode TPI within 50 m of each sampling 

point; higher positive values indicate 

ridges, lower positive values indicate upper 

to mid slopes, values near 0 indicate flat 

areas, higher negative values indicate 

lower slopes, and lower negative values 

indicate valleys; variable type: continuous; 

range: -4.125–4.625 
 

Shuttle Radar Topography 

Mission digital elevation 

data (~20–25 m), 

Consultative Group on 

International Agricultural 

Research – Consortium for 

Spatial Information 

 
  

 

Dominant Forest 

Type 

 

Forest type (deciduous or mixed / 

coniferous) occupying the greatest 

proportion of area within 50 m of the 

sampling point; variable type: dummy; 1 = 

deciduous forest; 0 = not deciduous forest 

(i.e., mixed and coniferous forest) 
 

 

National Land Cover 

Database (30 m; 1:60,000 

scale), U.S. Geological 

Survey 

Proportion Forest 

 

Proportion of any type of mature forest 

cover (including deciduous, mixed, and 

coniferous) within 1 km of the sampling 

point; variable type: continuous; bounded 

between 0 and 1 

National Land Cover 

Database (30 m; 1:60,000 

scale), U.S. Geological 

Survey 
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Table 3. Statistical significance (indicated by bold type) of slope coefficients for the 10 linear predictor variables (YR = year, LAT = 

latitude, EL = elevation, ASP = aspect, TPI = topographic position index, DFT = dominant forest type, PF = proportion forest, MT = 

mean temperature, SDT = SD temperature, CP = current precipitation, PP = previous precipitation) corresponding to overall species 

richness (ALL), the 4 guild designations (NORTH, SOUTH, TRAILING, and GENERAL), and the 16 focal forest songbird species 

(see Table 1 for species codes), arranged by guild designation. 

Guild Species YR LAT EL ASP TPI DFT PF MT SDT CP PP 

ALL --- 0.028 -0.196 -0.193 --- --- -0.032 0.010 -0.008 0.006 -0.032 0.064 

NORTH --- 0.007 0.383 0.722 --- --- 0.071 -0.087 -0.038 0.002 -0.737 0.002 

 BLPW 0.179 2.493 4.876 0.972 0.118 -0.620 0.636 -0.189 0.165 -1.362 0.370 

 SWTH 0.083 0.746 1.685 -0.461 -0.811 -0.492 0.119 0.060 -0.056 -0.862 -0.186 

 YBFL -0.110 2.396 4.262 0.053 -0.368 -0.164 -0.536 -0.249 0.080 -1.339 0.824 

SOUTH --- -0.158 -0.738 -1.503 --- --- 0.561 0.081 -0.072 -0.025 0.257 0.084 

 HOWA -0.330 -1.057 -2.152 0.534 0.118 -0.139 0.037 0.005 0.016 0.095 0.078 

 WEWA -0.636 -1.258 -4.645 0.862 0.614 -0.248 -0.459 0.024 -0.019 0.083 0.170 

 ACFL -0.389 -1.617 -2.283 -0.049 0.081 -0.034 -0.174 -0.062 -0.224 0.492 0.183 

TRAILING --- 0.040 0.268 0.225 --- --- -0.055 -0.028 0.015 0.014 -0.249 0.093 

 BLBW 0.141 -0.096 0.303 -0.410 -0.273 0.035 0.084 -0.038 -0.032 -0.511 0.067 

 BTNW 0.049 0.107 0.251 -0.101 -0.028 0.090 -0.031 0.002 0.018 0.097 0.114 

 BTBW 0.076 -0.068 -0.034 -0.338 -0.139 0.026 0.102 -0.070 -0.057 -0.029 0.142 

 CAWA 0.056 0.611 0.071 -0.084 0.065 0.102 0.172 0.017 -0.196 -0.750 0.011 

 VEER -0.051 0.127 -0.790 0.121 -0.011 0.030 -0.035 -0.095 0.002 0.597 -0.098 

 LEFL 0.332 1.198 0.707 0.395 0.628 -0.198 -0.316 -0.242 -0.221 0.669 -0.250 

GENERAL --- 0.012 -0.739 -0.688 --- --- 0.112 0.055 -0.021 -0.012 0.396 0.102 

 AMRE -0.264 -1.279 -0.050 -0.002 -0.010 -0.002 0.035 -0.041 0.006 0.929 0.222 

 NOPA -0.329 -1.193 -1.701 0.222 0.233 0.219 -0.071 -0.159 -0.099 -0.107 0.041 

 OVEN 0.153 -0.748 -0.446 0.283 0.104 -0.093 -0.077 0.104 0.073 0.327 0.113 

 WOTH -0.492 -1.538 -1.615 0.004 -0.104 0.008 -0.116 0.125 0.010 0.476 0.098 
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Table 4. Statistical significance (indicated by bold type) of slope coefficients for the two-way interactions between latitude (LAT) or 

elevation (EL) and year (YR), mean temperature (MT), SD temperature (SDT), current precipitation (CP), and previous precipitation 

(PP) corresponding to overall species richness (ALL), the 4 guild designations (NORTH, SOUTH, TRAILING, and GENERAL), and 

the 16 focal forest songbird species (see Table 1 for species codes), arranged by guild designation. 

Guild Species LAT:YR LAT:EL LAT:MT LAT:SDT LAT:CP LAT:PP EL:YR EL:MT EL:SDT EL:CP EL:PP 

ALL --- 0.026 -0.024 -0.093 0.011 -0.008 0.022 0.024 -0.066 0.025 -0.017 0.000 

NORTH --- 0.022 -0.096 -0.196 0.011 0.000 0.036 0.035 -0.187 0.034 0.002 0.035 

 BLPW -0.134 -1.010 -0.741 -0.144 0.367 -0.379 0.209 0.020 0.736 0.283 -0.539 

 SWTH -0.022 -0.191 0.363 0.319 0.329 -0.068 -0.036 0.174 0.484 0.190 -0.029 

 YBFL -0.107 -0.761 -0.361 0.092 0.157 0.383 -0.201 0.065 0.642 0.055 -0.082 

SOUTH --- -0.143 0.065 0.526 0.063 -0.034 -0.038 0.042 0.087 0.163 -0.079 -0.038 

 HOWA -0.330 -0.362 0.330 0.092 -0.077 0.084 -0.078 0.056 0.148 -0.184 -0.026 

 WEWA -0.832 -2.311 0.023 0.391 -0.112 -0.183 -0.159 0.209 0.040 -0.015 0.175 

 ACFL -0.444 -1.262 0.212 0.288 0.075 -0.150 -0.043 0.118 0.367 -0.070 -0.134 

TRAILING --- -0.021 -0.097 -0.010 0.003 0.004 0.014 -0.028 0.014 0.029 0.002 0.003 

 BLBW -0.033 0.101 0.317 0.015 0.019 -0.054 -0.133 0.452 0.160 0.051 -0.044 

 BTNW -0.088 -0.008 -0.008 -0.073 -0.002 0.056 -0.059 -0.099 0.028 0.029 0.007 

 BTBW -0.014 0.343 0.335 0.087 0.017 -0.016 -0.043 0.574 0.164 0.007 -0.065 

 CAWA 0.119 0.289 -0.153 -0.014 -0.042 0.023 0.222 0.106 0.145 -0.008 0.045 

 VEER -0.239 0.082 0.946 0.080 0.045 -0.149 -0.113 0.740 0.141 0.003 -0.106 

 LEFL 0.829 -0.672 0.622 0.783 -0.069 0.137 0.626 0.473 0.601 -0.207 0.041 

GENERAL --- 0.011 -0.020 0.093 0.035 -0.019 0.002 -0.008 0.193 0.074 -0.024 -0.038 

 AMRE -0.180 -0.823 0.236 0.019 0.075 0.073 -0.169 0.496 0.236 -0.088 -0.065 

 NOPA -0.398 0.090 0.323 0.279 0.167 -0.057 -0.366 0.175 0.165 0.200 -0.170 

 OVEN 0.052 0.410 0.138 0.024 -0.042 0.007 0.019 0.447 0.055 -0.094 -0.134 

 WOTH -0.506 -0.519 -0.023 -0.006 0.094 -0.071 -0.385 0.348 0.084 0.060 -0.115 
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Table 5. Statistical significance (indicated by bold type) of slope coefficients for the three-way 

interactions among latitude (LAT) and elevation (EL) and year (YR), mean temperature (MT), 

SD temperature (SDT), current precipitation (CP), and previous precipitation (PP) corresponding 

to overall species richness (ALL), the 4 guild designations (NORTH, SOUTH, TRAILING, and 

GENERAL), and the 16 focal forest songbird species (see Table 1 for species codes), arranged 

by guild designation. 

Guild Species LAT:EL:YR LAT:EL:MT LAT:EL:SDT LAT:EL:CP LAT:EL:PP 

ALL --- 0.019 -0.074 0.027 -0.011 0.006 

NORTH --- 0.026 -0.065 -0.007 -0.007 0.011 

 BLPW 0.086 -0.757 0.051 -0.106 0.571 

 SWTH 0.036 0.025 -0.337 -0.067 -0.022 

 YBFL 0.190 -0.792 -0.002 -0.166 0.114 

SOUTH --- 0.050 -0.085 0.105 -0.062 0.004 

 HOWA -0.037 -0.209 0.079 -0.167 0.086 

 WEWA -0.103 -0.223 0.085 0.054 0.186 

 ACFL 0.067 0.011 0.484 0.028 -0.083 

TRAILING --- -0.001 -0.045 -0.011 -0.002 0.004 

 BLBW 0.074 -0.155 -0.128 -0.010 0.022 

 BTNW -0.006 -0.014 -0.020 -0.010 0.013 

 BTBW 0.026 -0.184 -0.084 -0.003 0.016 

 CAWA 0.106 -0.097 0.157 0.069 0.084 

 VEER -0.070 -0.022 0.025 0.005 -0.008 

 LEFL 0.029 0.389 0.273 -0.152 -0.145 

GENERAL --- 0.012 -0.019 0.026 -0.025 -0.002 

 AMRE 0.238 -0.168 -0.115 0.033 0.024 

 NOPA -0.244 -0.076 0.134 0.147 -0.085 

 OVEN 0.012 0.006 0.013 -0.060 -0.032 

 WOTH -0.248 -0.317 0.067 0.049 0.006 

 

 

 

 

 

  

 



141 

 

Table 6. Statistical significance (indicated by bold type) of effective slope coefficients for the 2 temperature variables, mean 

temperature (MT) and SD temperature (SDT), on overall species richness (ALL), the 4 guild designations (NORTH, SOUTH, 

TRAILING, and GENERAL), and the 16 focal forest songbird species (see Table 1 for species codes) at low, mid, and high elevations 

(EL) in northern, central, and southern latitudes (LAT) within the Appalachian Mountains. 

  LAT EL ALL NORTH BLPW SWTH YBFL SOUTH HOWA WEWA ACFL 

MT North High -0.115 -0.148 0.209 0.078 -0.048 --- --- --- --- 
  Mid -0.005 0.023 0.943 -0.046 0.695 --- --- --- --- 
   Low 0.095 0.176 1.603 -0.158 1.364 --- --- --- --- 
 Central High -0.054 -0.067 1.497 -0.377 0.526 0.533 0.574 1.182 0.022 
  Mid -0.009 0.108 1.234 -0.550 0.206 0.415 0.449 0.893 -0.098 
   Low 0.024 0.237 1.040 -0.678 -0.030 0.327 0.357 0.679 -0.187 
 South High 0.213 --- --- --- --- 0.280 0.912 2.111 -0.125 
  Mid 0.122 --- --- --- --- -0.161 0.154 0.996 -0.334 

    Low 0.055 --- --- --- --- -0.484 -0.400 0.180 -0.487 

SDT North High 0.001 -0.076 -0.460 -0.221 -0.466 --- --- --- --- 
  Mid -0.039 -0.089 -0.930 -0.165 -0.830 --- --- --- --- 
   Low -0.076 -0.101 -1.353 -0.115 -1.158 --- --- --- --- 
 Central High 0.026 -0.047 1.010 -0.218 0.360 0.215 0.236 0.511 0.250 
  Mid 0.009 -0.085 0.260 -0.830 -0.309 0.079 0.107 0.496 0.022 
   Low -0.004 -0.113 -0.293 -1.281 -0.802 -0.021 0.011 0.486 -0.146 
 South High -0.044 --- --- --- --- -0.002 0.052 -0.176 -1.195 
  Mid -0.012 --- --- --- --- -0.013 -0.011 0.002 -0.462 

    Low 0.011 --- --- --- --- -0.020 -0.056 0.133 0.074 
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Table 6. Continued. 

  LAT EL TRAILING BLBW BTNW BTBW CAWA VEER LEFL GENERAL AMRE NOPA OVEN WOTH 

MT North High -0.047 0.063 -0.065 0.137 -0.324 1.009 1.471 0.209 0.322 0.761 0.338 0.045 
  Mid -0.011 -0.043 0.005 -0.009 -0.289 0.356 1.070 0.117 0.205 0.735 0.078 0.159 
   Low 0.022 -0.137 0.068 -0.140 -0.258 -0.232 0.709 0.035 0.099 0.712 -0.157 0.261 
 Central High -0.020 0.080 -0.210 0.301 0.123 0.620 0.710 0.319 0.570 0.357 0.764 0.535 
  Mid -0.048 -0.440 -0.111 -0.355 -0.019 0.252 -0.068 0.111 0.000 0.150 0.301 0.071 
   Low -0.069 -0.823 -0.039 -0.839 -0.123 -0.020 -0.641 -0.042 -0.421 -0.002 -0.040 -0.270 
 South High 0.151 0.729 -0.271 1.166 0.738 -0.795 0.528 0.498 1.409 0.420 1.110 1.981 
  Mid -0.015 -0.673 -0.113 -0.576 0.223 -0.571 -1.057 0.042 -0.124 -0.172 0.212 0.293 

    Low -0.136 -1.699 0.003 -1.851 -0.153 -0.406 -2.216 -0.292 -1.245 -0.604 -0.445 -0.942 

SDT North High -0.027 -0.223 -0.151 0.003 -0.126 1.549 0.053 0.068 0.008 0.556 0.115 -0.194 
  Mid -0.032 -0.188 -0.146 -0.008 -0.363 0.937 -0.052 0.000 -0.013 0.329 0.071 -0.308 
   Low -0.037 -0.156 -0.143 -0.018 -0.577 0.386 -0.147 -0.060 -0.033 0.125 0.031 -0.411 
 Central High 0.009 -0.043 0.035 0.058 0.182 0.997 0.121 0.121 0.303 0.294 0.156 -0.028 
  Mid -0.025 -0.250 -0.001 -0.140 0.082 0.458 -0.018 0.053 0.021 0.164 0.104 -0.094 
   Low -0.049 -0.403 -0.027 -0.286 0.008 0.061 -0.120 0.002 -0.187 0.069 0.065 -0.142 
 South High 0.076 0.535 0.220 0.414 -0.130 -0.092 0.112 0.085 0.922 -0.270 0.151 -0.135 
  Mid -0.018 -0.186 0.100 -0.180 0.057 -0.485 -0.099 0.013 0.087 -0.197 0.079 -0.101 

    Low -0.087 -0.714 0.012 -0.614 0.193 -0.773 -0.253 -0.039 -0.524 -0.143 0.026 -0.076 
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Table 7. Statistical significance (indicated by bold type) of effective slope coefficients for the 2 precipitation variables, current 

precipitation (CP) and previous precipitation (PP), and the temporal variable, year (YR), on overall species richness (ALL), the 4 guild 

designations (NORTH, SOUTH, TRAILING, and GENERAL), and the 16 focal forest songbird species (see Table 1 for species 

codes) at low, mid, and high elevations (EL) in northern, central, and southern latitudes (LAT) within the Appalachian Mountains. 

  LAT EL ALL NORTH BLPW SWTH YBFL SOUTH HOWA WEWA ACFL 

CP North High -0.008 -0.034 -0.027 0.045 0.199 --- --- --- --- 
  Mid 0.013 -0.028 -0.084 0.002 0.330 --- --- --- --- 
   Low 0.031 -0.023 -0.136 -0.036 0.449 --- --- --- --- 
 Central High -0.021 -0.033 -0.361 -0.346 -0.087 -0.133 -0.272 -0.250 -0.150 
  Mid -0.007 -0.038 -0.690 -0.565 -0.198 -0.070 -0.134 -0.218 -0.068 
   Low 0.003 -0.041 -0.932 -0.726 -0.279 -0.024 -0.032 -0.194 -0.007 
 South High 0.004 --- --- --- --- 0.012 0.131 -0.305 -0.413 
  Mid 0.005 --- --- --- --- -0.017 -0.004 -0.110 -0.182 

    Low 0.005 --- --- --- --- -0.039 -0.103 0.033 -0.012 

PP North High 0.040 0.043 -0.197 0.027 0.079 --- --- --- --- 
  Mid 0.033 0.012 -0.451 0.066 0.013 --- --- --- --- 
   Low 0.027 -0.016 -0.681 0.100 -0.045 --- --- --- --- 
 Central High -0.003 0.029 -0.089 0.113 -0.791 -0.059 -0.050 -0.264 -0.256 
  Mid -0.001 -0.005 0.655 0.136 -0.669 -0.018 0.004 -0.387 -0.143 
   Low 0.000 -0.029 1.204 0.154 -0.580 0.012 0.044 -0.477 -0.060 
 South High -0.050 --- --- --- --- -0.072 -0.453 -0.427 0.028 
  Mid -0.031 --- --- --- --- 0.019 -0.137 -0.216 0.047 

    Low -0.017 --- --- --- --- 0.085 0.094 -0.062 0.061 

YR North High 0.050 0.013 -0.196 0.035 -0.345 --- --- --- --- 
  Mid 0.018 -0.033 -0.401 0.021 -0.418 --- --- --- --- 
   Low -0.011 -0.074 -0.585 0.008 -0.484 --- --- --- --- 
 Central High 0.041 0.032 0.435 0.035 -0.382 -0.084 -0.307 -0.530 -0.328 
  Mid 0.022 0.004 0.245 0.084 -0.112 -0.111 -0.238 -0.398 -0.262 
   Low 0.008 -0.017 0.104 0.120 0.086 -0.131 -0.186 -0.300 -0.213 
 South High -0.020 --- --- --- --- -0.024 0.112 0.600 -0.063 
  Mid -0.012 --- --- --- --- 0.046 0.158 0.609 0.231 

    Low -0.006 --- --- --- --- 0.097 0.192 0.616 0.446 
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Table 7. Continued. 

  LAT EL TRAILING BLBW BTNW BTBW CAWA VEER LEFL GENERAL AMRE NOPA OVEN WOTH 

CP North High 0.022 0.054 0.081 0.055 -0.016 -0.130 0.102 -0.026 0.139 0.325 -0.086 0.111 
  Mid 0.023 0.035 0.074 0.053 -0.079 0.138 0.095 0.013 0.157 0.066 0.026 0.029 
   Low 0.023 0.017 0.068 0.052 -0.137 0.379 0.088 0.048 0.174 -0.168 0.128 -0.046 
 Central High 0.017 0.093 0.128 0.030 0.081 -0.367 0.018 -0.035 -0.141 0.350 -0.169 0.032 
  Mid 0.014 0.037 0.095 0.022 0.111 -0.199 0.016 -0.018 -0.038 0.189 -0.090 -0.015 
   Low 0.013 -0.005 0.070 0.015 0.133 -0.076 0.015 -0.005 0.037 0.070 -0.032 -0.049 
 South High 0.019 0.163 0.196 0.028 -0.098 -0.048 -0.049 0.039 -0.438 -0.079 -0.040 -0.166 
  Mid 0.011 0.027 0.107 0.004 0.130 -0.089 -0.039 0.011 -0.156 -0.038 -0.031 -0.137 

    Low 0.005 -0.072 0.042 -0.014 0.297 -0.118 -0.032 -0.009 0.050 -0.007 -0.024 -0.116 

PP North High 0.033 -0.007 0.054 0.090 0.135 0.005 -0.245 0.008 0.171 -0.043 0.012 -0.195 
  Mid 0.028 -0.003 0.037 0.112 0.026 0.124 -0.176 0.033 0.185 0.138 0.120 -0.135 
   Low 0.022 0.000 0.022 0.131 -0.072 0.232 -0.115 0.054 0.197 0.301 0.218 -0.081 
 Central High 0.012 0.041 -0.045 0.025 0.188 -0.258 -0.112 -0.056 -0.073 -0.224 -0.225 -0.231 
  Mid 0.010 0.093 -0.048 0.098 0.168 -0.347 -0.004 -0.017 0.003 -0.074 -0.096 -0.110 
   Low 0.008 0.132 -0.050 0.151 0.153 -0.412 0.076 0.011 0.059 0.037 -0.001 -0.021 
 South High -0.013 -0.015 -0.145 -0.083 -0.053 0.089 -0.035 -0.096 -0.314 -0.088 -0.290 -0.300 
  Mid -0.008 0.141 -0.119 0.098 0.113 -0.442 0.159 -0.025 -0.106 0.001 -0.114 -0.048 

    Low -0.004 0.255 -0.101 0.231 0.234 -0.830 0.300 0.027 0.047 0.065 0.014 0.136 

YR North High 0.016 0.086 -0.074 0.052 0.099 1.491 -0.370 0.025 -0.671 -0.700 0.228 -1.039 

  Mid 0.032 0.089 -0.035 0.051 -0.131 1.105 -0.236 0.017 -0.808 -0.251 0.205 -0.575 

   Low 0.048 0.092 0.001 0.051 -0.339 0.757 -0.116 0.010 -0.932 0.154 0.185 -0.158 

 Central High 0.014 -0.032 0.010 0.021 0.243 0.804 -0.084 -0.005 -0.493 -0.549 0.155 -0.700 

  Mid 0.043 0.130 0.069 0.073 0.045 0.162 0.011 0.007 -0.241 -0.246 0.139 -0.379 

   Low 0.065 0.249 0.112 0.112 -0.100 -0.312 0.081 0.016 -0.056 -0.023 0.127 -0.142 

 South High 0.007 -0.384 0.064 -0.095 0.028 0.464 0.291 -0.066 -1.232 0.269 0.078 0.233 

  Mid 0.064 0.115 0.166 0.071 -0.102 -0.729 0.306 -0.012 -0.156 0.268 0.075 0.261 

    Low 0.105 0.480 0.240 0.193 -0.198 -1.602 0.317 0.028 0.631 0.267 0.072 0.282 
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FIGURES 

 

Figure 1. Location and extent of the 3 study regions in the Appalachian Mountains (shaded in 

gray): Hubbard Brook Experimental Forest (EF) in the White Mountains of New Hampshire (i.e., 

Northern Appalachians); Monongahela National Forest (NF) in the Allegheny Mountains of 

West Virginia (i.e., Central Appalachians); and Pisgah and Nantahala National Forests (NF) in 

the Blue Ridge Mountains of North Carolina (i.e., Southern Appalachians).  
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Figure 2. Locations and elevations (m) of the 373 sampling points in the Hubbard Brook 

Experimental Forest (i.e., Northern Appalachians study region); 1,149 sampling points in the 

Monongahela National Forest (i.e., Central Appalachians study region); and 211 sampling points 

in the Pisgah and Nantahala National Forests (i.e., Southern Appalachians study region). 
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Figure 3. Whisker plots for overall species richness and guild richness (see Appendix B1 for guild designations and associated forest 

songbird species), displaying the slope coefficients of the predictor variables (i.e., site covariates), which consisted of year (YR), 

latitude (LAT), elevation (EL), mean breeding season (i.e., 15 May to 30 June) temperature during the year of data collection (MT), 

standard deviation of breeding season temperature (SDT), total breeding season precipitation during the year of data collection (CP), 

total breeding season precipitation during the previous year (PP), dominant forest type within 50 m as deciduous forest (DFT), and 

proportion of any type of forest cover within 1 km (PF). Points are located at the mean values for the posterior distributions and the 



150 

 

corresponding whiskers encompass the 95% credible intervals. Black points with closed circles and black whiskers indicate statistical 

significance (i.e., credible intervals do not overlap 0). 
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Figure 4. Whisker plots for each focal species (Table 1), displaying the slope coefficients of the predictor variables (i.e., site 

covariates), which consisted of year (YR), latitude (LAT), elevation (EL), mean breeding season (i.e., 15 May to 30 June) temperature 

during the year of data collection (MT), standard deviation of breeding season temperature (SDT), total breeding season precipitation 

during the year of data collection (CP), and total breeding season precipitation during the previous year (PP), aspect (ASP), 

topographic position index (TPI), dominant forest type within 50 m as deciduous forest (DFT), proportion of any type of forest cover 

within 1 km (PF),. Points are located at the mean values for the posterior distributions and the corresponding whiskers encompass the 

95% credible intervals. Black points with closed circles and black whiskers indicate statistical significance (i.e., credible intervals do 

not overlap 0). Color of the 4-letter species code indicates its guild designation (dark blue = north guild, red = south guild, light blue = 

trailing guild, orange = general guild), and the bird silhouette indicates its taxonomic family (warbler, thrush, or flycatcher). 
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Figure 5. Relationships between (A) mean temperature (°C) or (B) SD temperature (°C) and 

mean expected number of species (solid line) belonging to the north guild (dark blue), trailing 

guild (light blue), and south guild (red), with 95% credible intervals (shading), at low, mid, and 

high elevations in the Northern, Central, and Southern Appalachians. The low, mid, and high 

elevation plots correspond respectively to the 15th, 50th, and 85th percentiles of the elevation data 
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across all sampling points within the Hubbard Brook Experimental Forest (EF) (Northern 

Appalachians; low = 461.4 m, mid = 609.1 m, high = 773.1 m), Monongahela National Forest 

(NF) (Central Appalachians; low = 706.7 m, mid = 927.3 m, high = 1226.4 m), or the 2 North 

Carolina National Forests (NF) (Southern Appalachians; low = 546.4 m, mid = 977.4 m, high = 

1566.3 m). 
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CHAPTER 3 

Comparison of avian guild richness, species abundance, and nest success in  

actively harvested and minimally harvested forested landscapes 

 

INTRODUCTION 

Long-term changes in bird populations 

Prevailing evidence suggests that forest songbird populations in eastern North America 

have been decreasing in abundance during the past century. Long-term data from annual, 

nationwide breeding bird surveys indicate that numerous bird species, many of which breed in 

forests (Robbins et al. 1989), have experienced decreases in their populations throughout the 

eastern United States since 1966 (Sauer et al. 2020). Additionally, a recent quantitative study 

using data from multiple and independent monitoring networks demonstrated bird population 

losses across much of North America since 1970, including a negative change within the range 

of -15.6% to -19.2% in birds breeding in eastern forests, with 63.5% of those species in decline 

(Rosenberg et al. 2019). The U.S. Fish & Wildlife Service considers a statistically significant (p 

≤ 0.1) population trend of -15% to -50% during this time period to be a “possible large decrease” 

and has identified 12 songbird species that breed in forests of eastern North America as “birds of 

conservation concern” (U.S. Fish & Wildlife Service 2021). Without targeted conservation 

action, there is concern that consistent declines in these and other bird populations will continue, 

with the potential for species to become endangered or even become extirpated (i.e., locally or 

regionally extinct) (Rosenberg et al. 2019). 

In the Central Appalachian region of the eastern United States, forest management may 

contribute to or ameliorate these declines over time, with tradeoffs associated with different 

forest bird guilds. Bird species that breed in early-successional forest habitat, such as chestnut-

sided warblers (Setophaga pensylvanica), eastern towhees (Pipilo erythrophthalmus), and 

yellow-breasted chats (Icteria virens), are strongly associated with herbaceous or shrubby areas 

in the stand initiation / stand establishment or regeneration phase, with low canopy basal area 

(Sheehan et al. 2014). In contrast, bird species that breed in mature forest habitat, such as blue-

headed vireos (Vireo solitarius), ovenbirds (Seiurus aurocapilla), and wood thrushes (Hylocichla 

mustelina), are associated with late-successional stands in the canopy transition or old-growth / 

gap dynamics stages, with high canopy basal area (Sheehan et al. 2014). However, a subset of 

songbirds that breed in mature forest will shift their habitat use to early-successional areas, 

including regenerating clear-cuts (Vitz and Rodewald 2006, McDermott and Wood 2010, Streby 

et al. 2011, Major and Desrochers 2012, Stoleson 2013) during the post-breeding period (i.e., 

after nesting but before migration) (Pagen et al. 2000, Bowen et al. 2007, Chandler et al. 2012). 

Thus, there are differential benefits to early-successional vs. mature forest birds when forest 

management actions such as timber harvest alter the composition and configuration of forested 

landscapes. Here, landscape composition refers to amount of different habitat patch types 

without regard to spatial attributes (e.g., proportions of individual habitat types), whereas 

landscape configuration refers to spatial characteristics of individual habitat patches, requiring 
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spatial information and usually aggregated across patches (e.g., mean patch size, patch density, 

edge density). 

Historically, changes in forested landscapes of the eastern United States over hundreds of 

years have comprised a loss of old-growth forests followed more recently by a decrease in age-

class diversity and structural complexity within second-growth forests (e.g., Schulte et al. 2007) 

and loss of early-successional habitats dominated by grass, shrubs, or young trees (Askins 2001, 

Trani et al. 2001). Concomitantly, there were severe and widespread population declines in 

shrubland-dependent species, some of which are currently species of conservation concern 

(Litvaitis 1993, Hunter et al. 2001, DeGraaf and Yamasaki 2003, Litvaitis et al. 2021), with the 

removal of early-successional habitat from the landscape thought to be the primary reason 

driving those negative trends (Kelley et al. 2008, King and Schlossberg 2014). Thus, optimizing 

diversity across forest-associated bird guilds during the breeding and post-breeding seasons 

likely calls for a landscape mosaic approach that incorporates a variety of forest age classes or 

successional stages (Loehle et al. 2005, Mitchell et al. 2008). Such landscapes can be produced 

by active forest management involving timber harvest. 

Timber harvest as a forest management tool for bird conservation 

Timber harvest can be used as a landscape-level forest management tool by increasing 

the variation in composition and configuration of forested landscapes. For instance, harvesting 

forests can create smaller, distinct patches that are more fragmented and less connected (Boucher 

et al. 2015). These forests also contain more edge area and are subjected to more frequent and 

more severe uniformly sized disturbance from periodic, repeated timber harvest regimes. Within 

stands, even-aged silvicultural systems (e.g., clear-cuts) can create homogenous vertical and 

horizontal structure (Kuuluvainen et al. 1996), but at a landscape scale, timber rotation length 

can change the age-class distribution of forests, increasing the proportions of early-successional 

or young forest (Hejl et al. 1995). In contrast, non-harvested forested landscapes (i.e., no timber 

harvest within >80 years) are usually characterized by occasional large-scale disturbances and 

frequent small-scale disturbances, which allow for a finer-grained mosaic of different 

successional phases (Bengtsson et al. 2000). Thus, landscape-scale structural heterogeneity is 

generally higher in harvested forests managed in an even-aged system whereas within-stand 

structural heterogeneity might be higher in non-harvested landscapes (Dettki and Esseen 1998), 

particularly those subject to historic natural disturbance regimes (e.g., fire). However, century-

long fire suppression tactics have reduced the amount of large-scale natural disturbances in 

forests of eastern North America, contributing to an increase in homogenous forest conditions 

over large scales. In the absence of natural disturbance regimes, timber harvest may be the most 

feasible source of anthropogenic disturbance for land managers to diversify forest structure. 

Timber harvests can increase the availability of early-successional forest habitat, which 

leads to increased abundance and densities of early-successional and generalist bird species in 

those areas (King and Degraaf 2000, Duguay et al. 2001, McDermott and Wood 2009). 

Similarly, higher proportions of early-successional habitats in harvested landscapes can also 

result in significantly higher abundances of early-successional and generalist bird species in 

those landscapes (Drapeau et al. 2000). Timber harvests can also increase fragmentation, edge 

density, and canopy openings within a forest stand or landscape, which could lead to increased 

abundance of edge-associated species, such as indigo buntings, and gap-dependent species, such 
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as hooded warblers (Greenberg and Lanham 2001). On the other hand, large-scale timber harvest 

operations may negatively affect mature forest birds that require intact forest-interior / core 

forest habitat or late-successional (i.e., >80 years old) forest (Lichstein et al. 2002). Forest-

interior species are more abundant in mature forest than clearcuts (King and Degraaf 2000, 

Sheehan et al. 2014) and in landscapes with higher amounts of late-successional forest in the 

landscape (Lichstein et al. 2002). Thus, abundance of forest-interior and forest gap species can 

decrease after reaching specific thresholds in timber harvest within forested landscapes (Becker 

et al. 2011). Small openings may not necessarily adversely affect mature forest birds (e.g., 

Greenberg and Lanham 2001), but a study of the breeding bird community in a Vermont 

hardwood forest found that 0.4-ha clearcuts resulted in the movement of several forest-interior 

species away from the harvested areas and subsequently decreased abundance in and adjacent to 

clearcuts (Germaine et al. 1997). 

In addition to species abundance, it is critical to consider long-term bird population 

dynamics because abundance and density metrics alone can be poor indicators of habitat quality 

(Van Horne 1983, Vickery et al. 1992, Hagan et al. 1996). Reproductive success of avian species 

in forested landscapes can be affected by timber harvest due to changes in habitat composition 

and configuration. For example, nest success of wood thrush in the Monongahela National Forest 

in West Virginia was found to be positively related to mean shape indices and mean patch fractal 

dimension of mature forest (both indicative of higher complexity of mature forest patch shapes) 

and negatively related to an interspersion-juxtaposition index (i.e., measure of the relative 

interspersion of mature forest patches) and proportion of open habitat (Williams 2002). 

Composition within forested landscapes further influences avian nesting success by altering 

interactions between nest predators and nesting birds (Rodewald and Yahner 2001, Rodewald et 

al. 2001). However, recent studies of nest success within Central Appalachian forests have found 

little overall effect of various harvest types on productivity (Duguay et al. 2001, Becker et al. 

2011, 2012), perhaps because habitat features related to nest survival are spatially variable 

(Boves et al. 2013a, b). 

Avian population and community processes operate across a broad scale (Bennett et al. 

2004), and habitat-associated guilds are thought to respond differently to landscape-scale harvest 

intensity. Patterns of bird species composition and diversity are related to landscape composition, 

such as proportions of forest types and ages (Drapeau et al. 2000, Carrara et al. 2015), and 

landscape configuration, such as patch sizes and edge density. In general, greater landscape age 

heterogeneity produced by higher levels of timber harvest intensity is associated with greater 

overall species richness (Loehle et al. 2005, Mitchell et al. 2008). Furthermore, landscape 

changes due to timber harvest can ultimately result in shifts in avian community composition and 

diversity (Parody et al. 2001, Anderson and Crompton 2002), as conversion of guild-specific 

preferred habitat to less suitable habitat can lead to reductions in guild richness (Aratrakorn et al. 

2006, Zurita et al. 2006) and increased edge habitat can result in increases in generalist richness 

but decreases in specialist species richness (Jones et al. 2000). In summary, landscape-scale 

harvest intensity may differentially affect forest bird assemblages. 

Knowledge gap 

Forest managers often aim to balance or combine the economic benefits of timber harvest 

with the maintenance of wildlife habitat, biodiversity, and ecosystem function. Forest songbirds 
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exhibit varying responses to timber harvest, which can alter forest composition, configuration, 

and connectivity on a landscape scale (e.g., Spies et al. 1994). Thus, timber harvest can be 

potentially used as a landscape-level management tool to promote both early-successional and 

mature forest songbird populations and diversity (Petit et al. 1995). However, we have an 

incomplete understanding of how birds respond over time to landscape-scale harvest intensity. 

Many studies on this topic are traditionally focused on single harvest types or single harvesting 

events; examine avian responses at control and harvested sites on limited spatial scales; or tend 

to be short-term (i.e., lasting 1–3 years) and focused on immediate impacts that may not reflect 

the full temporal response to the management practices under study (Sallabanks et al. 2000, 

Loehle et al. 2005). By quantifying long-term, landscape-level trends in avian responses to active 

forest management using multiple harvesting methods and harvesting events (e.g., Perry et al. 

2018, Kellner et al. 2019), we can guide management decisions and make recommendations to 

provide lasting benefits to forest bird species. Thus, it would be valuable to investigate the 

response of bird communities and populations through time in forested landscapes with varying 

levels of timber harvest intensity, particularly within the Central Appalachian region. 

Purpose, objectives, and hypotheses 

The purpose of this study was to quantify long-term avian responses to landscape-scale 

forest management and compare changes over time in avian diversity, abundance, and population 

dynamics from 2 Central Appalachian forested landscapes that varied in timber harvest intensity. 

My specific objectives were to examine the influence and effect of interactions between time and 

landscape-scale timber harvest intensity on breeding season songbird guild richness, focal 

species abundance, and focal species nest success. I focused on 2 landscapes with diverging 

forest management prescriptions: (1) an actively harvested landscape with >60% of its area 

experiencing diameter-limit harvest, two-age harvest, or clear-cutting, where timber harvest 

operations began in 1994 and continued throughout the study period, and (2) a minimally 

harvested landscape with <1% of its area experiencing two-age harvest or clear-cutting, where 

timber harvest operations were conducted approximately 10–15 years prior to the study period 

but not during the study period. 

In this study, I tested the hypothesis that long-term temporal trends in forest songbird 

communities and populations during the breeding season are mediated by landscape-level forest 

management. I predicted that trends over time in diversity, abundance, and nest success would 

vary by guild designation and landscape (i.e., level of timber harvest intensity). For example, in 

the actively harvested landscape, I expected that early-successional / edge-associated species 

would respond positively over time, whereas forest-interior species and forest-gap species would 

respond negatively over time, due to the loss of mature forest and creation of early-successional 

habitat. In contrast, in the minimally harvested landscape, I expected little to no change over time 

for most species, with the possibility of early-successional / edge-associated species declining 

due to general forest maturation. Taking a holistic approach, I assessed the statistical significance 

and effect sizes of interactions between time and landscape-scale timber harvest intensity for 

overall species richness, the number of species belonging to 4 habitat guild designations, the 

abundance of 15 focal songbird species, and the nest success of 6 focal songbird species (Table 

1). 
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METHODS 

Study area 

Sampling points and nest search plots for this study were spread throughout 2 study areas 

within the Central Appalachian region (Figures 1–3). I used data from a total of 1,186 sampling 

points and 50 nest search plots (Figures 2–3), consisting of 166 sampling points and 20 nest 

search plots in the actively harvested MeadWestvaco Wildlife and Ecosystem Research Forest 

(WERF), which is located in Randolph County, West Virginia, and 1020 sampling points and 30 

nest search plots in the minimally harvested Monongahela National Forest (MNF), which 

encompasses portions of 9 counties (Preston, Tucker, Grant, Randolph, Pendleton, Pocahontas, 

Webster, Nicholas, and Greenbrier) in eastern West Virginia. All sampling points used in this 

study were located in forest stands that experienced varying levels and types of recent or ongoing 

timber harvest (ranging from no harvest to clear-cutting), and distances between sampling points 

were at least 200 m. 

Research in the actively harvested WERF was conducted from 1996–1998 (Weakland 

2000), 2001–2003 (Dellinger 2005), and 2007–2009 (Becker 2010). The WERF encompasses 

3,080 ha and was established in 1994 by the Westvaco Corporation to study the effects of 

industrial forest management practices on ecosystem processes and wildlife within a primarily 

70–90 years-old even-aged mature forest. Located within the Central Appalachians (Allegheny 

Mountains) physiographic province, regional topography within the WERF consists of narrow 

valleys with small, high-gradient streams and broad ridges oriented south-southwest to north-

northeast (Becker et al. 2011). Annual average precipitation is >160 cm per year (Strausbaugh 

and Core 1977), and elevation ranges 734–1,180 m. Vegetation communities in the WERF are 

variable across that elevational gradient. At high elevations (>1,000 m), red spruce (Picea 

rubens) and eastern hemlock (Tsuga canadensis) dominate. At mid-elevations (850–1,000 m), 

northern hardwoods such as red maple (Acer rubrum), American beech (Fagus grandifolia), and 

black cherry (Prunus serotina) are most prevalent. Meanwhile, low-elevation sites (<850 m) 

consist of cove hardwood and mixed mesophytic plant communities (northern red oak [Quercus 

rubra], black birch [Betula lenta], and tulip-poplar [Liriodendron tulipifera]) and xeric oak-

hickory communities (black oak [Quercus velutina], scarlet oak [Q. coccinea], and hickory 

[Carya spp.]). Non-forest cover in the study area was limited to grassy cover along road edges, 

gas well openings, and log landings. 

Research in the minimally harvested MNF was conducted from 1993–1994 (Nichols 

1996), 1995–1996 (Duguay 1997), 1996–1997 (DeMeo 1999), 1998–2000 (Williams 2002), and 

2001–2009. The MNF was placed under federal protection in 1920 and encompasses nearly 

688,000 ha, of which 54% (371,906 ha) is owned and overseen by the USDA Forest Service. The 

MNF stretches across a latitudinal range of nearly 200 km and lies within 2 physiographic 

provinces, the Central Appalachians (Allegheny Mountains) and the Ridge and Valley. The 

eastern section of the Monongahela National Forest, which overlaps the Ridge and Valley 

physiographic province, lies in the rain shadow of the Allegheny Mountains, so it receives 

significantly less precipitation (~75 cm/year) compared to the rest of the forest, which 

experiences 115–150 cm/year (Clarkson 1966). Elevation within the MNF ranges 275–1,480 m. 

In terms of forest composition, the MNF was comprised primarily of 70–100 years-old stands at 

the start of the study period, with high regional tree diversity and 4 major forest zones (mixed 
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mesophytic, northern hardwoods, red spruce, and dry oaks) (McCay et al. 1997, DeMeo 1999). 

Mixed mesophytic forests are present at low elevations (<900 m), with northern red oak, sugar 

maple (Acer saccharum), hickory, and tulip-poplar as the dominant species (Madarish et al. 

2002). At increasing elevations, there is a transition in stand dominance to northern hardwoods, 

including American beech, sugar maple, and black cherry (Prunus serotina) (Stephenson 1993). 

At the highest elevations (>1,150 m), remnant boreal forest ecosystems consist of red spruce. In 

the eastern MNF, dry oaks are common in the Ridge and Valley area, consisting of white (Q. 

alba), chestnut (Q. prinus), scarlet, and black oaks, as well as pines (Pinus spp.).  

Harvest history 

During its establishment in 1994, the WERF was comprised of secondary forests that 

were established by natural regeneration following large-scale logging from 1916–1928 (Keyser 

and Ford 2005). Timber had been sporadically thinned and harvested since the 1930s, resulting 

in numerous logging roads and skidder trails transecting the forest. Since its initial establishment, 

much of the WERF had been actively managed using even-aged timber harvesting through clear-

cuts, shelterwood cuts, and uneven-age or partial harvesting via single-tree selection and high-

grade harvests of mature sawtimber (Dellinger et al. 2007). Prior to 1997, several timber harvests 

had been conducted, including diameter-limit harvests, two-age harvests, and regeneration (seed-

tree) harvests, but the majority of the WERF remained mature deciduous or mixed forest (Figure 

4). From 1997–1998, additional forest stands were harvested using a variety of methods (e.g., 

diameter-limit harvests, two-age harvests, regeneration harvests, clear-cuts). More stands were 

harvested throughout the years, and nearly 50% of the WERF had recently experienced some 

type of harvest by 2003 (Figure 4). In 2007, management shifted to primarily uneven-aged 

techniques, and by 2009, at least 60% of the WERF had been recently harvested to some degree 

(Figure 4). Thus, the WERF served as an actively harvested landscape for this study. 

The MNF is comprised of mature, second-growth Appalachian hardwood forests. A 

timber harvest rotation of 100–120 years applies to most areas of the MNF not designated as 

Wilderness Areas. From the 1940s to the 1960s, timber harvest on the MNF was almost 

exclusively uneven-aged management, but the use of clearcut harvesting increased on the MNF 

in the 1960s and 1970s (Miller 2014). However, the vast majority of the MNF had not been 

harvested nor majorly disturbed within the 50 years prior to the study period. Therefore, most of 

the sampling points within the MNF were located in relatively intact areas with high (>60%) 

core area (DeMeo 1999). A small subset of the sampling points was in forest stands in the Cheat 

and Greenbrier Ranger Districts of the MNF that had experienced two-age harvest or clear-

cutting between 1979 and 1986 for a study on the effects of two-age harvests (Miller et al. 2006). 

However, the area of the harvested stands accounted for <1% of the total area of public lands in 

the MNF. Thus, the MNF served as a minimally harvested landscape for this study. 

Guild designations 

To compare temporal trends for overall species richness and guild richness in the actively 

harvested landscape and the minimally harvested landscape, I considered a subset of the 114 

total avian species that were detected across all surveys in all years from the 2 study areas. 

Specifically, I limited the richness analyses to 62 passerine and near-passerine species (see 

Appendix C1 for full list) with breeding ranges that encompassed the 2 study areas and that had 
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≥10 detections. I also excluded wetland-associated songbirds (e.g., red-winged blackbirds 

[Agelaius phoeniceus]) because they were incidental to the focal habitat types, as well as corvids 

(family Corvidae) and waterthrushes (Parkesia spp.) because they are not well-sampled with 

breeding songbird point count surveys. 

Habitat-related guild designations for the 62 songbird species were assigned based on 

breeding habitat and comprised 4 categories (Appendix C1): (1) early-successional / edge-

associated (i.e., primarily breed or found in grasslands, shrub/scrub, or young forest; or along 

forest edges, such as the interface of early-successional and mature forest); (2) forest-interior 

(i.e., generally breed or found in the core area of mature forest); (3) forest-gap (i.e., generally 

breed or found in or near small forest gaps within the core area of mature forest); and (4) forest 

generalist (i.e., associated with forest but no strong preference for early-successional vs. mature 

forest). 

Focal species 

To compare temporal trends in focal species abundance in the actively harvested 

landscape and the minimally harvested landscape, I selected a total of 15 songbird species across 

the 4 guild designations (Table 1): 4 early-successional / edge-associated species, 4 forest-

interior species, 4 forest-gap species, and 3 forest generalist species. Species selection was based 

on overall relative frequency (i.e., throughout the study period); for each guild designation, I 

included the 3 species with the highest relative frequency. For the early-successional / edge-

associated guild, forest-interior guild, and forest-gap guild, I additionally included a species of 

regional conservation concern with the highest relative frequency. 

To assess temporal trends in focal species nest success in the actively harvested 

landscape and the minimally harvested landscape, I selected 6 species from the 15 songbird 

species listed above as focal species for abundance analyses (Table 1): 2 early-successional / 

edge-associated species, 3 forest-interior species, and 1 forest-gap species. Species selection was 

based on total sample size from throughout the study period; these were the 6 species that had 

sample sizes of at least 70 total nests across the 2 study areas and a minimum of 15 nests from 

each study area. 

Bird count data 

Avian point count survey data for the 2 study areas were collected in 1996–1998, 2001–

2003, and 2007–2009 at 166 WERF sampling points and in 1996–2009 at 1,020 MNF sampling 

points. In the WERF, point count surveys were conducted within a 50-m fixed radius at locations 

selected systematically from available points on a 241 × 241 m forest inventory grid (Figure 2) 

established in 1995 by Westvaco Forest Resources (prior to extensive timber harvesting). An 

average of 110 points were surveyed each year, and locations were mostly consistent across time 

periods. In the MNF, point count surveys were conducted along 109 extensive linear transects 

(up to 2,500 m in length) with 10–12 sampling points per transect (Figure 3). Of the 109 total 

transects, at least 44 transects were oriented at right angles to contours to capture maximum 

variation in elevation and landforms. 
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 Avian point count surveys were not completed every year at every sampling point. The 

number of years of data associated with each sampling point ranged 2–9 years (mean = 5.9 ± 2.5 

years) in the WERF and 1–12 years (mean = 4.0 ± 2.8 years) in the MNF. Within a year that 

avian point count survey data were collected, the number of repeated visits (i.e., replicate 

surveys) ranged from 1–3 visits (mean = 2.0 ± 0.2 visits) in the WERF and 1–4 visits (mean = 

1.3 ± 0.5 visits) in MNF. I included all replicate surveys per sampling point per year in my data 

analyses, for a total of 14,504 replicate surveys across 4,999 site × year combinations. 

At both study areas, avian point count surveys were conducted from mid-May to early 

July (i.e., during the bird breeding season) and consisted of 10-minute stationary counts, during 

which a single observer recorded all individuals heard or seen. Up to 4 detection covariates were 

recorded for each survey: date, start time, wind code, and sky code. While date was recorded for 

all surveys, a subset of surveys was missing start times (68% of MNF data), wind codes (73% of 

MNF data), or sky codes (73% of MNF data). However, all surveys began within 30 minutes of 

sunrise and continued until approximately 4 hours after sunrise, and no surveys were conducted 

on days with rain, heavy fog, or high wind speed, following the guidelines of Ralph et al. (1993). 

The 10-minute point count survey was divided into 2 time intervals (i.e., within-survey 

replicates): 0–5 minutes and >5–10 minutes. Individual birds were only recorded the first time 

they were observed, following removal sampling methods. For each record, observers indicated 

the corresponding time interval and distance band (≤50 m or >50 m). To limit detection 

variability due to distance, I restricted all data analyses to birds detected within 50 m. 

Nest success data 

Avian nest monitoring survey data were collected at the 2 study areas from 1996–1998, 

2001–2003, and 2007–2009 from 20 WERF nest search plots and from 1993–1999 at 30 MNF 

nest search plots (Figures 2–3). Throughout the breeding season, field technicians looked for 

active nests within the nest search plots. Nests that were located through both systematic 

searching efforts and opportunistic observations were then monitored from mid-May until mid-

July. During the monitoring period, field technicians checked each nest a minimum of every 3–4 

days until the nesting attempt was complete and identified as either successful or failed. From the 

nest monitoring records, I used the following data for each nest location: bird species, success or 

failure during the incubation period, and success or failure during the brooding period. 

Nest search plots varied in size and location among sampling years and between study 

areas (Figures 2–3). In the WERF, there were 8 45-ha nest search plots during 1996–1998 and 12 

20-ha nest search plots during 2001–2003 and 2007–2009. The nest search plots were distributed 

randomly throughout 3 elevational blocks and encompassed either non-harvested areas with 

intact, predominantly mature hardwood forest, lightly harvested areas that retained closed 

canopy conditions, or heavily harvested areas with early-successional vegetation. Due to harvest 

activity, 4 nest search plots had to be shifted slightly for the 2007–2009 nest monitoring seasons 

(Figure 2). In the MNF, 31 stands were intensively searched for nests during 1993–1998 

(Duguay et al. 2001), with search effort distributed relatively evenly between stands. From 1996 

to 1999, nest searches occurred within 40-ha (200-m wide × 2,000-m long, oriented 

perpendicular to prevailing slopes) plots that were established along 2 transects in each of 5 

2,500-ha study areas that were randomly located within the mixed mesophytic vegetation zone of 
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the MNF; the study areas ranged from 42–81% in core forest area (DeMeo 1999). Nest searching 

protocols followed the methodology of the national BBird program of nest search plot 

monitoring (Conway and Martin 2000). In 1998 and 1999, additional nests (outside the 

established nest search plots) in the northwestern region of the MNF (within Tucker and 

Randolph counties) were located through behavioral cues and systematic searches of likely 

nesting habitat (Williams 2002).  

My objective was to compare temporal trends in nest success between the actively 

harvested landscape and the minimally harvested landscape, but the time periods of nest 

monitoring at the 2 study areas did not fully overlap (WERF: 1996–1998, 2001–2003, and 2007–

2009 vs. MNF: 1993–1999). Therefore, I made the following assumptions: (1) trends from MNF 

data collected from 1993 to 1999 were representative of long-term trends; and (2) there were no 

outside, unconsidered systemic confounding factors (e.g., stochastic weather extremes, climate 

change, invasive species introduction) influencing trends from WERF data collected after 1999. 

Environmental data 

The full set of site covariates for the guild richness analyses and focal species abundance 

analyses included year of data collection, landscape-scale harvest intensity, an interaction 

between year and landscape-scale harvest intensity, and 15 environmental variables that were 

included to account for their known effects (Table 2). Landscape-scale harvest intensity was a 

dummy variable where 1 = actively harvested landscape (i.e., WERF) and 0 = minimally 

harvested landscape (i.e., MNF). The first 3 controlling environmental variables were 

topographical factors: elevation, aspect, and topographical position index (TPI). Mean elevation, 

mode aspect, and mode TPI within 50 m of each sampling point were calculated or derived using 

Shuttle Radar Topography Mission digital elevation data, which had a resolution of ~20–25 m. 

The next controlling environmental variable was stand age. To calculate mode stand age within 

50 m of each sampling point, I used GIS datasets from the WERF and from the MNF that 

mapped forest stands in each study area and provided stand-scale attribute information. 

The 11 remaining controlling environmental variables involved land cover classifications 

and were determined using the National Land Cover Database (NLCD) (Jin et al. 2019), which 

had a resolution of 30 m and was available for the years 2001, 2004, 2006, and 2008. All 

calculations were made using land cover data from the closest year available (i.e., I used the 

2001 NLCD data for surveys conducted in 2002 or earlier, 2004 NLCD data for surveys 

conducted in 2003 or 2004, 2006 NLCD data for surveys conducted in 2005–2007, and 2008 

NLCD data for surveys conducted in 2008 or 2009). Note that the years 2005 and 2007 were 

equally close to 2004 vs. 2006 and 2006 vs. 2008, respectively; I chose to use the 2006 NLCD 

data for both 2005 and 2007 because that was when on-the-ground conditions were originally 

measured. To account for breeding songbird habitat type, I calculated the proportions of all forest 

(i.e., any type of mature forest) and of shrub cover within 50 of each sampling point. Mature 

forest cover was defined as areas dominated by trees generally >5 m tall and >20% of total 

vegetation cover, and shrub cover was defined as areas dominated by shrubs (i.e., <5 m tall with 

shrub canopy typically >20% of total vegetation) and included true shrubs and young trees in an 

early successional stage. To account for forest type, I calculated the proportions of deciduous 

forest and of conifer forest within 50 m of each sampling point. The proportion of mixed forest 

was strongly correlated (r > 0.7) with the proportion of deciduous forest, so it was not used in the 
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data analyses. To account for landscape composition, I included the proportion of all forest and 

of shrub cover within 1 km of the sampling point, and to account for landscape configuration, I 

included landscape patch richness (i.e., number of patch types), mean number of core forest 

patches, forest patch density (i.e., number of forest patches per 100 ha), open habitat patch 

density (i.e., number of open habitat patches per 100 ha), and total forest edge (sum of all edges 

of forest patches) within 1 km of the sampling point. I calculated the 5 landscape configuration 

metrics with the “landscapemetrics” package (Hesselbarth 2023) in Program R (R Core Team 

2022), using 4 patch types (Figure 5): mature forest (comprising deciduous, mixed, and 

coniferous forest), open habitat (representing early-successional habitat and comprising shrubs, 

grasslands, and hay / pasture), water, and other non-habitat cover (comprising developed land, 

barren land, and cropland). 

Data analysis 

Determining overall species and guild richness from a hierarchical community model 

To calculate overall species richness and guild richness at each sampling point in each 

year sampled, I estimated the individual species occupancy of the 62 passerine and near-

passerine species (Appendix C1) simultaneously in a hierarchical community model (see 

Appendix C2 for JAGS code) and then derived the corresponding sums for all species and each 

guild designation (Zipkin et al. 2010). The hierarchical community model facilitated a multi-

species approach to estimating individual species occurrence probabilities (Dorazio and Royle 

2005, Dorazio et al. 2006). Following the modeling framework of Zipkin et al. (2010), species-

specific occurrence processes within the hierarchical community model were related to one 

another through a community-level hierarchical component, which assumed that each of the 

species parameters were random effects, governed by “hyper-parameters” (i.e., drawn from a 

community-level distribution). Linking individual species occurrence probabilities through this 

community-level hierarchical component leads to improved precision of species-specific 

estimates (Kéry and Royle 2008, Zipkin et al. 2009). 

Occurrence Zs,y,sp was defined as a binary variable in which Zs,y,sp = 1 if species sp 

occurred within 50 m of sampling point s in year y. The occurrence state was assumed to be the 

outcome of a Bernoulli random variable, denoted by: 

Zs,y,sp ~ Bernoulli(Ψs,y,sp) 

where Ψs,y,sp is the probability that species sp occurs at sampling point s in year y. I further used a 

logit link to model relationships between occurrence probability (Ψs,y,sp) and 15 site covariates, 

which consisted of elevation, aspect, TPI, stand age, proportion of all forest / shrub / deciduous 

forest / conifer forest within 50 m, proportion of all forest / shrub cover within 1 km, landscape 

patch richness within 1 km, mean number of core forest patches within 1 km, forest / open 

habitat patch density within 1 km, and total forest edge within 1 km (Table 2). All continuous 

site covariates were centered and scaled prior to analysis. In addition, the hierarchical 

community model incorporated a random site effect to account for repeated observations at each 

sampling point over the course of multiple years. 
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Given the observed data Ys,y,r,sp, where r is a within-survey replicate (i.e., 5-minute time 

interval during the 10-minute point count survey period) across all survey replicates (i.e., 

repeated visits to the sampling point during the sampling year), I defined the detection model for 

species sp at sampling point s in year y during replicate r as: 

Ys,y,r,sp ~ Bernoulli(ps,y,r,sp × Zs,y,sp) 

where ps,y,r,sp is the detection probability of species sp for the rth replicate at sampling point s in 

year y, given that species sp is present at sampling point s in year y. I further used a logit link to 

model linear relationships between detection probability (ps,y,r,sp) and 4 detection covariates, 

which consisted of ordinal day (centered and scaled prior to analysis), time since sunrise 

(measured as decimal hours, and centered and scaled prior to analysis), a dummy variable for 

wind (0 = wind codes of 0, 1, or 2; 1 = wind codes >2), and a dummy variable for sky (0 = sky 

codes of 0, 1, or 2; 1 = sky codes >2). 

Because a subset of avian point count surveys conducted in the MNF lacked data 

pertaining to time, wind code, or sky code, I imputed those detection covariate values. I assumed 

that time since sunrise was a Gaussian random variable, and that the wind and sky dummy 

variables were Bernoulli random variables. Imputation was informed by the observed data and 

accounted for uncertainty, with values drawn from a posterior distribution of each detection 

variable (Gelman et al. 2014).  

Ultimately, the hierarchical community model yielded species-specific estimates of latent 

occupancy (Zs,y,sp) for species sp at each sampling point s in each year y based on observed data 

from replicate surveys. I then derived the overall species richness for each sampling point in each 

year by summing the occupancy of the 62 passerine and near-passerine species, as in the 

following equation: 

∑ 𝑍𝑠,𝑦,𝑠𝑝

62

𝑠𝑝=1

 

Similarly, I derived guild-specific richness by summing the occupancy of the subset of songbird 

species that belonged to each habitat guild designation (Appendix C1). 

Due to the need to construct a customized hierarchical community model, I used a 

Bayesian framework, implemented with Markov chain Monte Carlo methods. For all 

community-level and species-specific parameters, I used prior distributions which were meant to 

provide little information; all gamma prior distributions, often used for variance parameters, had 

a shape parameter of 0.1 and rate parameter of 0.1, and all Gaussian prior distributions, such as 

for the community-level slope coefficients for each site covariate, had a mean of 0 and precision 

of 0.1 (Appendix C2). I fit the models in JAGS (Plummer 2003) using the “jagsUI” package 

(Kellner and Meredith 2021) in Program R (R Core Team 2022). I used the “jags” function to 

run 3 chains of 18,000 iterations for the hierarchical community model, with a burn-in of 15,000 

iterations and thinning rate of 1 iteration, which resulted in 9,000 posterior draws and reasonable 

convergence (R̂ ≤ 1.1) (Gelman et al. 2014). 
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Determining relationships with harvest intensity over time for overall species and guild 

richness 

After I derived detection-corrected overall species and guild richness from the 

hierarchical community model, I then incorporated those estimates into corresponding 

generalized linear mixed effects models, with overall species or guild richness as the response 

variable and incorporating an interaction between time and landscape-scale harvest intensity as a 

predictor variable. To propagate uncertainty from the original hierarchical community model 

results, I ran 9,000 iterations of the generalized linear mixed effects models for overall species 

richness and for each guild designation, cycling through the values from each of the 9,000 

posterior draws. The models yielded a posterior distribution of 9,000 for each slope coefficient, 

from which I derived the mean and 95% credible intervals. Thus, the estimated effects on overall 

species and guild richness were calculated as derived quantities (Kery and Royle 2016). 

For each generalized linear mixed effects model, I assumed the number of species at each 

site in each year (i.e., overall species richness or guild richness) to be a Poisson random variable 

and used a log link to model relationships with controlling topographical / habitat / landscape 

factors and an interaction between year and landscape-scale harvest intensity. All continuous 

predictor variables were centered and scaled prior to analysis. The total number of slope 

coefficients was 20 (resulting in a ratio of ~250 site × year combinations to 1 slope coefficient; 

Bolker et al. 2008), corresponding to year, landscape-scale harvest intensity, year × landscape-

scale harvest intensity, elevation, aspect, aspect squared, TPI, stand age, stand age squared, 

proportion of all forest within 50 m, proportion of shrub within 50 m, proportion of deciduous 

forest within 50 m, proportion of conifer forest within 50 m, proportion of all forest within 1 km, 

proportion of shrub within 1 km, landscape patch richness within 1 km, mean number of core 

forest patches within 1 km, forest patch density within 1 km, open habitat patch density within 1 

km, and total forest edge within 1 km. All of the generalized linear mixed effects models also 

incorporated a random site effect for log expected richness to account for repeated observations 

at each sampling point over the course of multiple years. 

I fit all generalized linear mixed effects models using the “lme4” package (Bates et al. 

2015) in Program R (R Core Team 2022). Specifically, I used the “glmer” function with family = 

“poisson”, optimizer = “bobyqa” (i.e., a specific optimizing function used by the model), and 

nAGQ = 0. The nAGQ is the number of points per axis for evaluating the adaptive Gauss-

Hermite approximation to the log-likelihood. A value of 0 uses a form of parameter estimation 

for generalized linear mixed effects models by optimizing the random effects and the fixed-

effects coefficients in the penalized iteratively reweighted least squares step. 

Determining relationships with landscape-scale harvest intensity over time for abundance of 

individual focal species  

To quantify and compare temporal trends in the abundance of specific focal species 

during the breeding season, I estimated the abundance of 15 songbird species (Table 1) 

independently in stacked N-mixture models (Royle 2004) (see Appendix C2 for JAGS code). For 

the abundance model within the hierarchical stacked N-mixture model, I assumed that species 

count was a Poisson random variable and used a log link to model relationships with controlling 

topographical and habitat factors and an interaction between year and landscape-scale harvest 
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intensity. All continuous predictor variables were centered and scaled prior to analysis. The total 

number of slope coefficients was 20 (resulting in a ratio of ~250 site × year combinations to 1 

slope coefficient), corresponding to same site covariates as for the generalized linear mixed 

effects models. The stacked N-mixture models also incorporated a random site effect for log 

expected count to account for repeated observations at each sampling point over the course of 

multiple years. 

For the detection model within the hierarchical stacked N-mixture model, I assumed that 

the observed count was a binomial random variable and modeled the probability of detection for 

each within-survey replicate, using the same methods as for the hierarchical community model. I 

further used a logit link to model linear relationships between detection probability and 4 

detection covariates, which consisted of ordinal day (centered and scaled prior to analysis), time 

since sunrise (measured as decimal hours, and centered and scaled prior to analysis), a dummy 

variable for wind (0 = wind codes of 0, 1, or 2; 1 = wind codes >2), and a dummy variable for 

sky (0 = sky codes of 0, 1, or 2; 1 = sky codes >2). I used the same methods as for the 

hierarchical community model to impute study region-specific detection covariates for avian 

point count surveys from the MNF that were lacking data on time, wind code, or sky code. 

The stacked N-mixture models were constructed in a Bayesian framework, implemented 

with Markov chain Monte Carlo methods. For all model parameters, I used prior distributions 

which were meant to provide little information; gamma prior distributions had shape and rate 

parameters of 0.01 or 0.1, and Gaussian prior distributions had a mean of 0 and precision of 0.01 

(Appendix C2). I fit the models in JAGS (Plummer 2003) using the “jagsUI” package (Kellner 

and Meredith 2021) in Program R (R Core Team 2022). I used the “autojags” function to run 3 

chains for each model with a burn-in of 9,000–54,000 iterations (Appendix C3), thinning rate of 

3 iterations, and iteration increment of 3,000; models iteratively ran until reasonable convergence 

(R̂ ≤ 1.1) was achieved (Gelman et al. 2014), resulting in 3,000–9,000 posterior draws. 

Determining relationships with harvest intensity over time for nest success of individual focal 

species 

To quantify and compare temporal trends in nest success of specific focal species during 

the breeding season, I estimated the overall probability of nest success of 6 songbird species 

(Table 1) independently in conditional binomial models (see Appendix C2 for JAGS code). I 

assumed that observed nest success was a Bernoulli random variable and modeled both the 

probability of nest success during the incubation period and the probability of nest success 

during the brooding period, which was conditional upon nest success during the incubation 

period. Thus, given the observed nest success data Ys,sp,1:2, where Ys,sp,1 = 1 if the nest of species 

sp at nest location s survived the incubation period (and Ys,sp,1 = 0 if not) and Ys,sp,2 = 1 if the nest 

of species sp at nest location s survived the brooding period and successfully fledged at least 1 

offspring (and Ys,sp,2 = 0 if not), I defined the nest success model as: 

Ys,sp,1 ~ Bernoulli(p.incubations,sp) 

Ys,sp,2 ~ Bernoulli(p.broodings,sp × Ys,sp,1) 

where p.incubations,sp is the probability of nest success during the incubation period and 

p.incubations,sp is the probability of nest success during the brooding period, dependent upon the 
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nest fate during the incubation period. The probability of overall nest success (p.overalls,sp) for 

species sp at nest location s was then calculated as the product of the probabilities of nest success 

during the incubation and brooding periods, as in the following equation: 

p.overalls,sp = p.incubations,sp × p.broodings,sp 

For both the probabilities of nest success during the incubation and brooding periods, I 

further used a logit link to model their relationships with 4 site covariates, which consisted of 

year, landscape-scale harvest intensity, a dummy variable for harvest history within the nest 

search plot (0 = no timber harvest within the past 20 years; 1 = any type of timber harvest within 

the past 20 years), and a dummy variable for whether the nest search plot was dominated (i.e., 

>50%) by mature forest (0 = no; 1 = yes). The total number of slope coefficients was 5 (resulting 

in a ratio of 14–50 nest locations to 1 slope coefficient), corresponding to year, landscape-scale 

harvest intensity, year × landscape-scale harvest intensity, harvest history, and mature forest. I 

also incorporated a species-specific and period-specific random nest search plot effect in the 

conditional binomial model. 

The conditional binomial models were constructed in a Bayesian framework, 

implemented with Markov chain Monte Carlo methods. For all model parameters, I used prior 

distributions which were meant to provide little information; gamma prior distributions had 

shape and rate parameters of 0.01, and Gaussian prior distributions had a mean of 0 and precision 

of 0.01 (Appendix C2). I fit the models in JAGS (Plummer 2003) using the “jagsUI” package 

(Kellner and Meredith 2021) in Program R (R Core Team 2022). I used the “autojags” function 

to run 3 chains for each model with a burn-in of 9,000–30,000 iterations (Appendix C3), thinning 

rate of 3 iterations, and iteration increment of 3,000; models iteratively ran until reasonable 

convergence (R̂ ≤ 1.1) was achieved (Gelman et al. 2014), resulting in 6,000 or 9,000 posterior 

draws. 

Determining significance of interactions 

For all of the guild richness models, focal species abundance models, and focal species 

nest success models, relationships with individual linear variables were considered significant 

when the 95% credible intervals of their slope coefficient values did not overlap 0 (Tables 3–4, 

Figures 5–7). Similarly, interactions between year and landscape-scale harvest intensity were 

considered significant when the 95% credible intervals of their effective slope coefficient values 

did not overlap 0 (Tables 5–6, Figures 8–10). I defined an annual effective slope coefficient for 

landscape-scale harvest intensity as the effect of a 1-unit change in the dummy variable 

(representing the difference between the actively harvested landscape [1] and the minimally 

harvested landscape [0]) corresponding to each year in the study period. For year, I defined an 

effective slope coefficient as the effect of a 1-unit change in time given specific levels of 

landscape-scale harvest intensity (i.e., actively harvested landscape vs. minimally harvested 

landscape). Given the following equation: 

Y = β0 + β1 × X1 + β2 × X2 + β3 × X1 × X2 

where X1 is year (scaled and centered), X2 is landscape-scale harvest intensity (either 0 or 1), and 

all the other variables are held constant at their mean values, then the annual effective slope 
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coefficient (βeff) for landscape-scale harvest intensity can be calculated as βeff = β2 + β3 × X1 and 

the effective slope coefficient (βeff) for year can be calculated as βeff = β1 + β3 × X2. 

RESULTS 

Effects of harvest intensity over time on overall species and guild richness 

Guild richness model results indicated a significant interaction between year and 

landscape-scale harvest intensity for overall species richness and early-successional / edge-

associated guild richness, forest-gap guild richness, and forest generalist guild richness (Table 3). 

Looking at the annual effective slope coefficients for landscape-scale harvest intensity, mean 

expected richness was generally higher in the actively harvested landscape (Figure 9), but the 

guilds exhibited distinct temporal trends (Table 5). Overall species richness and forest-interior 

guild richness were significantly higher in the actively harvested landscape for the entire study 

period, but early-successional / edge-associated richness and forest-gap guild richness were 

significantly higher in the actively harvested landscape following a lag of 1–2 years after the 

start of sampling. Meanwhile, forest generalist guild richness was significantly higher in the 

minimally harvested landscape during the first year but significantly higher in the actively 

harvested landscape during the final 5 years of the study period (2005–2009).  

Looking at the effective slope coefficients for year, trends in overall species richness and 

guild richness over time seemed to be mostly increasing in the actively harvested landscape and 

mostly decreasing in the minimally harvested landscape (Table 6, Figure 9). Overall species 

richness and all of the habitat-related guilds except the early-successional / edge-associated guild 

showed significant changes in both landscapes. For overall species richness and forest-gap guild 

richness, the effective slope coefficients for year indicated significant increases over time in the 

actively harvested landscape and significant decreases over time in the minimally harvested 

landscape. Early-successional / edge-associated guild richness significantly increased over time 

in the actively harvested landscape. Interestingly, at both levels of landscape-scale harvest 

intensity, forest-interior guild richness was significantly decreasing and forest generalist guild 

richness was significantly increasing. 

Effects of harvest intensity over time on focal species abundance 

Focal species abundance model results indicated a significant interaction between year 

and landscape-scale harvest intensity for 7 of the 15 total focal songbird species, including 1 of 

the 4 early-successional / edge-associated species, 3 of the 4 forest-interior species, 2 of the 4 

forest-gap species, and 1 of the 3 forest generalist species (Table 3). Looking at the annual 

effective slope coefficients for landscape-scale harvest intensity, mean expected abundance was 

generally higher in the actively harvested landscape (Figure 10), but there was temporal variation 

in significance (Table 5). The expected abundance of 4 species (chestnut-sided warbler, eastern 

towhee, dark-eyed junco [Junco hyemalis], and veery [Catharus fuscescens]) was significantly 

higher in the actively harvested landscape for the entire study period (1996 –2009), while the 

abundance of 6 species (indigo bunting [Passerina cyanea], black-throated green warbler 

[Setophaga virens], red-eyed vireo [Vireo olivaceus], hooded warbler [S. citrina], American 

robin [Turdus migratorius], and black-capped chickadee [Poecile atricapillus]) was significantly 
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higher in the actively harvested landscape following a lag of 2-4 years after the start of the study. 

American redstart [Setophaga ruticilla] and cerulean warbler [S. cerulea] were the only 2 focal 

species to have significantly higher mean expected abundance in the minimally harvested 

landscape for a portion of the study period. Finally, 3 focal species had effective slope 

coefficients for landscape-scale harvest intensity that were never statistically significant. 

Looking at the effective slope coefficients for year, trends in focal species abundance 

over time seemed to be increasing in the actively harvested landscape and decreasing in the 

minimally harvested landscape (Table 6, Figure 10). Of the 4 early-successional / edge-

associated species, brown-headed cowbird (Molothrus ater) and chestnut-sided warbler 

abundance were significantly decreasing over time in the minimally harvested landscape, while 

indigo bunting abundance was significantly increasing over time in the actively harvested 

landscape, and eastern towhee showed increasing abundance over time in both landscapes, with a 

higher rate of increase in the actively harvested landscape. Of the 4 forest-interior species and 4 

forest-gap species, dark-eyed junco abundance was significantly increasing in the actively 

harvested landscape and significantly decreasing in the minimally harvested landscape, while 

black-throated green warbler, red-eyed vireo, American redstart, and veery abundance 

significantly decreased over time in the minimally harvested landscape and hooded warbler 

abundance significantly increased over time in the actively harvested landscape. Of the 3 forest 

generalist species, American robin abundance significantly increased over time in the actively 

harvested landscape, and black-capped chickadee abundance significantly decreased over time in 

the minimally harvested landscape. Only 3 focal species (wood thrush, cerulean warbler, and 

white-breasted nuthatch [Sitta carolinensis]) did not exhibit a significant change in abundance 

over time in either landscape. 

Effects of harvest intensity over time on focal species nest success 

Focal species nest success model results indicated a significant interaction between year 

and landscape-scale harvest intensity for only 1 of the 6 focal songbird species, with a difference 

in indigo bunting nest success during the incubation period over time between the actively 

harvested landscape and minimally harvested landscape (Table 3). Looking at the annual 

effective slope coefficients for landscape-scale harvest intensity, the probability of incubation 

success of indigo buntings was significantly higher in the actively harvested landscape in just the 

first year of the study, and the probability of incubation success of wood thrushes was 

significantly higher in the minimally harvested landscape in the middle to later years (1998–

2005) of the study period. Looking at the effective slope coefficients for year, the probability of 

red-eyed vireo nest success during the incubation period decreased over time in the minimally 

harvested landscape, while the probability of wood thrush nest success during the incubation 

period decreased over time in the actively harvested landscape. Furthermore, for wood thrush 

nest success during the overall nesting period, effective slope coefficients for year were 

significantly negative during the later years of the study period, such that the probability of 

overall nest success for wood thrushes declined over time during 2004–2007 in the actively 

harvested landscape (Table 7, Figure 11). Eastern towhees, dark-eyed juncos, and veeries did not 

exhibit a significant change in nest success during any nesting period over time in either 

landscape. 
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DISCUSSION 

This study quantified the effects of landscape-scale forest management on changes in 

avian diversity, abundance, and nest success over time, using 2 Central Appalachian forested 

landscapes that varied greatly in timber harvest intensity as focal study areas. My results 

supported the hypothesis that long-term temporal trends in forest songbird communities and 

populations during the breeding season are mediated by landscape-level forest management. 

Guild richness and focal species abundance tended to be consistently higher in the actively 

harvested landscape, and trends in guild richness and species abundance over time were 

consistently positive in the actively harvested landscape and negative in the minimally harvested 

landscape. In particular, early-successional / edge-associated species and forest-gap species were 

found in higher numbers and exhibited positive temporal trends in the actively harvested 

landscape. However, a holistic assessment that included trends in reproductive success 

highlighted long-term declines in nest success for a forest-interior species of regional 

conservation concern (wood thrush) within the actively harvested landscape but not the 

minimally harvested landscape. Thus, there are important trade-offs to consider when using 

landscape-scale forest management to promote songbird communities and populations in 

forested landscapes. 

Landscape-scale harvest intensity influenced changes over time in overall species 

richness and guild richness. As predicted, early-successional / edge-associated guild richness 

increased over time in the actively harvested landscape. Overall species richness and forest-gap 

guild richness also increased over time in the actively harvested landscape. Within the actively 

harvested landscape, a combination of clear-cut harvests, heavy partial harvests, and light partial 

harvests were applied, which created early-successional habitat and canopy gaps, so it makes 

sense that the number of early-successional / edge-associated species and forest-gap species 

increased over time. These results are also consistent with previous studies that document higher 

species diversity and species richness in harvested forest stands compared to non-harvested 

mature forest (Hagan et al. 1997, King and Degraaf 2000). In addition, partial harvesting in the 

actively harvested landscape included single-tree selection, which other studies have found can 

benefit forest-gap species (Doyon et al. 2005, Holmes et al. 2012, Perry et al. 2018). 

Unexpectedly, forest-interior guild richness was higher in the actively harvested landscape but 

declined over time in both landscapes and at a steeper rate in the minimally harvested landscape. 

Also contrary to my original predictions, forest-gap guild richness decreased over time in the 

minimally harvested landscape. Overall declines of forest-interior guild richness in both 

landscapes may reflect negative regional population trends of forest-interior species, which are 

also documented by North American Breeding Bird Survey data (Ziolkowski et al. 2022) for 

species such as red-eyed vireo in West Virginia. However, decreasing forest-gap guild richness 

and the steeper declines of forest-interior guild richness in the minimally harvested landscape 

may be due to increasing homogenization of forest stand structure over time and a need for some 

amount of early-successional habitat within the landscape during the post-breeding season 

(Stoleson 2013). It is also important to note that although changes in the number of species were 

statistically significant, the differences in modeled responses across the entire study period were 

generally ≤1 species, with a maximum 45% increase in early-successional / edge-associated 

guild richness and forest generalist guild richness in the actively harvested landscape and a 

maximum 28% decrease in forest-gap guild richness in the minimally harvested landscape. Thus, 

differences between the 2 levels of landscape-scale harvest intensity may not have had much 
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biological significance. 

Focal species exhibited consistent diverging trends in abundance over time corresponding 

to landscape-scale harvest intensity, and changes in abundance followed overall similar patterns 

as changes in guild richness. As predicted, 2 of the 4 early-successional / edge-associated species 

increased over time in the actively harvested landscape and 2 decreased over time in the 

minimally harvested landscape. One of the focal forest-gap species also increased in abundance 

over time in the actively harvested landscape. Just as with the corresponding guild richness 

results, these findings are consistent with the habitats being transformed or modified by clear-cut 

harvests, heavy partial harvests, and light partial harvests in the actively harvested landscape. A 

multitude of previous studies found similar results in how the abundance of early-successional / 

edge-associated species and forest-gap species responds to timber harvest (e.g., Hagan et al. 

1997, Becker et al. 2011). In contrast, trends in forest-interior species and forest-gap species 

defied my initial expectations. Of the 4 forest-interior species, 3 decreased in abundance over 

time in the minimally harvested landscape, and 1 of the species increased in abundance over time 

in the actively harvested landscape. Similarly, 2 of the 4 forest-gap species decreased in 

abundance over time in the minimally harvested landscape. It is possible that those declining 

trends could be explained by homogenized forest structure associated with mid-successional, 

second-growth stands and suppression of certain natural sources of disturbance (e.g., fire), or 

perhaps the lack of nearby appropriate post-breeding habitat (Stoleson 2013). DeMeo (1999) 

characterized certain mature forest stands within the Monongahela National Forest where bird 

surveys were conducted as having a relatively depauperate understory. As with the guild richness 

results, statistically significant differences may have limited biological impact, as the differences 

in modeled responses in abundance across the entire study period were ≤1 individual for all but 1 

focal species. However, the highest percent changes in focal species abundance included 

increases of 115–185% for 5 species (eastern towhee, indigo bunting, dark-eyed junco, hooded 

warbler, and American robin) in the actively harvested landscape and decreases of 81–104% for 

5 species (brown-headed cowbird, chestnut-sided warbler, dark-eyed junco, red-eyed vireo, and 

veery) in the minimally harvested landscape. Thus, landscape-scale harvest intensity tended to 

have a higher proportional effect size on individual focal species than on guild richness. 

In addition to species diversity and abundance, it is critical to consider landscape-scale 

harvest intensity impacts on long-term bird population dynamics, such as changes in 

reproductive success, because abundance and density metrics alone can be poor indicators of 

habitat quality (Van Horne 1983, Vickery et al. 1992, Hagan et al. 1996). Looking at focal 

species nest success, there was substantial uncertainty in trends over time, as indicated by wide 

credible intervals and lack of statistical significance. Wood thrushes had the highest sample size 

of the 6 focal songbird species, and there were notable significant declines in nest success during 

both the incubation and overall nesting periods within the actively harvested landscape. This 

result echoed the findings of Becker (2010), who tracked nest success in the WERF and used a 

similar dataset spanning 1996–1998, 2001–2003, and 2007–2009. Becker (2010) found few 

differences in nest success among harvest types within the WERF, but wood thrush nest success 

significantly declined from 1996–1998 to 2007–2009. Another study also measured nest success 

of wood thrushes in the MNF and found that nest success was positively associated with mature 

forest patches and negatively related to open habitat occurring in the landscape (Williams 2002). 
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Overall, songbird diversity and abundance tended to slightly increase over time in the 

actively harvested landscape. The higher numbers of species and positive temporal trends in the 

actively harvested landscape were likely due to increased habitat diversity, both spatially and 

structurally. Similar to forest management practices in central hardwood forests (e.g., Missouri 

Ozark forests; Thompson et al. 1992, Annand and Thompson 1997), clear-cutting and heavy 

partial harvests can create breeding and post-breeding habitat for early-successional / edge-

associated species and post-breeding habitat for forest-interior and forest-gap species. Light 

partial harvests (e.g., single-tree selection) can additionally create short-term breeding habitat for 

forest-gap species. As a notable exception, the forest-gap species of regional conservation 

concern (cerulean warbler) had higher mean abundance in the minimally harvested landscape, 

perhaps due to the higher amounts of mature forest in the landscape (Wood et al. 2013), although 

other studies have found that cerulean warblers can benefit from timber harvest operations in the 

Central Appalachians (Nareff et al. 2019). 

Contrary to expectations, guild richness and focal species abundance tended to slightly 

decrease over time in the minimally harvested landscape. While many studies of timber harvest 

in central hardwood forests find that forest-interior species are more abundant in non-harvested 

mature forest sites (Thompson et al. 1992, Annand and Thompson 1997), my results indicated 

that forest-interior species were less abundant and declining over time in the minimally harvested 

landscape. More investigation is needed to determine the cause for these unexpected trends and 

ascertain why the extensive expanses of mature, non-harvested forest in the minimally harvested 

landscape were not sustaining forest-interior species. Looking at the predictor variables included 

to account for their known effects, forest-interior guild richness responded positively to 

increasing forest age and higher proportions of forest within 50 m but negatively to the mean 

number of core forest patches and forest patch density, indicating potential adverse effects from 

forest fragmentation. Other factors that could individually and cumulatively impact forest 

interior species negatively by degrading forest habitat quality include changes in tree species 

composition (e.g., loss of oak species and rising dominance of shade-tolerant species) of 

deciduous forests (Thomas-Van Gundy and Morin 2021), white-tailed deer (Odocoileus 

virginianus) herbivory (Miller et al. 2009), forest pests and invasive species (e.g., Spaulding and 

Rieske 2010, Williams and Wang 2021), and climate change (USDA Forest Service 2015). 

Further research would be required to determine the relative contributions of these varying 

stressors and to consider the role of non-breeding season impacts on declining populations of 

forest-interior songbirds. In this study, the minimally harvested landscape was largely comprised 

of extensive areas of homogenous, even-aged mature forest. If one of the underlying reasons for 

lower and decreasing abundance is reduced structural diversity and/or lack of early-successional 

habitat for post-breeding dispersal, as tentatively suggested by the comparison with the actively 

harvested landscape, then it is likely that some intermediate level of disturbance intensity is 

needed in forest-dominated Central Appalachian landscapes, which were historically disturbed 

by fire, frequent small-scale windthrow, and natural gap dynamics within old-growth forests 

(Meier et al. 1995, Oliver and Larson 1996). 

It is also important to consider that the reproductive success of an area-sensitive forest-

interior species (wood thrush) declined over time in the actively harvested landscape but not in 

the minimally harvest landscape. This indicates a potential conservation issue associated with 

higher levels of timber harvest intensity. Possible mitigating actions include matching harvest 

intensity to levels of natural disturbance (Drapeau et al. 2000), reducing the amount of edge from 
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roads and timber harvests, and keeping overall area of harvested forest stands below a specified 

threshold within the landscape (Becker et al. 2011). Alternatively, it may be critical to allow non-

harvested forests to mature into the old-growth stage with natural gap dynamics (Oliver and 

Larson 1996), enhancing forest structural diversity without the need for timber harvesting. 

While my results are specific to my 2 study areas, they may reflect broad temporal trends 

for forested landscapes within the Central Appalachians, which comprise stands with an active 

history of logging (Fredericksen 1998) and with minimal to no timber harvest. The timber 

harvest techniques practiced in the WERF are also applied to other privately owned forests in 

West Virginia (Luppold and Alderman 2007), and forest composition trends in the MNF are 

reflective of the greater Central Appalachian region (Thomas-Van Gundy and Morin 2021). 

Thus, I believe my findings can contribute valuable insight to landscape-scale forest 

management that apply beyond the boundaries of the 2 study areas. Furthermore, trends in 

abundance over time of 7 focal species in the actively harvested landscape and of 4 focal species 

in the minimally harvested landscape were similar to their relative abundance trends in West 

Virginia from 1996–2009 North American Breeding Bird Survey data (Ziolkowski et al. 2022). 

It would be interesting to supplement my findings with an investigation of long-term trends in 

landscapes across a more extensive spectrum of timber harvest intensity levels in terms of total 

area harvested and harvest types. Furthermore, this study did not address finer-scale reasons for 

diverging temporal trends in the actively harvested landscape and minimally harvested 

landscape. More research is needed to understand the specific mechanisms driving varying 

temporal trends in species communities and populations in different landscapes. 

Conclusions 

Here, I compare the influence of 2 levels of landscape-scale harvest intensity on songbird 

diversity, abundance, and reproductive success over time. The results of this study are valuable 

for understanding how to balance the management of forested landscapes for a diversity of 

breeding songbird species with different habitat associations, and for predicting long-term effects 

of landscape-scale forest management on those species. My findings indicate that there are 

distinct benefits and potential negative consequences associated with varying levels of 

landscape-scale harvest intensity. Actively harvested landscapes may promote overall species 

richness, as well as the number (i.e., richness) and abundance of early-successional / edge-

associated species, but there may be long-term negative effects on nest success of area-sensitive 

forest-interior species (e.g., wood thrushes). Minimally harvested landscapes may be valuable for 

certain species of regional conservation concern associated with intact mature forests (e.g., 

cerulean warblers), but in my study, forest-interior guild richness, forest-gap guild richness, and 

many of the forest-interior and forest-gap species were declining in the minimally harvested 

landscape, indicating a potential issue in landscape-scale management for those species. An 

intermediate level of disturbance is likely needed to promote stand- and landscape-scale 

structural diversity and could be achieved by using timber harvest to mimic natural disturbance 

regimes or by allowing non-harvested forests to mature into old-growth conditions and develop 

natural gap dynamics. Ultimately, timber harvest operations can benefit a subset of songbird 

guilds and species without impacting much of the songbird community, but this study also 

emphasizes the value of maintaining minimally harvested landscapes to support species of 

regional conservation concern that require extensive stands of mature forest. 
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TABLES 

Table 1. List of the common name, scientific name, 4-letter species code, and habitat-related 

guild designation of the 15 songbird species used in the focal species analyses. The habitat-

related guild designation indicates the primary breeding habitat of the species, such that: species 

in the early-successional / edge-associated (ESEA) guild breed in open habitat, shrub/scrub, or 

young forest, or along forest edges, such as the interface of early-successional and mature forest; 

species in the forest-interior (INT) guild breed in the core area of mature forest; species in the 

forest-gap (GAP) guild breed in or near small forest gaps within the core area of mature forest; 

and species in the forest generalist (GEN) guild are associated with forest but have no preference 

for early-successional vs. mature forest. All 15 species were focal species for assessing temporal 

trends in abundance, and 6 species (with bolded common names and 4-letter species codes) were 

focal species for assessing temporal trends in nest success. An asterisk following the common 

name indicates a species of regional conservation concern (i.e., listed as an Appalachian 

Mountains Joint Venture Priority Species or North American Bird Conservation Initiative’s 

Watch List species).  

Common Name  Scientific Name Code Guild 

Brown-headed cowbird Molothrus ater BHCO ESEA 

Chestnut-sided warbler Setophaga pensylvanica CSWA ESEA 

Eastern towhee* Pipilo erythrophthalmus EATO ESEA 

Indigo bunting* Passerina cyanea INBU ESEA 

Black-throated green warbler Setophaga virens BTNW INT 

Dark-eyed junco Junco hyemalis DEJU INT 

Red-eyed vireo Vireo olivaceus REVI INT 

Wood thrush* Hylocichla mustelina WOTH INT 

American redstart Setophaga ruticilla AMRE GAP 

Cerulean warbler* Setophaga cerulea CERW GAP 

Hooded warbler* Setophaga citrina HOWA GAP 

Veery Catharus fuscescens VEER GAP 

American robin Turdus migratorius AMRO GEN 

Black-capped chickadee* Poecile atricapillus BCCH GEN 

White-breasted nuthatch Sitta carolinensis WBNU GEN 
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Table 2. List, detailed description, and data source of the 17 site covariates used in the guild 

richness and focal species abundance analyses, comprising 2 focal variables and 15 

environmental variables (3 topographical variables + 5 habitat variables + 2 landscape 

composition variables + 5 landscape configuration variables) included to account for their 

effects. 

Variable Description Data Source  
 

Year 
 

Year of data collection; variable type: discrete; 

range: 1996–2009 
 

Bird survey data Landscape-scale 

Harvest Intensity 

Harvest intensity at the landscape level, 

corresponding to study area; variable type: 

dummy; 1 = actively harvested (i.e., WERF), 0 

= minimally harvested (i.e., MNF) 
 

 

Elevation 
 

Mean elevation (m) within 50 m of each 

sampling point; variable type: continuous; 

range: 353–1,395 m 
 

 

Shuttle Radar 

Topography Mission 

digital elevation data 

(20–25 m resolution), 

Consultative Group 

on International 

Agricultural Research 

– Consortium for 

Spatial Information 
 

Aspect Mode aspect (degrees) within 50 m of each 

sampling point; variable type: continuous; 

bounded between 0 and 360 degrees 
 

Topographical 

Position Index 

(TPI) 

Mode TPI within 50 m of each sampling point; 

higher positive values indicate ridges, lower 

positive values indicate upper to mid slopes, 

values near 0 indicate flat areas, higher 

negative values indicate lower slopes, and 

lower negative values indicate valleys; variable 

type: continuous; range: -3.500–2.375 
 

 

Stand Age 
 

Mode stand age within 50 m of each sampling 

point; variable type: discrete; range: 0–180 

years 
 

 

GIS datasets of 

WERF and MNF 

forest stands 
 

Proportion All 

Forest 
 

Proportion of any type of mature forest (i.e., 

trees generally >5 m tall) cover (including 

deciduous, mixed, and coniferous) / shrub 

cover / deciduous forest cover / coniferous 

forest cover within 50 m of the sampling point; 

variable type: continuous; bounded between 0 

and 1 

2001 / 2004 / 2006 / 

2008 National Land 

Cover Database (30 

m resolution; 

1:60,000 scale), U.S. 

Geological Survey 

Proportion Shrub 
 

Proportion 

Deciduous Forest 
 

Proportion Conifer 

Forest 
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Table 2. Continued. 

Variable Description Data Source 
 

Proportion All 

Forest within 1 km 
 

 

Proportion of any type of mature (i.e., trees 

generally >5 m tall) forest cover (including 

deciduous, mixed, and coniferous) / shrub 

cover within 1 km of the sampling point; 

variable type: continuous; bounded between 0 

and 1 
 

2001 / 2004 / 2006 / 

2008 National Land 

Cover Database (30 

m resolution; 

1:60,000 scale), U.S. 

Geological Survey 

 

Proportion Shrub 

within 1 km 
 

 

Landscape Patch 

Richness within 1 

km 
 

 

Diversity metric that reflects the number of 

patch types within 1 km of the sampling point; 

variable type: discrete; range: 0–4 
 

 

Mean Core Forest 

Patches within 1 

km 
 

 

Core area metric that reflects the mean number 

of disjunct core areas of forest within 1 km of 

the sampling point; variable type: continuous; 

range: 0.2–8.0  
 

 

Forest Patch 

Density within 1 

km 
 

 

Aggregation metric that reflects the number of 

forest patches per 100 ha within 1 km of the 

sampling point; variable type: continuous: 

range: 0.32–6.36 
 

 

Open Habitat 

Patch Density 

within 1 km 
 

 

Aggregation metric that reflects the number of 

open habitat (including shrub, grassland, and 

hay / pasture) patches per 100 ha within 1 km 

of the sampling point; variable type: 

continuous: range: 0.00–7.32 
 

 

Total Forest Edge 

within 1 km 
 

 

Edge metric that reflects the sum of all edges 

of forest patches within 1 km of the sampling 

point; variable type: continuous: range: 0–120 

m 
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Table 3. Statistical significance (indicated by bold type) of slope coefficients for the predictor variables (year [YR], landscape-scale 

harvest intensity [LSHI], their interaction [YR×LSHI], elevation [EL], aspect [ASP] squared [ASP2], topographic position index 

[TPI], stand age [AGE] squared [AGE2], proportion of all forest [PAF] / shrub cover [PS] / deciduous forest [PDF] / conifer forest 

[PCF] within 50 m, proportion of all forest [PAFkm] / shrub cover [PSkm] within 1 km, and landscape patch richness [LPR] / mean 

core forest patches [MCFP] / forest patch density [FPD] / open habitat patch density [OHPD] / total forest edge [TFE] within 1 km) 

corresponding to overall species richness (ALL), guild (early-successional / edge-associated [ESEA], forest-interior [INT], forest-gap 

[GAP], and forest generalist [GEN]) richness, and focal songbird species abundance (see Table 1 for species codes). 

Response YR LSHI YR×LSHI EL ASP ASP2 TPI AGE AGE2 PAF PS 

ALL -0.021 0.170 0.074 -0.221 -0.031 -0.020 0.010 -0.004 0.012 0.046 0.017 

ESEA -0.023 0.300 0.183 -0.542 -0.023 -0.044 0.003 -0.042 0.031 -0.032 0.024 

BHCO -0.371 -0.266 0.131 -0.608 -0.147 -0.314 -0.076 0.105 0.072 -0.301 -0.076 

CSWA -0.386 1.402 0.482 -0.156 0.122 -0.041 -0.113 -0.072 0.053 -0.302 0.091 

EATO 0.409 1.492 0.236 -0.398 -0.066 -0.120 0.073 -0.200 -0.011 -0.297 0.007 

INBU 0.015 0.752 0.388 -0.684 -0.080 -0.090 0.054 -0.149 0.080 -0.473 -0.037 

INT -0.034 0.188 0.011 -0.092 -0.028 -0.010 0.001 0.016 0.002 0.062 -0.002 

BTNW -0.226 0.640 0.379 0.263 -0.074 0.020 0.040 0.002 -0.020 0.037 -0.010 

DEJU -0.286 2.029 0.782 0.574 -0.016 0.113 -0.071 0.088 0.027 0.007 0.001 

REVI -0.286 0.381 0.392 -0.229 0.035 -0.001 0.010 -0.056 -0.020 -0.054 0.012 

WOTH -0.086 -0.264 -0.135 -0.876 0.006 -0.069 -0.003 0.026 -0.041 -0.275 -0.215 

GAP -0.099 0.266 0.199 -0.499 0.010 -0.045 0.000 -0.017 0.026 0.157 0.025 

AMRE -0.259 -0.721 0.681 -0.623 -0.047 0.045 -0.009 0.004 0.027 -0.114 0.014 

CERW -0.166 -1.914 -0.509 -0.288 -0.070 0.145 0.141 0.159 -0.068 0.520 -0.192 

HOWA -0.170 0.855 0.788 -0.787 0.087 -0.149 -0.018 0.020 0.031 0.021 0.058 

VEER -0.326 1.974 0.279 0.060 0.111 0.062 -0.003 -0.058 0.036 0.059 0.029 

GEN 0.039 0.016 0.124 -0.325 -0.068 -0.023 0.052 -0.016 0.012 -0.019 -0.010 

AMRO 0.090 1.053 0.326 -0.084 0.032 0.069 0.043 -0.013 0.027 -0.303 -0.036 

BCCH -0.244 0.817 0.559 -0.011 -0.065 -0.011 0.102 -0.059 0.053 0.121 -0.040 

WBNU 0.083 0.125 0.051 -0.337 -0.039 -0.089 0.156 0.071 -0.007 -0.432 -0.009 
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Table 3. Continued. 

Response PDF PCF PAFkm PSkm LPR MCFP FPD OHPF TFE 

ALL -0.096 -0.011 -0.012 0.016 0.041 -0.019 -0.009 0.023 -0.050 

ESEA -0.468 -0.041 -0.076 0.076 0.076 -0.041 -0.018 0.106 -0.168 

BHCO 0.387 -1.066 -0.121 0.384 0.211 -0.024 -0.063 -0.093 -0.256 

CSWA 0.366 -0.019 0.225 0.117 -0.009 -0.097 -0.148 0.134 0.284 

EATO 0.195 -0.020 0.249 0.097 0.096 0.051 0.000 0.128 0.037 

INBU 0.502 0.077 -0.197 0.035 0.170 0.028 -0.102 0.015 -0.208 

INT 0.040 0.008 0.032 0.014 0.013 -0.020 -0.038 -0.003 0.029 

BTNW 0.110 -0.128 0.211 0.052 -0.086 -0.047 -0.076 -0.102 0.236 

DEJU -0.158 -0.072 0.046 -0.097 0.012 0.047 0.045 -0.043 0.065 

REVI 0.264 -0.236 0.146 0.029 0.031 0.022 0.059 -0.065 0.021 

WOTH 0.312 -0.060 0.156 0.309 0.041 0.070 0.010 -0.072 0.004 

GAP -0.398 -0.121 0.007 0.039 0.061 -0.025 -0.019 -0.027 -0.027 

AMRE 0.592 -0.026 0.321 0.378 0.156 0.176 -0.012 -0.093 -0.062 

CERW 0.427 0.168 0.470 -0.010 0.444 -0.019 0.081 0.181 -0.164 

HOWA 0.116 -0.150 0.179 -0.004 -0.032 -0.028 -0.088 0.224 0.021 

VEER 0.176 -0.121 0.153 0.037 -0.103 -0.075 0.008 -0.210 0.332 

GEN -0.297 -0.087 -0.069 -0.070 0.103 -0.001 0.055 0.073 -0.213 

AMRO 0.221 -0.028 0.085 -0.119 -0.005 -0.060 0.197 0.092 0.020 

BCCH -0.284 -0.055 -0.145 -0.202 -0.062 0.075 0.075 0.044 -0.284 

WBNU 0.568 0.031 0.080 -0.092 0.116 0.114 0.209 -0.044 -0.270 
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Table 4. Statistical significance (indicated by bold type) of slope coefficients for the predictor variables (year [YR], landscape-scale 

harvest intensity [LSHI], interaction [YR×LSHI] between year and landscape-scale harvest intensity, harvest history [HH] of nest 

search plot, and nest search plot located in mature forest [MF]) corresponding to the probability of nest success during the incubation 

and brooding periods. Focal species (see Table 1 for species codes) are arranged by habitat-related guild designation (early-

successional / edge-associated [ESEA], forest-interior [INT], and forest-gap [GAP]). 

Species Guild 
Incubation Period Brooding Period 

YR LSHI YR×LSHI HH MF YR LSHI YR×LSHI HH MF 

EATO ESEA 0.217 -0.773 -0.501 0.785 -1.402 1.458 -1.347 -2.006 1.528 0.446 

INBU ESEA 2.211 -0.330 -3.336 1.476 -1.150 -2.766 1.886 4.840 1.047 1.577 

DEJU INT -1.391 1.516 1.560 0.893 0.360 -4.751 0.050 4.700 0.631 1.194 

REVI INT -1.150 -0.692 1.888 -0.518 0.043 -0.459 -2.115 1.647 -0.266 -0.025 

WOTH INT 0.081 -1.099 -0.968 0.434 -0.415 -0.748 1.184 2.320 -1.427 -0.797 

VEER GAP -0.548 -0.100 0.539 -0.664 -0.744 1.022 -0.469 -4.535 4.768 -2.662 
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Table 5. Statistical significance (indicated by bold type) of the annual effective slope coefficients 

for landscape-scale harvest intensity on overall species richness (ALL), guild (early-successional 

/ edge-associated [ESEA], forest-interior [INT], forest-gap [GAP], and forest generalist [GEN]) 

richness, focal songbird species abundance (see Table 1 for species codes), and focal songbird 

species nest success corresponding to each year in the study period. Model type is denoted such 

that GR = guild richness, FSA = focal species abundance, FSNS-I = focal species nest success 

during the incubation period, and FSNS-B = focal species nest success during the brooding 

period. 

Response Model 1993 1994 1995 1996 1997 1998 1999 2000 

ALL GR --- --- --- 0.079 0.096 0.112 0.128 0.144 

ESEA GR --- --- --- 0.074 0.114 0.154 0.195 0.235 

BHCO FSA --- --- --- -0.428 -0.399 -0.370 -0.342 -0.313 

CSWA FSA --- --- --- 0.807 0.913 1.018 1.124 1.229 

EATO FSA --- --- --- 1.200 1.252 1.304 1.356 1.407 
 FSNS-I -0.110 -0.246 -0.382 -0.518 -0.654 -0.790 -0.925 -1.061 

 FSNS-B 1.306 0.763 0.219 -0.324 -0.868 -1.411 -1.955 -2.499 

INBU FSA --- --- --- 0.273 0.358 0.443 0.528 0.613 

 FSNS-I 4.084 3.180 2.275 1.371 0.467 -0.437 -1.341 -2.245 

  FSNS-B -4.516 -3.205 -1.893 -0.582 0.730 2.042 3.353 4.665 

INT GR --- --- --- 0.174 0.177 0.179 0.182 0.184 

BTNW FSA --- --- --- 0.172 0.255 0.338 0.421 0.504 

DEJU FSA --- --- --- 1.063 1.234 1.405 1.577 1.748 
 FSNS-I -0.547 -0.124 0.298 0.721 1.144 1.567 1.989 2.412 
 FSNS-B -6.168 -4.894 -3.620 -2.346 -1.073 0.201 1.475 2.749 

REVI FSA --- --- --- -0.103 -0.017 0.069 0.155 0.240 
 FSNS-I -3.189 -2.677 -2.166 -1.654 -1.143 -0.631 -0.119 0.392 
 FSNS-B -4.294 -3.848 -3.401 -2.955 -2.508 -2.062 -1.616 -1.169 

WOTH FSA --- --- --- -0.097 -0.127 -0.156 -0.186 -0.216 

 FSNS-I 0.181 -0.081 -0.343 -0.606 -0.868 -1.130 -1.393 -1.655 

  FSNS-B -1.886 -1.257 -0.628 0.001 0.630 1.259 1.887 2.516 

GAP GR --- --- --- 0.021 0.064 0.108 0.152 0.195 

AMRE FSA --- --- --- -1.561 -1.412 -1.263 -1.114 -0.965 

CERW FSA --- --- --- -1.285 -1.397 -1.508 -1.620 -1.732 

HOWA FSA --- --- --- -0.119 0.054 0.227 0.399 0.572 

VEER FSA --- --- --- 1.630 1.691 1.752 1.813 1.874 

 FSNS-I -0.813 -0.667 -0.521 -0.375 -0.229 -0.082 0.064 0.210 

  FSNS-B 5.529 4.300 3.071 1.842 0.614 -0.615 -1.844 -3.073 

GEN GR --- --- --- -0.137 -0.110 -0.082 -0.055 -0.028 

AMRO FSA --- --- --- 0.651 0.722 0.794 0.865 0.936 

BCCH FSA --- --- --- 0.126 0.249 0.371 0.494 0.616 

WBNU FSA --- --- --- 0.062 0.073 0.084 0.096 0.107 
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Table 5. Continued. 

Response Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 

ALL GR 0.160 0.176 0.193 0.209 0.225 0.241 0.257 0.273 0.290 

ESEA GR 0.275 0.315 0.355 0.395 0.436 0.476 0.516 0.556 0.596 

BHCO FSA -0.284 -0.256 -0.227 -0.198 -0.170 -0.141 -0.112 -0.083 -0.055 

CSWA FSA 1.335 1.440 1.546 1.651 1.757 1.862 1.968 2.073 2.179 

EATO FSA 1.459 1.511 1.562 1.614 1.666 1.717 1.769 1.821 1.873 

 FSNS-I -1.197 -1.333 -1.469 -1.605 -1.740 -1.876 -2.012 -2.148 --- 

 FSNS-B -3.042 -3.586 -4.129 -4.673 -5.216 -5.760 -6.303 -6.847 --- 

INBU FSA 0.698 0.783 0.868 0.953 1.038 1.123 1.208 1.293 1.378 

 FSNS-I -3.150 -4.054 -4.958 -5.862 -6.766 -7.670 -8.575 -9.479 --- 

  FSNS-B 5.976 7.288 8.599 9.911 11.223 12.534 13.846 15.157 --- 

INT GR 0.187 0.189 0.192 0.194 0.197 0.199 0.202 0.204 0.207 

BTNW FSA 0.587 0.670 0.753 0.836 0.919 1.002 1.085 1.168 1.251 

DEJU FSA 1.919 2.091 2.262 2.433 2.605 2.776 2.947 3.119 3.290 

 FSNS-I 2.835 3.258 3.680 4.103 4.526 4.949 5.372 5.794 --- 

 FSNS-B 4.022 5.296 6.570 7.844 9.118 10.391 11.665 12.939 --- 

REVI FSA 0.326 0.412 0.498 0.584 0.670 0.755 0.841 0.927 1.013 

 FSNS-I 0.904 1.415 1.927 2.439 2.950 3.462 3.973 4.485 --- 

 FSNS-B -0.723 -0.277 0.170 0.616 1.062 1.509 1.955 2.401 --- 

WOTH FSA -0.245 -0.275 -0.305 -0.334 -0.364 -0.393 -0.423 -0.453 -0.482 

 FSNS-I -1.917 -2.180 -2.442 -2.704 -2.967 -3.229 -3.491 -3.754 --- 

  FSNS-B 3.145 3.774 4.403 5.032 5.660 6.289 6.918 7.547 --- 

GAP GR 0.239 0.282 0.326 0.369 0.413 0.456 0.500 0.544 0.587 

AMRE FSA -0.816 -0.667 -0.517 -0.368 -0.219 -0.070 0.079 0.228 0.377 

CERW FSA -1.843 -1.955 -2.066 -2.178 -2.290 -2.401 -2.513 -2.624 -2.736 

HOWA FSA 0.745 0.918 1.090 1.263 1.436 1.609 1.781 1.954 2.127 

VEER FSA 1.935 1.996 2.058 2.119 2.180 2.241 2.302 2.363 2.424 

 FSNS-I 0.356 0.502 0.648 0.794 0.940 1.086 1.232 1.378 --- 

  FSNS-B -4.302 -5.531 -6.760 -7.989 -9.218 -10.447 -11.676 -12.905 --- 

GEN GR -0.001 0.026 0.053 0.081 0.108 0.135 0.162 0.189 0.216 

AMRO FSA 1.008 1.079 1.151 1.222 1.293 1.365 1.436 1.508 1.579 

BCCH FSA 0.739 0.861 0.984 1.106 1.229 1.351 1.473 1.596 1.718 

WBNU FSA 0.118 0.129 0.140 0.152 0.163 0.174 0.185 0.196 0.208 
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Table 6. Statistical significance (indicated by bold type) of the effective slope coefficients for 

year on overall species richness (ALL), guild (early-successional / edge-associated [ESEA], 

forest-interior [INT], forest-gap [GAP], and forest generalist [GEN]) richness, focal songbird 

species abundance (see Table 1 for species codes), and focal songbird species nest success in an 

actively harvested landscape and minimally harvested landscape. Model type is denoted such 

that GR = guild richness, FSA = focal species abundance, FSNS-I = focal species nest success 

during the incubation period, and FSNS-B = focal species nest success during the brooding 

period. 

Guild Species Model Actively Harvested Minimally Harvested 

ALL   GR 0.053 -0.021 

ESEA  GR 0.161 -0.023 

 BHCO FSA -0.240 -0.371 
 CSWA FSA 0.096 -0.386 
 EATO FSA 0.645 0.409 
  FSNS-I -0.285 0.217 
  FSNS-B -0.548 1.458 
 INBU FSA 0.403 0.015 
  FSNS-I -1.125 2.211 

    FSNS-B 2.074 -2.766 

INT  GR -0.022 -0.034 
 BTNW FSA 0.153 -0.226 
 DEJU FSA 0.496 -0.286 
  FSNS-I 0.169 -1.391 
  FSNS-B -0.051 -4.751 
 REVI FSA 0.106 -0.286 
  FSNS-I 0.738 -1.150 
  FSNS-B 1.188 -0.459 
 WOTH FSA -0.222 -0.086 
  FSNS-I -0.887 0.081 

    FSNS-B 1.572 -0.748 

GAP  GR 0.100 -0.099 
 AMRE FSA 0.422 -0.259 
 CERW FSA -0.676 -0.166 
 HOWA FSA 0.618 -0.170 
 VEER FSA -0.047 -0.326 
  FSNS-I -0.010 -0.548 

    FSNS-B -3.513 1.022 

GEN  GR 0.163 0.039 
 AMRO FSA 0.416 0.090 
 BCCH FSA 0.315 -0.244 

  WBNU FSA 0.135 0.083 
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Table 7. Statistical significance (indicated by bold type) of the effective slope coefficients for year on overall nest success of focal 

songbird species (see Table 1 for species codes) in an actively harvested landscape (AHL) and minimally harvested landscape (MHL) 

during the years in the study period. Effective slope coefficients for overall nest success in each year and for each level of landscape-

scale harvest intensity (LSHI) were determined by calculating the change in estimated probability of nest success during the entire 

nesting period from one year to the next. Habitat-related guild designation (early-successional / edge-associated [ESEA], forest-

interior [INT], forest-gap [GAP], and forest generalist [GEN]) of each species is noted in parentheticals. 

Species LSHI 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 

EATO 

(ESEA) 

AHL -0.015 -0.017 -0.018 -0.018 -0.019 -0.019 -0.018 -0.017 -0.016 -0.014 -0.013 -0.011 -0.009 -0.008 -0.006 

MHL 0.040 0.047 0.048 0.041 0.032 0.022 0.015 0.010 0.007 0.005 0.003 0.002 0.001 0.000 0.000 

INBU 

(ESEA) 

AHL 0.035 0.044 0.053 0.053 0.037 0.011 -0.015 -0.035 -0.048 -0.054 -0.056 -0.054 -0.049 -0.043 -0.037 

MHL 0.079 0.095 0.077 0.008 -0.069 -0.099 -0.085 -0.060 -0.042 -0.029 -0.021 -0.016 -0.012 -0.009 -0.007 

DEJU 

(INT) 

AHL 0.006 0.005 0.005 0.004 0.003 0.002 0.001 0.000 -0.001 -0.002 -0.003 -0.003 -0.004 -0.004 -0.005 

MHL -0.021 -0.042 -0.075 -0.118 -0.156 -0.113 -0.057 -0.027 -0.013 -0.007 -0.005 -0.003 -0.002 -0.002 -0.001 

REVI 

(INT) 

AHL 0.014 0.018 0.024 0.031 0.040 0.049 0.055 0.055 0.050 0.042 0.034 0.028 0.022 0.018 0.014 

MHL -0.017 -0.030 -0.047 -0.064 -0.077 -0.080 -0.074 -0.063 -0.051 -0.040 -0.031 -0.024 -0.019 -0.015 -0.012 

WOTH 

(INT) 

AHL 0.028 0.025 0.013 -0.009 -0.028 -0.039 -0.042 -0.041 -0.037 -0.033 -0.028 -0.024 -0.020 -0.017 -0.014 

MHL -0.005 -0.009 -0.014 -0.019 -0.024 -0.029 -0.033 -0.035 -0.035 -0.033 -0.031 -0.028 -0.025 -0.022 -0.020 

VEER 

(GAP) 

AHL -0.011 -0.019 -0.031 -0.046 -0.063 -0.074 -0.076 -0.067 -0.049 -0.032 -0.019 -0.012 -0.008 -0.006 -0.004 

MHL 0.030 0.033 0.030 0.017 -0.002 -0.017 -0.024 -0.026 -0.025 -0.022 -0.020 -0.017 -0.015 -0.013 -0.011 
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FIGURES 

 

 

Figure 1. Sampling points and nest search plots for this study were located in 2 study areas in 

West Virginia: (1) the MeadWestvaco Wildlife and Ecosystem Research Forest, which was 

established in 1994 by the Westvaco Corporation and comprises 3,080 ha; and (2) the 

Monongahela National Forest (NF), which encompasses portions of 9 counties (delineated by 

gray lines) and comprises nearly 688,000 ha, of which 54% (371,906 ha) is public land (dark 

green).  

 

 



200 

 

 

Figure 2. Locations of the sampling points and nest search plots within the MeadWestvaco 

Wildlife and Ecosystem Research Forest (WERF) in 1996–1998, 2001–2003, and 2007–2009. 
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Figure 3. Locations of the sampling points and nest search plots within the public lands (dark 

green) of the Monongahela National Forest (MNF) in 1993–1996 and 1996–1999. 
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Figure 4. Timber harvest history of the actively harvested MeadWestvaco Wildlife and 

Ecosystem Research Forest (WERF) during 1996–1998, 2001–2003, and 2007–2009. Heavy 

partial harvest methods included shelterwood cuts, two-age harvests, and regeneration (seed-tree) 

harvests, whereas light partial harvest methods included diameter-limit harvests and single-tree 

selection. 
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Figure 5. Land cover change in the MeadWestvaco Wildlife and Ecosystem Research Forest (WERF) and the Monongahela National 

Forest (MNF) from 2001 to 2009, based on 2001 / 2004 / 2006 / 2008 National Land Cover Database (NLCD) data. In these maps, 

NLCD land cover classifications were aggregated into 4 cover types: mature forest (comprising deciduous, mixed, and coniferous 

forest), open habitat (representing early-successional habitat and comprising shrubs, grasslands, and hay / pasture), water, and other 

non-habitat cover (comprising developed land, barren land, and cropland). 
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Figure 6. Whisker plots for overall species richness (ALL) and guild (early-successional / edge-associated [ESEA], forest-interior 

[INT], forest-gap [GAP], and forest generalist [GEN]) richness (see Appendix C1 for guild designations and associated forest 

songbird species), displaying the slope coefficients of the predictor variables (i.e., site covariates; year [YR], landscape-scale harvest 

intensity [LSHI], their interaction [YR×LSHI], elevation [EL], aspect [ASP] squared [ASP2], topographic position index [TPI], stand 

age [AGE] squared [AGE2], proportion of all forest [PAF] / shrub cover [PS] / deciduous forest [PDF] / conifer forest [PCF] within 

50 m, proportion of all forest [PAFkm] / shrub cover [PSkm] within 1 km, and landscape patch richness [LPR] / mean core forest 

patches [MCFP] / forest patch density [FPD] / open habitat patch density [OHPD] / total forest edge [TFE] within 1 km). Points are 

located at the mean values for the posterior distributions and the corresponding whiskers encompass the 95% credible intervals. Solid 

colored points with closed circles and non-gray whiskers indicate statistical significance (i.e., credible intervals do not overlap 0). 
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Figure 7. Whisker plots for each focal species in the abundance analyses (see Table 1 for species 

codes), displaying the slope coefficients of the predictor variables (i.e., site covariates; year 

[YR], landscape-scale harvest intensity [LSHI], their interaction [YR×LSHI], elevation [EL], 

aspect [ASP] squared [ASP2], topographic position index [TPI], stand age [AGE] squared 

[AGE2], proportion of all forest [PAF] / shrub cover [PS] / deciduous forest [PDF] / conifer 

forest [PCF] within 50 m, proportion of all forest [PAFkm] / shrub cover [PSkm] within 1 km, 

and landscape patch richness [LPR] / mean core forest patches [MCFP] / forest patch density 

[FPD] / open habitat patch density [OHPD] / total forest edge [TFE] within 1 km). Points are 

located at the mean values for the posterior distributions and the corresponding whiskers 

encompass the 95% credible intervals. Solid colored points with closed circles and non-gray 

whiskers indicate statistical significance (i.e., credible intervals do not overlap 0). Color of the 4-

letter species code and plot elements indicates the species’ guild designation (light green = early-

successional / edge-associated guild, dark green = forest-interior guild, teal = forest-gap guild, 

orange = forest generalist guild). 
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Figure 8. Whisker plots for each focal species in the nest success analyses (see Table 1 for species codes), displaying the slope 

coefficients of the predictor variables (i.e., site covariates; year [YR], landscape-scale harvest intensity [LSHI], interaction 

[YR×LSHI] between year and landscape-scale harvest intensity, harvest history [HH] of nest search plot, and nest search plot located 

in mature forest [MF]) for nest success during the incubation and brooding periods, respectively. Points are located at the mean values 

for the posterior distributions and the corresponding whiskers encompass the 95% credible intervals. Solid colored points with closed 

circles and non-gray whiskers indicate statistical significance (i.e., credible intervals do not overlap 0). Color of the 4-letter species 

code and plot elements indicates the species’ guild designation (light green = early-successional / edge-associated guild, dark green = 

forest-interior guild, teal = forest-gap guild). 
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Figure 9. Plots of the change over time in overall species richness (ALL) and guild (early-

successional / edge-associated [ESEA], forest-interior [INT], forest-gap [GAP], and forest 

generalist [GEN]) richness (see Appendix C1 for guild designations and associated forest 

songbird species) within an actively harvested landscape (AHL) and minimally harvested 

landscape (MHL). An asterisk indicates a significant trend, where the 95% credible interval of 

the effective slope coefficient for year does not overlap 0. 
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Figure 10. Plots of the change over time in focal songbird species abundance (see Table 1 for 

species codes) within an actively harvested landscape (AHL) and minimally harvested landscape 

(MHL). Color of the 4-letter species code and plot elements indicates the species’ guild 

designation (light green = early-successional / edge-associated guild, dark green = forest-interior 

guild, teal = forest-gap guild, orange = forest generalist guild). An asterisk indicates a significant 

trend, where the 95% credible interval of the effective slope coefficient for year does not overlap 

0. 
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Figure 11. Plots of the change over time in focal songbird species nest success (see Table 1 for species codes) during the incubation 

period, brooding period, and overall nesting period within an actively harvested landscape (AHL) and minimally harvested landscape 

(MHL). Color of the 4-letter species code and plot elements indicates the species’ guild designation (light green = early-successional / 

edge-associated guild, dark green = forest-interior guild, teal = forest-gap guild). An asterisk indicates a significant trend, where the 

95% credible interval of the effective slope coefficient for year does not overlap 0. 
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CHAPTER 4 

Multi-species avian occupancy of wildlife openings in a heavily forested landscape 

 

INTRODUCTION 

Wildlife use of forest openings 

In forested landscapes and extensive forest stands within the eastern United States, 

openings (i.e., open patches of generally low vegetation that do not contain mature forest) can 

serve as habitat and provide food resources for disturbance-dependent, early-successional forest-

associated wildlife species. Insects and herbaceous vegetation (i.e., grasses and forbs which are 

generally more nutritious and digestible than woody plants) can be more abundant in openings 

than beneath a forest canopy (Blake and Hoppes 1986, Martin and Karr 1986, Shure and Phillips 

1991). Although forest openings do occur naturally (Askins 2001), wildlife openings (i.e., open 

or early-successional forest habitat created incidentally or purposefully for target wildlife 

species) tend to be specifically created and maintained by land managers through timber harvest, 

grazing, or other active forest management strategies. New wildlife openings are often created 

along or from log decks, log roads, and utility rights-of-way. To encourage and maintain the 

herbaceous community, managers use a variety of management actions, including mowing, 

liming, fertilizing, planting, and burning. In most cases, the purpose of these wildlife openings is 

to provide habitat specifically for game species (Overcash et al. 1989), including 3 popular game 

birds --- wild turkeys (Meleagris gallopavo), ruffed grouse (Bonasa umbellus), and American 

woodcocks (Scolopax minor). 

Wild turkeys, ruffed grouse, and American woodcocks vary slightly in their forested 

habitat preferences, but all 3 species are known to use herbaceous wildlife openings for mating 

displays, nesting, brood-rearing, or feeding. Wild turkeys tend to reside in open deciduous or 

mixed forests with interspersed clearings. Wildlife openings are commonly maintained to 

improve forest habitat for wild turkeys (Healy and Nenno 1983), as openings can be important to 

nest site selection and poult feeding activity (Healy 1985, Byrne and Chamberlain 2013). Ruffed 

grouse and American woodcocks are both associated with early-successional, shrubby deciduous 

forests (Dessecker and McAuley 2001, Endrulat et al. 2005). Ruffed grouse tend to rely on 

young stands of trees for both cover and food, with wildlife openings providing brood cover and 

food for their chicks (Bump et al. 1947, Sharp 1963). American woodcocks use forest openings 

for mating displays in the spring and roosting in the summer (Roboski and Causey 1981). They 

also use wildlife openings and other open areas as nocturnal habitat (Straw et al. 1994, Krementz 

et al. 1995). It is widely believed that the loss of early-successional forest habitat is a primary 

reason for declines in American woodcock recruitment and in overall population status (Kelley 

et al. 2008). 

Despite plenty of evidence that wild turkeys, ruffed grouse, and American woodcocks use 

wildlife openings, there is a general lack of published studies for each species that explicitly 

focus on their responses to a combination of local habitat attributes, size, management, or 

landscape context of wildlife openings (e.g., Shartell 2016). Results from the few existing studies 
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suggest that local habitat attributes and management may have the greatest influence on species-

specific use, but opening size was also mentioned frequently. For instance, wild turkey broods 

generally benefit from active management (e.g., mowing) that enhances the abundance of 

herbaceous vegetation in openings that were <0.5 ha in size (Healy and Nenno 1983). Similarly, 

ruffed grouse select for brood habitat with high amounts of herbaceous groundcover, which can 

be achieved by specific management actions (Jones et al. 2008). In the Cherokee National Forest 

in Tennessee, management of logging roads converted to linear wildlife openings resulted in 

greater arthropod availability to ruffed grouse chicks than logging roads not managed for wildlife 

(Hollifield and Dimmick 1995). In the same study, the abundance of herbaceous vegetation was 

more important in determining arthropod availability than the successional age of clearcuts. 

However, forest succession played a role in the amount of herbaceous vegetation and ruffed 

grouse brood use in 0.1–0.4 ha openings in Pennsylvania (Sharp 1963). Maintenance of 

permanent openings that are 0.1–0.8 ha in size is recommended for food production for ruffed 

grouse in Manistee National Forest in Michigan (Berner and Gysel 1969), but in central 

hardwood forests, Thompson and Dessecker (1997) suggested that ruffed grouse would benefit 

most from 2–16 ha patches of regenerating forest, with interspersion of habitats. For American 

woodcocks, habitat structure is important in the selection of display sites; opening size and 

distance to the nearest opening may also have influence (Gutzwiller et al. 1983). Regular 

disturbance (e.g., cutting trees) is likely important to maintain that structure and appears to 

increase American woodcock use of clearcut aspen areas (Hale and Gregg 1976). To best benefit 

American woodcocks, McAuley et al. (1996) and Masse et al. (2014) recommend actively 

maintaining >25% of the landscape as early-successional habitat, with approximately eight >0.2-

ha wildlife openings per 40 ha. 

In addition to game birds, wildlife openings potentially benefit songbird species 

associated with grasslands, shrub-scrub habitats, and disturbed areas in forested habitats, a 

habitat guild that has experienced widespread population declines in eastern North America 

(Hunter et al. 2001, DeGraaf and Yamasaki 2003). However, several attributes of wildlife 

openings, including size, time since disturbance, and treatment regime, may affect their 

suitability as early-successional bird habitat. Bird species that breed in early-successional habitat 

are often restricted by the area of wildlife openings (Roberts and King 2017, Margenau et al. 

2022). In a study of the effects of group-selection opening size on breeding bird habitat use in a 

bottomland forest, species richness in 0.06-, 0.13-, 0.26-, and 0.5-ha openings increased as 

opening size increased, due to the increased use of larger openings by early-successional and 

edge-associated species (Moorman and Guynn, Jr. 2015). Shrubland bird density may also be 

related to patch size (Lehnen and Rodewald 2009). To best manage for early-successional forest 

and shrubland birds, DeGraaf and Yamasaki (2003) recommend that group selection and patch 

cuts should be at least 0.8 ha, while Chandler et al. (2009) suggest a minimum size of 1.2 ha and 

Shake et al. (2012) propose >5.5 ha. Opening size may also determine the magnitude of 

corresponding effects on forest-interior songbirds. One study reported that openings of 0.02–0.04 

ha had a minor effect on the forest bird community (Robinson and Robinson 1999), while 

another found that 0.4-ha clearcut openings resulted in the movement of several forest-interior 

species away from openings and subsequently decreased abundance in and adjacent to openings 

(Germaine et al. 1997). Within forest-dominated landscapes in West Virginia, the width of 

rights-of-ways and wildlife openings had a negative influence on forest-interior bird species 

(Margenau et al. 2022). However, McDermott et al. (2011) documented an increase in late-

successional bird diversity with size of stands that ranged in age from 15–40 years, such that the 
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highest species diversity was found in the largest stands within their study. In addition to opening 

size, time since disturbance likely influences breeding songbird abundance and community 

composition in wildlife openings (George et al. 2019); if not regularly maintained, then an 

opening created by timber harvest may cease to provide suitable habitat for early successional 

breeding specialists after a certain period of time (McDermott et al. 2011). For example, 

Robinson and Robinson (1999) found that populations of gap-dependent species reached a peak 

2–3 years after the creation of 0.02–0.04 ha openings but declined to population levels 

comparable to those in uncut forest after 5–10 years. Different successional stages are generally 

associated with distinct vegetation characteristics and thus local habitat attributes, such as 

vegetation structure and shrub density, which has been shown to be a primary factor affecting 

abundance of early-successional bird species (Bulluck and Buehler 2006, Askins et al. 2007, 

King et al. 2009, McDermott et al. 2011). Management regime (e.g., burning, mowing) may also 

affect shrubland bird abundance (Chandler et al. 2009), with an optimum post-treatment time of 

10–15 years suggested by Schlossberg and King (2009) for shrubland birds in the eastern United 

States. Although very few studies have addressed the effect of landscape context on use of 

wildlife openings by early-successional bird species, landscape-level variables such as distance 

to the nearest opening and land cover composition within 1 km have been found to influence 

shrubland generalists more than shrubland specialists (Askins et al. 2007) or to have little 

influence (Shake et al. 2012). In addition, prairie warblers (Setophaga discolor) may be more 

likely to occur in forest openings that are closer to large patches of open habitat (Roberts and 

King 2017). Despite the paucity of studies and corresponding evidence, it is likely that 

landscape-level factors affect avian use of wildlife openings, as they have been found to explain 

mature forest songbird occupancy and abundance (Villard et al. 1999, Graham and Blake 2001, 

Lee et al. 2002), grassland bird species richness (Hamer et al. 2006), saltmarsh bird species 

diversity (Shriver et al. 2004), and waterbird species richness and occurrence (Guadagnin and 

Maltchik 2006). Based on the documented effects of landscape characteristics on these other 

avian species and guilds, as well as management recommendations for early-successional and 

shrubland birds (DeGraaf and Yamasaki 2003), I would expect spatially isolated wildlife 

openings in extensively forested landscapes to have lower occupancy and numbers of early-

successional bird species. 

Use of wildlife openings may not be restricted to early-successional and shrubland birds. 

Certain songbirds that breed in mature forest shift their habitat use to early-successional areas 

after nesting but before migration (i.e., during the post-breeding period). Rappole and Ballard 

(1987) were perhaps the first to report both post-breeding adult and juvenile forest birds moving 

into early-successional habitats. Since then, a number of mist-netting studies have found that 

forest-interior songbird species are frequently captured in regenerating clearcuts during the post-

breeding season (e.g., Pagen et al. 2000, Marshall et al. 2003, Vitz and Rodewald 2006, 

McDermott and Wood 2010, Streby et al. 2011, Chandler et al. 2012, Major and Desrochers 

2012, Stoleson 2013). Radio-tagging of ovenbirds (Seiurus aurocapilla), wood thrushes 

(Hylocichla mustelina), and scarlet tanagers (Piranga olivacea) have also shown that fledglings 

and adults of these species tend to move into edge and early-successional habitats after breeding 

in mature forest (Anders et al. 1998, Vega Rivera et al. 1998, 2003, King et al. 2006, Dellinger 

2007). Contrary to formerly prevailing assumptions, a subset of forest-interior birds are present 

in significantly higher densities in early-successional habitats than in surrounding mature forest 

during the post-breeding season (Pagen et al. 2000, Bowen et al. 2007, Chandler et al. 2012). 

Thus, early-successional habitat within forested landscapes, such as wildlife openings, may 
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benefit post-breeding forest-interior species in addition to early-successional and edge-associated 

species (Anders et al. 1998, Pagen et al. 2000, Vitz and Rodewald 2006, Chandler et al. 2012). 

Supporting this recommendation, forest-interior birds captured in regenerating clearcuts were 

more advanced in molt and in better condition than those captured in forests (Stoleson 2013). In 

addition, evidence suggests that food availability is equivalent or greater in early-successional 

habitats than in mature forest (Keller et al. 2003, Vitz and Rodewald 2006), and vertical structure 

may provide protection from predators (Vitz and Rodewald 2007). Specifically, post-breeding 

forest-interior songbirds achieve the highest densities in early-successional habitats with tall, 

complex vegetation structure (Chandler et al. 2012). However, the shape and size of wildlife 

openings may also affect use by post-breeding songbirds. One study found that post-breeding 

individuals avoid the edges and appear to prefer smaller regenerating clearcuts (4–9 ha) over 

large clearcuts (13–18 ha) (Vitz and Rodewald 2006). Furthermore, post-breeding early-

successional, edge-associated, and forest-interior species may exhibit habitat guild-specific 

responses to wildlife openings created with timber harvest, based on size, amount of edge, and 

retained basal area (McDermott and Wood 2011). Overall, these handful of studies on the post-

breeding songbird use of forest and wildlife openings emphasize the importance of size and 

vegetation structure, but they fail to address the potential effects of management or landscape 

context, despite the value of examining both patch- and landscape-level characteristics 

(Mazerolle and Villard 1999). 

Knowledge gap 

Although wildlife openings are primarily meant to provide habitat and food resources for 

disturbance-dependent, early-successional game species, they may also benefit a myriad of 

forest-associated avifauna, including species of high regional conservation concern (Chandler et 

al. 2009). Yet those benefits are likely dependent upon certain wildlife opening attributes and 

likely vary among species and guilds. A research question that has been frequently addressed is 

the size of an opening needed to provide habitat for early-successional birds (Askins et al. 2007). 

However, there is a clear knowledge gap concerning which other wildlife opening attributes are 

important considerations for holistic management for entire avian communities. Most studies 

consider a limited number of local-scale characteristics of openings created incidentally by 

timber harvest operations and their corresponding effects on species-specific and, to a lesser 

extent, community-level responses of breeding songbirds. Only a handful of additional studies 

focus on the use of openings by game birds (e.g., Sharp 1963, Healy and Nenno 1983, Shartell 

2016) or post-breeding songbirds (e.g., Chandler et al. 2012) but never both simultaneously and 

rarely in conjunction with breeding songbirds. Instead of approaching the question of 

management piecemeal by season, species, guild, taxon group, or opening characteristic, we 

need to comprehensively investigate how to optimize wildlife openings to attract a full spectrum 

of avian species throughout spring and summer, maximize richness across guilds and taxa 

groups, and minimize negative effects to the forest-interior breeding bird community. 

Understanding the sympatric use of wildlife openings by game birds, breeding songbirds, and 

post-breeding songbirds in response to site-level and landscape-level wildlife opening attributes 

is critical for land managers to design and maintain wildlife openings that simultaneously 

support game bird populations and promote a diverse suite of songbirds. 
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Purpose, objectives, and hypotheses 

The purpose of this research was to identify the characteristics of wildlife openings that 

support target game birds and a diversity of breeding and post-breeding songbirds. My objectives 

were to quantify how a suite of site-level and landscape-level wildlife opening attributes (Table 

1) relate to multi-species occupancy of 3 game birds (wild turkey, ruffed grouse, and American 

woodcock) during the game bird courtship season and songbird guild richness during the 

breeding and post-breeding seasons. 

In this study, I first tested competing hypotheses to determine whether local habitat 

attributes, opening size, management, landscape context, or a combination of site-level and 

landscape-level factors best explained game bird species occupancy in wildlife openings (Table 

2). After identifying which wildlife opening attributes were important for the 3 target game bird 

species, I then evaluated the effects of those variables on breeding and post-breeding songbird 

communities within the wildlife openings and on breeding songbird communities in mature 

forest habitat adjacent to the wildlife openings. To holistically assess impacts on songbird 

diversity, I considered 4 habitat guilds (Appendix D1): early-successional / edge-associated 

species, forest-interior species, forest-gap species, and forest generalist species. 

METHODS 

Study area 

Sampling sites for this study were located throughout the Monongahela National Forest 

(MNF), which encompasses portions of 9 counties (Preston, Tucker, Grant, Randolph, 

Pendleton, Pocahontas, Webster, Nicholas, and Greenbrier) in eastern West Virginia (Figure 1). 

This area was placed under federal protection in 1920 and encompasses nearly 688,000 ha, of 

which 54% (371,906 ha) is owned and overseen by the USDA Forest Service. The MNF 

stretches across a latitudinal range of nearly 200 km and lies within 2 physiographic provinces, 

the Central Appalachians (Allegheny Mountains) and the Ridge and Valley. The eastern section 

of the Monongahela National Forest, which overlaps the Ridge and Valley physiographic 

province, lies in the rain shadow of the Allegheny Mountains, so it receives significantly less 

precipitation (~75 cm/year) compared to the rest of the forest, which experiences 115–150 

cm/year (Clarkson 1966). Elevation within the MNF ranges from 275–1,480 m. 

The MNF is comprised primarily of 70–100 years-old stands with high regional tree 

diversity and 4 major forest zones (mixed mesophytic, northern hardwoods, red spruce, and dry 

oaks) (McCay et al. 1997, DeMeo 1999). Mixed mesophytic forests are present at low elevations 

(<900 m), with northern red oak (Quercus rubra), hickory (Carya spp.), and yellow-poplar 

(Liriodendron tulipifera) as the dominant species (Madarish et al. 2002). At increasing 

elevations, there is a transition in stand dominance to northern hardwoods, including American 

beech (Fagus grandifolia), sugar maple (Acer saccharum), and black cherry (Prunus serotina) 

(Stephenson 1993). At the highest elevations (>1,150 m), remnant boreal forest ecosystems are 

dominated by red spruce (Picea rubens). In the eastern MNF, dry oaks are common in the Ridge 

and Valley area, consisting of white (Quercus alba), chestnut (Q. prinus), scarlet (Q. coccinea), 

and black (Q. velutina) oaks, as well as pines (Pinus spp.). 
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Sampling design 

There is a GIS dataset with manual records of ~2,200 individual openings within the 

MNF (Figure 2), ranging in size from 0.01 ha former log landings to 113 ha former mine lands 

and ranging in shape from linear cuts to sprawling grazing allotments (USDA Forest Service 

2006). A subset of these openings, generally 0.02–22 ha (mean = 2.0 ha), were created or 

managed to benefit target wildlife species. Within the past several decades, many of the wildlife 

openings were constructed either opportunistically or systematically following timber harvest, 

gas well activity, or other human disturbances, and then subsequently managed or maintained by 

MNF or West Virginia Division of Natural Resources staff. The purpose of the wildlife openings 

is generally to provide habitat to regionally important game species associated with early-

successional or open habitat, including white-tailed deer (Odocoileus virginianus), wild turkey, 

and American woodcock. The majority (>96%) of these wildlife openings are ≤5 ha in size, and 

approximately 80% of the openings are actively maintained or have a history of maintenance. 

Active management of wildlife openings consists primarily of mowing, although applying 

herbicides, liming, fertilizing, planting, and grazing are also implemented in select wildlife 

openings. The density of wildlife openings within the landscape varies, but many wildlife 

openings are located <1 km from the nearest neighboring opening. 

For this study, I used stratified random sampling based on size and maintenance status to 

select a total of 335 wildlife openings as sampling sites (Figure 2). They ranged in size from 0.04 

ha to 21.53 ha (mean = 1.56 ha), with 236 small (<1 ha) wildlife openings, 71 mid-sized (1–5 ha) 

wildlife openings, and 28 large (>5 ha) wildlife openings. Of those, 76 of the small wildlife 

openings, 28 of the mid-sized wildlife openings, and 18 of the large wildlife openings were not 

maintained or had no history of maintenance. 

Focal game bird species and songbird guild designations 

Taking land manager goals into consideration, my research primarily focused on the 3 

regionally important upland game bird species in the Central Appalachian region: wild turkey, 

ruffed grouse, and American woodcock. To assess additional impacts on songbird diversity, I 

considered a subset of passerine and near-passerine species. Although a total of 116 avian 

species were detected across all surveys, I limited the richness analyses to 66 species (see 

Appendix D1 for full list) with breeding ranges that encompassed the study area and that had ≥5 

detections. I also excluded wetland-associated songbirds (e.g., red-winged blackbirds [Agelaius 

phoeniceus]) because they were incidental to the focal habitat types, as well as corvids (family 

Corvidae) and waterthrushes (Parkesia spp.) because they are not well-sampled with breeding 

songbird point count surveys. 

Habitat-related guild designations for the 66 songbird species were assigned based on 

breeding habitat and comprised 4 categories (Appendix D1): (1) early-successional / edge-

associated (i.e., primarily breed or found in grasslands, shrub/scrub, or young forest; or along 

forest edges, such as the interface of early-successional and mature forest); (2) forest-interior 

(i.e., generally breed or found in the core area of mature forest); (3) forest-gap (i.e., generally 

breed or found in or near small forest gaps within the core area of mature forest); and (4) forest 

generalist (i.e., associated with forest but no preference for early-successional vs. mature forest). 

For early-successional / edge-associated species, the presence of a wildlife opening is required, 
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and for forest-gap species, the presence of gaps in the forest canopy is required. 

Field data collection  

In-person sampling methods for game bird species 

I conducted in-person game bird surveys at 64 wildlife openings in 2019 and 251 wildlife 

openings in 2021, for a total of 315 wildlife openings (Table 3); sampling occurred between 15 

April and 10 May to overlap with the peak courtship / breeding period for the 3 game bird 

species (Schumacher 2002, US Fish and Wildlife Service 2011). For the in-person game bird 

surveys, I randomly generated a single sampling point within each wildlife opening that was >80 

m from the forest edge (if possible); for the smallest wildlife openings (<1 ha), the point was 

located in the approximate center of the opening (Figure 3). 

Wild turkeys and ruffed grouse were sampled simultaneously at 315 wildlife openings 

with repeated 10-minute morning modified drumming (Hansen et al. 2011) / gobbling surveys 

(Table 3). Each wildlife opening was surveyed twice during the game bird courtship period 

within a single sampling year (2019 or 2021). Surveys commenced at sunrise and were 

concluded within 4 hours after sunrise. The 10-minute survey was split into 2 equal time 

intervals: 0–5 minutes and >5–10 minutes. For each wild turkey or ruffed grouse that was seen or 

heard during the survey, the observer noted the species, time interval(s) during which it was 

detected, and location (within the opening, along the edge, or in the adjacent forest). Observers 

also recorded the survey date, start time, temperature, maximum wind speed, maximum ambient 

noise level (dB), precipitation status, and sky code. Maximum wind speed was measured with a 

Kestrel 1000 anemometer, and maximum ambient noise was measured with a sound level meter 

for 1 minute. Sky codes ranged from 0 to 4 and were adapted from the U.S. Weather Bureau and 

Breeding Bird Survey protocols (U.S. Geological Survey 1998) to measure general sky 

conditions. No surveys were conducted during mornings with moderate to heavy precipitation or 

consistent high wind speed (>5.8 m/s).  

American woodcocks were sampled at 211 wildlife openings with a single 6-minute 

evening modified singing-ground survey (Table 3), following the U.S. Fish & Wildlife Service 

American Woodcock Singing Ground Survey protocols (Bergh and Andersen 2019). Surveys 

began 22 minutes after sunset when the sky had <75% cloud cover and 15 minutes after sunset 

when the sky was overcast (≥75% cloud cover). All surveys were completed by 38 minutes after 

the start time. The 6-minute survey was split into 3 equal time intervals: 0–2 minutes, >2–4 

minutes, and >4–6 minutes. For each American woodcock that was seen or heard during the 

survey, the observer noted the time interval(s) during which it was detected and location (within 

the opening, along the edge, or in the adjacent forest). Observers also recorded the survey date, 

start time, temperature, maximum wind speed, maximum ambient noise level (dB), precipitation 

status, and sky condition (percent cloud cover). No surveys were conducted during evenings with 

precipitation, consistent high wind speed is high (>5.8 m/s), or temperatures below 4° C. 

Remote sampling methods for game bird species 

To increase overall detection probabilities of the 3 game bird species, I deployed game 

cameras and acoustic recording units (ARUs) for up to 11 days during the game bird courtship 
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period in a total of 145 wildlife openings (Table 3). Together, game cameras and ARUs can 

collect large amounts of comparable data to in-person surveys in a cost‐effective, efficient, and 

standardized manner (Digby et al. 2013, Darras et al. 2018). At each wild opening, a single game 

camera (Bushnell Trophy Cam HD or Reconyx Hyperfire) and a single ARU (Wildlife Acoustics 

SongMeter SM2+, Wildlife Acoustics SongMeter SM3+, or Wildlife Acoustics SongMeter 

SM4+) were set up together within 50 m of the in-person game bird survey point (Figure 3). The 

ARUs were attached at a height of ~1.5 m to a tree or shrub and pointed in a direction that faced 

the in-person game bird survey point, minimized auditory obstruction, and maximized potential 

auditory detections (Darras et al. 2018). Game cameras were secured to the same tree or shrub at 

~40 cm above the ground. They were oriented parallel with the ground and pointed in a direction 

that faced the in-person game bird survey point, minimized visual obstruction, and maximized 

potential visual detections. For every game camera and ARU pair, I noted the type of game 

camera and ARU, and I measured the distance (m) to the central game bird survey point. 

All game cameras were equipped with an infrared flash; with highly sensitive and quick 

trigger times, the game cameras were able to record animals passing in front of them without the 

need for baiting. Each game camera was set on maximum trigger sensitivity and recorded 

multiple photographs per trigger, re‐triggering immediately if the animal was still in view. The 

ARUs were programmed to record from 3 hours before sunset to 1 hour after sunset and from 1 

hour before sunrise to 6 hours after sunrise, which encompasses the time that >90% of all wild 

turkey gobbles occur (Colbert et al. 2015) and overlapped the in-person game bird survey time 

period.  

Communitywide avian point count surveys for breeding songbird species 

I conducted breeding songbird surveys between 16 May and 10 July at 63 wildlife 

openings in 2019, 134 wildlife openings in 2020, and 112 wildlife openings in 2021, for a total 

of 309 wildlife openings (Table 3). Breeding songbirds were sampled with 10-minute unlimited 

radius stationary point count surveys at 2 sampling points associated with each wildlife opening 

— a central point at the same location as the game bird sampling point and an adjacent forest 

point that was randomly generated between 150 m and 300 m from the perimeter of the wildlife 

opening, >100 m from any other edges or significant canopy disturbance (to avoid possible edge 

effects; Germaine et al. 1997, Hobson and Bayne 2000b), and at least 200 m from the central 

point (Figure 3). 

Each sampling point was visited once. Surveys began within 15 minutes of sunrise and 

continued until approximately 4 hours after sunrise. The 10-minute survey was split into 2 equal 

time intervals: 0–5 minutes and >5–10 minutes. For each individual, the observer noted the 

species, time interval(s) during which it was detected, and distance band (≤50 m or >50 m). 

Observers also recorded the survey date, start time, temperature, maximum wind speed, 

maximum ambient noise level (dB), precipitation status, and sky code. No surveys were 

conducted on mornings with rain, heavy fog, or consistent high wind speed, following the 

guidelines of Ralph et al. (1993). 

Communitywide avian transect surveys for post-breeding songbird species 

I conducted post-breeding songbird surveys at a subset of 82 wildlife openings between 
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14 July and 5 August (Table 3); this sampling period was intended to minimize overlap with the 

breeding season (McDermott and Wood 2011, McDermott et al. 2011) and fall migration. Post-

breeding songbirds were sampled twice with transect surveys. Because transect surveys were 

time-intensive and the sampling period was limited, I constrained sampling to wildlife openings 

where at least 1 game bird species had been detected during the game bird season. Post-breeding 

songbirds were surveyed along 4–8 transect segments per wildlife opening (Figure 3), based on 

opening size (e.g., 4 for small [<1 ha] openings, 6 for mid-sized [1–5 ha] openings, and 8 for 

large [>5 ha] openings). To maximize spatial representation, I randomly selected locations for 

the start points of each transect within the wildlife opening, while ensuring a minimum distance 

of 15–50 m between points, based on opening size (15 m for small openings, 30 m for mid-sized 

openings, and 50 m for large openings). 

Transect surveys started 30 minutes after sunrise and continued until ~4 hours after 

sunrise. A single observer walked along the segments connecting the transect start points and 

recorded all birds detected visually or auditorily within or along the edge of the wildlife opening, 

excluding individuals recorded during a previous segment to avoid double-counting birds and 

excluding individuals that were in the adjacent forest surrounding the wildlife opening. For each 

transect survey, observers also recorded the total time elapsed. Transect surveys were not 

conducted in inclement weather (e.g., moderate or heavy precipitation, fog) or other conditions 

that would limit visual and auditory observation of birds. 

Vegetation surveys 

At every sampling point, I conducted a tree plot survey and a sight tube vegetation 

survey. During the tree plot survey, I collected data pertaining to canopy height, basal area, 

canopy position, and canopy cover. To measure canopy height, I used a clinometer to find the 

angle to the apex and base of a codominant tree and then measured the horizontal distance (m) to 

the base with a rangefinder. Trees were sampled with the variable radius plot method. Using a 

Jim-Gem Cruz-All with a basal area factor of 10, I identified all tree stems that qualified for the 

tree plot survey and recorded the species, diameter at breast height (DBH; measured with a 

Biltmore stick), and canopy position for each tree. For canopy position, I used a categorical 

classification that separates trees into 5 distinct classes: suppressed, intermediate, codominant, 

dominant, and open growth (for trees in non-forested sites, such as wildlife openings) (Jennings 

et al. 1999). Forest overstory density (i.e., percent canopy cover) was measured from the 4 

cardinal directions using a spherical densiometer. To measure vegetative cover and structure at 

the sampling points, I used the sight tube method. For these surveys, a sight tube was used to 

determine the presence of 4 vegetation classes (herb, shrub, sapling, tree) at 5 points located 10 

m apart in each cardinal direction, resulting in systematic estimates of vegetative cover at 20 

points within a 50-m radius plot. For each of the 20 points for the sight tube survey, observers 

recorded whether it was located within the wildlife opening or not. 

Data compilation and processing  

Processing images from game cameras and sound files from ARUs 

Images from the game cameras were processed using eMammal software, which groups 

photos into sequences based on the time elapsed between photos, such that a sequence comprises 
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multiple photos that are taken within 1 minute of each other. For each wildlife opening, trained 

data processing assistants recorded the species detected within each photo sequence. Sound files 

from the ARUs were processed using RavenPro 1.6 software. I semi-automated the initial 

screening process and used a Band-Limited Energy Detector with specific frequency and 

duration parameters to produce a selection of candidate vocalizations of wild turkey and 

American woodcock for trained data processing assistants to confirm. For each verified detection 

of wild turkey or American woodcock vocalizations, data processing assistants recorded the 

species, wildlife opening ID, and date detected. 

Predictor data – Local habitat 

Local habitat data associated with each wildlife opening consisted of percent cover of 4 

vegetation classes (herb, shrub, sapling, tree), percent canopy cover, canopy height, number of 

trees, relative basal area, and 3 topographical variables (elevation, aspect, topographical position 

index [TPI]) (Table 1). From the sight tube vegetation surveys, I calculated percent herb / shrub / 

sapling / tree cover as the total number of points at which herbs / shrubs / saplings / trees were 

present divided by the total number of points located within the opening. Because mature forest 

surrounding small wildlife openings was often within 50 m of the central sampling point, I also 

calculated percent tree cover outside of the wildlife opening, for which I divided the total number 

of points outside of the opening at which trees were present by the total number of points in the 

survey (N = 20). Percent canopy cover, canopy height, number of trees, and basal area were 

derived from field data collected during the tree plot surveys. Percent canopy cover was 

calculated as the average of the 4 densiometer values. Canopy height was calculated using 

trigonometry for a right triangle, given horizontal distance and angle from the base to the apex. 

Number of trees corresponded to the total number of live trees and dead snags within the tree 

plot that had a diameter >10 cm. Relative basal area was calculated as the sum of the individual 

basal area (DBH2 × 0.005454) of all the trees within the tree plot. Mean elevation, mode aspect, 

and mode TPI within the boundaries of each wildlife opening were calculated or derived using 

Shuttle Radar Topography Mission digital elevation data, which had a resolution of ~20–25 m. 

Mode aspect was then converted to a dummy variable where 0 = mode aspect was towards the 

south or west (i.e., between 135 and 315 degrees) and 1 = mode aspect was towards the north or 

east (i.e., <135 or >315 degrees), reflecting differences in forest productivity (Desta et al. 2004). 

I also calculated habitat data associated with each adjacent forest sampling point, which 

included percent shrub cover, percent any tree cover, percent canopy cover, basal area, elevation, 

and aspect. From the sight tube vegetation surveys, I calculated percent shrub cover and percent 

any tree cover as the total number of points at which shrubs and either saplings or trees were 

present divided by the total number of points (N = 20). Percent canopy cover and basal area were 

calculated in the same way as for the wildlife openings. Mean elevation and mode aspect within 

50 m of each adjacent forest sampling point were calculated using Shuttle Radar Topography 

Mission digital elevation data. Mode aspect was then converted to a dummy variable following 

the same procedure as for the wildlife openings. 

Predictor data – Size and shape 

Size and shape data were derived from a GIS dataset of MNF wildlife openings (Table 1). 

In addition to the area of each wildlife opening, I calculated the edge-to-area ratio (i.e., perimeter 
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divided by area) and the Polsby-Popper score (PP), which is a shape metric that indicates 

roundness and uses the following equation: 

PP = 4π × A / m2 

where A = area and m = perimeter. 

Predictor data – Management 

Management-related data were derived from both the GIS dataset of MNF wildlife 

openings and field observations, and included opening type, past maintenance status, recent 

disturbance, mowing frequency, human activity level, and proximity to roads (Table 1). Opening 

type was a designation by MNF and West Virginia Division of Natural Resources managers that 

I converted to a dummy variable, where 1 = opening type of “1” (N = 170 wildlife openings) and 

0 = all other opening types (N = 155 wildlife openings). An opening type of “1” corresponded to 

standard maintained wildlife openings, which were intentionally created by managers and 

characterized as a group by their small sizes, their relatively round (i.e., non-linear) shapes, and 

being actively maintained or mowed frequently (every 1–2 years). Other opening types included 

maintained linear openings along Forest Service roads, utility rights-of-way maintained by utility 

or gas companies, gas well sites, reclaimed strip mines, orchards, hayfields, current or former 

grazing allotments, savannahs, and beaver meadows. Past maintenance status and recent 

disturbance were dummy variables indicating whether the wildlife openings had a record of past 

maintenance by managers and whether there had been a recent disturbance (e.g., exposed bare 

soil, tilling, mowing). Mowing frequency was how many years elapsed between mowing by 

managers, ranging from 1–5 years. Human activity level and proximity to roads were 2 more 

dummy variables, where 0 = no or low levels of human activity or recreation (e.g., wildlife 

openings that were not easily or readily accessible) and not within 50 m of a public, maintained 

road, and 1 = moderate to high levels of human activity or recreation (e.g., wildlife openings that 

were located in areas with designated camping, tourist attractions, hiking trails) and within 50 m 

of a public, maintained road. 

Predictor data – Landscape context 

Data pertaining to the landscape context of each wildlife opening were derived from 

multiple GIS datasets and calculated within 1 km (Askins et al. 2007, Shake et al. 2012). 

Landscape-scale variables included distance to the nearest neighboring wildlife opening, 

numbers of small / mid-size / large wildlife openings within 1 km, proportion of land with 

wildlife habitat priority status within 1 km, proportions of regenerating / immature sawtimber / 

mature sawtimber stands within 1 km, proportions of stands managed with individual tree 

selection / two-age harvest within 1 km, mode stand age within 1 km, proportions of all forest / 

dry-oak forest / red spruce forest within 1 km, proportion of agricultural land (comprising hay / 

pasture and cultivated crops) within 1 km, and proportion of open habitat within 1 km (Table 1). 

Using the GIS dataset of MNF wildlife openings, distance to the nearest neighboring wildlife 

opening was measured as the Euclidean distance from the edge of the focal wildlife opening to 

the edge of its nearest neighbor and ranged from <1 m to ~2,720 m. For the number of small / 

mid-size / large wildlife openings within 1 km, I counted all wildlife openings that overlapped 

with a 1-km buffer around the edge of the focal wildlife opening and tallied them by size 



233 

 

category. To calculate the proportion of land with wildlife habitat priority status within 1 km, I 

used a GIS dataset from the MNF that mapped forest management prescriptions. For proportions 

of different stand types (e.g., regenerating [<10 years old], immature sawtimber [25–50 years 

old], and mature sawtimber [>50 years]) and different harvest types (e.g., individual tree 

selection and two-age) within 1 km and for mode stand age within 1 km, I used a GIS dataset 

from the MNF that mapped forest stands and provided stand-scale attribute information. Finally, 

I calculated the proportions of different forest types and land cover classes using a 2016 

statewide spectral land cover classification for West Virginia with 5 m resolution (Maxwell et al. 

2019). This raster map was created using geographic object-based image analysis, random forest 

machine learning, and National Agriculture Imagery Program orthophotography; it had an 

overall accuracy of 96.7%, and forest cover was mapped with user’s and producer’s accuracies 

of 98.0% and 99.4%, respectively (Maxwell et al. 2019). For all forest, I added the proportions of 

land cover classes 10–18 (other, red spruce, northern hardwood, mixed mesophytic, dry-mesic 

oak, dry oak / pine, pine oak rock, dry calcareous, and montane red oak forests), and for dry-oak 

forest, I combined the latter 5 land cover classes (14–18). Agricultural land included land cover 

classes 20 (hay / pasture) and 21 (cultivated crops), whereas open habitat included land cover 

classes 19 (low vegetation), 20 (hay / pasture), and 22 (mine grass). 

I also calculated landscape-scale data associated with each adjacent forest sampling point, 

which included distance to the corresponding wildlife opening and proportions of dry-oak, 

northern hardwoods, and red spruce forest within 50 m. Euclidean distance to the wildlife 

opening was calculated using the GIS dataset of MNF wildlife openings, and proportions of 

different forest types were derived from WV land cover map (Maxwell et al. 2019). 

Data analysis 

Modeling occupancy of focal game bird species 

To quantify and compare how wildlife opening attributes influenced game bird species in 

wildlife openings, I estimated the probability of occurrence for wild turkey, ruffed grouse, and 

American woodcock in multi-species occupancy models (Rota et al. 2016) (see Appendix D2 for 

JAGS code). A multi-species occupancy modelling framework incorporates a hierarchical 

structure that accounts for imperfect detection and increasingly higher-order species interactions 

(Rota et al. 2016). For example, first-order linear models affect the probability of each species 

occurring when all others are absent, and second-order linear models affect the probability of 2 

species occurring together. 

Within the multi-species occupancy model, I modeled the latent occupancy state of 

species sp at site s as a multivariate Bernoulli random variable: 

Zs ~ MVB(Ψs) 

where Zs = {z.witus, z.rugrs, z.amwos} was a 3-dimensional vector of 1’s and 0’s denoting the 

latent occupancy state of the 3 game bird species and Ψs was an 8-dimensional vector denoting 

the probability of all possible sequences of 1’s and 0’s that Zs could attain, such that the sum of 

all Ψs together was 1. The natural parameters f.witu, f.rugr, f.amwo, f.witu.rugr, f.witu.amwo, and 

f.rugr.amwo were defined as: 
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𝑓. 𝑤𝑖𝑡𝑢 =  log 
𝛹100

𝛹000
  

𝑓. 𝑟𝑢𝑔𝑟 =  log 
𝛹010

𝛹000
 

𝑓. 𝑎𝑚𝑤𝑜 =  log 
𝛹001

𝛹000
 

𝑓. 𝑤𝑖𝑡𝑢. 𝑟𝑢𝑔𝑟 =  log 
𝛹110𝛹000

𝛹100𝛹010
 

𝑓. 𝑤𝑖𝑡𝑢. 𝑎𝑚𝑤𝑜 =  log 
𝛹101𝛹000

𝛹100𝛹001
 

𝑓. 𝑟𝑢𝑔𝑟. 𝑎𝑚𝑤𝑜 =  log 
𝛹011𝛹000

𝛹010𝛹001
 

I further modeled the conditional occurrence of each game bird species (f.witu, f.rugr, and 

f.amwo; i.e., the log odds that species sp is present when the other 2 species are absent) as a 

function of 3–16 predictor variables (Tables 1–2). All continuous predictor variables were 

centered and scaled prior to analysis. Including quadratic relationships for certain variables, the 

total number of slope coefficients ranged 4–17, depending on the candidate model (Table 2). In 

addition, because my data included stacked observations across multiple years, I incorporated a 

random year effect for each species. For the second-order natural parameters (f.witu.rugr, 

f.witu.amwo, and f.rugr.amwo), I assumed constant interspecific interactions. When modeling the 

latent occupancy state of the 3 game bird species, I was also able to incorporate known 

detections of wild turkey, ruffed grouse, and American woodcock in the wildlife openings 

outside of survey periods (e.g., an incidental sighting of a wild turkey in the wildlife opening 

during deployment of the game cameras and ARUs).  

Due to multiple types of surveys and sources of data for each game bird species (Table 

3), I included 3 detection models for wild turkey, 1 detection model for ruffed grouse, and 2 

detection models for American woodcock within the multi-species occupancy model, such that: 

y.witu.pcss,r | z.witus ~ Bernoulli(p.witu.pcss,r × z.witus) 

y.witu.gcs,r | z.witus ~ Bernoulli(p.witu.gcs,r × z.witus) 

y.witu.arus,r | z.witus ~ Bernoulli(p.witu.arus,r × z.witus) 

y.rugr.pcss,r | z.rugrs ~ Bernoulli(p.rugr.pcss,r × z.rugrs) 

y.amwo.pcss,r | z.amwos ~ Bernoulli(p.amwo.pcss,r × z.amwos) 

y.amwo.arus,r | z.amwos ~ Bernoulli(p.amwo.arus,r × z.amwos) 

where the observed data y indicate detection (1) and non-detection (0) of wild turkeys during in-

person surveys (y.witu.pcss,r), game camera surveys (y.witu.gcs,r), or ARU surveys (y.witu.arus,r), 

ruffed grouse during in-person surveys (y.rugr.pcss,r), or American woodcocks during in-person 

surveys (y.amwo.pcss,r) or ARU surveys (y.amwo.arus,r) at site s during survey replicate r, and 

p.witu.pcss,r, p.witu.gcs,r, p.witu.arus,r, p.rugr.pcss,r, p.amwo.pcss,r, and p.amwo.arus,r are the 
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corresponding detection probabilities for the rth replicate survey at site s corresponding to each 

species and data source, conditional on the presence of each game bird species at site s (e.g., 

z.witus = 1, z.rugrs = 1, z.amwos = 1). In the analyses, I included detections of game birds that 

were from the adjacent forest rather than solely within or along the edge of the wildlife openings 

because there were no wild turkeys detected in the wildlife openings during the in-person 

surveys and ARU detections could not be confirmed to be from individuals in the wildlife 

openings. Replicates for the in-person morning surveys for wild turkey and ruffed grouse 

included 2 within-survey replicates (i.e., two 5-minute time intervals during the 10-minute 

surveys) across the 2 visits per wildlife opening. For the in-person evening surveys for American 

woodcock, there were 3 replicates corresponding to the three 2-minute time intervals during the 

6-minute surveys. For the game camera and ARU surveys, the number of survey replicates 

corresponded to the number of days that they were deployed and functioning in the wildlife 

opening (e.g., a game camera that was deployed for 10 days and was operational that entire time 

would result in 10 survey replicates). 

I used a logit link to model relationships between detection probability for each game 

bird species / data source and up to 6 detection covariates (Table 4). All continuous detection 

covariates were centered and scaled prior to analysis. For in-person game bird surveys, I also 

included a species-specific random observer effect, and for the ARU surveys, I incorporated a 

random ARU type effect to account for possible differences in detection probability among the 3 

ARU devices (i.e., Wildlife Acoustics SongMeter SM2+ vs. SM3+ vs. SM4+). 

The multi-species occupancy models were constructed in a Bayesian framework and 

implemented with Markov chain Monte Carlo methods. For all model parameters, I used prior 

distributions which were meant to provide little information (Appendix D2). I fit the models in 

JAGS (Plummer 2003) using the “jagsUI” package (Kellner and Meredith 2021) in Program R 

(R Core Team 2022). I used the “autojags” function to run 3 chains for each model with a burn-

in of 10,000 iterations, thinning rate of 5 iterations, and iteration increment of 5,000; models 

iteratively ran until reasonable convergence (R̂ ≤ 1.1) was achieved (Gelman et al. 2014), 

resulting in 3,000–9,000 posterior draws (Appendix D3). 

Model comparison to assess competing hypotheses 

To test competing hypotheses and determine whether local habitat attributes, opening 

size, management, landscape context, or a combination of site-level and landscape-level factors 

best explained game bird species occupancy of wildlife openings, I ran a total of 8 candidate 

models (Table 2). The first 7 models pertained to local habitat attributes (with 12 vegetation and 

topographical variables), opening size (with 3 size and shape variables), management (with 6 

management-related variables), landscape context (with 16 landscape-scale variables), location 

(with 16 variables dealing with where the wildlife opening is located within the landscape), 

construction (with 7 variables dealing with how wildlife openings are constructed within the 

landscape), and condition (with 14 variables dealing with the status of the wildlife opening itself 

with no regard to the surrounding landscape). The final model combined the consistently 

important site-level and landscape-level variables from the first 7 models. To compare the 8 

models representing the competing hypotheses, I ranked the models based on their deviance 

information criterion (DIC) values (Spiegelhalter et al. 2002). DIC is a penalized likelihood 

method based on the posterior distribution of the deviance statistic. Models with lower DIC 
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values indicate a better fit to the data compared to models with higher DIC values.  

Determining importance and assessing effects of predictor variables on game bird species 

To identify predictor variables that had significant influence on at least 1 of the 3 game 

bird species, I assessed variable importance by looking at whether the 95% credible intervals of 

the slope coefficient values overlapped 0; if the 95% credible intervals did not overlap 0, the 

variable was considered important. I further evaluated the marginal effects of important site 

covariates on the 3 game bird species by plotting the estimated probability of marginal species 

occurrence for wild turkey, ruffed grouse, and American woodcock across the full range of the 

variable, while holding the other variables constant. 

Determining overall species and guild richness from hierarchical community models 

To calculate overall species richness and guild richness within each wildlife opening 

during the breeding and post-breeding seasons and in the adjacent forest during the breeding 

season, respectively, I estimated individual songbird species occupancy simultaneously in 3 

hierarchical community models (see Appendix D2 for JAGS code) corresponding to the 

sampling season and survey location (Table 5), and then derived the corresponding sums for all 

species and each guild designation (Zipkin et al. 2010). I included 65 songbird species in the 

hierarchical community models for breeding and post-breeding songbirds within the wildlife 

opening and 44 songbird species in the hierarchical community model for breeding songbirds 

within 50 m of the adjacent forest sampling point (Appendix D1). 

Hierarchical community models facilitate a multi-species approach to estimating 

individual species occurrence probabilities (Dorazio and Royle 2005, Dorazio et al. 2006). 

Following the modeling framework of Zipkin et al. (2010), species-specific occurrence and 

detection processes within each of the hierarchical community models were related to one 

another through a community-level hierarchical component, which assumed that each of the 

species parameters were random effects, governed by “hyper-parameters” (i.e., drawn from a 

community-level distribution). Linking individual species occurrence probabilities through this 

community-level hierarchical component leads to improved precision of species-specific 

estimates (Kéry and Royle 2008, Zipkin et al. 2009). 

In each hierarchical community model, occurrence Zs,sp was defined as a binary variable 

in which Zs,sp = 1 if species sp occurs at site s. The occurrence state was assumed to be the 

outcome of a Bernoulli random variable, denoted by: 

Zs,sp ~ Bernoulli(Ψs,sp) 

where Ψs,sp is the probability that species sp occurs at site s. I further used a logit link to model 

linear relationships between occurrence probability (Ψs,sp) and 7–15 biologically relevant site 

covariates (Table 5). All continuous site covariates were centered and scaled prior to analysis. In 

addition, because my data included stacked observations across multiple years, each of the 

hierarchical community models also incorporated a random year effect. 

Given the observed data Ys,r,sp, where r is a survey replicate, I defined the detection model 

for species sp at site s during replicate r as: 
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Ys,r,sp ~ Bernoulli(ps,r,sp × Zs,sp) 

where ps,r,sp is the detection probability of species sp for the rth replicate at site s, given that 

species sp is present at site s. I further used a logit link to model linear relationships between 

detection probability (ps,r,sp) and 1–7 detection covariates (Table 5). I also incorporated a species-

specific random observer effect in the hierarchical community models for breeding songbirds 

within the wildlife opening and in the adjacent forest.  

Each hierarchical community model yielded species-specific estimates of latent 

occupancy (Zs,sp) for species sp at each site s based on observed data from replicate surveys. I 

then derived the overall species richness for each site by summing the occupancy of all the 

songbird species under consideration, as in the following equation: 

∑ 𝑍𝑠,𝑠𝑝

𝑁

𝑠𝑝=1

 

where N = 65 or N = 44, depending on the sampling season and survey location (Table 5). 

Similarly, I derived guild-specific richness by summing the occupancy of the subset of songbird 

species that belonged to each guild designation. 

All hierarchical community models were constructed in a Bayesian framework and 

implemented with Markov chain Monte Carlo methods. For all community-level and species-

specific parameters, I used prior distributions which were meant to provide little information; all 

gamma prior distributions had a shape parameter of 0.1 and rate parameter of 0.1, and all 

Gaussian prior distributions had a mean of 0 and precision of 0.1 (Appendix D2). I fit the models 

in JAGS (Plummer 2003) using the “jagsUI” package (Kellner and Meredith 2021) in Program R 

(R Core Team 2022). I used the “autojags” function to run 3 chains for each hierarchical 

community model with a burn-in of 10,000 iterations, thinning rate of 5 iterations, and iteration 

increment of 5,000. The models iteratively ran until reasonable convergence (R̂ ≤ 1.1) was 

achieved (Gelman et al. 2014), resulting in 3,000–9,000 posterior draws (Appendix D3). 

Determining relationships between overall species and guild richness and important predictor 

variables for game bird species 

After I derived detection-corrected overall species and guild richness within each wildlife 

opening during the breeding and post-breeding seasons and in the adjacent forest during the 

breeding season from the corresponding hierarchical community model, I incorporated those 

estimates into generalized linear mixed effects models, with overall species richness or guild 

richness as the response variable. To propagate uncertainty from the original hierarchical 

community model results, I ran 3,000–9,000 iterations (corresponding to the total number of 

posterior draws; Appendix D3) of the generalized linear mixed effects models for overall species 

richness and for each guild designation, cycling through the values from each of the posterior 

draws. The models yielded a posterior distribution of 3,000–9,000 values for each slope 

coefficient, from which I derived the mean and 95% credible intervals. Thus, the estimated 

effects on overall species and guild richness were calculated as derived quantities (Kery and 

Royle 2016). 
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For each generalized linear mixed effects model, I assumed the number of species within 

each wildlife opening or within 50 m of each adjacent forest sampling point (i.e., overall species 

richness or guild richness) to be a Poisson random variable and used a log link to model 

relationships with up to 19 predictor variables that were important for game bird species (Table 

6). All continuous predictor variables were centered and scaled prior to analysis. The total 

number of slope coefficients was 21 for breeding songbird guild richness within the wildlife 

opening and in the adjacent forest (resulting in a ratio of ~11–15 sites to 1 slope coefficient; 

Bolker et al. 2009) and 9 for post-breeding songbird guild richness within the wildlife opening 

(resulting in a ratio of 9 sites to 1 slope coefficient). The full set of site covariates (N = 19) 

comprised all of the predictor variables that were determined to be important for at least 1 of the 

3 game bird species in at least 1 of the candidate models, including: area (quadratic), elevation 

(quadratic), opening type, proximity to road, percent sapling cover, percent tree cover outside of 

the wildlife opening, canopy height, number of trees, number of small openings within 1 km, 

number of mid-size openings within 1 km, number of large openings within 1 km, proportion of 

land with wildlife habitat priority status within 1 km, proportion of mature sawtimber stands 

within 1 km, proportion of immature sawtimber stands within 1 km, proportion of individual tree 

selection stands within 1 km, proportion of all mature forest within 1 km, proportion of dry-oak 

forest within 1 km, proportion of agricultural land within 1 km, and mode stand age within 1 km 

(Table 6). The subset of site covariates (N = 7) used for modeling post-breeding songbird guild 

richness consisted of the predictor variables that were determined to be important for ≥2 game 

bird species or in ≥2 candidate multi-species game bird species occupancy models, including: 

area (quadratic), elevation (quadratic), opening type, proportion of land with wildlife habitat 

priority status within 1 km, proportion of mature sawtimber stands within 1 km, proportion of all 

mature forest within 1 km, and proportion of agricultural land within 1 km (Table 6). Because 

my data included stacked observations across multiple years, all of the generalized linear mixed 

effects models also incorporated a random year effect for log expected richness. I fit all 

generalized linear mixed effects models using the “glmer” function from the “lme4” package 

(Bates et al. 2015) in Program R (R Core Team 2022).  

Determining importance and assessing effects of predictor variables on guild richness 

To identify predictor variables that had significant influence on overall species and guild 

richness within the wildlife opening during the breeding and post-breeding seasons and in the 

adjacent forest during the breeding season, I assessed variable importance by looking at whether 

the 95% credible intervals of the slope coefficient values overlapped 0; if the 95% credible 

intervals did not overlap 0, the variable was considered important. I further evaluated the 

marginal effects of important site covariates on overall species and guild richness within and 

adjacent to the wildlife openings by plotting the estimated number of species across the full 

range of the variable, while holding the other variables constant. 

RESULTS 

Detection of game bird species during surveys 

All 3 game bird species were detected in or adjacent to wildlife openings from the in-

person game bird surveys from 15 April to 10 May. During the morning surveys for wild turkey 
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and ruffed grouse at 315 wildlife openings, observers recorded 67 wild turkey detections for 44 

wildlife openings and 76 ruffed grouse detections for 44 wildlife openings (Table 3). During the 

evening surveys for American woodcock at 211 wildlife openings, observers recorded 150 

detections of American woodcock for 59 wildlife openings. Only wild turkeys were reliably 

detected by the game camera surveys. From 142 game camera surveys, there were 50 wild turkey 

detections at 36 wildlife openings. Both wild turkey and American woodcock were detected by 

the ARU surveys. From 123 ARU surveys, there were 206 wild turkey detections for 74 wildlife 

openings and 175 American woodcock detections for 33 wildlife openings. Due to ARU 

equipment failures and sound file corruption, the total sample size was lower than that of the 

game camera surveys. 

Comparison of multi-species game bird occupancy models 

The 8 candidate models for multispecies game bird occupancy corresponded to 

competing hypotheses about whether local habitat attributes, opening size, management, 

landscape context, or a combination of site-level and landscape-level factors best explained game 

bird species occupancy in wildlife openings. Based on the DIC values (Table 2), the top model 

was the MANAGEMENT model with 6 predictor variables relating to management of the 

wildlife openings. The remaining of the top 4 models included HABITAT, CONDITION, and 

SIZE. The model with the largest DIC value (i.e., the worst of the 8 candidate models) was the 

LOCATION model with 16 predictor variables describing where the wildlife opening is located 

within the landscape. 

Effects of important predictor variables and co-occurrence on game bird occupancy 

Looking at the top candidate model for multi-species game bird occupancy, 2 of the 6 

management-related predictor variables had significant influence on at least 1 of the 3 game bird 

species (Table 7). When the opening type was “1” (i.e., standard maintained openings that tended 

to be small, round, and actively managed), the probability of marginal ruffed grouse occurrence 

was higher, and the probability of marginal American woodcock occurrence was lower (Figure 

4). In addition, when wildlife openings were within 50 m of a public, maintained road, the 

probability of marginal wild turkey occurrence decreased (Figure 4). In this model, both wild 

turkeys and ruffed grouse had positive associations with American woodcock presence (Table 7). 

The other 3 top candidate models also contained predictor variables that had significant 

influence on wild turkey, ruffed grouse, and/or American woodcock occupancy. The HABITAT 

model had 5 significant predictor variables, and ruffed grouse and American woodcock had 

positive associations with wild turkey presence (Table 7). The probability of marginal wild 

turkey occurrence peaked at a moderate number of trees in wildlife openings, although the 

credible intervals were wide at lower and higher numbers of trees; in contrast, ruffed grouse 

appeared to respond positively to increasing numbers of trees in wildlife openings (Figure 5). 

The probabilities of both marginal wild turkey occurrence and marginal ruffed grouse occurrence 

generally increased with elevation, whereas there was a clear peak in probability for American 

woodcock in wildlife openings at mid-elevations (Figure 5). The probability of marginal 

American woodcock occurrence further declined with increasing amounts of percent sapling 

cover within the wildlife opening and percent tree cover outside of the wildlife opening (Figure 

5). In the CONDITION model, only 2 predictor variables were significant, and wild turkey and 
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American woodcock had positive co-occurrence (Table 7). Just as in the MANAGEMENT 

model, the probability of marginal ruffed grouse occurrence was higher when the opening type 

was “1” (Figure 5). In addition, wild turkeys responded positively to increasing canopy height 

(Figure 5). Finally, in the SIZE model, area was a significant predictor variable for ruffed grouse 

(Table 7), with the highest probability of marginal ruffed grouse occurrence in the largest (12–22 

ha) wildlife openings (Figure 5), and both wild turkeys and ruffed grouse had positive 

associations with American woodcock presence. 

An additional 10 landscape-level predictor variables from the remaining 4 candidate 

models had significant relationships with at least 1 of the 3 game bird species (Table 8). 

Although not presented here, their effects were considered in conjunction with the guild richness 

results (Table 9). 

Detection of breeding and post-breeding songbird species during surveys 

A total of 104 species were detected during the breeding bird point count surveys that 

were conducted within the wildlife openings and in the adjacent forest from 16 May to 10 July. 

Of those, 66 total species were considered in the guild richness analyses, with 65 species 

included in the hierarchical community model for breeding songbirds within the wildlife opening 

and 44 species included in the hierarchical community model for breeding songbirds in the 

adjacent forest. During the surveys for breeding songbirds at the central sampling points, 

observers recorded 2,229 detections of the 65 species at 294 of 309 wildlife openings, and during 

the surveys for breeding songbirds at the adjacent forest sampling points, observers recorded 

1,216 detections of the 44 species for 211 of 241 wildlife openings (Table 3). A total of 90 

species were detected during the post-breeding bird transect surveys that were conducted along 

transects within the wildlife openings from 14 July to 5 August. Of those, 65 species were 

included in the hierarchical community model for post-breeding songbirds. During the transect 

surveys, observers recorded 1,267 detections of the 65 species at 81 of 82 wildlife openings. 

Effects of important predictor variables on breeding and post-breeding songbird guild 

richness 

A subset of the predictor variables that had significant influence on game bird species 

occupancy were also important for breeding songbirds in the wildlife openings. Of the 19 

predictor variables, 9 had significant relationships with overall species richness, 13 had 

significant relationships with early-successional / edge-associated guild richness, 7 had 

significant relationships with forest-interior guild richness, 4 had significant relationships with 

forest-gap guild richness, and 6 had significant relationships with forest generalist guild richness 

(Table 10). Mean expected overall species richness and breeding songbird guild richness were 

lower in certain wildlife opening types and tended to respond negatively to percent tree cover 

outside the wildlife opening, elevation, proportion of both mature and immature sawtimber 

within 1 km, and proportion of agricultural land within 1 km, but tended to respond positively to 

road proximity and percent sapling cover (Table 10). In addition, 3 of the 4 guilds had a 

quadratic relationship with area; mean expected overall species richness and early-successional / 

edge-associated guild richness peaked within the largest (13–22 ha) wildlife openings, while 

mean expected forest-interior guild richness and forest generalist guild richness peaked within 

moderately large wildlife openings that were 9–14 ha in size (Figures 6–7). 
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Breeding songbirds in the adjacent forest were significantly influenced by certain 

predictor variables that were important for game bird species occupancy, but there were fewer 

overall significant relationships compared to breeding songbirds in the wildlife openings. Of the 

19 predictor variables, 5 had significant relationships with overall species richness, 6 had 

significant relationships with forest-interior guild richness, 4 had significant relationships with 

forest-gap guild richness, and 4 had significant relationships with forest generalist guild richness 

(Table 10). Notably, mean expected overall species richness and forest-interior guild richness at 

adjacent forest sampling points had quadratic relationships with wildlife opening size (Figure 6), 

such that the peak represented the maximum mean expected number of species and corresponded 

to large wildlife openings that were 5–11 ha in size (Figure 7), but they responded negatively to 

the number of large openings within 1 km of the focal wildlife opening (Table 10). 

For post-breeding songbirds in wildlife openings, only 3 of the 7 predictor variables 

included in the post-breeding guild richness models were significant for at least 1 guild (Table 

10). For overall species and most guilds, mean expected richness decreased with elevation, but 

exhibited quadratic relationships with area, such that the peak represented the maximum mean 

expected number of species and corresponded to large wildlife openings that were 10–16 ha in 

size (Figures 6–7). In addition, mean expected overall species richness and forest generalist guild 

richness declined with increasing proportions of mature forest within 1 km. 

DISCUSSION 

In this study, I demonstrated that management actions primarily aimed toward creating 

and promoting habitat for target game birds can also benefit a diverse community of breeding 

and post-breeding songbirds within the Central Appalachians. Specifically, I quantified the 

effects of site-level and landscape-level wildlife opening attributes on multi-species avian 

occupancy and identified individual characteristics of wildlife openings that support both game 

birds and songbird diversity. My results supported the hypothesis that management and local 

habitat attributes best explain game bird species occupancy in wildlife openings. Site-level 

variables were better able to explain variation in multi-species game bird occupancy than 

landscape-level variables, based on model comparisons using DIC values. However, a holistic 

assessment of additional impacts on songbird diversity in wildlife openings highlighted the 

importance of landscape context. To promote game bird species occurrence in wildlife openings, 

land managers should primarily focus on management actions and habitat, but to also maximize 

overall songbird species richness and songbird guild richness during the breeding and post-

breeding seasons, it is important to consider regional elevational gradients, size of the wildlife 

opening, and proportions of different land cover types in the surrounding landscape. 

My results suggested that wild turkey, ruffed grouse, and American woodcock are 

responding more strongly to site-level factors than to landscape context. This is largely 

consistent with and builds upon the previous literature focused on game bird species in forest 

openings. Other studies have also documented game birds using open-canopy, managed areas 

(Hale and Gregg 1976, Healy and Nenno 1983, Akresh et al. 2022) and highlighted the 

importance of management and local habitat attributes (Healy and Nenno 1983, Healy 1985, 

Hollifield and Dimmick 1995, Jones et al. 2008). However, I did expect for percent vegetative 

cover to be more important than my results indicated, since previous studies often identify 
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habitat structure as influential on the use of wildlife openings by game bird species. For example, 

Healy and Nenno (1983) emphasized that the essential feature of wild turkey brood habitat is 

herbaceous vegetation in wildlife openings, and recommendations for creating and managing 

ruffed grouse habitat include promoting the growth of young mixed stands with high horizontal 

and vertical cover provided by high small-stem density (Giroux et al. 2007). Interestingly, I 

found that wild turkeys were less likely to occur in wildlife openings close to public roads, 

perhaps due to their wariness of hunters or vehicular traffic (McDougal et al. 1990), whereas 

ruffed grouse are often observed near roads (Healy and Nenno 1983, Harper et al. 2006, Tirpak 

et al. 2010), although that relationship was not significant in my study. 

My study results regarding wildlife opening size were also mostly congruent with 

prevailing game bird habitat management recommendations, which often involve creating 

midsize to large openings in the landscape (Thompson and Dessecker 1997). The mean 

probability of wild turkey occurrence was >0.50 for wildlife openings of any size and >0.75 for 

wildlife openings that were >7.7 ha in size, and the mean probability of American woodcock 

occurrence was >0.50 for wildlife openings that were >11.1 ha in size (Figure 5). However, the 

95% credible intervals for both species were wide and thus the relationships were not statistically 

significant. Notably, there was a potential discrepancy in wildlife opening size effects on ruffed 

grouse between my study and others. Based on management recommendations for ruffed grouse 

in the Central Appalachians (Harper et al. 2006), they are thought to favor small (<0.5 ha) 

wildlife openings, but my results indicated that mean probability of ruffed grouse occurrence was 

higher (>0.50) for larger (>10.7 ha) wildlife openings (Figure 5). This is likely because my 

analyses were not restricted to only game birds detected within wildlife openings (i.e., I included 

game bird species occurrence within wildlife openings, along the edge of wildlife openings, or in 

the adjacent forest), since the location of individuals detected by the ARUs could not be 

determined. 

Although land managers often focus on game bird species, promoting general 

biodiversity in wildlife openings is often a secondary goal. My study specifically identified the 

effects of site-level and landscape-level factors that were important for wild turkey, ruffed 

grouse, and American woodcock, and then explored their effects on breeding and post-breeding 

songbird species within and adjacent to the wildlife openings. One interesting trend was the 

consistency in importance and effects of opening size on breeding and post-breeding songbirds 

within the wildlife openings. Overall species richness and guild richness either had significant 

positive linear or quadratic relationships, with the maximum mean expected number of species 

repeatedly occurring between 9 ha and 18 ha across guilds and sampling seasons (Figure 7). 

Correspondingly, the minimum mean expected number of breeding and post-breeding songbird 

species within the wildlife openings occurred in small openings (<1 ha). When comparing the 4 

habitat guilds, it was also notable that the highest magnitude effects of opening size were on 

early-successional / edge-associated guild richness. This is consistent with previous studies that 

correlate early-successional and shrubland guild richness and species abundance with patch size 

(Chandler et al. 2009, Lehnen and Rodewald 2009, Moorman and Guynn, Jr. 2015). 

Management recommendations for individual game bird species and breeding songbird 

guilds within wildlife openings 

Based on the results of this study (Table 9) and of other research cited herein, land 
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managers should consider creating or managing for the following conditions in order to promote 

individual game bird species and breeding / post-breeding songbird diversity in wildlife openings 

within the Central Appalachians: 

Wild turkeys: The probability of wild turkey occurrence was statistically significantly 

higher in wildlife openings that met these conditions: >50 m from a public, maintained road; mid 

to high (>700 m) elevation; ≥1 neighboring large opening within 1 km; low (<0.20) proportions 

of mature sawtimber within 1 km; very low (<0.02) proportions of individual tree selection 

harvest within 1 km; and relatively low (<0.40) proportions of dry-oak forest within 1 km. Wild 

turkeys may also benefit from having a moderate amount of tall (>15 m) trees within the wildlife 

opening, reduced (<50%) percent sapling cover, higher numbers (5–15) of neighboring small (<1 

ha) openings within 1 km, and higher (>0.40) proportions of immature sawtimber within 1 km. 

Healy and Nenno (1983) also provide recommendations for managing wildlife openings for wild 

turkeys in the Central Appalachians, with an emphasis on maintaining smaller (<0.5 ha) 

openings, promoting high percent herb cover, and mowing every 1–2 years. 

Ruffed grouse: The probability of ruffed grouse occurrence was statistically significantly 

higher in wildlife openings that met these conditions: intentionally created by managers and 

generally small (<1 ha) in size, relatively round (i.e., non-linear) in shape, and actively 

maintained or mowed frequently (every 1–2 years); contained trees; and <1 ha or >10 ha in size. 

Note that ruffed grouse may be found within, along the edges, or adjacent to smaller (<1 ha) 

wildlife openings (Harper et al. 2006) but could be less likely to be found within the larger (>10 

ha) wildlife openings, for which the edges or adjacent forest would serve as primary habitat. 

However, the interior of larger openings can be made more attractive to ruffed grouse by using 

hedgerows of soft mast producing trees to break up the opening (Harper et al. 2006). Ruffed 

grouse may also be more likely to occur in wildlife openings at mid- to high (>750 m) elevations 

and with reduced (<50%) percent sapling cover, shorter (<15 m) trees, higher numbers (5–15) of 

neighboring small (<1 ha) openings within 1 km (also endorsed by Harper et al. [2006]), lower 

(<0.30) proportions of mature sawtimber within 1 km, higher (>0.5) proportions of immature 

sawtimber within 1 km, and moderate (0.60–0.85) proportions of forest within 1 km. 

Maintaining young forest (<20 years old) cover in the landscape is also advocated by Tirpak et 

al. (2010). 

American woodcock: The probability of American woodcock occurrence was 

statistically significantly higher in wildlife openings that met these conditions: mid (800–1200 

m) elevation; <1 ha or >7 ha in size; <25% sapling cover; <50 years-old stands within 1 km; 

moderate (0.60–0.80) proportions of forest within 1 km; 5–15 neighboring small (<1 ha) 

openings and <2 neighboring midsize (1–5 ha) openings within 1 km; low (<0.25) proportions of 

dry-oak forest within 1 km; and very low (<0.02) proportions of agricultural land within 1 km. 

American woodcock may also be more likely to occur in wildlife openings that are >50 m from a 

public, maintained road. Recommendations for American woodcock conservation in the 

Appalachian Mountains from other sources (Sepik et al. 1981, Kelley et al. 2008) agree with 

these conditions and include creating multiple openings that are >0.2 ha for singing grounds and 

>1.2 ha for roosting grounds, as well as maintaining little to no sapling or tree cover within them, 

but also emphasize the importance of earthworms. 

Early-successional / edge-associated songbird species: During the breeding season, 
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mean expected richness of the early-successional / edge-associated guild was statistically 

significantly higher in wildlife openings that met these conditions: contain few to no trees (a 

characteristic also supported by the findings of Smetzer et al. [2014]); low (500–900 m) 

elevation; 13–22 ha in size; 5–8 neighboring midsize (1–5 ha) openings within 1 km (similar to 

the clustering of early-successional patches recommended by DeGraaf and Yamasaki [2003] and 

Dettmers [2003]); low (<0.50) proportions of immature sawtimber within 1 km; moderate (0.60–

0.80) proportions of forest within 1 km; low (<0.40) proportions of dry-oak forest within 1 km; 

and low (<0.10) proportions of agricultural land within 1 km. Mean expected early-successional / 

edge-associated guild richness during the post-breeding season was also higher in wildlife 

openings that were at low (500–900 m) elevations and 12–20 ha in size. 

All songbird species: During the breeding season, mean expected overall species richness 

was statistically significantly higher in wildlife openings that met these conditions: >50% sapling 

cover; low (500–900 m) elevation; 12–22 ha in size; low (<0.30) proportions of mature 

sawtimber within 1 km; low (<0.50) proportions of immature sawtimber within 1 km; and low 

(<0.10) proportions of agricultural land within 1 km. Mean expected overall species richness 

during the post-breeding season was also higher in wildlife openings that were at low (500–900 

m) elevations and 10–18 ha in size. 

Management recommendations for holistic avian communities within wildlife openings 

Ultimately, based on my results, land managers may be able to maximize both game bird 

occurrence and breeding / post-breeding songbird diversity in wildlife openings within the 

Central Appalachians by establishing relatively large (9–22 ha), actively managed (1–2 years) 

wildlife openings in mid-elevation (800–1200 m) areas away (>50 m) from roads. Within the 

wildlife openings, it would be best to have trees present but reduce percent sapling cover and 

canopy height. Considering the surrounding landscape, it might be beneficial to have small and 

large openings within 1 km but to avoid landscapes with high proportions of mature sawtimber, 

mature forest, dry-oak forest, and agricultural land. Such landscapes would likely have high 

habitat heterogeneity and forest age diversity, which is a common management recommendation 

for many of the focal species in this study (e.g., Hagan et al. 1997, DeGraaf and Yamasaki 2003, 

McDermott and Wood 2009, Warburton et al. 2011, Greenberg et al. 2023). For perspective on 

the current management of wildlife openings in the Monongahela National Forest, only 2 the 335 

total wildlife openings in my study meet all of those recommendations; the vast majority of 

documented wildlife openings are smaller than recommended and located in landscapes with 

high proportions of mature forest. 

Additional considerations for breeding songbirds in the adjacent forest 

It is important to consider potential negative effects on the breeding bird community in 

mature forest adjacent to the wildlife openings, which exhibited peaks in guild richness when 

openings were 5–11 ha in size and responded negatively to the number of large openings within 

1 km of the focal wildlife opening. Therefore, to avoid negatively impacting the breeding bird 

community in adjacent forest, it would be prudent to limit the maximum size of wildlife 

openings to ≤16 ha (a size at which breeding and post-breeding songbird guild richness within 

the wildlife openings were still near or at their peak) and increase the spacing between large 

wildlife openings created in the landscape. Previous studies have found that larger openings can 
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have more negative effects on forest-interior songbirds (Germaine et al. 1997, Moorman and 

Guynn, Jr. 2015). It is also important to note that my study did not consider responses in survival 

or nest success to wildlife opening characteristics. Forest-interior species generally avoid edge 

conditions for nesting (Kroodsma 1984), and several studies have demonstrated higher predation 

and parasitism rates of nests located along or near forest edges (e.g., Brittingham and Temple 

1983, Wilcove 1985, Andren and Angelstam 1988, Yahner and Scott 1988). 

Future research directions 

It should also be noted that this study did not encompass all of the potential factors that 

could influence game bird and breeding / post-breeding presence in wildlife openings of the 

Central Appalachians. Future studies could incorporate sampling sites that are located within 

private and state-owned forests and encompass more expansive management activities (e.g., 

prescribed fire, plantings). Additional wildlife opening attributes to explore include origin 

(naturally occurring vs. created by management activities), vegetation composition (e.g., native 

vs. nonnative, natural vs. plantings, cool-season grasses vs. warm-season grasses), time since 

creation / establishment, time since disturbance, and seasonal timing of disturbance. For instance, 

although I did not investigate the effects of the timing of mowing or other management actions, 

other studies and management guides recommend mowing late in the growing season every 1–2 

years to maintain grass / forb cover (Sepik et al. 1981, Healy and Nenno 1983). Harper et al. 

(2006) assert that mowing should be avoided during the nesting / brooding season (May –

August) and rather be delayed until late winter. I would highly recommend that any future 

studies on similar topics solicit substantial input from land managers throughout the scientific 

process, from project development to data collection and analyses to interpretation of results. 

Conclusions 

Here, I establish that game bird species occupancy in wildlife openings in heavily 

forested landscape may be best explained by management actions and local habitat attributes. 

The results of this study are valuable for understanding how to best manage wildlife openings 

and their surrounding forest matrices for target game bird species and a diversity of songbird 

species in both the breeding and post-breeding seasons. My findings indicate that it may be 

feasible to manage wildlife openings for the mutual benefit of these different species groups. I 

further present a set of management recommendations to maximize occurrence of wild turkey, 

ruffed grouse, and American woodcock in concurrence with breeding and post-breeding songbird 

occurrence within wildlife openings, with considerations for minimizing negative impacts to 

breeding songbirds in adjacent forests. These actions be applied by private landowners, non-

governmental organizations, and government agencies to simultaneously meet management 

goals and promote diverse forest ecosystems. 
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TABLES 

Table 1. List of site covariates corresponding to the wildlife openings, organized by category.  

Category Site Covariate Description Data Source 
 

Local 

Habitat 

 

Percent Herb 
 

 

Percentage reflecting the total number 

of vegetation survey points at which 

herbs / shrubs / saplings / trees were 

present divided by the total number of 

points located within the wildlife 

opening 
 

Sight tube 

vegetation 

surveys 

Percent Shrub 
 

Percent Sapling 
 

Percent Tree 

Percent Tree 

Outside Opening 

Percentage reflecting the total number 

of vegetation survey points outside of 

the wildlife opening at which trees were 

present divided by the total number of 

points in the survey (N = 20) 
 

 

Canopy Cover 
 

Percentage reflecting the average of 4 

densiometer measurements of forest 

overstory density 
 

Tree plot 

surveys 

Canopy Height Height (m) of an average intermediate 

tree within the wildlife opening 
 

Number Trees Total number of live trees and dead 

snags with >10 cm diameter located 

within the tree plot; index of relative 

tree density 
 

Basal Area Sum of the individual basal areas of all 

the trees within the tree plot; index of 

relative basal area 
 

 

Elevation 
 

Mean elevation within boundaries of 

wildlife opening 
 Shuttle Radar 

Topography 

Mission digital 

elevation data 

Aspect Mode aspect within boundaries of 

wildlife opening 
 

TPI Mode topographical position index 

(TPI) value within boundaries of 

wildlife opening 
 

 

Size 
 

Area 
 

Area (ha) of wildlife opening 
 

GIS dataset of 

MNF wildlife 

openings 

Edge:Area Ratio Ratio of total edge distance (m) to area 

(ha) of wildlife opening 
 

Roundness Shape metric; also known as the Polsby-

Popper score 
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Table 1. Continued. 

Category Site Covariate Description Data Source 
 

Management 
 

Opening Type 
 

Dummy variable where 1 = opening 

type of “1” (i.e., standard maintained 

wildlife openings that were intentionally 

created by managers and tended to be 

small, round, and actively managed) and 

0 = all other opening types (e.g., 

reclaimed strip mines, grazing 

allotments, gas well sites) 
 

GIS dataset of 

MNF wildlife 

openings 

(supplemented 

by field 

observations) 

Past Maintenance Dummy variable where 1 = record of 

past maintenance by managers and 0 = 

no record 
 

Recent 

Disturbance 

Dummy variable where 1 = disturbance 

involving exposing bare soil, tilling, or 

mowing within past 5 years and 0 = no 

disturbance 
 

Mowing 

Frequency 

Number of elapsed years between 

mowing by managers 
 

Human Activity Dummy variable where 1 = moderate to 

high levels of human activity or 

recreation and 0 = no or low levels of 

human activity or recreation 
 

Road Proximity Dummy variable where 1 = within 50 m 

of a public, maintained road and 0 = not 

within 50 m of a public, maintained road 
 

 

Landscape 

Context 

 

Distance to 

Nearest Opening 

 

Distance (m) from the edge of the focal 

wildlife opening to the edge of its 

nearest neighbor 
 

GIS dataset of 

MNF wildlife 

openings 

 
 

Number Small 

Openings 
 Number of small (<1 ha) / midsize (1–5 

ha) / large (>5 ha) wildlife openings that 

intersected a 1-km buffer around the 

edge of the focal wildlife opening 

 Number Midsize 

Openings 
 

 Number Large 

Openings 
 

 
 

Proportion 

Wildlife Priority 

 

Proportion of land designated as having 

“wildlife habitat priority” status within 1 

km of the edge of the wildlife opening 

 

GIS dataset of 

MNF forest 

management 

prescriptions 
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Table 1. Continued. 

Category Site Covariate Description Data Source 
 

Landscape 

Context 

 

Proportion 

Regenerating 

Stand 
Proportion of different stand types 

(regenerating (<10 years old) / immature 

sawtimber (25–50 years old) / mature 

sawtimber (>50 years old)) within 1 km 

of the edge of the wildlife opening 
 

GIS dataset of 

MNF forest 

stands 

 

Proportion 

Immature 

Sawtimber 
 

Proportion 

Mature 

Sawtimber 
 

 

Proportion 

Individual Tree 

Selection 

Proportion of different harvest types 

(individual tree selection / two-age 

harvest) within 1 km of the edge of the 

wildlife opening 

 

Proportion Two-

Age Harvest 
 

 

Stand Age 
 

Mode stand age within 1 km of the edge 

of the wildlife opening 
 

 

Proportion Forest 
 

Proportion of all mature forest within 1 

km of the edge of the wildlife opening 
 

 

WV land cover 

map 

Proportion Oaks Proportion of dry-oak forest within 1 km 

of the edge of the wildlife opening 
 

Proportion Red 

Spruce 

Proportion of red spruce forest within 1 

km of the edge of the wildlife opening 
 

Proportion 

Agriculture 

Proportion of agriculture (including hay 

/ pasture and cultivated crops) within 1 

km of the edge of the wildlife opening 
 

Proportion Open Proportion of open habitat (including 

low vegetation, hay / pasture, and mine 

grass) within 1 km of the edge of the 

wildlife opening 
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Table 2. List of 8 candidate models (representing competing hypotheses that seek to explain 

game bird species occupancy of wildlife openings) with corresponding list of predictor variables 

(and total number of slope coefficients), and deviance information criterion (DIC) value, in order 

from lowest to highest DIC value. 

Candidate Model Predictor Variables (N Coefficients) DIC ΔDIC 

MANAGEMENT Opening Type + Past Maintenance + Recent Disturbance 

+ Mowing Frequency + Human Activity + Road 

Proximity (6) 
 

2800 --- 

HABITAT Percent Herb + Percent Shrub + Percent Sapling + 

(Percent Tree)2 + Percent Tree Outside Opening + 

(Canopy Cover)2 + Canopy Height + (Number Trees)2 + 

Basal Area + (Elevation)2 + Aspect + TPI (16) 
 

2832 32 

CONDITION Opening Type + Past Maintenance + Recent Disturbance 

+ Mowing Frequency + Human Activity + Percent Herb 

+ Percent Shrub + Percent Sapling + (Percent Tree)2 + 

Percent Tree Outside Opening + (Canopy Cover)2 + 

Canopy Height + (Number Trees)2 + Basal Area (17) 
 

2839 39 

SIZE (Area)2 + Edge:Area Ratio + Roundness (4) 
 

2862 62 

LANDSCAPE Distance to Nearest Opening + Number Small Openings 

+ Number Midsize Openings + Number Large Openings 

+ Proportion Wildlife Priority + Proportion 

Regenerating Stand + Proportion Immature Sawtimber + 

Proportion Mature Sawtimber + Proportion Individual 

Tree Selection + Proportion Two-Age Harvest + (Stand 

Age)2 + Proportion Forest + Proportion Oaks + 

Proportion Red Spruce + Proportion Agriculture + 

Proportion Open (17) 
 

2952 152 

COMBINED Opening Type + (Elevation)2 + (Area)2 + Number Total 

Openings + Proportion Wildlife Priority + Proportion 

Mature Sawtimber + Proportion Forest + Proportion 

Agriculture (10) 
 

2961 161 

CONSTRUCTION Distance to Nearest Opening + Number Small Openings 

+ Number Midsize Openings + Number Large Openings 

+ (Area)2 + Edge:Area Ratio + Roundness (8) 
 

2992 192 

LOCATION Road Proximity + (Elevation)2 + Aspect + TPI + 

Proportion Wildlife Priority + Proportion Regenerating 

Stand + Proportion Immature Sawtimber + Proportion 

Mature Sawtimber + Proportion Individual Tree 

Selection + Proportion Two-Age Harvest + (Stand Age)2 

+ Proportion Forest + Proportion Oaks + Proportion Red 

Spruce + Proportion Agriculture + Proportion Open (18) 
 

3032 232 
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Table 3. List of the various data sources for game bird and breeding / post-breeding songbird occurrence, with survey type, target 

species, sampling period, total sample size (number of wildlife openings or adjacent forest sampling points), number of between-

survey replicates (i.e., visits), number of within-survey replicates (i.e., time intervals within total survey period), maximum number of 

total sampling replicates, total number of replicates with detections of the target species from the corresponding survey type, and 

number of wildlife openings where the target species was detected during the corresponding survey type. 

Survey Type Species 
Sampling 

Period 

Sample 

Size 
Visits 

Time 

Intervals 
Replicates Detections 

Openings 

with 

Detections 

Morning game bird 

survey 
WITU / RUGR 

15 April – 

10 May 
315 2 2 4 

WITU = 67  

RUGR = 76 

WITU = 44 

RUGR = 44 

Evening game bird 

survey 
AMWO 

15 April – 

10 May 
211 1 3 3 150 59 

Game camera survey WITU 
15 April – 

10 May 
142 1 

1–11 

(mean: 

7.6 days) 

11 50 36 

ARU survey WITU / AMWO 
15 April – 

10 May 
123 1 

1–11 

(mean: 

6.6 days) 

11 
WITU = 206 

AMWO = 175 

WITU = 74 

AMWO = 33 

Point count survey 

(in wildlife opening) 

Breeding songbirds 

(N = 65) 

16 May – 

10 July 
309 1 2 2 2,229 294 

Point count survey 

(in adjacent forest) 

Breeding songbirds 

(N = 44) 

16 May – 

10 July 
241 1 2 2 1,216 211 

Transect survey 
Post-breeding 

songbirds 

14 July – 

5 August 
82 2 N/A 2 1,267 81 
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Table 4. List of detection covariates corresponding to each survey type. 

Survey Type Detection Covariate Description 
 

Morning / evening 

game bird survey 

 

Day 
 

Numeric day of year (where 1 = 1 January) 

Time Since Sunrise / 

Sunset 

Number of elapsed hours since local sunrise or 

sunset time 

Wind Dummy variable where 1 = wind codes 

exceeding “1” and 0 = wind codes of either “0” 

or “1” 

Precipitation Dummy variable where 1 = light precipitation 

and 0 = no precipitation 

Temperature Dummy variable where 1 = temperatures ≤7.2 

or ≥18.3 °C and 0 = temperatures between 7.2 

and 18.3 °C 

Noise Maximum noise level (dB) during survey 

Observer Numeric designation for each unique observer; 

used for random effects 
 

 

Game camera / 

ARU survey 

 

Day 
 

Numeric day of year (where 1 = 1 January) 

Distance to Center Distance (m) to the central survey point 

Game Camera Type Type of game camera (0 = Bushnell Trophy 

Cam HD, 1 = Reconyx Hyperfire) 

ARU Type Numeric designation for each type of ARU (1 = 

Wildlife Acoustics SongMeter SM2+, 2 = 

SM3+, 3 = SM4+); used for random effects 
 

 

Point count survey 

(in wildlife opening 

or adjacent forest) 

 

Day 
 

Numeric day of year (where 1 = 1 January) 

Time Since Sunrise Number of elapsed hours since local sunrise 

time 

Wind Speed Maximum wind speed (m/s) during survey 

Sky Dummy variable where 1 = sky codes 

exceeding “1” and 0 = sky codes of either “0” 

or “1” 

Precipitation Dummy variable where 1 = light precipitation 

and 0 = no precipitation 

Temperature Dummy variable where 1 = temperatures ≤7.2 

or ≥21.7 °C and 0 = temperatures between 7.2 

and 21.7 °C 

Noise Maximum noise level (dB) during survey 

Observer Numeric designation for each unique observer; 

used for random effects 
 

 

Transect survey 
 

Total Survey Time 
 

Number of elapsed hours from start time to end 

time of survey 
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Table 5. List of the 3 hierarchical community models organized by sampling season and 

sampling point location, along with their corresponding number of species (N) and site / 

detection covariates (with corresponding total number of slope coefficients). 

Sampling Season Location N 
Site Covariates  

(N Coefficients) 

Detection Covariates  

(N Coefficients) 

Breeding season 

(16 May – 10 July) 

Wildlife 

opening 
65 

 

Percent Herb +  

(Percent Shrub)2 +  

(Percent Tree)2 + 

Recent Distribution +  

Basal Area + Elevation + 

Aspect + Area +  

Edge:Area Ratio + 

Proportion Forest + 

Proportion Oaks + 

Proportion Red Spruce + 

Proportion Open (15) 
 

Day +  

(Time Since Sunrise)2 + 

Wind Speed + Sky + 

Precipitation + 

Temperature + Noise 

(8) 

Breeding season 

(16 May – 10 July) 

Adjacent 

forest 
44 

 

Distance to Wildlife 

Opening + (Percent Shrub)2 

+ (Percent Any Tree)2 + 

(Canopy Cover)2 + Basal 

Area + Elevation + Aspect + 

Proportion Oaks + 

Proportion Northern 

Hardwoods + Proportion 

Red Spruce (13) 
 

Day +  

(Time Since Sunrise)2 + 

Precipitation + Noise 

(5) 

Post-breeding 

season (14 July –  

5 August) 

Wildlife 

opening 
65 

 

Percent Shrub + Percent 

Tree + Recent Disturbance + 

Elevation + Area + 

Edge:Area Ratio + 

Proportion Forest (7) 
 

Total Survey Time (1) 
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Table 6. List of the 3 sets of guild richness models, organized by sampling season and sampling 

point location, along with the corresponding number of guilds (N) and site covariates (with 

corresponding total number of slope coefficients). All breeding season guild richness models had 

the same set of site covariates. 

Sampling Period Location N Site Covariates (N Coefficients) 

 

Breeding season 

(16 May – 10 July) 
 

 

Wildlife 

opening 

 

4 
 

Opening Type + Road Proximity + Percent Sapling + 

Percent Tree Outside Opening + Canopy Height + 

Number Trees + (Elevation)2 + (Area)2 + Number 

Small Openings + Number Midsize Openings + 

Number Large Openings + Proportion Wildlife Priority 

+ Proportion Immature Sawtimber + Proportion Mature 

Sawtimber + Proportion Individual Tree Selection + 

Stand Age + Proportion Forest + Proportion Oaks + 

Proportion Agriculture (21) 
 

 

Breeding season 

(16 May – 10 July) 

 

Adjacent 

forest 

 

3 

 

Post-breeding 

season (14 July –  

5 August) 
 

 

Wildlife 

opening 

 

4 
 

Opening Type + (Elevation)2 + (Area)2 + Proportion 

Wildlife Priority + Proportion Mature Sawtimber + 

Proportion Forest + Proportion Agriculture (9) 
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Table 7. Slope coefficient values and significance (bold type) associated with the full set of predictor variables from the top 4 

candidate multi-species game bird occupancy models (MANAGEMENT, HABITAT, CONDITION, SIZE) for wild turkey (WITU), 

ruffed grouse (RUGR), and American woodcock (AMWO). Predictor variables are organized by category (management, local habitat, 

and size). 

Predictor Variable 
MANAGEMENT HABITAT CONDITION SIZE 

WITU RUGR AMWO WITU RUGR AMWO WITU RUGR AMWO WITU RUGR AMWO 

Opening Type -0.473 1.745 -0.820 --- --- --- 0.091 1.961 -0.780 --- --- --- 

Past Maintenance -0.329 0.513 0.683 --- --- --- 0.683 0.587 0.532 --- --- --- 

Recent Disturbance 0.687 0.240 0.553 --- --- --- 0.549 0.265 0.455 --- --- --- 

Mowing Frequency 0.151 -0.486 0.091 --- --- --- 0.377 -0.504 0.212 --- --- --- 

Human Activity 1.219 0.847 0.360 --- --- --- 1.156 0.894 0.331 --- --- --- 

Road Proximity -1.483 -0.314 -0.135 --- --- --- --- --- --- --- --- --- 

Percent Herb --- --- --- -0.974 0.292 0.140 -0.485 0.268 0.280 --- --- --- 

Percent Shrub --- --- --- 0.290 0.286 0.403 0.875 0.245 0.298 --- --- --- 

Percent Sapling --- --- --- -0.079 -0.489 -0.666 0.423 -0.457 -0.510 --- --- --- 

Percent Tree --- --- --- 0.603 -0.088 0.046 -0.128 -0.109 -0.107 --- --- --- 

Percent Tree Squared --- --- --- 0.945 -0.131 -0.018 1.032 -0.162 -0.015 --- --- --- 

Percent Tree Outside 

Opening 
--- --- --- 1.102 0.394 -0.611 0.872 0.291 -0.319 --- --- --- 

Canopy Cover --- --- --- -0.446 0.137 -0.623 0.662 -0.110 -0.182 --- --- --- 

Canopy Cover Squared --- --- --- 0.832 -0.097 0.247 0.908 0.004 0.032 --- --- --- 

Canopy Height --- --- --- 1.282 -0.128 -0.147 1.711 -0.311 -0.332 --- --- --- 

Number Trees --- --- --- 2.548 0.469 0.124 2.217 0.577 -0.176 --- --- --- 

Number Trees Squared --- --- --- 0.543 0.167 0.010 0.361 0.143 0.005 --- --- --- 

Basal Area --- --- --- 0.496 -0.094 -0.048 0.882 -0.201 0.223 --- --- --- 

Elevation --- --- --- 1.129 0.691 0.601 --- --- --- --- --- --- 

Elevation Squared --- --- --- -0.216 -0.389 -1.358 --- --- --- --- --- --- 

Aspect --- --- --- -0.219 0.080 -0.006 --- --- --- --- --- --- 

TPI --- --- --- -1.197 -0.548 -0.169 --- --- --- --- --- --- 
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Table 7. Continued. 

Predictor Variable 
MANAGEMENT HABITAT CONDITION SIZE 

WITU RUGR AMWO WITU RUGR AMWO WITU RUGR AMWO WITU RUGR AMWO 

Area --- --- --- --- --- --- --- --- --- -0.833 -2.347 0.464 

Area Squared --- --- --- --- --- --- --- --- --- 0.644 0.918 -0.037 

Edge:Area Ratio --- --- --- --- --- --- --- --- --- 0.118 -0.389 -0.074 

Roundness --- --- --- --- --- --- --- --- --- -0.008 -0.268 0.260 

WITU × RUGR -1.388 -2.470 -1.032 -1.122 

WITU × AMWO 2.344 1.785 2.816 2.060 

RUGR × AMWO 1.092 0.652 1.004 0.986 
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Table 8. Slope coefficient values and significance (bold type) associated with the full set of predictor variables from the bottom 4 

candidate multi-species game bird occupancy models (LANDSCAPE, COMBINED, CONSTRUCTION, LOCATION) for wild 

turkey (WITU), ruffed grouse (RUGR), and American woodcock (AMWO). Predictor variables are organized by category (landscape 

context, management, local habitat, and size). 

 Predictor Variable  
LANDSCAPE COMBINED CONSTRUCTION LOCATION 

WITU RUGR AMWO WITU RUGR AMWO WITU RUGR AMWO WITU RUGR AMWO 

Distance to Nearest 

Opening  
1.324 0.243 -0.333 --- --- --- 0.605 -0.090 -0.312 --- --- --- 

Number Small Openings  1.529 0.683 0.236 --- --- --- 0.124 0.120 0.346 --- --- --- 

Number Midsize 

Openings  
0.763 -0.088 0.042 --- --- --- 1.098 0.186 -0.679 --- --- --- 

Number Large Openings  1.495 -0.074 -0.350 --- --- --- 2.034 0.115 -0.228 --- --- --- 

Number Total Openings --- --- --- 0.124 0.021 -0.008 --- --- --- --- --- --- 

Proportion Wildlife 

Priority  
-0.062 0.730 0.777 0.172 0.539 0.225 --- --- --- -0.464 0.652 0.295 

Proportion Regenerating 

Stand  
-0.684 -0.333 -0.213 --- --- --- --- --- --- -0.677 -0.192 -0.294 

Proportion Immature 

Sawtimber  
1.453 0.728 -0.125 --- --- --- --- --- --- 0.435 0.406 -0.377 

Proportion Mature 

Sawtimber  
-1.839 -0.498 0.263 --- --- --- --- --- --- -2.460 -0.407 0.232 

Proportion Individual 

Tree Selection  
-1.614 -0.271 0.232 -1.781 -0.396 0.314 --- --- --- -0.979 0.247 0.201 

Proportion Two-Age 

Harvest  
-0.058 0.188 0.295 --- --- --- --- --- --- 0.743 0.143 -0.021 

Stand Age -0.074 -0.381 -1.026 --- --- --- --- --- --- -0.220 -0.284 -1.012 

Stand Age Squared 1.002 -0.504 0.183 --- --- --- --- --- --- 0.735 -0.570 0.125 

Proportion Forest  0.073 -0.470 -1.002 -0.799 -0.735 -0.648 --- --- --- -0.286 -0.577 -0.796 

Proportion Oaks  -2.519 -0.660 -0.389 --- --- --- --- --- --- -1.408 0.197 -0.158 

Proportion Red Spruce  -0.455 -0.303 0.425 --- --- --- --- --- --- -1.795 -0.594 0.184 

Proportion Agriculture  -0.336 0.623 -1.546 1.173 0.791 -0.690 --- --- --- 0.685 1.092 -1.209 

Proportion Open 1.071 -0.038 -0.137 --- --- --- --- --- --- -0.571 -0.237 -0.264 
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Table 8. Continued. 

Predictor Variable 
LANDSCAPE COMBINED CONSTRUCTION LOCATION 

WITU RUGR AMWO WITU RUGR AMWO WITU RUGR AMWO WITU RUGR AMWO 

Opening Type  --- --- --- -0.930 2.218 -0.666 --- --- --- --- --- --- 

Road Proximity  --- --- --- --- --- --- --- --- --- -1.339 -0.245 0.518 

Elevation --- --- --- 2.093 1.312 0.246 --- --- --- 2.318 1.438 0.685 

Elevation Squared --- --- --- -1.277 -0.069 -1.249 --- --- --- -0.787 -0.219 -1.253 

Aspect --- --- --- --- --- --- --- --- --- 1.015 0.659 -0.003 

TPI --- --- --- --- --- --- --- --- --- -0.764 -0.352 -0.265 

Area --- --- --- -0.420 -0.591 0.597 -2.000 -2.294 0.399 --- --- --- 

Area Squared --- --- --- 0.286 0.478 0.020 1.301 0.941 -0.008 --- --- --- 

Edge:Area Ratio --- --- --- --- --- --- -0.005 -0.379 -0.303 --- --- --- 

Roundness --- --- --- --- --- --- 0.253 -0.178 0.195 --- --- --- 

WITU × RUGR -2.187 -1.144 -1.464 -0.398 

WITU × AMWO 2.140 2.798 2.455 2.109 

RUGR × AMWO 0.897 0.875 1.171 0.704 
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Table 9. Overall summary of the significance, direction, and magnitude of effects of predictor variables on game bird occupancy (1 = 

wild turkey, 2 = ruffed grouse, 3 = American woodcock) and songbird guild richness (ALL = all species, ESEA = early-successional / 

edge-associated, INT = forest-interior, GAP = forest-gap, GEN = forest generalist) during the breeding and post-breeding seasons. 

Cell colors indicate a non-significant (gray) or significant negative (blue) / positive (yellow) / quadratic (green) relationship resulting 

in a change of ≥0.10 in probability of marginal occurrence for game bird species or of ≥1 species for songbird guild richness. 

Predictor Variable 
Game Birds Breeding Birds (Opening) Breeding Birds (Forest) Post-breeding Birds 

1 2 3 ALL ESEA INT GAP GEN ALL INT GAP GEN ALL ESEA INT GAP GEN 

Opening Type                  

Road Proximity             --- --- --- --- --- 

Percent Sapling             --- --- --- --- --- 

Percent Tree Outside 

Opening 
            --- --- --- --- --- 

Canopy Height             --- --- --- --- --- 

Number Trees             --- --- --- --- --- 

Elevation                  

Area                  

Number Small Openings              --- --- --- --- --- 

Number Midsize Openings              --- --- --- --- --- 

Number Large Openings              --- --- --- --- --- 

Proportion Wildlife Priority                   

Proportion Mature 

Sawtimber  
                 

Proportion Immature 

Sawtimber  
            --- --- --- --- --- 

Proportion Individual Tree 

Selection  
            --- --- --- --- --- 

Stand Age             --- --- --- --- --- 

Proportion Forest                   

Proportion Oaks             --- --- --- --- --- 

Proportion Agriculture                   
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Table 10. Slope coefficient values and significance (bold type) associated with the full set of predictor variables from the 14 guild 

richness models. Predictor variables are organized by category (management, local habitat, size, and landscape context). 

Predictor Variable 
Breeding Birds (Opening) Breeding Birds (Forest) Post-breeding Birds 

ALL ESEA INT GAP GEN ALL INT GAP GEN ALL ESEA INT GAP GEN 

Opening Type -0.076 -0.057 -0.061 0.091 -0.266 -0.053 -0.015 -0.098 -0.136 0.000 0.027 -0.024 0.003 0.048 

Road Proximity 0.055 0.097 -0.066 0.383 0.036 0.005 0.021 -0.033 -0.082 --- --- --- --- --- 

Percent Sapling 0.032 0.030 0.032 0.007 0.054 0.024 -0.014 0.038 0.118 --- --- --- --- --- 

Percent Tree Outside 

Opening 
-0.116 -0.166 -0.043 0.036 -0.048 0.046 0.034 0.177 -0.107 --- --- --- --- --- 

Canopy Height -0.036 0.013 -0.136 0.199 -0.033 -0.040 -0.042 0.005 -0.135 --- --- --- --- --- 

Number Trees 0.005 -0.076 0.102 -0.045 0.021 -0.082 -0.110 -0.145 0.051 --- --- --- --- --- 

Elevation -0.149 -0.262 0.003 -0.313 -0.083 -0.061 0.027 -0.645 -0.190 -0.130 -0.254 0.067 -0.629 -0.300 

Elevation Squared -0.026 -0.092 0.067 -0.090 -0.022 0.055 0.053 0.043 0.032 0.012 -0.025 0.022 -0.093 -0.011 

Area 0.221 0.277 0.198 0.014 0.285 0.175 0.193 0.253 0.014 0.248 0.337 0.189 0.294 0.279 

Area Squared -0.020 -0.024 -0.024 0.013 -0.042 -0.031 -0.038 -0.023 -0.007 -0.042 -0.047 -0.039 -0.061 -0.051 

Number Small Openings  0.011 0.005 -0.018 0.080 0.094 0.016 -0.009 0.205 0.023 --- --- --- --- --- 

Number Midsize 

Openings  
-0.008 0.053 -0.043 -0.058 -0.114 0.002 -0.025 0.026 0.038 --- --- --- --- --- 

Number Large Openings  0.018 -0.001 0.031 -0.077 0.111 -0.118 -0.117 -0.157 -0.114 --- --- --- --- --- 

Proportion Wildlife 

Priority  
0.034 0.028 0.008 0.049 0.035 0.016 0.009 -0.095 0.101 0.009 -0.006 -0.019 0.059 0.062 

Proportion Mature 

Sawtimber  
-0.077 -0.013 -0.170 0.116 -0.252 -0.029 -0.013 0.091 -0.161 -0.019 -0.033 -0.011 -0.034 0.001 

Proportion Immature 

Sawtimber  
-0.067 -0.072 -0.082 -0.046 -0.016 0.005 -0.009 0.048 0.048 --- --- --- --- --- 

Proportion Individual 

Tree Selection  
0.020 0.055 -0.023 0.081 -0.069 -0.013 0.018 -0.105 -0.177 --- --- --- --- --- 

Stand Age 0.007 -0.039 0.110 -0.006 -0.019 0.023 0.023 0.027 0.071 --- --- --- --- --- 

Proportion Forest  -0.015 -0.049 0.056 0.058 -0.072 -0.047 -0.060 0.015 -0.016 -0.042 -0.041 -0.018 -0.053 -0.103 

Proportion Oaks -0.047 -0.108 -0.067 0.159 0.120 -0.022 0.009 -0.383 0.004 --- --- --- --- --- 

Proportion Agriculture  -0.045 -0.057 -0.073 -0.039 -0.019 -0.030 -0.053 0.017 0.042 0.012 0.040 0.006 -0.027 0.004 
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FIGURES 

 

 

Figure 1. Sampling sites for this study were located throughout the Monongahela National Forest 

(NF), which encompasses portions of 9 counties (delineated by gray lines) in eastern West 

Virginia. The National Forest encompasses nearly 688,000 ha, of which 54% (371,906 ha) is 

public land (dark green).  
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Figure 2. Locations of all recorded wildlife openings (N = ~2,200) and the study sampling sites 

(N = 335) within the Monongahela National Forest (NF), West Virginia. 
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Figure 3. Diagram of a small (<1 ha) wildlife opening (inset), a midsize (1–5 ha) wildlife opening (top left), and 2 large (>5 ha) 

wildlife openings (right) within the Monongahela National Forest (NF), with their central survey points (black circles), game camera 

and acoustic recording unit (ARU) survey points (purple triangle), adjacent forest survey points (gold circles), and transect survey 

points (gray circles) and segments (dashed gray lines). White line segments and labels indicate minimum or maximum distances, such 

that: game camera and ARU survey points are located within 50 m of the central survey point; adjacent forest survey points are 

located between 150 and 300 m from the edge of their corresponding wildlife opening; transect segments in small openings are >15 m, 

transect segments in midsize openings are >30 m, and transect segments in large wildlife openings are >50 m. 
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Figure 4. Effects of the 6 predictor variables (Tables 1–2) in the MANAGEMENT candidate 

model of multi-species game bird occupancy. Bold asterisks indicate significant relationships 

between the predictor variable and the probability of marginal occurrence of wild turkey (1: 

WITU), ruffed grouse (2: RUGR), or American woodcock (3: AMWO), with the asterisk aligned 

with the condition resulting in higher probability of marginal occurrence. 
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Figure 5. Effects of the significant predictor variables (Tables 1–2, 7) in the HABITAT, 

CONDITION, and SIZE candidate models of multi-species game bird occupancy. Bold asterisks 

indicate significant relationships between the predictor variable and the probability of marginal 

occurrence of wild turkey (1: WITU), ruffed grouse (2: RUGR), or American woodcock (3: 

AMWO). 



274 

 

 



275 

 

Figure 6. Effects of wildlife opening size (i.e., area in ha) on mean expected overall (ALL) species richness (first column), early-

successional / edge-associated (ESEA) guild richness (second column), forest-interior (INT) guild richness (third column), forest-gap 

(GAP) guild richness (fourth column), and forest generalist (GEN) guild richness (fifth column) during the breeding season within the 

wildlife opening (first row) and in the adjacent forest (second row), as well as during the post-breeding season within the wildlife 

opening (third row). Bold asterisks indicate significant relationships between area and the mean expected number of species. 
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Figure 7. Optimal wildlife opening sizes (ha) for game bird occupancy (WITU = wild turkey, RUGR = ruffed grouse, AMWO = 

American woodcock) and songbird guild richness (ALL = all species, ESEA = early-successional / edge-associated, INT = forest-

interior, GAP = forest-gap, GEN = forest generalist) during the breeding and post-breeding seasons. Light green, middle green, and 
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dark green colors represent 50%, 75%, and 95%, respectively, of the maximum values of predicted probability of game bird 

occurrence and expected mean richness. An asterisk indicates a significant relationship.
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APPENDIX A 

Effects of climate and land cover change on forest songbirds of the  

Appalachian Mountains: A literature review and case study 

 

APPENDIX A1: JAGS MODEL CODE 

JAGS model code for the negative binomial model with spatial dependence 

model{ 

 

 

### PRIORS 

 

r ~ dgamma(0.01,0.01) 

tau ~ dgamma(0.01,0.01) 

s2 <- 1/tau 

phi ~ dunif(0,1) 

b0 ~ dnorm(0,0.01) 

 

for (b in 1:C) {            

   beta[b] ~ dnorm(0,0.01) 

} 

#NOTES: Loop over C (number of coefficients) 

 

for (a in 1:S){             

   mu[a] <- b0 

   for (b in 1:S){ 

      # Covariance matrix: 

      Sigma[a, b] <- s2*exp(log(phi)*dist[a,b]) 

   } 

} 

# NOTES: Loop over S (number of unique BBS routes) 

   

site[1:S] ~ dmnorm.vcov(mu[1:S],Sigma[1:S,1:S]) 

 

 

### LIKELIHOOD 

 

for(i in 1:N){ 

   y[i] ~ dnegbin(p[i],r) 

   log(lambda[i]) <- inprod(beta[1:C],x[i,1:C])+site[id[i]] 

   p[i] <- r/(r+lambda[i]) 

 

   # FOR MODEL FIT - Squared Pearson residual: (obs-lambda)^2/(r(1-p)/p^2) 

   p.resid[i] <- pow((y[i]-lambda[i]), 2)/((r*(1-p[i]))/(pow(p[i],2))) 

   y.new[i] ~ dnegbin(p[i],r)                   

   p.resid.new[i] <- pow((y.new[i]-lambda[i]),2)/((r*(1-p[i]))/(pow(p[i],2))) 

} 

# NOTES: Loop over N (number of sites) 
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### MODEL FIT AND CHECKING 

 

overall.fit <- sum(p.resid[]) 

overall.fit.new <- sum(p.resid.new[]) 

overall.p.val <- step(overall.fit.new - overall.fit) 

 

 

} 

 

 

JAGS model code for the negative binomial model without spatial dependence 

model { 

 

 

### PRIORS 

 

beta0 ~ dnorm(0,0.01) 

tau_l ~ dgamma(0.01,0.01) 

mu_logr ~ dnorm(0,0.01)  

tau_logr ~ dgamma(0.01,0.01)  

 

for (s in 1:S){  

   # Site-level random effect for the expected count 

   site_l[s] ~ dnorm(0,tau_l) 

   # Site-level random effect for the dispersion parameter 

   site_r[s] ~ dnorm(mu_logr,tau_logr) 

   log(r[s]) <- site_r[s] 

} 

# NOTES: Loop over S (number of unique BBS routes) 

 

for (b in 1:C) { 

   beta[b] ~ dnorm(0,0.01) 

} 

# NOTES: Loop over C (number of coefficients)  

 

 

### LIKELIHOOD 

 

for (i in 1:N){ 

    y[i] ~ dnegbin(p[i],r[id[i]]) 

    log(lambda[i]) <- beta0+inprod(beta[1:C],x[i,1:C])+site_l[id[i]] 

    p[i] <- r[id[i]]/(r[id[i]]+lambda[i]) 

          

    # FOR MODEL FIT - Squared Pearson residual: (obs-lambda)^2/(r(1-p)/p^2) 

    p.resid[i] <- pow((y[i]-lambda[i]),2)/((r[id[i]]*(1-p[i]))/pow(p[i],2)) 

    y.new[i] ~ dnegbin(p[i],r[id[i]])                   

    p.resid.new[i] <- pow((y.new[i]-lambda[i]),2)/((r[id[i]]*(1-p[i]))/ 

        pow(p[i],2)) 

}  

# NOTES: Loop over N (number of sites 
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### MODEL FIT AND CHECKING 

overall.fit <- sum(p.resid[]) 

overall.fit.new <- sum(p.resid.new[]) 

overall.p.val <- step(overall.fit.new - overall.fit) 

 

 

} 
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APPENDIX B 

Effects of climate and temporal trends in forest songbird communities and abundance 

along latitudinal and elevational gradients in the Appalachian Mountains 

 

APPENDIX B1: TABLE OF FOREST SONGBIRD SPECIES 

Table of the 40 forest songbird species considered in the guild richness analyses 

Table B1. List of the common name, scientific name, 4-letter species code, relative frequency, 

taxonomic family, and guild designation of all 40 forest songbird species considered for the guild 

richness analyses. Relative frequency is the number of detections across all point count surveys 

from all 3 study regions. The guild designation indicates the extent of the species’ range within 

the Appalachian Mountains, such that: species in the north guild are only found in the Northern 

or Central Appalachians; species in the south guild are only found in the Southern or Central 

Appalachians; species in the trailing guild have trailing-edge populations that are found 

throughout the Appalachian Mountains but are limited to higher elevations in the Southern 

Appalachians; and species in the general guild are found throughout the Appalachian Mountains. 

 

Common Name  

(Scientific Name) 

Species 

Code 

Relative 

Frequency 

Taxonomic 

Family 

Guild 

Designation 

Focal 

Species 

Blackpoll warbler 

(Setophaga striata) 
BLPW 2,220 Parulidae north 1 

Swainson's thrush 

(Catharus ustulatus) 
SWTH 4,465 Turdidae north 1 

Yellow-bellied flycatcher 

(Empidonax flaviventris) 
YBFL 1,360 Tyrannidae north 1 

Evening grosbeak 

(Coccothraustes vespertinus) 
EVGR 64 Fringillidae north 0 

Hermit thrush 

(Catharus guttatus) 
HETH 2,880 Turdidae north 0 

Northern waterthrush 

(Parkesia noveboracensis) 
NOWA 42 Parulidae north 0 

Pine siskin 

(Spinus pinus) 
PISI 125 Fringillidae north 0 

Purple finch 

(Haemorhous purpureus) 
PUFI 554 Fringillidae north 0 

Ruby-crowned kinglet 

(Corthylio calendula) 
RCKI 39 Regulidae north 0 

Yellow-rumped warbler 

(Setophaga coronata) 
YRWA 5,132 Parulidae north 0 

Acadian flycatcher 

(Empidonax virescens) 
ACFL 1,154 Tyrannidae south 1 

Hooded warbler 

(Setophaga citrina) 
HOWA 1,677 Parulidae south 1 
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Table B1. Continued. 

Common Name  

(Scientific Name) 

Species 

Code 

Relative 

Frequency 

Taxonomic 

Family 

Guild 

Designation 

Focal 

Species 

Worm-eating warbler 

(Helmitheros vermivorum) 
WEWA 750 Parulidae south 1 

Cerulean warbler 

(Setophaga cerulea) 
CERW 127 Parulidae south 0 

Kentucky warbler 

(Geothlypis formosa) 
KEWA 42 Parulidae south 0 

Swainson's warbler 

(Limnothlypis swainsonii) 
SWWA 56 Parulidae south 0 

Yellow-throated warbler 

(Setophaga dominica) 
YTWA 93 Parulidae south 0 

Blackburnian warbler 

(Setophaga fusca) 
BLBW 15,776 Parulidae trailing 1 

Black-throated blue warbler 

(Setophaga caerulescens) 
BTBW 21,244 Parulidae trailing 1 

Black-throated green warbler 

(Setophaga virens) 
BTNW 21,055 Parulidae trailing 1 

Canada warbler 

(Cardellina canadensis) 
CAWA 1,807 Parulidae trailing 1 

Least flycatcher 

(Empidonax minimus) 
LEFL 288 Tyrannidae trailing 1 

Veery 

(Catharus fuscescens) 
VEER 1,830 Turdidae trailing 1 

Blue-headed vireo 

(Vireo solitarius) 
BHVI 5,691 Vireonidae trailing 0 

Brown creeper 

(Certhia americana) 
BRCR 2,780 Certhiidae trailing 0 

Dark-eyed junco 

(Junco hyemalis) 
DEJU 4,787 Passerellidae trailing 0 

Golden-crowned kinglet 

(Regulus satrapa) 
GCKI 4,980 Regulidae trailing 0 

Red-breasted nuthatch 

(Sitta canadensis) 
RBNU 2,225 Sittidae trailing 0 

Red crossbill 

(Loxia curvirostra) 
RECR 74 Fringillidae trailing 0 

Winter wren 

(Troglodytes hiemalis) 
WIWR 4,397 Troglodytidae trailing 0 

American redstart 

(Setophaga ruticilla) 
AMRE 1,631 Parulidae general 1 

Northern parula 

(Setophaga americana) 
NOPA 779 Parulidae general 1 

Ovenbird 

(Seiurus aurocapilla) 
OVEN 18,707 Parulidae general 1 

Wood thrush 

(Hylocichla mustelina) 
WOTH 1,095 Turdidae general 1 
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Table B1. Continued. 

Common Name  

(Scientific Name) 

Species 

Code 

Relative 

Frequency 

Taxonomic 

Family 

Guild 

Designation 

Focal 

Species 

Black-and-white warbler 

(Mniotilta varia) 
BAWW 2,201 Parulidae general 0 

Louisiana waterthrush 

(Parkesia motacilla) 
LOWA 171 Parulidae general 0 

Pine warbler 

(Setophaga pinus) 
PIWA 249 Parulidae general 0 

Red-eyed vireo 

(Vireo olivaceus) 
REVI 20,618 Vireonidae general 0 

Scarlet tanager 

(Piranga olivacea) 
SCTA 2,798 Cardinalidae general 0 

White-breasted nuthatch 

(Sitta carolinensis) 
WBNU 1,194 Sittidae general 0 
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APPENDIX B2: JAGS MODEL CODE 

JAGS model code for the guild richness analyses 

model { 

 

 

### PRIORS  

    

# COMMUNITY-LEVEL MODEL PARAMETERS (JUST FOR OCCUPANCY) 

community.occupancy.a ~ dlogis(0,1) #this assumes a logistic prior 

community.occupancy.tau ~ dgamma(1,1) 

 

# COMMUNITY-LEVEL PARAMETERS FOR SITE COVARIATE SLOPE COEFFICIENTS 

for (sitecov in 1:n.sitecovs) { 

   mu.alpha[sitecov] ~ dnorm(0, 0.1) 

   tau.alpha[sitecov] ~ dgamma(1,1) 

} 

 

# COMMUNITY-LEVEL PARAMETERS FOR DETECTION COVARIATE SLOPE COEFFICIENTS 

for (detcov in 1:n.detcovs) { 

   mu.beta[detcov] ~ dnorm(0, 0.1) 

   tau.beta[detcov] ~ dgamma(1,1) 

}    

 

# SPECIES-SPECIFIC PRIORS FROM THE COMMUNITY-LEVEL PRIOR DISTRIBUTIONS 

for (species in 1:n.species) { 

 

   # INTERCEPTS 

   alpha0[species] ~ dnorm(community.occupancy.a, community.occupancy.tau) 

   beta0[species] ~ dnorm(0, 0.1) 

 

   # SLOPE COEFFICIENTS FOR SITE COVARIATES 

   for (sitecov in 1:n.sitecovs) { 

      alpha[species, sitecov] ~ dnorm(mu.alpha[sitecov], tau.alpha[sitecov]) 

   }  

 

   # SLOPE COEFFICIENTS FOR DETECTION COVARIATES 

   for (detcov in 1:n.detcovs) { 

      beta[species, detcov] ~ dnorm(mu.beta[detcov], tau.beta[detcov]) 

   }  

 

} 

# NOTES: Loop over all species 

 

# PARAMETERS FOR IMPUTATION OF DETECTION COVARIATES 

for (region in 1:n.regions) { 
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   # TIME 

   time.mu[region] ~ dnorm(0, 1) #NOTE: Normal distribution 

   time.tau[region] ~ dgamma(1, 1) 

    

   # WIND CODE 

   wind.prob[region] ~ dbeta(1, 1) 

  

   # SKY CODE 

   sky.prob[region] ~ dbeta(1, 1) 

 

} 

# NOTES: Loop over each study region 

 

 

### LIKELIHOOD 

 

# IMPUTATION OF DETECTION COVARIATES 

for (site in 1:n.sites){ 

 

   for (year in 1:n.years[site]) { 

 

      for (replicate in 1:n.replicates[site, year]) { 

 

         time[site, year, replicate] ~ dnorm(time.mu[region[site]],  

   time.tau[region[site]]) 

         wind[site, year, replicate] ~ dbern(wind.prob[region[site]]) 

         sky[site, year, replicate] ~ dbern(sky.prob[region[site]]) 

 

      } 

 

   } 

 

} 

# NOTES: Loop over sites, years, and replicates 

 

for (species in 1:n.species) { 

 

   # Loop to estimate the Z matrix (true site occurrence) for each species at  

   # each site 

 

   for (site in 1:n.sites){ 

    

      for (year in 1:n.years[site]) { 

 

         # OCCUPANCY MODEL 

         logit(psi[site, year, species]) <- alpha0[species] +  

      inprod(alpha[species, 1:n.sitecovs], 

      sitecov.array[site, year, 1:n.sitecovs]) 
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         # ESTIMATING OCCUPANCY 

         Z[site, year, species] ~ dbern(psi[site, year, species]) 

 

         # Loop to estimate detection each species at each site during each  

   # sampling replicate 

          

   for (replicate in 1:n.replicates[site, year]) { 

 

            # DETECTION MODEL 

            logit(p[site, year, replicate, species]) <- beta0[species] + 

               beta[species, 1] * day[site, year, replicate] + 

               beta[species, 2] * time[site, year, replicate] + 

               beta[species, 3] * wind[site, year, replicate] +  

               beta[species, 4] * sky[site, year, replicate] 

                                                        

            # MODEL PROBABILITY OF DETECTION FOR 1 MINUTE 

            p.adjusted[site, year, replicate, species] <- 1 - (1 –  

   p[site, year, replicate, species]) ^ exponent.array[site,    

   year, replicate] 

 

            # ESTIMATING PROBABILITY OF DETECTION 

            mu.p[site, year, replicate, species] <- p.adjusted[site, year,  

   replicate, species] * Z[site, year, species] 

            Y[site, year, replicate, species] ~ dbern(mu.p[site, year,  

   replicate, species]) 

 

         } 

         # NOTES: Loop over each replicate for each site (variable number of  

   # replicates depending on site and year) 

 

      } #end year loop 

 

   } #end site loop 

 

} #end species loop 

 

 

### DERIVED QUANTITIES 

 

# Loop to determine site-level richness estimates for the whole community and 

# for subsets or assemblages of interest per year 

 

for (site in 1:n.sites) { 

 

   for (year in 1:n.years[site]) { 

 

      site.species.richness[site, year] <- sum(Z[site, year, 1:n.species]) 

      north.guild.richness[site, year] <- inprod(Z[site, year, 1:n.species],  

north.guild[1:n.species]) 
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      south.guild.richness[site, year] <- inprod(Z[site, year, 1:n.species],  

south.guild[1:n.species]) 

      trailing.guild.richness[site, year] <- inprod(Z[site, year,  

1:n.species], 

trailing.guild[1:n.species]) 

      general.guild.richness[site, year] <- inprod(Z[site, year,  

1:n.species], 

general.guild[1:n.species]) 

   } 

 

} 

 

 

} 

 

JAGS model code for the focal species analyses 

 
model { 

 

 

### PRIORS  

 

for (species in 1:n.species) { 

 

   # INTERCEPTS 

   alpha0[species] ~ dnorm(0, 0.01) #intercept for abundance model  

   beta0[species] ~ dnorm(0, 0.01)  #intercept for detection model 

 

   # RANDOM SITE EFFECT 

   tau.rse[species] ~ dgamma(0.01, 0.01) #for random site effects 

 

   for (site in 1:n.sites){  

      random.site.effect[species, site] ~ dnorm(alpha0[species],  

   tau.rse[species]) #for random site effects 

   } 

   # NOTES: Loop over the number of unique sites 

 

   # SLOPE COEFFICIENTS FOR SITE COVARIATES 

   for (alpha.index in 1:n.alphas) { 

      alpha[species, alpha.index] ~ dnorm(0, 0.01) 

#create a slope coefficient for each site covariate 

      }  

 

   # SLOPE COEFFICIENTS FOR DETECTION COVARIATES 

   for (detcov in 1:n.detcovs) { 

      beta[species, detcov] ~ dnorm(0, 0.01) 

#create a slope coefficient for each detection covariate  

   }  
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} 

# NOTES: Loop over each focal species 

 

# PARAMETERS FOR IMPUTATION OF DETECTION COVARIATES 

for (region in 1:n.regions) { 

 

   # TIME 

   time.mu[region] ~ dnorm(0, 0.01) 

   time.tau[region] ~ dgamma(0.1, 0.1) 

   # NOTE: Normal distribution. 

 

   # WIND CODE 

   wind.prob[region] ~ dbeta(1, 1) 

 

   # SKY CODE 

   sky.prob[region] ~ dbeta(1, 1) 

 

} 

# NOTES: Loop over each study region 

 

 

### LIKELIHOOD 

 

# IMPUTATION OF DETECTION COVARIATES 

for (site in 1:n.sites){ 

 

   for (year in 1:n.years[site]) { 

 

      for (visit in 1:n.visits[site,year]) { 

 

         time[site, year, visit] ~ dnorm(time.mu[region[site]],  

     time.tau[region[site]]) 

         wind[site, year, visit] ~ dbern(wind.prob[region[site]]) 

         sky[site, year, visit] ~ dbern(sky.prob[region[site]]) 

 

      } 

 

   } 

 

} 

# NOTES: Loop over sites, years, and visits 

 

# ESTIMATE ABUNDANCE AND DETECTION PROBABILITY 

for (species in 1:n.species) { 

 

   # Loop to estimate N (true abundance) for each species at each site 

   for (site in 1:n.sites) { 

 

      for (year in 1:n.years[site]) { 
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      # ABUNDANCE MODEL 

log(lambda[site, year, species]) <- alpha[species, 1] *    

   sitecov.array[site, year, 1] + #year 

alpha[species, 2] * sitecov.array[site, year, 2] + #elevation 

alpha[species, 3] * sitecov.array[site, year, 3] + #aspect 

alpha[species, 4] * sitecov.array[site, year, 4] + #TPI 

alpha[species, 5] * sitecov.array[site, year, 5] +   

   #dominant forest type == Deciduous 

alpha[species, 6] * sitecov.array[site, year, 6] +  

   #proportion of forest within 1 km 

alpha[species, 7] * sitecov.array[site, year, 7] +  

   #mean current temperature 

alpha[species, 8] * sitecov.array[site, year, 8] +  

   #SD temperature 

alpha[species, 9] * sitecov.array[site, year, 9] +  

   #total current precip 

alpha[species, 10] * sitecov.array[site, year, 10] +  

   #total previous precip 

alpha[species, 11] * sitecov.array[site, year, 2] *  

   sitecov.array[site, year, 1] + #elevation x year 

alpha[species, 12] * sitecov.array[site, year, 2] *  

   sitecov.array[site, year, 7] +  

   #elevation x mean current temperature 

alpha[species, 13] * sitecov.array[site, year, 2] *  

   sitecov.array[site, year, 8] + #elevation x SD temperature 

            alpha[species, 14] * sitecov.array[site, year, 2] *  

   sitecov.array[site, year, 9] +  

   #elevation x total current precip 

            alpha[species, 15] * sitecov.array[site, year, 2] *  

   sitecov.array[site, year, 10] +  

   #elevation x total previous precip 

            alpha[species, 16] * sitecov.array[site, year, 7] *  

   sitecov.array[site, year, 1] +  

   #mean current temperature x year 

            alpha[species, 17] * sitecov.array[site, year, 7] *  

   sitecov.array[site, year, 8] +  

   #mean current temperature x SD temperature 

alpha[species, 18] * sitecov.array[site, year, 7] *  

   sitecov.array[site, year, 9] +  

   #mean current temperature x total current precip 

alpha[species, 19] * sitecov.array[site, year, 7] *  

   sitecov.array[site, year, 10] +  

   #mean current temperature x total previous precip 

alpha[species, 20] * sitecov.array[site, year, 2] *  

sitecov.array[site, year, 7] * sitecov.array[site, year, 1] +   

#elevation x mean current temperature x year 

alpha[species, 21] * sitecov.array[site, year, 2] *  
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sitecov.array[site, year, 7] * sitecov.array[site, year, 8] +   

#elevation x mean current temperature x SD temperature 

alpha[species, 22] * sitecov.array[site, year, 2] *  

sitecov.array[site, year, 7] * sitecov.array[site, year, 9] + 

#elevation x mean current temperature x total current precip 

alpha[species, 23] * sitecov.array[site, year, 2] *  

sitecov.array[site, year, 7] * sitecov.array[site, year, 10] + 

#elevation x mean current temperature x total previous precip 

            random.site.effect[species, site] #random site effect 

 

         # ESTIMATING ABUNDANCE 

         N[site, year, species] ~ dpois(lambda[site, year, species]) 

 

         for (visit in 1:n.visits[site,year]) { 

 

            # OBSERVATION PROBABILITY 

            Y[site, year, visit, 1, species] ~ dbin(p.adjusted[site, year,  

   visit, 1, species], N[site, year, species]) 

             

z[site, year, visit, 1, species] <- N[site, year, species] –  

   Y[site, year, visit, 1, species] 

          

            for (i in 2:3) { 

               Y[site, year, visit, i, species] ~ dbin(p.adjusted[site, year,  

visit, i, species], z[site, year, visit, i-1, species]) 

             

   z[site, year, visit, i, species] <- N[site, year, species] –  

sum(Y[site, year, visit, 1:i, species]) 

            } 

 

            # Loop to estimate detection each species at each site during  

# each sampling replicate 

 

            for (replicate in 1:3) { 

 

               # DETECTION MODEL 

               logit(p[site, year, visit, replicate, species]) <-  

beta0[species] + beta[species, 1] * day[site, year, visit] 

+ beta[species, 2] * time[site, year, visit] + 

beta[species, 3] * wind[site, year, visit] +  

beta[species, 4] * sky[site, year, visit] 

            

               # MODEL PROBABILITY OF DETECTION FOR 1 MINUTE 

               p.adjusted[site, year, visit, replicate, species] <- 1 - (1 –  

p[site, year, visit, replicate, species]) ^ 

exponent.array[site, year, visit, replicate] 

 

            } 

            # NOTES: Loop over each replicate for each site (variable number  
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# of replicates depending on site and year) 

 

         } # end visit loop 

 

      } #end year loop 

 

   } # end site loop 

 

} # end site loop 

 

 

} 
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APPENDIX B3: MODEL INFORMATION 

Table of model information for overall species richness, the 4 guild designations, and the 16 

focal forest songbird species considered in the guild richness and focal species analyses 

Table B2. List of the 4 guild designations and 16 focal forest songbird species (sorted by guild 

and family), with corresponding Bayesian model information that includes the number of chains 

(Chains), total iterations (Total), burn-in (Burn), thinning rate (Thin), and resulting posterior 

iterations (Posterior).  

 

Guild Family Species Chains Total Burn-In Thin Posterior 

ALL    3 3,500 2,500 1 3,000 

NORTH  3 3,500 2,500 1 3,000 
 Parulidae BLPW 3 153,000 123,000 3 30,000 
 Turdidae SWTH 3 51,000 39,000 3 12,000 

  Tyrannidae YBFL 3 167,000 137,000 3 30,000 

SOUTH  3 3,500 2,500 1 3,000 
 Parulidae HOWA 3 56,000 50,000 3 6,000 
 Parulidae WEWA 3 67000 49000 3 18000 

  Tyrannidae ACFL 3 54,000 45,000 3 9,000 

TRAILING  3 3,500 2,500 1 3,000 
 Parulidae BLBW 3 11,000 2,000 3 9,000 
 Parulidae BTNW 3 11,000 2,000 3 9,000 
 Parulidae BTBW 3 11,000 2,000 3 9,000 
 Parulidae CAWA 3 26,000 20,000 3 6,000 
 Turdidae VEER 3 19,000 10,000 3 9,000 

  Tyrannidae LEFL 3 29,000 20,000 3 9,000 

GENERAL  3 3,500 2,500 1 3,000 
 Parulidae AMRE 3 29,000 20,000 3 9,000 
 Parulidae NOPA 3 73,000 64,000 3 9,000 
 Parulidae OVEN 3 11,000 2,000 3 9,000 

  Turdidae WOTH 3 36,000 30,000 3 6,000 
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APPENDIX C 

Comparison of avian guild richness, species abundance, and nest success in  

actively harvested and minimally harvested forested landscapes 

 

APPENDIX C1: TABLE OF FOREST SONGBIRD SPECIES 

Table of the 62 passerine and near-passerine species considered in the guild richness 

analyses 

Table C1. List of the common name, scientific name, 4-letter species code, relative frequency, 

taxonomic family, habitat-related guild designation, and focal species status of all 62 passerine 

and near-passerine species considered for the guild richness analyses. Relative frequency is the 

number of detections across all breeding bird point count surveys from all sampling points in the 

study. The habitat-related guild designation indicates the primary breeding habitat of the species, 

such that: species in the early-successional / edge-associated (ESEA) guild breed in open habitat, 

shrub/scrub, or young forest, or along forest edges, such as the interface of early-successional 

and mature forest; species in the forest-interior (INT) guild breed in the core area of mature 

forest; species in the forest-gap (GAP) guild breed in or near small forest gaps within the core 

area of mature forest; and species in the forest generalist (GEN) guild are associated with forest 

but have no preference for early-successional vs. mature forest. 

 

Common Name  

(Scientific Name) 

Species 

Code 

Relative 

Frequency 

Taxonomic 

Family 
Guild 

Focal 

Species 

Brown-headed Cowbird 

(Molothrus ater) 
BHCO 163 Icteridae ESEA 1 

Chestnut-sided Warbler 

(Setophaga pensylvanica) 
CSWA 600 Parulidae ESEA 1 

Eastern Towhee 

(Pipilo erythrophthalmus) 
EATO 718 Passerellidae ESEA 1 

Indigo Bunting 

(Passerina cyanea) 
INBU 589 Cardinalidae ESEA 1 

American Goldfinch 

(Spinus tristis) 
AMGO 89 Fringillidae ESEA 0 

Blue-winged Warbler 

(Vermivora cyanoptera) 
BWWA 110 Parulidae ESEA 0 

Carolina Wren 

(Thryothorus ludovicianus) 
CARW 14 Troglodytidae ESEA 0 

Cedar Waxwing 

(Bombycilla cedrorum) 
CEDW 216 Bombycillidae ESEA 0 

Chipping Sparrow 

(Spizella passerina) 
CHSP 40 Passerellidae ESEA 0 
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Table C1. Continued. 

Common Name  

(Scientific Name) 

Species 

Code 

Relative 

Frequency 

Taxonomic 

Family 
Guild 

Focal 

Species 

Common Yellowthroat 

(Geothlypis trichas) 
COYE 60 Parulidae ESEA 0 

Eastern Phoebe 

(Sayornis phoebe) 
EAPH 16 Tyrannidae ESEA 0 

Field Sparrow 

(Spizella pusilla) 
FISP 34 Passerellidae ESEA 0 

Gray Catbird 

(Dumetella carolinensis) 
GRCA 132 Mimidae ESEA 0 

Mourning Dove 

(Zenaida macroura) 
MODO 17 Columbidae ESEA 0 

Mourning Warbler 

(Geothlypis philadelphia) 
MOWA 42 Parulidae ESEA 0 

Northern Cardinal 

(Cardinalis cardinalis) 
NOCA 24 Cardinalidae ESEA 0 

Song Sparrow 

(Melospiza melodia) 
SOSP 75 Passerellidae ESEA 0 

Yellow-billed Cuckoo 

(Coccyzus americanus) 
YBCU 64 Cuculidae ESEA 0 

Black-throated Green Warbler 
(Setophaga virens) 

BTNW 2458 Parulidae INT 1 

Dark-eyed Junco 
(Junco hyemalis) 

DEJU 1719 Passerellidae INT 1 

Red-eyed Vireo 
(Vireo olivaceus) 

REVI 3135 Vireonidae INT 1 

Wood Thrush 
(Hylocichla mustelina) 

WOTH 610 Turdidae INT 1 

Acadian Flycatcher 
(Empidonax virescens) 

ACFL 708 Tyrannidae INT 0 

Black-and-white Warbler 
(Mniotilta varia) 

BAWW 641 Parulidae INT 0 

Blackburnian Warbler 
(Setophaga fusca) 

BLBW 608 Parulidae INT 0 

Black-throated Blue Warbler 
(Setophaga caerulescens) 

BTBW 1162 Parulidae INT 0 

Blue-headed Vireo 
(Vireo solitarius) 

BHVI 1636 Vireonidae INT 0 

Brown Creeper 
(Certhia americana) 

BRCR 150 Certhiidae INT 0 

Canada Warbler 
(Cardellina canadensis) 

CAWA 558 Parulidae INT 0 

Golden-crowned Kinglet 
(Regulus satrapa) 

GCKI 437 Regulidae INT 0 
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Table C1. Continued. 

Common Name  

(Scientific Name) 

Species 

Code 

Relative 

Frequency 

Taxonomic 

Family 
Guild 

Focal 

Species 

Hairy Woodpecker 

(Leuconotopicus villosus) 
HAWO 318 Picidae INT 0 

Hermit Thrush 
(Catharus guttatus) 

HETH 384 Turdidae INT 0 

Least Flycatcher 
(Empidonax minimus) 

LEFL 71 Tyrannidae INT 0 

Magnolia Warbler 

(Setophaga magnolia) 
MAWA 1153 Parulidae INT 0 

Ovenbird 
(Seiurus aurocapilla) 

OVEN 788 Parulidae INT 0 

Pileated Woodpecker 

(Dryocopus pileatus) 
PIWO 168 Picidae INT 0 

Pine Warbler 
(Setophaga pinus) 

PIWA 79 Parulidae INT 0 

Purple Finch 
(Haemorhous purpureus) 

PUFI 35 Fringillidae INT 0 

Red-breasted Nuthatch 
(Sitta canadensis) 

RBNU 198 Sittidae INT 0 

Rose-breasted Grosbeak 

(Pheucticus ludovicianus) 
RBGR 443 Cardinalidae INT 0 

Scarlet Tanager 
(Piranga olivacea) 

SCTA 1084 Cardinalidae INT 0 

Swainson's Thrush 
(Catharus ustulatus) 

SWTH 126 Turdidae INT 0 

Winter Wren 
(Troglodytes hiemalis) 

WIWR 541 Troglodytidae INT 0 

Worm-eating Warbler 
(Helmitheros vermivorum) 

WEWA 237 Parulidae INT 0 

Yellow-rumped Warbler 
(Setophaga coronata) 

YRWA 83 Parulidae INT 0 

American Redstart 
(Setophaga ruticilla) 

AMRE 568 Parulidae GAP 1 

Cerulean Warbler 

(Setophaga cerulea) 
CERW 125 Parulidae GAP 1 

Hooded Warbler 
(Setophaga citrina) 

HOWA 580 Parulidae GAP 1 

Veery 
(Catharus fuscescens) 

VEER 1070 Turdidae GAP 1 

Eastern Wood-Pewee 

(Contopus virens) 
EAWP 314 Tyrannidae GAP 0 

Great-crested Flycatcher 

(Myiarchus crinitus) 
GCFL 90 Tyrannidae GAP 0 
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Table C1. Continued. 

Common Name  

(Scientific Name) 

Species 

Code 

Relative 

Frequency 

Taxonomic 

Family 
Guild 

Focal 

Species 

Northern Parula 
(Setophaga americana) 

NOPA 113 Parulidae GAP 0 

Yellow-throated Vireo 

(Vireo flavifrons) 
YTVI 44 Vireonidae GAP 0 

American Robin 

(Turdus migratorius) 
AMRO 533 Turdidae GEN 1 

Black-capped Chickadee 

(Poecile atricapillus) 
BCCH 702 Paridae GEN 1 

White-breasted Nuthatch 
(Sitta carolinensis) 

WBNU 449 Sittidae GEN 1 

Blue-gray Gnatcatcher 

(Polioptila caerulea) 
BGGN 147 Polioptilidae GEN 0 

Downy Woodpecker 

(Picoides pubescens) 
DOWO 206 Picidae GEN 0 

Northern Flicker 

(Colaptes auratus) 
NOFL 134 Picidae GEN 0 

Red-bellied Woodpecker 

(Melanerpes carolinus) 
RBWO 51 Picidae GEN 0 

Tufted Titmouse 

(Baeolophus bicolor) 
TUTI 195 Paridae GEN 0 

Yellow-bellied Sapsucker 

(Sphyrapicus varius) 
YBSA 24 Picidae GEN 0 
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APPENDIX C2: JAGS MODEL CODE 

JAGS model code for the guild richness analyses 

model { 

 

 

### PRIORS  

    

# COMMUNITY-LEVEL MODEL PARAMETERS (OCCUPANCY) 

community.occupancy.a ~ dlogis(0,1) #this assumes a logistic prior 

community.occupancy.tau ~ dgamma(0.1, 0.1) 

 

# COMMUNITY-LEVEL PARAMETERS FOR SITE COVARIATE SLOPE COEFFICIENTS 

for (sitecov in 1:n.sitecovs) { 

   mu.alpha[sitecov] ~ dnorm(0, 0.1) 

   tau.alpha[sitecov] ~ dgamma(0.1, 0.1) 

} 

 

# COMMUNITY-LEVEL PARAMETERS FOR DETECTION COVARIATE SLOPE COEFFICIENTS 

for (detcov in 1:n.detcovs) { 

   mu.beta[detcov] ~ dnorm(0, 0.1) 

   tau.beta[detcov] ~ dgamma(0.1, 0.1) 

}    

 

# SPECIES-SPECIFIC PRIORS FROM THE COMMUNITY-LEVEL PRIOR DISTRIBUTIONS 

for (spp in 1:n.species) { 

 

   # INTERCEPTS 

   alpha0[spp] ~ dnorm(community.occupancy.a, community.occupancy.tau) 

   beta0[spp] ~ dnorm(0, 0.1) 

 

   # SLOPE COEFFICIENTS FOR SITE COVARIATES 

   for (sitecov in 1:n.sitecovs) { 

      alpha[spp, sitecov] ~ dnorm(mu.alpha[sitecov], tau.alpha[sitecov]) 

   }  

 

   # RANDOM SITE EFFECT 

   tau.rse[spp] ~ dgamma(0.1, 0.1) 

   for (site in 1:n.sites) { 

      random.site.effect[spp, site] ~ dnorm(alpha0[spp], tau.rse[spp]) 

   } 

   

   # SLOPE COEFFICIENTS FOR DETECTION COVARIATES 

   for (detcov in 1:n.detcovs) { 

      beta[spp, detcov] ~ dnorm(mu.beta[detcov], tau.beta[detcov]) 

   }  

 

} # NOTES: Loop over all species 
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# PARAMETERS FOR IMPUTATION OF DETECTION COVARIATES (WIND CODE AND SKY CODE) 

wind.prob ~ dbeta(1, 1) 

sky.prob ~ dbeta(1, 1) 

 

 

### LIKELIHOOD 

 

# IMPUTATION OF DETECTION COVARIATES 

for (site in 1:n.sites){ 

   for (year in 1:n.years[site]) { 

      for (replicate in 1:n.replicates[site, year]) { 

         time.array[site, year, replicate] ~ dnorm(0, 1) 

         wind.array[site, year, replicate] ~ dbern(wind.prob) 

         sky.array[site, year, replicate] ~ dbern(sky.prob) 

      } 

   } 

} 

# NOTES: Loop over sites, years, and replicates 

 

# Loop to estimate the Z matrix (true occurrence) for each species at each  

# site 

 

for (spp in 1:n.species) { 

   for (site in 1:n.sites){ 

      for (year in 1:n.years[site]) { 

    

         # OCCUPANCY MODEL 

         logit(psi[site, year, spp]) <- inprod(alpha[spp, 1:n.sitecovs],  

     sitecov.array[site, year, 1:n.sitecovs]) + 

                                   random.site.effect[spp, site] 

          

         # ESTIMATING OCCUPANCY 

         Z[site, year, spp] ~ dbern(psi[site, year, spp]) 

 

   # Loop to estimate detection of each species at each site during  

   # each sampling replicate 

    

   for (replicate in 1:n.replicates[site, year]) { 

 

            # DETECTION MODEL 

            logit(p[site, year, replicate, spp]) <- beta0[species] + 

   beta[spp, 1] * day.array[site, year, replicate] + 

                           beta[spp, 2] * time.array[site, year, replicate] + 

   beta[spp, 3] * time.array[site, year, replicate] *  

time.array[site, year, replicate] + 

                           beta[spp, 4] * wind.array[site, year, replicate] +  

                           beta[spp, 5] * sky.array[site, year, replicate] 
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            # ESTIMATING PROBABILITY OF DETECTION 

            mu.p[site, year, replicate, spp] <- p[site, year, replicate, spp]  

* Z[site, year, spp] 

 

            Y[site, year, replicate, species] ~ dbern(mu.p[site, year,  

      replicate, species]) 

 

            } # end replicate loop 

 

         } #end year loop 

 

      } #end site loop 

 

   } #end species loop 

 

 

### DERIVED QUANTITIES 

 

# Loop to determine site-level richness estimates for the whole community  

# and for subsets or assemblages of interest 

 

for (site in 1:n.sites) { 

   for (year in 1:n.years[site]) { 

 

      overall.species.richness[site, year] <- sum(Z[site, year, 1:n.species]) 

 

      ESEA.guild.richness[site, year] <- inprod(Z[site, year, 1:n.species],  

     es.ea.guild[1:n.species]) 

 

      INT.guild.richness[site, year] <- inprod(Z[site, year, 1:n.species],  

    forest.interior.guild[1:n.species]) 

 

      GAP.guild.richness[site, year] <- inprod(Z[site, year, 1:n.species],  

    forest.gap.guild[1:n.species]) 

 

      GEN.guild.richness[site, year] <- inprod(Z[site, year, 1:n.species], 

    forest.generalist.guild[1:n.species]) 

 

   } 

 

} #end site loop 

 

 

} 
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JAGS model code for the focal species abundance analyses 

model { 

 

 

### PRIORS  

 

for (spp in 1:n.species) { 

 

   # INTERCEPTS 

   alpha0[spp] ~ dnorm(0, 0.1) #intercept for abundance model 

   beta0[spp] ~ dnorm(0, 0.1) #intercept for detection model 

 

   # SLOPE COEFFICIENTS FOR SITE COVARIATES 

   for (alpha.index in 1:n.alphas) { 

      alpha[spp, alpha.index] ~ dnorm(0, 0.1)  

   }  

 

   # RANDOM SITE EFFECT 

   tau.rse[spp] ~ dgamma(0.1, 0.1) #for random site effects 

   for (site in 1:n.sites){  

      random.site.effect[spp, site] ~ dnorm(alpha0[spp], tau.rse[spp])  

   } 

   # NOTES: Loop over the number of unique sites 

 

   # SLOPE COEFFICIENTS FOR DETECTION COVARIATES 

   for (detcov in 1:n.detcovs) { 

      beta[species, detcov] ~ dnorm(0, 0.1)  

   }  

 

   # RANDOM OBSERVER EFFECT 

   tau.roe[spp] ~ dgamma(0.1, 0.1) 

   for (observer in 1:n.observers) { 

      random.observer.effect[spp, observer] ~ dnorm(beta0[spp], tau.roe[spp])  

   } 

 

} 

# NOTES: Loop over each focal species 

 

# PARAMETERS FOR IMPUTATION OF DETECTION COVARIATES (WIND CODE AND SKY CODE) 

wind.prob ~ dbeta(1, 1) 

sky.prob ~ dbeta(1, 1) 

 

 

### LIKELIHOOD 

 

# IMPUTATION OF DETECTION COVARIATES 

for (site in 1:n.sites){ 

   for (year in 1:n.years[site]) { 
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      for (visit in 1:n.visits[site, year]) { 

         time.array[site, year, visit] ~ dnorm(0, 1) 

         wind.array[site, year, visit] ~ dbern(wind.prob) 

         sky.array[site, year, visit] ~ dbern(sky.prob) 

      } 

   } 

} 

# NOTES: Loop over sites, years, and visits. 

 

# ESTIMATE ABUNDANCE AND DETECTION PROBABILITY 

for (spp in 1:n.species) { 

 

   # Loop to estimate N (true abundance) for each species at each site 

   for (site in 1:n.sites) { 

 

      for (year in 1:n.years[site]) { 

 

         # ABUNDANCE MODEL 

         log(lambda[site, year, spp]) <- inprod(alpha[spp, 1:n.sitecovs],  

     sitecov.array[site, year, 1:n.sitecovs]) + 

                                   random.site.effect[spp, site]  

 

         # ESTIMATING ABUNDANCE 

         N[site, year, spp] ~ dpois(lambda[site, year, spp]) 

 

         for (visit in 1:n.visits[site, year]) { 

 

            # OBSERVATION PROBABILITY 

            Y[site, year, visit, 1, spp] ~ dbin(p[site, year, visit, 1, spp],  

N[site, year, spp]) 

            z[site, year, visit, 1, spp] <- N[site, year, spp] –  

  Y[site, year, visit, 1, spp] 

          

            for (i in 2:n.replicates) { 

             

Y[site, year, visit, i, spp] ~ dbin(p[site, year, visit, i, spp],  

     z[site, year, visit, i-1, spp]) 

            z[site, year, visit, i, spp] <- N[site, year, spp] –  

      sum(Y[site, year, visit, 1:i, spp]) 

            }            

 

# Loop to estimate detection each species at each site 

            for (replicate in 1:n.replicates) { 

 

               # DETECTION MODEL 

               logit(p[site, year, visit, replicate, spp]) <-  

beta[spp, 1] * day.array[site, year, visit] + 

                              beta[spp, 2] * time.array[site, year, visit] + 

                              beta[spp, 3] * time.array[site, year, visit] *  
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         time.array[site, year, visit] + 

                              beta[spp, 4] * wind.array[site, year, visit] +  

                              beta[spp, 5] * sky.array[site, year, visit] + 

random.observer.effect[spp,  

       observer.id.array[site, year, visit]] 

         

            } 

            # NOTES: Loop over each replicate for each site. 

 

         } # end visit loop 

 

      } # end year loop 

 

   } # end site loop 

 

} # end species loop 

 

 

} 

 

 

JAGS model code for the focal species nest success analyses 

 
model { 

 

 

### PRIORS  

 

# INTERCEPTS 

ISM.alpha0 ~ dnorm(0, 0.01) #intercept for incubation success model (ISM) 

BSM.alpha0 ~ dnorm(0, 0.01) #intercept for brooding success model (BSM) 

 

# SLOPE COEFFICIENTS FOR SITE COVARIATES 

for (alpha.index in 1:n.alphas) { 

   ISM.alpha[alpha.index] ~ dnorm(0, 0.01) #for incubation success model 

   BSM.alpha[alpha.index] ~ dnorm(0, 0.01) #for brooding success model 

}  

 

# RANDOM PLOT EFFECT 

ISM.tau.rpe ~ dgamma(0.01, 0.01) #for incubation success model 

BSM.tau.rpe ~ dgamma(0.01, 0.01) #for brooding success model 

for (nest.plot in 1:n.nest.plots){  

   ISM.random.plot.effect[nest.plot] ~ dnorm(ISM.alpha0, ISM.tau.rpe)  

   BSM.random.plot.effect[nest.plot] ~ dnorm(BSM.alpha0, BSM.tau.rpe)  

} 

# NOTES: Loop over the number of nest search plots 
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### LIKELIHOOD 

 

for (nest in 1:n.nests){ 

 

   Y[nest, 1] ~ dbern(p.incubation[nest]) 

   Y[nest, 2] ~ dbern(p.brooding[nest] * Y[nest, 1]) 

   # NOTE: probability of nest success during brooding period is conditional  

   # on nest success during incubation period 

 

   logit(p.incubation[nest]) <- ISM.alpha[1] * sitecov.matrix[nest, 1] +  

          ISM.alpha[2] * sitecov.matrix[nest, 2] +  

          ISM.alpha[3] * sitecov.matrix[nest, 3] +  

          ISM.alpha[4] * sitecov.matrix[nest, 4] +  

          ISM.alpha[5] * sitecov.matrix[nest, 1] * sitecov.matrix[nest, 2] +  

          ISM.random.plot.effect[nest.plot.index[nest]] 

 

   # sitecov.matrix: 1 = study area, 2 = year, 3 = nest search plot with  

   # harvest history, 4 = nest search plot in mature forest 

    

   logit(p.brooding[nest]) <- BSM.alpha[1] * sitecov.matrix[nest, 1] +  

        BSM.alpha[2] * sitecov.matrix[nest, 2] +  

      BSM.alpha[3] * sitecov.matrix[nest, 3] +  

      BSM.alpha[4] * sitecov.matrix[nest, 4] +  

      BSM.alpha[5] * sitecov.matrix[nest, 1] *  

  sitecov.matrix[nest, 2] +  

      BSM.random.plot.effect[nest.plot.index[nest]] 

 

   # sitecov.matrix: 1 = study area, 2 = year, 3 = nest search plot with  

   # harvest history, 4 = nest search plot in mature forest 

 

   p.overall[nest] <- p.incubation[nest] * p.brooding[nest] 

 

} # end nest loop 

 

 

} 
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APPENDIX C3: MODEL INFORMATION 

Table of model information for overall species richness, the 4 habitat-related guild 

designations considered in the guild richness analyses, the 15 focal songbird species 

considered in the abundance analyses, and the 6 focal songbird species considered in the 

nest success analyses 

Table C2. List of the 4 habitat-related guild designations and 15 focal songbird species (see 

Table 1 for species codes), with corresponding information for the hierarchical community 

model (HCM), focal species abundance (FSA) models, and focal species nest success (FSNS) 

models that includes the number of chains (Chains), total iterations (Total), burn-in (Burn), 

thinning rate (Thin), and resulting posterior iterations (Posterior). The habitat-related guild 

designation indicates the primary breeding habitat of the species (see Appendix C1 for precise 

definitions) and includes 4 categories: early-successional / edge-associated (ESEA), forest-

interior (INT), forest-gap (GAP), and forest generalist (GEN). 

 

Guild Species Model Chains Total Burn-In Thin Posterior 

ALL   HCM 3 18,000 15,000 1 9,000 

ESEA HCM 3 18,000 15,000 1 9,000 

 BHCO FSA 3 63,000 54,000 3 9,000 
 CSWA FSA 3 24,000 15,000 3 9,000 
 EATO FSA 3 38,000 29,000 3 9,000 

  FSNS 3 12,000 6,000 3 6,000 

 INBU FSA 3 19,000 10,000 3 9,000 

   FSNS 3 30,000 21,000 3 9,000 

INT HCM 3 18,000 15,000 1 9,000 
 BTNW FSA 3 12,000 9,000 3 3,000 
 DEJU FSA 3 12,000 9,000 3 3,000 

  FSNS 3 15,000 6,000 3 9,000 

 REVI FSA 3 12,000 9,000 3 3,000 

  FSNS 3 12,000 6,000 3 6,000 

 WOTH FSA 3 24,000 15,000 3 9,000 

   FSNS 3 9,000 3,000 3 6,000 

GAP HCM 3 18,000 15,000 1 9,000 
 AMRE FSA 3 19,000 10,000 3 9,000 
 CERW FSA 3 63,000 54,000 3 9,000 
 HOWA FSA 3 19,000 10,000 3 9,000 

 VEER FSA 3 12,000 9,000 3 3,000 

   FSNS 3 12,000 6,000 3 6,000 

GEN HCM 3 18,000 15,000 1 9,000 
 AMRO FSA 3 36,000 30,000 3 6,000 
 BCCH FSA 3 38,000 29,000 3 9,000 

  WBNU FSA 3 36,000 30,000 3 6,000 
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APPENDIX D 

Multi-species avian occupancy of wildlife openings in a heavily forested landscape 

 

APPENDIX D1: TABLE OF FOREST SONGBIRD SPECIES 

Table of the 66 forest songbird species considered in the guild richness analyses 

Table D1. List of the common name, scientific name, 4-letter species code, relative frequency, 

taxonomic family, guild designation, and corresponding hierarchical community model (1 = 

breeding songbirds within the wildlife opening, 2 = breeding songbirds in the adjacent forest, 3 = 

post-breeding songbirds within the wildlife opening) of all 66 forest songbird species considered 

for the guild richness analyses. Relative frequency is the number of detections across all 

breeding bird point count surveys from all sampling points (within the wildlife opening and in 

the adjacent forest) and all post-breeding bird transect surveys. The guild designation indicates 

the primary breeding habitat of the species, such that: species in the early-successional / edge-

associated (ESEA) guild breed in open habitat, shrub/scrub, or young forest, or along forest 

edges, such as the interface of early-successional and mature forest; species in the forest-interior 

(INT) guild breed in the core area of mature forest; species in the forest-gap (GAP) guild breed 

in or near small forest gaps within the core area of mature forest; and species in the forest 

generalist (GEN) guild are associated with forest but have no preference for early-successional 

vs. mature forest. 

Common Name  

(Scientific Name) 

Species 

Code 

Relative 

Frequency 

Taxonomic 

Family 
Guild Model 

American Goldfinch 

(Spinus tristis) 
AMGO 192 Fringillidae ESEA 1+3 

Brown Thrasher 

(Toxostoma rufum) 
BRTH 11 Mimidae ESEA 1+3 

Brown-headed Cowbird 

(Molothrus ater) 
BHCO 42 Icteridae ESEA 1+3 

Carolina Wren 

(Thryothorus ludovicianus) 
CARW 148 Troglodytidae ESEA 1+3 

Cedar Waxwing 

(Bombycilla cedrorum) 
CEDW 513 Bombycillidae ESEA 1+3 

Chestnut-sided Warbler 

(Setophaga pensylvanica) 
CSWA 184 Parulidae ESEA 1+3 

Chipping Sparrow 

(Spizella passerina) 
CHSP 212 Passerellidae ESEA 1+3 

Common Yellowthroat 

(Geothlypis trichas) 
COYE 355 Parulidae ESEA 1+3 
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Table D1. Continued. 

Common Name  

(Scientific Name) 

Species 

Code 

Relative 

Frequency 

Taxonomic 

Family 
Guild Model 

Eastern Bluebird 

(Sialia sialis) 
EABL 5 Turdidae ESEA 3 

Eastern Phoebe 

(Sayornis phoebe) 
EAPH 28 Tyrannidae ESEA 1+3 

Eastern Towhee 

(Pipilo erythrophthalmus) 
EATO 487 Passerellidae ESEA 1+3 

Field Sparrow 

(Spizella pusilla) 
FISP 229 Passerellidae ESEA 1+3 

Gray Catbird 

(Dumetella carolinensis) 
GRCA 148 Mimidae ESEA 1+3 

House Wren 

(Troglodytes aedon) 
HOWR 49 Troglodytidae ESEA 1+3 

Indigo Bunting 

(Passerina cyanea) 
INBU 553 Cardinalidae ESEA 1+3 

Mourning Dove 

(Zenaida macroura) 
MODO 45 Columbidae ESEA 1+3 

Mourning Warbler 

(Geothlypis philadelphia) 
MOWA 26 Parulidae ESEA 1+3 

Northern Cardinal 

(Cardinalis cardinalis) 
NOCA 67 Cardinalidae ESEA 1+3 

Song Sparrow 

(Melospiza melodia) 
SOSP 107 Passerellidae ESEA 1+3 

Yellow Warbler 

(Setophaga petechia) 
YEWA 5 Parulidae ESEA 1+3 

Yellow-billed Cuckoo 

(Coccyzus americanus) 
YBCU 42 Cuculidae ESEA 1+3 

Acadian Flycatcher 
(Empidonax virescens) 

ACFL 79 Tyrannidae INT 1+2+3 

Black-and-white Warbler 
(Mniotilta varia) 

BAWW 166 Parulidae INT 1+2+3 

Blackburnian Warbler 
(Setophaga fusca) 

BLBW 130 Parulidae INT 1+2+3 

Black-throated Blue Warbler 
(Setophaga caerulescens) 

BTBW 210 Parulidae INT 1+2+3 

Black-throated Green Warbler 
(Setophaga virens) 

BTNW 838 Parulidae INT 1+2+3 

Blue-headed Vireo 
(Vireo solitarius) 

BHVI 423 Vireonidae INT 1+2+3 

Brown Creeper 
(Certhia americana) 

BRCR 18 Certhiidae INT 1+2+3 

Canada Warbler 
(Cardellina canadensis) 

CAWA 39 Parulidae INT 1+2+3 
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Table D1. Continued. 

Common Name  

(Scientific Name) 

Species 

Code 

Relative 

Frequency 

Taxonomic 

Family 
Guild Model 

Dark-eyed Junco 
(Junco hyemalis) 

DEJU 430 Passerellidae INT 1+2+3 

Golden-crowned Kinglet 
(Regulus satrapa) 

GCKI 184 Regulidae INT 1+2+3 

Hairy Woodpecker 

(Leuconotopicus villosus) 
HAWO 65 Picidae INT 1+2+3 

Hermit Thrush 
(Catharus guttatus) 

HETH 234 Turdidae INT 1+2+3 

Least Flycatcher 
(Empidonax minimus) 

LEFL 78 Tyrannidae INT 1+2+3 

Magnolia Warbler 

(Setophaga magnolia) 
MAWA 226 Parulidae INT 1+2+3 

Ovenbird 
(Seiurus aurocapilla) 

OVEN 410 Parulidae INT 1+2+3 

Pileated Woodpecker 

(Dryocopus pileatus) 
PIWO 116 Picidae INT 1+2+3 

Pine Warbler 
(Setophaga pinus) 

PIWA 7 Parulidae INT 1+2+3 

Purple Finch 
(Haemorhous purpureus) 

PUFI 10 Fringillidae INT 1+2+3 

Red Crossbill 
(Loxia curvirostra) 

RECR 93 Fringillidae INT 1+2+3 

Red-breasted Nuthatch 
(Sitta canadensis) 

RBNU 156 Sittidae INT 1+2+3 

Red-eyed Vireo 
(Vireo olivaceus) 

REVI 895 Vireonidae INT 1+2+3 

Rose-breasted Grosbeak 

(Pheucticus ludovicianus) 
RBGR 49 Cardinalidae INT 1+2+3 

Scarlet Tanager 
(Piranga olivacea) 

SCTA 219 Cardinalidae INT 1+2+3 

Swainson's Thrush 
(Catharus ustulatus) 

SWTH 41 Turdidae INT 1+2+3 

Winter Wren 
(Troglodytes hiemalis) 

WIWR 109 Troglodytidae INT 1+2+3 

Wood Thrush 
(Hylocichla mustelina) 

WOTH 182 Turdidae INT 1+2+3 

Worm-eating Warbler 
(Helmitheros vermivorum) 

WEWA 23 Parulidae INT 1+2+3 

Yellow-rumped Warbler 
(Setophaga coronata) 

YRWA 35 Parulidae INT 1+2+3 

American Redstart 
(Setophaga ruticilla) 

AMRE 128 Parulidae GAP 1+2+3 
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Table D1. Continued. 

Common Name  

(Scientific Name) 

Species 

Code 

Relative 

Frequency 

Taxonomic 

Family 
Guild Model 

Black-billed Cuckoo 

(Coccyzus erythropthalmus) 
BBCU 6 Cuculidae GAP 1+3 

Eastern Wood-Pewee 

(Contopus virens) 
EAWP 201 Tyrannidae GAP 1+2+3 

Great-crested Flycatcher 

(Myiarchus crinitus) 
GCFL 12 Tyrannidae GAP 1+2+3 

Hooded Warbler 
(Setophaga citrina) 

HOWA 145 Parulidae GAP 1+2+3 

Northern Parula 
(Setophaga americana) 

NOPA 38 Parulidae GAP 1+2+3 

Veery 
(Catharus fuscescens) 

VEER 266 Turdidae GAP 1+2+3 

Yellow-throated Vireo 

(Vireo flavifrons) 
YTVI 16 Vireonidae GAP 1+2 

American Robin 

(Turdus migratorius) 
AMRO 343 Turdidae GEN 1+2+3 

Black-capped Chickadee 

(Poecile atricapillus) 
BCCH 482 Paridae GEN 1+2+3 

Blue-gray Gnatcatcher 

(Polioptila caerulea) 
BGGN 33 Polioptilidae GEN 1+2+3 

Downy Woodpecker 

(Picoides pubescens) 
DOWO 80 Picidae GEN 1+2+3 

Northern Flicker 

(Colaptes auratus) 
NOFL 66 Picidae GEN 1+2+3 

Red-bellied Woodpecker 

(Melanerpes carolinus) 
RBWO 100 Picidae GEN 1+2+3 

Tufted Titmouse 

(Baeolophus bicolor) 
TUTI 170 Paridae GEN 1+2+3 

White-breasted Nuthatch 
(Sitta carolinensis) 

WBNU 89 Sittidae GEN 1+2+3 

Yellow-bellied Sapsucker 

(Sphyrapicus varius) 
YBSA 90 Picidae GEN 1+2+3 
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APPENDIX D2: JAGS MODEL CODE 

JAGS model code for the multi-species game bird occupancy analyses 

model{ 

 

 

### PRIORS 

 

# SITE COVARIATES - INTERCEPT (alpha0)  

alpha0.witu ~ dunif(-10, 10) #WITU 

alpha0.rugr ~ dunif(-10, 10) #RUGR 

alpha0.amwo ~ dunif(-10, 10) #AMWO 

 

# SITE COVARIATES - SLOPE COEFFICIENTS (alpha)  

for(sitecov in 1:n.sitecovs){ 

   alpha.witu[sitecov] ~ dlogis(0, 1) #WITU 

   alpha.rugr[sitecov] ~ dlogis(0, 1) #RUGR 

   alpha.amwo[sitecov] ~ dlogis(0, 1) #AMWO 

} 

 

# RANDOM YEAR EFFECT (rye) - for modeling natural parameters 

tau.rye.witu ~ dgamma(0.1, 0.1) #WITU 

tau.rye.rugr ~ dgamma(0.1, 0.1) #RUGR 

tau.rye.amwo ~ dgamma(0.1, 0.1) #AMWO 

for (year in 1:n.years) { 

   rye.witu[year] ~ dnorm(alpha0.witu, tau.rye.witu)  

   rye.rugr[year] ~ dnorm(alpha0.rugr, tau.rye.rugr)  

   rye.amwo[year] ~ dnorm(alpha0.amwo, tau.rye.amwo)  

} 

   

# CO-OCCURENCE - for each two-way combination of game bird species 

alpha.witu.rugr ~ dlogis(0, 1) #WITU+RUGR 

alpha.witu.amwo ~ dlogis(0, 1) #WITU+AMWO 

alpha.rugr.amwo ~ dlogis(0, 1) #RUGR+AMWO 

   

# DETECTION COVARIATES - INTERCEPT (beta0) 

beta0.witu.pcs ~ dunif(-10, 10) #WITU in-person point count survey 

beta0.rugr.pcs ~ dunif(-10, 10) #RUGR in-person point count survey 

beta0.amwo.pcs ~ dunif(-10, 10) #AMWO in-person point count survey 

beta0.witu.gc ~ dunif(-10, 10) #WITU game camera survey 

beta0.witu.aru ~ dunif(-10, 10) #WITU acoustic recording unit survey 

beta0.amwo.aru ~ dunif(-10, 10) #AMWO acoustic recording unit survey 

 

# DETECTION COVARIATES - SLOPE COEFFICIENTS (beta)  

for(detcov in 1:n.detcovs.witu.rugr.pcs){ 

   beta.witu.pcs[detcov] ~ dlogis(0, 1) #WITU in-person point count survey 

   beta.rugr.pcs[detcov] ~ dlogis(0, 1) #RUGR in-person point count survey 

} 
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for(detcov in 1:n.detcovs.amwo.pcs){ 

   beta.amwo.pcs[detcov] ~ dlogis(0, 1) #AMWO in-person point count survey 

} 

 

for(detcov in 1:n.detcovs.gc){ 

   beta.witu.gc[detcov] ~ dlogis(0, 1) #WITU game camera survey 

} 

 

for(detcov in 1:n.detcovs.aru){ 

   beta.witu.aru[detcov] ~ dlogis(0, 1) #WITU ARU survey 

   beta.amwo.aru[detcov] ~ dlogis(0, 1) #AMWO ARU survey 

} 

 

# RANDOM OBSERVER EFFECT (roe) 

tau.roe.witu ~ dgamma(0.1, 0.1) #WITU 

tau.roe.rugr ~ dgamma(0.1, 0.1) #RUGR 

tau.roe.amwo ~ dgamma(0.1, 0.1) #AMWO 

 

for (observer in 1:n.observers.witu.rugr) { 

   roe.witu[observer] ~ dnorm(beta0.witu.pcs, tau.roe.witu)  

   roe.rugr[observer] ~ dnorm(beta0.rugr.pcs, tau.roe.rugr)  

} 

 

for (observer in 1:n.observers.amwo) { 

   roe.amwo[observer] ~ dnorm(beta0.amwo.pcs, tau.roe.amwo)  

} 

 

# RANDOM ARU TYPE EFFECT (rate) 

tau.rate.witu ~ dgamma(0.1, 0.1) #WITU 

tau.rate.amwo ~ dgamma(0.1, 0.1) #AMWO 

 

for (aru.type in 1:n.aru.types) { 

   rate.witu[aru.type] ~ dnorm(beta0.witu.aru, tau.rate.witu)  

   rate.amwo[aru.type] ~ dnorm(beta0.amwo.aru, tau.rate.amwo)  

} 

 

 

### LIKELIHOOD 

 

for(site in 1:n.sites){ 

     

   # NATURAL PARAMETERS 

   f.witu[site] <- inprod(alpha.witu[1:n.sitecovs],  

sitecov.matrix[site, 1:n.sitecovs]) +     

rye.witu[year.id[site]] 

   f.rugr[site] <- inprod(alpha.rugr[1:n.sitecovs],  

sitecov.matrix[site, 1:n.sitecovs]) + 

rye.rugr[year.id[site]]  

   f.amwo[site] <- inprod(alpha.amwo[1:n.sitecovs],  
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sitecov.matrix[site, 1:n.sitecovs]) + 

rye.amwo[year.id[site]] 

   f.witu.rugr[site] <- alpha.witu.rugr  

   f.witu.amwo[site] <- alpha.witu.amwo  

   f.rugr.amwo[site] <- alpha.rugr.amwo  

    

   # PROBABILITY OF EACH COMBINATION OF 1 AND 0  

 

   Psi[site, 1] <- exp(f.witu[site] + f.rugr[site] + f.amwo[site] +  

f.witu.rugr[site] + f.witu.amwo[site] + 

f.rugr.amwo[site]) * no.extra.detections.vector[site] 

   Psi[site, 2] <- exp(f.witu[site] + f.rugr[site] + f.witu.rugr[site]) *  

            no.extra.detections.vector[site] 

   Psi[site, 3] <- exp(f.witu[site] + f.amwo[site] + f.witu.amwo[site]) *  

            no.extra.detections.vector[site] 

   Psi[site, 4] <- exp(f.witu[site]) * no.extra.detections.vector[site] 

   Psi[site, 5] <- exp(f.rugr[site] + f.amwo[site] + f.rugr.amwo[site]) *  

            no.extra.detections.vector[site] 

   Psi[site, 6] <- exp(f.rugr[site]) * no.extra.detections.vector[site] 

   Psi[site, 7] <- exp(f.amwo[site]) * no.extra.detections.vector[site] 

   Psi[site, 8] <- 1 * no.extra.detections.vector[site] 

 

   Psi.WITU[site, 1] <- exp(f.witu[site] + f.rugr[site] + f.amwo[site] +  

f.witu.rugr[site] + f.witu.amwo[site] + 

f.rugr.amwo[site]) * known.witu.vector[site] 

   Psi.WITU[site, 2] <- exp(f.witu[site] + f.rugr[site] + f.witu.rugr[site])  

      * known.witu.vector[site]  

   Psi.WITU[site, 3] <- exp(f.witu[site] + f.amwo[site] + f.witu.amwo[site])  

      * known.witu.vector[site]   

   Psi.WITU[site, 4] <- exp(f.witu[site]) * known.witu.vector[site]   

   Psi.WITU[site, 5] <- 0 

   Psi.WITU[site, 6] <- 0 

   Psi.WITU[site, 7] <- 0 

   Psi.WITU[site, 8] <- 0 

 

   Psi.RUGR[site, 1] <- exp(f.witu[site] + f.rugr[site] + f.amwo[site] +  

f.witu.rugr[site] + f.witu.amwo[site] + 

f.rugr.amwo[site]) * known.rugr.vector[site]    

   Psi.RUGR[site, 2] <- exp(f.witu[site] + f.rugr[site] + f.witu.rugr[site])  

      * known.rugr.vector[site]   

   Psi.RUGR[site, 3] <- 0 

   Psi.RUGR[site, 4] <- 0  

   Psi.RUGR[site, 5] <- exp(f.rugr[site] + f.amwo[site] + f.rugr.amwo[site])  

      * known.rugr.vector[site]  

   Psi.RUGR[site, 6] <- exp(f.rugr[site]) * known.rugr.vector[site] 

   Psi.RUGR[site, 7] <- 0 

   Psi.RUGR[site, 8] <- 0  
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   Psi.AMWO[site, 1] <- exp(f.witu[site] + f.rugr[site] + f.amwo[site] +  

f.witu.rugr[site] + f.witu.amwo[site] + 

f.rugr.amwo[site]) * known.amwo.vector[site 

   Psi.AMWO[site, 2] <- 0 

   Psi.AMWO[site, 3] <- exp(f.witu[site] + f.amwo[site] + f.witu.amwo[site])  

      * known.amwo.vector[site 

   Psi.AMWO[site, 4] <- 0   

   Psi.AMWO[site, 5] <- exp(f.rugr[site] + f.amwo[site] + f.rugr.amwo[site])  

      * known.amwo.vector[site]   

   Psi.AMWO[site, 6] <- 0  

   Psi.AMWO[site, 7] <- exp(f.amwo[site]) * known.amwo.vector[site]   

   Psi.AMWO[site, 8] <- 0 

 

   Psi.WITU.RUGR[site, 1] <- exp(f.witu[site] + f.rugr[site] + f.amwo[site]  

+ f.witu.rugr[site] + f.witu.amwo[site] + 

f.rugr.amwo[site]) * 

known.witu.rugr.vector[site]    

   Psi.WITU.RUGR[site, 2] <- exp(f.witu[site] + f.rugr[site] +  

f.witu.rugr[site]) * 

known.witu.rugr.vector[site]   

   Psi.WITU.RUGR[site, 3] <- 0 

   Psi.WITU.RUGR[site, 4] <- 0  

   Psi.WITU.RUGR[site, 5] <- 0 

   Psi.WITU.RUGR[site, 6] <- 0 

   Psi.WITU.RUGR[site, 7] <- 0 

   Psi.WITU.RUGR[site, 8] <- 0 

 

   Psi.TOTAL[site,1] <- Psi[site,1] + Psi.WITU[site,1] + Psi.RUGR[site,1] +  

Psi.AMWO[site,1] + Psi.WITU.RUGR[site,1] 

   Psi.TOTAL[site,2] <- Psi[site,2] + Psi.WITU[site,2] + Psi.RUGR[site,2] +  

      Psi.AMWO[site,2] + Psi.WITU.RUGR[site,2] 

   Psi.TOTAL[site,3] <- Psi[site,3] + Psi.WITU[site,3] + Psi.RUGR[site,3] +  

      Psi.AMWO[site,3] + Psi.WITU.RUGR[site,3] 

   Psi.TOTAL[site,4] <- Psi[site,4] + Psi.WITU[site,4] + Psi.RUGR[site,4] +  

      Psi.AMWO[site,4] + Psi.WITU.RUGR[site,4] 

   Psi.TOTAL[site,5] <- Psi[site,5] + Psi.WITU[site,5] + Psi.RUGR[site,5] +  

      Psi.AMWO[site,5] + Psi.WITU.RUGR[site,5] 

   Psi.TOTAL[site,6] <- Psi[site,6] + Psi.WITU[site,6] + Psi.RUGR[site,6] +  

      Psi.AMWO[site,6] + Psi.WITU.RUGR[site,6] 

   Psi.TOTAL[site,7] <- Psi[site,7] + Psi.WITU[site,7] + Psi.RUGR[site,7] +  

      Psi.AMWO[site,7] + Psi.WITU.RUGR[site,7] 

   Psi.TOTAL[site,8] <- Psi[site,8] + Psi.WITU[site,8] + Psi.RUGR[site,8] +  

      Psi.AMWO[site,8] + Psi.WITU.RUGR[site,8] 

 

   # LATENT OCCUPANCY STATE 

   Z[site] ~ dcat(Psi.TOTAL[site, 1:8]) 

   z.witu[site] <- (Z[site] == 1) + (Z[site] == 2) + (Z[site] == 3) +  

       (Z[site] == 4) 

   z.rugr[site] <- (Z[site] == 1) + (Z[site] == 2) + (Z[site] == 5) +  
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 (Z[site] == 6) 

   z.amwo[site] <- (Z[site] == 1) + (Z[site] == 3) + (Z[site] == 5) +  

       (Z[site] == 7) 

     

   # DETECTION PROCESS FOR WITU AND RUGR POINT COUNT SURVEYS (pcs) 

   for(replicate in 1:n.replicates.witu.rugr.pcs[site]){ 

       

      # CONDITIONAL DETECTION PROBABILITY 

      logit(p.witu.pcs[site, replicate]) <-  

inprod(beta.witu.pcs[1:n.detcovs.witu.rugr.pcs], 

detcov.array.witu.rugr.pcs[site, replicate, 

1:n.detcovs.witu.rugr.pcs]) + 

roe.witu[observer.id.witu.rugr[site, replicate]] 

      logit(p.rugr.pcs[site, replicate]) <-  

inprod(beta.rugr.pcs[1:n.detcovs.witu.rugr.pcs], 

detcov.array.witu.rugr.pcs[site, replicate, 

1:n.detcovs.witu.rugr.pcs]) + 

roe.rugr[observer.id.witu.rugr[site, replicate]] 

 

      # DETECTION MODEL 

      y.witu.pcs[site, replicate] ~ dbern(z.witu[site] * p.witu.pcs[site,  

      replicate]) 

      y.rugr.pcs[site, replicate] ~ dbern(z.rugr[site] * p.rugr.pcs[site,  

      replicate])    

   } # END REPLICATE LOOP FOR WITU AND RUGR POINT COUNT SURVEYS (pcs) 

    

   # DETECTION PROCESS FOR AMWO POINT COUNT SURVEYS (pcs) 

   for(replicate in 1:n.replicates.amwo.pcs[site]){ 

       

      # CONDITIONAL DETECTION PROBABILITY 

      logit(p.amwo.pcs[site, replicate]) <-  

inprod(beta.amwo.pcs[1:n.detcovs.amwo.pcs], 

detcov.matrix.amwo.pcs[site, 1:n.detcovs.amwo.pcs]) + 

roe.amwo[observer.id.amwo[site]] 

 

      # DETECTION MODEL 

      y.amwo.pcs[site, replicate] ~ dbern(z.amwo[site] * p.amwo.pcs[site,  

      replicate]) 

   } # END REPLICATE LOOP FOR AMWO POINT COUNT SURVEYS (pcs) 

 

   # DETECTION PROCESS FOR GAME CAMERA SURVEYS (gc)  

   for(replicate in 1:n.replicates.gc[site]){ 

       

      # CONDITIONAL DETECTION PROBABILITY    

      logit(p.witu.gc[site, replicate]) <- beta0.witu.gc +  

inprod(beta.witu.gc[1:n.detcovs.gc], detcov.matrix.gc[site, 

1:n.detcovs.gc])     
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      # DETECTION MODEL 

      y.witu.gc[site, replicate] ~ dbern(z.witu[site] * p.witu.gc[site,  

     replicate])  

   } # END REPLICATE LOOP FOR GAME CAMERA SURVEYS (gc) 

 

   # DETECTION PROCESS FOR ACOUSTIC RECORDING UNIT SURVEYS (aru)  

   for(replicate in 1:n.replicates.aru[site]){ 

       

      # CONDITIONAL DETECTION PROBABILITY 

      logit(p.witu.aru[site, replicate]) <-  

inprod(beta.witu.aru[1:n.detcovs.aru], detcov.matrix.aru[site, 

1:n.detcovs.aru]) + rate.witu[aru.type.id[site]]     

      logit(p.amwo.aru[site, replicate]) <-  

inprod(beta.amwo.aru[1:n.detcovs.aru], detcov.matrix.aru[site, 

1:n.detcovs.aru]) + rate.amwo[aru.type.id[site]]       

 

      # DETECTION MODEL 

      y.witu.aru[site, replicate] ~ dbern(z.witu[site] * p.witu.aru[site,  

      replicate]) 

      y.amwo.aru[site, replicate] ~ dbern(z.amwo[site] * p.amwo.aru[site,  

      replicate]) 

 

   } # END REPLICATE LOOP FOR ACOUSTIC RECORDING UNIT SURVEYS (aru) 

 

} # END SITE LOOP 

 

 

} 

 

JAGS model code for the guild richness analyses 
 

model { 

 

 

### PRIORS  

    

# COMMUNITY-LEVEL MODEL PARAMETERS (OCCUPANCY) 

community.occupancy.a ~ dlogis(0,1) #this assumes a logistic prior 

community.occupancy.tau ~ dgamma(0.1, 0.1) 

 

# COMMUNITY-LEVEL MODEL PARAMETERS (DETECTION) 

community.detection.b ~ dlogis(0,1) #this assumes a logistic prior 

community.detection.tau ~ dgamma(0.1, 0.1) 

 

# COMMUNITY-LEVEL PARAMETERS FOR SITE COVARIATE SLOPE COEFFICIENTS 

for (sitecov in 1:n.sitecovs) { 

   mu.alpha[sitecov] ~ dnorm(0, 0.01) 

   tau.alpha[sitecov] ~ dgamma(0.1, 0.1) 
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} 

 

# COMMUNITY-LEVEL PARAMETERS FOR DETECTION COVARIATE SLOPE COEFFICIENTS 

for (detcov in 1:n.detcovs) { 

   mu.beta[detcov] ~ dnorm(0, 0.01) 

   tau.beta[detcov] ~ dgamma(0.1, 0.1) 

}    

 

# SPECIES-SPECIFIC PRIORS FROM THE COMMUNITY-LEVEL PRIOR DISTRIBUTIONS 

for (species in 1:n.species) { 

 

   # INTERCEPTS 

   alpha0[species] ~ dnorm(community.occupancy.a, community.occupancy.tau) 

   beta0[species] ~ dnorm(community.detection.b, community.detection.tau) 

 

   # SLOPE COEFFICIENTS FOR SITE COVARIATES 

   for (sitecov in 1:n.sitecovs) { 

      alpha[species, sitecov] ~ dnorm(mu.alpha[sitecov],  

  tau.alpha[sitecov]) 

   }  

 

   # RANDOM YEAR EFFECT 

   tau.rye[species] ~ dgamma(0.1, 0.1) 

   for (year in 1:n.years) { 

      random.year.effect[species, year] ~ dnorm(alpha0[species],  

      tau.rye[species]) 

   } 

 

   # SLOPE COEFFICIENTS FOR DETECTION COVARIATES 

   for (detcov in 1:n.detcovs) { 

      beta[species, detcov] ~ dnorm(mu.beta[detcov], tau.beta[detcov]) 

   }  

 

   # RANDOM OBSERVER EFFECT 

   tau.roe[species] ~ dgamma(0.1, 0.1) 

   for (observer in 1:n.observers) { 

      random.observer.effect[species, observer] ~ dnorm(beta0[species],  

        tau.roe[species]) 

   } 

} 

# NOTES: Loop over all species 

 

 

### LIKELIHOOD 

 

for (species in 1:n.species) { 

 

   # Loop to estimate Z matrix (true occurrence) for species at each site 

   for (site in 1:n.sites){ 
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      # OCCUPANCY MODEL 

      logit(psi[site, species]) <- inprod(alpha[species, 1:n.sitecovs],  

                 sitecov.matrix[site, 1:n.sitecovs]) + 

                                   random.year.effect[species, year.id[site]] 

          

      # ESTIMATING OCCUPANCY 

      Z[site, species] ~ dbern(psi[site, species]) 

 

      # Loop to estimate detection 

      for (replicate in 1:n.replicates) { 

 

         # DETECTION MODEL  

         logit(p[site, replicate, species]) <-  

     inprod(beta[species, 1:n.detcovs],  

     detcov.array[site, replicate, 1:n.detcovs]) + 

                       random.observer.effect[species, observer.id[site]] 

 

         # ESTIMATING PROBABILITY OF DETECTION 

         mu.p[site, replicate, species] <- p[site, replicate, species] *  

 Z[site, species] 

         Y[site, replicate, species] ~ dbern(mu.p[site, replicate,  

   species]) 

 

      } # end replicate loop 

   } #end site loop 

} #end species loop 

  

 

### DERIVED QUANTITIES 

 

# Loop to determine site-level richness estimates 

for (site in 1:n.sites) { 

 

   site.species.richness[site] <- sum(Z[site, 1:n.species]) 

   es.ea.guild.richness[site] <- inprod(Z[site, 1:n.species],  

   es.ea.guild[1:n.species]) 

   forest.interior.guild.richness[site] <- inprod(Z[site, 1:n.species],  

forest.interior.guild[1:n.species]) 

   forest.gap.guild.richness[site] <- inprod(Z[site, 1:n.species],  

  forest.gap.guild[1:n.species]) 

   generalist.guild.richness[site] <- inprod(Z[site, 1:n.species],  

  generalist.guild[1:n.species]) 

 

} #end site loop 

 

 

} 
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APPENDIX D3: MODEL INFORMATION 

Table of model information associated with the multi-species game bird occupancy 

candidate models and hierarchical community models 

Table D2. List of the 8 multi-species game bird occupancy candidate models (HABITAT, SIZE, 

MANAGEMENT, LANDSCAPE, LOCATION, CONSTRUCTION, CONDITION, 

COMBINED) and 3 hierarchical community models (HCM 1 = breeding songbirds within 

wildlife openings, HCM 2 = breeding songbirds in the adjacent forest, HCM 3 = post-breeding 

songbirds within wildlife openings), with corresponding model information that includes the 

number of chains (Chains), total iterations (Total), burn-in (Burn), thinning rate (Thin), and 

resulting posterior iterations (Posterior).  

Model Chains Total Burn-In Thin Posterior 

HABITAT 3 20,000 10,000 5 6,000 

SIZE 3 25,000 10,000 5 9,000 

MANAGEMENT 3 20,000 10,000 5 6,000 

LANDSCAPE 3 25,000 10,000 5 9,000 

LOCATION 3 20,000 10,000 5 6,000 

CONSTRUCTION 3 20,000 10,000 5 6,000 

CONDITION 3 25,000 10,000 5 9,000 

COMBINED 3 25,000 10,000 5 9,000 

HCM 1 3 15,000 10,000 5 3,000 

HCM 2 3 25,000 10,000 5 9,000 

HCM 3 3 15,000 10,000 5 3,000 
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