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Abstract: 

 

Sense and Sensitivity:  Spatial Structure of conspecific signals during social interaction 
 

Keshav Ramachandra 
Organisms rely on sensory systems to gather information about their environment. 

Localizing the source of a signal is key in guiding the behavior of the animal successfully. 
Localization mechanisms must cope with the challenges of representing the spatial information 
of weak, noisy signals. In this dissertation, I investigate the spatial dynamics of natural stimuli 
and explore how the electrosensory system of weakly electric fish encodes these realistic 
spatial signals. To do so  In Chapter 2, I develop a model that examines the strength of the 
signal as it reaches the sensory array and simulates the responses of the receptors. The results 
demonstrate that beyond distances of 20 cm, the signal strength is only a fraction of the self-
generated signal, often measuring less than a few percent. Chapter 2 also focuses on modeling 
a heterogeneous population of receptors to gain insights into the encoding of the spatial signal 
perceived by the fish. The findings reveal a significant decrease in signal detection beyond 40 
cm, with a corresponding decrease in localization accuracy at 30 cm. Additionally, I investigate 
the impact of receptor density differences between the front and back on both signal detection 
and resolution accuracy. In Chapter 3, I analyze distinct movement patterns observed during 
agonistic encounters and their correlation with the estimated range of receptor sensitivity. 
Furthermore, I uncover that these agonistic interactions follow a classical pattern of cumulative 
assessment of competitors' abilities. The outcome of this research is a comprehensive 
understanding of the spatial dynamics of social interactions and how this information is 
captured by the sensory system. Moreover, the research contributed to the development of a 
range of tools and models that will play crucial roles in future investigations of sensory 
processing within this system



iii 

 

Acknowledgments 

The list of people to thank is long and the space is limited to do it properly. I hope you 
understand.  

I am here today because of all the amazing teachers I had over the years. Each one of 
you were patient to teach me the joys of research. Dr. Assisi Collins, you helped me learn to 
code and gave me my first proper research experience thank you. Dr. Randolf Menzel thank you 
for mentoring me and letting me work in your lab and help me fall in love with coding. 

 
Thank you, Dad and Mom, for teaching me joy in hard work, and curiosity, and for 

installing in me a love for science, literature, poetry, art, and chess.  
 
Thank you, Christal Hanson, for your constant support and understanding during the 

long hours of writing and analysis. 
 
Thank you to all of the friends I made along the way for your constant support. Dr. Lexie 

Schmidt, Katie Boone, Dr. Becca Coltogirone, Pooja Joshi, Brandon Baker, Adam Polio, Alicia 
Mayle, Dr. Federico Pedraja, Valerie Lucks, Dr. Lucia Ruiz, Marryn Bennett, Dionysis and Farzaan 
Salman, Cameron Corbett, Mathilda Santee. I couldn’t have done it without you.  

 
Special thanks to TDT for keeping me sane and Sam, Brent, John and Henry thank you 

for all the soccer weekends.  
 
To my lab mates in the Marsat Lab, Kate Allen, Danielle Dillion, Ian McCoy, Robin 

Oliverio, Elora Shinn and Dakota Miller thank you for all the extra help on this journey. To Oak 
Milam thank you for the best lab partner to go through PhD from start to finish.  

 
To my committee members, Drs. Kevin Daly, Andrew Dacks, Sadie Bergeron, and Charles 

Anderson, thank you for all the help, comments, and advice you have given me. Thank you for 
everything.  

 
And to Dr. Gary Marsat, thank you the most. Thank you letting me pursue a PhD in your 

lab on a topic I enjoy. Thank you for your patience especially editing my writing over and over, 
thank you for your advice, teaching, friendship and sharing with us all the nice moments. I 
couldn’t have asked for a better mentor 
  



iv 

Table of Contents 

Sense and Sensitivity:  Spatial Structure of conspecific signals during social interaction…………….. i 

Abstract: ........................................................................................................................................... ii 

Acknowledgments........................................................................................................................... iii 

Table of Contents ………………………………………………………………………………………………………………………iv 

Chapter 1: Introduction ................................................................................................................... 1 

Abstract ........................................................................................................................................ 1 

General Context ........................................................................................................................... 2 

The electrosensory system .......................................................................................................... 5 

Localization of conspecifics .......................................................................................................... 7 

Behavior and signal properties .................................................................................................... 8 

Sensitivity of conspecific detection and localization ............................................................. 10 

Conspecific localization and EOD temporal modulation ....................................................... 11 

Electrosensory image ............................................................................................................. 12 

Electroreceptors and Processing ............................................................................................... 16 

Conclusions ................................................................................................................................ 18 

References ................................................................................................................................. 20 

Chapter 2........................................................................................................................................ 36 

Prologue ..................................................................................................................................... 36 

Abstract ...................................................................................................................................... 37 

Introduction ................................................................................................................................... 39 

Methods ..................................................................................................................................... 43 

Results ........................................................................................................................................ 52 

Discussion .................................................................................................................................. 63 

References ................................................................................................................................. 69 

Figures ........................................................................................................................................ 78 

Supplementary Information ...................................................................................................... 93 

Chapter 3........................................................................................................................................ 99 

Prologue ..................................................................................................................................... 99 

Abstract .................................................................................................................................... 100 

Introduction ............................................................................................................................. 101 

Methods ................................................................................................................................... 105 



v 

Results ...................................................................................................................................... 111 

Discussion ................................................................................................................................ 117 

References ............................................................................................................................... 122 

Figures ...................................................................................................................................... 130 

Supplementary information..................................................................................................... 139 

Chapter 4: Discussion ................................................................................................................... 141 

Summary of the Data ............................................................................................................... 141 

The spatial Strength of a Conspecific signal varies as a function of distance and Angle ......... 141 

Detection and localization of conspecific depends on the spatial structure of the fish ......... 143 

Ethology: Integration of Computational Techniques and Naturalistic Settings for Behavior 

Analysis ................................................................................................................................................. 145 

Future Directions ..................................................................................................................... 148 

Role of Chirps and Echo Responses ..................................................................................... 148 

Spatial coding during motion ............................................................................................... 150 

Localization strategies in weakly electric fish ...................................................................... 151 

Conclusion ................................................................................................................................ 152 

References ............................................................................................................................... 154 

 



 1 

Chapter 1: Introduction 

Abstract 

Localizing the source of a signal is often as important as deciphering the signal’s 

message. Localization mechanisms must cope with the challenges of representing the spatial 

information of weak, noisy signals. Comparing these strategies across modalities and model 

systems allows a broader understanding of the general principles shaping spatial processing. In 

this chapter, I describe the current knowledge and gaps in the knowledge on how sensory 

systems localize signals in space. I focus on the electrosensory system of knifefish and provide 

an overview of our current understanding of spatial processing in this system, in particular, 

localization of conspecific signals. 

   

Note: Parts of  this chapter is taken directly from my publication: 

“Ramachandra, K. L., Milam, O. E., & Marsat, G. (2019). Behavioral and neural aspects of 

the spatial processing of conspecifics signals in the electrosensory system. Behavioral 

Neuroscience, 133(3), 282.” 

  



2 

General Context 

The primary function of an animal's brain is to generate appropriate behavior in 

response to a constantly changing environment. This involves analyzing complex sensory 

information provided by the senses, extracting important information, and making decisions 

based on the animal's internal state. Neuroscience aims to understand this process in order to 

gain a better understanding of ourselves. Animals have evolved sensory systems such as vision, 

hearing, and smell, each presenting its own challenges (Smith, 2008). Receptor cells in these 

sensory organs convert relevant parts of the physical stimulus into electrical signals that can be 

processed by the nervous system, creating a neural representation of the stimulus. The 

information obtained from each sense can be used for various purposes, such as navigation, 

finding food, and communication, and different aspects of the sensory input are relevant 

depending on the specific purpose (Arikawa et al., 2005; Bee, 2000; Singh & Theunissen, 2003). 

Therefore, a sensory system must analyze the sensory input for a wide range of features that 

may be important to the animal.  

While the quality and quantity of a signal contain much of the relevant information for 

behavior, its spatial structure also plays a crucial role (Bradbury & Vehrencamp, 2011; 

McGregor, 1993). Spectral and temporal modulations, such as amplitude and frequency 

changes in bird songs (Konishi, 1985; Lohr et al., 2003; Reid et al., 2005), color variations in 

body ornaments (Doucet et al., 2007; Guilford & Dawkins, 1993; Keyser & Hill, 2000), or 

chirping patterns in weakly electric fish (Dunlap et al., 2010; Engler et al., 2000), carry 

significant meaning in communication and conspecific signals. Even for olfactory signals, the 

message lies in the odor's identity and concentration (Aragón, 2009; Daly et al., 2016; de 
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Bruyne & Baker, 2008). In addition to understanding the content of the signal, receivers often 

need to determine its source location. This spatial aspect is essential for tasks like finding a 

signaling mate (Arikawa et al., 2005; Byrne & Keogh, 2007; Mathis, 1990), localizing threats and 

alarm calls (Cäsar et al., 2013), or avoiding competitors marking their territory (Bee, 2000; Behr 

et al., 2009). However, localizing the source of a signal poses challenges as the directionality 

and intensity of the signal is weakened as the signal propagates through the 

environment(Bradbury & Vehrencamp, 2011).  The neural circuitry of sensory systems provides 

solutions for the challenges faced during feature extraction and scene analysis. To understand 

the mechanisms and functions of higher sensory processing stages, it is crucial to comprehend 

an animal's natural environment, the stimuli it encounters, and the problems the sensory 

system successfully solves in that environment. 

To understand fully the neural mechanisms of how the sensory system of the animal 

decodes a signal it is important to understand what the signal is, and the problems the sensory 

system successfully solves in that environment (Lewicki et al., 2014). Knowing which stimulus 

features are important allows researchers to create appropriate artificial stimuli for 

investigating sensory processing. This has been demonstrated in studies of early processing in 

the retina. As processing moves to higher stages, natural stimuli become even more critical as 

neurons become selective for specific aspects, such as faces and sounds (Hromádka et al., 

2008). Moreover, neurons exhibit different responses to natural stimuli compared to simplified 

stimuli (Vinje & Gallant, 2002). For example, auditory neurons in birds and blowfly horizontal 

cells show distinct responses when stimulated with naturalistic stimuli (Kern et al., 2005; 

Theunissen et al., 2000). Also , scene analysis problems in sensory systems are often ill-posed, 
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meaning there is insufficient information for a unique solution. These ambiguities can be 

resolved by incorporating prior knowledge about scene structure (Kersten et al., 2004; 

McDermott, 2009). Additionally, sensory processing involves detecting weak signals in a noisy 

background, and understanding the neural mechanisms for solving such problems requires 

appropriate and challenging naturalistic stimuli. 

The encoding of the signal’s temporal and spatial content by sensory systems has been 

explored widely in various modalities and model systems. However, the general mechanisms of 

spatial localization are not well understood. Comparing across modalities and species can help 

reveal the core principles and key adaptations involved in localization. The electrosensory 

system offers an excellent model to provide additional perspective on the mechanisms involved 

in spatial localization and help us gain a general understanding of how spatial signals are 

processed. The electric sense possesses characteristics and faces challenges similar to both the 

visual and auditory systems. Topographic mapping during localizing of a small object/prey can 

be compared to the way the visual system processes spatial information. However, conspecific 

signals are spatially diffuse for electric fish and activate all the electroreceptors (Kelly et al., 

2008). Localization would thus require comparisons across inputs similar to the auditory 

localization process. Spatial coding of objects and temporal coding have been thoroughly 

investigated in weakly electric fish (Maler, 2007; Nelson & MacIver, 1999). However, when it 

comes to spatial processing of conspecific signals there is little known.  

Based on the information above using weakly electric fish is ideal for investigating how 

the sensory system localizes spatial signals. This dissertation will focus on understanding the 
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spatiotemporal structure of the sensory input to the nervous system during conspecific 

interactions.  

The electrosensory system 

The ability to sense electric fields is thought to have evolved early in the vertebrate 

lineage (Bodznick & Northcutt, 1981) and is developmentally derived from lateral line placodes 

(Modrell et al., 2011). Electroreception was lost in teleost fish but regained at least twice (in 

Osteoglossomorpha and Ostariophysi) thereby explaining the presence of electroreceptors in a 

variety of species, including catfish, elephantnose fish, and knifefish (see Baker, Modrell, & 

Gillis, 2013 for a recent review on the topic). In teleost, electroreceptors are thought to have 

evolved as a modification of neuromast (Baker et al., 2013). Beyond their detailed evolutionary 

trajectory, electroreceptor origin is clearly linked to the lateral line and mechanosensory 

system, similar to the origin of vertebrate auditory receptors (Duncan & Fritzsch, 2012). As a 

reflection of their similar evolutionary origin, both electroreceptors and auditory receptors 

travel along the VIIIth cranial nerve (Carr et. al, 1982). Ampullary receptors are the most 

common type of electroreceptors across species, but in two orders of teleost (Gymnotiformes 

and Mormyriformes) a second type of electroreceptor evolved - tuberous receptors (Szabo, 

1974). Where ampullary receptors are sensitive to low-frequency electric signals, such as the 

ones produced by contracting muscles, tuberous receptors are sensitive to high frequencies 

(Bennett et al., 1989; Maler, 2009a; Maler, 2009b; Hopkins, 1976) and their evolution 

accompanies the evolution of electric organs (EO) that generate high-frequency weak electric 

fields. Derived from a modified muscle or a modified nerve terminal, EO produces pulsatile or 

continuously oscillating electric fields (Kramer, 1996). Weakly electric fish (Gymnotiformes and 
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Mormyriformes) thereby possess an active electrosense where the electric organ discharges 

(EOD) (Lissmann, 1958) are perceived by electroreceptors on the skin. Anything in their 

environment that is more or less resistive than water will cause a distortion of this electric field 

that will cast an “electric shadow” (Rasnow, 1996) on the sensory surface (we refer to the 

electrosensory sensorium as the “sensory surface” throughout the review). They rely heavily on 

this active sense to navigate, and localize prey, but also to communicate and interact with 

conspecifics (Bullock et al.,1986; Lissmann, 1963). Although Gymnotiformes and 

Mormyriformes have many similarities in the way they use and process electric signals, the fact 

that they evolved this active electric sense independently also leads to significant differences, in 

particular at the neural level. For the purposes of the thesis, I will be focusing on the South 

American Gymnotiformes in particular Apteronotid fish which I will refer to as simply weakly 

electric fish throughout the thesis.  

Knifefish are typically nocturnal species and thus rely heavily on this active electrosense 

to perceive their environment. The sensory image caused by objects close to them is quite 

accurate thanks to a relatively high density of receptors over the entire surface of the skin (Carr 

et al., 1982); allowing them to be efficient hunters of invertebrate prey (Nelson & MacIver, 

1999). Similarly, they can locate and identify a conspecific based on the EOD it produces or 

mediate social interactions via electrocommunication signals such as chirps (Engler & Zupanc, 

2001). The sensitivity of their ability to locate each other based on this sense is easily 

observable both in the field and in the lab. For example, they will chase each other at high 

speed in a noisy environment with multiple other signal sources or locate each other at such 

distances that they must base this detection on extremely weak signals. 
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Localization of conspecifics 

The localization of conspecific signals is a different sensory problem to the localization 

of small objects such as prey items. An object close to the body will cause a local disturbance in 

the EOD which will be picked up by a limited number of receptors on the corresponding portion 

of the skin (Rasnow, 1996). The localization strategy in this case is likely to be closer to visual 

localization or localization in the somatosensory system where exclusive activation of a subset 

of receptors encodes location in a labeled line code (Cichy & Teng, 2017; Hartmann & Bower, 

2001; Krekelberg et al., 2003; Okada & Toh, 2006). Localizing a conspecific based on the EOD it 

produces cannot rely on this strategy since the sender’s EOD will impact the majority of 

electroreceptors over the entire skin surface (Kelly et al., 2008). Therefore, localization of 

conspecifics probably relies on comparison of the input at the various receptors and location 

would be computed by the nervous system based on the differences. This task shares 

similarities with localization in the auditory system, which relies on comparisons of binaural 

input(Brand et al., 2002; Carr & Konishi, 1990; Jeffress, 1948). Localization in the electrosensory 

system might therefore be described as a hybrid mechanism that relies on a labeled line 

strategy for passive objects (e.g., small prey) that cause a local electrical disturbance, but needs 

to compute the spatial information about active electro-generating sources (e.g., conspecifics). 

As such, the electrosensory system is faced with many of the same challenges faced by the 

auditory or the visual system when localizing signal sources in complex environments. Whether 

it is a question of localization accuracy (e.g. auditory system), localizing in a noisy environment 

(cocktail party problem in the auditory system; Cherry, 1953; Liberman et al., 1957) or 

foreground-background separation (visual system; Ölveczky et al., 2003), there is a rich 
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literature documenting the various neural and behavioral mechanisms in place to face these 

challenges.  

The electrosensory system has a long history of contribution to our understanding of 

sensory processing(Bastian & Heiligenberg, 1980). Issues of temporal coding have been 

particularly well explored in this system  (Gabbiani et al., 1996; Krahe et al., 2008). 

Understanding localization in the electrosensory system has focused heavily on the spatial 

aspect of prey capture or the localization of small objects (Babineau er al., 2007; Caputi & 

Budelli, 2006; Nelson & MacIver, 1999; Rasnow, 1996). Less is known about the spatial 

processing of conspecific signals, but there are several new studies and a growing interest in 

the topic (Kelly et al., 2008).  

Behavior and signal properties 

This electrosense is advantageous for navigating at night or in murky waters. Their 

ability to navigate and locate prey based on this sense is well documented (Nelson & MacIver, 

1999; Postlethwaite et al., 2009; Stamper et. al, 2012; Von Der Emde et al., 1998). Similarly, 

they also rely heavily on this electrosense when interacting with conspecifics to identify, 

communicate and locate each other. Identity can be determined from the EOD pattern 

depending on the species, EOD frequency, shape or pulse pattern can be used to identify 

conspecifics from individuals of another species (Zupanc et al., 2006) or even differentiate 

amongst conspecifics (Zakon et al., 2002). In wave type species, the EOD frequency (and 

possibly shape; Kolodziejski, et al., 2007; Petzold, Marsat, & Smith, 2016) is perceived indirectly.  
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Indeed, when two or more individuals come into close proximity, the electric fields of 

each fish summate, and the resulting field contains amplitude and phase modulations, 

collectively known as a "beat” (Heiligenberg, 1991). The beat frequency is equal to the 

frequency difference between the EOD of the sender and receiver (note that both fish send and 

both fish receive but we use this terminology throughout this article to describe the perspective 

we use (Stamper et al., 2012). Furthermore, phase modulations can indicate whether the other 

fish has an EOD frequency higher or lower than its own (see Carlson & Kawasaki, 2007; 

Metzner, 1999; Stamper et al., 2012 for more information). Determining beat frequency is 

important since each fish has a baseline EOD frequency and thus individual discrimination can 

be based on this signal. In some species, EOD frequency is sexually dimorphic leading beat 

frequencies to be lower during same-sex interactions and higher for male-female pairs (Engler 

& Zupanc, 2001). Since beat frequency can indicate species, sex, maturity and even individual 

identity, many species react differently when exposed to beat signals of various frequencies. 

For example, the rate of production of certain communication signals in black ghost or brown 

ghost knifefish depends on the beat frequency (Hupé et al., 2008). The most common type of 

communication signal produced by these fish -chirps- are brief increases in EOD frequency (see 

Kolodziejski et al., 2007 for more info). 
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Sensitivity of conspecific detection and localization 

In wave type fish, the beat signal results from the presence of a conspecific, and, 

therefore, carries information about a conspecific’s location. The beat signal will strengthen as 

the conspecific gets closer and the strength of the signal across the sensory surface (i.e., the 

body’s surface) correlates with its relative position. Both lab and field studies clearly show that 

they monitor this information to detect the presence and position of a conspecific. In an 

insightful field study, Henninger et al (Henninger et al., 2018) used grids of electrodes placed in 

river streams and creeks to triangulate and follow individuals in their natural environment 

during long periods of time. Besides revealing the behavioral and communication dynamic 

happening during various types of interactions -including courtship or aggression- this study 

showed the range of detection of conspecifics via this electrosense. Although their data 

suggests that fish routinely communicate with each other over distances of up to 30 cm, it also 

shows that two fish can detect and assess a conspecific at distances of 1 meter or more. For 

example, they showed that a resident fish-initiated attacks on an intruder located as far as 1.7 

m away. To emphasize how challenging this task is, they estimated the strength of the sender’s 

signal and showed that a fish 30 cm away creates a signal of 10 µV/cm and that a fish 1.7 m 

away causes a signal smaller than 1 µV/cm. Note also that this data suggests that these weak 

signals were not only detected, but also localized since it guided the resident to launch an 

attack directed at the intruder.  

Laboratory studies confirm the sensitivity of this system in detecting and locating a 

conspecific. Fish adjusted their EOD output (i.e. the response called “envelope tracking”) when 

presented with beats of 10-15% contrast (Metzen et al., 2018) which would correspond to a 
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conspecific 20-30 cm away (Fotowat et al., 2013). In another study, fish exposed to a 

conspecific signal presented from various distances regularly produced chirps only in response 

to the stimuli located fairly closely (10 cm; Zupanc et al., 2006). However, conditioned 

responses to weak signals demonstrated that fish could detect signals weaker than 1 µV/cm 

corresponding to a distance of up to 1.6 m (Knudsen, 1974; Knudsen, 1975). Therefore, despite 

coming to their conclusion through very different methods, the field and laboratory studies 

provide very similar estimates and identify a certain range within which fish actively interact 

with each other (e.g., chirp or envelope tracking) and a wider range delineating the limits of 

their detection and localization ability.   

Conspecific localization and EOD temporal modulation 

Information about conspecific location is present in two aspects of the signal: its 

temporal modulations and its spatial structure. Temporal modulations are indeed imparted by 

the relative movement of two fish. As a sender moves closer and further from the receiver, the 

beat will proportionally increase and decrease in strength. The strength of the beat is also 

called its “contrast” and contrast modulations are called the “envelope signal”. The 

characteristics of these envelope signals have been determined experimentally by recording the 

signals received by a fish exposed to one or several other moving conspecifics (Fotowat et al., 

2013; Yu et al., 2012). Since movement is relatively slow, envelope signals are typically low 

frequency (<10 Hz). The data also confirmed that the beat elicited by a conspecific nearby can 

be strong (often above 50% contrast at <10 cm), but decreases quickly with distance (a few % at 

30 cm; Fotowat et al., 2013) since these electric fields decrease in strength as a function of the 

cube of the distance (Caputi, Aguilera,  Pereira, & Rodríguez-Cattáneo, 2013). Furthermore, 
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these recordings illustrate another important principle that influences the properties of electric 

signals. The strength of the signal is not simply related to the distance but also to the relative 

orientation of the receiver and sender “dipoles” (Rasnow, Assad, & Bower, 1993). To simplify, 

the EO can be thought of as a stimulus dipole and electroreceptors are sensing dipoles 

detecting the potential difference across the skin. Electric fields are characterized by 

isopotential lines and a sensing dipole positioned parallel to an isopotential line would not pick 

up the signal even if it is close to the stimulus dipole  (Assad & Bower, 1997; Rasnow et al., 

1993). Consequently, the strength of the envelope can decrease to zero as the fish moves away 

or as it rotates 90° making the envelope signal picked up by a given receptor ambiguously 

related to the location of the sender. 

Envelope signals are common in various modalities. In the visual system they are linked 

to the ability to distinguish contrast based visual contours (Grosof et al., 1993). They are also 

used by the auditory system for speech perception and sound localization (Lohuis & Fuzessery, 

2000; Smith et al., 2002). The electrosensory system has provided important insight into how 

these signals are processed by the nervous system, but we do not yet know how they are used 

to gauge the distance of the sender. Furthermore, azimuth and elevation of the sender relative 

to the receiver is not encoded in this temporal signal, it can only be estimated by comparing the 

strength of the signal across the sensory surface. 

Electrosensory image 

The sensory surface is well suited to capture the spatial aspect of the sensory 

environment. Most of the body surface of knifefish contains a high density of electroreceptors 

each capturing the electrical potential within its vicinity (Carr et al., 1982). Distortion of the 
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fish’s own EOD caused by its environment can thus be mapped on this spatially organized 

sensory array. Distortions experienced by these fish can be categorized as either a passive 

electric image or an active electric image. The active electric image arises when an object or 

animal that is more or less conductive than the surrounding water locally influences the 

strength of the electric field generated by the fish. For example, a conductive prey item near 

the head will locally increase the strength of the electric field and cast an “electrical shadow” 

(or a bright spot in this case) on the skin. A series of seminal studies using modeling, 

physiological and behavioral approaches have detailed the characterization of the 

electrosensory image of prey items during hunting behaviors (Nelson & MacIver, 1999; Nelson, 

MacIver, & Coombs, 2002). The authors measured the 3D relative position of the fish and its 

prey, modeled the electrosensory image that would result, estimated the activation strength of 

the various receptors and reconstructed a 3D activation map of the sensory surface. They 

determined that black ghost knifefish typically detect prey when they are 1-2 cm away that 

elicit a signal of 1-3 µV and can potentially detect a signal as weak as 0.2 µV. These studies 

point out once again the extreme sensitivity of this system and provide a clear understanding of 

how these signals are represented at the periphery. The neural mechanisms underlying prey 

localization and detection are also a good example of sophisticated neural processing strategies 

used to accomplish challenging tasks (see next section; Chacron & Bastian, 2008; Clarke et al., 

2014; Jung et al., 2016).  

A conspecific in close proximity to the receiver will also cast such an active 

electrosensory image -albeit a bigger one- but few studies have characterized this sensory 

image. In a recent study combining behavioral recordings and modelling of the electric field and 
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sensory image, Pedraja et al (2016) showed that this active image could guide behavior during 

aggressive encounters. However, they showed that the passive electrosensory image (see 

below), rather than the active one, was better correlated with the initiation of attack behavior 

at close range. This study also indicates that the image of the conspecific is fairly sharp at close 

range (a small portion of receptors are strongly activated and the others much weaklier) 

thereby giving a clear labeled-line representation of conspecific location. In contrast, the image 

elicited by a conspecific further away (>10 cm) is uniformly weak, thus detection most likely 

involves pooling all the responses together to average out the noise and localization must rely 

on comparing the weak responses to determine the even-weaker differences among them. This 

analysis highlights once again the challenging task that this system must perform. Although it is 

still not clear to what degree they rely on the passive image versus a combination of passive 

and active images in close range interactions, the active image cannot underlie the ability to 

detect and localize conspecifics far away (Knudsen, 1975).  

They must thus rely on the passive electrosensory image to detect and localize distant 

conspecifics. The passive image consists of the spatial pattern of distortion of the receiver EOD 

caused by the sender EOD. It is important to point out that this terminology, although well-

defined for prey and for pulse species, is more ambiguous for wave-type species since this 

passive image is the result of both sender and receiver’s active signals (EODs and the resulting 

beat). Furthermore, the passive and active components will both be perceived through 

modulations of the receiver’s own EOD and thus, are not truly different images but different 

components of the electrosensory image. We nevertheless use this terminology for consistency 

with previous studies (e.g. Pedraja et al., 2016). 
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The strength of the beat signal at different points on the receiver’s skin will vary with position 

and orientation of the sender. A sender located in front, for example, would cause stronger 

beats on the rostral than caudal end of the receiver. The detailed activation pattern of the 

sensory surface also depends on receptor orientation (e.g., dorsal receptors are nearly 

orthogonal to the nearby receptors on the side of the body). For this reason, the activation 

pattern of areas like the head will be more complex that for relatively flat area like the side of 

the mid-body. Several researchers have modelled the electrosensory image caused by a 

conspecific either fixed (Kelly et al., 2008) or approaching (Castelló et al., 2016; Gómez-Sena et 

al., 2014) the focal fish. Despite being extremely valuable data, the studies typically have 

simplifications that make evaluating the strength of the input for all electroreceptors more 

difficult. For example, the models looking at conspecific signals were either limited to 2D or 

considered receptors only along a line on the side of the fish or did not take into account the 

various orientation of receptors. This complexity will be most obvious for regions like the head 

where receptors very close to one another will have very different orientation and thus very 

different activation levels. Considering how receptor activation will depend on the relative 

orientation, in 3D, of the receptor relative to the stimulus, further studies are required to 

obtain a detailed characterization of the sensory image of conspecifics. An incomplete 

understanding of the spatial structure of these sensory signals limits our ability to understand 

how the sensory system extracts this spatial information. 
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Electroreceptors and Processing 

In Weakly electric fish the sensory image activates the electroreceptors that are 

distributed across the surface the body (Bennett, 1971; Carr et al., 1982). There are two types 

of electroreceptors found on the surface of the skin of the fish. Ampullary receptors which are 

the most common type of receptors across the species but in two orders of teleost 

(Gymnotiformes and Mormyriformes) a second type of electroreceptor evolved - tuberous 

receptors (Szabo, 1974). Where ampullary receptors are sensitive to low-frequency electric 

signals, such as the ones produced by contracting muscles, tuberous receptors are sensitive to 

high frequencies  (Bennett et al., 1989; Hopkins, 1976; Leonard Maler, 2009a). Ampullary 

receptors (mediating low-frequency passive electrosensation; see Introduction) are less 

numerous (~700 total in brown ghost knifefish) compared to tuberous receptors (~13,000-

17,000 total; (Carr et al., 1982)). The density of ampullary and tuberous receptors varies across 

the body surface. Regions of the mouth, face, and head are higher in receptor density, resulting 

in the formation of an electrosensory fovea. Similar to other sensory systems, this foveal 

arrangement of receptors permits a higher resolution of sensory input and its location near the 

mouth is well suited to guide the final stages of prey capture.  

There are two kinds of tuberous receptors involved in active electrosensation: T-units 

and P-units. Time coding units (T-units) are few in number and form a separate channel early in 

the sensory pathway through spherical cells of the electrosensory lateral line lobe (ELL) and 

onto a dedicated layer of the Torus semicircularis (Ts) (Maler et al., 1981). Most tuberous 
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receptors are amplitude coding (or probability coding units: P-units), providing direct input to 

ELL pyramidal cells. P-units are solely responsible for encoding the amplitude of the fish’s own 

EOD and the amplitude modulations (AMs) arising from electrolocation and 

electrocommunication (Xu et al., 1996). 

All the receptors project onto the pyramidal cells in the electrosensory lateral line lobe 

(ELL), the primary electrosensory area in the hindbrain. The ELL is divided into four distinct 

topographical maps. The ampullary receptors synapse onto the medial segment, on the other 

hand the tuberous receptors synapse onto the centromedial segment (CMS), centrolateral 

segment (CLS) and the lateral segment (LS) (Heiligenberg & Dye, 1982). Each map consists of six 

classes of pyramidal cells that vary in their spatiotemporal properties and the feedback they 

receive, resulting in multiple topographical representations of electrosensory activity across the 

body surface (Krahe & Maler, 2014). The Electrosensory Lateral Line lobe (ELL) can be 

considered as a preprocessing stage: while electroreceptors encode stimuli using a dense code, 

the encoding by ELL pyramidal cells is already more selective and sparser (Vonderschen & 

Chacron, 2011). These maps have been shown to have distinct functional roles (Metzner & 

Juranek, 1997). The pyramidal cells, which are the main output neurons of the ELL, can be 

classified into two major classes: On and Off center-like cells, referred to as E- and I-cells (Krahe 

& Gabbiani, 2004; Saunders & Bastian, 1984). Some pyramidal neurons, known as deep cells, 

project to the nucleus praeeminentialis (nP), which mediates feedback, while all pyramidal cells 

project to the midbrain torus semicircularis (TS). The nP is involved in both direct and indirect 

feedback pathways, with the indirect pathway involving cerebellar granule cells (EGp) and 

influencing the spatiotemporal processing properties of the pyramidal cells. The direct feedback 
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is implicated in a 'sensory searchlight' mechanism, whereas one function of the indirect 

pathway is to remove redundant global low-frequency input caused by self-movement (Bastian 

et al., 2004). The TS contains both dense coding and sparse coding neurons that selectively 

respond to specific beat frequencies, different types of chirps, movement direction, and higher-

order signal envelopes  (Fortune & Rose, 2000,Vonderschen & Chacron, 2011). However, the 

mechanisms underlying the transformation from dense to a selective and sparse response 

remain unclear. 

Conclusions  

The existing research and literature have revealed the difficult task of detecting and 

localizing conspecifics. Many of the challenges resemble those seen in other modalities but the 

uniqueness of the electrosense allows us to understand the generality across sensory systems. 

In order to understand the neural mechanisms that underlie conspecific interaction, it is 

important to understand the signal that the fish is receiving, in that spirit my thesis aims to 

provide an in dept analysis of the spatiotemporal structure of the sensory input to the nervous 

system during conspecific interactions. I first show the strength of the signal reaching the fish 

from a conspecific and then, model the responses of the heterogenous population of receptors 

to get a conservative estimate of the accuracy of detection and localization (Chapter 2). I then 

characterize and quantify the sensory task faced by the fish while localizing conspecifics during 

social interactions (Chapter 3). Taken together these findings provide a characterization of the 

sensory input that must be processed by the higher brain regions in order to localize a 

conspecific. The tools I developed and the data gathered allow a quantitative understanding of 
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this system from behavior to sensory input and thus serve as foundational work for all future 

studies on spatial coding in this system.  
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Chapter 2 

Prologue 

I have introduced the challenges of conspecific localization in our model system in the 

previous chapter. Specifically, I described how we still don’t have a comprehensive description 

of the signals as it reaches the receptor array. As a consequence, we do not know the spatial 

structure of the input to the system. This information must then be encoded by the receptor 

and it is not clear how the structure of the population of receptors copes with noise to encode 

the signal accurately. To address these gaps in knowledge, in this chapter, I estimate the 

strength of the signal reaching the fish from a conspecific and then, model the responses of the 

heterogenous population of receptors to get a conservative estimate of the accuracy of 

detection and localization.  

Note: This chapter is taken directly from a paper that was sent for publication: 

“Ramachandra, K. L., Milam, O. E., Federico Pedraja, Jenna Cornett  & Marsat, G. 

(2023).Detection and localization of conspecifics in ghost knifefish are influenced by the 

relationship between the spatial organization of receptors and signals.” 

My contribution to this paper represents 2/3 of the content: Ramachandra, Milam and 

Marsat designed the experiments, Ramachandra and Pedraja modelled the Electric Image and 

analyzed the data, Milam and Cornett stained and quantified the receptors, Ramachandra and 

Marsat modelled the receptors and analyzed the data. Ramachandra and Marsat wrote the 

paper with inputs form Milam.   
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Abstract 

The detection and localization of signals relies on arrays of receptors and their spatial 

organization plays a key role in setting the accuracy of the system. Electrosensory signals in 

weakly electric ghost knifefish are captured by an array of receptors covering their body. While 

we know that spatial resolution for small objects, such as prey, is enhanced near the head due 

to a high receptor density, it is not clear how receptor organization influences the processing of 

global and diffuse signals from conspecifics. We investigated the detection and localization 

accuracy for conspecific signals and determined how they are influenced by the organization of 

receptors. To do so we modeled the signal, its spatial pattern as it reaches the sensory array, 

and the responses of the heterogeneous population of receptors. Our analysis provides a 

conservative estimate of the accuracy of detection and localization (specifically azimuth 

discrimination) of a conspecific signal. We show that beyond 20 cm the conspecific signal is less 

than a few percent the strength of the baseline self-generated signal. As a result, detection and 

localization accuracy decreases quickly for more distant sources. Detection accuracy at 

distances above 40 cm decreases rapidly and detection at the edge of behaviorally observed 

ranges might require attending to the signal for several seconds. Angular resolution starts to 

decrease at even shorter distances (30 cm) and distant signals might require behavioral or 

neural coding mechanisms that have not been considered here. Most importantly, we show 

that the higher density of receptors rostrally enhances detection accuracy for signal sources in 

front of the fish, but contributes little to the localization accuracy of these conspecific signals. 

We discuss parallels with other sensory systems and suggest that our results highlight a general 

principle. High receptor convergence in systems with spatially diffuse signals contributes to 
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detection capacities, whereas in systems with spatially delineated signals, receptor density is 

associated with better spatial resolution.  
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Introduction 

Whether it is the early detection of a predator, the accurate localization of a mate, or 

finding food sources based on weak cues, the sensitive detection and localization of sensory 

signals can be an advantage. Signal detection and localization typically rely on an array of 

sensory receptors; their sensitivity, number, and spatial organization play a key role in setting 

the accuracy of the system. For example, visual resolution is enhanced by the high receptor 

density in the retina’s fovea, sound localization is largely enabled by the binaural configuration 

of the auditory system, and moths can detect the presence of just a few pheromone molecules 

due to the number and convergence of olfactory receptors (Ashida and Carr, 2011; Provis et al., 

2013; Rospars et al., 2014). While the spatial structure and size of the receptor array clearly 

shape the sensitivity of the system, it is not always clear how the configuration of the receptors 

is related to detection accuracy versus localization. 

The electrosensory system in fish is an exquisite example of sensitivity. In ghost knifefish 

in particular, survival depends on navigating, detecting prey, and communicating through this 

active sense. They generate a constant weak electric field with their electric organ (EO) and any 

distortions of this field by preys or objects in their environment are picked up by an array of 

receptors covering the skin of the fish (Nelson et al., 1997; Pedraja et al., 2014). Distortions 

from an object or prey will impact only a spatially defined subset of receptors on the 

corresponding portion of skin onto which the electric image (EI) of the object is projected. By 

activating the corresponding portions of the topographic maps higher in the sensory system, 

spatial information is encoded in a sort of labeled-line code reminiscent of the way the visual or 

somatosensory system is organized. Furthermore, similar to these modalities (i.e., fovea of the 
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retina), regions of higher receptor density towards the head and snout of the fish provides a 

higher spatial resolution particularly useful in the last stage of prey capture as the target 

approaches the fish’s mouth (MacIver et al., 2001; Nelson and Maciver, 1999). They also detect 

and communicate with one another through this electric sense (Allen & Marsat, 2018; Knudsen, 

1975; Petzold et al., 2016). The ongoing electric organ discharge (EOD) is a spatially diffuse 

signal that can reach globally all the receptors of the other fish’s body. Localization of such 

signals would thus have to rely on differences in the signal strength at different input locations, 

similar to the way the auditory system compares binaural inputs to localize sound sources (see 

Milam et al., 2019, for review). While it is clear that the high rostral density of receptors can 

enhance the spatial accuracy for objects, it is not clear how it influences the processing of 

diffuse and global signals from another fish’s EOD. More specifically, we are interested in 

determining how the spatial organization and density of receptors interact with the spatial 

structure of EOD signals to influence the detection and localization of conspecific signals.  

The EOD generated by the long EO located in the caudal 2/3 of the fish can be 

approximated as a dipole whose polarity switches during each EOD cycle (Rasnow et al., 1993). 

The resulting signal is a quasi-sinusoidal output with frequencies between 500 Hz and 1000 Hz 

(in A. leptorhynchus, the focal species in this paper; (Zupanc and Maler, 1993). Although weak, 

this signal will travel several tens of cm and will permit the long-range detection of the 

conspecific (Pedraja et al., 2016). Behavior studies demonstrated that frequent interactions 

occur at distances of 30 cm or less, but there is evidence from field studies that these fish might 

be able to detect and navigate toward one another at distances in the 1-meter range (this 

upper limit has not been quantified systematically; (Henninger et al., 2018; Stamper et al., 
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2012; Stamper et al., 2013; Zupanc et al., 2006). These distant signals will reach the receptors 

with low intensity as the strength of electric signals decreases exponentially with distance. The 

signal from a distant fish will combine with the signal of the fish’s own EOD resulting in a 

combined electric field with sinusoidal amplitude modulations designated as the beat. If the 

distant fish’s signal reaches the focal fish with an amplitude 1/10th the strength of the self-

generated EOD, this beat modulation will have an amplitude of 1/10th the undisturbed EOD. 

These weak beat contrasts are the signals that must be encoded to detect a conspecific and 

differences in contrast at receptors across the fish’s body constitute the localization cues. The 

mathematical framework to estimate the strength and structure of the electric field during 

social interactions has been detailed in previous studies (Caputi and Budelli, 2006; Castello et 

al., 2000; Gómez-Sena et al., 2014; Kelly et al., 2008). It can be used to quantify the strength of 

the signal as it reaches each receptor to obtain a complete characterization of the sensory input 

structure due to an approaching conspecific. 

Ghost knifefish possess several types of electroreceptors, we focus here on p-unit 

tuberous receptors that constitute the vast majority of electroreceptors, are tuned specifically 

to encode conspecific signals, and are responsible for encoding the amplitude of these beat 

contrasts (Bennett et al., 1989). Previous estimates of p-units receptor density range from 9-15 

per mm2 on the head region to 0.6-3.4 over the trunk area (Carr et al., 1982). A thorough 

quantification of receptor density as a function of dorso-ventral/rostro-caudal location in A. 

leptorhynchus is not yet available. Receptor sensitivity and response properties have been 

extensively studied and several neural models of p-units are available (Benda et al., 2005; 

Chacron et al., 2005; Goense and Ratnam, 2003; Gussin et al., 2007; Nelson et al., 1997; Ratnam 
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and Nelson, 2000). This large population of several thousand receptors will converge to the 

primary sensory area in the hindbrain, the electrosensory lateral line lobe, and the information 

is then transmitted down the sensory pathway (Lannoo et al., 1989; Maler et al., 1991). To 

estimate the information carried by the population of receptors about realistic signals, two key 

elements must be considered. First, we must take into account the response properties of the 

receptors, their sensitivity/noisiness, and their heterogeneity across the population. Second, we 

must consider the structure of the stimuli and how signals from different locations will cause 

input strengths that vary across the receptor positions.  

In this paper, we aim to clarify how spatially realistic signals from conspecifics are 

encoded by the population of electroreceptors. Our approach includes using a model of the 

fish’s electric field to quantify the EI strength at each receptor location. This input drives a 

model of the p-unit population consisting of heterogeneous leaky-integrate-and-fire units 

calibrated based on the extensively documented properties of this population. We then use a 

decoding analysis to estimate the information that can be extracted from the receptor 

population and provide a conservative estimate of the expected detection and localization 

accuracy. We specifically hypothesize that the high density of receptors rostrally will enhance 

detection and localization accuracy, particularly in the frontal quadrant. We tested this 

hypothesis by altering the structure and density of the receptor population and confirming that 

detection accuracy depends on receptor density. Surprisingly, we show that localization is 

relatively less influenced by receptor density and that the high rostral density does not enhance 

localization accuracy for frontal azimuth. Our results highlight the intricate relationship 

between the spatial structure of signals and the spatial organization of sensory receptors.  
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Methods  

Quantification of electroreceptor distribution 

Weakly electric brown ghost knifefish, Apteronotus leptorhynchus, were obtained from 

a tropical fish supplier (Segrest Farms, FL, USA). Fish care and use were approved by West 

Virginia University IACUC. 

Fish were euthanized then fixed in a 50mL aliquot containing a 40mL solution of 4% 

paraformaldehyde, and preserved for up to 7 days. After tissues were completely fixed, 5mg of 

eosin Y was added to the aliquot containing the preserved fish. Stained fish were analyzed 

under a fluorescent microscope with a light wavelength of 530nm. A stereotaxic system was 

used to move the fish and place a 1mm2 sampling grid at different locations along the fish’s 

body, tuberous receptors inside the grid were visually identified and counted. We collected 581 

samples from 18 fish measuring on average 14 cm in length. 

A coarse 3D mesh model of the fish was created using Maya 2019 (Autodesk, Inc) based 

on average measurements of our fish and images of the rostral, dorsal, and lateral profiles. The 

quadrangle mesh model has 218 planar faces. For each face, the corresponding measured 

receptor densities were averaged. Average receptor densities for each face were mapped along 

a rostro-caudal and dorsal-ventral plane. A 3-dimensional 5th-degree polynomial was fitted to 

obtain a smooth, interpolated, estimate of receptor density as a function of body location. 

Using a more detailed mesh model (the same used for EI calculation; see below), we randomly 

generated receptor locations for each face according to our density function. 
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EI model 

The electric image model used in this study was based on the established methods 

developed by Caputi and Budelli (Caputi and Budelli, 1995; Caputi and Budelli, 2006; Caputi et 

al., 1998), and implemented using software developed by Rother (Rother et al., 2003). More 

details on the model can be found in these publications and it is described here briefly. The EI 

model requires the creation of a reconstruction of the geometry and electrical properties of the 

fish bodies and their placement in the surrounding water. This information is used to calculate 

the transcutaneous voltage at specific nodes along the skin of the fish. The model makes the 

following assumptions:  

1. All the media are ohmic Therefore,  𝐽(𝑥) = 𝜎(𝑥)𝐸(𝑥), 𝜎(𝑥) > 0     (1)  

Where J(x) is the current density at point x and E(x) is the electric field at the 

same point. 

2. There are no capacitive effects so at no point in space is there an accumulation of 

charge.   
𝛿𝑝(𝑥)

𝛿(𝑡)
= 0          (2)  

3.  The model is an electrostatic approximation (Bacher, 1983)  

4. The fish and other objects that make up the environment are immersed in an infinite 

water medium. Each object in the environment is covered by a thin resistive layer (the 

skin in the case of the fish), which can be homogeneous or heterogeneous. 

The model is based on the charge density equation which, under the above 

assumptions, implies that the charge generated by the sources f(x) is equal to the charge 

diffusion: 

𝛿𝑝(𝑥)

𝛿(𝑡)
= 𝑓(𝑥) − ∇. 𝐽(𝑥)                 (3)   
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Combining equations 1 and 2 we get  

∇. 𝐽(𝑥) = 𝑓(𝑥) ⇒ 𝜎∇. 𝐸(𝑥) = 𝑓(𝑥)                                 (4)   

The electric field E(x) can be expressed as 𝐸(𝑥) = −∇𝜑 therefore:  

𝜎∇2𝜑(𝑥) = −𝑓(𝑥)          (5)   

Equation (5) is a partial differential equation known as the Poisson equation and can be 

solved for every point in space, in our case the fish boundaries by using the boundary element 

method (BEM) as proposed by Assad (Assad and Bower, 1997). The method determines the 

boundary conditions by solving a linear system of M•N equations for M poles and N nodes, with 

the unknown variables being the transepithelial current density and voltage at each node 

(Pedraja et al., 2014). The shape of the 3D fish mesh model consists of 49 ellipses composed of 

17 nodes each (i.e., 835 nodes) defining 1,666 triangular faces between the nodes (Rother et 

al., 2003). The size of the fish was kept constant at 14 cm in length in this paper and the water 

conductivity is 300 µS and the skin and internal conductivity of the fish were 100 and 10,000 µS 

respectively. The 2 poles for each fish were positioned 9.3 and 10.5 cm from the rostral tip of 

our 14 cm fish. We use the middle of this dipole (i.e., the center of our “electric organ”) to 

define the position from which the signal originates. 

Calculations of signal strength at receptor locations 

We calculate the transdermal voltage when only the focal fish is present (Vf) or when 

both focal and sender fish are present (Vfs), in which case the peak voltage is determined at the 

top of the beat cycle (EODs in phase). The strength of the EI caused by the sender fish at each 

node i on the surface of the focal fish was defined as a contrast c:  

𝑐 =  
𝑉𝑓𝑠𝑖−𝑉𝑓𝑖

𝑉𝑓
            (6) 
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 The contrast value for receptor location within each triangular face was interpolated 

from the values at the nodes that define the face using a barycentric coordinates system. 

Considering a triangle with values N at the nodes (vertices) and coordinates X, Y, Z. A receptor 

inside the triangle will have a contrast value R according to the weighted value of the nodes. 

The weights W can be found by solving: 

𝑋𝑅 = 𝑊1 · 𝑋𝑁1 + 𝑊2 · 𝑋𝑁2 + 𝑊3 · 𝑋𝑁3        (7) 

𝑌𝑅  = 𝑊1 · 𝑌𝑁1 + 𝑊2 · 𝑌𝑁2  + 𝑊3 · 𝑌𝑁3        (8) 

𝑍𝑅 = 𝑊1 · 𝑍𝑁1 + 𝑊2 · 𝑍𝑁2 + 𝑊3 · 𝑍𝑁3        (9) 

And contrast at the receptor location is calculated as: 

 𝑅 = 𝑊1 · 𝑁1 + 𝑊2 · 𝑁2 + 𝑊3 · 𝑁3       (10) 

Although the EI model was thoroughly calibrated based on experimental recording on 

actual fish (Pedraja et al., 2014; Pedraja et al., 2016), we performed transcutaneous recordings 

on 3 pairs of fish and verified that the transdermal voltage contrast values that we are 

calculating correspond to the range of values that can be measured experimentally. 

Receptor Modelling  

We used a leaky integrate and fire (LIF) framework to model the receptors. The model 

includes noise σ and adaptation current with conductance gα and reversal potential Eα, and is 

driven by an input I. The membrane voltage is calculated as: 

𝜏𝑚
𝑑𝑉

𝑑𝑡
= 𝐸𝑚 − 𝑉 + 𝑅𝑚(𝐼 + 𝜎 − 𝑔𝛼(𝑉 − 𝐸𝛼))     (11) 
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The initial parameters of the model were based on existing models (Benda et al., 2005; 

Carlson and Kawasaki, 2006; Chacron et al., 2001; Nelson et al., 1997). Particularly, the noise 

was the product of a strength variable Aσ and a random process (specifically, two Ornstein–

Uhlenbeck processes (refer to Chacron et al., 2001, for details). Adaptation current α was 

adjusted to match the time course of adaptation described experimentally (Benda et al., 2005). 

Conductance gα is augmented by Δα after each spike and decays with time constant τα. When 

the membrane voltage reaches the threshold VT it is reset to VR and kept constant during a 

refractory period tR. The input I to these p-unit model neurons replicates the input they would 

receive from receptor cells during social interactions. A sinusoidal EOD carrier signal with 

amplitude AEOD was created with a frequency of 1000 Hz (the upper range of the naturally 

occurring EOD frequencies in this species was used for convenience), and modulated with a 

sinusoidal amplitude modulation (the “beat”) of 30 Hz (other AM envelopes are used to 

validate our model, see Supplementary Material). This AM envelope signal was adjusted to a 

specific contrast as specified in the Results. A contrast of 0% indicates that the baseline EOD is 

unmodulated. Whereas a beat contrast of 100% causes the EOD amplitude to be 0 during the 

trough and twice the baseline EOD amplitude at the peak of the beat. To emulate the current 

direction and sensitivity as the signal passes through the receptor cells before it reaches the p-

unit neurons, the modulated EOD is halfwave rectified after a baseline bias β was subtracted. 

Parameters were adjusted to create a prototypical neuron with response properties 

matched to published data (Bastian, 1981; Benda et al., 2005; Chacron et al., 2005; Grewe et 

al., 2017; Gussin et al., 2007b;  Nelson et al., 1997; Ratnam & Nelson, 2000). We used a wide 

range of response parameters to validate our model: firing rate, coefficient of variation, 



48 

response sensitivity to random amplitude modulations, response sensitivity and time course to 

steps and responses to beat stimuli (see Supplementary Figure S1). This prototypical neuron 

with response properties matched to the average experimental values served as our original 

seed; this set of parameter values are given in Supplementary Information Table S1.  

We then used this original seed to create a heterogeneous population that replicates 

the range of response properties observed experimentally through an iterative process of 

diversifying the population and constraining the response properties. A heterogeneous array of 

parameters sets was created (8,000 sets) from the original seed values by slightly varying 

randomly several parameters: tR, Rm, τm, VT, Aσ, τα, Δα, and β. From this array, 12 seeds were 

selected by choosing sets of parameters that, again, best replicate the average response 

properties. These sets were further diversified randomly, and from these new arrays, 26 seeds 

were chosen by selecting neurons that replicate the average coding properties, but that span 

the range of spontaneous firing rates measured experimentally (Chacron et al., 2001; Gussin et 

al., 2007; Ratnam and Nelson, 2000). From these 26 seeds, the parameter sets were further 

diversified and we retained 9,200 sets of parameters by rejecting sets for which the response 

properties do not fit in the range of response properties determined experimentally. Therefore, 

our pool of neurons replicates the average and range of response properties measured 

experimentally. From this pool, 5 equivalent but different populations of 8,195 receptors were 

created by randomly assigning one of the 9,200 neurons to each receptor location. All data 

shown in the results reflect averages across these 5 populations.  
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Decoding analysis  

Population responses to different stimuli were compared with our decoding analysis to 

determine how accurately signals could be detected or discriminated considering the 

differences in response patterns for these stimuli. The framework used for our decoder has 

been described and validated thoroughly in previous publications (Marsat et al., 2023; Allen 

and Marsat, 2018; Allen and Marsat, 2019; Allen et al., 2021; Marsat and Maler, 2010). It was 

shown that this analysis measure is directly correlated with the information content of the 

responses about the stimuli. We describe the method briefly here. Importantly, the only 

difference with the established measure described in Marsat et al. (2023) is that we do not use 

the detailed time-course of each neural response (i.e., the full spike trains) but use the peak-to-

though firing rate to quantify the response of the neuron. To calculate the peak-to-trough firing 

rate, the binarized spike trains are smooth with a sliding square window of 16.67 ms (half a 

beat cycle) to obtain an instantaneous firing rate. For each beat cycle, the difference between 

the maximum of the instantaneous firing rate and the minimum gives us our measure of peak-

to-through firing rate. These peak-to-trough measures can be averaged over several cycles of 

the beat, or we can use the values for single beat cycles as specified in the different Results 

section. When no beat stimulus is provided, the analysis is unchanged and the peak-to-trough is 

calculated over each consecutive 33.34 ms segments of response (i.e., a 30 Hz period). 

Pairs of responses are compared by the analysis: responses to stimuli from two different 

azimuths are compared in the angular resolution analysis while in the detection analysis the 

response to the sender fish’s signal is compared to the response when no second fish is present 

(i.e., baseline firing due to the focal fish’s own signal). For each individual neuron i (out of n 
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total neurons), the similarity between the probability distributions P(x) of responses (the peak-

to-trough firing rate x) to the two stimuli (R and B) is calculated based on the area difference 

𝛺(𝑃𝑅,𝑃𝐵) between the two distributions: 

 𝛺(𝑃𝑅𝑖,𝑃𝐵𝑖) = ∑ |𝑃𝑅𝑖(𝑥) − 𝑃𝐵𝑖(𝑥)|𝑥       (12) 

AD values are normalized to 1 across the n neurons to obtain a weight W: 

 𝑊𝑖 = 𝐻0(𝛺(𝑃𝑅𝑖,𝑃𝐵𝑖) −
1

𝑛
∑ 𝛺(𝑃𝑅𝑛,𝑃𝐵𝑛)𝑛 + 1)    (13) 

where H0 is the Heaviside step function. The peak-to-trough firing rates for each neuron 

are multiplied with these weights before being used in our Euclidean distance calculations (see 

below). As a consequence of this weighting, the neurons that respond very differently to the 

two stimuli will contribute more to Euclidean distance between the population responses and 

the neurons that respond similarly to the two stimuli will contribute little to the Euclidean 

distance. Since the sum of the weight for a population is 1, the overall firing rate of the 

population is unchanged by the weighting procedure.  

 The Euclidean distance D between pairs of weighted responses (Ra and Rb) is 

calculated between responses to the same stimulus or between responses to the two different 

stimuli being compared:  

𝐷 = √∑ (𝑅𝑎 − 𝑅𝑏)2
𝑛𝑡          (14) 

These Euclidean distances are used to determine how well an ideal observer could 

discriminate between responses to the two stimuli. The distribution of distances between 

responses to the same stimulus Dxx and the distribution of distances between responses to the 

two different stimuli, Dxy, are used for an ROC analysis. In this analysis, a threshold distance T is 
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varied. For each threshold, the probability of non-discrimination (PD) is calculated as the sum of 

P(Dxy>T) and the probability of false discrimination (PF) is calculated as the sum P(Dxx>T). The 

error rate E is taken as the minimum error across threshold given: 

𝐸 =
1

2
𝑃𝐹 +

1

2
(1 − 𝑃𝐷)         (15) 

 

This error rate is used in the various parts of the result as specified therein, and we 

consider that reliable detection or discrimination happens when the error rate is below 0.05.   
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Results 

Since ghost knifefish can detect and localize each other based on the electric signals 

they continuously emit; both fish are thus senders and receivers at the same time. To simplify 

the description of our results we describe the fish for which we describe the electric image (EI) 

and sensory responses as the focal fish. The “other” fish that needs to be detected and 

localized by the focal fish is designated as the sender fish. A number of studies have 

characterized the EI that one fish cause on another fish’s body (Kelly et al., 2008; Pedraja et al., 

2016). The results presented in these papers are not always easily related to 

electrophysiological studies because many experiments on the responses of sensory neurons in 

this system calibrate the signals as a relative contrast in the measured voltage. For example, 

many studies present the response properties to conspecific signal of 5-10% contrast (Fotowat 

et al., 2013; Metzen et al., 2018). Since our goal is to use the estimate of signal strength as an 

input to neuron models that match their known response properties, we quantify the EI 

strength as a relative contrast in the transdermal potential difference. If the signal from the 

sender is as strong as the focal fish’s own baseline signal at a given point on their body, the 

signal strength will be 100% and the EOD will vary from close to 0 mV (at the trough of the 

beat) to twice the baseline EOD strength (at the peak of the beat cycle). 

Expressing the signal as a contrast highlights the challenges that the fish encounters 

when interacting with a conspecific due to the rapid decay of signal strength with distance. 

Figure 1 displays the signal strength during a common scenario a sender fish approaching and 

then moving away from the focal fish. When the fish are separated by only a few centimeters 

(position 2), the EI has a strong gradient that goes from a strong signal (25% contrast) on 
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portions of the body closest to the sender to a very weak signal close to 0% contrast. For 

convenience, we will refer to the region of the electric image with the strongest signal as the 

hot spot. While this hotspot is well defined when the sender is close-by, the EI is much more 

diffuse when the sender is further away and there is a weaker gradient between the hotspot 

and the areas with a weaker signal. For example, in Fig 1B, the difference between the hot spot 

near the head (position 1) or tail (position 3) is less than 1% stronger than the portions with the 

weakest signal. The positions 1 and 3 depicted here correspond to a distance (30 cm) at we 

know fish can detect each other and display active interactions (Henninger et al., 2018; Zupanc 

and Maler, 1993; Zupanc et al., 2006). The known extreme sensitivity of this system is thus 

highlighted here since detecting the sender 30 cm away involves detection of a 1% modulation, 

and localizing this signal requires deciphering a gradient in this signal of less than 1% across the 

body surface. 

The EI stimulates an array of receptors covering the fish’s skin and the spatial structure 

of this sensory array will dictate how the spatial structure of the signal is captured. Receptor 

density for different portions of the fish’s body has been characterized in a closely related 

species (Carr et al., 1982), but we needed a more detailed quantification of variations in 

receptor density across the fish’s body (Fig 2A). Our data confirm the general organization of 

receptor density: a region of high density on the snout and head, of medium density on the 

dorso-rostral portion of the trunk that decreases both ventrally and caudally (Fig 2B). Based on 

this spatially precise empirical data, we incorporated a population of p-unit receptor locations 

on the 3D mesh model used for EI calculations that varies smoothly in density as a function of 
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rostro-caudal and dorso-ventral position (Fig 2C). In the rest of this study, we will use an 

“average” fish that measures 14 cm long and includes ~8,195 receptor locations. 

We calculated the stimulus intensity for each receptor location for the various iterations 

of the EI calculation; the result for the 3 positions illustrated in Fig 1 is shown in Fig 3A (note 

that for this figure, the blue-red color scale covers the contrast range for each position). We 

wanted to quantify how the strength of the EI changes with the position of the sender relative 

to the focal fish. To do so, we ran the model for 864 relative positions where the two fish are at 

12 distances that vary from nearly touching to 75 cm apart and for 72 different azimuths 

around the focal fish while always having the sender fish’s heading towards the focal fish. To 

estimate the maximal strength of the signal for each location, we used the strength of the 

signal at the center of the hot spot on the focal fish. We plot this value as a color scale at the 

position of the middle of the electric organ of the sender fish (Fig 3B). We can see that the 

strength of the signal decreases sharply with distance as expected. The portions of the figure 

with contrast above 20% (yellow-white shades) represent positions where the fish are nearly 

touching (with the sender fish head-on). The decrease in signal strength with distance follows 

the expected power law such that contrast drops to 10% by 10-15 cm and is only a few percent 

when the sender is 20-30 cm away (Fig 3C). 

The EI model helps us quantify the cues that the sensory system can use to detect and 

localize the source of these signals. To better understand the accuracy with which detection 

and localization could occur, the strength of these signal must be compared with the noise that 

the sensory system experiences. We therefore use the deterministic model of EI signal strength 

described above as an input to a population of model neurons that includes realistic noise. We 
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based our receptor model on established parameters of leaky-integrate-and-fire that includes 

adaptation, noise, and a refractory period, to replicate the response properties of p-units 

(Benda et al., 2005; Chacron et al., 2005; Grewe et al., 2017; Gussin et al., 2007; Nelson et al., 

1997). Based on this prototype p-unit model, with properties matched to the average 

characteristics of p-units, we diversified the model parameters to create a heterogeneous 

population matching the range of properties observed experimentally (see Methods for 

details). For the model to provide a biologically reasonable estimate of how accurately this 

population encodes spatial cues, it is vital to calibrate the sensitivity, heterogeneity and 

noisiness of the responses to reflect the measured properties of the neurons. Our calibration 

involved matching the model responses to published values for a range of stimulus types and 

analysis methods (see Methods and Supplementary Figure S1). The population is then 

stimulated with conspecific signals (beat stimuli) at intensity levels that is dictated by the EI 

image for various relative fish positions. Figure 4 shows the response pattern of the population 

for two of the positions used in Figure 1 and 3. Response strength is quantified as the 

difference between the peak and though of the instantaneous firing rate during each stimulus 

cycle (here normalized relative to spontaneous activity). We can see differences in response 

strength due to the spatial contrast in the EI but also differences across receptors due to 

heterogeneity that makes some neurons more sensitive.  

Firing rate modulation across one stimulus cycle replicates the experimentally measured 

sensitivity (Fotowat et al., 2013; Henninger et al., 2018; Pedraja et al., 2014; Pedraja et al., 

2016; Zupanc et al., 2006) The strength of the electric image quickly decreases with distances 

and reaches levels below 1% contrast at ranges where the fish still detect and interact with 
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each other (e.g., 30 cm). Our model replicates the fact that for these weak signals, the response 

modulation is barely above variations in firing rate that naturally occur in the absence of a 

second fish (Fig 5). Figure 5C shows that, although the responses for nearby fish (14 cm and 

22.5 cm in this figure) are visibly different from spontaneous response, signals from more 

distant fish (40 cm, 75 cm in this figure) cause much more subtle differences in response 

strength. This is true when looking at the distribution of responses for cycles of the beat, for 

responses averaged across time (grey or color portion of the distribution plots), or overall 

responses averaged across time and neurons (white lines).  

The sensitivity with which a conspecific signal would be detected will depend on the 

coding and decoding mechanisms implemented by the nervous system. It is beyond the scope 

of this article to explore all possible coding and decoding algorithms that could contribute to 

the sensitivity of the system, but as a first step towards understanding the sensitivity of this 

system, we aim to provide a lower-bound on accuracy. To do so, we only consider peak-to-

trough firing rate to quantify response strength as it is the most salient aspect of the response 

that varies with stimulus strength. The responses of individual receptors will be combined at 

higher levels of the nervous system and this can help average out noise in the responses. 

However, the way these responses are combined would require various assumptions, matched 

to the architecture of high brain areas, that would lead to a complex modelling effort and 

speculations on decoding procedure. For this reason, and to remain within a “lower-bound” 

perspective, we map each population response in Euclidean space where each dimension 

represents the response strength of a neuron (i.e., response strength is not averaged across 

neurons). Reliable detection would occur if the strength of the population response is markedly 
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different from the response when no signal is present; in other words, when the stimulus 

response is far from baseline responses in this Euclidean space representation. Our analysis 

therefore uses a weighted Euclidean distance followed by an ROC analysis to quantify the 

reliability with which stimulus responses can be differentiated from baseline. This analysis could 

be done on “instantaneous responses”, considering the response of the population (peak-to-

trough for each receptor) for a single cycle of the stimulus which would give us a response 

accuracy (i.e., probability of error) for each fish positions. Behavioral responses typically occur 

after attending the signal for a certain period of time, and more accurate detection occurs after 

several seconds of the stimulus than after the first cycle. We therefore integrate the response 

of each neuron across time (average the peak-to-trough across several beat cycles) to estimate 

how detection accuracy would change as information is accumulated with time. We consider 

that accurate detection occurs when less than 5% detection error would occur and plot in 

Figure 6 the amount of time that accurate detection would require. Our analysis shows that 

accurate detection could occur within a single cycle of the stimulus for fish that are within 20 

cm of the focal fish (Fig 6A, 6C). Detection accuracy decreases with distance and thus it takes 

more time to reliably detect the stimulus. As a result, a fish 60-70 cm away would require 

integrating the signal for several seconds to be able to reliably tell that another fish is present. 

Detection accuracy is undoubtedly influenced by the fact that thousands of receptors 

contribute to transmitting this information. The distribution of these receptors is not uniform 

across the fish’s body. In particular, the rostral end of the fish (head region) has a density of 

receptors 5-10 times higher than the caudal end (tail region). We hypothesize that this foveal 

organization supports an enhanced sensitivity in the frontal quadrant relative to the fish. 
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Alternatively, the increased density in receptors plays an important role in localizing small 

objects like prey with higher resolution, but does not enhance perception of conspecific in 

specific regions of space. This is a plausible alternative because conspecific signals cause a more 

diffuse EI that stimulate a majority of the receptors over the receiver’s body. To test our 

hypothesis, we reduced the density of receptors to make it uniform over the entire body and 

equal to the low density found at the caudal end of the fish (Supplementary Figure S2). Our 

resulting population has 2,770 receptors compared to 8,195 for the full population. The 

difference in detection sensitivity is displayed in Figure 6B and reveals the enhancement in 

sensitivity afforded by the increased density in the rostral portion of the body. The difference is 

negligeable when the sender is very close because accuracy is high and a decrease in the 

number of receptors encoding the stimulus is not sufficient to affect performance. For very 

distant signals (e.g., 75 cm), the lower rostral density causes a decrease in sensitivity that is 

fairly uniform across azimuth (see also Supplementary Figure S3). This can be explained by the 

fact that distant signals cause diffuse EI patterns that vary by less than 1% across the body (e.g., 

see Figure 1). As a result, the head region is stimulated at a level nearly identical to the tail 

region even if the sender fish is located behind the focal fish. There is, however, a clear 

difference as a function of azimuth for medium distances (35-50 cm; Figure 6B and 

Supplementary Figure S3). The higher density of receptors on the head provides a clear 

advantage in detection accuracy in the frontal quadrants (i.e., requires less time until accurate 

detection occurs). We further verified the idea that having a larger population of receptors 

allows the population to encode the presence of the stimulus more reliably by decreasing 

further the density of our uniform population of receptors by 2-, 4- and 8-fold (resulting in 
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population sizes of 1,385, 693 and 347 receptors respectively). Our analysis confirms that a 

higher density of receptors allows more accurate detection for distances where the signal is 

faint (Figure 6C). 

We next inquire about the spatial information about the angular position of the sender 

fish relative to the focal fish: its azimuth (in front=0°; behind= 180°). To do so, we compare the 

responses to stimuli at various positions and quantify how reliably these responses could be 

discriminated based on the same weighted Euclidean distance analysis used above. Error 

probability will thus depend on two factors, angular separation between the two stimuli and 

duration of stimulus evaluated whereas in our previous detection analysis the latter was the 

only factor considered. To be able to display our results conveniently, we chose to keep the 

duration of the stimulus integration to 1s. This value is a compromise between expecting 

accurate angular discrimination instantaneously (~1 cycle) and expecting the sender fish to 

remain in a relatively fixed position for seconds in order for angular position to be accurately 

estimated. Using this 1s integration time, we determined the angle that needed to separate 

two stimuli to lead to reliable discrimination (<5% error) and call this value angular resolution 

(Figure 7). Our results show that angular resolution is accurate to a few degrees (<5°) when the 

sender is within 10-20 cm and decreases sharply between 20 and 40 cm such that beyond 40 

cm, azimuth could not be reliably determined (angular resolution>180°). If we repeat the 

analysis using different integration times (Fig 7B); as expected, the sharp decrease in angular 

resolutions moves from being for positions 20 cm away when a single cycle of the beat is 

considered to being 40-50 cm away when 3.3s of the stimulus is being averaged. Our analysis 

suggests that for the most distant positions tested (75 cm) angular position could not be 
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resolved even when the stimulus is being integrated for several seconds. Together with the 

results of Figure 6, these finding thus suggest that for the more distant signals only detection 

would occur, and the position of the sender would not be accurately determined without 

relying on additional behavioral or neural mechanisms (see Discussion). 

Angular resolution does not appear to be equally good for a given distance as a function 

of the azimuth of the sender (e.g., front vs. side vs. back). This can be seen in Figure 7A where 

the color patterns around the focal fish are not perfectly circular. In particular, worse angular 

resolution occurs at a shorter distance in the back quadrant compared to the front. We 

suspected that the way we equalized distance across angle could cause a bias. The center of the 

focal fish is taken as the average receptor position and the center of the sender as the middle 

between the two emitting poles that constitute the EOD source. Center-to-center distance and 

azimuth were used to set our relative positions. In this arrangement, a fish at 130° (in the back 

quadrant, see fish illustrated in Fig 7A) rotating 5° would not only change azimuth but also 

come closer to the focal fish if we consider the two closest points on each fish’s bodies. Note 

that this is not an issue in our detection analysis since our accuracy measure does not depend 

on the comparisons between two stimuli locations but only on the absolute location of a single 

stimulus. We therefore repeated our angular resolution analysis by comparing angular 

resolutions where the distance between the rostral tip of the sender and the closest point on 

the body of the receiver is kept constant (the dots in Fig 8A show the positions of the rostral tip 

of the sender used in our analysis). We found that angular resolution is better in the frontal 

quadrants than at the back (Fig 8A, 8C). Surprisingly, it is not best directly in front of the focal 

fish (0°) but rather on the side (90°). Since we expected the high density of receptors on the 
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head of the fish to help enhance localization accuracy, we hypothesize that angular resolution is 

particularly good as the edge of the hotspot caused by the sender sweeps across the region of 

high receptor density (which could correspond to sender positions around ~90°). To test the 

contribution of higher receptor density towards the heads, we repeated the analysis with the 

“uniform” receptor population used in the previous section that has an equally low receptor 

density across the whole body. This uniform population of receptors did not perform much 

worse than our full population, and in particular there is no striking difference directly in front 

(0°) or the side (90°) of the fish where resolution is best. Azimuth determination was not 

possible (angular resolution>180°) when the fish were two body lengths apart (28 cm) but at 

one body length, the higher density of receptors provided a small advantage. Specifically, there 

are only a few spots at ~45° and ~125° where the higher receptor density on the rostral portion 

of the body helps to enhance angular resolution (Fig 8B, 8C). We confirm that decreasing the 

population density further decreases angular resolution and this is particularly obvious for more 

distant stimuli (one body length), where localization is still possible but angular resolution is not 

great (Fig 8D). 

Our results demonstrate that the angular resolution is relatively poor at the back and is slightly 

better on the side than the front. This effect cannot be attributed to the higher density of 

receptor towards the head. Therefore, we questioned whether this effect could be due to the 

geometry of the fish’s body and how it interacts with the geometry of the electric field. We 

hypothesize that a small change in angle on the side will cause a relatively bigger change in the 

electric image than a similar angle difference at the back. A sender fish at 90° azimuth would 

have its EI hotspot centered on the flat surface of the side of the focal fish whereas for frontal 
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(0°) or caudal (180°) azimuth, the EI hotspots are centered on the pointy rostral and caudal 

ends of the fish. We quantified how much difference in EI a sender at various azimuth would 

cause on the focal fish and integrated this difference across the body surface. We found that it 

correlates strongly with the differences in angular resolution that we have estimated for 

various azimuth and distances (Figure 8E). Our analysis supports the conclusion that differences 

in angular resolution as a function of azimuth is in part due to the geometry of the fish and their 

electric fields.  
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Discussion 

By using a model of weakly electric fish EI and carefully normalizing how we calculate 

the distance between the relevant points on the two fish, we presented a clear quantification 

of the strength of the EI as a function of distance. Our results suggest that strong signals of 

more than a few percent beat contrast, only occur at distances below 15-20 cm. This finding is 

in agreement with empirical data and consistent with the fact that when two fish actively 

interact (e.g., chasing each other and courtship), they are typically in close proximity (Fotowat 

et al., 2013; Zupanc and Maler, 1993).The relationship we show is quantitatively informative 

only in a simplified case: a given fish size (and EOD strength) with a fixed heading angle (sender 

head-on towards focal fish). The strength of the electric image as a function of distance will 

depend on environmental factors (water conductivity), the individuals interacting (their size 

and EOD strength), and on moment-by-moment changes in the relative heading angle of each 

fish. All these factors could be taken into account in a more extensive analysis of EI during social 

interactions, but it is beyond the scope of our paper. It is also important to point out that 

additional improvements on the model could provide additional details on the structure and 

dynamics of the EI such as replicating the bending of the fish’s body or having the EO modeled 

with more spatio-temporal details rather than being a simple fixed dipole. We note that since 

the strength of the EI at a given receptor location depends on distance and relative heading 

angles, the strength of the beat AM (its envelope) cannot serve as a reliable indicator of 

distance or movement towards/away. Rather, reliable spatial information must take into 

account the differences in EI strength over the body of the receiver. This is obvious for localizing 
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the azimuth of the target but can also help resolve the distance since a fish close-by will cause 

EIs with sharper contrasts across the body while distant fish will elicit more uniform EIs.  

We used, for the first time in this system, a model of the full population of receptors, 

replicating their heterogeneous response properties and their spatially realistic input patterns. 

This allowed us to provide a conservative estimate of the detection range that this sensory 

input could support. We found that, depending on how the information is extracted, detection 

would still be possible at 75 cm. This range is comparable to behavioral interactions that report 

instances where a fish detected and moved towards another or simply interacted electrically 

with one another at ranges above 60 cm (Henninger et al., 2018; Stamper et al., 2012; Yu et al., 

2012). Our sensitivity estimates might, in fact, come short of the sensitivity observed 

behaviorally, but this might be because we intentionally provide a conservative estimate. Our 

estimate relies on a decoding analysis that does not try to replicate sophisticated decoding 

procedures that could be implemented by the nervous system. Our analysis uses a “Euclidean 

distance” perspective to quantify similarity in responses where the response of each neuron is 

kept as separate dimensions. The nervous system will, in various steps of its pathway, combine 

neural responses and thereby average out noise. An optimized procedure (e.g., using a principal 

component approach) could be implemented but it would need to be tailored to each 

stimulus/task being considered. Any realistic attempt to leverage the convergence of receptor 

input that is performed by higher sensory area would be a major undertaking that could not be 

simply added to this study. We also use a simple measure of response strength (peak-to-trough 

firing rate) and although it is likely one of the key elements of the response, other aspects could 

be considered. Particularly, synchrony among receptors has been shown to encode frequency 
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modulations that occur during communication (Benda et al., 2006; Metzen et al., 2020). It is 

possible that changes in synchrony occur as the stimulus strength changes and encode 

information that could enhance the detection and localization accuracy. Further experiments 

are required to better understand the importance of population synchrony in this context. 

Other neural mechanisms could be present and enhance the sensitivity of the system. We know 

for example that the presence of negative correlations in inter-spike intervals suppresses noise 

at low frequencies and could enhance the coding of low-frequency stimuli (lower than the 

frequency we use in this paper; (Chacron et al., 2001). For this reason, we propose that our 

sensitivity estimates are conservative estimates that can serve as a starting point in estimating 

the limits in detection and localization abilities.  

Our analysis indicates that reliable detection or localization would require integration of 

the signals over a certain period of time by higher brain areas. This is a realistic perspective as 

behavioral performance in various systems will be more accurate for ongoing than for brief 

stimuli (Dizon and Litovsky, 2004; Gai et al., 2013). For example, estimates of the direction of 

motion in a “random dot display” integrates over time in the visual system of primates to reach 

a reliable decision after seconds of attending the stimulus (Ditterich et al., 2003; Kim and 

Shadlen, 1999). For weakly electric fish, it is not unrealistic to assume that the stimulus can be 

integrated over several hundred ms to support accurate detection and localization, but it is not 

clear that this integration could occur over tens of seconds particularly when relative 

movement could require location estimate to be updated frequently. As a first step, our 

analysis considered spatially fixed signals, but it will thus be imperative in future studies, to take 

into account both the spatial and temporal dynamic of the conspecific signals. According to this 
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perspective, localization accuracy, and thus behavioral decisions, depends on the spatial 

dynamic during the interaction. Moreover, this spatial dynamic can be leveraged as a means to 

collect spatial information. Various behavioral strategies can contribute to localizing a stimulus. 

For example, when localization is difficult, movements towards the target that result in the 

signal strength increasing can help confirm the position of the second fish (Fagan et al., 2013; 

Kaushik et al., 2020). Lateralization, rather that precise azimuth localization, can be used while 

a fish moves towards a target: if a stimulus is perceived as coming from the left or right, 

corrective turns realign the target. The individual would therefore move towards the target in a 

zig-zag pattern; this mechanism has been proposed to contribute to behavior in various 

systems (Beetz and el Jundi, 2023; Gerhardt et al., 2023; Pollack et al., 1984).  

Detection could rely on the convergence of the whole population of receptors thereby 

efficiently averaging out noise. Furthermore, the high receptor density rostrally improves 

detection for frontal azimuth because the EI hotspot will be centered on this high receptor 

density area and thus lead to a high convergence of strong responses. Localization, however, 

must rely on comparison of the EI strength across the body. When comparing the responses to 

stimuli from different azimuths, our analysis focusses on the neural responses that differ 

between the stimuli by weighing heavily the contribution of these neurons. This procedure to 

optimize the extraction of spatial information is essential because the EI might differ only 

slightly between two stimuli and thus the responses of most neurons will be identical across the 

stimuli locations. For localization, it is thus the convergence of the responses of a subset of 

neurons, that differ in activation between the locations being compared, that can support the 

accurate discrimination of azimuth. Surprisingly, we found that the high density of receptors on 
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the rostral portion of the fish, does not lead to a better discrimination of the frontal azimuth. 

This result could reflect the fact that the receptors on the head will have a stronger difference 

in response at the edge of the hot spot elicited by the sender moving across these receptor 

locations. We suggest that this would occur as the leading, or trailing, edge of the hotspot 

sweeping across the high-density areas. This could explain the modest increases in spatial 

resolution due to the increased rostral receptors density that we observed around 60° and 

120°. This is in contrast with the contribution of the high density of receptors during prey 

capture (i.e., small objects) where localization accuracy is enhanced for the head and snout 

regions. The structure and convergence of receptors thus play different roles in the detection 

and localization of objects and conspecifics: while high density and convergence contribute 

markedly to spatial coding of objects, it mostly contributes to detection accuracy for conspecific 

signals.  

In other systems, regions of high receptor density are typically associated with high 

spatial resolution. It is the case of the foveal region of the retina and of high receptor density 

regions of the somatosensory system like the fingers or lips in humans (Catania and Catania, 

2015; Dacey, 1994; Nakamura et al., 1998). In other systems faced with spatially diffuse signals, 

like the auditory or olfactory systems, the extraction of spatial information typically relies on 

the comparisons between a limited number of input (e.g., 2 ears) and high convergence of 

receptors is more tightly involved with the accurate detection, rather that localization, of the 

signals (Carr and MacLeod, 2010; Chapman, 1982; Okada and Toh, 2006; Schnupp and Carr, 

2009). Our result on the electrosensory system suggests that this is a general principle guiding 

the relationship between signal structure and the organization of the sensory arrays. We argue 
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that for signals that are spatially diffuse, receptor density and convergence will benefit 

detection abilities and spatial information is extracted by comparing inputs at different 

locations without relying on a higher number of inputs to enhance localization. For signals that 

are spatially localized, a topographic mapping system is advantageous and localization accuracy 

directly depends on the spatial resolution of the input array. The electrosensory system 

provides a powerful way to compare these systems and reveal organizing principles because it 

processes both localized and diffuse signals for which receptor organization and convergence 

play different roles. 
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Figures 

 

Figure 1: Model of the electric image during 

social interactions. The model takes into 

account the relative position of the two fish to 

estimate the strength of the EI caused by one 

fish (designated as “sender”) onto the body of 

the other (“focal” fish). A. Three relative 

positions are illustrated here representing 

different phases of a fish approaching the focal 

fish. B. The EI is quantified based on the 

strength of the transdermal voltage at the 

peak of the beat AM caused by the interaction 

of the fish’s EODs. The strength of this AM is 

then normalized to the baseline EOD strength 

(i.e., EOD amplitude when only the focal fish is 

present) to obtain an EI strength expressed as 

percent contrast. 0% contrast indicates that 

the signal from the sender fish has no impact 

on the receiver and 100% contrast indicates 

that the sender’s signal is as strong as the focal 

fish’s own EOD. We can see that for the 2 
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more distant positions, the signal strength is weak (<1%) and there are only minute differences 

in signal strength across the receiver’s body. When the sender is very close, however, a salient 

“hot spot” has a much stronger EI strength than other portions of the body (note the different 

color scales for each image). We show as an inset on the right, the electric field with current 

lines (grey lines), and the iso-potential lines are depicted for the near-field range as a color 

gradient (red or blue depending on polarity). The perspective in this inset is from the top as in 

A) while the EI illustrations in B) present a perspective of the side of the focal fish being 

approached by the sender. 
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Figure 2: Spatial structure of the receptor array. 

A. Receptor density across the body of the fish 

was determined experimentally. Eosin Y-stained 

specimen were examined and cutaneous 

receptors of different types were identified (e.g., 

Neuromast labelled N, ampullary labelled A, or 

tuberous receptors, labelled T in the inset on the 

top right). The number of tuberous receptors in 

1mm2 areas was averaged across samples for 

each face of a coarse 3D mesh model of the fish 

(B). Receptor density as a function of body 

position was then smoothed by fitting a 5th 

degree polynomial and mapped onto the fine 

mesh model used in the EI model (C). For each 

face of this 3D mesh, random receptor positions 

were selected according to the receptor density attributed to each face. The receptor positions 

that we generated are marked by the dots in B) and C) and their color reflect the density of 

receptors for the corresponding position. 
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Figure 3: EI strength as a function of 

relative position of the two fish.  A. The 

strength of the EI from the sender was 

calculated for each receptor position. It is 

displayed here for the 3 relative fish 

positions illustrated in Figure 1 (note the 

difference in color scale for position 2 vs 1 

and 3). The focal fish are presented here 

from a top perspective. B. The strength of 

the electric image is characterized as a 

function of distance and azimuth. The EI 

for 864 relative positions (12 distances x 

72 azimuths) was calculated and the 

strength of the signal in the “hot spot” 

(HS; taken as the average of the 5% most 

strongly activated receptors) is depicted 

by the color scale. The position of the sender fish for position is based on the center of the EO 

and the data points have been repositioned to reflect the distance between the center of the 

HS on the focal fish and the EO of the sender rather than the center of the focal fish. The EI 

strength values (contrast %) have been interpolated between data points. C. Average contrast 

values in the HS across azimuth and for fish displayed as a function of the distance between the 
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hot spot and EO centers. The relationship follows a cubic power law (red best fit curve: 

c=1.6·104·x-3).   
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Figure 4: Heterogeneous population response in modelled receptors. A. LIF models with 

heterogeneous response properties were stimulated with realistic inputs that match the spatio-

temporal structure of conspecific signals. In the color map (top), each receptor’s response is 

quantified as the peak-to-trough firing rate modulation and normalized relative to spontaneous 

modulations in firing rate occurring when no second fish is present (i.e., a relative response of 1 

reflects modulations in firing rate similar to spontaneous activity). The two raster plot insets on 

the left show the response patterns of two individual neurons from portions of the fish’s body 

that are more or less strongly stimulated. The raster plot on the right shows the population 

response: we show a stack of 800 randomly selected receptor responses ordered from weakest 

peak-to-trough responses (bottom) to strongest responses (top). B. We display the same 

elements as in panel A. but the position of the sender fish is more distant (position 1 of Figure 

1) compared to nearby relative position used in A. (position 2 from Figure 1).  
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Figure 5: Sensitivity of the receptor model 

replicates responses to beat stimuli. A. Mean 

firing rate (averaged across all receptors) 

during a single cycle of a 30 Hz AM beat 

stimulus for different contrast intensity. The 

model produced modulations in firing of just 

a few spikes/s peak-to-through for the 

weakest intensities and of a few hundred 

spikes/s for the stronger intensities. B.  F-I 

curves display the strength of the response as 

a function of the stimulus intensity (mean 

across the population ± s.d.). Average peak-

to-through firing rate quantified in a similar 

way but during spontaneous activity (no 

sender fish) is display (grey dashed line) and 

we can see that for the weakest stimuli the 

average response is similar to spontaneous 

activity. Response sensitivity has been calibrated to match published data (Bastian, 1981; 

Nelson et al., 1997; see also Methods and Supplementary Figure S1). C. The distribution of 

responses strength across the population of receptors is displayed for sender fish positioned at 

different distances (azimuth 90º). The outer distributions (black violin plots) show the variability 

of peak-to-through firing rate on single cycles of the beat for single neurons. The inner 
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distributions (colored violin plots) show the variability across neurons but for each neuron 

peak-to-trough firing rate is averaged across the whole stimulus (900 cycles, 30 s). The mean of 

this distribution (i.e., also averaged across neurons) is displayed as a white line. Dotted grid 

lines (in grey) are provided in the background to help notice minute differences in the 

distributions. The fact that only subtle differences between the distributions for stimuli at 

distances of 40 cm or more compared to responses in the absence of second fish highlights the 

difficulty in detecting these distant signals.  
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Figure 6: Estimates of detection sensitivity 

as a function of relative fish position and 

the influence of receptor density 

distribution. A. Detection sensitivity is 

quantified as the time it would take to 

reliably detect the presence of the sender’s 

signal and is displayed as a function of the 

relative position of the sender. For each 

position (12 distances x 72 azimuth) the 

peak-to-trough responses of the 

population are compared to spontaneous 

responses. As peak-to-trough is averaged 

across cycles of the beat (increased time to 

detection), detection becomes more 

reliable because noise is averaged out. We 

display the stimulation time required for 

our decoder to reach reliable detection 

(<5% error; see Methods for more details). Each position is defined by the distance and azimuth 

between the center of the receptor positions in the focal fish and the center of the EO in the 

sender fish. Values for each data point are then interpolated across space to obtain the 

smoothly varying color plots. B. Decrease in detection sensitivity (increased time to detection) 

caused by reducing the density of receptors in dense areas (i.e., making it uniformly low like the 
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density in the caudal portion of the body). The decrease in density makes uniformly no 

difference nearby (black region). It uniformly increases time to detection when the sender is 

very distant (distant black area in panel A). It has a most pronounced effect at mid distance (40-

50 cm) in the frontal azimuth (yellow area) where time to detection increases from 1-2 s to 2-6 

s (see also Supplementary Figure S3) showing that the rostral high density of receptors can 

increase detection sensitivity in the frontal quadrant. C. The overall detection sensitivity (time 

to detection averaged across azimuth) decreased markedly at distances above 30 cm when 

receptor density is made uniformly low (black line compared to red line) and decreases further 

when receptor density is made even sparser (1/2, 1/4 or 1/8 the size of the uniform population; 

grey curves). 

  



88 

Figure 7: Estimates of angular resolution 

supported by the receptors’ response 

accuracy. A. Angular resolution estimated as a 

function of distance and azimuth of the 

sender. The analysis is based on the average 

peak-to-trough firing rate (30 cycles average, 

i.e., 1 s) of each receptor for a given stimulus 

location. Population responses for a sender at 

a given test azimuth was compared, by our 

decoder, to responses for a sender at various 

angular displacement (clock-wise or counter-

clock-wise; distance kept fixed). The smallest angle that allows 95% accurate discrimination 

between the responses was taken as the angular resolution. Failure to discriminate responses 

for stimuli locations 180º apart (black regions on the graph) indicates an inability to localize 

reliably the azimuth of the sender’s location. Data points for 72 test azimuths and 12 distances 

(i.e., 864 positions) were generated, taking the center of receptors location for the focal fish 

and the center of the EO for the sender fish as position values. Data values are then 

interpolated to obtain the smoothly varying color plot. B. The angular resolution (mean ± s.d. 

across azimuth) can be calculated based on peak-to-trough responses of the receptors to a 

single cycle of the stimulus or on the peak-to-trough averaged across several cycles. Averaging 

the response across cycles corresponds to a decoder that integrates the response across time 

to get a more accurate estimate of response strength. Consequently, angular resolution 
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improves as the decoder integrates across more time, but in all cases we still see a sharp 

change in resolution from very accurate (e.g., at distances below 20 cm) to very poor (e.g., 

above 50 cm). 
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Figure 8: Receptor density and angular resolution as a function of azimuth. A.  Angular 

resolution for a sender fish at various positions around the focal fish was calculated as in Figure 

7, but the way distance is normalized across angles is different. We still compare, with our 

decoder, positions at different angles while keeping the distance equal. Here distance is set by 

the distance between the rostral tip of the sender and the closest point on the surface of the 

focal fish. The fish are thus separated by a fixed gap set to 1/4, 1/2, 1 or 2 body lengths (i.e., 

3.5, 7, 14 and 28 cm respectively). In Figure 7, the gap between the fish was not consistent 

across azimuth since the distance was set between the center of receptor locations in the focal 
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fish and the center of the EO in the sender. For example, the rostral tip of the sender was closer 

to the skin of the receiver when it was at 180º than when it was at 0º. The positions of the 

rostral tip of the sender, for the 72 angles and 4 distances, are marked with dots on this figure. 

Datapoints for various positions are still mapped on the color graph at the position of the 

middle of the EOD of the sender and the color gradient interpolated between datapoints. B. 

Decreasing the density of receptors in dense areas (i.e., making receptor density uniformly as 

low as density in the caudal portion of the body) causes decreases in angular resolution. This 

resolution decrease is strongest in the red area of the graph. We note that this decrease is 

relatively limited and not concentrated in the frontal quadrant. C.  Angular resolution as a 

function of azimuth, distance and receptor density. This is the same data used to generate 

panels A and B but shown here in 2D. The change in resolution as a function of azimuth is 

clearly visible even when receptor density is uniform across the body D. Angular resolution 

averaged across azimuths for different receptor density patterns. The full population is 

compared to a uniform lower density population or to populations made even sparser (1/2, 1/4 

or 1/8 the uniform population). Decreasing the receptor density decreases angular resolution. 

E. Changes in EI for small angular displacements (averaged across 5°, 10° and 15° 

displacements) are compared across azimuth and related to the angular resolution of the 

system. For a given displacement, the difference in EI was characterized by integrating the 

difference in EI strength across the body surface. This EI difference was calculated for various 

azimuth and at the 2 distances (1 or 1/2 body length apart) that give medium angular 

resolutions. We show that the EI difference correlates with angular resolution with an 

exponential relationship (black best-fit curve, r2=0.98). 



92 

  



93 

Supplementary Information 

 

Table S1: Model parameters used for the prototypic seed neuron (see Methods for details). 

Description Name Value Description Name Value 
Membrane time 
constant (s) 

τm 15·10-4 Noise strength (A) Aσ 15·10-9 

Lean reversal 
potential (V) 

Em -70·10-3 Adaptation reversal 
potential (V) 

Eα -80·10-3 

Membrane 
resistance (Ω) 

Rm 15·105 Adaptation 
increment (V) 

Δα 14.5·10-8 

Spiking threshold 
(V) 

VT -49·10-3 Adaptation time 
constant (s) 

τα 50·10-3 

Reset potential (V) VR -70·10-3 EOD amplitude (A) AEOD 1.7·10-7 

Refractory period 
(s) 

tR 9·10-4 EOD baseline bias 
(A) 

β 3·10-8 
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Figure S1: Average response properties of the heterogeneous population of modeled 

receptors. 

A. Example of the membrane potential and spiking pattern of a model response 

(spontaneous activity). B. Inter-spike interval histogram of 2 different model neurons 

(spontaneous activity) showing phase locking to the EOD period and different firing tendencies. 

Note that the x-axis is expressed in multiples of the EOD period but since we used an EOD 

frequency of 1,000 Hz for simplicity, this also corresponds to ms. C. Distribution of spontaneous 

firing rate across our entire population. This distribution was achieved by selecting 26 seed 

neurons with firing rates unevenly distributed along this range and diversifying model 

parameters based on these seeds (see Methods). This range and distribution replicates 

published data (Bastian, 1981; Grewe et al., 2017; Ratnam & Nelson, 2000). In particular, the 

mean spontaneous firing rate was 251 spk/s with a CV of 0.45. D. Responses to step increases in 

EOD intensity. The strength of the peak response, the steady-state response, and the 

adaptation time course was matched to published data (Benda et al., 2005). E. Response gain to 

beat stimuli of different AM frequencies. Although we did not explore systematically the 

response of our model at different beat frequencies in the results section, we calculated the 

gain for a range of AM frequencies. This analysis helps us to evaluate the sensitivity of the 

neurons (see the absolute scale on the left) and it also helps to assert that the adaptation 

dynamic replicates some of the tuning properties of the neurons (see the relative scale on the 

right; gain for an AM of 1 Hz is normalized to 1). This average gain curve is comparable to 

experimental data (Chacron et al., 2005; M. E. Nelson et al., 1997). F. Relative firing rate during 

random amplitude modulations. We replicated a published analysis of receptors sensitivity 
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(Gussin et al., 2007a) that measure the relative firing rate (relative to average) in successive 32 

ms windows during the response to a low frequency (0 to 4 Hz) random amplitude modulation. 

We note that our scale is different than theirs: our ± 5% values correspond to the absolute 

contrast of the stimulus (i.e., s.d. of 10% contrast) whereas the scale in their Fig 3 has ± 50% 

being the min-to-max of their 10% contrast stimulus. When converted to the same scale, we 

find a gain slope of 23.7 spk/s/% (± 5.8 s.d.) comparable to the 17.7 spk/s/% (range 3.2 to 40.2) 

they found. G. Mean coherence at 10-30 Hz for random amplitude modulations (0-100 Hz) of 

different overall intensities (contrast). We qualitatively matched the coherence to values found 

in previous publications (Chacron et al., 2005; Grewe et al., 2017). H. Firing rate modulation in 

response to random amplitude modulations (0-300 Hz). We replicated the analysis in Grewe et 

al. (2017; see their figure S1A) that plots the standard deviation of the response (averaged over 

trials) as a function of stimulus contrast. Their population averages go from approximately 100 

spk/s for 2.5% contrast to 200 spk/s at 20% contrast with a large variability among the 

population; we have a population average between 90 spk/s and 250 spk/s respectively. 
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Figure S2: Receptor density compared between our full population (A) and our uniformly low-

density population (B). Each dot shows the position of a receptor and the color reflects the 

density of the receptor at this location. The uniform population was created by selecting, for 

each face of the mesh model, a subset of receptors from the full population to match the 

density of 2 receptors per mm2. 
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Figure S3: Detection performance as a function of source location and receptor structure. We 

compare a full population of receptors that includes a high density in rostral regions with a 

population that has a uniform density across the body matching the low density of the caudal 

region of the body (see Figure S2B). We present here the results for distances above 25 cm 

where we can see differences across azimuth and population structures. Our decoder considers 

that the response strength of receptors can be integrated across time and thus more noisy, 

weak responses require integration across longer periods to reach a reliable detection 

performance. We plot here the integration time required for our decoder to reach 95% 

detection accuracy and plot this here as a function of stimulus location. 
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Chapter 3 

Prologue 

In the previous chapter, I characterized the structure of the signal reaching the fish and 

the response of the receptors. I also calculated the detection and localization accuracy. In the 

above case, the stimuli were from a stationary fish i.e., no movement involved. However, in the 

natural environment, free movement contributes to creating a more dynamic sensory problem 

for the fish. Therefore, to further understand how the sensory signal can guide behavior we 

first need to characterize the movement patterns characteristic of social interactions. Here I 

characterize the movement pattern during agnostic encounters and delineate the movement 

sequences these fish display.  

This chapter will be included in a publication that will be submitted as “Ramachandra, K. 

L., Sophia Keith & Marsat, G. (2023). Movement patterns during social interactions in Ghost 

Knifefish.” 

My contribution to this paper represents the majority of the content: Ramachandra and 

Marsat designed the experiments, Ramachandra performed the experiments with help from 

Keith, Ramachandra analyzed the data, and Ramachandra wrote the paper with help from 

Marsat. 
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Abstract 

Despite behavior being very variable, we can typically decompose it in sequences of 

stereotyped movements and we can identify distinct categories of motor patterns. Interaction 

occurring during conflict is one of the most common types of social interaction that ethologists 

have focused on. For a given species, conflict resolution typically follows a specific progression 

allowing each individual to assess their relative capacity. Weakly electric fish is an important 

model system used to better understand sensory processing and the evolution of signaling. 

Although we have numerous reports on the communication underlying agonistic encounters in 

these fish, no systematic description of the physical interactions taking place are available. Here 

we aimed to provide a thorough characterization of the distinct movement patterns observed 

during agonistic encounters. To do so we performed behavioral recording of pairs of fish placed 

in a variety of situations. We identified nine categories of movements and show that specific 

sequences of these behavior are displayed by the fish. Our results indicate that conflict 

resolution in these fish follows a cumulative assessment strategy where distinct aggressive 

moves are produced in a variable sequence. This study provides a strong framework to 

delineate how agonistic interactions unfold in these fish and can serve as the foundation to 

provide a quantitative understanding of the signals experienced during these behavior and how 

sensory processing can support targeted actions.  
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Introduction 

Behavior is the result of complex motor and decision-making process that make it 

inherently very variable. Nevertheless, we can often categorize behavior in distinct sequences 

or identify stereotyped movement patterns that occur in succession to constitute behavioral 

responses. This is true of a simpler invertebrate system, a fly for example that produces 

stereotyped grooming movement, alternating the grooming of different body parts (Mueller et 

al., 2021). It is also true of vertebrates, for example, courtship in bowerbirds consists of a 

repertoire of moves and signals that are produced in a variable order (Mitoyen et al., 2019; 

Patricelli et al., 2002). Another illustration of this fact comes from agonistic interactions in red 

deer that follow a strict sequence of stereotyped displays (Clutton‐Brock et al., 1979). An 

important step in understanding animal behavior is to identify these distinct behavioral 

patterns and reveal how these patterns are stringed into specific predictable sequences. The 

classical ethogram approach has been instrumental in clarifying how sequences of motor 

patterns are assembled into complex behaviors. In this paper, we aim to better understand the 

sequences of movements occurring during agonistic encounters in gymnotiform weakly electric 

fish.  

Weakly electric fish are nocturnal and live in muddy, turbid water which makes vision 

rather ineffective to guide navigation. To overcome this issue these fish evolved an electric 

organ that runs along the caudal portion of the fish (Baker et al., 2013). In Apteronotus, the 

species studied in this study, the electric organ produces a constant semi-sinusoidal wave of 

electricity for the entirety of the fish life called the electric organ discharge or EOD(Bullock et 

al., 1986; Maler, 2007). The distortions in the fish EOD caused by objects and animals allow the 
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fish to map its environment. Weakly electric fish thereby possess an active electrosense where 

the EOD (Lissmann, 1951), and its environment-imposed distortions, is perceived by 

electroreceptors on the skin. Anything in their environment that is more or less resistive than 

water will cause a distortion of this electric field and cast an “electric shadow” (Rasnow, 1996) 

on the sensory surface. The ability of the fish to navigate and locate prey based on the 

electrosense is well characterized (Nelson et al., 1999; Postlethwaite et al., 2009; Stamper et 

al., 2012; Von Der Emde et al., 1998). They also rely heavily on this electrosense when 

interacting with conspecifics to identify, communicate and locate each other (Kolodziejski et al., 

2007; Zakon et al., 2002; Zupanc et al., 2006). During social interaction, the spatially diffuse 

electric fields of each weakly electric fish combine in the water. Due to the changing phase 

relationship of the two EOD, the combined signal contains amplitude modulations known as the 

"beat” (Heiligenberg, 1975). Because the beat signal results from the presence of a conspecific, 

it carries information about a conspecific’s location, for example, the signal will be strong on 

the side where the other individual is located. Lab and field studies show that weakly electric 

fish can leverage the spatial cues in the signal to localize a conspecific. A field study by 

Henninger and colleagues used grids of electrodes placed in river streams and creeks to 

triangulate and track individuals in their natural environment over long periods of time 

(Henninger et al., 2018). This study details the range of detection of conspecifics via this 

electrosense and their data suggests that weakly electric fish routinely communicate with each 

other over distances of up to 30 cm, while also revealing that two fish can detect and localize a 

conspecific at distances of 1 meter or more. For example, they documented a resident fish-

initiated attack towards an intruder located 1.7 meter away. 
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In this paper, we focus on agonistic social interactions. During such interactions, they 

perform precisely coordinated maneuvers relative to one another. For example, the fish chase 

each other at high speed in the dark. The task appears simple however requires precise and 

rapid localization of the other individual based on the electrosensory signal. Casual 

observations of fish interacting allow us to appreciate how navigation guided by this 

electrosense permits rapid and accurate movements but we do not have a systematic 

characterization of the kinematic of interacting fish. Understanding the kinematic of interacting 

fish is important to understand the spatiotemporal structure of the signal and the cues used to 

localize conspecifics. Understanding the structure of stereotyped and behaviorally relevant 

behavior can help understand how signals are processed. For example, a study on stereotyped 

movement in hoverflies shows how spatial information from the retinal flow reflected an active 

sensing strategy to enhance spatial processing (Geurten et al., 2010). We have only casual 

observations of such stereotyped behavior in interacting fish (e.g., chases, lunges…) but we lack 

a systematic understanding of the kinematic occurring during social behaviors.  

In this paper, we recorded the interaction of pairs of fish and categorized movement 

patterns and their sequence. We identified nine distinct patterns of movement and our results 

show that they are sequenced in specific order during agonistic interactions. We conclude that 

agonistic interactions in knifefish is consistent with the cumulative assessment model of conflict 

resolution. This data allows us to better understand the dynamic of conflict in these fish. Also, 

the detailed characterization of relative movement patterns will allow a quantitative 

description of the sensory signals that underlie the perception of conspecifics and thus directed 

movements. This study is thus fundamental, not only because it characterizes a key behavior in 
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this important model system but because it serves as an essential prerequisite to clarifying how 

sensory processing supports behavior.  

.   
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Methods 

Animals and Housing 

Wild-caught fish Apteronotus leptorhynchus were obtained from commercial fish 

suppliers. The water was maintained at 27oC and a conductivity of 200-300 µS and the room 

was subject to a reverse light cycle. The sex and age of the fish cannot be determined from 

visual inspection. A given fish was never tested more often than once a day. Animal care and 

experimental protocols were approved by West Virginia University IACUC. 

Behavioral Paradigm 

In order to get data on social interactions, fish were placed in a range of situations 

(experiment 1a-c, see figure 1) where they interact with each other. We note that due to the 

limits of the laboratory setting, we cannot consider all possible stereotyped movements that 

these fish might exhibit in the wild, for example during courtship. Our analysis will focus on 

agonistic and inquisitive behaviors routinely displayed in the lab. The fish were placed in the 

experimental tanks 100 x 100 cm with an open octagonal area. The water was kept at the 

similar conditions to the housing tanks. The chasing behavior was filmed using a video camera 

(Allied Vision, MantaG-4719B NIR) in IR light and recording occurred at their peak active period 

shortly after lights are turned off for the day. Videos were captured at 30 frames per second 

with a spatial resolution of 2033 x 2022 pixels. A single camera was sufficient to capture the 

relevant movement patterns (i.e., 2D motion) because these fish are typically bottom dwellers 

and thus the vast majority of their movement can accurately be described in 2D. We intervened 

if the interaction became aggressive to the point where they could be harmed if they 

continued. 
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Experiment 1a: Resident-intruder scenario. These fish will compete over the best 

shelters (Fugère et al., 2011).  A fish was introduced into the experimental tank a day (~24 hrs.) 

before the start of the experiment to fully explore the experimental arena. A single shelter is 

placed in the center of the tank: a clear plastic tube where the fish are used to hiding Once the 

resident fish was habituated, an intruder fish was introduced. The recordings captured the first 

20 minutes of interactions where the probability of interactions was highest. 

Experiment 1b: Competition over food. Social interactions can also occur when foraging 

for food. Two fish were housed in separate enclosed areas in opposite corners of the 

experimental tank. For the training, each fish was let out of their area individually, and food -

just enough to feed one fish- was placed at the center of the tank. The fish were free to swim 

and explore until they found the food. The training phase continued until the fish were able to 

go towards the feeder as soon as the shelter door was open (up to 10 days for some 

experiments). Once both the fish had successfully learned the task they were allowed to come 

out of the feeder at the same time and this forced the fish to interact. Each trial lasted only 5 

minutes as after 5 minutes the fish for the majority of the time were uninterested in each other 

and were seen exploring corners of the tank.  

Experiment 1c: Targeted investigation. The presence of an unknown neighboring fish 

can elicit investigative social interactions. Both fish were placed at the same time in a mesh 

enclosing so that they can sense and locate each other. The fish were placed at various 

positions relative to one another. Once they are habituated for 15 min, the focal fish was 

allowed out of the enclosure to go investigate its neighbor. The focal fish was allowed to 
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explore for 2 minutes before the other fish was let out of the arena and their interactions were 

recorded for an additional 5 minutes. 

Analysis 

Video Tracking 

From the behavioral recordings, we tracked the animal’s position (center of the body, 

head, and tail) based on the contrast between the light background and dark fish body using a 

custom-written semi-automatic tracking program in MATLAB (2019a, MathWorks). We tested 

several automatic tracking software available for tracking multiple animals (Mathis et al., 2018; 

Nath et al., 2019; Pereira et al., 2019; Walter & Couzin, 2021) however due to the unique 

swimming patterns and tail flicks which caused higher motion blur the available software were 

unable to reliably track the fish. Hence, we developed our own tracking system. The tracking 

algorithm first creates a mean image from the majority of the frames to establish a background 

that we subtracted from each frame to get only the fish in the frame and remove the rest of the 

tank and accessories. To determine the position of the fish the centroid was calculated from the 

extracted shape of the fish. Given that the head of the fish has a larger area compared to the 

tail, by comparing the areas, the bulkier area was assigned as a head and the other as a tail.  If 

for some reason the fish was obstructed from view for a few frames, the position in the 

surrounding frames was used to interpolate the position.  There were also instances where the 

fish get very close which could lead to the swapping of identities between the fish. Such 

instances were flagged automatically and an experimenter visually confirmed tracking and 

manually corrected any discrepancies.  
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Once the coordinates of the fish were calculated, we determined the absolute and 

relative kinematics of interest (relative azimuth, heading, speed, and distance between fish). 

The distance between the fish was calculated as a simple Euclidian distance between the two 

centroids of the fish. To calculate the speed, we calculated the distance the fish traveled 

between successive frames. The heading angle was calculated as the angle between the 

centroid of the fish and the head of the fish. While the relative azimuth is calculated as the 

difference between the heading of the second fish and the angle between the centers of the 

two fish.  

Identification of Behaviors 

We tested several quantitative ways to delineate and identify different movement 

patterns (see Results) but we also performed visual inspection to establish the different 

behavior categories and mark each video with a moment-by-moment description of the 

movement pattern the fish are performing. Pattern identification by humans is still a very 

powerful way to qualitatively describe behavior and this traditional method has been used 

successfully in numerous studies (MacNulty et al., 2007; Mas-Muñoz et al., 2011; Xu et al., 

2012). Four experimenters were involved in visual inspection of the recordings and the videos 

were marked by at least two experimenters to confirm that marking was consistent across 

experimenters. Since we found very little discrepancy, we are confident that the results are 

accurate.  

We identified nine unique behavioral movement patterns. For each behavior, the start 

and stop time and the movement pattern label were noted in order to create a continuous 

frame-by-frame commentary of the video. The distance between the fish and the position of 
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one fish with respect to the other played an important role in labeling some of the behavior. If 

the fish were far away from each other or the fish were swimming without interacting we 

categorize them as “passive avoidance”: the fish avoided each other by being stationary or 

swimming slowly in separate portions of the tank. “Active avoidance” occurs when both fish are 

swimming close to each other but avoiding directly coming into the path of the other fish or 

one fish is stationary and the other fish is swimming close to the stationary fish but actively 

making sure not to get to close to the fish. “Approach”, in which one fish actively swims 

towards the other fish and usually results in one of the aggressive behaviors. “Recede” is when 

one or both fish move away from each other. These four are referred to as general movement 

patterns and we also identified several patterns more specifically associated with agonistic 

interactions. A few chasing behaviors were identified. “Linear chase” is very common and 

consists of one fish chasing another fish from behind in a linear trajectory over a certain 

distance and at high speed. A “Circular chase” occurred when both the fish were involved in a 

circular trajectory. The trajectory could be turns always in the same sense or sequences of 

mixed left and right turns. “Failed chases” occur when one fish starts to pursue another fish, 

but it ends before there is a sequence where it follows the fish over a distance. “Mouth 

wrestling”, in which the fish fought face to face pushing and biting each other keeping their 

mouth open a significant portion of the time. Contrary to mouth wrestling patterns in other 

fish, there rarely were sequences with the fish grabbing each-other by the mouth and wrestling 

that way. Nevertheless, the behavior has enough similarities with mouth wrestling in these 

other species that we felt it was appropriate to label it that way. Finally, “Bite/lunge” is defined 

as when the aggressive fish lunges to bite usually the tail or midbody of the other fish. 
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Transition matrix 

We calculated the probability of transition from one behavior to another as a 

conditional probability problem that was normalized relative to the probability that happened 

in no preferred sequence. The probability was calculated as Relative Probability = P(2nd|1st) / P2nd* 

were P(2nd|1st) is the conditional probability that behavior 2 follows behavior 1 and P2nd* is the 

probability of behavior 2 among all behaviors except behavior 1. We calculated a confidence 

interval by shuffling the sequence of behaviors in each video and calculated again the relative 

probability for each sequence. We took a 95% upper and lower threshold given this distribution 

of randomly sequenced relative probabilities. Relative probabilities above or below these 

thresholds are marked as significantly different from chance. 

EI model 

The electric image used in this study was based on the established methods developed 

by Caputi and Budelli (Caputi et al., 1998; Caputi & Budelli, 1995) and implemented using 

software developed by Rother (Rother et al., 2003). More information can be found in these 

publications and in a previous paper where we adapted and used this electric image model 

(Ramachandra et al, 2023).  
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Results 

Behavioral scenarios and movement tracking 

We aimed to capture a diversity of interaction patterns by setting up pairs of fish in 

different scenarios. We have not explored the wide range of behaviors that could be observed 

in natural conditions, for example, courtship, and focused on a category easy to replicate in the 

laboratory. Specifically, we placed fish that are in non-breeding conditions, in a large arena in 

situations where they encountered an unfamiliar conspecific of either sex. Three scenarios 

were established to stimulate the fish to interact (Figure 1; see methods): 1-resident-intruder, 

2- competition of a resource (food), and 3- targeted investigation. While we were able to 

capture 40 hrs. of interactions, 15 hrs. of recording during these experiments (n=25 fish pairs) 

consisted of the fish being passively in their own space and were not analyzed. These fish are 

typically bottom dwellers and the vast majority of their movements can be captured through a 

2D characterization. Even if the behavioral recording where limited to 2D video (1 camera from 

the top) automatic tracking with available software did not provide reliable results due to the 

movement patterns unique to these fish (e.g., swimming backwards and laterally) and to the 

fact that two fish coming together were often mislabeled as one-another. We devised our own 

automatic tracking software (Figure 2) that included a manual validation step: bouts of 

movement where tracking accuracy was expected to be prone to errors (e.g., fish come 

together and there is uncertainty about which fish continues to which trajectory) was flagged. 

Visual confirmation and manual adjustments could then be implemented where needed. As a 

result, tracking is rapid, accurate, and requires minimal human intervention. The algorithm 

determines the “center of mass” of each fish, their rostral and caudal extremity (curvature can 
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be calculated), and their heading angle for each frame. This software is now publicly available 

(Supplementary Information) and might particularly benefit research on these fish with unique 

movement patterns. From these position data, we calculated a wide range of parameters that 

could have been useful to characterize the movement patterns of one focal fish relative to the 

other: distance, azimuth, relative heading angle, speed (relative or absolute), and the relative 

direction of movement. The time-course of these values, or their variability in small time 

windows, was used as input to our movement patterns analyses.  

Movement patterns 

One of our main goals was to identify recurring movement patterns that these fish 

employ when interacting with one another. Indeed, casual observations of fish interacting 

suggest that stereotyped movement patterns can occur. Chases for example are striking 

example of common behavior that seem to consist of specific relative movement (one fish 

behind the other chasing it at high speed and close distance). We thus hypothesized that 

relative movement data would form clusters reflecting a set of stereotyped movement patterns 

such as chasing. We used different approaches to categorize movement patterns. A classical 

qualitative approach (see methods) involved the experimenters visually classifying movement 

patterns and marking moment-by-moment interactions. We also implemented quantitative 

approaches to clustering movements to automatically identify stereotyped patterns and score 

the behavioral recordings. 

We identified 9 types of movement during our qualitative analysis (Figure 3). Some of 

these movement patterns can be further divided based on the role of each fish in the behavior 

when the behavior is asymmetrical. For example, chases could be subdivided and chasing or 
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being chased. We will consider these subdivisions below and first focus on the 9 broad 

categories of movement behaviors (see supplemental video). Three of the kinetic measurement 

were most useful to characterize the relative movements: absolute speed, relative distance, 

and relative azimuth. These measures consider a focal fish which, in this analysis, was taken as 

the fish initiating the behavior (e.g., chaser rather than chasee).  

Several of the identified behaviors consist of simple movements of the fish relative to 

one another. The most common behavior was passive avoidance where the fish avoided each 

other by either being stationary or swimming slowly in the opposite ends of the tank. We 

observe this behavior over 65% of the time in the recordings. We defined it as an active 

avoidance situation where the fish are closer to each other and actively swimming but avoiding 

coming directly next to each other. We also observe a bout where one fish came directly 

towards the other (approach) or away (recede). When the fish are interacting more 

dynamically, we identified 4 main behaviors. Linear chases are common types of interactions in 

which one fish is located behind another and is chasing the other along a linear path. 

Sometimes behaviors that looked like chases failed to proceed to a full-fledged chase. Chases 

could also include numerous twists and turns and are designated as circular chases. Brown 

ghost often open their mouth and/or perform biting motion, presumably as threat displays. It 

appears that many of these actions do not result in physical harm (we would have stopped 

interactions that could have escalated to that point) but they are the most serious displays of 

aggression. We differentiated a behavior we describe as mouth wrestling from biting 

movement initiated by one fish towards the other. Some species of fish perform behaviors 

more rightfully described as mouth wrestling (e.g., in cichlids, Brick, 1998) where the fish lock 
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mouths together and exert force on one another. We see here a mouth-to-mouth fighting 

behavior that shares some similarities even though their mouths are not locked together. They 

are face-to-face in close proximity with their mouth open and produce biting and grabbing 

movements with forceful movements towards each other. Other biting behaviors are more 

unidirectional. One fish lunge at the other from various relative angles (e.g., from the side) 

often accompanied by biting motion. It is often directed at the mid-body or tail of the other fish 

and may not end with actual physical contact even when the fish on the receiving end did not 

move away to avoid it. It is possible that actual bites and lunges/pretend bites are two levels of 

this threat behavior.  

We characterized the kinetic patterns of these behavior (see methods) and display 3 

important aspects of the relative movement properties: speed, distance, and relative azimuth. 

A few general observations about these characteristics are worth noting. For the more general 

swimming behaviors (Fig 4) we note that swimming speeds are typically in the lower range and 

we see few bouts of fast swimming at speeds above 5cm/s, contrary to agonistic behaviors (Fig 

5) that can involve faster swimming (e.g., linear chases). Some of these movement behaviors 

involve the fish being far away from each other, partly due to the definition of the behavior. For 

example, passive avoidance requires the fish to be distant so they don’t need to actively avoid 

each other while moving. Other movement behavior seems to occur at closer ranges. In 

particular, it is interesting that targeted approaches occur only when the fish are withing 30-40 

cm of each other. Agonistic behaviors (Fig 5) also happen in a fairly close range of less than 30 

cm, the distance center-to-center being most often in the 0-20 cm range. We also note that 

some behavior involves specific relative azimuthal positions: fish receding has the other fish 
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behind them, chases have the chasers in behind them, and mouth wrestling happens face-to-

face. Other behavior does not involve specific relative angles, for example, biting or even 

approaches involve a variety of relative angles. We note that this diversity or relative azimuth is 

made more diverse by the fact that these fish can swim side-ways or backward so the direction 

of their movement doesn’t automatically align with their heading angle.  

Although only a few kinematic and relative positions properties are detailed here we 

used various other aspects in our attempts at quantitative analysis. We used several 

approaches to try to identify stereotyped patterns of movement. We tried clustering analysis 

using various techniques (e.g., K-means), dimensionality reduction methods (e.g., PCA, tSNE), 

and unsupervised neural networks (SOM maps, UMAP and HDBSCAN). While we had limited 

success with subsets of behaviors, these methods failed to identify clear clusters when our 

whole dataset is used. Dissection of the behaviors identified visually -and their properties’ 

distributions- indicated that although we can categorize behaviors using specific criteria as 

boundaries, the behaviors are very variables and fall along a continuum with indistinct 

boundaries between the categories. This is illustrated by mapping the behaviors we identified 

using 6 kinetic parameters (plotting them using PCA to reduce it to 3 dimensions; Figure 6). The 

visually identified behavior mostly falls along distinct regions of space but high-density clusters 

separated by boundaries with fewer data points are not visible. We have not explored all 

possible ways to analyze the data, and the fact that we can visually identify distinct behaviors 

suggests that categorization is possible, but the complexity of the problem makes it an 

endeavor that will have to be tackled in future efforts. 
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Ethograms 

Next, we question whether specific sequences of behavior can be observed. 

Alternatively, the probability of a given behavior being followed by a specific second one is 

random and simply reflects the different propensity of the different behaviors. For example, a 

bite could be systematically followed by a chase but never by active avoidance. We calculated 

the conditional probabilities of transitions from one behavior to another and normalized it 

considering the random probability of each sequence (Figure 7). As a result, a value of 1 

indicates a random chance for the specific sequence. A value of 2 for example indicates a 

probability twice larger than chance to have the specific sequence. We calculated a 95% 

confidence interval based on random shuffling of behavior sequences and mark with an asterisk 

probability significantly more or less likely than chance. We see that most sequences are 

significantly different than chance indicating that specific sequences of behavior occur. We note 

a few general patterns. First, fish cycle in and out of passive avoidance with approaches 

recedes. Approaches are followed by one of the agonistic behaviors: chases, biting, or mouth-

wrestling. The agonistic behaviors are interspersed with active avoidance and are rarely 

followed immediately by another type of agonistic behavior. The bout of agonistic interactions 

ends with one of the aggressive moves (chase, mouth wrestling) leading to one of the fish 

moving away and entering a passive avoidance state.  
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Discussion 

The goal of this study was to characterize movement patterns and delineate behaviors 

during agonistic interactions. In order to do so, we developed a semi-automatic rapid tracking 

system that can track the position of the fish. Using azimuth, speed, and distance as factors we 

characterized 9 unique stereotyped behavior in interacting fish. For each of the behavior, we 

were able to create a quantitative description of the behaviors. An important result of our 

study is to have identified the distance ranges at which active interactions occur. We found that 

clear interaction starts occurring at 40 cm but the bulk of interactions occur at short ranges 

below 20 cm. in a recent modeling study that includes the estimate of sensory signals and 

receptor responses during social interactions we found that accuracy decreases sharply at 

comparable ranges of 30-40 cm. We suggest that our behavioral data support the idea that 

more distant fish might be detected, and with searching strategies, they can be localized, but 

the fast and accurate localization necessary for high-speed interactions like chases are 

restricted to shorter ranges below 40 cm. 

We showed that certain behaviors involve specific spatial relationship; a linear chase for 

example involve on fish behind the other. For other behaviors, the distribution of angle is wide 

and involves a variety of angles. This is partly due to the unique nature of the knifefish 

swimming capacity: unlike other fish, they can swim sideways and backward with ease and this 

makes the angle distribution more variable. Nevertheless, our findings emphasize the need to 

have a precise estimate of target azimuth. It is interesting to consider chases and in particular 

circular chases that involve frequent turns as the fish will need precise and rapid localization 

abilities. It would be intriguing to investigate this motor behavior through analytical approaches 
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resembling engineering system control. This would allow us to discern the respective influences 

of motor performance factors (such as lag) and sensory accuracy (the precision of locating the 

target) on the observed azimuth variability.  

Due to the high variability in the behavior, automatic clustering and identification of 

stereotyped behaviors were not readily achieved. Given that visual categorization was possible, 

we believe that sophisticated analytical procedures should be able to automatically cluster and 

identify stereotyped behavior. Human visual pattern recognition is a highly performant system 

and replicating its performance is not trivial. We believe that several factors make this task 

particularly hard. The behaviors can vary greatly in duration. In behavioral analysis, extracting 

features from fixed-length time bins can limit the representation of natural timing variations in 

behaviors (Klaus et al., 2017; Marshall et al., 2021). To address this, alternative approaches such 

as change-point detection or the use of features robust to temporal variation can be 

advantageous (Costa et al., 2019; Mearns et al., 2020; Szigeti et al., 2015). Also, we are 

considering multi-animal interactions which increases exponentially the number of parameters 

that can be relevant. When dimensionality reduction is necessary, it's important to test 

different hyperparameters, as they can significantly affect the results. Additionally, algorithms 

like t-SNE and UMAP, commonly used for dimensionality reduction, are sensitive to 

initialization and can generate different embeddings each time they are run (Karpenko et al., 

2020; McInnes et al., 2018). The primary challenges in clustering data include selecting an 

appropriate algorithm, specifying a suitable distance metric, and determining the number of 

clusters. To evaluate the quality of obtained clusters, it is recommended to apply clustering 

validation metrics such as the silhouette score, the Calinski-Harabasz criterion, or the gap 
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statistic (Caliński & Harabasz, 1974; Rousseeuw, 1987; Tibshirani et al., 2001). Ensemble 

clustering, which involves clustering the data multiple times with perturbations, can be more 

effective in identifying stable and consistent solutions. Dimensionality reduction can also be 

incorporated within an ensemble clustering framework to ensure stability when dealing with 

stochastic algorithms and embedding hyperparameters (Ronan et al., 2016). We argue that our 

visual identification of behavior was sufficient to characterize major categories of movement 

patterns and their sequence. Given the complexity of the issue, it became obvious that a 

quantitative automated clustering effort was beyond the scope of this article but it would 

constitute and interesting follow-up study. 

The next step to developing a reliable model that can be used to help further 

understand the neural basis of sensory processing should be to look deeper into the differences 

in another prototypical behavior of weakly electric fish, and chirping patterns. It was beyond 

the scope of this study to examine the changes in the chirp frequencies during the chasing 

bouts. Studies have shown that during agonistic and exploratory behavior the fish chirp 

frequency and patterns change (Hofmann et al., 2014; Pedraja et al., 2016) A similar analysis 

can be done for interacting fish. We know, from existing studies, that the dominant fish or the 

more aggressive fish increases its chirp rate and the submissive fish decreases its chirp rate and 

frequency (Henninger et al., 2018; Hupe & Lewis, 2008; Pedraja et al., 2016; Triefenbach & 

Zakon, 2008) or chirp in an echo pattern (Zupanc et al., 2006; Zupanc & Maler, 1993). Pairing 

this communication element with the kinematics of agnostic behavior would help provide a 

more complete understanding of these social interactions.   
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An important motivation for our study was to quantify the relative position of fish 

during behaviorally relevant interaction in order to estimate the spatiotemporal structure of 

the signals that underlie behavior. Much of the interactions we described here require precise 

sensory estimates of the other fish’s position to produce directed behaviors. Our behavioral 

analysis can be paired with models of electric field propagation to obtain a thorough 

quantification of the spatiotemporal dynamic of signals that must be processed. To illustrate 

this process, we show in Figure 8, the strength of the signal that would be experienced when 

one fish approaches the other (see Ramachandra et al.,2023 for more information). Our 

behavioral data complement recent studies (Ramachandra et al 2023, Pedraja et al., 2016) to 

argue that much of the sensory processing occurring during the realistic behavior occurs in the 

range of “weak signals”. Electrophysiological studies of sensory responses often focused on 

responses in the upper range of these relevant intensities (Benda et al, 2006, Metzen et al, 

2018). Furthermore, most studies on this system used stimuli with unrealistic spatial structures 

(Milam et al., 2018). Our current study can serve as the foundation to replicate more 

behaviorally relevant signal structures and target response properties that are particularly 

important in encoding the stimuli pattern identified here. 

Our study also includes an ethogram study to better understand the sequences of 

behaviors occurring during agonistic interactions. A general pattern of how these interactions 

unfold emerged. Fish can be in a passive mode and are typically far away but move closer for 

more active interactions (i.e., “passive avoidance was paired with corresponding “approach” or 

“recede” movements). While actively engaged, the fish alternate periods of “active avoidance”, 

where they remain separate but nearby, with one of the moves from a repertoire of aggressive 
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behaviors: various chasing patterns, biting, lunging or “mouth wrestling”. Theories of animal 

behavior typically classify conflict resolution strategies in one of three categories: energetic war 

of attrition, sequential assessment, or cumulative assessment (Bradbury & Vehrencamp, 2011). 

The behavior we describe here corresponds well with the latter. In this type of conflictual 

interaction, the opponent assesses each other by exchanging escalating or de-escalating moves 

from a repertoire. Crickets are a well-documented example of this strategy, they produce 

behaviors such as “antenna lash” or “rear kick” in variable sequences to provide accumulating 

evidence that they are the dominant individual (Hofmann & Schildberger, 2001; Lobregat et al., 

2019). Here, we argue that the fact that aggressive behaviors are separated by short “active 

avoidance” periods makes it clear that each of these moves (i.e., a chase, a lunge…) are 

separate behavior from their repertoire. Future research could further investigate this 

perspective and systematically analyze how each individual provides accumulating evidence of 

their dominance through these distinct behaviors and how it relates to the establishment of 

dominance. 

In conclusion, our study delineated a number of distinct movement patterns associated 

with agonistic encounters. By describing the spatiotemporal dynamic of the individuals during 

these interactions we lay the foundations for designing more realistic investigations of sensory 

processing to understand how it guides complex behaviors. Our study also anchored this 

agonistic interaction in established theories of conflict resolution thereby providing a rigorous 

framework to understand social dynamics in these fish.  
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Figures 

Figure 1: Behavioral paradigms. A. 

Resident-intruder scenario. A first fish is 

introduced in the tank 24hr before the test 

(pre-test; top panel) and a single shelter is 

provided (a clear plastic tube). As the 

recording starts (camera from the top, in 

IR light, at the beginning of their active 

nocturnal phase), a second fish -the intruder- in introduced in the tank (bottom panel). 

Recording continued for the 30 min after intruder introduction. B. Competition of food. Fish are 

trained for 10-12 days in the pre-test (top) by being introduced in the experimental tank at the 

beginning of their active phase; after 15 min of acclimatation, food is introduced in the center 

of the tank and the fish is allow to swim outside its shelter to go capture the food (live black 

worms). Two fish are trained over the same period but are by themselves in the tank during the 

pre-test. At the end of the training session, the fish know to go directly to the center to capture 

the food. During the test session, two fish are introduced at the same time in opposite portions 

of the tank with no food provided however, they  experience competition as they encounter 

each other when going to food location . . C. Targeted investigation. Two fish are introduced on 

opposite sides of the tank in small mesh enclosure that allows the electric signals to propagate. 

In the pre-test period, the fish are simply allowed to sense each other from the distance for 30 

min while remaining in their enclosure. We note that although the signals at that distance are 

weak, field data suggest this is still within the range they can perceive (REF Henninger, Fortune). 
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During the test recording period, one fish is let out of its enclosure and allowed to explore, 

possibly moving towards and around the other fish that is still in its enclosure. The arena is a 

square 1x1m which corners have been closed off with a divider to avoid providing a corner in 

which fish will tend to shelter. The arena is thus an octagon. Water level is low (20 cm) further 

constraining movement to 2D. IR lighting is provided from the bottom and the IR camera is 

recording from the top. 
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Figure 2 Tracking software package. A. 

The algorithm involves creating a mean 

background image and performing 

background subtraction to eliminate 

elements of the environment. Dark masses 

are then identified as the two fish and 

their position is determined. There can be 

instances where the fish get close in a way 

that leads to the swapping of identities 

between the fish. These frames are flagged 

and verified visually and corrected 

manually. Using the coordinates value 

different kinematic parameters were 

calculated. The software package also 

provides convenient ways to visualize the 

tracking results and save the data. B. 

Example of a frame of the video recording 

with the coordinates of the two fish marked. Note that the center of the centroids and the two 

extremities are identified (and rostral distinguished from caudal). 
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Figure 3: Relative movements categorized in 9 behaviors. A. Examples of sequences of relative 

positions during 8 behaviors. We do not show an example for failed chase but it will be similar 

in pattern to the beginning of a linear or circular chase. For the 8 examples shown, the center of 

each fish is marked by a triangle, and a line stem from the triangle in the direction of the center 

of the other fish thereby highlighting their relative positions. The color code used for the names 

of the behavior will be used throughout the paper with cool colors denoting the 4 general 

movement patterns (top row) and warm colors used for the 4 agonistic behaviors (bottom 

row). B. Number of bouts of each behavior present in our recordings. C. Fraction of the time 

spend doing each of the 9 behaviors.  
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Figure 4. Distributions of the kinematics 

for the general movement behaviors. 

Based on the frame-by-frame positions of 

the fish during each behavior, we 

calculated a variety of relative position and 

kinematic measures; we show here the 

absolute speed of the focal fish (plots on 

the left), the distance between the two fish 

(plots in the middle), and the relative 

azimuth (plots on the right) of the second 

fish relative to the focal fish (i.e., 180° 

indicate a fish positioned behind the focal fish). The focal fish for approach/recede is the one 

performing the action. Probabilities were normalized to a peak of 1. Each behavior is described 

in a different row A-D. 
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Figure 5: Distributions of the kinematics 

for the agonistic behaviors. Based on the 

frame-by-frame positions of the fish during 

each behavior, we calculated a variety of 

relative position and kinematic measures; 

we show here the absolute speed of the 

focal fish (plots on the left), the distance 

between the two fish (plots in the middle), 

and the relative azimuth (plots on the 

right) of the second fish relative to the 

focal fish (i.e., 180° indicate a fish 

positioned behind the focal fish). The focal fish is the one being chased or the one initiating the 

biting/wrestling. Probabilities were normalized to a peak of 1. Each behavior is described in a 

different row A-D. 
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Figure 6: Clustering attempt for the bouts of 

movements that were also categorized 

manually. Various aspects or measures derived 

from the kinematic and relative positions of the 

fish were used to try to identify clusters of 

behaviors with stereotyped patterns of 

movements that could be delineated categorically 

through a clustering algorithm. We show here one such attempt were 6 measures are used and 

the dimensionality is reduced via PCA. Each data point was colored according to the behavior 

label assigned by experimenters through qualitative identification. Receding bouts do not fall in 

a single portion of this space but the other behaviors fall in specific portions of space in this 

specific analysis. However, clusters are not apparent and the boundaries between visually 

identified behaviors do not correspond to natural separations in the distribution of the data.  
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Figure 7. Relative probability of transition 

from one behavior to the next. We calculated 

the probability that one behavior (left labels, 

different rows) is followed by each of the 

other 8 behaviors (top labels, different 

columns). Therefore, before normalization, 

the sum of the probability for each row would 

be one since each behavior must be followed 

by one of the other 8 (never itself -cells in 

grey). Probability is then normalized relative to the probability of each behavior happening. As a 

result, a relative probability of 1 indicates a sequence that is as probable as chance whereas 

values much below/above 1 indicate sequences that are particularly common/rare. We 

calculated the range of values we could expect from random sequences by shuffling the order 

of behaviors (10000 iterations) to calculate a confidence interval and denote a star value 

above/below this interval. 
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Figure 8: Illustration of the electric image experienced during an example behavior. The 

algorithm we used (see Ramachandra et al 2023 for details) Calculates the strength of the 

electric field present during the fish interactions. The signals that result from the addition of the 

second fish is designated as the electric image it casts on the receiver and it is shown here as a 

relative transdermal voltage. A contrast of 0 indicates that the electric field strength at that 

point is the same as if no second fish was present. A contrast of 100% indicates that the effect 

of second fish’s signal at that point on the receiver’s body is as strong as the receiver’s own 

signal when no second fish is present. We show the electric images for three positions (A-C) 

along the trajectory of a fish approaching another.  
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Supplementary information 

Supplementary method: Tracking Software package  

All the tracking code and the example videos and images are available at 

(https://www.marsat.org/publications/code) 

Instructions for running the tracker 

1.  Before even running the tracker, run the file preprocess.m. The preprocess 

function needs the filenames of the videos and the start and end times of the videos. This will 

create the background image needed for calculations.  

2. Once preprocessing of the file is over, call the tracker by typing MultiTrack(it is 

case sensitive so pay attention to the caps) in the command window. Here all the user has to do 

is click on load meanimage which has been calculated from the preprocess script.  

3. Then select in the drop menu the tracking which best suits your purpose. 

Irrespective of what is selected the script will ask for selecting the corners of the video to strip 

the video. The cutting of videos is different depending upon the need and experiment.  

4.  That should run the whole tracking which will then show an output with the 

original video and the tracked video playing side by side. The tracked image will the fish and will 

show the CM, head and tail positions Keep an eye on it to check for abnormalities. If the fish is 

not seen in the frame an additional script will predict the positions . However, do remember to 

check and see if the flip has been corrected. The easiest way is to plot the trajectory of the fish 

with the head if it is flipped you should be able to see the flipping. More about it in step 6. 

https://www.marsat.org/publications/code
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5.  In case the object is not recognizable by the program, the script will save those 

positions and then after the completion of the tracking, the script will automatically run a 

prediction script and then the user will be asked if the predicted positions are correct if not it 

will ask the user to select the head and tail. Please do it in this order only as the head and the 

tail positions for each fish as they are used for performing other calculations by the tracker.  

6.  Once the tracking is complete as a quick glance to see if the flips are all 

accounted for. In the GUI go to plotting and run the plotting for the experiment. It should plot 

the trajectory of the fish as a stick figure using the head positions. This can tell the user if there 

is any error in the head and the tail positions as in if the flips are not accounted for or there 

seems to be jumps in data. 

 

 

  



141 

Chapter 4: Discussion 

Summary of the Data 

 In this dissertation, I evaluate the sensory input the fish receive during 

conspecific interactions. Specifically, I show how the location and orientation of the signal 

modulate the activation pattern of the electroreceptor array (Chapter 2), and how the 

detection accuracy and the angular resolution depend on the distance and time scale of signals 

by modeling a heterogenous population of receptors (Chapter 2). I characterize the 

spatiotemporal dynamic of interacting fish to better understand the signals that guide social 

behaviors. (Chapter 3).  

The spatial Strength of a Conspecific signal varies as a function of distance and 

Angle 

In Chapter 2, I present a model where I project the electric image of one fish onto 

another fish (referred to as the focal fish) to demonstrate how information about the 

conspecific's location and orientation is conveyed through the electric field and accurately 

captured by the electrosensory array. Experimental data published by Fotowat et al. (Fotowat 

et al., 2013) and Zupanc and Maler (Zupanc & Maler, 1993) support the finding that strong 

activation of the receptors occurs at distances less than 20 cm, which aligns with our own 

observations of behavior where fish typically interact at ranges below 30 cm (Chapter 3). 

The activation pattern observed in the model exhibits a clear spatial structure, 

consistent with the distribution of electroreceptors across the skin of the focal fish. These 

receptors respond differently based on their location and orientation relative to the sender fish, 
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indicating that the differential response of the receptors provides the fish with information 

about the spatial location of the conspecific. 

While gathering spatial information has been extensively studied in the auditory system, 

such as the research conducted by Konishi (Knudsen & Konishi, 1979), electrolocation of 

conspecific fish cannot rely on timing differences since the speed of light does not produce 

significant timing disparities. However, the electrosensory signal can result in amplitude 

differences, similar to the interaural level difference (ILD) utilized by the owl auditory system. In 

the auditory system, ILD sensitivity contributes to sound localization on the horizontal plane in 

mammals, and a binaural comparison occurs in the lateral superior olive. Sensitivity to these 

cues first emerges in the posterior nucleus of the ventral lateral lemniscus, where neurons 

receive excitation from one side and inhibition from the other (Takahashi & Keller, 1992). 

The beat that occurs when the electric signals of two fish interact is influenced by the 

distance between them. As the fish moves closer, the beat becomes stronger, while it weakens 

as the distance increases. This phenomenon has been characterized through 

electrophysiological experiments in the laboratory, where the signals received by a fish exposed 

to one or several moving conspecifics were recorded (Fotowat et al., 2013; Yu et al., 2012) 

Our model replicates this basic property: the contrast between the signals becomes 

stronger when the sender fish is closer to the receiver fish (>25% for distances <10 cm), but this 

contrast decreases rapidly as the distance increases (<5% for distances >30 cm). This decrease 

in contrast is due to the electric field decreasing in strength according to a power law, which 
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aligns with experimental findings reported by Caputi and Fotowat  (Caputi et al., 2013; Fotowat 

et al., 2013). 

Moreover, studies have shown that the strength of the signal reaching the receiver fish 

is not solely determined by the distance between the sender and receiver, but also by the 

orientation of the pair. Similar effects have been observed when stimulating the fish from 

different distances and angles (Rasnow et al., 1993) 

Detection and localization of conspecific depends on the spatial structure of the 

fish 

 In Chapter 2 of this dissertation, a conservative estimate for the accuracy of localization 

and detection is given. The model was developed using a heterogeneous population of 

receptors that replicate responses to spatially realistic stimuli. This approach provides a 

conservative estimate of the detection range and localizing accuracy because we consider it 

likely that neural mechanisms, we have not explored can enhance accuracy relative to our 

baseline. The model suggests that fish are able to detect conspecifics at a distance of 75 cm, 

which is comparable to observations in laboratory and wild conditions (Henninger et al., 2018; 

Stamper et al., 2012; Yu et al., 2012). 

Resolution accuracy is also estimated in the model and found to decrease rapidly 

beyond 30 cm. However, these ranges could be increased by relying on neural mechanisms that 

have been implicated in coding in this system. Information can be encoded in the pattern of 

spike rates across the receptor population, and some cases, the degree of synchrony in spike 

times can convey additional information, such as the presence of communication signals: such 
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as chirps (Benda et al., 2006). Future modeling efforts should consider population synchrony to 

better understand its impact on conspecific localization. 

Receptors in the fish electrolocation system exhibit negative serial correlations in inter-

spike intervals (ISIs), where long ISIs tend to be followed by short ISIs. This characteristic 

reduces noise at low frequencies and allows for more accurate encoding of information about 

prey items by the receptors. The mechanism underlying these correlations has been replicated 

in leaky integrate-and-fire (LIF) models (Chacron et al., 2000; Lindner et al., 2005) and it would 

be useful for future studies to consider this mechanism in the context of localization. 

Jung et al. (Jung et al., 2016) recently identified a mechanism for detecting weak signals 

that relies on a finely balanced inhibition and excitation from feedforward inputs. Balanced 

inhibition and excitation are common features in many neural networks, including the cortex, 

and play a role in shaping sensory tuning in various systems (Anderson et al., 2000; Haider, 

2006). Furthermore, studies in various sensory systems have demonstrated that nervous 

systems can effectively extract weak signals using two mechanisms: stochastic resonance and 

Bayesian inference. Stochastic resonance refers to the phenomenon where the addition of 

random noise to a weak signal can improve its detectability, while Bayesian inference suggests 

that prior knowledge about sensory input, facilitated by extensive feedback from higher brain 

areas, helps in interpreting ambiguous or weak sensory signals (Douglass et al., 1993; 

Linkenkaer-Hansen et al., 2004). 

The analysis presented in Chapter 2 considered spatially fixed signals. However, in 

addition to sensory mechanisms, movement could play an important role in localizing 
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conspecifics. For instance, crickets exhibit a zig-zag pattern when approaching a calling song 

source, suggesting that they first use lateralization to determine the direction of the sound and 

then adjust their orientation accordingly. This behavior indicates that even though they can 

localize a fixed sound source precisely (Schöneich & Hedwig, 2010) crickets will need to rely on 

behavioral strategies to target a source while moving.  

Elephantnose (mormyrid) electric fish also employ similar behavioral strategies to 

localize conspecifics. When moving toward another fish, they tend to follow electric field lines 

instead of moving directly toward the source. This behavior likely arises from the fish's attempt 

to balance the strength of the electric field current on each side of its body (Schluger & 

Hopkins, 1987). Many other animals also utilize active sampling strategies to enhance their 

sensory abilities (Schroeder et al., 2010). For example, knifefish utilize body movements to 

improve the localization of nearby objects, and tail bending can enhance the electric image or 

shadow cast on the fish's body (Heiligenberg, 1975; Stamper et al., 2012). Incorporating these 

movement-related components and realistic body bending into the analysis could provide 

further insights into how fish localize conspecifics. 

Ethology: Integration of Computational Techniques and Naturalistic Settings for 

Behavior Analysis 

In recent years, the field of neuroethology has witnessed significant progress due to the 

development of computational techniques for quantifying animal behavior. These methods 

leverage the power of machine learning and computer vision to track and analyze complex 

behavioral patterns with greater accuracy and efficiency (Mathis et al., 2018; Nath et al., 2019; 
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Pereira et al., 2019; Walter & Couzin, 2021). By automating the process of behavior tracking 

and annotation, these computational tools provide researchers with invaluable insights into the 

relationship between neural activity and behavior. Visual tracking systems have been 

successfully employed in various model organisms, such as C. elegans, Drosophila, zebrafish, 

and even unique animals like electric fish and bats (Branson et al., 2009; Graving et al., 2019; 

Henninger, 2015; Nath et al., 2019; Pereira et al., 2019; Walter & Couzin, 2021). These systems 

enable researchers to precisely track the position, movement, and communication of animals, 

enabling the establishment of causal relationships between neural circuits and behavioral 

responses. The use of automated analysis in neuroethology allows for large-scale experiments 

and provides quantitative measures for behavior that were previously challenging to obtain. 

Automated analysis of electric fish behavior involves tracking the fish's position in space. 

While tracking movement and communication are crucial for understanding animal behavior, a 

comprehensive analysis requires annotation of actions, activities, and functions. Although 

automated systems can perform some of these annotations and behavior classifications, a 

significant portion of behavior classification still relies on human input. The field of 

Computational Ethology aims to develop frameworks and computational capabilities for 

identifying and quantifying behavior, but currently, there is a shortage of software that 

generalizes well across different setups. For the tracking system used in electric fish studies, 

manual identification and annotation of behavior are still necessary. In Chapter 3, a fast and 

reliable tracking system was developed specifically for tracking agonistic interactions among 

fish. This system can automatically track the fish and flag sequences where reliable tracking is 

challenging, allowing the user to guide the tracking for those specific sequences. We also 
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attempted to develop an automated behavior identification algorithm. We found that the 

behaviors we are interested in are particularly variable and hard to categorize with the 

algorithms we tested. Particularly, the challenge came from the fact that we were searching for 

algorithms that could delineate unknown movement patterns. The situation would have been 

different if we wanted an automated system to simply mark recordings with behaviors that we 

had already defined. In that case, a supervised deep-learning network would have probably 

been able to accomplish the task. Since we started without knowledge of the categories of 

behaviors to identify, we could not train a supervised network. Therefore, the only way to 

leverage machine learning in this context was to use unsupervised networks that exploit natural 

patterns in the data to create categories. Our attempts with such networks failed. We suggest 

that successful attempts will require further pre-processing of the data, such as the calculation 

of derived kinematic measures or time-wrapping. Exploration of this topic is left for future 

work. 

Numerous laboratory studies have investigated various aspects of electric organ 

discharge (EOD) behavior in fish. Some studies have explored the relationship between chirping 

and various EOD mimic parameters  (Dunlap & Larkins-Ford, 2003). Others have focused on the 

influence of hormones ( Zakon & Dunlap, 1999), staged encounters (Hupe & Lewis, 2008; 

Triefenbach & Zakon, 2008), and courtship (Hagedorn & Heiligenberg, 1985). While a few 

studies have created elaborate naturalistic environments (Black-Cleworth, 1970), most 

experiments have been conducted in less than natural settings. In contrast, there are fewer 

cited field studies on natural behavior, primarily the works of Carl Hopkins (Hopkins, 1972, 

1974; Hopkins & Heiligenberg, 1978), and Henninger (Henninger et al., 2018). These field 
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studies provide insights into the ecology, life history, and species-specific distributions of EOD in 

gymnotiform fish. However, due to the labor-intensive nature of these studies and limitations 

in monitoring freely roaming fish behavior, many observations remain anecdotal. Consequently, 

numerous natural electric signals and their functions have yet to be fully characterized and 

understood. While the controlled laboratory setting allows for a detailed characterization of the 

electrosensory system (Knudsen, 1974), the full range of its capabilities is best revealed in a 

natural environment. Therefore, future behavior studies should focus on more naturalistic 

settings. 

Henninger et al. (Henninger et al., 2018) found that agonistic encounters sometimes 

occurred simultaneously with courtship, and these aggressive behaviors had very short 

durations compared to more restrictive lab settings where the fish cannot escape, leading to an 

increase in aggressive behaviors over minutes (Hagedorn & Heiligenberg, 1985; Hupe & Lewis, 

2008; Triefenbach & Zakon, 2008). Similarly, in our larger and less restrictive tank, we observed 

a similar trend of short-lived aggressive behavior. Once the submissive and dominant hierarchy 

is established, and the submissive fish can escape, the interactions cease. This highlights the 

need for more natural settings to conduct behavioral experiments that can provide insights into 

the behavior of these fish. 

Future Directions 

Role of Chirps and Echo Responses 

Numerous studies have provided evidence of changes in chirp frequency and patterns in 

fish during agonistic and exploratory behavior (Hofmann et al., 2014; Pedraja et al., 2016; 

Perrone et al., 2009). These studies also suggest that chirp characteristics can be analyzed in 
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interactions between fish. Research indicates that the dominant or more aggressive fish tends 

to increase its chirp rate, while the submissive fish decreases its chirp rate and frequency 

(Henninger et al., 2018; Hupe & Lewis, 2008; Triefenbach & Zakon, 2008). Submissive fish may 

also exhibit chirping in an echo pattern (Salgado & Zupanc, 2011; Zupanc & Maler, 1993). Intra-

species agonistic interactions, both among males and females, often involve small chirps, 

whereas males emit high-frequency chirps during courtship (Bastian et al., 2001; Triefenbach & 

Zakon, 2008; Zakon et al., 2002). 

In general, males of Apteronotus leptorhynchus chirp more often and at higher rates 

than females, although females can also produce chirps but do so less frequently (Dunlap et al., 

1998). These chirps can be categorized as either small or big chirps. Both types involve a brief 

increase in frequency accompanied by a corresponding decrease in amplitude. The frequency 

rise and amplitude decrease are consistently linked in all species of Apteronotids. Specifically, in 

A. leptorhynchus, small chirps last 10-40 milliseconds and have a frequency increase of 50-150 

Hz, while big chirps last 15-80 milliseconds and have a frequency increase of 150-900 Hz 

(Bastian et al., 2001; Dunlap et al., 1998; Hupe & Lewis, 2008; H. Zakon et al., 2002). The 

pattern of frequency modulation over time resembles a Gaussian curve. Male A. leptorhynchus 

emit chirps regularly when near other members of their species or when exposed to an artificial 

male-like electric discharge. When one fish chirps, another fish may respond within 500-1000 

milliseconds, a behavior known as the echo response (Zupanc et al., 2006). This echo response 

seems to indicate submission during aggressive interactions. However, if chirping occurs in a 

non-echo pattern, it may indicate a motivation to escalate the aggressive interaction (Hupé et 

al., 2008). 
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Less is known about the use of chirps during courtship, but it is clear that they play a 

role in courtship behavior and spawning coordination. In this context, males chirp frequently, 

but females also respond (Henninger, 2015). The exact functions of different types of chirps are 

still unclear, partly because courtship behavior is rarely observed in captive settings. 

Supporting this understanding, a neurophysiological study by Benda et al. (Benda et al., 

2006) found that small chirps are distinct signals in the P-unit output when the difference in 

electric organ discharge frequency (EODf) is small (<30 Hz). On the other hand, high-frequency 

chirps are prominent signals when the EODf difference is large (~50-200 Hz). The echo 

response, previously observed in Apteronotus during fights between males (Hupé et al., 2008; 

Zupanc et al., 2006) and in a playback study (Salgado & Zupanc, 2011), still lacks a clear 

understanding of its functional significance during male-male interactions. However, in Chapter 

3, I describe these behaviors in a spacious tank that allows the same freedom of movement as 

in natural settings. A better understanding of the use of chirps during naturalistic behavior 

could involve a study that follows our approach in Chapter 3 where we study movement. Taking 

into account both movement and communication signals in context that are as naturalistic as 

possible, we could categorize joint movement-chirping patterns and form ethograms of these 

behaviors. We believe that this project would be particularly successful if we first resolve the 

difficulties we encountered when trying to automatically delineate stereotyped behavior 

through quantitative algorithms (e.g., unsupervised machine learning). 

Spatial coding during motion 

In chapter 3 I define the range of behaviors and kinematics that the fish undergo during 

agonistic behaviors. In Chapter 2 I have the precise natural stimuli of the strength of the signal 
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reaching the fish's sensory surface. Similar to methods established in  (Allen & Marsat, 2018; 

Marsat & Maler, 2010) we can perform neurophysiological recordings from various azimuth 

recordings from the behavior experiment. Using quantification methods established in (Marsat 

et al., 2023) we can estimate how reliably the stimuli location can be distinguished based on 

the population responses. By testing the response to different duration of stimuli we can also 

answer the question of how quickly the animal can reliably extract behaviors about change in 

stimuli location. We can also test how movement affects spatial coding by providing moving 

stimuli during electrophysiological recordings. This will provide a clear description of the spatial 

information present in the first stage of sensory processing and the way this information is 

represented.  

Furthermore, we now have all the tools necessary to model the temporal dynamics of 

moving conspecific signals. We have a description of behavior; this data can be used to model 

the spatiotemporal dynamic of EI. These spatiotemporal signals can be used with our 

population of model receptors. We also have a full-scale model of the primary sensory area 

(Milam, unpublished data) that replicates the complex receptive field structure of pyramidal 

cells in that area. This comprehensive set of data and full-scale models, from behavior to the 

primary sensory area, can be used to dissect and better understand sensory processing during 

complex behaviors. 

Localization strategies in weakly electric fish 

Our modeling study considers how the signal is transformed from EI to the response of 

the array of electroreceptors. To evaluate how accurately spatial information is encoded uses a 

decoding algorithm that is conservative and makes few assumptions on the way the system 
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processes the signal. Nevertheless, a different decoding method could result in a different 

performance and we currently do not know how the system actually processes the signal. For 

example, we do not average together the response of the subpopulation of receptors before 

using it in our weighted Euclidean distance analysis. The sensory system could for example on a 

“lateralization” strategy and simply average all the inputs from one side, and all the input from 

the other side, and compared them to determine if the next turn should be left right, or 

straight. This possibility is worth considering since it is the general strategy of the auditory 

system and the electrosensory system is evolutionarily derived from the same source as the 

auditory system (Duncan & Fritzsch, 2012) . We could then assume that the output of the 

receptors is, at one point or another of the pathway, averaged together. This would change the 

structure of noise which could improve coding for some aspects of the stimulus (e.g., better 

detection) but deteriorate other aspects (e.g., precise angular resolution would be traded for 

lateralization paired with localization movements). The large-scale model framework we have 

created can serve as a key tool to investigate these possibilities. For example, coding-decoding 

mechanisms could be tested with the model, predictions of localization accuracy generated, 

and the results compared to moment-by-moment movement during behavior that involves 

moving relative to a target. 

Conclusion 

Localizing the source of a signal is key in guiding the behavior of the animal successfully. 

Localization mechanisms must cope with the challenges of representing the spatial information 

of weak, noisy signals. Comparing these strategies across modalities and model systems allows 

a broader understanding of the general principles shaping spatial processing.  The 
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electrosensory system provides an advantageous comparison because it has a spatially mapped 

architecture right from the periphery -like the visual system- but it must also compute the 

location of conspecific -like the auditory system- since these signals activate the entire receptor 

array. In order to understand the neural mechanisms responsible for the localization of 

conspecific signals in the electrosensory system, we first aimed to have a quantitative 

understanding of the spatiotemporal structure of the sensory input during natural behaviors 

This dissertation details the spatiotemporal dynamic of behaviorally relevant signals and 

how spatial information is represented in the electrosensory system. The significance of the 

contributions at each level of analysis is essential for uncovering how spatial information is 

coded in the early sensory system and how precise behavioral sensitivity is achieved. This 

research will serve as a foundation for a wide range of future studies on sensory processing in 

these systems. In particular, a major undertaking of this project was the development of a 

series of sophisticated tools that will be used in future studies: the tracking software, the EI 

modeling tool, and the full-scale receptor model. We also identified key features of spatial 

behavior and processing that will motivate future investigations: the limited range of sensory 

accuracy, the need to combine receptor responses in optimal ways to enhance accuracy, or the 

dynamics of cumulative assessment during agonistic encounters. In conclusion, we argue that 

this research not only clarified the way spatial dynamics is exploited by the early sensory 

system but also will serve as a stepping stone for a wide range of future studies in this system. 

 

  



154 

References 

Allen, K. M., & Marsat, G. (2018). Task-specific sensory coding strategies are matched to 

detection and discrimination performance. The Journal of Experimental Biology, 221(6), 

jeb170563. https://doi.org/10.1242/jeb.170563 

Anderson, J. S., Carandini, M., & Ferster, D. (2000). Orientation Tuning of Input Conductance, 

Excitation, and Inhibition in Cat Primary Visual Cortex. Journal of Neurophysiology, 84(2), 

909–926. https://doi.org/10.1152/jn.2000.84.2.909 

Bastian, J., Schniederjan, S., & Nguyenkim, J. (2001). Arginine vasotocin modulates a sexually 

dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus. 

Journal of Experimental Biology, 204(11), 1909–1924. 

http://www.ncbi.nlm.nih.gov/pubmed/11441033 

Benda, J., Longtin, A., & Maler, L. (2006). A synchronization-desynchronization code for natural 

communication signals. Neuron, 52(2), 347–358. 

https://doi.org/10.1016/j.neuron.2006.08.008 

Black-Cleworth, P. (1970). The Role of Electrical Discharges in the Non-Reproductive Social 

Behaviour of Gymnotus carapo (Gymnotidae, Pisces). Animal Behaviour Monographs, 3, 1-

IN1. https://doi.org/10.1016/S0066-1856(70)80001-2 

Branson, K., Robie, A. A., Bender, J., Perona, P., & Dickinson, M. H. (2009). High-throughput 

ethomics in large groups of Drosophila. Nature Methods, 6(6), 451–457. 

https://doi.org/10.1038/nmeth.1328 

Caputi, A. A., Aguilera, P. A., Carolina Pereira, A., & Rodríguez-Cattáneo, A. (2013). On the 

haptic nature of the active electric sense of fish. Brain Research, 1536, 27–43. 



155 

https://doi.org/10.1016/j.brainres.2013.05.028 

Chacron, M. J., Longtin, A., St-Hilaire, M., & Maler, L. (2000). Suprathreshold stochastic firing 

dynamics with memory in P-type electroreceptors. Physical Review Letters, 85(7), 1576–

1579. https://doi.org/10.1103/PhysRevLett.85.1576 

Douglass, J. K., Wilkens, L., Pantazelou, E., & Moss, F. (1993). Noise enhancement of 

information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 

365(6444), 337–340. https://doi.org/10.1038/365337a0 

Dunlap, K. D., & Larkins-Ford, J. (2003). Diversity in the structure of electrocommunication 

signals within a genus of electric fish, Apteronotus. Journal of Comparative Physiology. A, 

Sensory, Neural, and Behavioral Physiology, 189(2), 153–161. 

https://doi.org/10.1007/S00359-003-0393-3 

Dunlap, K. D., Thomas, P., & Zakon, H. H. (1998). Diversity of sexual dimorphism in 

electrocommunication signals and its androgen regulation in a genus of electric fish, 

Apteronotus. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral 

Physiology, 183(1), 77–86. 

Fotowat, H., Harrison, R. R., & Krahe, R. (2013). Statistics of the Electrosensory Input in the 

Freely Swimming Weakly Electric Fish Apteronotus leptorhynchus. Journal of Neuroscience. 

https://doi.org/10.1523/JNEUROSCI.0998-13.2013 

Gama Salgado, J. A., & Zupanc, G. K. H. (2011). Echo response to chirping in the 

weakly electric brown ghost knifefish ( Apteronotus leptorhynchus ): role of frequency 

and amplitude modulations. Canadian Journal of Zoology, 89(6), 498–508. 

https://doi.org/10.1139/z11-014 



156 

Graving, J. M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B. R., & Couzin, I. D. (2019). 

DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep 

learning. ELife, 8, e47994. https://doi.org/10.7554/eLife.47994 

Hagedorn, M., & Heiligenberg, W. (1985). Court and spark - Electric signals in the courtship and 

mating of Gymnotoid Fish. Animal Behaviour, 33(1), 254–265. 

https://doi.org/10.1016/S0003-3472(85)80139-1 

Haider, B. (2006). Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance 

of Excitation and Inhibition. Journal of Neuroscience, 26(17), 4535–4545. 

https://doi.org/10.1523/JNEUROSCI.5297-05.2006 

Heiligenberg, W. (1975). Theoretical and experimental approaches to spatial aspects of 

electrolocation. Journal of Comparative Physiology A, 103(3), 247–272. 

https://doi.org/10.1007/BF00612021 

Henninger, J. (2015). Social interactions in natural populations of weakly electric fish. PhD 

Thesis, University of Tübingen. https://doi.org/10.15496/PUBLIKATION-6731 

Henninger, J., Krahe, R., Kirschbaum, F., Grewe, J., & Benda, J. (2018). Statistics of natural 

communication signals observed in the wild identify important yet neglected stimulus 

regimes in weakly electric fish. The Journal of Neuroscience. 

https://doi.org/10.1523/JNEUROSCI.0350-18.2018 

Hofmann, V., Geurten, B. R. H., Sanguinetti-Scheck, J. I., GÃ3mez-Sena, L., & Engelmann, J. 

(2014). Motor patterns during active electrosensory acquisition. Frontiers in Behavioral 

Neuroscience, 8, 186. https://doi.org/10.3389/fnbeh.2014.00186 

Hopkins, C. D. (1972). Sex differences in electric signaling in an electric fish. Science, 176(4038), 



157 

1035–1037. https://doi.org/10.1126/science.176.4038.1035 

Hopkins, C. D. (1974). Electric Communication: Functions in the Social Behavior of Eigenmannia 

Virescens. Behaviour, 50(3), 270–304. https://doi.org/10.1163/156853974X00499 

Hopkins, C. D., & Heiligenberg, W. F. (1978). Evolutionary designs for electric signals and 

electroreceptors in gymnotoid fishes of Surinam. Behavioral Ecology and Sociobiology, 

3(2), 113–134. https://doi.org/10.1007/BF00294985 

Hupe, G. J., & Lewis, J. E. (2008). Electrocommunication signals in free swimming brown ghost 

knifefish, Apteronotus leptorhynchus. Journal of Experimental Biology. 

https://doi.org/10.1242/jeb.013516 

Hupé, G J, Lewis, J. E., & Benda, J. (2008). The effect of difference frequency on 

electrocommunication: Chirp production and encoding in a species of weakly electric fish, 

Apteronotus leptorhynchus. Journal of Physiology Paris, 102(4–6), 164–172. 

https://doi.org/DOI 10.1016/j.jphysparis.2008.10.013 

Hupé, Ginette J., Lewis, J. E., & Benda, J. (2008). The effect of difference frequency on 

electrocommunication: Chirp production and encoding in a species of weakly electric fish, 

Apteronotus leptorhynchus. Journal of Physiology-Paris, 102(4–6), 164–172. 

https://doi.org/10.1016/J.JPHYSPARIS.2008.10.013 

Jung, S. N., Longtin, A., & Maler, L. (2016). Weak signal amplification and detection by higher-

order sensory neurons. Journal of Neurophysiology, 115(4), 2158–2175. 

https://doi.org/10.1152/jn.00811.2015 

Knudsen, E. (1974). Behavioral thresholds to electric signals in high frequency electric fish. 

Journal of Comparative Physiology, 91(4), 333–353. https://doi.org/10.1007/bf00694465 



158 

Knudsen, E. I., & Konishi, M. (1979). Mechanisms of sound localization in the barn owl (Tyto 

alba). Journal of Comparative Physiology A, 133(1), 13–21. 

https://doi.org/10.1007/BF00663106 

Lindner, B., Chacron, M. J., & Longtin, A. (2005). Integrate-and-fire neurons with threshold 

noise: A tractable model of how interspike interval correlations affect neuronal signal 

transmission. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72(2), 1–

21. https://doi.org/10.1103/PhysRevE.72.021911 

Linkenkaer-Hansen, K., Nikulin, V. V, Palva, S., Ilmoniemi, R. J., & Palva, J. M. (2004). 

Prestimulus oscillations enhance psychophysical performance in humans. The Journal of 

Neuroscience : The Official Journal of the Society for  Neuroscience, 24(45), 10186–10190. 

https://doi.org/10.1523/JNEUROSCI.2584-04.2004 

Marsat, G, Daly, K. C., & Drew, J. A. (2023). Characterizing neural coding performance for 

populations of sensory neurons: comparing a weighted spike distance metrics to other 

analytical methods. BioRxiv, 778514. https://doi.org/10.1101/778514 

Marsat, Gary, & Maler, L. (2010). Neural heterogeneity and efficient population codes for 

communication signals. Journal of Neurophysiology, 104(5), 2543–2555. 

https://doi.org/jn.00256.2010 [pii]10.1152/jn.00256.2010 

Marsat, Gary, & Maler, L. (2012). Preparing for the unpredictable: adaptive feedback enhances 

the response to unexpected communication signals. Journal of Neurophysiology, 107(4), 

1241–1246. https://doi.org/10.1152/jn.00982.2011 

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. 

(2018). DeepLabCut: markerless pose estimation of user-defined body parts with deep 



159 

learning. Nature Neuroscience, 21(9), 1281–1289. https://doi.org/10.1038/s41593-018-

0209-y 

Nath, T., Mathis, A., Chen, A. C., Patel, A., Bethge, M., & Mathis, M. W. (2019). Using 

DeepLabCut for 3D markerless pose estimation across species and behaviors. Nature 

Protocols, 14(7), 2152–2176. https://doi.org/10.1038/s41596-019-0176-0 

Pedraja, F., Perrone, R., Silva, A., & Budelli, R. (2016). Passive and active electroreception 

during agonistic encounters in the weakly electric fish Gymnotus omarorum. Bioinspiration 

& Biomimetics, 11(6), 065002. https://doi.org/10.1088/1748-3190/11/6/065002 

Pereira, T. D., Aldarondo, D. E., Willmore, L., Kislin, M., Wang, S. S.-H., Murthy, M., & 

Shaevitz, J. W. (2019). Fast animal pose estimation using deep neural networks. Nature 

Methods, 16(1), 117–125. https://doi.org/10.1038/s41592-018-0234-5 

Perrone, R., MacAdar, O., & Silva, A. (2009). Social electric signals in freely moving dyads of 

Brachyhypopomus pinnicaudatus. Journal of Comparative Physiology A: Neuroethology, 

Sensory, Neural, and Behavioral Physiology. https://doi.org/10.1007/s00359-009-0427-6 

Rasnow, B., Assad, C., & Bower, J. M. (1993). Phase and amplitude maps of the electric organ 

discharge of the weakly electric fish, Apteronotus leptorhynchus. Journal of Comparative 

Physiology A, 172(4), 481–491. https://doi.org/10.1007/BF00213530 

Sas, E., & Maler, L. (1983). The nucleus praeeminentialis: a Golgi study of a feedback center in 

the electrosensory system of gymnotid fish. The Journal of Comparative Neurology, 221(2), 

127–144. https://doi.org/10.1002/cne.902210202 

Sas, E., & Maler, L. (1987). The organization of afferent input to the caudal lobe of the 

cerebellum of the gymnotid fish Apteronotus leptorhynchus. Anatomy and Embryology, 



160 

177(1), 55–79. 

Schluger, J. H., & Hopkins, C. D. (1987). Electric fish approach stationary signal sources by 

following electric current lines. The Journal of Experimental Biology, 130(December), 359–

367. 

Schöneich, S., & Hedwig, B. (2010). Hyperacute directional hearing and phonotactic steering in 

the cricket (Gryllus bimaculatus deGeer). PLoS ONE, 5(12). 

https://doi.org/10.1371/journal.pone.0015141 

Schroeder, C. E., Wilson, D. A., Radman, T., Scharfman, H., & Lakatos, P. (2010). Dynamics of 

Active Sensing and perceptual selection. Current Opinion in Neurobiology, 20(2), 172–176. 

https://doi.org/10.1016/J.CONB.2010.02.010 

Stamper, S. A., Madhav, M. S., Cowan, N. J., & Fortune, E. S. (2012). Beyond the Jamming 

Avoidance Response: weakly electric fish respond to the envelope of social electrosensory 

signals. Journal of Experimental Biology, 215(23), 4196–4207. 

https://doi.org/10.1038/bjc.2011.109 

Takahashi, T., & Keller, C. (1992). Commissural connections mediate inhibition for the 

computation of interaural level difference in the barn owl. Journal of Comparative 

Physiology A, 170(2), 161–169. https://doi.org/10.1007/BF00196898 

Triefenbach, F. A., & Zakon, H. H. (2008). Changes in signalling during agonistic interactions 

between male weakly electric knifefish, Apteronotus leptorhynchus. Animal Behaviour, 

75(4), 1263–1272. https://doi.org/10.1016/j.anbehav.2007.09.027 

Walter, T., & Couzin, I. D. (2021). TRex, a fast multi-animal tracking system with markerless 

identification, and 2D estimation of posture and visual fields. ELife, 10, e64000. 



161 

https://doi.org/10.7554/eLife.64000 

Yu, N., Hupé, G., Garfinkle, C., Lewis, J. E., Longtin, A., & Fortune, E. (2012). Coding Conspecific 

Identity and Motion in the Electric Sense. PLoS Computational Biology, 8(7), e1002564. 

https://doi.org/10.1371/journal.pcbi.1002564 

Zakon, H. H., & Dunlap, K. D. (1999). Sex steroids and communication signals in electric fish: A 

tale of two species. Brain Behavior and Evolution, 54(1), 61–69. https://doi.org/6612 

Zakon, H., Oestreich, J., Tallarovic, S., & Triefenbach, F. (2002). EOD modulations of brown 

ghost electric fish: JARs, chirps, rises, and dips. Journal of Physiology, Paris, 96(5–6), 451–

458. https://doi.org/10.1016/S0928-4257(03)00012-3 

Zupanc, G. K. H., & Maler, L. (1993). Evoked chirping in the weakly electric fish Apteronotus 

leptorhynchus – a quantitative biophysical analysis. Canadian Journal of Zoology, 71(11), 

2301–2310. https://doi.org/10.1139/z93-323 

Zupanc, G. K. H., Sîrbulescu, R. F., Nichols, A., & Ilies, I. (2006). Electric interactions through 

chirping behavior in the weakly electric fish, Apteronotus leptorhynchus. Journal of 

Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 

192(2), 159–173. https://doi.org/10.1007/s00359-005-0058-5 

 


	Sense and Sensitivity: Spatial Structure of conspecific signals during social interaction
	Recommended Citation

	tmp.1689954865.pdf.De0s2

