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Abstract

Deep Face Morph Detection Based on Wavelet Decomposition
Poorya Aghdaie

Morphed face images are maliciously used by criminals to circumvent the official process
for receiving a passport where a look-alike accomplice embarks on requesting a passport.
Morphed images are either synthesized by alpha-blending or generative networks such as
Generative Adversarial Networks (GAN). Detecting morphed images is one of the funda-
mental problems associated with border control scenarios. Deep Neural Networks (DNN)
have emerged as a promising solution for a myriad of applications such as face recogni-
tion, face verification, fake image detection, and so forth. The Biometrics communities have
leveraged DNN to tackle fundamental problems such as morphed face detection. In this dis-
sertation, we delve into data-driven morph detection which is of great significance in terms
of national security.

We propose several wavelet-based face morph detection schemes which employ some of the
computer vision algorithms such as image wavelet analysis, group sparsity, feature selec-
tion, and the visual attention mechanisms. Wavelet decomposition enables us to leverage
the fine-grained frequency content of an image to boost localizing manipulated areas in an
image. Our methodologies are as follows: (1) entropy-based single morph detection, (2)
entropy-based differential morph detection, (3) morph detection using group sparsity, and
(4) Attention aware morph detection. In the first methodology, we harness mismatches
between the entropy distribution of wavelet subbands corresponding to a pair of real and
morph images to find a subset of most discriminative wavelet subbands which leads to an
increase of morph detection accuracy. As the second methodology, we adopt entropy-based
subband selection to tackle differential morph detection. In the third methodology, group
sparsity is leveraged for subband selection. In other words, adding a group sparsity con-
straint to the loss function of our DNN leads to an implicit subband selection. Our fourth
methodology consists of different types of visual attention mechanisms such as convolutional
block attention modules and self-attention resulting in boosting morph detection accuracy.

We demonstrate efficiency of our proposed algorithms through several morph datasets via
extensive evaluations as well as visualization methodologies.
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Chapter 1

Introduction

1.1 Problem and Motivation

This dissertation investigates the well-known problem of morphing attacks [9–17], which

has draw considerable attention in biometric community in that morphed images have ma-

liciously made the face recognition systems prone to false acceptance, having dire security

consequences, especially for the national security. Morphed images have exploited loopholes

in the face recognition checkpoints, e.g., Credential Authentication Technology (CAT), used

by Transportation Security Administration (TSA), which is a non-trivial security concern.

A synthetic morphed image can be verified against multiple subjects; thus, a blacklisted

subject can circumvent official process of requesting a passport. Therefore, an innocent in-

dividual can request a passport using a morphed face image and a blacklisted subject can

use the issued passport for cross-country trips. In Fig. 1.1, face images of two real subjects

and their corresponding morphed image is displayed. Morphed images are mostly generated

using two methodologies: (1) Landmark-based (2) Generative Networks such as Generative

Adversarial Network (GAN). In the landmark-based face morphing [5,7,18], facial landmarks

of two or more subjects are located and average of the landmarks of the subjects’ faces are

found to account for the landmarks of the morphed image. Once the averaged landmarks

are found, subjects’ faces are aligned to the common averaged landmarks and the aligned

real images are alpha-blending in order to generate a morphed image (see Fig. 1.2). On

the other hand, in the generative method for face morphing [1, 7, 19], a generative network
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Figure 1.1: Examples of face images of two real subjects and their corresponding morphed
image.

such as GAN which has an attached encoder network is trained to capture data distribution.

In order to generate morphed images of two or more subjects’ faces, the trained encoder

network of the GAN converts RGB face images into latent vectors and the alpha-blending

is achieved in the latent domain (see Fig. 1.3). Due to significance of morphed images in

terms of national security, we have delved into detection of morphed face images and we

have proposed several methodologies detailed in the following chapters. Please note that

morph detection can be achieved in a single-image setting or a differential method. single-

image face morph detection means labeling an image as either real or morphed without extra

information. However, differential morph detection means labeling a face image as real or

morphed using extra information, which is a live capture of a subject’s face. Scope of this

dissertation is the single-image face morph detection.

Figure 1.2: Landmark-based face morphing pipeline. The real face images are samples from
the Utrecht ECVP face dataset [3] and the morph face image is from the VISAPP17 morph
face dataset [4, 5].
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Figure 1.3: Face morphing pipeline based on a generative network. The real face images are
samples from the CelebA dataset [6] and the morph face image is from the MorGAN face
dataset [7].

1.2 Outline and Contributions

To detect morphing attacks, we propose several methods which are based on a discrimina-

tive 2D Discrete Wavelet Transform (2D-DWT). A discriminative wavelet sub-band is able

to highlight inconsistencies between a real and a morphed image. In chapter 2, we observe

that there is a salient discrepancy between the entropy of a given sub-band in a bona fide

image, and the same sub-band’s entropy in a morphed sample. Considering this dissimilarity

between these two entropy values, and to generalize our method to all images in a dataset,

we find the Kullback-Leibler divergence between two obtained distributions, namely entropy

of the bona fide and the corresponding morphed images in the dataset. The most discrimi-

native wavelet sub-bands with the highest corresponding KL divergence values are selected.

Accordingly, 22 sub-bands are selected as the most discriminative ones in terms of morph

detection. We show that a Deep Neural Network (DNN) trained on the 22 discriminative

sub-bands can identify morphed samples accurately.

In chapter 3, we propose a wavelet-based morph detection methodology which adopts an

end-to-end trainable soft attention mechanism [20]. Our attention-based DNN focuses on

the salient Regions of Interest (ROI) which have the most spatial support for morph de-
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tector decision function, i.e, morph class binary softmax output. A retrospective of morph

synthesizing procedure aids us to speculate the ROI as regions around facial landmarks ,

particularly for the case of landmark-based morphing techniques. Moreover, our attention-

based DNN is adapted to the wavelet space, where inputs of the network are coarse-to-fine

spectral representations, 48 stacked wavelet sub-bands to be exact. In addition, as attention

maps can be a robust indicator whether a probe image under investigation is genuine or

counterfeit, we analyze the estimated attention maps for both a bona fide image and its

corresponding morphed image.

In chapter 4, we decompose every image into its wavelet sub-bands using 2D wavelet de-

composition and a deep supervised feature selection scheme is employed to find the most

discriminative wavelet sub-bands of input images. To this end, we train a DNN morph

detector using the decomposed wavelet sub-bands of the morphed and bona fide images.

In the training phase, our structured group sparsity-constrained [21] DNN picks the most

discriminative wavelet sub-bands out of all the sub-bands, with which we retrain our DNN,

resulting in a precise detection of morphed images when inference is achieved on a probe

image.

In chapter 5, we propose a morph detection framework to find the most discriminative in-

formation across frequency channels and spatial domain. To this end, we propose an end-to-

end attention-based deep morph detector which assimilates the most discriminative wavelet

sub-bands of a given image which are obtained by a group sparsity representation learning

scheme. Specifically, our group sparsity-constrained DNN learns the most discriminative

wavelet sub-bands (channels) of an input image while the attention mechanism captures

the most discriminative spatial regions of input images for the downstream task of morph

detection. To this end, we adopt three attention mechanisms to diversify our refined fea-

tures for morph detection. As the first attention mechanism, we employ the Convolutional

Block Attention Module (CBAM) [22] which provides us with refined feature maps. As the

second attention mechanism, compatibility scores across spatial locations and output of our

DNN highlights the most discriminative regions, and lastly, the multiheaded self-attention

augmented convolutions [23,24] account for our third attention mechanism.
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Finally in chapter 6, we conclude the dissertation through summarizing methodologies pro-

posed for single-image morph detection and future works are explained.

1.3 Literature Review

1.3.1 Morph Generation

Facial morph generation techniques are categorized into two types, i.e., landmark-based

morphing [5,7,13,18,25], and morphing using a generative network [1,7,26]. In the landmark-

based morphing attack, appearance of a resulting morphed image is associated with that of

two underlying subject’s bona fide face images, while geometric locations of its landmarks

are the average of the corresponding landmarks in the two bona fide images [27]. Every pixel

location in both bona fide images is warped to preserve the correspondence in the resulting

morphed sample, and a convex combination of the warped pixels cross-dissolve the warped

pixels in the bona fide images to synthesize that pixel location in the final morphed sample.

By applying Delaunay triangulation on the two bona fide images, corresponding regions on

the two facial images are further warped and mixed through alpha blending to synthesize

the morphed image.

Generative methods have shifted the photo-realistic image synthesis paradigm considerably

[1, 28–30]. Generative Adversarial Networks (GANs) are also employed for synthesizing

morphed images. GAN-based image morphing techniques focus on the distribution of bona

fide images. A trained GAN is able to find the distribution where data samples are drawn

from. The point here is that a convex combination is generated in the latent domain. Since

GANs do not map an image into a latent vector, an encoder attached to the generator of a

GAN can achieve this mapping. A trained GAN maps two bona fide images into a latent

domain for interpolation, and a decoder maps the interpolated vector into the image domain

to realize morphed samples. In other words, if Z1 represents the latent vector corresponding
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to the first image, and Z2 delineates the latent of the second image, the resulting morphed

image in the latent domain can be formulated as the convex combination (alpha-blending)

Zmorph = αZ1+(1−α)Z2, where α and 1−α are the coefficients delineating the contribution

of the first and the second latent vector, respectively, to the final latent vector. Finally, a

decoder maps the morphed latent vector into the spatial domain as the final morphed image.

In [7], morphed images are generated using a GAN which incorporates an encoder in its

generator to model latent space. In addition, morphed images can be generated using Style-

GAN [28,31,32] which adopts a style transfer method to synthesize an image given a reference

style. In brief, the principal premise behind the StyleGAN is to make the statistics of deep

feature maps consistent for both the image and the reference style. In [19, 33], a StyleGAN

architecture is utilized to generate morphing attacks which are deemed highly photo realistic.

1.3.2 Morph Detection

Morph detection has been addressed under two scenarios. In the first scenario, called single

image morph detection, a single image is classified as either bona fide or morphed [34, 35].

In the second scenario, called differential morph detection, auxiliary information which is a

live version of a subject, is used to label an image as either bona fide or morphed [27,36–39].

The scope of this work is to design a single image morph detector. State-of-the-art methods

on single image morph detection are summarized in Table 1.1.

Different methods have been proposed for morph detection [34, 35, 40–44], some of which

are discussed here. Some morph detection techniques use hand-crafted features for training

a classifier to identify morphed samples [7, 45–50]. In addition, deep embedding features

extracted using off-the-shelf DNNs can be utilized for training a morph detector [7, 18, 35,

38,43,46,51–54]. In [17], spectral behaviour of Photo Response Non-Uniformity (PRNU) is

studied to detect morphed images. One of the research efforts [14] adopts Photo Response

Non-Uniformity (PRNU) to distinguish between real and morphed images. Ferrara et al. [55]

introduced face demorphing to reverse the morphing process to detect altered images.
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Fusion of hand-crafted features extracted from color channels of HSV and YCbCr color spaces

are studied in [56] as a method for detecting morphed images. One of the most important

aspects of the morphing attacks is carefully selecting two bona fide subjects’s face images

such that the morphing attack looks highly photo realistic. In [57], the morph detection is

investigated when the morphed images are generated using three different pairing protocols:

(1) two similar images for morphing, (2) two random images, and (3) two dissimilar images.

As a holistic approach for morph detection, fusion of the above-mentioned algorithms can be

considered. In [46], two SVMs are trained using two different textures descriptors: LBPH,

and BSIF. Another SVM is trained with the HOG, and deep embedding features are used to

train another SVM. To integrate all approaches, the resulting scores from all the detectors

are fused. The resulting noise artifact in the face morphing pipeline can be adopted for

morph detection [58]. Another work [59] employs a denoised version of an image to find the

residual noise of the image which can be utilized for identifying morphed samples. The paper

aggregates several denoised versions of an image in the wavelet domain. Disentanglement of

appearance and landmark is another method proposed for differential morph detection [27].

Interestingly, reflection inconsistencies are also employed to detect morphing attacks [16].

Pixel-wise supervision for morph detection was proposed in [60] to improve generalization

of their morph detector. In [11], different modalities of a single image, such as eyes, nose,

and mouth were used to improve morph detection accuracy. In addition, a multi-scale

attention-based network was another method developed to detect morphed images, which

use the attention mechanism for the images at different scales [61]. Moreover, feature-wise

supervision was used in [62] to generate a prediction map for the single and differential

morph detection. In [63], a GAN-based single image morph discriminator is trained, which

leverages adversarial learning to detect single image morphing attacks.

1.3.3 Sparse Representation Learning

Sparse signal representation is an important class of representation learning methods which

provides a compressed version of a high-dimensional signal [68]. Images are naturally sparse
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Table 1.1: State-of-the-art methodologies on single image morph detection.

Publication Venue Methodology Results
Towards generalized mor-
phing attack detection by
learning residuals [64]

Image and
Vision Comput-
ing.

Learning morphing
residuals using different
encoder-decoder net-
works and color spaces.

The proposed approach has de-
creased the detection error rates
at different thresholds compared
to the baselines mentioned in the
paper.

Single Image Face Mor-
phing Attack Detection
Using Ensemble of Fea-
tures [65]

International
Conference on
Information
Fusion.

Ensemble of features in
different color spaces and
high-frequency content
extracted using Laplacian
transform.

The proposed method decreased
D-EER considerably to 5.99 and
6.34 for the datasets 1 and 2 in-
troduced in the paper.

Towards making morph-
ing attack detection ro-
bust using hybrid scale-
space colour texture fea-
tures [66]

International
Conference
on Identity,
Security, and
Behavior Anal-
ysis.

Different color space and
scale space are adopted
using Laplacian pyramid
for feature extraction.

The framework substantially
decreased the BPCER @
APCER=5% and BPCER @
APCER=10% to 7.59 and 0.86
compared to other deep and
non-deep based approaches.

Accurate and robust
neural networks for face
morphing attack detec-
tion [67]

Journal of In-
formation Secu-
rity and Appli-
cations.

Data manipulation to
limit the information pro-
vided to a deep network
in order to force the a
deep network to focus on
different regions of an
image.

The methodology increased
the robustness against partial
morphs form 20% to 87% and
robustness against black-box
attacks improved to 98% com-
pared to naive training of 77%.

with respect to some predefined bases and that is why sparse representation learning is

beneficial for image recognition tasks. More importantly, sparse representations have led to

promising performance for face recognition tasks [69–71]. Structured group sparsity [21] has

also proved to be compelling for learning representations which are more dsiscriminative.

When features are arranged in a group setting, group Lasso [72], as one of the many feature

selection methods, has shown impressive proficiency [21,73–76]. When the L1-norm of some

structured parameters, such as grouped weights in a convolutional layer of a DNN, are

added to the objective function in an optimization framework, which is known as Lasso

regularization [77], sparsified grouped parameters leads to feature selection, which is known

as structured group sparsity in a DNN [21]. Analogous to finding the principal components,

learning a sparse representation limits degree of freedom when searching for an optimal

hypothesis H . Sparse representation learning has a close relationship with the Vapnik

Chervonenkis (VC) dimension of a model and that is why learning the sparse representation

leads to a better generalization based on statistical learning theory.
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1.3.4 Attention Mechanism

Visual attention mechanisms [20,22,78] have introduced a paradigm shift for the mainstream

computer vision tasks. Attention mechanism has been widely used for the visual recognition

tasks such as image caption generation and visual question answering (VQA) [20, 79]. Two

dominant categories of the attention mechanism are the soft deterministic attention and the

hard stochastic attention [79]. The soft attention can either be adopted in a post-hoc manner,

or it can be trained along with a DNN using back-propagation [20]. The hard attention

mechanism is trained using a method called REINFORCE [80]. Attentive recurrent neural

networks (RNNs) [81] are another variant of networks which exploit attention mechanism to

amplify ROI and suppress background clutter.

In a typical attention mechanism, the correlation between each spatial location in a feature

map of a deep network and the response of the network, which is usually the output of the

last fully-connected layer in the network, designates the importance of the spatial location in

terms of contributing to the final predicted output. Attention weights delineate the so-called

importance of the spatial pixels. On the other hand, in the self-attention mechanism [82–84],

the long-range dependencies between a pixel location in a feature map and all other pixel

locations in the feature map are modeled irrespective of the output of the network.

The attention mechanism can guide a classifier into the most discriminative local patches

of an input image where subtle anomalies in an image are captured. Morph detection can

be thought of as a fine-grained classification because differences between a bona fide and

morphed image are local and subtle, which is why the attention mechanism has proved to

be useful for the task of morph detection [85]. The attention mechanism can be soft [20],

which is a differentiable process trained using the back-propagation algorithm, or it can be

hard, which adopts stochastic sampling to select the most discriminative pixels and is trained

using the REINFORCE method [86].

Self-attention [82,87,88] has emerged as a powerful mechanism for boosting image recognition
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performance. The self-attentional network can be implemented as a stand-alone framework

without adopting any convolutional operations (e.g., vision transformers [88, 89]) for the

downstream task of image recognition or object detection, which is not the scope of this

study. On the other hand, several works have integrated the self-attentional modules into

the convolutional layers of a DNN [23, 90, 91] as a feature augmentation method to capture

long-range dependencies of features which are not revealed through the local convolution

operation.
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Chapter 2

Morph Detection Using Entropy
Distributions Mismatch

2.1 Introduction

Morphing attack detection is of great significance in high-throughput border control appli-

cations. According to the CIA triad model, consisting of three main components, confiden-

tiality, integrity, and availability of secure systems, morphed images violate the integrity of

verification systems. A morphed image is generated using genuine face images from two

different individuals. Because the resulting morphed image inherits characteristics of both

subjects, it can be verified against both real subjects. Morphed images are generated using

two approaches. In the first approach [5, 18, 53], two real face images are alpha blended in

order to create a morphed image. To eliminate the ghosting effects in the morphed image,

the average of the landmarks in both real images is used as the resulting landmark of the

morphed image. In the second approach introduced in [7], a generative model, that is a

Generative Adversarial Network (GAN), is trained to synthesize morphed images. Morph

detection algorithms can be grouped into two main categories: single and differential morph

detection. In the first category, an image under investigation is labeled as morphed or bona

fide image, which is known as single image morph detection. In differential morph detection,

a subject’s image is compared with a live capture of the subject, and information from both

images is used to detect morphed counterfeits.
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Figure 2.1: A bona fide and a morphed image along with the four corresponding wavelet
sub-bands. Using all the bona fide and morphed images in the dataset, 48 pairs of entropy
distributions are found for bona fide and morphed images. Given a sub-band, dissimilarity
between the two entropy distributions represents how discriminative that sub-band is with
respect to morph detection. In the figure, sub-bands 16 and 40 are more discriminative than
6 and 32. A deep classifier is trained using the selected informative sub-bands.

To detect morphed images, some of the previous research efforts employ hand-crafted features

such as Binarized Statistical Image Features (BSIF) [92], Scale Invariant Feature Transform

(SIFT) [93], Speeded Up Robust Features (SURF) [94], (Local Binary Patterns Histogram)

LBPH [95], Fused Local Binary Pattern (FLBP), and Histogram of Gradianets (HOG).

Recently, Deep Neural Networks (DNNs) have proved to be promising in detecting morphed

images [47, 59]. Thus far, no wavelet-based morph detection algorithm has been proposed.

In this work, we propose a single image morph detector which can distinguish between a

bona fide and a morphed face image. To do so, we train a deep neural network with a

small number of selected discriminative wavelet sub-bands that are chosen according to the

following criterion: the relative entropy between the entropy distribution of real faces and

morphed faces is found for each of the wavelet sub-bands. The higher the value of the

relative entropy for a given sub-band, the more discriminative that sub-band is for the task

of classification. Fig. 2.1 depicts our morph detection mechanism. Please note that only

four wavelet sub-bands of a bona fide and its corresponding morphed image are selected in

the figure for representation purpose. However, we consider all images in a given dataset
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to find the histogram of entropy for each sub-band. Experiments on three datasets, i.e.,

VISAPP17 [5], MorGAN [7], and LMA [7] verifies the performance of our morph detector.

Standard quantitative measures, set forth by ISO/IEC 30107-3 [96], are used to evaluate the

effectiveness of our proposed method. The first measure is Attack Presentation Classification

Error Rate (APCER), which is the percentage of morphed images that are classified as bona

fide. The second measure is Bona Fide Presentation Classification Error Rate (BPCER),

which represents the percentage of bona fide samples that are classified as morphed. If we

label the morphed class as positive and the bona fide class as negative , APCER, and BPCER

are equivalent to false negative rate and false positive rate, respectively. The contributions of

this paper are as follows: the most discriminative wavelet sub-bands are selected based on the

KL-divergence between the two entropy distributions of both real and morphed images for

the wavelet sub-bands. A DNN is trained using the selected informative wavelet sub-bands

to detect morphed images. Finally, an ablation study is performed to show the effectiveness

of our sub-band selection scheme for tackling detecting morph attacks.

2.2 Our Framework

We employ undecimated 2D wavelet decomposition to address morphing attacks. Shannon

entropy and Kullback-Liebler divergence [97] are utilized to identify the optimal discrim-

inative sub-bands. In particular, the Shannon entropy [98] is used to measure embedded

information in each sub-band of the wavelet decomposition. Since most of the morphing

pipeline artifacts lie in the high frequency spectrum, we do not consider the Low-Low (LL)

sub-band of the first level of decomposition to be decomposed further. Instead, the Low-

High (LH), High-Low (HL), and High-High (HH) sub-bands are decomposed . After 3-level

uniform decomposition, 48 sub-bands are obtained, for all of which the Shannon entropy is

computed, and the distribution of the entropy is obtained for both real and morphed im-

ages for the three training datasets. The Kullback-Leibler divergence (relative entropy) is

calculated between the entropy distribution of real and morphed sub-bands for each of the

48 sub-bands, and these 48 relative entropy values are sorted from highest to lowest. A final
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Figure 2.2: Zero-meaned KL-divergence values in the top 22 most discriminative wavelet
sub-bands for three datasets: VISAPP17, LMA, and MorGAN. The zero-meaned average of
the KL-divergence values in each sub-band, as related to the three datasets, is represented in
green.

subset composed of 22 optimal discriminative sub-bands are selected that are used to train

a DNN to detect morphed samples. As for the DNN, we employ a pre-trained Inception

Resnet v1 architecture as our binary classifier.

2.2.1 Sub-band Selection Based on KL Divergence of Entropy Distributions

The pivotal point here is to distinguish morphed samples by leveraging the most discrimina-

tive sub-bands. To do so, we find the histograms of entropy of all 48 sub-bands for both bona

fide and morphed images in the three datasets. Accordingly, 96 distributions are estimated

using the histograms from the 48 sub-bands of both the bona fide and morphed presenta-

tions. The term f̂bi represents the estimated distribution for the ith sub-band pertinent to

the bona fide images, and similarly, f̂mi represents the estimated distribution for the ith sub-

band pertinent to the morphed images. The dissimilarity of the two probability distribution

functions, namely ( f̂bi, f̂mi) are calculated for all 48 sub-bands. The KL-divergence is the

metric we employ to assess the dissimilarity between the distributions.

In order to select the most discriminative sub-bands, the KL-divergence values of each dataset

are first normalized by removing the mean. The values are normalized to enable comparison

of the distributions across the three datasets. Then, the zero-meaned values are averaged over



Poorya Aghdaie Chapter 2. Morph Detection Using Entropy Distributions Mismatch 15

the three datasets for each sub-band. The higher the KL-divergence value for a single sub-

band, the more informative and discriminative that sub-band is in terms of classification. By

choosing the sub-bands that are based on the highest average KL-divergence values from all

datasets instead of each dataset separately, we can find the sub-bands that are discriminative

across the datasets, not just for a specific morphing technique. Fig. 2.2 shows the distribution

of the zero-meaned KL-divergence values related to the 22 most discriminative wavelet sub-

bands for the three morphed datasets, and their average values. Algorithm 1 illustrates our

sub-band selection mechanism, in which H(.) represents the entropy function.

Algorithm 1: Our Sub-band Selection
Input : Bona fide and Morphed Images
Output: A Set of Indices for Informative Sub-bands
I= {} ; // index of sub-bands
for i = 1 to 48; // sub-bands
do

for j = 1 to 3; // datasets
do

f̂bi j← distribution(H(Sbi j))

f̂mi j← distribution(H(Smi j))

Ki j← DKL( f̂bi j∥ f̂mi j)

end
end
for i = 1 to 48 do

K̄i← avg
j
(Ki j)

if K̄i > threshold then
I← i

end
end

It is worth mentioning that the threshold for selecting the informative sub-bands is chosen

using a data-driven method. After sorting the KL-divergence values from highest to lowest,

different subsets of sub-bands are selected, e.g., top-5, top-10, and so forth. Suppose that

the top-5 values from the set of informative sub-bands are selected. A DNN having input

channel size of five is trained on the three training datasets combined, coined the universal

dataset. The performance of the corresponding DNN is reported through Area Under the

Curve (AUC) metric using the validation portion of our universal dataset. Fig. 2.3 depicts

the Area Under the Curve (AUC) when different numbers of sub-bands are chosen, based

on which the optimal point for number of sub-bands is chosen as 22. The performance of
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Figure 2.3: Area under the curve versus number of sub-bands used in the training. Re-
sults indicate that 22 is the optimal number of sub-bands. After selecting 22 sub-bands, the
performance does not increase significantly enough to validate using more sub-bands.

the VISAPP17 dataset is consistent, irrelevant of the number of sub-bands used. This is

primarily due to the small size of the VISAPP17 dataset (only 314 images–183 morphed and

131 real), and our DNN easily fits to VISAPP17 dataset regardless of the number of the

selected sub-bands.

2.3 Experimental Setup

2.3.1 Datasets

Datasets used in this work are the VISAPP17 [5], MorGAN [7], and LMA [7]. The VISAPP17

dataset has been created using a landmark-based morphing attack, following by splicing, in

which corresponding landmarks in two bona fide subjects are detected and the mean of each

pair of the landmarks is calculated. Landmarks of each subject are then warped into the

averaged landmark position, and the morphed image is generated using the blending of the
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two subjects’ samples using triangulation [99] and then spliced into one of the contributing

images. This technique aims to avoid artifacts that commonly arise from landmark manip-

ulation, such as those that occur around the hairline. The MorGAN dataset is generated

using a GAN. The encoder in a GAN can transform images to a latent space, and when two

latent spaces related to two different subjects are combined, a morphed subject is synthe-

sized. The LMA dataset is also generated using the landmark manipulation in two subjects’

face images.

2.3.2 Training Setup

In this work, the Inception-ResNet-v1 architecture [8] is adopted as our DNN, which in-

tegrates the residual skips introduced in [100], and a revised version of Inception architec-

ture [101]. We fine-tune an Inception-ResNet-v1, already pretrained on VGGFace2 [102].

The DNN is additionally fine-tuned with the obtained 22 discriminative wavelet sub-bands

of the VISAPP17, MorGAN, and LMA datasets. An Adam optimizer [103] is employed for

updating parameters of our network, and two 12 GB TITAN X (Pascal) GPUs accelerate

our training.

2.3.3 Training/Testing Using Selected Sub-bands

In order to find the optimal number of sub-bands, we combine the three morph image

datasets into a universal dataset. From this universal dataset, the training set consists of 1631

bona fide, and 1183 morphed samples. The validation set consists of 462 bona fide, and 167

morphed subjects. Moreover, the test set includes 1631 bona fide, and 1183 morphed images.

We train several Inception-ResNet-v1 networks using the training portion of the universal

dataset for a different number of chosen wavelet sub-bands. We assess the performance

of the trained networks using the validation portion of the universal dataset. In other

words, we do a search over the number of wavelet sub-bands, which is the input channel
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Table 2.1: Performance of single morph detection: D-EER%, BPCER@APCER=5%, and
BPCER@APCER=10%.

Train Test Algorithm D-EER 5% 10%
V

IS
A

PP
17

V
IS

A
PP

17

BSIF+SVM [92] 16.51 35.61 26.79
SIFT+SVM [93] 38.59 82.40 75.60
LBP+SVM [95] 38.00 77.10 67.90

SURF+SVM [94] 30.45 84.70 69.40
Ours 0.00 0.00 0.00

L
M

A

BSIF+SVM [92] 54.00 93.31 88.95
SIFT+SVM [93] 37.00 79.00 70.00
LBP+SVM [95] 33.00 71.80 59.90

SURF+SVM [94] 39.30 86.10 75.70
Ours 31.86 83.80 71.21

M
or

G
A

N

BSIF+SVM [92] 54.80 92.32 88.87
SIFT+SVM [93] 58.00 96.10 89.90
LBP+SVM [95] 40.00 76.90 67.40

SURF+SVM [94] 40.30 83.00 74.00
Ours 41.00 93.60 85.00

L
M

A

V
IS

A
PP

17

BSIF+SVM [92] 51.19 83.65 75.00
SIFT+SVM [93] 38.00 90.80 86.30
LBP+SVM [95] 36.60 77.80 71.80

SURF+SVM [94] 30.80 70.00 65.60
Ours 68.80 100.00 98.90

L
M

A

BSIF+SVM [92] 33.05 78.34 62.86
SIFT+SVM [93] 33.30 83.40 72.00
LBP+SVM [95] 28.00 58.60 51.40

SURF+SVM [94] 37.40 79.50 70.00
Ours 8.80 14.90 7.91

M
or

G
A

N

BSIF+SVM [92] 42.01 89.77 79.19
SIFT+SVM [93] 50.70 95.00 89.80
LBP+SVM [95] 35.00 72.60 61.30

SURF+SVM [94] 41.27 84.60 78.00
Ours 32.22 76.22 62.50

M
or

G
A

N

V
IS

A
PP

17

BSIF+SVM [92] 63.00 100.00 100.00
SIFT+SVM [93] 42.00 92.40 84.00
LBP+SVM [95] 42.32 84.70 79.30

SURF+SVM [94] 31.40 74.00 55.70
Ours 2.20 0.59 0.00

L
M

A

BSIF+SVM [92] 53.00 95.25 92.46
SIFT+SVM [93] 40.20 90.70 80.00
LBP+SVM [95] 39.18 75.90 67.7

SURF+SVM [94] 39.40 81.00 71.60
Ours 39.11 89.55 80.25

M
or

G
A

N

BSIF+SVM [92] 1.57 1.42 1.30
SIFT+SVM [93] 43.50 93.20 84.20
LBP+SVM [95] 20.10 52.70 32.30

SURF+SVM [94] 39.95 80.00 72.60
Ours 0.00 0.00 0.00
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Table 2.2: DET curves when our morph detector is trained and tested on the selected 22-sub-
band datasets. The legend represents train-test datasets.

Train Test Algorithm D-EER 5% 10%

U
ni

ve
rs

al
(V

IS
A

PP
17

+L
M

A
+M

or
G

A
N

)

V
IS

A
PP

17

BSIF+SVM [92] 35.00 67.20 59.00
SIFT+SVM [93] 27.00 83.20 70.90
LBP+SVM [95] 37.67 72.50 59.50

SURF+SVM [94] 31.00 79.40 70.10
Ours 0.00 0.00 0.00

L
M

A

BSIF+SVM [92] 30.00 70.42 57.60
SIFT+SVM [93] 28.31 67.70 50.00
LBP+SVM [95] 29.00 61.50 51.20

SURF+SVM [94] 33.40 74.50 62.70
Ours 8.61 12.93 7.05

M
or

G
A

N

BSIF+SVM [92] 28.80 62.42 45.70
SIFT+SVM [93] 47.60 92.30 88.60
LBP+SVM [95] 31.20 62.00 55.60

SURF+SVM [94] 38.67 76.00 70.00
Ours 3.10 2.04 3.89

U
ni

ve
rs

al

BSIF+SVM [92] 23.74 51.42 38.67
SIFT+SVM [93] 37.21 87.45 76.71
LBP+SVM [95] 38.80 91.36 83.40

SURF+SVM [94] 36.00 75.50 65.76
Ours 5.45 5.70 3.19

size of our convolutional neural network. Please note that the wavelet sub-bands are already

sorted based on the corresponding KL-divergence values from highest to lowest. According

to the sub-band selection scheme mentioned in section 2.2.1 and Fig. 2.3, which shows the

performance of the trained classifier using different number of wavelet sub-bands, the optimal

number of informative sub-bands is 22; thus, our final DNN has 22 input channels consisting

of the top 22 most discriminative sub-bands.

The performance of our morph detector, and the baseline methods for comparison are sum-

marized in Table 2.1. Please note that we have considered all the possible training/testing

scenarios using the three datasets, i.e., the VISAPP17, LMA, and MorGAN. The corre-

sponding Detection Error Trade-off (DET) curves are displayed in Fig. 2.4. In addition, we

have trained the morph classifier using the training portion of the universal dataset, and the

performance of that network is also evaluated using the testing portion of each individual

dataset, as well as the universal dataset. The results of the training using the universal

dataset, and the corresponding baseline methods are provided in Table 2.2. Moreover, the

related DET curves are shown in Fig. 2.5.
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Figure 2.4: the left dataset designates the training dataset, and the right one represents the
testing dataset. For example, MorGAN-LMA is for the case when the training set comes
from the MorGAN dataset, and the testing set comes from the LMA dataset.

D-EER represents Detection Equal Error Rate, where APCER equals BPCER. BPCER5 des-

ignates BPCER rate for APCER=5%, and BPCER10 designates BPCER rate for APCER=10%.

A close scrutiny of the DET curves in Fig. 2.4 reveals that our morph detector can accurately

detect morphed samples in both the VISAPP17, and MorGAN datasets when both training

and testing data originate from the same dataset. Fig 2.5. also shows that our morph detec-

tor is able to detect most of the morphed samples in the VISAPP17, and MorGAN datasets

when the classifier is trained on the training portion of the universal dataset.

2.3.4 Class Activation Maps

Class activation maps, set forth in [104], show the extent to which different regions in a given

image contribute to the final classification decision for every class in an already trained

DNN. After training an Inception-ResNet-v1 morph detector, class activation maps were

constructed using the feature embeddings from the last layer before fully connected and

softmax layers. The results are interestingly indicative of the likelihood that an image will be
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Figure 2.5: DET curves when our morph detector is trained on the selected 22-sub-band
universal datasets.

Figure 2.6: Class activation maps. Left: bona fide subject 1, middle: morphed subject, right:
bona fide subject 2.

classified as morphed or bona fide. For example, in Fig. 2.6, the middle image, representing

a morphed one, has many more affected areas than the other two bona fide images. This

is an indicator that the middle image is the most likely image among the three images to

be classified as morphed. Given that, our trained DNN using 22 discriminative wavelet

sub-bands is effectively distinguishing morphed images from the non-morphed images.
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2.4 Ablation Study

In this section, the effect of sub-band selection is examined. To prove the effectiveness of

band selection, a visualization method, namely t-SNE [105], is adopted. A total of 200

morphed, and 200 bona fide images are selected from the test set of MorGAN dataset. Fig.

2.7 shows the t-SNE visualizations for three scenarios using the MorGAN dataset, the first

of which visualizes the original images, which is shown in the leftmost column. In the middle

column, the 48 selected sub-band data is plotted. Finally, the 22 selected sub-band data is

shown in the rightmost column. It is evident in Fig. 2.7 that sub-band selection contributes

considerably to concentrating the morphed and bona fide data into separable clusters, which

is highly desirable in terms of detecting morphed imagery.

Figure 2.7: T-SNE visualization for the original images (left), 48 sub-band data (middle),
and 22 sub-band data (right). The 22 sub-bands evidently separate the morph and bona fide
classes into very distinct clusters.
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2.5 Conclusion

We proposed a framework to detect morphed face images using undecimated 2D-DWT. To

select the optimal and informative bands, we found the distribution of the entropy for all

the 48 wavelet sub-bands considering both the bona fide, and morphed images. The KL-

divergence between the given distributions, integrated in a data-driven approach, led us to

select the 22 most discriminative sub-bands. Furthermore, a close look at the presented

results in Tables 2.1 & 2.2 highlights the fact that our morph classifier can identify morphed

samples with a high accuracy in both the VISAPP17, and MorGAN datasets. Moreover, the

ablation study on the sub-band selection substantiates the effectiveness of our method and

shows that our trained DNN can map data samples to a new space where two bona fide and

morphed classes are aggregated into two well-separated clusters.
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Chapter 3

Attention Aware Detection of Morphed Face
Images

3.1 Introduction

Robust, reliable verification systems are the crucial backbones of biometric document au-

thentication protocols, that are to operate flawlessly. Although image morphing is not a new

paradigm, it was first identified as a security concern by Ferrara et al. [13], who explained

how a criminal can dodge a border control checkpoint using a travel document that was

issued with a morphed image. The goal of the face image morphing attack is to synthesize a

forged imaged from two composing original images such that the artificially crafted morphed

image can be verified against the two original images not only visually, but also in the feature

space by a classifier [40]. Moreover, morphed samples can be labeled as hard positive sam-

ples in comparison to negative genuine samples because morphed samples are synthesized to

intentionally lie on the negative samples’ manifold. Similar to adversarially perturbed data

samples that fool classification networks into a wrong predicted class [106, 107], morphed

images are crafted to lead a verifier into a false acceptance.

Detecting morphed images has garnered a great deal of attention from the biometrics research

community because of its crucial impact on the security protocols [108], especially those used

for authenticating travel documents. The vast majority of research efforts has dealt with

morphing attacks through either using hand-crafted texture features to find a discriminative
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Figure 3.1: Our Proposed Deep Attention-based Morph Detector. Wavelet sub-bands of the
input image is fed into our DNN during training phase of the network. Three Attention mod-
ules, i.e., Att. modules, generate the new attention weighted features, i.e., attentive features,
as well as the attention maps. Attentive features are used to detect morphed images. Please
note that the attention maps are generated after training the DNN.

hyperplane between the positive (morphed), and negative (genuine) samples [14–17], or

harvesting those features for learning a deep classifier [46,47]. Recently, the visual attention

mechanism has taken computer vision community with storm. First introduced in [81], the

visual attention mechanism has emerged as a powerful by-product of DNNs, which can boost

visual recognition performance on a variety of datasets considerably [20,79,109–111].

In this paper, we present an attention-based DNN in the wavelet domain for detecting

morphed samples. To the best of our knowledge, this is the first work which incorporates

attention mechanism into a deep morph detector. Our proposed network employs attention

to focus on Regions of Interest (ROI) in terms of morph detection, that are specifically

landmarks around the eyes and hairline in the landmark-based facial image morphing attacks.

Wavelet sub-bands of an image represent information with different time-frequency granu-
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larity that are adapted to our DNN as input. The soft attention mechanism used in a given

layer of our DNN retains spatial regions in the layer’s resulting feature maps that represent

the discriminative regions, and discard those pixels that are outside the discriminative re-

gions. Fig. 3.1 shows an overview of our proposed deep attention-based morph detector. We

utilize wavelet sub-bands instead of the raw images since we can easily discard frequency

contents, sub-bands, which are not discriminative for morph detection such as the low-low

(LL) sub-bands. Most importantly, we validate performance of our method through exten-

sive experiments on the three morph datastes: VISAPP17 [5], LMA [7], and MorGAN [7].

Moreover, estimated attention maps are obtained for both real and morphed images. The

contribution of this work are as follows:

• Incorporating an end-to-end trainable soft attention mechanism into deep morph de-

tector network.

• Tailoring wavelet sub-bands for our deep attention-based morph detector.

• Training our deep attention-based network using the three datasets, as well as a com-

bination of all the three datasets, which is coined “universal” dataset.

Figure 3.2: Our deep attention-based morph detector. The input images are initially decom-
posed into 48 uniform wavelet sub-bands, which are fed into our morph detector. Attention
modules are placed at three convolutional layers, namely L1, L2, and L3. The L f eat.1, L f eat.2,
and L f eat.3 represent the local features vectors of layers L1, L2, and L3, respectively. The
512-D attention weighted local features in a layer, shown by 512-D Att. weighted feat., are ob-
tained using the local features of the layer, and the 512-D FC global feature vector. The three
resulting attention weighted features are concatenated to form our new attended features.
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3.2 Our Framework

Our attention-based morph detector is displayed in Fig. 3.2. Based on Fig. 3.2, the input

images are initially decomposed into 48 uniform wavelet sub-bands that are further stacked

channel-wise and then passed to our morph detector. Our morph detector leverages three

attention modules at three different convolutional layers, denoted by L1, L2, and L3. The

local feature vectors resulting from the three convolutional layers L1, L2, and L3 are denoted

by L f eat.1, L f eat.2, and L f eat.3, respectively. The attention weighted local features for a given

convolutional layer are obtained using the layer’s local features, and the global feature vector

resulting from the 512-D fully connected (FC) layer in our network, e.g., the first 512-D

attention weighted local features in the L1 layer, shown by 512-D Att. weighted feat.1,

are obtained using the local features of L1, that is to say L f eat.1, and the 512-D FC global

feature vector. The three resulting attention weighted features are concatenated and passed

into a new FC layer with 512×3 neurons.

3.2.1 Uniform Wavelet Decomposition

Most artifacts due to facial image morphing techniques lie within the high frequency spec-

trum, and using wavelet decomposition allows us to cherry-pick the desired wavelet sub-bands

by discarding the low-frequency sub-bands. Therefore, using specific wavelet sub-bands in-

stead of the original image is highly justified in our study. We apply three-level undecimated

2-D wavelet decomposition on both bona fide and morphed images. Analyzing the wavelet

sub-bands of a bona fide and its corresponding morphed image justifies considering the high

frequency spectra for the task of morph detection. In other words, we discard the low-low

(LL) wavelet sub-band after first level of decomposition, and we keep the low-high (LH),

high-low (HL), high-high (HH) for the second and third levels of decomposition. In total, 48

wavelet sub-bands are stacked channel-wise, which are utilized as the input to our attention-

based morph detector. Decomposing an RGB image into 48 wavelet sub-bands leads to

decoupled spectra, focusing on the frequency contents that are discriminative in terms of
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distinguishing between bona fide and morphed images.

3.2.2 Integrating Attention-Weighted Features

To distinguish between bona fide and morphed images, we adopt the end-to-end trainable

soft attention mechanism introduced in [20]. This soft attention mechanism is differentiable

with respect to the network parameters. We show that our attention-based network can

meticulously focus on the regions that contribute the most to detecting morphed images.

We insert three attention modules at three different convolutional layers L1, L2, and L3 in

our DNN. Therefore, as presented in Fig. 3.2, instead of a single global feature vector, that

is the 512-D fully connected layer (FC) output, we concatenate the three attention-weighted

local feature vectors at three different convolutional layers to accomplish the classification

task. These attention maps at each convolutional layer reveals the importance of each spatial

location in the layers’ feature maps.

Suppose that a spatial local feature vector in the location i ∈ {1,2, ..,n} in the convolutional

layer Lk, 1 ≤ k ≤ 3, is shown by ℓℓℓLk
i . As presented in Fig. 3.2, L f eat.k = {ℓℓℓLk

1 , ℓℓℓLk
2 , ..., ℓℓℓLk

n }.

The compatibility score for each spatial location, i, represents the importance of that pixel

for detecting morphed images. The compatibility score for local feature vector ℓℓℓLk
i is given

as:

cLk
i = ⟨ℓℓℓLk

i ,ggg⟩, i ∈ {1,2, ..,n}, (3.1)

where ggg designates the global feature vector, that is the 512-D output of the fully connected

layer and ⟨., .⟩ represents the inner product. We further normalize the computed compatibil-

ity scores in a given convolutional layer Lk using the softmax normalization, which is given

as:

aLk
i =

exp(cLk
i )

Σi=n
i=1 exp(cLk

i )
, i ∈ {1,2, ..,n}. (3.2)

A linear combination of the local feature vectors ℓℓℓLk
i and the attention weights aLk

i yields

the attentive local descriptor for the given convolutional layer Lk. The global feature vector,
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Table 3.1: Performance of single morph detection: D-EER%, BPCER@APCER=5%, and
BPCER@APCER=10%.

Dataset Algorithm D-EER 5% 10%

V
IS

A
PP

17

BSIF+SVM [92] 16.51 35.61 26.79
SIFT+SVM [93] 38.59 82.40 75.60
LBP+SVM [95] 38.00 77.10 67.90

SURF+SVM [94] 30.45 84.70 69.40
RGB+DNN [8] 1.76 0.588 0.58

Ours 0.00 0.00 0.00

L
M

A

BSIF+SVM [92] 33.05 78.34 62.86
SIFT+SVM [93] 33.30 83.40 72.00
LBP+SVM [95] 28.00 58.60 51.40

SURF+SVM [94] 37.40 79.50 70.00
RGB+DNN [8] 9.10 15.18 7.49

Ours 8.71 17.86 6.52

M
or

G
A

N

BSIF+SVM [92] 1.57 1.42 1.30
SIFT+SVM [93] 43.50 93.20 84.20
LBP+SVM [95] 20.10 52.70 32.30

SURF+SVM [94] 39.95 80.00 72.60
RGB+DNN [8] 2.44 1.88 1.50

Ours 0.00 0.00 0.00

i.e., attention-weighted feature vector, can be written as:

gggLk
a = Σ

i=n
i=1aLk

i ℓℓℓLk
i . (3.3)

We concatenate the estimated attention weighted local features at three different convolu-

tional layers which are fed into a FC layer having size of 512×3 followed by a 2-neuron FC

layer, which generates the binary logits for detecting morphed images.

3.3 Experimental Setup

3.3.1 Datasets

In this study, three different morphed image datasets are used that are, the VISAPP17 [5],

LMA [7], and MorGAN [7]. The VISAPP17 dataset is generated using landmark-based face

morphing attack, followed by splicing. In the landmark-based morphing pipeline locations of

the corresponding landmarks in two bona fide subjects are averaged, and facial regions are
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Table 3.2: Performance of single morph detection: D-EER%, BPCER@APCER=5%, and
BPCER@APCER=10%.

Train Test Algorithm D-EER 5% 10%

U
ni

ve
rs

al
(V

IS
A

PP
17

+L
M

A
+M

or
G

A
N

)

V
IS

A
PP

17

BSIF+SVM [92] 35.00 67.20 59.00
SIFT+SVM [93] 27.00 83.20 70.90
LBP+SVM [95] 37.67 72.50 59.50

SURF+SVM [94] 31.00 79.40 70.10
RGB+DNN [8] 0.00 0.00 0.00

Ours 0.00 0.00 0.00

L
M

A

BSIF+SVM [92] 30.00 70.42 57.60
SIFT+SVM [93] 28.31 67.70 50.00
LBP+SVM [95] 29.00 61.50 51.20

SURF+SVM [94] 33.40 74.50 62.70
RGB+DNN [8] 7.80 13.00 6.10

Ours 8.11 14.21 6.83

M
or

G
A

N

BSIF+SVM [92] 28.80 62.42 45.70
SIFT+SVM [93] 47.60 92.30 88.60
LBP+SVM [95] 31.20 62.00 55.60

SURF+SVM [94] 38.67 76.00 70.00
RGB+DNN [8] 4.69 4.70 2.74

Ours 2.59 1.50 0.89

U
ni

ve
rs

al

BSIF+SVM [92] 23.74 51.42 38.67
SIFT+SVM [93] 37.21 87.45 76.71
LBP+SVM [95] 38.80 91.36 83.40

SURF+SVM [94] 36.00 75.50 65.76
RGB+DNN [8] 5.57 6.08 3.00

Ours 6.42 7.58 3.46

Figure 3.3: DET curves when our attention-based morph detector is trained using the indi-
vidual datasets.
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Figure 3.4: DET curves when our attention-based morph detector is trained using the train-
ing portion of the universal dataset.

divided using Delaunay triangulation before their alpha blending. LMA is a landmark-based

morphed image dataset, and MorGAN dataset is generated using a generative model, GAN

to be exact. Contrary to the landmark-based morphing attack, which captures geometry of

underlying bona fide images, GAN-based morphing attacks synthesize morphed images after

capturing the underlying distributions of bona fide facial images.

MTCNN [112] is utilized for face detection and alignment. Face images are resized to 160×

160 pixels. For each dataset, 50% of the subjects are considered for training while the other

50% are used for the test set. In addition, 15% of the training set is selected during model

optimization as the validation set. The train-test split is disjoint, with no overlapping bona

fides, morphs, or bona fides contributing to morphs. In addition to the individual datasets,

we combine the three datasets into a universal dataset. Regarding the universal dataset, the

training set includes 1631 bona fide, and 1183 morphed samples. The validation set contains

462 bona fide, and 167 morphed subjects. In addition, the test set is composed of 1631 bona

fide, and 1183 morphed images.
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Table 3.3: Performance of single morph detection for the different number of attention-
modules: D-EER%, BPCER@APCER=5%, and BPCER@APCER=10%.

Dataset Att. Layers D-EER 5% 10%

VISAPP17
L3 00.00 00.00 00.00
L2+L3 00.00 00.00 00.00
L1+L2+L3 00.00 00.00 00.00

LMA
L3 12.45 21.23 15.18
L2+L3 12.12 23.58 17.21
L1+L2+L3 8.71 17.86 6.52

MorGAN
L3 00.00 00.00 00.00
L2+L3 00.00 00.00 00.00
L1+L2+L3 00.00 00.00 00.00

Table 3.4: Performance of the universal training set single morph detection for
different number of attention-modules: D-EER%, BPCER@APCER=5%, and
BPCER@APCER=10%.

Train Test Att. Layers D-EER 5% 10%

U
ni

ve
rs

al

VISAPP17
L3 00.00 00.00 00.00
L2+L3 00.00 00.00 00.00
L1+L2+L3 00.00 00.00 00.00

LMA
L3 14.37 27.23 16.54
L2+L3 13.24 35.36 18.61
L1+L2+L3 8.11 14.21 6.83

MorGAN
L3 7.21 6.31 5.02
L2+L3 7.14 7.86 4.91
L1+L2+L3 2.59 1.50 0.89

Universal
L3 8.91 12.21 8.27
L2+L3 9.95 12.23 8.93
L1+L2+L3 6.42 7.58 3.46

3.3.2 Training Setup

For the backbone of our attention-based morph detector, we employ Inception-ResNet-v1 [8]

, which harnesses the residual skips [100], as well as the revised version of the Inception

network [101]. We add three attention modules to the network at L1 = "conv2d_4b", L2

= "mixed_6a", and L3 = "mixed_7a". Since the number of channels in the resulting feature

vectors related to the three convolutional layers are not 512-D, we project the feature vectors

to new vectors where number of channels are 512. The projection in each convolutional layer

is achieved using the 1×1 convolutional filters, where 512 kernels with the size of 1×1 are

employed. The Adam optimizer updates the weights of our DNN accelerated using two 12

GB TITAN X (Pascal) GPUs. Batch size of 8 is considered for training.
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Figure 3.5: Estimated attention maps for a bona fide and the corresponding morphed image
obtained from the three attention modules.

3.3.3 Performance of the Attention-based Morph Detector

Standard quantitative measures are used to evaluate the effectiveness of our proposed method.

The first measure is Attack Presentation Classification Error Rate (APCER), which is the

percentage of morphed images that are classified as bona fide. The second measure is Bona

Fide Presentation Classification Error Rate (BPCER), which represents the percentage of

bona fide samples that are classified as morphed. If we label the morphed class as positive

and the bona fide class as negative , APCER, and BPCER are equivalent to false negative

rate and false positive rate, respectively. Detection error trade-off (DET) curves represent

performance of our attention-based DNN. D-EER stands for the Detection Equal Error

Rate, where APCER equals BPCER. BPCER5 represents BPCER rate for APCER=5%,

and BPCER10 represents BPCER rate for APCER=10%.

We train our attention-based DNN using the three datasets, that are the VISAPP17, LMA,

and MorGAN. Table 3.1 delineates the performance of the baseline methods, as well as our

attention-based morph detector for the three datasets. In addition, Fig. 3.3 depicts the

detection error trade-off (DET) curves for the three datasets.

Moreover, we scrutinize the scenario where all three datasets are combined, which was coined

the universal dataset. Therefore, we train our network using the training portion of the uni-

versal dataset, and test set comes from all individual datasets, as well as the testing portion
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Figure 3.6: DET curves for the individual datasets for two attention modules.

of the universal dataset. The performance of our attention-based morph detector when

trained on the universal dataset is summarised in Table 3.2, and Fig. 3.4 depicts the DET

curves when the attention-based DNN is trained using the universal dataset. Our attention-

based morph detector can detect morphed samples in the VISAPP17 and MorGAN datasets

accurately when the network is trained on each dataset.

3.3.4 Estimated Attention Maps

The estimated attention maps, resulting from the three attentions modules are shown in Fig.

3.5. It is worth mentioning that the heatmaps of the resulting attention maps are applied

to the image for visualization purpose. The first row, shows the bona fide image, and its

corresponding attention maps from the three different convolutional layers. The second row

is related to the attention maps of the morphed image. Comparing the attention map of the

L1 for the bona fide image with that of the morphed image reveals that the morphed images

has more attended areas that is caused by the morphing attack pipeline, which comprises

landmark manipulation for this image, coming from the VISAPP17 dataset. Given the
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Figure 3.7: DET curves for the universal datasets for two attention modules.

attention maps of the L2 and L3, there are salient impacted regions in the feature maps of

the morphed images, while there is no obvious attentive regions in the bona fide image.

3.3.5 Ablation Study

In this section, we delve into the effect of the attention modules on the performance of our

attention-based morph detector. To this end, we compare the performance of the morph

detector when the number of attention modules are one, two, or three. We have already

studied the case where number of attention modules are three in section 3.3.3. We plot the

DET curves for the individual datasets for every number of attention modules. Table 3.3

delineates the performance of our morph detector when trained on the individual datasets

for the following cases: 1- One attention module placed at L3 = "mixed_7a", 2- two attention

modules placed at L3 = "mixed_7a" and L2 = "mixed_6a", 3- three attention modules at

L3 = "mixed_7a", L2 = "mixed_6a", and L1 = "conv2d_4b". Also, Table 3.4 summarizes

the performance of our morph detector when trained on the universal dataset for the above-

mentioned cases.
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Figure 3.8: DET curves for the individual datasets for one attention module.

Fig. 3.6 depicts the performance of our morph detector using the two attention modules when

our morph detector is trained using the individual datasets. Fig. 3.7 shows the performance

of our morph detector using the two attention modules when our DNN is trained using the

universal dataset. Moreover, Fig. 3.8 displays the performance of our attention-based morph

detector with the one attention module that is trained on the individual datasets, and Fig.

3.9 displays the performance of our attention-based morph detector using the one attention

module when the network is trained on the universal dataset. It is evident from Table 3.3

that the most accurate morph detection for the LMA dataset is achieved when there are three

attention modules in our proposed network. Concerning Table 3.4, the attention-based DNN

with three attention modules outperforms the network which has either one or two attention

modules.
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Figure 3.9: DET curves for the universal datasets for one attention module.

3.4 Conclusion

In this chapter, we studied the application of attention mechanism for detecting morphed im-

ages. More importantly, our attention-based model is adapted to a wavelet-based Inception-

ResNet-v1, where all input images are decomposed into 48 wavelet sub-bands. The three

integrated attention modules can emphasize the artifacts stem from the morphing attack,

leading to detecting morphed images accurately. Most importantly, our attention-based

morph detector can detect morphed images in the VISAPP17 and MorGAN datasets ac-

curately. Displayed attention maps substantiates the effectiveness our algorithm in detect-

ing morphed images, because morphed images have substantial attentive pixels compared

to bona fide images. Finally, our ablation study proves the superior performance of our

attention-based morph detector that uses three attention modules in comparison to a net-

work that has either one or two attention modules.



38

Chapter 4

Morph Detection Enhanced by Structured
Group Sparsity

4.1 Introduction

Face forgery detection has gained momentum recently in the biometric community owing to

its vast application, especially in commercial face recognition systems [9,53,113–116]. Photo-

realistic forged images tamper with the functionality and integrity of security checkpoints,

where, ideally, there must be a zero-tolerance policy to false acceptance [13, 15, 117, 118].

Introduced in [13], facial morph images, as one of the categories of the forged face images,

can bypass established automated face recognition systems, as well as border control officers,

where both struggle to distinguish a bona fide image from a morphed one [119] due to delicacy

in synthesizing morphed samples. Face morphing attacks are synthesized using two look-alike

genuine images, for example one representing a criminal and one for an innocent subject, in

which the final morphed image can be verified against both subjects. Two underlying genuine

images are sampled from two distributions, and the resulting morphed sample is characterized

using the blended features of the two genuine images. If we assume the support of high-

dimensional genuine and morphed samples are two underlying embedding low-dimensional

manifolds, morphed samples are intentionally crafted near the discriminating boundary of

the two manifolds, which justifies its verifiability against both real subjects.

Face morphing attacks are forged in either the image domain or in the latent domain. In
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Figure 4.1: Group Lasso regularization, as a representation learning, leads to selecting the
most discriminative sub-bands for detecting a morphed image.

image domain morphing, two genuine images are translated into a set of aligned averaged

landmarks and a morphed sample is synthesized after warping and alpha blending. In

latent space morphing, a generative adversarial network, which has an attached encoder,

first captures the distribution of genuine images, and converts two genuine images into two

latent vectors that can be mixed using the convex combination of both vectors. From the

detection standpoint, previous research efforts have considered two approaches to detect

morphed samples. Single morphed image detection, which is the focus of this study, labels

an image as either genuine (negative) or morphed (positive). On the other hand, differential

morph detection employs a probe image and an auxiliary one, which is usually a live photo

of a subject, to define morph detection framework.

Deep learning-based techniques have shown compelling results for detecting morphed images

through harnessing representation learning [120] by mapping data samples into an embedding

space where the separability between genuine and morphed samples is guaranteed through

the aligning parameter space of a Deep Neural Network (DNN). Since the discrepancies

between a bona fide and its corresponding morphed image are subtle and local, fine-grained
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feature learning [115,121] can be tailored for our morph detection algorithm. To mitigate the

curse of dimensionality, feature selection is a powerful tool to find the most discriminating

hyperplane in a binary classification setting. A DNN can pick the most discriminative

structured group features of its input space by adjusting its kernel parameters used in its

first convolutional layer. Enforcing a group sparsity constraint over the weights of the first

convolutional layer in a DNN through the manipulation of its loss function can guide the

parameter space to convergence on a set of parameters that picks the most discriminative

channels of input data (see Figure 4.1).

In this work, we tackle single image morph detection. Inspired by the aforementioned feature

selection scheme, we investigate the application of group-L1 sparsity [21] over the weights of

the first convolutional layer in a DNN as the criterion for selecting the most discriminative

input samples’ wavelet sub-bands. Discriminative wavelet sub-bands, which can be thought

of as fine-grained features, are learned during the training of our DNN, guaranteeing that

an optimal hyperplane will be found between genuine and morphed samples. We conduct

experiments on three morph image datasets, i.e., VISAPP17 [5], LMA [7], and MorGAN

[7]. Given supervised data samples, our DNN sparsifies the kernel parameters of the first

convolutional layer on-the-fly while training, which drives our sparsity-guided DNN into

detecting morphed samples.

Figure 4.2: (a): Our modified Inception-ResNet-v1 [8] is trained with the 48-channel samples
of both real and morphed images. Group Lasso constraint sparsifies the grouped weights of
the first convolutional layer leading to sub-band selection.
(b): We retrain our modified DNN using the 20 discriminative wavelet sub-bands, where the
input channel size of our DNN is reduced to 20. A binary classifier is learned for morph
detection.
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4.2 Proposed Framework

To incorporate fine-grained spatial-frequency features into our proposed framework, we lever-

age wavelet domain analysis as the basis of our deep morph detector. At varied granularity,

wavelet sub-bands contain local discriminative information, where morphing artifacts are

uncovered in this domain. Our wavelet-based deep morph detection mechanism is two-fold.

First, we accomplish the sub-band selection to find the most informative subset of features

to increase the confidence of our deep morph detector as far as inference is concerned. As

presented in Figure 4.1, the optimization framework in the structured group sparsity zeros

out the grouped weights corresponding to convolutional filters in a given layer of a DNN

morph detector. Once some grouped weights in a convoluational layer converge to zero,

those involved wavelet sub-bands are discarded, that is an implicit feature selection method.

Secondly, we train our DNN detector using the selected wavelet sub-bands for the task of

morph detection (see Figure 4.2).

4.2.1 Sub-band Selection Based on Group Lasso

We utilize the valuable spatial-frequency information provided by the wavelet decomposition

to enhance the accuracy of our proposed morph detector. We pre-processed every input

image using a three-level uniform wavelet decomposition. Since the morphing artifacts are

revealed in the high frequency spectra, we discard the Low-Low (LL) sub-band after the first

level of decomposition, and the remaining 48 wavelet sub-bands are extracted to be used by

our deep morph detector.

Since we intend to select the most discriminative wavelet sub-bands, our focus is on the first

convolutional layer of our DNN. Please note that the input consists of C wavelet sub-bands

(channels) and the first convolutional layer is defined in the space of RN×C×H×V where N,C,H,

and V represent the number of filters, number of kernels, height, and width of a kernel,

respectively. In this study, the filter and the kernel terms are distinguished. A kernel is a 2D



Poorya Aghdaie Chapter 4. Morph Detection Enhanced by Structured Group Sparsity 42

array of size H×V . A filter is a 3D array of size C×H×V , which are stacked 2D kernels over

channel axis. Input images are decomposed into 48 concatenated wavelet sub-bands as the

input of DNN. Therefore, number of kernels in each filter of the first convolutional layer is

equal to 48. 32 different filters are employed in the first convolutional layer, where the size of

each kernel is 3×3. Thus, the dimensions of the first convolutional layer for the purpose of

channel-wise feature selection are as follows: N = 32,C = 48,H = 3, and V = 3. There are 48

different grouped weights that are shown by wl1(:,c, :, :) for c ∈{1, ...,48}, where the first layer

weights are denoted by wl1. Discriminative wavelet sub-bands are selected according to a

supervised feature selection algorithm. To select wavelet sub-bands, i.e. channel-wise feature

selecton, we impose a group sparsity constraint on the parameters of the first convolutional

layer of our DNN. Integrating weight decay in the classification loss of our DNN on the

weights of the first convolutional layer, known as structured sparsity regularization penalty,

drives our network into sparsifying the grouped weights of the first convolutional layer,

which implicitly results in discarding irrelevant wavelet sub-bands. Consecuently, a limited

number of informative wavelet sub-bands, out of 48, are selected, with which we train our

DNN morph detector.

4.2.2 Rewriting the Classification Loss of the DNN Detector

If we denote the classification loss of our DNN detector as Lcl.(w), the set of parameters of

our network as w, the first layer weights as wl1, and each grouped weight in the first layer as

w(g)
l1 , the regularized loss function, denoted by LR(w), for training the deep neural network

is as follows:

LR(w) = Lcl.(w)+λ∥wl1∥1,2 = Lcl.(w)+λ ∑
g∈Gl1

∥w(g)
l1 ∥2, (4.1)

where Gl1 is a set composed of all the group weights of the convolutional filters in the first

layer, and λ is a parameter controlling the amount of sparsity. The regularized loss can be

re-written as:

LR(w) = Lcl.(w)+λ

C

∑
c=1

√√√√ N

∑
n=1

H

∑
h=1

V

∑
v=1

w2
l1(n,c,h,v), (4.2)
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where Lcl.(w) delineates the binary cross-entropy classification loss and N = 32,C = 48,H = 3,

and V = 3.

4.2.3 Learning Deep Morph Detector

Regarding our feature selection scheme, as mentioned in Eqs. 1 and 2, there is a hyperpa-

rameter λ in the optimization framework of our DNN detector, which is the regularization

coefficient. To find the optimal regularization coefficient we utilize the validation sets of our

datasets. To incorporate all three datasets in the selection process of hyperparameter λ , we

combine all the images in the three datasets, i.e., VISAPP17 [5], LMA [7], and MorGAN [7],

and we create a “universal dataset”. A hyperparameter search is performed over different

values of λ . For each value of λ , our group sparsity-constrained DNN is trained using the

training portion of the universal dataset, and the performance of the trained DNN detector

is evaluated through Area Under the Curve (AUC) using the validation portion of the uni-

versal dataset. The highest AUC corresponds to the optimal value for λ . Once, we obtained

the most discriminative wavelet sub-bands, we retrain our DNN using the selected wavelet

sub-bands. Please note that since the number of input wavelet sub-bands is reduced due to

feature selection, the number of channels C in the filters of the first convolutional layer is

also reduced.

4.3 Evaluations

4.3.1 Datasets

We employ the VISAPP17 [5], MorGAN [7], and LMA [7] datasets in this work. The

VISAPP17 and LMA datasets were generated using facial landmark manipulation tech-

niques, which is an alpha blending of the warped bona fide images. On the other hand,
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the MorGAN dataset is synthesized using a GAN, including a decoder network that utilizes

transposed convolutional layers to transform a convex combination of two generated latent

vectors into the image domain. The VISAPP17 dataset has been generated using the images

in the Utrecht FCVP dataset, and the LMA and MorGAN datasets were generated using

the CelebA dataset [122]. For all images, face detection is performed via MTCNN and all

images are resized to 160× 160. We apply 2D undecimated wavelet decomposition on all

images, and since we get 48 concatenated wavelet sub-bands for each image, the dimension

of each data sample is 48×160×160.

As for the universal dataset introduced in section 4.2.3, the training set includes 1,631 bona

fide, and 1,183 morphed images, the validation set consists of 462 bona fide, and 167 morphed

samples and the test set includes 1,631 bonafide, and 1,183 morphed images.

4.3.2 Experimental Setup

We adopt a modified version of the Inception-ResNet-v1 [8] as the backbone of our DNN

architecture for learning the discriminative sub-bands, as well as distinguishing morphed

samples. We change the number of channels in the first convolutional layer of the Inception-

ResNet-v1 to 48 during the sub-band selection stage. As mentioned in section 4.2.1, a sample

input consists of 48 stacked wavelet sub-bands; thus, the convolutional filters of the first layer

have 48 channels, as seen in Figure 4.1. Inspired by [21], we use group L1-regularization to

impose structured group sparsity constraint on the grouped weight parameters in the first

convolutional layer of our deep neural network. For training our modified Inception-ResNet-

v1, we adopt the Adam optimizer and training is done for 150 epochs. The learning schedule

is as follows: the learning rate is initialized with 0.001, and it is divided by 10 after every 20

epochs. The training phase is accelerated using two 12 GB TITAN X (Pascal) GPUs.
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4.3.3 Evaluation Metrics

We use the APCER, BPCER, and D-EER metrics to assess the performance of our deep

morph detector. The first metric, Attack Presentation Classification Error Rate (APCER),

is the percentage of morphed images that are classified as bona fide, and the second metric,

Bona Fide Presentation Classification Error Rate (BPCER), represents percentage of bona

fide samples that are classified as morphed. D-EER stands for Detection Equal Error Rate,

at which APCER equals BPCER. The BPCER5 is the BPCER rate when APCER=5%, and

similarly the BPCER10 is the BPCER rate when APCER=10%.

Figure 4.3: Selected discriminative sub-bands using structured group sparsity. The white
areas represent the irrelevant sub-bands that are discarded. The remaining informative sub-
bands are displayed.

4.3.4 Tuning the Group Sparsity Regularization Hyperparameter λ

We performed a search over the group sparsity regularization coefficient λ . To find the

optimal value for λ , as discussed in Section 4.2.3, we fine tune our modified Inception-ResNet-

v1 DNN [8], already pre-trained on VGGFace2, using the training portion of the universal
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Figure 4.4: DET curves corresponding to different values of λ evaluated on the validation
portion of the universal dataset.

dataset. For each value of hyperparameter λ , we trained our modified Inception-ResNet-v1

DNN using the training portion of the universal dataset, and we found the AUC metric

when our trained DNN is evaluated using the validation portion of the universal dataset. It

should be noted that we created the universal dataset for hyperparameter selection since we

wanted to train a morph detector that performs well across different morphing techniques.

In addition, after our network is fully trained, we zero out any grouped weight with a

weight parameters norm smaller than 0.001. It was found that λ = 0.003 yields the top

20 most discriminative sub-bands, with the corresponding highest AUC of 99.31%. Figure

4.3 depicts the selected sub-bands along with the corresponding numbers after training our

network using universal dataset, and λ = 0.003.

Considering the aforementioned hyperparameter tuning process, we displayed the perfor-

mance of our morph detector for some selected values of λ using the validation portion of

the universal dataset. Figure 4.4 shows the Detection Error Trade-off (DET) curves corre-

sponding to different group sparsity regularization parameter λ . We can clearly see that the

performance of our deep morph detector is at its best when λ = 0.003.
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Figure 4.5: Displaying grouped weights decay related to some of the selected 20 sub-bands
with respect to group sparsity hyperparameter λ .

4.3.5 Grouped Weights Decay

To show the functionality of the group sparsity regularization coefficient λ , we plot the norms

of the grouped weights in the first convolutional layer of our DNN as a function of the group

sparsity regularization coefficient λ for some of the selected wavelet sub-bands (see Figure

4.5). Increasing the group sparsity penalty coefficient λ will push the grouped weight norms

toward zero as expected.

4.3.6 Performance of the Deep Morph Detector

Once we found the top 20 discriminative wavelet sub-bands, we stacked the selected 20

wavelet sub-bands as data samples, and we retrained our modified Inception-ResNet-v1. It

should be pointed out that the number of channels is reduced to 20. In the first scenario, we

train the DNN using the 20-stacked wavelet sub-bands of each individual dataset, and the

performance of the our morph detector is reported using the evaluation metrics introduced

in section 4.3.3. Table 4.1 delineates the performance of our deep morph detector when
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(a)

(b)

Figure 4.6: DET curves which display the performance of our morph detector when (a)
trained and evaluated on individual datasets and (b) trained on the universal dataset.

evaluated on our three datasets. Moreover, the corresponding DET curves are shown in

Figure 4.6a.

In the second scenario, we trained our DNN detector using the training portion of the

universal dataset, and the performance of the deep morph detector is reported using the

test set of the universal dataset, as well as the test sets of individual datasets. Table 4.2

summarizes the evaluation of our morph detector when trained on the universal dataset, and

the pertinent DET curves are plotted in Figure 4.6b.



Poorya Aghdaie Chapter 4. Morph Detection Enhanced by Structured Group Sparsity 49

Table 4.1: Performance of single morph detection: D-EER%, BPCER@APCER=5%, and
BPCER@APCER=10%.

Dataset Algorithm D-EER 5% 10%

V
IS

A
PP

17

BSIF+SVM [92] 16.51 35.61 26.79
SIFT+SVM [93] 38.59 82.40 75.60
LBP+SVM [95] 38.00 77.10 67.90

SURF+SVM [94] 30.45 84.70 69.40
RGB+DNN [8] 1.76 0.588 0.58

48-sub-bands 0.00 0.00 0.00
Ours 0.00 0.00 0.00

L
M

A
BSIF+SVM [92] 33.05 78.34 62.86
SIFT+SVM [93] 33.30 83.40 72.00
LBP+SVM [95] 28.00 58.60 51.40

SURF+SVM [94] 37.40 79.50 70.00
RGB+DNN [8] 9.10 15.18 7.49

48-sub-bands 5.04 4.38 2.75
Ours 6.80 8.60 4.89

M
or

G
A

N

BSIF+SVM [92] 1.57 1.42 1.30
SIFT+SVM [93] 43.50 93.20 84.20
LBP+SVM [95] 20.10 52.70 32.30

SURF+SVM [94] 39.95 80.00 72.60
RGB+DNN [8] 2.44 1.88 1.50

48-sub-bands 0.81 0.59 0.32
Ours 0.42 0.38 0.22

Please note that in Table 4.1 and Table 4.2, RGB+DNN represents our baseline when the

Inception-ResNet-v1 is trained on the original RGB images, and 48-sub-band data indicates

the data samples that consist of 48 wavelet sub-bands without utilizing the structured group

sparsity. Our results mentioned in Table 4.1 and Table 4.2 prove the effectiveness of feature

selection scheme for detecting morphed samples. In particular, the morphed samples in the

VISAPP17 and MorGAN datasets are detected precisely compared with the LMA dataset.

Please note that the performance of our RGB+DNN baseline, which is trained on the

Inception-ResNet-v1, is on par with the performance of other DNNs. In particular, regard-

ing the state-of-the-art results, in [47] the morph detection results on the LMA dataset is as

follows: D-EER: 0.00, BPCER@APCER=10%: 0.00 , BPCER@APCER=20%: 0.00. Also,

their results on the MorGAN dataset is as follows: D-EER: 34.00, BPCER@APCER=10%:

67.00, BPCER@APCER=20%: 78.00. Comparing the state-of-the-art results with ours re-

veals that our method outperforms on the MorGAN dataset considerably and perform close

to this baseline on the LMA dataset.
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Table 4.2: Performance of single morph detection: D-EER%, BPCER@APCER=5%, and
BPCER@APCER=10%.

Train Test Algorithm D-EER 5% 10%

U
ni

ve
rs

al
(V

IS
A

PP
17

+M
or

G
A

N
+L

M
A

)

V
IS

A
PP

17

BSIF+SVM [92] 35.00 67.20 59.00
SIFT+SVM [93] 27.00 83.20 70.90
LBP+SVM [95] 37.67 72.50 59.50

SURF+SVM [94] 31.00 79.40 70.10
RGB+DNN [8] 0.00 0.00 0.00

48-sub-bands 0.00 0.00 0.00
Ours 0.00 0.00 0.00

L
M

A

BSIF+SVM [92] 30.00 70.42 57.60
SIFT+SVM [93] 28.31 67.70 50.00
LBP+SVM [95] 29.00 61.50 51.20

SURF+SVM [94] 33.40 74.50 62.70
RGB+DNN [8] 7.80 13.00 6.10

48-sub-bands 4.62 4.22 2.73
Ours 4.44 4.11 2.21

M
or

G
A

N

BSIF+SVM [92] 28.80 62.42 45.70
SIFT+SVM [93] 47.60 92.30 88.60
LBP+SVM [95] 31.20 62.00 55.60

SURF+SVM [94] 38.67 76.00 70.00
RGB+DNN [8] 4.69 4.70 2.74

48-sub-bands 1.11 0.43 0.34
Ours 1.53 0.32 0.30

U
ni

ve
rs

al

BSIF+SVM [92] 23.74 51.42 38.67
SIFT+SVM [93] 37.21 87.45 76.71
LBP+SVM [95] 38.80 91.36 83.40

SURF+SVM [94] 36.00 75.50 65.76
RGB+DNN [8] 5.57 6.08 3.00

48-sub-bands 3.12 1.78 0.97
Ours 2.78 1.75 1.21

4.4 Visualizing the Functionality of the Deep Morph Detector

In this section, we adopt a few visualization techniques to explain the underlying mechanism

of our morph detector. First, we utilize the t-distributed Stochastic Neighbor Embedding

(t-SNE) [123] visualization technique to explain the classification performance improvement

due to the imposed structured sparsity. Second, we utilize the Gradient-weighted Class

Activation Mapping (Grad-CAM) [124] to show the most attended spatial regions in the

input images when our trained classifier labels an input image as a bona fide or morphed

image.
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Figure 4.7: T-SNE visualization. The left figure depicts the 48-sub-band data, and the right
figure shows the 20-sub-band data from the MorGAN dataset.

4.4.1 Visualizing the Functionality of Structured Group Sparsity

To display the efficacy of our feature selection scheme, which is selecting the most discrimi-

native sub-bands, the t-SNE visualization technique is employed as a representative medium

which preserves the local structure of samples when visualizing high dimensional data sam-

ples in a low dimensional space. We randomly select 200 bona fide, and 200 morphed samples

from the MorGAN dataset for the following two cases. In the first case, we extract the DNN

embedding features for the original 48-sub-band data samples for the 200 bona fide and 200

morphed sample. Please note that the employed DNN for feature extraction was already

trained on the 48-sub-band data. As the second case, we find the deep features using a DNN

trained on the 20-sub-band data for the same 200 bona fide and 200 morphed samples. The

point here is that we use the same data samples for both cases, but with different number

of wavelet sub-bands. These two subsets of data points are plotted using t-SNE as shown

in Figure 4.7, and we see that 20-sub-band data, in the right column, are more separable

compared to the 48-sub-band data in the left column, which substantiates the effectiveness

of our feature selection algorithm.
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4.4.2 Grad-CAM Visualization

Understanding the key spatial areas in an input image, in terms of detection or classification,

has been a long-standing topic of interest in the vision community. It is worth mentioning

that our DNN is a non-attention-based architecture, and we do not use any attention mecha-

nism in our DNN. In this section we adopt another useful visualization technique to observe

which regions in the input images are paid more attention to from the DNN perspective in

time of inference. In other words, we want to see which pixels are considered discriminative

given our morph classification task. To explain the functionality of our trained DNN, we

employ the Grad-CAM, which represents the gradient-weighted class activation maps. In

this visualization method, the gradient of a class-specific logit is obtained with respect to

all spatial locations in a given feature map of the last convolutional layer in the DNN under

scrutiny. The calculated gradients are averaged-pooled globally for each feature map, and

these coefficients are used for a weighted average of the feature maps along with a final ReLU

activation function to produce the class specific Grad-CAM. In accordance with the notation

used in [124], the importance of the weights incorporating the pixels in the feature map k of

the last convolutional layer is as follows:

α
class
k =

1
Z ∑

i
∑

j

∂yclass

∂Ak
i j

, (4.3)

where Z represents the total number of spatial locations i j in the feature map k, yclass

delineates the score or logit for the class class, and A denotes the activation or feature map.

Consequently, the Grad-CAM produced for class class with respect to the final convolutional

layer in the DNN is as follows:

Lclass
Grad−CAM = ReLU(∑

k
α

class
k Ak). (4.4)

To produce the class-specific Grad-CAM for a bona fide image and its corresponding morphed

image, we choose the last convolutional layer in our modified Inception-ResNet-v1, which

has 1792 feature maps with spatial size of 3×3. Based on Figure 4.8, the right images, that

are morphed faces have substantially more attended regions compared to the left images,
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Figure 4.8: Grad-CAM visualizations for bona fides (left) and the corresponding morphed
images (right). The first, second, and third rows represent samples from the VISAPP17,
LMA, and MorGAN datasets, respectively.

which are the bona fide samples.

4.5 Conclusion

In this chapter, we employed structured group sparsity to force a DNN into finding the most

discriminative subset of wavelet sub-bands, that are the wavelet sub-bands. To isolate the

discriminating artifacts in the spatial-frequency feature domain, we adapted our framework

into the wavelet domain. As far as learning the parameters of our DNN is concerned,

the cost function of the DNN is constrained to meet the group Lasso condition, which is

imposed on the grouped weights of the first convolutional layer. Our adjusted cost function

results in finding the top 20 discriminative wavelet sub-bands, further enabling accurate

morph detection with respect to our datasets. The D-EER, APCER5, and APCER10 rates

obtained using our trained network with the optimal number of sub-bands substantiate the

effectiveness of our framework. In particular, the morphed samples in the VISAPP17, and

MorGAN datasets are detected accurately compared to the LMA dataset. In addition,



Poorya Aghdaie Chapter 4. Morph Detection Enhanced by Structured Group Sparsity 54

to make the effectiveness of our morph detector transparent, we utilized two visualization

techniques to explain the functionality of the proposed single image morph detector.
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Chapter 5

Attention Augmented Face Morph
Detection

5.1 Introduction

Morphed face detection has gained a surge of interest among the biometric and vision commu-

nities [9–12]. Facial image morphing attacks have posed a serious threat to the functionality

of face recognition systems, especially those adopted at borders [13]. Using a morphed image,

a criminal can share a passport with his/her innocent accomplice to evade identification and

detection. Both the criminal and accomplice faces are verified against the morphed images

which allows the criminal to get a passport. A large body of research is devoted to generat-

ing morphed facial images mostly using either manipulating geometrical characteristic of two

bona fide subjects’ images [5, 7, 18] or generative networks such as Generative Adversarial

Networks (GANs) [1, 7, 19].

The mainstream methods for morph detection are categorized into either single image morph

detection [34, 35] or differential morph detection [34, 35]. In the former case, the goal is set

to identify a probe image either as a bona fide or morphed image without utilizing any other

auxiliary information. On the other hand, the latter case takes into account a live image

of the subject under investigation, to classify a probe image as a bona fide or morphed.

State-of-the-art multi-class classifiers or object detection frameworks benefit from rich visual

abstractions realized through representation learning techniques [120]. Generally speaking,
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face morph detection can be implicitly reformulated as learning discriminative informative

cues that are taken into account for finding a decision boundary, separating bona fide images

from morphed ones in a binary classification setting. Since artifacts in a morphed image are

local, the discrepancy between a morphed image and the corresponding bona fide image can

be detected using fine-grained features [115].

The 2D wavelet decomposition [38, 125] provides a useful insight into the joint spatial-

frequency information embedded in a given 2D image. Wavelet sub-bands can be thought of

as fine-grained features with variable granularity. Moreover, wavelet decomposition reveals

the embedded hidden information through providing spatial-frequency representation. Re-

sulting sub-bands can be harnessed to isolate artifacts in a given morphed image at different

spatial-frequency granularity.

Feature learning plays a pivotal role for the mainstream computer vision tasks such as

image classification. In particular, sparse representation learning methods have proved to

be powerful tools for face recognition applications. Due to the NP-hardness of any sparsity-

constrained optimization framework, an alternative relaxed version of the sparsity condition

is enforced using the ℓ1 relaxation [126]. Most importantly, group sparsity [127] is defined as

a class of sparse representation learning methods where a feasible solution for the formulated

optimization framework converges when some of the grouped coefficients are zeroed out. In

this study, we leverage the group sparsity to increase the accuracy of our morph detection

framework.

Recently, visual attention mechanisms have initiated a renaissance in the image recognition

and classification tasks. “Visual Explanation” [109], underlying the attention mechanism,

uncovers what regions a deep neural network focuses on to form its final decision for a de-

fined downstream task. In other words, an attention-based deep neural network forces the

DNN into focusing on the most informative regions which contribute the most to learning

a hypothesis, leading to a more accurate classification [20, 22, 109, 128, 129]. The feature

refinement realized by the spatial- and channel-wise attentions [22] has provided a rich rep-

resentation that can increase inter-class separability while minimizing intra-class dispersion.
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Figure 5.1: Our attention augmented framework which adopts three different attention
mechanisms, i.e., Att. I, Att. II, and Att. III to increase the morph detection accuracy. The
Att. I module which is the convolutional block attention adopts the max-pooling or average-
pooling to find channel and spatial attention maps to highlight discriminative spatial pixels
in a given set of feature maps. The Att. II determines the informative spatial pixel loca-
tions through finding the correlation of each spatial location in a given feature map, known
as the local feature vectors, and the output of a Fully Connected (FC) layer, known as the
global feature vector, in a given DNN. In addition, the Att. III yields augmented feature maps
by concatenation of the convolutional feature maps and their corresponding self-attentional
feature maps.

Also, vision transformers [89], which have shifted the paradigm in terms of classification

accuracy without using any convolutional operations, have benefited from the multi-headed

self-attention mechanism which also plays a pivotal role in this study.

This work investigates the application of group sparsity [21], soft attention mechanism [20],

and self-attention [22, 23] for morph detection. The spatial-frequency content of an image

provides useful information such as subtle discrepancies between a bona fide and its mor-

phed image. We decompose every input image using a multilevel 2D wavelet decomposition

to extract coarse-to-fine spatial-frequency wavelet sub-bands which are considered powerful

representations for training a DNN morph detector. Our group sparsity constraint opti-
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mization framework leads our DNN morph classifier to converge into a sparse solution where

some of the wavelet sub-bands of input images, bearing minimal discriminative information,

are discarded. Thus, we can select a subset of the most discriminative wavelet sub-bands,

which is an implicit feature selection mechanism. On the other hand, attention modules

customized to our model, guide the network to pinpoint the most informative spatial pixels

as well as the most information bearing channels in a given intermediate feature map. As

shown in Fig. 5.1, we incorporate three types of visual attention mechanisms into our DNN-

based morph detector which guide our detector into mining the spatial regions with the

highest density of morphing artifacts. Namely, we employ the spatial and channel attention

modules introduced in the CBAM [22], which we call Att. I, the end-to-end soft attention

mechanism delineated in [20] which is called Att. II in this study, and the self-attention

augmented feature maps which is called Att. III hereafter. Through extensive experiments,

we demonstrate advantage of these three mentioned attention mechanisms for improving

morph detection accuracy. To increase intra-class compactness and inter-class dispersion,

we employ the additive angular margin loss function (ArcFace) to obtain highly discrimina-

tive features. We demonstrate the efficacy of our framework through extensive experiments

on several morph detection datasets mentioned in Section 5.3.1.

Organization of the paper is as follows: In section 5.2, we delineate our methodologies to

improve morph detection accuracy. In section 5.3, we present our experiments and results.

Finally, in section 5.4 we conclude our work. Our contributions in this paper are outlined

as follows:

• Instead of the RGB domain, we leverage the wavelet domain to find rich spatial-

frequency features of input images, i.e., wavelet sub-bands of input images.

• We employ group sparsity to select most discriminative wavelet sub-bands as a feature

selection scheme for increasing morph detection accuracy.

• We integrate three different types of visual attention modules in our DNN to highlight

informative spatial areas of input images which can decrease morph detection error

rates.
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Figure 5.2: Our morph detection methodology selects the most discriminative wavelet sub-
bands of input images which results in increasing the morph detection accuracy based on the
extensive experimental evaluations.

Figure 5.3: Our morph detection framework focuses on discriminative spatial regions in the
selected wavelet subbands through using three different types of visual attention mechanism,
called (a) Att. I, (b) Att. II, and (c) Att. III which results in increasing the morph detection
accuracy based on the extensive experimental evaluations.
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5.2 Methodology

In this paper, we propose a morph detector which leverages: (1) group sparsity for capturing

the most discriminative wavelet subbands of a given facial image (see Fig. 5.2) and (2)

a visual attention mechanism which drives our morph detector into the most informative

spatial- and channel-wise regions to facilitate detecting morphed faces (see Fig. 5.3). To

evaluate both the group sparsity and attention mechanisms in detail, we first delve into

the application of group sparsity as a representation learning scheme. Moreover, the effect

of different attention mechanisms is investigated separately to assess the improvement of

the morph detection due to an attention-based network. Finally, we train our wavelet-

based attention augmented morph detector which includes three different types of attention

modules. The final objective of this paper is the joint optimization of the group sparsity and

attention mechanisms.

From the information theoretic perspective, an optimal DNN architecture must meet the

following conditions [130]: (1) Minimizing the mutual information between an intermediate

feature map at a given layer L, denoted by FL, and the next layer feature map FL+1 in

the hierarchy of a DNN. In other words, I(FL;FL+1) must be minimized. (2) Maximizing

the mutual information between a given intermediate feature map FL and output of the

DNN, denoted by Y . In other words, I(FL;Y ) must be maximized. Employing structured

group sparsity for selecting the most discriminative wavelet sub-bands and the attention

mechanism to find the most discriminative spatial regions aids our DNN in minimizing the

I(FL;FL+1) while maximizing I(FL;Y ). In a similar vein to skip connections introduced in

the ResNet [100] architecture, which precludes information flow loss, our adopted feature

refinement schemes enable minimizing I(FL;FL+1) to prevent losing information when data

abstraction becomes compact in the higher layers of a DNN, while at the same time, I(FL;Y )

is maximized through finding the most relevant information in a given feature map.
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5.2.1 Channel-wise Feature Selection

In this study, instead of experimenting on images in the original RGB spatial domain, we

decompose all images using 2D wavelet decomposition which enables us to experiment on the

fine-grained information in the spatial-frequency domain. The wavelet domain has proved to

be a rich representation which provides information with different granularity. We extract

the most useful spatial-frequency information, which is realized through sub-band selection

detailed in this subsection, helping us to localize morphing artifacts accurately compared

with the RGB domain. To this end, we adopt an undecimated uniform 2D wavelet decom-

position. Needless to say, wavelet decomposition cannot be applied on the RGB images

which have three channels. Therefore, the RGB images are first converted to the grayscale

version using the Open CV RGB to grayscale conversion function in order to be passed to

the wavelet decomposition module. We decompose three levels of wavelet decomposition,

and from the resulting 64 wavelet sub-bands, we keep 48 sub-bands which represent the high

frequency spectra. In other words, we discard the Low-Low (LL) sub-band after one level

of wavelet decomposition. Our objectives are as follows: (1) channel-wise feature selection

for selecting the most discriminative wavelet sub-bands from these 48 sub-bands which can

help us distinguish bona fide images from morphed ones, and (2) spatial feature selection by

employing different attention mechanisms to localize the most discriminative pixels in the

selected wavelet sub-bands.

We adopt a group sparsity feature selection scheme to select the most discriminative wavelet

sub-bands, mentioned above as the sub-band selection, for a given input image. Our implicit

feature selection scheme based on the group sparsity is realized by imposing a group sparsity

constraint on the parameters of the first convolutional layer in our DNN morph detector

(see Fig. 5.2). We select the most discriminative wavelet sub-bands by discarding wavelet

sub-bands that their corresponding kernel weights in the first convolutional layer of our

DNN converge to zero thanks to the enforced group sparsity constraint on the parameters

of the first convolutional layer. Note that the input images are composed of C wavelet

sub-bands (channels) and the first convolutional layer is defined in the space of RN×C×H×V
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where N,C,H, and V represent the number of filters, number of kernels, height, and width

of a kernel, respectively. In this study, the filter and the kernel terms are distinguished. A

kernel is a 2D array of size Q×V . A filter is a 3D array of size C×Q×V , which are stacked

2D kernels over the channel axis. Input images are decomposed into C = 48 stacked wavelet

sub-bands as the input of our DNN. Therefore, the number of kernels in each filter of the first

convolutional layer is equal to 48. 32 different filters are employed in the first convolutional

layer, where the size of each kernel is 3×3. Thus, the dimensions of the first convolutional

layer for the purpose of channel-wise feature selection are as follows: N = 32,C = 48,Q = 3,

and V = 3. There are 48 different grouped weights that are shown by wl1(:,c, :, :) for c

∈ {1, ...,48}, where the first layer weights are denoted by wl1.

As discussed above, to select the wavelet sub-bands, i.e., channel-wise feature selection,

we impose a group sparsity constraint on the parameters of the first convolutional layer

of our DNN. Integrating a group sparsity term in the classification loss of our DNN on the

weights of the first convolutional layer, known as a structured sparsity regularization penalty,

drives our network into sparsifying the grouped weights of the first convolutional layer, which

implicitly results in discarding non-discriminative wavelet sub-bands. Consequently, a subset

of informative wavelet sub-bands, out of 48 sub-bands, are selected. In other words, after

training our DNN, some of the grouped weights wl1(:,c, :, :) for c ∈ {1, ...,48} are zeroed out

which means their corresponding wavelet sub-bands are discarded. Those grouped weights

that do not converge to zero determine the most useful discriminative wavelet sub-bands

which are used for the downstream task of morph detection.

5.2.2 ArcFace Loss Function

Suppose we denote the set of parameters of our network as w, first layer weight parameters

as wl1, the binary classification loss of our DNN as Lcl.(w), and each grouped weight in the

first layer as w(g)
l1 . Note that group weight corresponding to the Cth channel is defined as

all the 2D kernels in the Cth channels of all the N=32 filters in our first convolutional layer.

The regularized loss function, denoted by LR(w), for training our DNN morph detector to
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select the most discriminative wavelet sub-bands is as follows:

LR(w) = Lcl.(w)+λ∥wl1∥1,2 = Lcl.(w)+λ ∑
g∈Gl1

∥w(g)
l1 ∥2, (5.1)

where Gl1 is a set composed of all the group weights of the convolutional filters in the first

layer, and λ is a parameter controlling the amount of sparsity. The regularized loss can be

written as:

LR(w) = Lcl.(w)+λ

C

∑
c=1

√√√√ N

∑
n=1

Q

∑
q=1

V

∑
v=1

w2
l1(n,c,h,v), (5.2)

where Lcl.(w) is the binary classification loss and N = 32,C = 48,Q = 3, and V = 3.

As for the binary classification loss in Eq. 5.2, we adopt the additive angular margin loss

(ArcFace) [131] which has proved to enhance the intra-class compactness and inter-class

separation. Thus we can write the Lcl.(w) as:

− 1
M

i=M

∑
i=1

log
exp(scos(θyi +m))

exp(scos(θyi +m))+∑
j=C
j=1, j ̸=i exp(scos(θ j))

, (5.3)

where M is the number of training samples in a given batch, s is the scale factor for learned feature

embeddings and class weight vectors are normalized to 1 (∥Wc∥2 = 1). θyi is the angle between

the ith input feature embedding of a ground truth class y and learned weight of class y. Moreover,

θ j represents the angle between the ith input embedding relevant to the ground truth class y and

learned weight of class j. The additive angular margin m reduces the variance of the learned features

in a given class while increasing the inter-class feature dispersion.

5.2.3 Spatial Feature Selection and Refinement

To select the most discriminative pixels, we investigate the application of three attention mecha-

nisms which can suppress spatial regions that do not contribute to the final decision of our morph

detector. In other words, our integrated attention modules allow our DNN morph detector to focus

on discriminative spatial regions (see Fig. 5.3). The three attention mechanism are as follows:
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Attention Mechanism I: Convolutional Block Attention Module (CBAM)

In our first attention module, shown in Fig. 5.3. (a), and called Att. I, we employ the channel

and spatial attention. Specifically, we employ the Convolutional Block Attention Module (CBAM)

[22, 132], to refine an intermediate feature map F ∈ RC×H×W . Given intermediate feature map

F, the CBAM module captures interdependencies between spatial-channel pixels in the feature

map through inferring a 1-D channel attention map Mc ∈ RC×1×1 and a 2D spatial attention map

Ms ∈ R1×H×W which are as follows:

Mc(F) = σ(MLP(AvgPool(F))+MLP(MaxPool(F))), (5.4)

Ms(F) = σ(conv2D[AvgPool(F),MaxPool(F)]), (5.5)

where MLP stands for the Multi-Layer Perceptron, which is typically a two layer fully-connected

network and σ is the non-linear activation function. To find the channel attention map Mc, we

reduce the size of the hidden layer in the MLP by setting the variable “reduction_ratio=16” [132]

to reduce complexity of the problem, which means that the size of the hidden layer in the MLP is
1
16 of the input layer size. Also, conv2D is a convolution applied on the concatenation of (1) the

average pooled feature map along the channel axis and (2) the max pooled feature map along the

channel axis. The refined attentive feature map F′′ is found consecutively which is as follows:

F′ = Mc
⊗

F,F′′ = Ms
⊗

F′. (5.6)

Please note that we employ up to two attention modules of type Att. I in different intermediate

feature maps related to two different convolutional layers in our DNN-based morph detector.

Attention Mechanism II: Learn To Pay Attention

The soft attention mechanism [20, 133], called Att. II, and shown in Fig. 5.3. (b), finds the

correlation of each spatial location in a given intermediate feature map F ∈RC×H×W and the output
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of the underlying DNN, which can be one of the fully connected layers, which precedes the logits

layer of our DNN, to assess how much that spatial location is deemed discriminative in the eye

of the DNN. The correlation is also known as the compatibility score. Mathematically speaking,

assume a spatial local feature vector in the location i ∈ {1,2, ..,n} in the intermediate feature map

F is shown by ℓℓℓF
i . Note that n is the total number of pixel locations in the given feature map which

is H×W . The compatibility score for local feature vector ℓℓℓF
i is given as:

cF
i = ⟨ℓℓℓF

i ,ggg⟩, i ∈ {1,2, ..,n}, (5.7)

where ggg designates the global feature vector, that is the 512-D output feature embedding of the last

fully connected layer in the DNN detector and ⟨., .⟩ represents the inner product. Compatibility

scores for the feature map F are normalized using the softmax normalization function. Normalized

compatibility scores represent attention weights, which are given as:

aF
i =

exp(cF
i )

Σi=n
i=1 exp(cF

i )
, i ∈ {1,2, ..,n}. (5.8)

A convex combination of the local feature vectors ℓℓℓF
i , which is the attention weighted sum of the

local feature vectors ℓℓℓF
i gives the refined attentive descriptors, known as attentive global feature

vector, for the given feature map F. The attentive global feature vector, i.e., attention-weighted

sum of local feature vectors, can be written as:

gggF
a = Σ

i=n
i=1aF

i ℓℓℓ
F
i . (5.9)

The attentive global feature vector gggF
a replaces the global feature vector ggg to be used for finding new

logits to perform classification. Please note that we employ up to two attention modules of type

Att. II in the intermediate feature maps of two different convolutional layers in our DNN-based

detector.

Attention Mechanism III: Self-attentional Feature Maps

To further refine the intermediate feature maps of our DNN-based morph detector, we integrate

the self-attentional feature maps [23, 24] into our deep architecture, which is shown in Fig. 5.3.

(c). The attention augmented convolutional network employs the multi-headed self-attention used
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in the vision transformer architecture [87, 88]. In this type of attention, the multi-headed self-

attentions are applied on a given intermediate feature map in our DNN which leads to a new set

of augmented feature maps. In accordance with [23], concatenation of the convoluted feature maps

and the self-attentional feature maps result in the best performance.

Suppose F delineates an intermediate set of feature maps where F ∈RH×W×Fin . The feature maps are

reshaped to F ∈RHW×Fin . The number of attention heads is represented by Nh and dv, dk delineates

the depth of values, queries/keys, respectively. Also, the depth of values and queries/keys per

attention head are denoted by dh
v and dh

k respectively. The input F is mapped into queries, keys,

and values through learned weights Wq ∈ RFin×dh
k , Wk ∈ RFin×dh

k , and Wv ∈ RFin×dh
v . The queries, keys,

and values are as follows:

q = FWq,k = FWk,v = FWv. (5.10)

In the multi-head attention setting, the output of the first attention head Oh can be written as:

Oh = So f tmax(
(FWq)(FWk)

T√
dh

k

)(FWv). (5.11)

More importantly, the output of the multi-head self-attention module (MHA) is denoted as:

MHA(F) = [O1||O2||....||ONh ]W
O, (5.12)

where || represents the concatenation operation and W O ∈Rdv×dv is a matrix of learned weights. The

attention augmented feature maps (AAConv.) stem from the concatenation of the conventional

feature maps due to the convolution operation (Conv.(F)) and the self-attentional feature maps

MHA(F). In other words:

AAConv(F) = [Conv.(F)||MHA(F)]. (5.13)

5.2.4 Arrangement of Feature Selection Schemes

There are different permutations for employing the group sparsity for channel-wise feature selection

as well as three different attention modules Att. I, Att. II, and Att. III. We follow the rules set forth
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by the curriculum learning paradigm [134–136] to incrementally incorporate channel-wise and spatial

feature selection/refinement modules. The curriculum learning premise highlights the benefits of

providing initially easy tasks to a DNN for training purposes and presenting more difficult tasks in

later stages which increases the complexity of the network’s parameter space. Thus, we first train

our wavelet-based DNN which is constrained to the group sparsity constraint. Consequently, we

fine-tune our trained DNN using a modified structure that incorporates different attention modules

Att. I, Att. II, and Att. III. More importantly, we consider different number of attention modules

in Section 5.3.5.

We demonstrate in our experiments, delineated in the following sections, contribution of each atten-

tion mechanism to accuracy of our deep morph detector. In other words, our results prove efficacy

of the Att. I, Att. II, and Att. III for capturing morphing artifacts.

5.2.5 Training Schedule

To find the most discriminative wavelet sub-bands we first fine-tune our DNN, which is an Inception-

ResNet-v1 [8] pretrained on VGGFace2 [137] with a modified loss function integrating weight decay

on the parameters of its first convolutional layer, using the input images that have been decomposed

into 48 wavelet sub-bands. Due to our 48-channel input data, we change the number of channels

in the first layer of the original Inception-ResNet-v1 to 48. There is a hyperparameter λ for the

group sparsity which is empirically searched for using the validation set of our data. It is expected

that after training, a subset of kernel weights in the first layer are zeroed out, leading to an implicit

selection of a subset of wavelet sub-bands.

Once the number of selected sub-bands are obtained, which is the easy task in the context of

curriculum learning, we continue fine-tuning our DNN using these selected sub-bands. In other

words, we shrink the number of input channels in our DNN, and investigate the effect of adding

each individual attention modules Att. I, Att. II, and Att. III. Different convolutional layers are

assimilating attention modules to improve accuracy of detecting morphed images.
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Table 5.1: Size of our datasets.

Dataset Morphing tool Bona fide Morph
Twin-Landamrk [138] Landmark-based 9860 14230
Twin-StyleGAN [138] StyleGAN 1488 450
Twin-Perturbed [138] Adversarial 1488 1240

FERET [19, 139]
FaceMorpher 1413 529
StyleGAN2 1413 529

OpenCV 1413 529

FRLL [19, 140]

OpenCV 204 1221
FaceMorpher 204 1222
StyleGAN2 204 1222

WebMorpher 204 1221

FRGC [19, 141]
FaceMorpher 3038 964

OpenCV 3038 964
StyleGAN2 3038 964

Landamrks-I [56, 142] FaceMorpher 528 800
Landamrks-II [143] OpenCV 528 941
StyleGAN [26, 28] StyleGAN 528 941
MIPGAN-II [31] StyleGAN2 374 747

5.3 Evaluations

5.3.1 Datasets

We utilize the WVU Identical Twin Face Morph dataset [138] which consists of samples generated

using four techniques, i.e., (1) Landmark-based face morph generation, (2) StyleGAN-based face

morph generation, (3) Wavelet-based face morph generation, and (4) adversarially perturbed face

morph generation. From these four morph generation methods, in this study, we use the Landmark-

based, StyleGAN-based and adversarially perturbed morphs which are dubbed Twin-Landmark,

Twin-StyleGAN, and Twin-Perturbed, respectively. FRLL-Morphs [19, 140], FERET-Morphs [19,

139], and FRGC-Morphs [19, 141] are other datasets we employ in this work. The FRLL-Morphs

dataset is built upon the Face Research London Lab dataset using four different face morphing

tools: (1) OpenCV [144], (2) FaceMorpher [145], (3) StyleGAN2 [31], and (4) WebMorpher [146].

The FERET-Morphs dataset which is based on the color FERET database are morphed using the

(1) OpenCV, (2) FaceMorpher, and (3) StyleGAN2 morphing modules. The FRGC-Morphs dataset

is constructed using the (1) OpenCV, (2) FaceMorpher, and (3) StyleGAN2 morphing tools. Size

of each deataset is detailed in Table 5.1.
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In addition to the above-mentioned datasets, we utilize the datasets employed in the single image

morph detection tables of the MIPGAN paper [1], which were all constructed using the FRGC-

V2 [141] face database. The datasets we use from the MIPGAN paper are as follows: Landmarks-

I [56, 142], Landmarks-II [143], StyleGAN [26,28], and MIPGAN-II [31].

5.3.2 Experimental Setup and Evaluation Metrics

Our core DNN is the Inception-ResNet-v1 [8]. The Inception-ResNet-v1 layers are as follows: 1)

Stem block, 2) Five Inception-resnet-A blocks, 3) Reduction-A block, 4) 10 Inception-resnet-B

blocks, 5) Reduction-B block, 6) Five Inception-resnet-C blocks, 7) Average Pooling, 8) Dropout, 9)

Softmax. Details of each block used in the Inception-ResNet-v1 can be found in the [8]. However, as

mentioned in section 5.2.1, we modify the original DNN architecture to account for the 48-wavelet-

sub-band input data where we replace 3-channel RGB filters in the first convolutional layer with

48-channel filters. The number of the channels in the filters of the first convolutional layer of the

original Inception-ResNet-v1 deep network is three since natural RGB images have three channels.

However, we want to feed 48-channel data. Therefore, we increase the channel size of the filters to

48. Our DNNs are trained using the Adam [103] optimizer for 150 epochs accelerated using two 12

GB TITAN X (Pascal) GPUs. We have trained our DNNs in the PyCharm 2022.3.1 environment

using PyTorch libraries in a Ubuntu 20.04.3 operating System. The learning rate is initially set at

0.001 which is divided by 10 every 20 epochs. As for the ArcFace loss function parameters, we set

the scaling factor s=64.0 and margin m=0.5 [147].

We have reported our results using the following metrics based on the ISO/IEC 30107-3 [148]:

Bona fide Presentation Classification Error Rate (BPCER) which represents proportion of bona

fide presentations that are incorrectly classified as attack presentations (morph) by the classifier,

Attack Presentation Classification Error Rate (APCER) that is proportion of attack presentations

(morph) that are incorrectly classified as bona fide, Detection Equal Error Rate (D-EER) the

point where APCER is equal to BPCER, and Area Under Receiver Operating Characteristic Curve

(AUROC). In the context of binary classification, considering morph class as the positive class,

BPCER and APCER are nothing but the False Positive Rate (FPR) and False Negative Rate

(FNR), respectively. Especially, we are interested in the following three thresholds: 1) BPCER @
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APCER=5% 2) BPCER @ APCER=10% 3) BPCER @ APCER=30%. AUROC is a threshold

independent metric representing a fair evaluation of our learned hypotheses.

Figure 5.4: 48 wavelet sub-bands are depicted for a given morphed image. Our channel-wise
feature selection scheme leads to selection of the six most discriminative wavelet sub-bands
which are ticked.

5.3.3 Channel-wise Feature Selection via Group Lasso Weight Decay

In order to select the most discriminative wavelet sub-bands, we first train our DNN using the

48-wavelet-sub-band data using the WVU Twin-Landmark dataset. We do a random search for

tuning the hyperparameter λ and we train our DNN for several selected values of hyperparameter

λ as mentioned in Eq. 5.2 using the training portion of the Twin-Landmark dataset. We assess

the performance of the trained DNNs using the validation portion of the Twin-Landmark dataset,

and it is revealed that λ = 0.003 leads to the highest accuracy on the validation set of the WVU

Twin-Landmark dataset retaining six wavelet sub-bands out of 48 as depicted in Fig. 5.4. We

further assess the generalization of our trained DNN on all of the datasets. Table 5.2 delineates

the benchmarked morph detection results for different datasets when the input samples are either
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Table 5.2: Comparing single morph detection performance using the RGB and six
wavelet sub-band channels: D-EER%, BPCER@APCER=5%, BPCER@APCER=10%,
and BPCER@APCER=30%. Our subband selection has resulted in increasing the accuracy
of morph detection as the improved results are highlighted.

Test
Train: Twin-Landmark (RGB) Train: Twin-Landmark (six wavelet subband)

D-EER 5% 10% 30% AUROC D-EER 5% 10% 30% AUROC
Twin-Landmark 5.50 5.60 2.63 0.33 98.73 2.82 1.61 1.20 0.24 99.51
Twin-StyleGAN 53.52 99.49 82.30 69.08 45.49 53.5 92.00 82.11 68.30 56.14
Twin-Perturbed 8.57 15.33 6.53 0.98 97.04 12.74 22.09 15.08 3.70 94.20

FERET-FaceMorpher 22.81 40.87 33.27 19.20 87.31 11.80 25.87 20.41 19.20 88.82
FERET-StyleGAN2 19.81 40.57 28.01 11.92 89.30 12.66 24.38 14.36 6.80 91.82

FERET-OpenCV 24.57 39.70 31.57 20.42 86.15 17.90 27.03 22.11 13.90 87.80
FRLL-OpenCV 0.08 0.0 0.0 0.08 99.95 2.94 2.70 1.76 0.98 99.11

FRLL-FaceMorpher 0.16 0.16 0.16 0.16 99.92 0.24 0.16 0.05 0.03 99.93
FRLL-StyleGAN2 4.83 2.82 2.58 0.0 99.06 4.3 3.1 2.00 0.0 97.33

FRLL-WebMorpher 23.52 59.10 36.89 18.13 84.60 22.67 58.34 35.55 17.06 86.9
FRGC-FaceMorpher 3.50 2.5 1.50 0.0 99.21 2.07 0.41 0.20 0.0 99.50

FRGC-OpenCV 3.62 2.03 1.49 0.0 99.37 2.59 1.03 0.1 0.0 99.50
FRGC-StyleGAN2 14.35 25.48 17.45 4.07 94.43 6.01 6.95 2.59 0.29 98.17

RGB images or the six wavelet sub-band data samples. The results reveal that selecting the top

six most discriminative wavelet sub-bands can conspicuously decrease the predicted error rates

of our classifier or equivalently increase AUROC on several datasets. In particular, all D-EER,

BPCER@APCER=5%, BPCER@APCER=10%, and BPCER@APCER=30% error rates decrease

for all morphing types of FERET and FRGC datasets in addition to the Twin-Landmark and Twin-

StyleGAN which are highlighted in Table 5.2. In addition, selecting six discriminative sub-bands

resulted in an increase of AUROC for all eight datasets. Therefore, our sub-band selection scheme

leads to a more accurate morph detector compared to the one trained on the RGB data. Please note

that, for the rest of the following experiments and tables, we use the six selected wavelet subbands

as the input to our deep morph detector.

5.3.4 Feature Refinement via Attention Mechanisms

We have integrated our three different attention modules after the following layers: 1) “conv2d-3b”

where size of the feature maps are 80× 126× 126, 2) “conv2d-4b” where size of the feature maps

are 256× 61× 61, 3) “mixed-7a” where size of the feature maps are 1792× 14× 14. To increase

the accuracy of our morph detector and to focus on the most discriminative spatial regions, where

the density of morphing artifacts is higher, we integrate Att. I module which is an instantiation

of the CBAM self-attentional class. This attention module provides us with refined intermediate
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Table 5.3: Attention-based single morph detection performance using the six selected
wavelet sub-bands and Att. I trained on the Twin-Landmark dataset: D-EER%,
BPCER@APCER=5%, BPCER@APCER=10%, BPCER@APCER=30%.

Test
Att. I@conv2d-3b Att. I@conv2d-4b

D-EER 5% 10% 30% AUROC D-EER 5% 10% 30% AUROC
Twin-Landmark 2.58 1.58 1.04 0.24 99.53 3.62 2.58 0.64 0.0 99.52
Twin-StyleGAN 61.10 96.00 93.70 90.66 34.90 52.80 90.66 81.66 67.66 56.26
Twin-Perturbed 10.56 17.50 11.45 3.79 95.39 10.16 18.22 10.16 2.58 96.08

FERET-FaceMorpher 20.98 30.43 25.51 15.80 86.18 11.52 25.37 19.84 12.09 89.60
FERET-StyleGAN2 14.55 26.27 20.03 7.20 91.36 18.52 44.61 33.83 11.15 89.64

FERET-OpenCV 22.11 34.21 29.11 17.00 84.66 16.79 26.72 22.08 13.74 88.39
FRLL-OpenCV 2.53 1.14 0.24 0.24 98.64 0.16 0.16 0.16 0.03 99.92

FRLL-FaceMorpher 0.49 0.24 0.15 0.12 99.86 0.16 0.16 0.16 0.11 99.93
FRLL-StyleGAN2 5.20 5.97 3.00 1.90 97.20 12.50 23.81 16.20 2.80 94.62

FRLL-WebMorpher 40.1 67.07 58.80 45.40 65.84 23.3 50.61 42.83 21.00 82.36
FRGC-FaceMorpher 2.59 0.82 0.31 0.23 99.71 2.59 0.93 0.31 0.0 99.54

FRGC-OpenCV 2.59 1.02 0.08 0.0 99.63 3.52 1.65 0.62 0.25 99.32
FRGC-StyleGAN2 6.00 6.60 2.46 0.20 98.18 8.60 15.24 6.63 0.51 96.90

activation maps increasing mutual information with respect to the ground truth labels. We fine-tune

our augmented Inception-ResNet-v1 by adding a CBAM module separately at two different layers

of the Inception-ResNet-v1. We report our attention-based morph detection results in Table 5.3

where a single CBAM module is inserted after the convolutional layers “conv2d-3b” and “conv2d-4b”.

Our inserted CBAM modules enjoy both the spatial and channel gates as discussed in subsection

5.2.3. The channel attention gate in the CBAM module adopts a multilayer perceptron (MLP)

where the size of the hidden layer is f loor( input−channels
reduction−ratio). In our experiments, we set reduction−

ratio = 16. The number of channels in the feature maps “conv2d-3b” and “conv2d-4b” are 80 and

256, respectively. Please note that we use the six selected most discriminative wavelet subbands

as the input of our deep morph detector. Based on the results benchmarked in Table 5.3, the

attention module Att. I results in the refinement of intermediate features leading to a decrease in

morph detection error rates as well as an increase in the corresponding AUROC. Improved results

compared to Table 5.2 where there was no attention module are highlighted. Adding attention

module Att. I has increased morph detection accuracy on several datasets. In particular, employing

Att. I has resulted in decreasing error rates when detecting morph images in the Twin-Landmark,

Twin-StyleGAN, FERET-FaceMorpher, FERET-OpenCV, FRLL-FaceMorpher, FRGC-OpenCV,

and FRGC-StyleGAN2 datasets.

We incorporate the attention mechanism Att. II discussed in Section 5.2.3 into our DNN, to

acquire new set(s) of weighted feature vectors. To this end, correlations of spatial locations in an

intermediate feature map and the 512-D fully connected (FC) vector before the logits of our DNN
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Table 5.4: Attention-based single morph detection performance using the six selected
wavelet sub-bands and Att. II trained on the Twin-Landmark dataset: D-EER%,
BPCER@APCER=5%, BPCER@APCER=10%, BPCER@APCER=30%.

Test
Att. II @conv2d-3b Att. II @mixed-7a

D-EER 5% 10% 30% AUROC D-EER 5% 10% 30% AUROC
Twin-Landmark 3.06 2.09 1.29 0.75 97.42 2.58 1.60 0.72 0.0 99.60
Twin-StyleGAN 58.22 99.77 98.66 88.00 38.80 51.2 74.1 94.44 91.77 50.47
Twin-Perturbed 12.58 23.06 15.16 4.35 94.28 10.24 16.85 10.24 2.9 95.03

FERET-FaceMorpher 17.58 38.56 25.14 7.18 91.67 20.98 28.92 26.46 14.5 86.75
FERET-StyleGAN2 14.17 27.03 18.33 6.23 92.78 17.39 28.54 22.49 9.8 89.63

FERET-OpenCV 14.55 24.95 19.28 5.10 93.45 23.80 36.10 32.89 20.7 82.67
FRLL-OpenCV 7.20 9.41 5.48 1.80 97.43 0.16 0.16 0.16 0.04 99.90

FRLL-FaceMorpher 0.16 0.16 0.16 0.08 99.93 0.24 0.24 0.16 0.0 99.89
FRLL-StyleGAN2 20.21 38.95 29.62 15.95 85.85 17.30 33.79 22.74 13.2 87.32

FRLL-WebMorpher 21.53 53.23 40.54 17.36 85.98 19.1 51.18 27.43 16.00 87.25
FRGC-FaceMorpher 3.52 2.69 1.45 0.62 99.28 0.24 0.24 0.16 0.0 99.89

FRGC-OpenCV 3.52 3.11 1.65 0.72 99.22 3.73 3.52 2.48 0.62 99.14
FRGC-StyleGAN2 10.58 16.59 10.78 3.63 96.10 13.58 22.51 18.04 4.14 94.70

Table 5.5: Attention-based single morph detection performance using the six selected wavelet
sub-bands and Att. III (Self-attentional feature maps) trained on Twin-Landmark dataset:
D-EER%, BPCER@APCER=5%, BPCER@APCER=10%, and BPCER@APCER=30%.

Test
Att. III@conv2d-3b Att. III@mixed-7a

D-EER 5% 10% 30% AUROC D-EER 5% 10% 30% AUROC
Twin-Landmark 6.85 9.11 5.24 1.85 96.42 9.51 14.35 8.95 3.30 96.39
Twin-StyleGAN 59.77 94.44 93.11 84.00 35.55 54.66 93.33 90.00 76.66 43.84
Twin-Perturbed 17.82 43.70 30.56 10.08 88.25 20.56 50.96 38.54 12.41 93.24

FERET-FaceMorpher 10.65 23.78 19.73 11.64 92.50 23.62 52.36 37.99 18.90 85.48
FERET-StyleGAN2 12.50 22.56 13.25 5.43 92.60 21.36 44.04 32.70 15.68 86.05

FERET-OpenCV 20.81 30.71 25.43 15.26 88.65 29.67 62.57 50.47 28.54 78.99
FRLL-OpenCV 1.55 0.49 0.16 0.16 98.82 1.44 0.45 0.14 0.13 99.04

FRLL-FaceMorpher 2.53 1.14 0.24 0.24 98.64 2.94 2.70 1.76 0.98 99.11
FRLL-StyleGAN2 16.85 41.32 23.07 8.26 90.17 15.54 29.29 20.94 9.00 90.34

FRLL-WebMorpher 18.45 50.85 26.45 11.80 88.30 25.63 71.00 58.72 21.37 79.77
FRGC-FaceMorpher 0.24 0.24 0.14 0.0 99.90 16.59 44.70 23.65 6.22 90.54

FRGC-OpenCV 2.48 0.98 0.03 0.0 99.65 18.56 53.94 33.42 8.60 87.96
FRGC-StyleGAN2 6.53 7.78 3.93 0.81 76.58 22.82 68.77 48.23 12.65 84.15
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are computed. The normalized correlation values decide which pixel locations to remain active

for morph detection or which pixels are to be suppressed. Please note that, from an information-

theoretic perspective, this kind of attention module looks for the spatial feature locations that have

the highest mutual information with respect to the ground truth label Y. The Att. II is inserted

after the “conv2d-3b” or “mixed-7a” where the number of channels are respectively 64 and 1,792.

Since the number of channels in the feature map and the dimension of the FC layer’s output are

not consistent, we use a 1×1 convolution to reach 512 channels for the intermediate feature maps.

Finally, the attention-weighted feature locations replace the output of the FC layer for finding

the two-class logits in our DNN. The results of the morph detection on different datasets using

this kind of attention module are summarized in Table 5.4. Based on the benchmarked results in

Table 5.4, adopting Att. II has resulted in the improvement of morph detection accuracy for several

datasets compared to Table 5.2 where there was not any attention module. In particular, employing

Att. II has resulted in decreasing error rates when detecting morph images in the Twin-Landmark,

FERET-OpenCV, FRLL-FaceMorpher, FRLL-WebMorpher, and FRGC-FaceMorpher datasets.

We integrate the Att. III module in our DNN. The self-attentional augmented feature maps, detailed

in Subsection 5.2.3, are concatenated with the “vanilla” convolutional feature maps to diversify

learned features. We assess the effectiveness of this multi-headed self-attention scheme through

inserting this attention module at the layers “conv2d-3b” and “mixed-7a” which have respectively

80 and 1,792 feature maps. The results for this kind of attention augmented morph detection are

benchmarked in Table 5.5. According to the benchmarked results, incorporating Att. III yields

improvement in morph detection accuracy for several datasets compared to Table 5.2 where there

was not any attention module. Improved morph detection results are highlighted in Table 5.5. In

particular, employing Att. III has resulted in decreasing error rates when detecting morph images

in the FERET-FaceMorpher, FERET-StyleGAN2, FRLL-WebMorpher, FRGC-FaceMorpher, and

FRGC-OpenCV datasets.

5.3.5 Comparison with the the State-of-the-art

We compare the results of our attention-based morph detector with the results benchmarked in the

MIPGAN [1] paper. The methodologies used in the MIPGAN paper are Ensemble Features [65]
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and Hybrid Features [66] which are abbreviated as Ensemble and Hybrid respectively in Table 5.6.

The ensemble of features method fuses the score level morph detection results using three different

feature descriptors, which are LBP, HOG, and BSIF. On the other hand, the Hybrid Features adopts

the Laplacian Pyramids using two different image spaces YCbCr and HSV at three different scales

where LBP is used to extract features from every sub image. LBP features are fed to a classifier

that is Spectral Regression Kernel Discriminant Analysis (SRKDA) and scores for all sub images

are fused for morph detection. Attention-based results on the datasets used in the MIPGAN paper

are summarized in Table 5.6. Based on the benchmarked results, our attention augmented morph

detector has resulted in decrease of the error rates for different Train/Test scenarios. The improved

results are highlighted in Table 5.6. In particular, employing Att. I has resulted in decreasing error

rates when detecting morph images in the Landmarks-II dataset regardless of the used training set,

StyleGAN dataset when our DNN is trained using the Landmarks-I and MIPGAN-II datasets, and

MIPGAN-II dataset when our DNN is trained using the Landmarks-I and StyleGAN datasets. In

addition, employing Att. II has resulted in decreasing error rates when detecting morph images in

the Landmarks-II dataset regardless of the used training set, StyleGAN dataset when our DNN is

trained using the MIPGAN-II dataset, and MIPGAN-II dataset when our DNN is trained using the

Landmarks-I, Landmarks-II, and StyleGAN datasets. Employing Att. III has resulted in decreasing

error rates when detecting morph images in the Landmarks-II dataset when our DNN is trained

on the Landmarks-II dataset, StyeleGAN dataset when our DNN is trained on the MIPGAN-II

dataset, and MIPGAN-II dataset when our DNN is trained on the StyleGAN dataset.

Also, it is not uncommon for a given travel document issuing/authentication agency to scan a sub-

mitted hard copy facial image. To further make our morph detector more realistic and inclusive, we

employ the printed and scanned (re-digitized) datasets used in the MIPGAN [1] paper for testing our

morphed detectors. The summary of the morph detection performance on the printed and scanned

version of the datasets are tabulated in Table 5.7. In accordance with the benchmarked results, our

attention augmented morph detector has decreased the detection error rates in several highlighted

Train/Test scenarios, which substantiates the efficacy of our wavelet-based attention augmented

morph detector. In particular, employing Att. I has resulted in decreasing error rates when detect-

ing morph images in the Landmarks-I dataset when our DNN is trained on the Landmarks-II and

MIPGAN-II datasets , Landmarks-II dataset when our DNN is trained using the Landmarks-I and

MIPGAN-II datasets, and MIPGAN-II dataset when our DNN is trained using the Landmarks-II

dataset. In addition, employing Att. II has resulted in decreasing error rates when detecting morph
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Table 5.6: Comparison with the MIPGAN [1] results. Attention-based single morph de-
tection performance using the six selected wavelet sub-bands and Att. I, Att. II, and Att.
III modules all @conv2d-3b fine-tuned on the landmarks-I, landmarks-II, StyleGAN, and
MIPGAN-II datasets: D-EER%, BPCER@APCER=5%, and BPCER@APCER=10%.

Train: Landmarks-I Train: Landmarks-II Train: StyleGAN Train: MIPGAN-II
Test MAD D-

EER
5% 10% D-

EER
5% 10% D-

EER
5% 10% D-

EER
5% 10%

Landmarks-I

Ensemble 0.0 0.0 0.0 0.0 0.0 0.0 0.32 0.0 0.0 13.08 29.15 15.78
Hybrid 0.16 0.0 0.0 0.16 0.0 0.0 0.42 0.0 0.0 40.14 77.7 67.23
Att. I 0.0 0.0 0.0 0.0 0.0 0.0 7.95 7.95 4.63 20.5 23.4 21.9
Att. II 0.65 0.0 0.0 0.66 0.0 0.0 20.1 21.16 20.6 19.1 21.4 20.5
Att. III 1.98 0.0 0.0 0.66 0.0 0.0 88.07 95.45 96.55 37.8 58.4 55.5

Landmarks-II

Ensemble 49.55 92.22 88.85 3.62 2.22 0.68 44.72 89.53 80.61 32.37 84.9 70.32
Hybrid 49.16 99.31 97.59 1.53 0.17 0.0 45.65 90.22 84.56 23.88 63.8 45.62
Att. I 0.0 0.0 0.0 0.0 0.0 0.0 8.59 10.85 5.42 22.1 26.9 21.2
Att. II 0.90 0.0 0.0 0.90 0.0 0.0 23.70 28.80 27.40 23.50 29.0 27.2
Att. III 0.90 0.45 0.45 0.45 0.0 0.0 87.79 94.77 95.78 37.6 56.9 53.4

StyleGAN

Ensemble 0.22 0.0 0.0 29.67 61.92 52.48 0.0 0.0 0.0 12.51 22.29 15.78
Hybrid 0.16 0.0 0.0 34.76 74.44 62.95 0.0 0.0 0.0 24.7 49.74 41.85
Att. I 0.0 0.0 0.0 33.84 83.58 65.64 0.0 0.0 0.0 0.0 0.0 0.0
Att. II 0.65 0.0 0.0 16.92 30.25 18.97 0.0 0.0 0.0 0.0 0.0 0.0
Att. III 48.52 93.5 88.90 25.12 72.82 57.43 0.0 0.0 0.0 0.0 0.0 0.0

MIPGAN-II

Ensemble 34.13 70.49 61.57 27.13 58.83 45.45 39.93 73.58 66.89 0.0 0.0 0.0
Hybrid 44.96 83.7 75.47 46.82 85.53 75.81 44.72 82.16 73.75 0.0 0.0 0.0
Att. I 25.3 80.48 68.29 34.13 70.2 60.85 0.0 0.0 0.0 0.0 0.0 0.0
Att. II 17.88 52.84 29.26 12.19 23.57 13.00 0.0 0.0 0.0 0.0 0.0 0.0
Att. III 50.21 93.1 88.4 25.20 73.98 58.53 0.0 0.0 0.0 0.0 0.0 0.0

Table 5.7: Comparison with the MIPGAN print and scanned results. Attention-based sin-
gle print and scanned morph detection performance using the six selected wavelet sub-
bands and Att. I, Att. II, and Att. III modules all @conv2d-3b fine-tuned on the
landmarks-I, landmarks-II, and MIPGAN-II datasets: D-EER%, BPCER@APCER=5%,
and BPCER@APCER=10%.

Test MAD
Train: Landmarks-I Train: Landmarks-II Train: MIPGAN-II

D-
EER

5% 10% D-
EER

5% 10% D-
EER

5% 10%

Landmarks-I

Ensemble 2.35 1.45 0.96 24.19 52.48 43.22 4.28 3.94 2.22
Hybrid 1.85 0.85 0.34 32.26 77.87 66.55 5.49 5.48 2.4
Att. I 48.52 100.0 99.96 21.50 73.47 60.61 4.21 3.33 2.2
Att. II 49.9 93.3 87.7 52.1 93.8 83.8 48.1 88.5 82.5
Att. III 48.66 93.8 87.8 53.4 94.9 85.9 49.2 89.7 83.7

Landmarks-II

Ensemble 41.93 81.45 76.25 6.32 7.97 2.42 39.2 90.12 82.32
Hybrid 44.17 86.48 80.24 5.21 5.19 3.14 40.22 88.9 79.2
Att. I 40.51 80.05 75.96 22.1 26.9 21.2 7.50 10.02 6.56
Att. II 40.50 80.4 73.1 49.20 93.2 88.2 7.20 9.44 6.3
Att. III 41.56 80.8 75.4 50.22 94.6 89.7 8.56 10.55 8.45

MIPGAN-II

Ensemble 5.32 6.68 2.57 33.57 77.35 65.52 0.0 0.0 0.0
Hybrid 5.90 8.42 3.23 33.91 77.18 65.24 0.0 0.0 0.0
Att. I 21.55 57.83 39.08 23.56 64.12 44.71 31.39 97.99 94.10
Att. II 36.6 90.00 81.30 0.0 0.0 0.0 18.3 24.6 19.00
Att. III 37.5 91.34 85.46 25.6 66.7 46.66 20.78 29.88 22.34
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Table 5.8: Generalization performance: comparison with the state-of-the-arts: D-EER%,
BPCER@APCER=10%, and APCER@BPCER=10%.

Reference Train Testing D-EER BPCER-10%
[10, 35] FERET-FaceMorpher FRGC-FaceMorpher 19.8 36.4

Ours-Att. I FERET-FaceMorpher FRGC-FaceMorpher 1.86 0.20
Ours-Att. II FERET-FaceMorpher FRGC-FaceMorpher 4.04 1.34
Ours-Att. III FERET-FaceMorpher FRGC-FaceMorpher 55.5 97.82

[10, 35] FERET-OpenCV FRGC-FaceMorpher 20.1 36.2
Ours-Att. I FERET-OpenCV FRGC-FaceMorpher 50.51 83.81
Ours-Att. II FERET-OpenCV FRGC-FaceMorpher 4.56 2.07
Ours-Att. III FERET-OpenCV FRGC-FaceMorpher 63.34 90.87

[10, 35] FERET-FaceMorpher FRGC-OpenCV 20.7 37.8
Ours-Att. I FERET-FaceMorpher FRGC-OpenCV 2.59 0.31
Ours-Att. II FERET-FaceMorpher FRGC-OpenCV 4.77 2.17
Ours-Att. III FERET-FaceMorpher FRGC-OpenCV 52.3 96.78

[10, 35] FERET-OpenCV FRGC-OpenCV 21.1 35.8
Ours-Att. I FERET-OpenCV FRGC-OpenCV 2.48 1.03
Ours-Att. II FERET-OpenCV FRGC-OpenCV 5.60 3.00
Ours-Att. III FERET-OpenCV FRGC-OpenCV 42.50 91.18

Table 5.9: Attention-based single morph detection performance using the six selected wavelet
sub-bands trained on the Twin-Landmark dataset using two modules of the Att. I and Att.
II: D-EER%, BPCER@APCER=5%, and BPCER@APCER=10%.

Test
Att. I@conv2d-3b, @conv2d-4b Att. II@conv2d-4b, @mixed-7a

D-EER 5% 10% AUROC D-EER 5% 10% AUROC
FERET-FaceMorpher 19.65 41.77 30.24 89.96 21.36 33.08 28.54 86.56
FERET-StyleGAN2 13.61 27.03 18.90 93.83 14.55 22.49 17.39 91.68

FERET-OpenCV 13.51 23.39 18.22 93.77 21.1 32.70 28.93 85.21
FRLL-OpenCV 0.40 0.16 0.16 99.86 0.16 0.16 0.02 99.77

FRLL-FaceMorpher 0.81 0.32 0.24 99.83 0.24 0.16 0.01 99.72
FRLL-StyleGAN2 8.67 13.58 7.61 96.79 9.40 19.80 9.1 92.89

FRLL-WebMorpher 18.50 51.05 27.03 88.32 30.00 60.6 37.6 76.26
FRGC-FaceMorpher 6.53 8.60 4.14 98.03 0.24 0.13 0.0 99.91

FRGC-OpenCV 6.53 8.60 3.83 98.20 2.67 2.01 0.9 99.86
FRGC-StyleGAN2 5.96 6.02 2.25 98.56 6.54 10.41 7.33 98.08
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images in the Landmarks-II dataset when our DNN is trained on the Landmarks-I and MIPGAN-

II datasets, and MIPGAN-II dataset when our DNN is trained using the Landmarks-II dataset.

Employing Att. III has resulted in decreasing error rates when detecting morph images in the

Landmarks-II dataset when our DNN is trained on the Landmarks-I and MIPGAN-II datasets, and

MIPGAN-II dataset when our DNN is trained on the Landmarks-II dataset.

We also assess the generalization ability of our framework against the state-of-the-art [10, 35] in

Table 5.8 which has assessed morph detection performance on FRGC-FaceMorpher, and FRGC-

OpenCV. To this end, we fine-tune our trained Inception-ResNet-v1, including attention modules

Att. I, Att. II, and Att. III, on FERET-FaceMorpher and FERET-OpenCV datasets. Please

note that, in a PyTorch environment, we freeze all layers’ parameters by setting “requires-grade

= False” except the final linear classifier layer. Based on the benchmarked results, our wavelet-

based attention augmented morph detector surpasses the prior works by a large margin on different

train/test scenarios, which are highlighted in Table 5.8. In particular, employing Att. I has resulted

in decreasing error rates when detecting morph images in the FRGC-FaceMorpher dataset when

our DNN is trained on the FERET-FaceMorpher dataset , FRGC-OpenCV dataset when our DNN

is trained using the FERET-OpenCV dataset. In addition, employing Att. II has resulted in

decreasing error rates when detecting morph images in the FRGC-FaceMorpher dataset when our

DNN is trained on the FERET-FaceMorpher dataset, FRGC-FaceMorpher dataset when our DNN

is trained using the FERET-OpenCV, and FRGC-OpenCV dataset when our DNN is trained on

the FERET-OpenCV dataset.

We also delve into the different number of attention modules used for training our deep morph

detector. We add attention modules Att. I, Att. II, and Att. III to several convolutional layers

simultaneously and we benchmark the results for the FERET, FRLL, and FRGC datasets, as

shown in Table 5.9 and Table 5.10. Considering the results, having two modules, mainly the Att. I,

and Att. II considerably improved the morph detection performance on the FRGC-FaceMorpher,

FRGC-OpenCV, and FRGC-StyleGAN2 datasets. In addition, we assess the performance of our

morph detector when all three attention modules, Att. I, Att. II, and Att. III, are added to our deep

architecture. The resulting performance of this scenario are benchmarked in Table 5.10. Integrating

all three attention modules in our DNN has resulted in reduction of detection error rates when

assessing morphed images in the FRLL-OpenCV, FRLL-WebMorpher, and FRGC-FaceMorpher

datasets. All in all, our wavelet-based attention augmented morph detector has contributed to a
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Table 5.10: Attention-based single morph detection performance using the six selected
wavelet sub-bands trained on the Twin-Landmark dataset using two modules of the Att. III
and three modules of the Att. I, Att. II, and Att. III: D-EER%, BPCER@APCER=5%, and
BPCER@APCER=10%.

Test
Att. III@conv2d-3b, @mixed-7a Att. I@conv2d-3b, Att. II@mixed-7a, Att. III@conv2d-3b

D-EER 5% 10% AUROC D-EER 5% 10% AUROC
FERET-FaceMorpher 27.5 69.7 56.1 81.69 21.55 48.55 35.91 87.95
FERET-StyleGAN2 20.79 57.65 44.2 87.02 26.07 64.08 48.20 82.18

FERET-OpenCV 13.10 22.17 15.31 94.28 24.57 44.42 36.29 85.58
FRLL-OpenCV 33.57 65.19 59.29 73.05 0.08 0.0 0.0 99.96

FRLL-FaceMorpher 23.56 40.67 35.84 85.99 2.53 2.20 1.06 98.83
FRLL-StyleGAN2 26.92 44.27 41.89 81.90 30.52 74.87 66.03 77.16

FRLL-WebMorpher 30.05 53.89 49.22 78.40 17.65 49.54 26.77 88.80
FRGC-FaceMorpher 0.23 0.11 0.0 99.91 0.23 0.1 0.0 99.92

FRGC-OpenCV 30.39 99.89 94.50 73.1 5.70 6.74 4.04 98.51
FRGC-StyleGAN2 19.29 95.64 59.64 84.73 15.56 31.43 21.47 93.37

Table 5.11: Comparison with the NIST FRVT report [2] on the MIPGAN-II dataset:
APCER@BPCER = 1%, and APCER@BPCER = 10%.

Algorithm 1% 10%
wvusingle-002 [2, 85] 0.001 0.111
wvusingle-001 [2, 85] 0.015 0.200
visteam-000 [85, 149] 0.323 0.639

unibo-000 [85] 0.037 0.810
Ours 0.001 0.10

decrease in detection error rate in several highlighted datasets.

Most importantly, we contrast our attention augmented morph detection performance on the

MIPGAN-II dataset mentioned in the latest NIST Face Recognition Vendor Test (FRVT) report [2]

updated on July 14, 2022. We compare our results with the NIST report using the two crite-

rion APCER@BPCER = 0.01 and APCER@BPCER = 0.1. We report results on the MIPGAN-II

dataset while our network with the Att. I is fine-tuned on a universal dataset. Our so-called univer-

sal dataset that we use for training our wavelet-based attention augmented morph detector includes

all the datasets mentioned in Section 5.3.1 plus the AMSL dataset [4]. The AMSL dataset consists

of 2,175 morph and 204 bona fide samples. Results of morph detection on the MIPGAN-II dataset

using the NIST report format is summarized in Table 5.11. The benchmarked result delineates the

efficiency of our morph detector as the APCER@BPCER = 10 % error rate is decreased.
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Figure 5.5: Grad-CAM visualizations of CBAM-integrated deep morph detector (Table 5.3):
(a) CBAM@conv2d-3b (b) CBAM@conv2d-4b.

5.3.6 Deep Morph Detector Visualization

In this section, the interpretability of our attention-based deep morph detector is investigated

through two visualization tools: (1) Attention Maps (2) Gradient-weighted Class Activation Maps

(Grad-CAM). Attention maps [20,22,150] are powerful visualization as well as attribution [124,151,

152] techniques which represent a visual explanation for the decision-making of a DNN by high-

lighting spatial regions that are most relevant for generating output scores by a DNN. In particular,

attention maps are obtained by overlaying the heat maps of attention weights into the original RGB

images to highlight the most discriminative spatial regions in the eye of a classifier. Grad-CAM is

another visualization scheme to demonstrate functionality of our DNN. Given a morphed image,

the logits related to the morphed class are supposed to fire which is revealed in the grad-CAM plots.

We follow the protocols adopted in the literature [20, 22] corresponding to the Att. I and Att. II

modules, which demonstrate efficacy of the CBAM-integrated deep networks through visualizing

Grad-CAMs and plotting attention maps for the adjusted network used in [20].

The Grad-CAMs pertinent to Table 5.3 for both convolutional layer of “conv2d-3b” and “conv2d-

4b” are shown in Fig. 5.5. Moreover, the estimated attention maps of Table 5.4 for the “mixed-7a”

convolutional layer are displayed in Fig. 5.6. As expected, the most discriminative spatial regions
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Figure 5.6: Estimated attention maps stemming from the feature maps of “mixed-7a” convo-
lutional layer (Table 5.4).

in the view of a morph detector are in the vicinity of a subject’s eyes.

5.4 Conclusion

This chapter addressed single image morphing attack detection where emphasizing on discriminative

regions is realized through spatial and channel attention modules. In particular, we quantitatively

demonstrated the efficacy of the three visual attention modules for the downstream task of morph

detection in a binary classification setting. The integrated attention modules are intended for

feature refinement as well as feature selection as a kind of representation learning. In particu-

lar, a trainable soft attention mechanism, convolutional block attention module, and multi-headed

attention-augmented feature maps were utilized to improve accuracy of morph detection on several

datasets. In addition, we have shifted the input data domain from the RGB space into the wavelet

domain to take advantage of fine-grained spatial-frequency information represented through wavelet
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decomposition.

Our benchmarked results on morph detection using several datasets proves effectiveness of our

attention-based morph detector. Most importantly, we have contrasted the generalization per-

formance of our attention augmented morph detection scheme with the state-of-the-art results to

demonstrate efficacy of our proposed architectures. Moreover, estimated attention maps and Grad-

CAM visualizations were included to demonstrate interpretability of our morph detector. Heatmaps

applied on the original images reveal the most discriminative spatial regions of the images that drive

our attention augmented morph detectors into an accurate decision for labeling probe images as

bona fide or morphed. Finally, to realize multi-attentional morph detection, we assessed our morph

detection performance using two instantiations of our attention modules Att. I, Att. II, and Att.

III. In addition, we trained our attention augmented morph detector using all three Att. I, Att.

II, and Att. III attention modules and the corresponding results were benchmarked in the table

mentioned in Section 5.3.5.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this dissertation, several frameworks have been proposed to detect morphed face images.

We have harnessed the insightful information provided by frequency domain through wavelet

decomposition to improve detection of morphed face images. In the first proposed morph

detection methodology, I proposed to employ mismatches between entropy distributions of

real and morph subbands. Low-low subband was discarded due to existence of morphing

artifacts in the high-frequency spectra, which resulted in 48 total subbands. The more

mismatch between entropy distributions of real and morph subands, the more discriminative

the subband is. Optimal number of selected subbands are selected in accordance with the

morph detection accuracy on the validation set. Once optimal number of subbands are

found, a deep morph detector is trained. In the second methodology of wavelet-based morph

detection, I have used an attention mechanism to find the compatibility score between feature

maps’ spatial locations and the fully connected layer of the employed Deep Neural Network

(DNN). As the third method, I incorporated structured group sparsity to select the most

discriminative subbands where loss function of our DNN includes a groups sparsity term

on the grouped weights of the first convolutional layer. My fourth framework integrated

three types of attention mechanisms, Convolutional Block Attention Mechanism (CBAM),

a trainable end-to-end attention finding correlation of output fully connected features and

a feature map’s spatial pixels , and Self-attentional feature maps to improve accuracy of



Poorya Aghdaie Chapter 6. Conclusion and Future Works 84

morph detection.

6.2 Future Works

To envision my future research, I plan to approach morph detection using other state-of-the-

art methodologies such as the vision transformers and its variants which have appeared to be

groundbreaking for classification tasks . In addition, I have been developing novel frameworks

to detect DeepFake images which is another significant open problem encountered in social

medias. DeepFakes are threatening integrity of posted online contents which can propagate

false information affecting society attitude.
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