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ABSTRACT 

AI Driven Security Constrained Unit Commitment Using 

Predictive Modeling and Eigen Decomposition 

 

 

Talha Iqbal 

 

 

Security Constrained Unit Commitment (SC-UC) is a complex large scale mix integer 

constrained optimization problem solved by Independent System Operators (ISOs) in the 

daily planning of the electricity markets. After receiving offers and bids, ISOs have only 

few hours to clear the day-ahead electricity market. It requires a lot of computational effort 

and a reasonable time to solve a large-scale SC-UC problem. However, exploiting the fact 

that a UC problem is solved several times a day with only minor changes in the system 

data, the computational effort can be reduced by learning from the historical data and 

identifying the patterns in the historical data using data mining techniques. 

In this thesis, two data driven approaches based on predictive modeling techniques are 

proposed to solve a SC-UC problem in a day ahead electricity market which can be used 

as alternative backup methods for solving a SC-UC problem. In the first approach (Algo-

1), the SC-UC is partially modeled using predictive modeling techniques to enhance the 

computational speed of the problem, while in the second approach (Algo-2), the 

optimization problem is completely replaced by data driven predictive models to further 

enhance the computational efficiency, however, at the cost of some optimality loss. The 

proposed approaches are validated through numerical simulations on different IEEE case 

studies to demonstrate and study the effectiveness of the developed approaches. The results 

obtained from the proposed approaches are compared with those obtained using 

commercial optimization solvers e.g., IBM CPLEX MIQP and GUROBI MIQP solvers. 
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CHAPTER 

INTRODUCTION 1 

 

 

1.1 Unit Commitment 

 In an electric power system, daily demand patterns show large variations between peak and 

off-peak hours of a day. If enough generating units are kept online throughout a day to meet the 

peak demand of the day, then during off-peak hours, most of the unnecessary units will be 

operating at their minimum generation limits. It will result in an avoidable high cost of energy 

production. Hence, it is the job of a grid operator to decide which units to keep online and which 

units are to be taken offline and for how long. Scheduling the on/off status and output power of 

electric power generating units is defined as a Unit Commitment (UC) problem. It consists of two 

stages; scheduling the on/off status of a unit is called the commitment decision while planning how 

much energy a committed unit will produce at any time is called the production decision.  

The UC problem is a mathematical optimization problem where the goal is to coordinate 

the production of a set of generators to match the forecasted energy demand at minimum 



 

2 
 

cost/maximum profit, as depicted in Figure 1.1. It is one of the most fundamental constrained 

optimization problems in the planning and operations of a wholesale electricity market. 

 

1.2 Wholesale Energy Markets 

Beginning in the 1990s, many US states decided to deregulate their electricity systems to 

create competition and lower costs. This transition, known as restructuring, required electric 

utilities to sell their generating assets and led to the creation of independent energy suppliers (IESs) 

that owned generators. Because each new IES could not cost-effectively create its own power line 

infrastructure, electric utilities held onto these assets and became transmission and distribution 

utilities. The biggest impacts resulting from deregulation were changes to retail and wholesale 

electricity sales, with the creation of retail customer choice and wholesale energy markets. Energy 

markets are auctions that are used to coordinate the production of electricity on a day-to-day basis. 

In a wholesale energy market, IESs offer to sell the electricity that their power plants generate for 

a particular bid price, while load-serving entities bid for that electricity to meet their customers’ 

energy demand [1]. 

Following deregulation, Regional Transmission Organizations (RTOs) or Independent 

System Operators (ISOs) or Transmission System Operators (TSOs) replaced utilities as grid 

 

Figure 1.1 Unit Commitment Problem 
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operators which are different types of organizations that operate the grid but do not own the 

resources and infrastructure within it. Figure 1.2 illustrates the areas operated by RTOs in the 

United States. The U.S. has 7 RTOs i.e., California ISO (CAISO), Electric Reliability Council of 

Texas (ERCOT), Southwest Power Pool (SPP), Midcontinent ISO (MISO), PJM Interconnection, 

New York ISO (NYISO) and ISO New England (ISO-NE). RTOs are regulated by the Federal 

Energy Regulatory Commission (FERC) because they engage in interstate commerce (except 

ERCOT because it is entirely contained within Texas). Traditional wholesale electricity markets 

exist in the Southeast, Southwest and Northwest where vertically integrated utilities (they own the 

generation, transmission, and distribution systems) are responsible for system operations and 

management. They are regulated by state Public Utility Commissions (PUCs or PSCs). 

 

While major sections of the country operate under more traditional market structures, two-

thirds of the nation’s electricity load is served in RTO regions [2]. RTOs use energy markets to 

decide which units to dispatch or run based on the solutions obtained from the UC problem. RTOs 

typically run two bid-based markets to determine economic dispatch: the Day Ahead Market 

 
Figure 1.2 Electric Power Markets in USA [2] 
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(DAM) and the Real Time Market (RTM). The DAM, which represents about 95 percent of energy 

transactions, is based on forecasted load for the next day and typically occurs the prior morning to 

allow generators time to prepare for operation. The remaining energy market transactions take 

place in the RTM, which is typically run once every hour and once every five minutes to account 

for real-time load changes. 

1.3 Problem Statement 

Security constrained unit commitment (SC-UC) problems are solved multiple times a day 

by ISOs under different possible operating scenarios to schedule 4 billion mega-watthours (MWh) 

of annual energy production and clear a $400 billion electricity market annually in the United 

States [3]. The objective of a SC-UC problem is to obtain the most economical schedule for power 

generating resources under many operational, economical, and physical constraints. The intention 

is to obtain not only the most cost-efficient schedules which guarantee enough power production 

to satisfy the total power demand in each hour, but also make sure that they do not contravene 

power system security constraints e.g., maximum power carrying capacity of transmission lines, 

maximum and minimum power production of generating units, ramp-up and ramp-down rates, 

minimum on/off times, to name a few. Involvement of these security constraints makes it a very 

complex large-scale energy optimization problem. 

UC decisions are made for a finite number of time instants, ahead in time, usually one or 

two days. These time instants are usually hours or half-hours. One of the practical issues in solving 

such large-scale SC-UC problems multiple times a day, is the computational time required to 

obtain economical and feasible production schedules due to the short market clearing windows in 

most electricity markets, after receiving all offers and bids. System operators only have few hours 
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(typically 3 to 4 hours) to clear the DAM and produce low-cost and secure generation schedules 

for the upcoming day. In this short clearing window, the SC-UC problem is solved multiple times 

under many different probable scenarios. A typical state-of-the-art software can obtain a feasible 

generation schedule for a large-scale SC-UC within 0.1% optimality in about 20 minutes [4]. 

Improving this computational performance can allow market operators to implement several 

enhancements which can not only improve the market efficiency, but also bring many economic 

benefits e.g., implement higher resolution cost curves, sub-hourly dispatch, obtain schedules for 

several realistic operating scenarios in less time [5]. 

By exploiting the fact that ISOs solve the SC-UC problem several times a day with only 

minor changes in the system data, the required computational effort can be reduced by identifying 

the patterns in the historical data using data mining techniques. For this purpose, predictive 

modeling techniques can be employed to train the machine learning models offline using synthetic 

or historic data and then predict the commitment and production decisions of the generating 

resources online. Therefore, in this dissertation, we will investigate these data mining techniques 

to develop fast SC-UC algorithms which can either be used to provide a good warm start for a 

regular full MIP problem or they can also be used as alternative backup SC-UC solving algorithms. 

1.4 Proposed Approaches 

This thesis proposes two data driven approaches for solving a SC-UC problem. The first 

approach is a two-stage hybrid approach in which a mix-integer optimization problem is 

decomposed and solved in two stages as shown in Figure 1.3. In the first stage, a data based 

predictive classification model predicts the commitment status of each of the generators during 

each hour of the day using the generator cost coefficients, load requirements, and other system 
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conditions. Once an optimal set of generators is predicted, the values of the binary variables are 

fixed and the UC problem becomes an optimal dispatch problem, however, with some security 

constraints. Hence, a complex non-convex mix-integer SC-UC problem is converted to a 

comparatively easier to solve convex optimization problem with reduced decision variables and 

less constraints. Hence, in stage-2 of the algorithm, a security constrained economic dispatch (SC-

ED) problem is solved to obtain the production decisions of the committed generators. 

 

In the second algorithm, commitment and production decisions are solely determined using 

data based predictive models as shown in Figure 1.4. The first stage is the same as in Algo-1, 

however, in the second stage, another predictive model is employed to determine the production 

decisions of the committed generators for each hour. Since both stages are based on inductive 

models trained on provided historical/synthetic data, there is always some uncertainty in the 

obtained solutions and a possibility of violating security constraints. Hence, a third and the most 

important stage is required to polish the solutions obtained from the first two stages. In the third 

stage, a post processing algorithm is used to mitigate any imbalances in the total committed 

generation and total power demand and eliminate any possible security constraints violations.  

 

Figure 1.3 Two-Stage Proposed Algorithm (Algo-1) 
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The contribution of this research work is as follows: 

• To improve the computational time of a conventional MIP solver for solving a security 

constrained unit commitment problem, a two-stage data driven hybrid algorithm (Algo-1) 

is proposed. 

• To further enhance the computational speed, a three-stage data driven approach (Algo-2) 

is proposed in which the conventional MIP solver is completely replaced by data driven 

models to obtain solutions for binary and continuous variables in a SC-UC problem. 

• To check and ensure feasibility conformance of the predicted solution obtained using the 

algorithm Algo-2, a third post processing feasibility compliance stage is developed. 

• To fulfil transmission capacity constraints in the feasibility compliance stage, a generation 

rescheduling approach is proposed using eigen decomposition and generation shift factors. 

• To achieve distributed rescheduling of generators in the feasibility compliance stage, a 

network zoning algorithm is developed using fast community detection algorithm to 

decompose a power network into communities. 

• Develop a framework to implement and solve a distributed security constrained unit 

commitment (DSC-UC) in a decentralized manner using the proposed approaches (future 

work). 

 

Figure 1.4 Three-Stage Proposed Algorithm (Algo-2) 
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• Incorporating an Aggregator (a grid scale electric vehicles charging station with bi-

directional power flow capability i.e., G2V and V2G) in the problem formulation of a SC-

UC problem and investigate the performance of the proposed approaches to solve the 

problem (future work). 

1.5 Overview  

The dissertation consists of the following chapters: 

Chapter 1. Introduction 

This chapter describes the electricity market infrastructure in the USA and expresses the 

significance of the problem statement. 

Chapter 2. Literature Survey 

This chapter presents different SC-UC algorithms and techniques discussed in the literature 

and being used in the industry. 

Chapter 3. Predictive Modeling 

This chapter briefly expresses the model building process for developing predictive models 

using data mining techniques. 

Chapter 4. Problem Formulation 

This chapter formulates the presented problem and describes different components of a 

SC-UC problem. It also explains in detail the proposed approaches for solving a SC-UC 

problem. 

Chapter 5. Case Studies and Simulation Results 

Case studies and their obtained results for the so far completed work are presented in this 

chapter. It also presents the performance comparison of the proposed approaches with the 

IBM CPLEX MIQP solver (MATLAB CPLEX Toolbox [6]) and GUROBI MIQP solver. 

Chapter 6. Conclusion and Future Work 

This chapter narrates the completed work and outlines the future work which can be done 

as an extension to this research work. 
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Due to the presence of binary variables (i.e., commitment decisions) as well as continuous 

variables (i.e., production decisions), UC problem is considered as one of the most complex 

optimization problems. Furthermore, it becomes more and more complicated with the size of the 

power system because of the exponentially growing possible combinations of binary variables. In 

literature, a lot of techniques have been discussed to solve a UC problem as given below. Some of 

the most discussed optimization techniques are discussed in detail here. 

➢ Exhaustive Enumeration (EE) ➢ Fuzzy Logic (FL) 

➢ Priority List (PL) ➢ Evolutionary Programming (EP) 

➢ Dynamic Programming (DP) ➢ Expert Systems (ES) 

➢ Lagrangian Relaxation (LR) ➢ Particle Swarm Optimization (PSO) 

➢ Branch and Bound (BB) ➢ Tabu Search (TS) 
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➢ Mix Integer Programming (MIP) ➢ Neural Network (NNET) 

➢ Genetic Algorithm (GA) ➢ Ant Colony Optimization (ACO) 

➢ Simulated Annealing (SA) ➢ …etc. 

2.1 Exhaustive Enumeration (EE) 

In EE techniques, UC problems are solved by enumerating all possible combinations of the 

binary variables representing on/off status of the generating units. The combinations that result in 

least operational cost are selected as the optimal solutions for the commitment decisions. Earlier 

solutions of UC problems were obtained using EE techniques. Hara [7] and Kerr [8] solved the 

UC problems by using the exhaustive enumeration methods. Although, EE provides an accurate 

optimal solution, however, it is not suitable for large power systems due to exponential increase in 

possible combinations of the on/off status of the generating units as the system size increases which 

results in excessive computational time i.e., for N units and T time intervals, the total no. of 

possible combinations in each time interval T are 

𝐶𝑁
1 + 𝐶𝑁

2 + ⋯ + 𝐶𝑁
𝑁 = 2𝑁 − 1 

Here 𝐶𝑁
𝑖 =

𝑁!

𝑖!(𝑁−𝑖)!
 is the combination of N units taken i units at a time. For T intervals,  

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = (2𝑁 − 1)𝑇 

Table 2.1 below gives a glimpse of this dimensionality curse of the solution space for 24 one-hour 

intervals [9]. A flowchart of a typical EE based UC algorithm is shown in Figure 2.1. 

. 
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2.2 Priority List (PL) 

In PL method, the generating units are sorted based on lowest operational cost 

characteristics. This prespecified order is then used to solve the UC problem such that the system 

power demand is satisfied. Lee et al. [10]-[13] and Burns [15] solved the UC problem using PL 

based approaches. In [16] Shoults et al. presented a PL based approach to solve a UC problem 

which also includes import/export constraints. Lee et al. [13]-[14] solved a single-area and a multi-

Table 2.1 Exponential Increase in No. of Combinations with No. of Gens 

N (𝟐𝑵 − 𝟏)𝟐𝟒 

5 6.2x1035 

10 1.73x1072 

20 3.12x10144 

: : 

 

 

Figure 2.1 Exhaustive Enumeration Algorithm for UC Problem 
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area UC problem using PL based on a classical index. The advantage of the PL based methods is 

the fast computational time, however, it suffers from producing generation schedules which have 

high operational cost. A flowchart of a basic PL algorithm is shown in Figure 2.2 which is repeated 

for every hour [17]. 

 

2.3 Dynamic Programming (DP) 

The number of possible combinations for a system having N units are 2N-1 which increases 

exponentially with the system size. In this sense, DP has an advantage over enumeration method, 

that it comparatively reduces the dimensionality of the problem. There are two types of DP 

algorithms i.e., forward DP and backward DP. For UC problems, forward DP algorithm, which 

runs forward in time, is often used because of the time dependent start-up cost of a unit [17]. The 

recursive algorithm is used to compute the minimum cost in hour t with feasible state I [9] i.e., 

𝐹𝑐𝑜𝑠𝑡(𝐾, 𝐼) = min
{𝐿}

[𝑃𝑐𝑜𝑠𝑡(𝐾, 𝐼) + 𝑆𝑐𝑜𝑠𝑡(𝐾 − 1, 𝐿: 𝐾, 𝐼) + 𝐹𝑐𝑜𝑠𝑡(𝐾 − 1, 𝐿)] 

Here 

𝐹𝑐𝑜𝑠𝑡(𝐾, 𝐼): total cost to arrive at state (K,I) 

 

Figure 2.2 Priority List Algorithm for solving UC problem for each hour 
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𝑃𝑐𝑜𝑠𝑡(𝐾, 𝐼): production cost for state (K,I) 

𝑆𝑐𝑜𝑠𝑡(𝐾 − 1, 𝐿: 𝐾, 𝐼): transition cost from state (K − 1, L) to state (K, I) 

{𝐿}: set of feasible states in hour K – 1 

𝑆𝑡𝑎𝑡𝑒 (𝐾, 𝐼): Ith combination in hour K  

DP is one of the earliest and most widely used optimization method to be applied to the 

UC problem [18]. The advantage of DP based approaches is that it can be easily modified to model 

characteristics of specific utilities and it is relatively easier to add constraints that affect operations 

at an hour. However, the drawback is that it is more difficult to include constraints that are time 

dependent and its suboptimal treatment of minimum up and downtime constraints and time-

dependent startup costs [19]. Moreover, solving a large-scale UC problem using DP can be time 

consuming. In [20], Lowery et al. studied the feasibility of using DP for solving UC problems. 

They implemented dynamic programming to solve UC problem for a 14-machine power system. 

Sen [21] solved a multi-area UC problem using truncated dynamic programming and applied to 

Indian Power System with two different areas having different operating characteristics. In [22], 

Singhal et al. compared the performance of conventional-DP, Sequential-DP, and Truncated-DP 

on a 10-machine power system. A flowchart of a forward DP algorithm is shown in Figure 2.3 [9]. 
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2.4 Lagrangian Relaxation (LR) 

For large power systems with a large no. of generators, DP algorithm has many drawbacks 

due to the necessity of forcing the DP method to search over a small number of commitment states 

to reduce total no. of combinations to be checked in each time interval. These disadvantages can 

be avoided using LR approach. LR method is another widely used optimization technique used by 

the utilities for UC problem. Its use in the utilities for UC problems is more recent than the DP 

method. Like DP, it can also be easily modified to model characteristics of specific utilities. It is 

comparatively more beneficial than DP for large systems as the degree of suboptimality goes to 

zero as the number of units increases. But it also has a disadvantage of having inherent 

suboptimality. The LR method solves the UC problem by “relaxing” or temporarily ignoring the 

 

Figure 2.3 A Flowchart for Solving Unit Commitment Using Forward DP 
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coupling constraints and solving the problem as if they did not exist. This is done through the dual 

optimization procedure. The dual procedure attempts to reach the constrained optimum by 

maximizing the Lagrangian with respect to the Lagrange multipliers while minimizing with respect 

to the other variables i.e.,  

𝑞∗(𝜆) = max
𝜆𝑡

𝑞(𝜆) 

Here 

𝑞(𝜆) = min
𝑃𝑖

𝑡,   𝑈𝑖
𝑡

𝐿(𝑃, 𝑈, 𝜆) 

Here, 𝐿 is the Lagrangian, 𝜆𝑡are the Lagrange multipliers for interval t and 𝑈𝑖
𝑡  and 𝑃𝑖

𝑡 are the 𝑖𝑡ℎ 

unit’s on/off status and dispatch in time interval t respectively.  

In [23], Merlin et al. proposed a new technique for UC problem using LR method and tested it at 

Electricite De France. Zhuang [24] proposed a new three-stage LR algorithm for UC. In the first 

stage, the Lagrangian dual of the UC is maximized with standard sub-gradient technique, the 

second stage finds a reserve feasible dual solution, and economic dispatch is done in the third 

stage. In [25], Takriti et al. proposed a refined LR method using integer programming. There is a 

lot of research been done on using LR methods, and its refinements using hybrid approaches, for 

solving UC problems [26]-[29]. A flowchart of a LR method is shown in Figure 2.4 [9]. Here the 

primal value 𝐽∗ is the total generation cost summed over all hours obtained from economic 

dispatch. 
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2.5 Branch and Bound (BB) 

The BB method includes repeated application of the following steps. First, a portion of the 

solution space in which the optimal solution is known to exist is partitioned into subsets. Second, 

a subset is eliminated from further consideration if all the elements in the subset violate the 

constraints of the minimization problem. Third, an upper bound on the minimum value of the 

 

Figure 2.4 A Flowchart for Solving Unit Commitment Using LR Method 
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objective function is computed. Finally, lower bounds are computed on the value of the objective 

function when the decision variables are constrained to lie in each subset still under consideration 

[19]. A subset is then eliminated if its lower bound exceeds the upper bound of the minimization 

problem, since the optimal decision variable cannot lie in that subset. Convergence takes place 

when only one subset of decision variables remains, and the upper and lower bounds are equal for 

that subset [18]. Cohen [30] and Ohuch [31] presented a new approach for solving UC problem 

based on BB method. BB method incorporates all time-dependent constraints and does not require 

a priority ordering of units. In [32], Huang et al. proposed a constraint logic programming along 

with the BB technique to provide an efficient and flexible approach to the UC problem. The 

drawback of the BB method is large storage capacity and high execution time especially for large 

power systems. 

2.6 Mix Integer Programming (MIP) 

Unit commitment problem is a very large mixed-integer constrained optimization problem 

due to the presence of both integer and continuous variables. Dillon et al. [33]-[34] developed an 

integer programming method for practical size scheduling problem based on the extension and 

modification of the branch-and-bound method. The UC problem can be partitioned into a nonlinear 

economic dispatch problem and a pure integer nonlinear UC problem based on benders approach. 

Whereas the mixed integer programming (MIP) approach solves the UC problem by reducing the 

solution search space through rejecting infeasible subsets. A linear programming (LP) UC problem 

can be solved either by decomposing the whole problem into subproblems with help of Dantzig–

Wolfe decomposition principle and then each subproblem is solved using linear programming or 

the problem can be solved directly by revised simplex technique [35]. 
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2.7 Evolutionary Programming 

During the last few decades, there has been a growing interest in problem-solving systems 

based on the principles of evolution. Such systems maintain a population of potential solutions 

based on fitness of individuals and some “genetic” operators. One such system is a class of 

evolution strategies (i.e., algorithms which imitate the principles of natural evolution for parameter 

optimization problems). Sheble et al. [36], applied the genetic algorithm (GA) to the UC problem 

for one to seven days. The feasibility of genetic algorithms application for UC problems has been 

examined for both small- and large-size problems [37]. Maifeld et al. [38] presented a new UC 

scheduling algorithm using genetic algorithm with domain-specific mutation operators. The 

robustness of the proposed algorithm is demonstrated by comparison to a Lagrangian Relaxation 

UC algorithm on different utilities. Swarup et al. [39] employed a new strategy for representing 

chromosomes and encoding the problem search space, which is efficient and can handle large-

scale UC. 

In the 90s and early 2000s, researchers experimented to solve UC problem using neural 

networks (NNET), but it proved very challenging to obtain high quality solutions due to processing 

limitations [40]-[41]. In recent years, there has been interest in using machine learning (ML) within 

optimization community, however, their main objective has been to improve the performance of 

the mix-integer-programming solvers by reducing the no. of constraints instead of completing 

replacing them with the data driven techniques [42]-[43]. 
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Predictive modeling is the process of developing a mathematical model that generates an 

accurate prediction. Geisser [44] defines predictive modeling as the process by which a model is 

created or chosen to try to best predict the probability of an outcome. We can easily find a lot of 

examples of predictive models in our daily life e.g., Banks use predictive models for fraud 

detection, spam filters use them to trash spam emails, Netflix and YouTube use these models to 

recommend videos to their viewers, etc. Predictive models have even been used in the US elections 

e.g., MIT Technology Review [45] reports that it was the Obama campaign’s effective use of data 

mining that helped President Obama win the 2012 presidential election over Mitt Romney. The 

process of developing predictive models has evolved throughout several fields such as chemistry, 

computer science, physics, and statistics and is called by several names such as machine learning, 

artificial intelligence, pattern recognition, data mining, predictive analytics, knowledge discovery, 
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however, the ultimate objective is the same: to make an accurate prediction and they all belong to 

a broader class of predictive/inductive modeling [46]. 

One of the key ingredients of a predictive model is relevant data. Vast amount of data is 

being collected every moment in our daily life. The McKinsey Global Institute (MGI) [47] reports 

that most American companies with more than 1000 employees have an average of at least 200 

terabytes of stored data. MGI projects that the amount of data generated worldwide will increase 

by 40% annually. The task of a predictive model is to leverage this data and extract knowledge 

from these large datasets to be used for prediction [48].  

3.1 Model Building Process: 

Building a predictive model is an iterative process. There are several steps involved in the 

process of building a predictive model. It is described with slight differences in different fields, 

however, the core concept behind is the same. For example, Kuhn [46] describes the model 

building process as shown in Figure 3.1. The received data is initially pre-processed for 

transformation from the raw format into an appropriate format for subsequent analysis. There are 

several steps involved within the pre-processing step itself e.g., normalization, dimensionality 

reduction etc. Next, the data is split for training and evaluation. After that, different suitable models 

are trained and, based on some performance metric e.g., accuracy, F1-score, AUC, MSE. MAE 

etc., the best model is selected for future prediction. Similar processes are discussed in some other 

literature works as shown in Figure 3.2 through Figure 3.5 [48]-[51]. 
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Figure 3.1 Predictive Model Building Process [46] 

 

Figure 3.2 Design Cycle of a Pattern Recognition System [49] 
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Figure 3.3 Process of Data Mining [50] 

 

Figure 3.4 Knowledge Discovery Process in Databases [51] 
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3.1.1 Data Exploration: 

 After collecting the raw data, the first step in model building process is to understand and 

getting familiar with the data. Usually, we want to know the following: What are the types of 

attributes or features that make up the data? What kind of values does each attribute have? Which 

attributes are discrete, and which are continuous-valued? What do the data look like? How are the 

values distributed? Are there ways we can visualize the data to get a better sense of it all? Can we 

spot any outliers? Can we measure the similarity of some data objects with respect to others? 

Gaining such insight into the data will help with the subsequent analysis. Datasets differ in several 

ways. For example, the attributes used to describe data objects can be of different types—

 

Figure 3.5 Cross-Industry Standard Process for Data Mining (CRISP-DM) [48] 
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quantitative or qualitative—and datasets may have special characteristics, e.g., some datasets 

contain time series or objects with explicit relationships to one another. The type of data determines 

which tools and techniques can be used to analyze the data.  

While most data mining techniques can tolerate some level of imperfection in the data, a 

focus on understanding and improving data quality typically improves the quality of the resulting 

analysis. Data quality issues that often need to be addressed include the presence of noise and 

outliers, missing, inconsistent, or duplicate data, and data that is biased or, in some other way, 

unrepresentative of the phenomenon or population that the data is supposed to describe. Hence 

some kind of exploratory data analysis (EDA) e.g., summary statistics, visualization, multi-

dimensional data analysis etc., is needed to discover initial insights and evaluate the quality of the 

data. Finally, if desired, some interesting feature/sample subsets are selected that may contain 

actionable patterns. 

3.1.2 Data Preparation: 

 The next step in the model building process is to preprocess the data and prepare it for 

modeling. Real-world data tend to be dirty, incomplete, and inconsistent. Data preprocessing 

techniques can improve data quality, thereby helping to improve the accuracy and efficiency of 

the subsequent modeling process. Data preprocessing is an important step in the predictive 

modeling process because quality decisions must be based on quality data. Detecting data 

anomalies, rectifying them early, and reducing the data to be analyzed can lead to huge payoffs for 

decision making. There are several steps involved in data preprocessing. Figure 3.6 summarizes 

typical steps involved in preprocessing. 
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 Data cleaning routines work to “clean” the data by filling in missing values, smoothing 

noisy data, identifying, or removing outliers, and resolving inconsistencies. If users believe that 

the data are dirty, they are unlikely to trust the results of any data mining that has been applied. 

Furthermore, dirty data can cause confusion for the modeling procedure, resulting in unreliable 

output. Although most mining routines have some procedures for dealing with incomplete or noisy 

data, they are not always robust. Instead, they may concentrate on avoiding overfitting the data to 

the function being modeled. Therefore, a useful preprocessing step is to run your data through 

some data cleaning routines. 

 Collecting data from multiple sources involve integrating multiple databases, data cubes, 

or files. This is called data integration. This may cause inconsistencies and redundancies. For 

 

Figure 3.6 Steps Involved in Data Preparation [50] 
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example, some attributes may have different names in different databases e.g., the attribute for 

customer identification may be referred to as customer_id in one dataset and cust_id in another. 

Naming inconsistencies may also occur for attribute values. For example, the same first name 

could be registered as “Bill” in one database, “William” in another, and “B.” in a third. 

Furthermore, having a large amount of redundant data may slow down the learning and/or confuse 

the knowledge discovery process. Typically, data cleaning and data integration are performed as a 

single step in data preparation because additional data cleaning may be needed to detect and 

remove redundancies that may have resulted from data integration. 

 Data reduction obtains a reduced representation of the dataset that is much smaller in 

volume yet produces the same (or almost the same) analytical results. Data reduction strategies 

include dimensionality reduction and numerosity reduction. In dimensionality reduction, data 

encoding schemes are applied to obtain a reduced or “compressed” representation of the original 

data. Examples include data compression techniques (e.g., wavelet transforms and principal 

components analysis), attribute subset selection (e.g., removing irrelevant attributes), and attribute 

construction (e.g., where a small set of more useful attributes is derived from the original set). In 

numerosity reduction, the data are replaced by alternative, smaller representations using parametric 

models (e.g., regression or log-linear models) or nonparametric models (e.g., histograms, clusters, 

sampling, or data aggregation).  

Distance based modeling algorithms, such as neural networks, nearest-neighbor classifiers, 

or clustering provide better results if the data to be analyzed is normalized, that is, scaled to a 

smaller range such as [0.0, 1.0]. Customer data, for example, contains the attributes age and annual 

salary. The annual salary attribute usually takes much larger values than age. Therefore, if the 

attributes are left unnormalized, the distance measurements taken on annual salary will generally 
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outweigh distance measurements taken on age. Discretization and concept hierarchy generation 

can also be useful, where raw data values for attributes are replaced by ranges or higher conceptual 

levels. For example, raw values for age may be replaced by higher-level concepts, such as youth, 

adult, or senior. Normalization, data discretization, and concept hierarchy generation are forms of 

data transformation. 

3.1.3 Data Splitting: 

 One of the first decisions to make when modeling is to decide which samples will be used 

to evaluate performance. Ideally, the model should be evaluated on samples that were not used to 

build or fine-tune the model, so that they provide an unbiased estimate of model performance. For 

comparison of different methods of splitting data, consult reference [52]. 

For large datasets (i.e., large number of samples), a set of samples can be set aside to 

evaluate the final model. The training dataset is the general term for the samples used to create the 

model, while the test or validation dataset is used to evaluate performance. Several methods for 

splitting the samples are used. Nonrandom sampling methods to split the data are sometimes 

appropriate. However, in most cases, there is the desire to make the training and test sets as 

homogeneous as possible. Random sampling methods can be used to create homogeneous datasets. 

The simplest way is to take a simple random sample. This does not control for any of the data 

attributes, such as the percentage of data in the classes. When one class has a disproportionately 

small frequency compared to the others, there is a chance that the distribution of the outcomes may 

be substantially different between the training and test sets. To account for the outcome when 

splitting the data, stratified random sampling applies random sampling within subgroups (such as 

the classes). In this way, there is a higher likelihood that the outcome distributions will match. 
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When the outcome is a number, a similar strategy can be used i.e., the numeric values are broken 

into similar groups (e.g., low, medium, and high) and the randomization is executed within these 

groups. Alternatively, the data can be split based on the predictor values e.g., data splitting based 

on maximum dissimilarity sampling. Dissimilarity between two samples can be measured in 

several ways. The simplest method is to use the distance between the predictor values for two 

samples. Larger distances between points are indicative of dissimilarity. Figure 3.7 shows an 

example of maximum dissimilarity sampling. 

 

For small datasets, a separate test dataset is usually avoided because every sample may be 

needed for model building. Additionally, the size of the test set may not have sufficient power or 

precision to make reasonable judgements. Therefore, validation using a single test set can be a 

poor choice. Resampling methods are usually used in such scenarios for estimating model 

performance and they often produce performance estimates superior to a single test set because 

they evaluate many alternate versions of the data. There are two main methods used for resampling 

i.e., cross-validation and bootstrap. There are different versions of cross validation. In k-fold cross 

 

Figure 3.7 An example of maximum dissimilarity sampling to create a test dataset (right) 

from original dataset (left) [46] 



CHAPTER 3. PREDICTIVE MODELING 

29 
 

validation, the samples are randomly partitioned into k sets of roughly equal size. A model is fit 

using all the samples except the first subset (called the first fold). The held-out samples are 

predicted by this model and used to estimate performance measures. The first subset is returned to 

the training set and procedure repeats with the second subset held out, and so on. The k resampled 

estimates of performance are summarized (usually with the mean and standard error) and used to 

estimate the model performance. The 3-fold cross-validation process is shown in Figure 3.8. 

 

A slight variant of this method is stratified k-fold cross validation which makes the folds balanced 

with respect to the outcome. Additionally, repeated k-fold cross validation replicates the procedure 

in Figure 3.8 multiple times. Leave-one-out cross validation (LOOCV) is the special case where 

only one sample is held-out at a time, the final performance is calculated from the k individual 

held-out predictions where k is the number of samples. In Leave-group-out cross validation 

(LGOCV) or Monte-Carlo cross validation, repeated training/test splits are performed as shown 

in Figure 3.9. 

 

 
Figure 3.8 A schematic of 3-fold cross validation [46] 

 
Figure 3.9 A schematic of B repeated Monte-Carlo cross validation [46] 
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The bootstrap sample is a random sample of the data taken with replacement. This means that, 

after a data point is selected for the subset, it is still available for further selection. The bootstrap 

sample is the same size as the original data set. As a result, some samples will be represented 

multiple times in the bootstrap sample while others will not be selected at all. The samples not 

selected are referred to as the “out-of-bag” samples. For a given iteration of bootstrap resampling, 

a model is built on the selected samples and evaluated using the out-of-bag samples (Figure 3.10). 

Like cross validation, there are some versions of the bootstrap method e.g., 632 method, 632+ 

method. 

 

3.1.4 Model Fitting: 

 Machine learning algorithms can be categorized into two main categories i.e., supervised, 

and unsupervised as shown in Figure 3.11.   In unsupervised methods, no target variable is 

identified. Instead, the learning algorithm searches for patterns and structure among all the 

variables. The most common unsupervised method is clustering. It is used for exploratory data 

analysis to find hidden patterns or groupings in data. Most learning algorithms, however, are 

supervised methods. In supervised methods, a particular prespecified target variable is available 

so that the algorithm may learn which values of the target variable are associated with which values 

of the predictor variables. Examples of supervised methods are classification and regression [53]. 

 
Figure 3.10 A schematic of bootstrap resampling [46] 
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Supervised vs Unsupervised: 

The decision to choose which method to use for predictive modeling depends mainly on: 

What kind of data are we working with? What insights do we want to get from it? How and where 

will those insights be applied? Answers to these questions help us decide whether to use  

supervised or unsupervised learning. Supervised learning is chosen if we need to train a model  to 

make a prediction e.g., predicting temperature or a stock  price, or identify makes of  cars from 

webcam video footage. We choose unsupervised learning if we need to explore data and want to  

train a model to find a good internal  representation, such as splitting data up  into clusters. 

Overfitting: 

Many modern algorithms are highly adaptable and capable of modeling complex 

relationships. However, they can very easily over-emphasize patterns that are not reproducible. 

This type of model is said to be over-fit and will usually have poor accuracy when predicting a 

new sample. Figure 3.12 shows example class boundaries from two distinct binary classifiers. The 

lines envelop the area where each model predicts the data to be the second class (blue squares). 

The left-hand panel (Model #1) shows a boundary that is complex and attempts to encircle every 

possible data point. This pattern is not likely to generalize to new data. The right-hand panel shows 

an alternative model fit where the boundary is smooth and does not overextend itself to correctly 

classify every data point in the training set. 

 
Figure 3.11 Machine learning algorithms [53] 
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In 2D, it is not difficult to visualize that one model is over-fitting, but most modeling 

problems are in much higher dimensions. In these situations, it is very important to have a tool for 

characterizing how much a model is over-fitting the training data. . There is an eternal tension in 

model building between model complexity (resulting in high accuracy on the training set) and 

generalizability to the test and validation sets. Increasing the complexity of the model to increase 

the accuracy on the training set eventually and inevitably leads to a degradation in the 

generalizability to the test set, as shown in Figure 3.13. The optimal level of model complexity is 

at the minimum error rate on the test set. 

 

 
Figure 3.12 An example of overfitting [46] 

 
Figure 3.13 Error rate vs model complexity [48] 
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Class Imbalance: 

In classification models, the relative frequencies of the classes can have a significant 

impact on the effectiveness of the model. An imbalance occurs when one or more classes have 

very low proportions in the training data as compared to the other classes. There are several ways 

for overcoming class imbalances e.g., model tuning can be used to increase the sensitivity of the 

minority class, alternative probability cutoffs can be derived from the data to improve the error 

rate on the minority class, modifications of case weights and prior probabilities, balancing the 

training dataset using sampling methods to mitigate the class imbalance prior to model training 

and cost-sensitive training to emphasize the accuracy of the model for the less frequent class(es). 

Hyperparameter Tuning: 

Many models have important parameters which cannot be directly estimated from the data, 

and they affect the performance of the models. For example, in the k-nearest neighbor (KNN) 

classification model, a new sample is predicted based on the k-closest data points in the training 

set. A choice of too few neighbors may over-fit the individual points of the training set while too 

many neighbors may not be sensitive enough to yield reasonable performance. These types of 

model parameters are referred to as a hyperparameters and there is no analytical formula available 

to calculate their appropriate values. There are different approaches used for hyperparameter 

tuning to obtain their optimized values. A general heuristic approach (called random/grid search) 

that can be applied to almost any model is to randomly define a set of candidate values, train the 

model, obtain performance metrics, and then choose the parameter values which give best 

performance. A flowchart of this process for hyperparameter tuning is shown in Figure 3.14. 
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Other approaches such as genetic algorithms or simplex search methods can also find 

optimal tuning parameters. These procedures algorithmically determine appropriate values for 

tuning parameters and iterate until they arrive at parameter settings with optimal performance. 

These techniques tend to evaluate many candidate models and can be superior to the random search 

procedure presented above. 

Performance Evaluation: 

 There are several different metrics and techniques to evaluate the performance of a 

predictive model. Different performance metrics are used for classification and regression models. 

A common method for describing the performance of a classification model is based on the counts 

of correctly and incorrectly predicted data samples. These counts are tabulated in the form of a 

table called confusion matrix/contingency table. Figure 3.15 shows confusion matrix for a binary 

 
Figure 3.14 A schematic of the hyperparameter tuning process [46] 
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classification model. Diagonal cells denote cases where the classes are correctly predicted while 

the off diagonals illustrate the number of errors for each class. 

 

There are four terms which act as building blocks in computing many performance measures i.e., 

True positives (TP) and true negatives (TN) refer to the positive and negative samples respectively 

that are correctly predicted by the classifier. False positives (FP) and false negatives (FN) are the 

negative and positive samples that are incorrectly predicted as positives and negatives respectively. 

Some of the confusion-matrix-based measures and other performance measures which are used for 

accessing and comparing the performance of classification models are discussed here.  

Accuracy: The accuracy (aka recognition rate) of a classifier on a given dataset is the percentage 

of samples that are correctly classified by the classifier. The disadvantage of using this simple 

statistic is that it makes no distinction about type of errors. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
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Figure 3.15 Confusion matrix for a binary classifier 
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Kappa: The Kappa statistic is to assess the agreement between the observed accuracy (OA) and 

expected accuracy (EA). The statistic can take on values between −1 and 1. A value of 0 means 

there is no agreement between the observed and predicted classes, while a value of 1 indicates 

perfect concordance of the model prediction and the observed classes. Negative values indicate 

that the prediction is in the opposite direction of the truth. 

𝐾𝑎𝑝𝑝𝑎 =
𝑂𝐴 − 𝐸𝐴

1 − 𝐸𝐴
 

Error Rate: The error rate (aka misclassification rate) is the percentage of samples that are 

incorrectly classified. 

𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑜. 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝐹𝑃 + 𝐹𝑁

𝑃 + 𝑁
 

 

Sensitivity (Recall): Sensitivity/Recall (aka true positive rate) is the proportion of positive 

samples that are correctly identified. It can be thought of as a measure of completeness. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =  
𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑇𝑃

𝑃
 

Specificity: Specificity (aka true negative rate) is the proportion of negative samples that are 

correctly classified. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑇𝑁

𝑁
 

It can be noticed that accuracy is a function of sensitivity and specificity. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑃

(𝑃 + 𝑁)
+ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

𝑁

(𝑃 + 𝑁)
 

Youden’s J-index: It is the proportions of correctly predicted samples for both positive and 

negative samples. In some contexts, this may be an appropriate method for summarizing the 

magnitude of both types of errors. 
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𝐽 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 

Precision: It is the percentage of total positive predicted samples that are correctly identified as 

positive samples. It can be thought of as a measure of exactness. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃

𝑃′
 

Fβ-measure: It is a measure which combines precision and recall into a single measure. It is a 

weighted measure of precision and recall. Here 𝛽 is a non-negative real number. And its value is 

chosen such that recall is considered β times as important as precision. 

𝐹𝛽 =
(1 + 𝛽2) × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Commonly used Fβ-measure is F1-measure (aka F1-score), which gives the harmonic mean of 

precision and recall. 

𝐹1 =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

ROC curve: The ROC curve is created by evaluating the class probabilities for the model across 

a continuum of thresholds. For each candidate threshold, the resulting true-positive rate (the 

sensitivity) and the false-positive rate (one minus the specificity) are plotted against each other. 

This plot is a helpful tool for choosing a threshold that appropriately maximizes the trade-off 

between sensitivity and specificity as shown in Figure 3.16(a) for an example classifier with 30% 

(green) and 50% (black) threshold values highlighted on the ROC curve. The ROC curve can also 

be used for a quantitative assessment of the model. A perfect binary classifier that completely 

separates the two classes would have 100% sensitivity and specificity. Graphically, the ROC curve 

would be a single step between (0, 0) and (0, 1) and remain constant from (0, 1) to (1, 1) as shown 

in Figure 3.16(b). The area under the ROC curve (AUC) for such a model would be 1. A 

completely ineffective model would result in an ROC curve that closely follows the 45◦ diagonal 
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line and would have AUC of approximately 0.50. To visually compare different models, their ROC 

curves can be superimposed on the same graph. Comparing ROC curves can be useful in 

contrasting two or more models with different predictor sets (for the same model), different tuning 

parameters (within model comparisons), or completely different classifiers (between-model 

comparison). 

 

Lift and Gain Charts: For classification models, lift is a concept, originally from the marketing 

field, which seeks to compare the response rates with and without using the classification model. 

Lift charts and gains charts are graphical evaluative methods for assessing and comparing the 

usefulness of classification models. Lift is defined as the proportion of positive hits in the set of 

the model’s positive classifications, divided by the proportion of positive hits in the data set 

overall. 

𝐿𝑖𝑓𝑡 =
𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ℎ𝑖𝑡𝑠 𝑖𝑛 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ℎ𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑎𝑠 𝑎 𝑤ℎ𝑜𝑙𝑒
 

Lift charts are often presented in their cumulative form, where they are denoted as cumulative lift 

charts, or gains charts. Lift charts and gains charts can also be used to compare model 

performance. Figure 3.17 shows the combined lift chart for two example models 1 (red) and 2 

 
        (a)            (b) 

Figure 3.16 (a) ROC Curve for an example classifier [46], (b) ROC curve 
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(blue). The figure shows that when it comes to model selection, a particular model may not be 

uniformly preferable. For example, up to about the 6th percentile, there appears to be no apparent 

difference in model lift. Then, up to approximately the 17th percentile, model 2 is preferable, 

providing slightly higher lift. Thereafter, model 1 is preferable. Gain charts for two example 

models is shown in Figure 3.18. The diagonal on the gains chart is analogous to the horizontal axis 

at lift=1 on the lift chart. It is desired to see gains chart to rise steeply from left to right and then 

gradually flatten out. 

 

 

 
Figure 3.17 Combined lift charts for models 1 (red) and 2 (blue) [48] 

 
Figure 3.18 Gain charts for two example models: one that perfectly separates two classes 

and another that is completely non-informative [46] 
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There are a lot of quantitative and graphical performance measures e.g., calibration plots, profit 

charts etc. discussed in literature that we cannot explain all of them here, however, a summary 

table of several commonly used measures is shown in Figure 3.19 [54]-[55]. In addition to the 

performance measures mentioned earlier, classifiers can also be compared with respect to the 

following additional aspects: Speed: This refers to the computational costs involved in generating 

and using the given classifier. Robustness: This is the ability of the classifier to make correct 

predictions given noisy data or data with missing values. Robustness is typically assessed with a 

series of synthetic data sets representing increasing degrees of noise and missing values. 

Scalability: This refers to the ability to construct the classifier efficiently given large amounts of 

data. Scalability is typically assessed with a series of data sets of increasing size. Interpretability: 

This refers to the level of understanding and insight that is provided by the classifier or predictor. 

Interpretability is subjective and therefore more difficult to assess. Decision trees and classification 

rules can be easy to interpret, yet their interpretability may diminish as their complexity increases. 
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Figure 3.19 Performance measures for a binary classifier [54] 
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Like classification models, there are different ways to measure the performance of regression 

models where the predicted outcome is numeric. The most used quantitative measures are mean 

absolute error (MAE), means square error (MSE), root mean square error (RMSE) and  coefficient 

of determination (R2). 

MSE: The mean squared error (MSE) is calculated by squaring the residuals, summing them up 

and dividing by the number of samples (n). Here 𝑦𝑖 is the actual output while 𝑦𝑖̂ is the predicted 

output. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 

RMSE: It is calculated by taking square root of MSE.  

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 

MAE: The mean absolute error (MAE) is the mean value of the absolute values of the residuals.  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 

R2: The coefficient of determination (R2) is the proportion of the information in the data that is 

explained by the model. For example, an R2 value of 0.75 implies that the model can explain three-

quarters of the variation in the outcome. R2 is a measure of correlation not accuracy. There are 

different definitions for calculating R2 in literature but the most common definition of R2 is the 

ratio between sum of squared residuals (SSR) and total sum of squares (SST). 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

Here, 𝑦̅ is the mean of the actual output i.e., 

𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1
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Visualizations of the model fit e.g., residual plots, is also critical in understanding whether a model 

is a good fit. 

Feature Selection/Extraction: 

 For a given set of features 𝐹 = {𝑓1, … , 𝑓𝑑}, feature selection problem is to find a subset 

𝐹′ ⊆ 𝐹 that maximizes the performance. While feature problem is to map 𝐹 to some feature set 𝐹" 

that maximizes the performance as shown in Figure 3.20. Determining which features/predictors 

to use in building a predictive model is very critical especially with high-dimensional (large 

number of features) dataset. A model with less predictors may be more interpretable, less costly, 

and more efficient. Some models are naturally resistant to non-informative predictors e.g., tree-

based models. Feature selection methods can be categorized as supervised or unsupervised 

methods. In unsupervised methods, the outcome is ignored during the elimination of predictors 

e.g., removing predictors that have high correlations with other predictors. For supervised 

methods, predictors are specifically selected for the purpose of increasing accuracy by using the 

outcome to quantify the importance of the predictors. The presence of non-informative variables 

can add uncertainty to the predictions and reduce the overall effectiveness of a model. 

 

 Most feature reduction techniques can be placed into two main categories. Both have their 

pros and cons. Wrapper methods evaluate multiple models using procedures by adding and/or 

removing predictors to find the optimal combination that maximizes model performance. Filter 

 
Figure 3.20 Feature Selection (left), Feature Extraction (right) 
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methods evaluate the relevance (e.g., correlation, mutual information etc.) of the features to the 

outcome and use only those predictors that pass some criterion. In theory the goal is to find an 

optimal feature-subset that maximizes the model performance. But in real world applications this 

is usually not possible because it is computationally intractable to search the whole space of 

possible feature subsets. Figure 3.21 shows schematics for each of these method for feature subset 

selection approach. 

 

3.1.5 Model Selection: 

 Although, models can be compared using the performance measures discussed earlier, 

however, in practice, a range of models are usually equivalent in terms of performance and hence 

determining the best model can be difficult. In that case, following approach can be used for model 

selection.  

1- Start with several models that are the least interpretable and most flexible, such as boosted 

trees or support vector machines.  

 
(a) 

 
(b) 

Figure 3.21 Feature Subset Selection using (a) Filter method, (b) Wrapper method 



CHAPTER 3. PREDICTIVE MODELING 

45 
 

2- Investigate simpler models that are less opaque (e.g., not complete black boxes), such as 

partial least squares, generalized additive models.  

3- Consider using the simplest model that reasonably approximates the performance of the 

more complex methods. 

Moreover, to determine if there is any statistically significant difference in the performance 

measures e.g., mean error rates of different models, we can employ a test of statistical significance 

(e.g., t-test). A paired t-test can be used to evaluate the hypothesis that the models have equivalent 

performance on average (null hypothesis) or, analogously, that the mean difference in performance 

is zero. In addition, this test can also provide some confidence limits for our mean error rates, for 

example, so that we can make statements like, “Any observed mean will not vary by ± two standard 

errors 95% of the time for future samples” or “One model is better than the other by a margin of 

error of ± 4%”.  
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The unit commitment problem (UCP) is typically formulated as a multi-period 

optimization problem [56]. In several other research studies, however, it is also formulated as a 

single-period optimization problem for simplicity [57]. The main difference being the integration 

of the inter-temporal constraints, such as ramping rates and minimum up/down times etc., in a 

multi-period UC problem. In this thesis, for the sake of simplicity and put more emphasis on the 

proposed approach, we will initially present results for a single-period SC-UC problem. However, 

the proposed approach works equally well for a multi-period SC-UC problem and results for a 

realistic multi-period SC-UC problem will be presented afterwards. 
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4.1 UCP-The Objective Function: 

The main objective of a classic UC problem is to minimize the total operational cost (TOC) 

over a predefined time horizon (T), as given by eq. (4.1). This cost typically consists of two 

components i.e., production cost (PC) and startup cost (SUC) of all the generating units. 

𝑚𝑖𝑛 𝑇𝑂𝐶 = ∑ ∑(𝑃𝐶𝑔𝑡 + 𝑆𝑈𝐶𝑔𝑡)𝐼𝑔𝑡

𝑔∈𝐺

                                 ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇

𝑡∈𝑇

   (4.1) 

Here, 𝑔 (∈ 𝐺) represents a generator in a set of available generators (𝐺) and 𝑡 is a time interval 

(e.g., an hour) in a prespecified time horizon 𝑇 (e.g., a day). The production cost (𝑃𝐶𝑔) of a 

generator is usually modeled either as a quadratic or a piecewise linear function of its output power 

(𝑃𝑔) as follows:  

Quadratic cost:   𝑃𝐶𝑔 = 𝑎𝑔 + 𝑏𝑔𝑃𝑔 + 𝑐𝑔𝑃𝑔
2 

Piecewise linear cost:   𝑃𝐶𝑔 = 𝑎𝑔 + ∑ 𝑏𝑘𝑔𝑃𝑘𝑔𝑘  

Here 𝑎𝑔, 𝑏𝑔 and 𝑐𝑔 are cost coefficients of a generator 𝑔 and 𝑏𝑘𝑔 is the cost coefficient of the 𝑘𝑡ℎ 

segment of its power generation cost curve. The startup cost (𝑆𝑈𝐶𝑔) is usually modeled by two 

distinct values (hot-startup-cost, 𝐻𝑆𝑈𝐶𝑔, and cold-startup-cost, 𝐶𝑆𝑈𝐶𝑔) and is a function of down 

time of a generator, as follows: 

𝑆𝑈𝐶𝑔 = {
𝐶𝑆𝑈𝐶𝑔                 𝑜𝑓𝑓 𝑡𝑖𝑚𝑒 > 𝑚𝑖𝑛. 𝑑𝑜𝑤𝑛 𝑡𝑖𝑚𝑒 + 𝑐𝑜𝑙𝑑 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒

𝐻𝑆𝑈𝐶𝑔                                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

4.2 UCP-Constraints: 

There are several constraints that need to be satisfied while minimizing the operational 

cost. Some of the commonly used constraints in formulating a SC-UC are discussed here. 
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Nodal Power Balance: At each interval t of the time horizon T, the power should be balanced at 

each node of the power system. While formulating a UCP as a mix-integer programming (MIP), 

usually the line flows are approximated by DC power flow assumptions. Hence, the nodal power 

balance constraints are expressed as follow: 

∑ 𝑃𝑔𝑡

𝑔∈𝐺𝑏

= 𝑑𝑏𝑡 + ∑ 𝑃𝑙𝑡

𝑙∈𝐿𝑏

                                          ∀𝑏 ∈ 𝐵, ∀𝑡 ∈ 𝑇 (4.1𝑎) 

Here 𝑃𝑔𝑡 is the power generated by generator 𝑔 in interval 𝑡, 𝑑𝑏𝑡 is the forecasted net power 

demand at bus 𝑏 in interval 𝑡, 𝑃𝑙𝑡 is the power injection from bus 𝑏 into the line 𝑙 in interval 𝑡. The 

sets 𝐺𝑏 and 𝐿𝑏 respectively represent the generators and lines connected with bus 𝑏. The set 𝐵 

contains all buses of a system. 

Generator Power Limits: These constraints ensure that, if committed, the power generated by 

each generator does not exceed its maximum (𝑃𝑔) and minimum (𝑃𝑔) power generation limits. 

Here, a binary decision variable 𝐼𝑔𝑡 is the commitment status (i.e., 1 = on, 0 = off) of a generator 

𝑔 in an interval 𝑡. 

𝑃𝑔𝐼𝑔𝑡  ≤  𝑃𝑔𝑡 ≤  𝑃𝑔𝐼𝑔𝑡                                       ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 (4.1𝑏) 

Line Capacity: There is a maximum power that each transmission line can carry. So, to ensure 

that the line flow (𝑃𝑙) of a line 𝑙 does not exceed its maximum power carrying capacity (𝑃𝑙), we 

include these constraints. The set 𝐿 represents all the transmission lines in the system. The line 

flows are approximated using DC power flow assumptions. 𝑋𝑙 is the reactance of the line 𝑙 and 𝛿𝑙 

is the voltage angle difference of the two busses connected at the two ends of the line 𝑙. 

−𝑃𝑙  ≤  𝑃𝑙 =
𝛿𝑙

𝑋𝑙
≤  𝑃𝑙                                                         ∀𝑙 ∈ 𝐿 (4.1𝑐) 

Spinning Reserve: The total available power from all the committed generators which is equal to 

the online maximum generation capacity minus the total generated power is defined as spinning 
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reserve. In each interval 𝑡, the spinning reserve must be higher than or equal to the minimum 

spinning reserve requirements (𝑅𝑡). 𝑅𝑡 is usually described as a percentage of the total demand in 

interval 𝑡. 

∑ 𝑅𝑔𝑡

𝑔∈𝐺

𝐼𝑔𝑡 ≥ 𝑅𝑡                                                           ∀𝑡 ∈ 𝑇 (4.1𝑑) 

Minimum Up/Down Time: A generator cannot change its status instantaneously once it is 

committed or decommitted. A switched off/on generator cannot be turned on/off  instantaneously 

until elapsing some time called minimum down/up time. The minimum up/down time constraints 

can be represented as 

(𝑇𝑔(𝑡−1)
𝑜𝑛 − 𝑇𝑔

𝑢𝑝)(𝐼𝑔(𝑡−1) − 𝐼𝑔𝑡) ≥ 0                                 ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 (4.1𝑒) 

(𝑇𝑔(𝑡−1)
𝑜𝑓𝑓

− 𝑇𝑔
𝑑𝑜𝑤𝑛) (𝐼𝑔(𝑡−1) − 𝐼𝑔𝑡) ≥ 0                           ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 (4.1𝑓) 

Here 𝑇𝑔
𝑢𝑝

 and 𝑇𝑔
𝑑𝑜𝑤𝑛 are minimum up and down time limits while 𝑇𝑔(𝑡−1)

𝑜𝑛  and 𝑇𝑔(𝑡−1)
𝑜𝑓𝑓

 are 

continuous on/off times in interval (𝑡 − 1) of a generator 𝑔, respectively.  

Ramp Up/Down Limits: The output power variation for consecutive periods of a committed 

online generator must satisfy its ramp rate constraints as follows. 

−𝑅𝑑𝑜𝑤𝑛 ≤ 𝑃𝑔𝑡 − 𝑃𝑔(𝑡−1) ≤ 𝑅𝑢𝑝                               ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇(4.1𝑔) 

Binary and Non-negativity: The UCP is a mix-integer non-convex optimization problem. It has 

both binary (𝐼𝑔𝑡) and continuous (𝑃𝑔𝑡) decision variables which are usually non-negative. 

𝐼𝑔𝑡 ∈ {0,1}                                                               ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇(4.1ℎ) 

𝑃𝑔𝑡 ≥ 0                                                                     ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇(4.1𝑖) 

4.3 Single Period SC-UC Problem: 
Consider a power system having 𝑁𝐵 number of buses, 𝑁𝐺  number of generators and 𝑁𝐿 

number of transmission lines. Sets 𝐵 = {1,2,3, … , 𝑁𝐵}, 𝐺 = {1,2,3, … , 𝑁𝐺}, 𝐿 = {1,2,3, … , 𝑁𝐿} 
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and 𝐷 = {1,2,3, … , 𝑁𝐷} represent the sets of buses, generators, transmission lines and nodal power 

demands respectively. For each generator 𝑔 ∈ 𝐺, let a binary decision variable 𝐼𝑔 ∈ {0,1}, 

represents the on/off status of the generator 𝑔 and a continuous decision variable 𝑃𝑔, indicates the 

amount of power being generated by it. Let 𝑃𝐶𝑔 represents the power production cost function of 

a generator 𝑔. Assuming a quadratic cost function (i.e., 𝑃𝐶𝑔 = 𝑎𝑔 + 𝑏𝑔 𝑃𝑔 + 𝑐𝑔 𝑃𝑔
2) and neglecting 

the start-up cost, a typical single-period SC-UC problem can be formulated as given by eq. (4.2). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
𝐼𝑔, 𝑃𝑔, 𝑅𝑔, 𝛿𝑏

           ∑ 𝐼𝑔. 𝑃𝐶𝑔(𝑃𝑔)

𝑔∈𝐺

                                                                                         (4.2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:         ∑ 𝑃𝑔

𝑔∈𝐺𝑏

= 𝑑𝑏 + ∑ 𝑃𝑙

𝑙∈𝐿𝑏

                                                         ∀𝑏 ∈ 𝐵   (4.2𝑎) 

−𝑃𝑙  ≤  𝑃𝑙 =
𝛿𝑙

𝑋𝑙
≤  𝑃𝑙                                                             ∀𝑙 ∈ 𝐿   (4.2𝑏) 

𝛿𝑏𝑟𝑒𝑓
= 0                                                                                               (4.2𝑐) 

𝑃𝑔𝐼𝑔  ≤  𝑃𝑔 ≤  𝑃𝑔𝐼𝑔                                                             ∀𝑔 ∈ 𝐺   (4.2𝑑) 

∑ 𝑅𝑔

𝑔∈𝐺

≥ 𝑅                                                                                             (4.2𝑒) 

𝑃𝑔 + 𝑅𝑔  ≤ (𝑃𝑔 − 𝑃𝑔) 𝐼𝑔                                                     ∀𝑔 ∈ 𝐺   (4.2𝑓) 

𝐼𝑔 ∈ {0,1}                                                                             ∀𝑔 ∈ 𝐺   (4.2𝑔) 

𝑃𝑔 ≥ 0                                                                                   ∀𝑔 ∈ 𝐺   (4.2ℎ) 

Here 𝛿𝑏𝑟𝑒𝑓
 is the phase angle of the reference bus of the system. Constraints (4.2𝑎) through (4.2𝑒) 

are sets of constraints enforcing nodal power balance at each bus 𝑏, maximum power carrying 

capacity of each line 𝑙, phase angle of the reference bus, maximum and minimum power output 

limits of each generator 𝑔 and minimum spinning reserve requirements respectively. Constraints 

sets (4.2𝑓) though (4.2ℎ) describe the relation between 𝑃𝑔 and 𝑅𝑔 variables and binary and non-

negative behavior of variables 𝐼𝑔 and 𝑃𝑔 respectively. 
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4.4 Stage-1: Commitment Decisions (Algo-1 & Algo-2) 
In the first stage, predictive classification models, based on supervised learning methods, 

are employed to predict the on/off status of each of the generators. The models are trained using 

either historical or synthetic data. The training dataset contains labeled examples of solved 

instances. A lot of supervised learning methods are available in the literature and selection of any 

of the methods depends on the application and performance of the method for that specific 

application. One method which performs well for one application may not perform well in another 

application. A usual practice is to try multiple different learning methods and select the one which 

performs best. A combination of multiple learning methods, i.e., Ensemble, can also be used. Each 

method constructs a function, based on the training dataset, which is then used to label new 

instances. 

Initially, we employed several learning algorithms e.g., K-Nearest Neighbor (KNN), 

Decision Tree (DT), Random Forest (RF), Linear Discriminant Analysis (LDA), Support Vector 

Machine (SVM), Generalized Linear Model (GLM), Extreme Gradient Boosting (XGB) and 

Neural Network (NNET). Based on the performance metrics discussed in chapter 3, the model 

which provided the best overall classification performance was selected. Initially, we employed 

multiple learning algorithms for stage-1 classification e.g., Random Forest (RF), Extreme Gradient 

Boosting (XGB), Support Vector Machine (SVM), K-nearest Neighbor (KNN) and Neural 

Network (NNET). The method which provided the best classification performance, was finally 

used.  

Performance Evaluation: Initially, we split the dataset into train/test datasets with 80/20% split. 

Train set was used for training and test set was used for validation and final selection. For 
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resampling, repeated 10-fold cross-validation was used repeated 5 times. Top 3 models were 

initially selected based on resampling results. Then based on their performance for the test set, the 

best model was chosen for prediction. 

Performance Optimization: For optimizing the performance of the individual models, we used 

hyperparameter tuning and feature selection techniques. Random grid search was used for 

hypermeter tuning and feature subset selection was done using a wrapper method with forward 

selection. 

Performance Measures: The most used metric is accuracy. However, it does not provide insights 

into the classification errors and can be misleading, especially, for imbalanced datasets. Therefore, 

other widely used measures, obtained from the confusion matrix (shown in Figure 4.1), were also 

considered e.g., precision, recall/sensitivity, specificity, F1-score, area under the receiver operating 

characteristic (ROC) curve (AUC) etc. The selection of one or the other depends on the application 

and preference. Detailed explanation of these metrics can be found in chapter 3. 

 

4.5 Stage-2: Production Decisions (Algo-1) 

Once the commitments decisions of all the generators are predicted in stage 1 i.e., the 

values of the binary decision variables 𝑰𝒈 in eq. (4.2) are specified, the UC problem becomes an 

optimal dispatch problem, however, with some security constraints. Hence, a complex MIQP given 

 

Figure 4.1 Confusion Matrix for a Binary Classifier 
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in eq. (4.2) is converted to a comparatively much easier to solve QP problem with no. of decision 

variables reduced to half of the original variables and less constraints. Therefore, in stage-2 of the 

proposed approach, a SC-ED, given in eq. (4.3), is solved to obtain the production decisions 𝑷𝒈 

of the committed generators. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
𝑃𝑔

           ∑ 𝐹𝑔(𝑃𝑔)

𝑔∈𝐺𝑐

                                                                                               (4.3) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:         ∑ 𝑃𝑔

𝑔∈𝐺𝑏
𝑐

= 𝑑𝑏 + ∑ 𝑃𝑙

𝑙∈𝐿𝑏

                                                         ∀𝑏 ∈ 𝐵   (4.3𝑎) 

−𝑃𝑙  ≤  𝑃𝑙 =
𝛿𝑏𝑙

𝑋𝑙
≤  𝑃𝑙                                                              ∀𝑙 ∈ 𝐿   (4.3𝑏) 

𝛿𝑏𝑟𝑒𝑓
= 0                                                                                                 (4.3𝑐) 

𝑃𝑔  ≤  𝑃𝑔 ≤  𝑃𝑔                                                                     ∀𝑔 ∈ 𝐺𝑐    (4.3𝑑) 

∑ 𝑅𝑔

𝑔∈𝐺𝑐

≥ 𝑅                                                                                               (4.3𝑒) 

𝑃𝑔 + 𝑅𝑔  ≤ (𝑃𝑔 − 𝑃𝑔)                                                         ∀𝑔 ∈ 𝐺𝑐   (4.3𝑓) 

𝑃𝑔 ≥ 0                                                                                   ∀𝑔 ∈ 𝐺𝑐   (4.3𝑔) 

Here, 𝑮𝒄 is the predicted set of committed generators obtained from stage 1. A schematic diagram 

of the proposed algorithm-1 is shown in Figure 4.2. 

4.6 Stage-2: Production Decisions (Algo-2) 

 In stage-2 of algorithm-2, predictive regression models are employed to estimate the output 

powers 𝑃𝑔 of the committed generators. Hence, the MIP optimization problem formulated earlier 

to solve the UC, is completely replaced by predictive models. Like stage-1 classification, we 

employed multiple learning methods like KNN, RF, XGB, NNET, Linear and Logistics regression 

models and used the best model in terms of performance. The model evaluation procedures for 

regression models are the same as discussed earlier, however, the performance metrics are 
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different. The most used metrics for evaluating the performance of a regression model are mean 

absolute error (MAE), mean square error (MSE), root mean square error (RMSE) and coefficient 

of determination (R-squared). 

 

4.7 Stage-3: Post Processing (Algo-2) 

Since stage-1 and stage-2 models discussed earlier are trained on historical/synthetic data 

containing solved instances which satisfy system constraints, it is inherent for these data-driven 

approaches to predict solutions which would somewhat satisfy the system constraints as well, 

however, due to the embedded uncertainty and prediction error in predictive modeling techniques, 

it is mandatory to confirm that all system constraints are satisfied to ensure secure operation of the 

power system. Hence, a third stage for post processing and polishing the predicted solution is 

needed to make sure that all the constraints are satisfied. 

 
Figure 4.2 Two-Stage Proposed Algorithm for SCUC 
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Spinning Reserves: To ensure that spinning reserve constraints are satisfied, we check if the total 

committed generation capacity (PG
c) is higher than total demand (𝐷) plus spinning reserve 

requirement (𝑅) as given by (4.4c). If it’s less, then the total power demand is assumed to have 

increased, and the commitment decisions are predicted again to increase the predicted committed 

capacity. 

PG
c = ∑ 𝑃𝑔

𝑔∈𝐺𝑐

                                                                                  (4.4𝑎) 

𝐷 = ∑ 𝑑𝑏

𝑏∈𝐵

                                                                                    (4.4𝑏) 

PG
c ≥ 𝐷 + 𝑅                                                                                    (4.4𝑐) 

Generator Power Limits: The production decisions obtained from stage 2 prediction are 

truncated by 𝑃𝑔 and 𝑃𝑔 to satisfy generators maximum and minimum power limits as follows: 

𝑃𝑔 ∈ [𝑃𝑔, 𝑃𝑔]                                                                   ∀𝑔 ∈ 𝐺𝑐 (4.5) 

Power Balance: To balance the total generation (𝑃𝐺) with the total demand (D), we calculate the 

generation load imbalance (GLI), then update the production decisions while satisfying the 

maximum and minimum power generation limits of the committed generators as follows: 

𝐺𝐿𝐼 = 𝑃𝐺 − 𝐷 = ∑ 𝑃𝑔

𝑔∈𝐺𝑐

− ∑ 𝑑𝑏

𝑏∈𝐵

                                          (4.6𝑎) 

𝑃𝑔
′ = 𝑃𝑔 (1 −

𝐺𝐿𝐼

𝑃𝐺
) = 𝑃𝑔 (

𝐷

𝑃𝐺
) ∈ [𝑃𝑔, 𝑃𝑔]             ∀𝑔 ∈ 𝐺𝑐   (4.6𝑏) 

The decision variables (𝑃𝑔) which violate 𝑃𝑔 or 𝑃𝑔 limits are truncated at its limits and the remaining 

𝑃𝑔 variables are updated using (4.6b). 
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Line Capacity Limits: To ensure that none of the line capacity limits are violated, we re-dispatch 

the generator powers (𝑃𝑔) so that all the line flows are within their capacity limits. For rescheduling 

the generator powers, we bring small variations in generator powers (Δ𝑃𝑔) using Generation Shift 

Factors and Eigen Value Decomposition discussed below. 

1) Generation Shift Factors (GSF): Generation Shift Factors are linear sensitivity 

factors which describe the change in power flow on a branch for a given change in bus power 

injections. It gives the fraction of a change in injection at bus 𝑏 that appears on a line 𝑙 [58]. From 

the DC load flow equations, the effect of varying the bus power injections (∆𝑷) on the bus voltage 

angles (∆𝜹) is given by eq. (4.7). 

∆𝜹 = [𝐵′]−1∆𝑷                                                                            (4.7) 

𝐵′ is the DC power flow matrix. Similarly, the effect of varying the bus voltage angles (∆𝜹) on the 

line flows (∆𝑷𝒍𝒊𝒏𝒆) is given by eq. (4.8). 

∆𝑷𝒍𝒊𝒏𝒆 = (𝐷𝑋𝐴𝑁)∆𝜹                                                                        (4.8) 

𝐷𝑋 is a diagonal square matrix in which diagonal entries are equal to the negative of the 

susceptance (1/𝑋𝑙) of the corresponding transmission line and 𝐴𝑁 is the node-arc-incidence matrix 

of the power network describing connections of the lines in the network. By using eqs. (4.7) and 

(4.8), we can find the effect of varying bus power injections on the line flows as follows. 

∆𝑷𝒍𝒊𝒏𝒆 = 𝑇∆𝑷                                                                              (4.9) 

Here 𝑇 is the matrix of generation shift factors given by eq. (4.10) and ∆𝜹, ∆𝑷 and ∆𝑷𝒍𝒊𝒏𝒆 are 

vectors of variations in bus voltage angles, bus power injections and line flows respectively. 

𝑇 = (𝐷𝑋𝐴𝑁)[𝐵′]−1                                                                       (4.10) 

∆𝜹 = [∆𝛿1 … ∆𝛿𝑁𝐵 ]
𝑇                                                                (4.11) 
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∆𝑷 = [∆𝑃1 … ∆𝑃𝑁𝐵 ]
𝑇                                                                (4.12) 

 ∆𝑷𝒍𝒊𝒏𝒆 = [∆𝑃𝑙1 … ∆𝑃𝑙𝑁𝐿 ]
𝑇                                                         (4.13) 

Using eq. (4.9), we can find the change in line flows for a given change in bus power injections 

(∆𝑷) i.e., generator injections (∆𝑷𝒈). 

2) Eigen Value Decomposition (EVD): When a vector 𝒙 is multiplied with a matrix 𝐴 

as 𝒚 =  𝐴𝒙, then it changes its magnitude as well as its direction. However, when eigenvectors 

(𝒗𝝀𝒊) of matrix 𝐴 are multiplied with 𝐴, they are only squeezed or stretched while keeping same 

direction [59-63], as given by eq. (4.14). 

𝐴𝒗𝜆𝑖
= 𝜆𝑖𝒗𝜆𝑖

                                                                        (4.14) 

 

Manipulation of a set of all possible vectors {𝒙𝒊}, having same magnitudes, with 𝐴 is shown in 

Figure 4.3. It shows that if 𝒙 lies in the span of 𝒗𝒎  (eigenvector of highest eigenvalue, 𝜆𝑚), then 

𝒚 would be maximized i.e., if 𝒙 = 𝒗𝒎, then 𝒚 = 𝐴𝒗𝒎 = 𝜆𝑚𝒗𝒎. Hence, to maximize the effect of 

∆𝑷 on a specific line 𝑙 , we can use the weighted 𝐿2 norm of ∆𝑷𝒍. Using eq. (4.9), we can write 

∆𝑃𝒍 = ∆𝑷𝒍𝒊𝒏𝒆
𝑇 𝑊∆𝑷𝒍𝒊𝒏𝒆 = ∆𝑷𝑻𝑁∆𝑷                                               (4.15) 

Here, 𝑁 = 𝑇𝑇𝑊𝑇 is a real symmetric matrix and 𝑊 is a weight matrix to select the line(s) whose 

flow(s) we want to control. Based on previous discussion, ∆𝑃𝑙 would be maximized if ∆𝑷 lies in 

the span of the eigenvector (𝒗𝒎) of the highest eigenvalue (𝜆𝑚) of 𝑁 i.e., if 𝜟𝑷 = 𝛼𝒗𝒎, then 

 

Figure 4.3 Manipulation of {𝒙𝒊} with 𝐴 
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∆𝑃𝑙
𝑚𝑎𝑥  = 𝛼2𝜆𝑚. Scalar 𝛼 is the design parameter which would give required change in 

corresponding line flow. It can be calculated as 𝛼 = ±√
∆𝑃𝑙,𝑟𝑒𝑞

𝜆𝑚
. However, to keep ∑ 𝛥𝑃𝑏∀𝑏 = 0, to 

maintain generation load balance in the obtained solution, we only use the signs of the elements 

of 𝒗𝒎 to get the direction of required variations (i.e., increase/decrease) in generators’ output 

powers which will have the maximum effect on ∆𝑃𝑙, keeping generation and load balanced. The 

schematic diagram of proposed three stage algorithm is shown in Figure 4.4. 

 

 

 

 
Figure 4.4 Three-Stage Proposed Algorithm 
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CHAPTER 

CASE STUDIES AND 

SIMULATION RESULTS 

5 

 

 

To see the performance of the proposed approaches, we will study several power systems 

e.g., a 4-bus-3-machine system and IEEE 9-bus, 39-bus, 118-bus, and  South Carolina 500-bus 

systems. All the simulations are performed using MATLAB and R-Studio on an AMD 16-core 

machine having 64GB of DDR4. 

5.1 Case Study 1: 4-Bus 3-Machine System 

5.1.1 System Data 

This small system is used as an illustrative example to study the performance of the 

presented approaches. The system has four buses, three generators, two loads and five transmission 

lines. The single line diagram of the system is shown in Figure 5.1. The system data is given in 

Table 5.1. 



CHAPTER 5. CASE STUDIES AND SIMULATION RESULTS 

 

60 
 

 

 

5.1.2 MIQP Problem Formulation 

Initially, the UC problem for the 4-bus system is formulated as a single-period MIQP 

problem assuming quadratic cost curves for the generators (𝑖. 𝑒.  𝑃𝐶𝑔(𝑃𝑔) = 𝑎𝑔 + 𝑏𝑔𝑃𝑔 + 𝑐𝑔𝑃𝑔
2, 

where 𝑎𝑔, 𝑏𝑔 and 𝑐𝑔 are the cost coefficients) as presented in chapter 4. Using the system data 

given in Table 5.1, the problem is formulated as given below. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
𝐼1, 𝐼2, 𝐼3, 𝑃1, 𝑃2, 𝑃3, 𝑅1, 𝑅2, 𝑅3, 𝛿1, 𝛿2, 𝛿3, 𝛿4

      :        𝐼1(𝑎1 + 𝑏1𝑃1 + 𝑐1𝑃1
2) + 𝐼2(𝑎2 + 𝑏2𝑃2 + 𝑐2𝑃2

2) 

+𝐼3(𝑎3 + 𝑏3𝑃3 + 𝑐3𝑃3
2) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   :             𝑛𝑜𝑑𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 

12𝛿1 − 4𝛿2 − 4𝛿3 − 4𝛿4 = 𝑃1 

−4𝛿1 + 8𝛿2 − 4𝛿3 = 𝑃2 − 𝑑2 

−4𝛿1 − 4𝛿2 + 12𝛿3 − 4𝛿4 = 𝑃3 

 
Figure 5.1 Single Line Diagram (3-Machine System) 

Table 5.1 System Data (3-Machine System) 

Base MVA 100 

Base kV 138 

Lines pu Reactances 0.25 

Lines MW Capacities 200 

Generators MW Limits 0 - 500 

mean MW Loads  

(bus2/bus3) 
300/200 

minimum Spinning  

Reserve requirement (R) 

30% of  

total load 
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−4𝛿1 − 4𝛿3 + 8𝛿4 = −𝑑4 

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑢𝑠 𝑎𝑛𝑔𝑙𝑒 

𝛿1 = 0 

𝑙𝑖𝑛𝑒 𝑙𝑖𝑚𝑖𝑡𝑠 

−0.5 ≤ 𝛿1 − 𝛿2 ≤ 0.5 

−0.5 ≤ 𝛿1 − 𝛿3 ≤ 0.5 

−0.5 ≤ 𝛿1 − 𝛿4 ≤ 0.5 

−0.5 ≤ 𝛿2 − 𝛿3 ≤ 0.5 

−0.5 ≤ 𝛿3 − 𝛿4 ≤ 0.5 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑝𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡𝑠 

0 ≤ 𝑃1 ≤ 5𝐼1 

0 ≤ 𝑃2 ≤ 5𝐼2 

0 ≤ 𝑃3 ≤ 5𝐼3 

𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 

𝑅1 + 𝑅2 + 𝑅3 ≥ 0.3(𝑑2 + 𝑑4) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑅𝑔𝑎𝑛𝑑 𝑃𝑔 

𝑃1 + 𝑅1 ≤ 5𝐼1 

𝑃2 + 𝑅2 ≤ 5𝐼2 

𝑃3 + 𝑅3 ≤ 5𝐼3 

𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝐼1, 𝐼2, 𝐼3 ∈ {0,1} 

Here, the angles (𝛿𝑏) are in radians while all the other non-binary variables are in per unit. 

5.1.3 Data Generation 

To train the predictive model, the dataset is generated by solving the above MIQP problem 

using IBM CPLEX toolbox for MATLAB (this solver is used as a base line method for comparing 

the performance of the presented approach). A data set of 1000 samples, representing different 

scenarios of power demands and price signals, is generated assuming normal distributions for the 

loads (𝑑2 , 𝑑4) and the cost coefficients (𝑎𝑔 , 𝑏𝑔 , 𝑐𝑔). Figure 5.2 shows the histograms of the MW 

demands at bus 2 (i.e., 𝑑2) and bus 4 (i.e., 𝑑4) in the generated simulated dataset. These demands 
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are randomly generated assuming normal distributions for power demands at the two buses with 

mean values of 300/200 MW and standard deviation values of 75/55 MW respectively. The 

distributions of the cost coefficients 𝑎𝑔, 𝑏𝑔 and 𝑐𝑔 in the generated dataset are shown in Figure 

5.3. The spread of the cost curve resulted from these cost coefficients is shown in Figure 5.4. 

  

 

  
Figure 5.2 Bus Power Demands Distributions (3-Machine System) 

 

 
Figure 5.3 Distribution of Cost Coefficients (3-Machine System) 
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The location and dispersion values of the normal distributions used for generating these load 

demands, and cost coefficients are given in Table 5.2. To label the generated dataset, the instances 

are solved through simulations by solving the SC-UC problem presented earlier. MATLAB 

(R2021a) and IBM CPLEX toolbox for MATLAB are used to solve the MIQP problem. This data 

is then used for training and testing of the learning algorithms using R-Studio. Table 5.3 shows 

few of the solved instances in the dataset. Here, the angles are given in degrees. 

  
Figure 5.4 Spread of Generators’ Cost Curves (3-Machine System) 

 

Table 5.2 Location and Dispersion of the Normal Distributions (3-Machine System) 

Variable Mean St. Dev. 

d2 (MW) 300 75 

d4 (MW) 200 55 

a ($/hr) 150 20 

b ($/hr/MW) 10 2 

c ($/hr/MW-sq) 0.005 0.001 
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The binary variables (𝐼1, 𝐼2, 𝐼3) indicating the on/off status of the generators are converted into an 

equivalent decimal number (𝐼123) e.g., (𝐼1, 𝐼2, 𝐼3) = (0,1,1) = 3 with 𝐼1 and 𝐼3 being the MSB and 

LSB respectively. Hence, it becomes a multi-level classification problem having 7 distinct levels 

in the dataset as shown in Table 5.3 above.  

The objective of the predictive modeling is to predict the decision variables 𝐼1, 𝐼2, 𝐼3, 𝑃1, 𝑃2, and 

𝑃3 using variables 𝑑2, 𝑑4, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3, 𝑐1, 𝑐2, and 𝑐3. Hence, variables 𝐼1, 𝐼2, 𝐼3 (or 

equivalently 𝐼123) are target variables and 𝑑2, 𝑑4, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3, 𝑐1, 𝑐2, 𝑐3 are predictor 

variables for stage 1 prediction. While for stage 2 prediction (algorithm 2), 𝑃1, 𝑃2, 𝑃3 are target 

variables and 𝑑2, 𝑑4, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3, 𝑐1, 𝑐2, 𝑐3, and 𝐼1, 𝐼2, 𝐼3 (obtained from stage 1 

prediction) are predictor variables. 

 

 

Table 5.3 A Sample of the Solved Instances (3-Machine System) 

index cost d2 d4 a1 a2 a3 

1 7034.84 357 235 132 131 150 

2 5143.75 255 266 166 119 154 

3 4678.61 222 226 127 139 141 

b1 b2 b3 c1 c2 c3 I1 

11.45 12.13 9.41 0.00278 0.00513 0.00433 1 

8.5 10.31 7.55 0.00560 0.00424 0.00463 1 

10.96 10.1 8.3 0.00602 0.00384 0.00382 0 

I2 I3 P1 P2 P3 del1 del2 

0 1 217.04 0 374.96 0 -22.74 

0 1 189.35 0 331.65 0 -15.72 

1 1 0 105.7 342.3 0 -2.2 

del3 del4 R1 R2 R3 I123  

5.66 -14 282.96 0 125.04 5  

5.1 -16.5 310.65 0 168.35 5  

12.26 -10.06 0 394.3 157.7 3  
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5.1.4 Data Preprocessing 

 As a first step, we look for any skewness in the distributions of the predictor variables. By 

looking at the frequency distributions of the variables in Figure 5.2 and Figure 5.3, we can see 

that the variables are very much normally distributed (that’s obvious because there were generated 

synthetically from normal random distributions, however, in real world data, they can be skewed), 

and it can also be confirmed from the near-zero skewness coefficients of the distributions of the 

variables given in Table 5.4. 

 

Next, we will normalize the numeric predictors (i.e., d2 through c3 in Table 5.3) using min-max 

normalization. This will normalize all the predictor values to a common scale of [0-1]. It maps an 

𝑖𝑡ℎ value 𝑥𝑃𝑖 of a predictor 𝑃 to a new value 𝑥’𝑃𝑖
 as given by eq. (5.1). It linearly transforms the 

original data values between 0 and 1 and preserves the relationship among the original data values. 

Here, 𝑚𝑖𝑛𝑃 and 𝑚𝑎𝑥𝑃 are the minimum and maximum values of a predictor 𝑃 in the dataset. 

𝑥′𝑃𝑖
=

𝑥𝑃𝑖
− 𝑚𝑖𝑛𝑃

𝑚𝑎𝑥𝑃 − 𝑚𝑖𝑛𝑃
                                                             (5.1) 

After that, we will check if there are any between-predictor correlations to avoid any instabilities 

in the trained models. This can be done by calculating all the pairwise correlations of the predictors. 

Alternatively, we can also calculate the correlation matrix and draw the correlation plot of the 

Table 5.4 Skewness of Predictor Variables (3-Machine System) 

Variable Skewness Variable Skewness 

d2 0.089 b2 0.039 

d4 -0.006 b3 0.016 

a1 -0.063 c1 -0.072 

a2 0.072 c2 0.075 

a3 0.047 c3 -0.04 

b1 0.061   
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predictors to check for any significant dependencies between predictors. Figure 5.5 shows all the 

pairwise correlations of the variables and it can be seen in the correlation plot that there are no 

significant between-predictor correlations. 

 

We can also confirm absence of any significant collinearity by locking at the scree plot from 

Principal Component Analysis (PCA) of the predictors. Figure 5.6 shows the scree plot of the 

predictors. We can see that there is no sharp drop in the amount of variability explained by the 

PCA components. 

 

 
Figure 5.5 Pairwise Correlations of the Transformed Predictors (3-Machine System) 

 
Figure 5.6 A scree plot from PCA analysis of the predictors (3-Machine System) 
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5.1.5 Data Splitting 

As discussed in chapter 3, there are several methods which are used to evaluate the 

performance of a predictive model during training and testing phase e.g., holdout, cross-validation, 

random sampling, bootstrap etc. Here we have used a combination of holdout and cross-validation. 

Initially, the dataset is divided into 80/20% train/test split using stratified random sampling to 

preserve the distributions of the classes in the train and the test datasets. The 80% train dataset is 

used for training of the learning algorithms and top few models are initially selected based on their 

performance using 10-fold cross-validation repeated 5 times. After that, the selected models are 

evaluated again using the 20% test dataset to obtain their performance for the unseen data and the 

best model is selected for prediction as shown in Figure 5.7. 

 

5.1.6 Stage 1: Commitment Decisions (Algo-1 & Algo-2) 

In stage-1 of the prediction, we will use several commonly used predictive models for 

classification including KNN, LDA, DT, RF, SVM, NNET and XGB. 

Hyperparameter Tuning 

There are one or more tuning parameters in all these algorithms. The hyperparameter tuning results 

for the trained models are shown in Figure 5.8 through Figure 5.13 along with the best tunned 

parameters values. The prediction accuracy has been used as the performance metric for model 

tuning. 

 
Figure 5.7 Data Splitting into Train and Test Datasets 
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Figure 5.8 Tuning of parameter k to train KNN for predicting I123  (3-Machine System) 

 
Figure 5.9 Tuning of parameter mtry to train RF for predicting I123 (3-Machine System) 

 
Figure 5.10 Tuning of parameters degree, scale, and cost to train SVM-Poly to predict I123 

(3-Machine System) 



CHAPTER 5. CASE STUDIES AND SIMULATION RESULTS 

 

69 
 

 

 

 

 
Figure 5.11 Tuning of parameter cost to train SVM-Radial for predicting I123 

(3-Machine System) 

 
Figure 5.12 Tuning of parameters size and decay to train NNET for predicting I123 (3-

Machine System)  

 
Figure 5.13 Tuning of parameters lambda (i.e., L2 Reg.), alpha and nrounds (i.e., 

iterations) to train XGB for predicting I123 (3-Machine System) 
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The parameter values of the final tunned models are given in Table 5.5. 

Model Selection 

 After tuning the parameters and selecting the best tunned models for each of the previously 

mentioned algorithms by doing within-model comparison, we will now do between-model 

comparison to select the best models for classification. Table 5.6 shows the summary statistics of 

the performance metrics for the best tuned models. 

 

Table 5.5 Tuning Parameters Values (3-Machine System) 

Model Parameter Value 

KNN k 19 

RF mtry 2 

SVM-Poly 

degree 1 

scale 0.01 

cost 1 

SVM-Radial 
sigma 0.11 

cost 0.25 

NNET 
size 11 

decay 0.0178 

XGB 

lambda 0.0001 

alpha 0.0001 

#rounds 150 

eta 0.3 

 

Table 5.6 Performance Metrics for Best tunned models From Repeated CV 

(3-Machine System) 

Model Mean TPR Mean TNR Accuracy (95% CI) 

LDA 0.70 0.97 0.86 (0.84, 0.89) 

KNN 0.48 0.97 0.82 (0.79, 0.85) 

DT 0.33 0.94 0.69 (0.66, 0.71) 

SVM-Radial 0.55 0.92 0.58 (0.55, 0.61) 

SVM-Poly 0.59 0.93 0.59 (0.55, 0.62) 

RF 0.50 0.97 0.83 (0.81, 0.84) 

NNET 0.76 0.98 0.89 (0.86, 0.91) 

XGB 0.58 0.97 0.83 (0.80, 0.86) 
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Based on the Accuracy score, LDA and NNET models are performing best for the repeated k-fold 

cross-validation. Figure 5.14 shows the boxplot for the Accuracy score to show the differences 

among these models. 

 

Finally, we will check the accuracies of these models for the test dataset. The accuracies of these 

models for the test set are given in Table 5.7. Based on model performance for the test dataset, we 

will select NNET for I123 as shown in the table. 

 

 
Figure 5.14 Performance Comparison for predicting I123  (3-Machine System) 

Table 5.7 Performance Metrics for Top Performing models For Test Set 

(3-Machine System) 

Algos 

Accuracy 

Repeated 

CV 

Test 

Set 

LDA 0.86 0.85 

KNN 0.82 0.83 

DT 0.69 0.65 

SVM-Radial 0.58 0.67 

SVM-Poly 0.59 0.62 

RF 0.83 0.83 

NNET 0.89 0.89 

XGB 0.83 0.83 
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5.1.7 Stage 2: Production Decisions (Algo-1) 

In stage-2 of Algorithm-1, we will use the predicted commitment decisions obtained from 

stage-1 and solve the security constrained optimal dispatch problem formulated as a QP problem 

in eq. (4.3) of chapter 4. Table 5.8 below shows a comparison between the solutions obtained using 

this approach and the actual solutions obtained by solving the original MIQP problem. We can see 

that the presented approach produces solutions which, on average, have a +0.2% higher cost. 

 

5.1.8 Stage 2: Production Decisions (Algo-2) 

Like stage-1, we will train several predictive methods for predicting the active power of 

the committed generators obtained from stage-1. These methods include GLM, KNN, RF, SVM, 

NNET and XGB. However, the difference here is that we will train one separate model for each 

generate. So, we will train three models, one for each of 𝑃1, 𝑃2 and 𝑃3. 

Hyperparameter Tuning 

Again, we will optimize the tuning parameter values of all the predictive models being trained on 

the training dataset and then select the top performing models for further performance evaluation. 

Figure 5.15 through Figure 5.18 show the optimization profiles of the hyperparameters of some 

Table 5.8 Final Results for the Test Dataset (3-Machine System) 

 
Avg. 

Cost 

[$/hour] 

Avg. Cost 

Difference 

[%] 

Avg. 

GLI 

no. of 

GLV 

no. of 

LLV 

Avg. Time 

(1000 Instances) 

[sec] 

Predicted 

(Algorithm-1) 
5416 +0.2 0 0 0 ~ 5 

Observed 

(CPLEX) 
5405 0 0 0 0 ~ 55 
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of the models. Mean absolute error (MAE) in the predicted output has been used as the 

performance metric. 

 

 

 

    
Figure 5.15 Tuning of parameter k to train KNN for predicting P1, P2, P3  

(3-Machine System) 

   
Figure 5.16 Tuning of parameter mtry to train RF for predicting P1, P2, P3  

(3-Machine System) 

  
Figure 5.17 Tuning of parameter cost to train SVM-Radial for predicting P1, P2, P3  

(3-Machine System) 
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The parameter values of the final tunned models are given in Table 5. 9. 

  

 

  
Figure 5.18 Tuning of parameters size and decay to train NNET for predicting P1, P2, P3  

(3-Machine System) 
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Model Selection 

After tuning the parameters and selecting the best tunned models for each of the previously 

mentioned algorithms by doing within-model comparison, now, we will do between-model 

comparison to select the best models for prediction. Table 5.10 shows the summary statistics of 

the performance metrics for the best tuned models. 

 

Table 5. 9 Tuning Parameters Values (3-Machine System) 

Model Parameter 
Value 

P1 P2 P3 

KNN k 4 4 5 

RF mtry 14 8 14 

SVM-Poly 

degree 3 3 3 

scale 0.1 0.1 0.1 

cost 1 1 1 

SVM-Radial 
sigma 1.75 1.56 1.88 

cost 128 128 128 

NNET 
size 5 9 9 

decay 0.1 0.1 0.1 

XGB-Linear 

lambda 0.1 0.1 0.1 

alpha 0.1 0 0.1 

#rounds 150 150 150 

eta 0.3 0.3 0.3 

 

Table 5.10 Performance Metrics for Best tunned models From Repeated CV  

(3-Machine System) 

Model 
P1 P2 P3 Combined 

MAE R2 MAE R2 MAE R2 MAE R2 

GLM 37.1 0.79 37.3 0.84 37.5 0.80 37.3 0.81 

KNN 55.0 0.56 59.3 0.63 55.0 0.60 56.5 0.60 

DT 58.8 0.50 63.4 0.56 54.7 0.57 58.9 0.54 

SVM-Radial 16.9 0.94 16.7 0.96 18.0 0.94 17.2 0.95 

SVM-Poly 79.8 0.35 87.2 0.40 78.8 0.43 81.9 0.40 

RF 39.9 0.77 41.6 0.82 36.8 0.81 39.4 0.80 

NNET 16.4 0.95 13.3 0.97 16.3 0.95 15.3 0.95 

XGB-Linear 37.8 0.77 38.9 0.81 35.9 0.81 37.5 0.80 
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By looking at the data, we can see that the top two models are SVM-Radial and NNET. Based on 

the MAE and R2 scores, neural network (NNET) predictive model is performing best for the 

repeated k-fold cross-validation, however, the differences between the two models seem to be 

negligible (i.e., less than 1% differences in mean R2 in all three cases). When we look at the 

boxplots in Figure 5.19, we see that the distributions of R2 values for these two models are very 

similar and the difference is small. To get better insights, we will perform the paired t-test, as 

shown in Figure 5.20 and check if this difference is statistically significant or not. 

 

  

 
Figure 5.19 Performance Comparison for Predicting P1, P2 and P3  

(3-Machine System) 
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Figure 5.20 Paired t-test results of Predictive Models for Predicting P1, P2 and P3  

(3-Machine System) 
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After performing the paired t-test, we see that the t-statistic values are small (< 0.05) for NNET and SVM-

Radial for P2 and P3 models while its value is large for P1. It indicates that the performance difference of 

SVM-Radial and NNET models for predicting P2 and P3 is statistically significant, however, for predicting 

P1, they are equivalent in terms of performance based on R2 values. Furthermore, when we evaluate the 

performance of these two models on the test dataset, Table 5.11, we see that the NNET model performs 

slightly better than the SVM model. Hence, we will select NNET as the best predictive model. 

 

5.1.9 Stage-3: Constraints Satisfaction (Algo-2) 

In this stage, the solutions obtained from the first two stages are further processed to make 

sure none of the security constraints are violated. Table 5.12 shows the instances (out of 197 total 

instances) in the test set where violations were detected (along with the types of observed 

violations), and the solutions were adjusted to fulfill the constraints. Table 5.13 shows the 

performance for the final solutions for the test set obtained using the proposed 3-stage algorithm. 

Table 5.11 Performance Metrics for Top Performing models For Test Set  

(3-Machine System) 

Model 
Target 

Variable 

MAE R2 

Repeated 

CV 

Test 

Set 

Repeated 

CV 

Test 

Set 

SVM-Radial 

P1 16.9 10.5 0.94 0.98 

P2 16.7 10.3 0.96 0.98 

P3 18.0 13.1 0.94 0.96 

NNET 

P1 16.4 9.9 0.95 0.98 

P2 13.3 9.0 0.97 0.98 

P3 16.3 11.5 0.95 0.98 
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Table 5.14 below shows the comparison between the predicted and observed solutions. The 

presented approach produces solutions which, on average, have a +0.3% higher cost. 

 

Table 5.12 Instances in the Test Set with Constraint Violations (3-Machine System) 

           Type of Violation 

 

Number of 

Instances 

Generator 

Limits 

Violation 

Total 

Reserve 

Requirement 

Violation 

Generation 

Load 

Imbalance 

(>1% of 

total load) 

Transmission 

Line Limits 

Violation 

Before Stage-3 0 1 % 76.6 % 7.6 % 

After Stage-3 0 0 0 0 

 

Table 5.13 Performance Metrics for the Test Dataset (3-Machine System) 

 Variable MAE R2 

Before 

Stage-3 

P1 15.2 0.95 

P2 15.0 0.95 

P3 17.0 0.94 

Combined 15.7 0.95 

After 

Stage-3 

P1 15.2 0.94 

P2 14.6 0.92 

P3 15.3 0.93 

Combined 15.0 0.93 

 

Table 5.14 Final Results for the Test Dataset (3-Machine System) 

 
Avg. 

Cost 

[$/hour] 

Avg. Cost 

Difference 

[%] 

Avg. 

GLI 

no. of 

GLV 

no. of 

LLV 

Avg. Time 

(1000 Instances) 

[sec] 

Predicted 

(Algorithm-2) 
5424 +0.3 0 0 0 ~ 2 

Observed 

(CPLEX) 
5405 0 0 0 0 ~ 55 
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5.2 Case Study 2: IEEE 39-Bus Power System 

5.2.1 System Data 

The system has 39 buses, 10 generating units, 18 loads and 46 transmission lines. The 

single line diagram of the system is shown in Figure 5.21. The system data is given in Table 5.15. 

Further details of the system can be obtained from the MATPOWER case file case39. 

 

Table 5.15 System Data (10-Machine System) 

Base MVA 100 

Base kV 345 

minimum Spinning  

Reserve requirement (R) 

10% of  

total load 

 



CHAPTER 5. CASE STUDIES AND SIMULATION RESULTS 

 

81 
 

 

 

Figure 5.21 Single Line Diagram (10-Machine System) 
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5.2.2 MIQP Problem Formulation 

From the system data, we can see that 𝑁𝐵 = 39, 𝑁𝐺 = 10, 𝑁𝐿 = 46 and the sets 𝐵 =

{1,2,3, … ,39}, 𝐺 = {1,2,3, … ,10}, 𝐿 = {1,2,3, … ,46}. Hence, the single-period MIQP problem for this 

system is formulated as given below. There are a total of 173 constraints (i.e., 92: line limits, 39: 

nodal balance, 20: generator power limits, 10: spinning reserve limits, 10: binary variable 

restrictions, 1: reference bus angle, 1: total spinning reserve requirement).  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
𝐼𝑔, 𝑃𝑔, 𝑅𝑔, 𝛿𝑏

                                                          ∑ 𝐼𝑔. 𝑃𝐶𝑔(𝑃𝑔)

𝑔∈𝐺

                                                           

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                         ∑ 𝑃𝑔

𝑔∈𝐺𝑏

= 𝑑𝑏 + ∑ 𝑃𝑙

𝑙∈𝐿𝑏

                            ∀𝑏 ∈ 𝐵 

−𝑃𝑙  ≤  𝑃𝑙 =
𝛿𝑙

𝑋𝑙
≤  𝑃𝑙                                ∀𝑙 ∈ 𝐿 

𝛿𝑏𝑟𝑒𝑓
= 0                                                                 

𝑃𝑔𝐼𝑔  ≤  𝑃𝑔 ≤  𝑃𝑔𝐼𝑔                                 ∀𝑔 ∈ 𝐺 

∑ 𝑅𝑔

𝑔∈𝐺

𝐼𝑔 ≥ 𝑅                                                              

𝑃𝑔 + 𝑅𝑔  ≤ (𝑃𝑔 − 𝑃𝑔) 𝐼𝑔                        ∀𝑔 ∈ 𝐺 

𝐼𝑔 ∈ {0,1}                                                 ∀𝑔 ∈ 𝐺 

𝑃𝑔 ≥ 0                                                       ∀𝑔 ∈ 𝐺 

Here, the angles (𝛿𝑙) are in radians while all the other non-binary variables are in per unit. Bus 31 

is the reference bus, 𝑑𝑏 is the forecasted net power demand at bus 𝑏, 𝑃𝑙 is the power injection from 

bus 𝑏 into the line 𝑙, 𝛿𝑙 is the angle difference between bus 𝑏 and the bus at the other end of the 

line 𝑙, 𝑃𝑙 and 𝑋𝑙 are the maximum power carrying capacity and reactance of the line 𝑙, 𝛿𝑏𝑟𝑒𝑓
 is the 

phase angle of the reference bus of the system, 𝑃𝑔, 𝑃𝑔 and 𝑅𝑔 are the maximum power output, 

minimum power output, and the spinning reserve of the generator 𝑔 and 𝑅 is the total minimum 

reserve requirements of the system. 
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5.2.3 Data Generation 

To train the predictive model, the dataset is generated by solving the above MIQP problem 

using IBM CPLEX toolbox for MATLAB (this solver is used as a base line method for comparing 

the performance of the presented approach). A dataset of 1000 random samples, representing 

different scenarios of power demands and price signals, is generated assuming normal distributions 

for the loads (𝑑𝑏) and the cost coefficients (𝑎𝑔 , 𝑏𝑔 , 𝑐𝑔). The mean and standard deviation values 

of the loads (𝑑𝑏) are given in Table 5.16.  

 

Figure 5.22 shows the distributions of the loads in the generated dataset. Figure 5.23 shows the 

distributions of the MW demands at some of the buses (i.e., 8, 20 and 39) in the generated 

simulated dataset. These demands are randomly generated assuming normal distributions for 

power demands with the mean and standard deviation values as given in Table 5.16. 

Table 5.16 Normal distributions of the loads (10-Machine System) 

Bus # 
Mean (SD) 

in MW 
Bus # 

Mean (SD) 

in MW 

1 48.8 (5) 21 137 (14) 

3 161 (16) 23 123.75 (12) 

4 250 (25) 24 154.3 (15) 

7 116.9 (12) 25 112 (11) 

8 261 (26) 26 69.5 (7) 

15 160 (16) 27 140.5 (14) 

16 164.5 (17) 28 103 (10) 

18 79 (8) 29 141.75 (14) 

20 340 (34) 39 552 (55) 
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There are three types of generating units in the system i.e., hydro, fossil fuel and nuclear power 

plants. The distributions of the cost coefficients (𝑏𝑔), of one generating unit of each type, in the 

 
Figure 5.22 Load Distributions in the Generated Dataset (10-Machine System) 

 

  
Figure 5.23 Histograms of the Bus Power Demands (10-Machine System) 
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generated dataset are shown in Figure 5.24. The spread of the cost curves for one of each type of 

a generator resulted from these cost coefficients are shown in Figure 5.25. 

 

 

To label the generated dataset, the instances are solved through simulations by solving the SC-UC 

problem presented earlier. MATLAB (R2021a) and CPLEX toolbox for MATLAB are used to 

solve the MIQP problem presented above. This data is then used for training and testing of the 

 
Figure 5.24 Distribution of Cost Coefficients 𝑏𝑔 (10-Machine System) 

 

  
Figure 5.25 Spread of Generators’ Cost Curves (10-Machine System) 
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learning algorithms using R-Studio. Table 5.17 shows a solved sample in the dataset. Here, the 

angles are in degrees. 

 

 For prediction, we will train one model for each binary variable (𝐼𝑔) and another model for 

predicting its active power output (𝑃𝑔). Hence for each generator, we will train two predictive 

models i.e., one to predict its commitment status and another to predict its production level. 

 

Table 5.17 A Solved Sample from the Generated Dataset (10-Machine System) 

idx cost d1 d3 d4 d7 d8 d15 d16 d18 d20 

1 44664.6 53 163 245 113 237 160 176 94 372 

d21 d23 d24 d25 d26 d27 d28 d29 d39 a1 a2 

144 125 156 89 67 160 105 139 596 982 481 

a3 a4 a5 a6 a7 a8 a9 a10 b1 b2 b3 

600 608 608 796 791 815 790 773 11.45 13.63 11.41 

b4 b5 b6 b7 b8 b9 b10 c1 c2 c3 c4 

9.82 15.76 14.02 10.13 14.33 9.94 12.13 0.006 0.008 0.003 0.004 

c5 c6 c7 c8 c9 c10 I1 I2 I3 I4 I5 

0.003 0.004 0.003 0.004 0.004 0.003 0 0 1 1 0 

I6 I7 I8 I9 I10 P1 P2 P3 P4 P5 P6 

0 1 0 1 1 0 0 635.7 652 0 0 

P7 P8 P9 P10 R1 R2 R3 R4 R5 R6 R7 

580 0 765.6 560.6 0 0 89.27 0 0 0 0 

R8 R9 R10 del1 del2 del3 del4 del5 del6 del7 del8 

0 99.35 539.4 -1.91 -0.32 -0.69 -0.58 -0.3 0 -1.1 -1.35 

del9 del10 del11 del12 del13 del14 del15 del16 del17 del18 del19 

-1.8 2.93 1.94 2.14 2.35 1.03 0.89 1.71 1.15 0.17 4.86 

del20 del21 del22 del23 del24 del25 del26 del27 del28 del29 del30 

1.73 2.54 4.57 5.96 1.87 0.58 4.28 2.11 11.08 14.16 -0.32 

del31 del32 del33 del34 del35 del36 del37 del38 del39   

0 10.73 10.55 1.73 4.57 15 0.58 21.19 -2.11   
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5.2.4 Data Preprocessing 

 As a first step, we look for any skewness in the distributions of the predictor variables i.e., 

variables 𝑑1 through 𝑐10 in the Table 5.17. Since the predictor values were randomly generated 

from a normal distribution, the frequency distributions of all the predictor variables are very much 

normally distributed. It can also be confirmed from the near-zero skewness coefficients of the 

distributions of the variables. Skewness coefficients of some of the variables are given in Table 

5.18. 

 

Next, we normalize the numeric predictors using min-max normalization. This will normalize all 

the predictor values to a common scale of 0-1. After that, we will check if there are any between-

predictor (pairwise) correlations to avoid any instabilities in the trained models. For this, we will 

calculate the correlation matrix and draw the correlation plot of the predictors to check for any 

significant dependencies between the predictor variables. Figure 5.26 shows all the pairwise 

correlations of the variables and it can be seen in the correlation plot that there are no significant 

between-predictor correlations. 

Table 5.18 Skewness Coefficients of some of the Predictors (10-Machine System) 

Variable Skewness Variable Skewness 

d3 0.03 b2 0.04 

d15 0.04 b4 0.07 

d23 0.01 b7 -0.08 

d39 0.07 b10 -0.02 

a1 -0.06 c1 -0.07 

a2 0.07 c3 -0.04 

a5 0.07 c6 -0.02 

a9 -0.03 c8 -0.03 
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We can also confirm absence of any significant collinearity by locking at the scree plot from PCA 

of the predictors. Figure 5.27 shows the scree plot of the predictors. We can see that there is no 

sharp drop in the amount of variability summarized by the components. 

 
Figure 5.26 Pairwise Correlations of the Transformed Predictor Variables  

(10-Machine System) 
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Figure 5.27 A Scree Plot from PCA Analysis of the Predictors (10-Machine System) 
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5.2.5 Data Splitting 

Initially, the dataset is divided into 80/20% train/test split using stratified random sampling 

to preserve the distributions of the classes in the train and the test datasets. This 80% train dataset 

is used for training of the learning algorithms and top models are initially selected based on their 

performance using 10-fold cross-validation repeated 3 times. After that, the selected models are 

evaluated again using the 20% test dataset to obtain their performance for the unseen data and the 

best model is selected for prediction. 

5.2.6 Class Imbalance 

The data in the train dataset has low class imbalance. To balance the class distributions in 

the train dataset, we will use up-sampling. Figure 5.28 shows the histograms of the classes before 

and after up-sampling in which additional samples are added to the minority classes with 

replacement. 

 

5.2.7 Stage 1: Commitment Decisions (Algo-1 & Algo-2) 

In this stage, we will train several predictive models for each of the binary variables 𝐼𝑔. 

These models include GLM, LDA, KNN, RF, SVM, NNET and XGB. After that we will select 

  
Figure 5.28 Distributions of the Classes in the Train Dataset before and after Up-Sampling 

(10-Machine System) 
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top few models by comparing their performance on the training dataset. Then these models will 

be tested on the test dataset and the best performing model will be selected as the predictive model 

for that specific generator. 

Hyperparameter Tuning 

During the training stage of the models, the tuning parameters are optimized using grid 

search method. The hyperparameter tuning profiles for KNN, RF, SVM-Radial and NNET are 

shown in Figure 5.29 through Figure 5.32. The final best tunned parameters values for all the 

trained models are given in Table 5.19. Mean absolute error (MAE) has been used as the 

performance metric for tuning. 

 

 
Figure 5.29 Tuning of parameter k to train KNN for predicting Ig (10-Machine System) 
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Figure 5.30 Tuning of parameter mtry to train RF for predicting Ig (10-Machine System) 

 

 
Figure 5.31 Tuning of parameter cost to train SVM-Radial for predicting Ig  

(10-Machine System) 

 



CHAPTER 5. CASE STUDIES AND SIMULATION RESULTS 

 

93 
 

 

 

 
Figure 5.32 Heatmap for tuning of size and decay to train NNET for predicting Ig 

(10-Machine System) 

 
Table 5.19 Tuning Parameters Values (10-Machine System) 

Model Parameter I1 I2 I3 I4 I5 

KNN k 207 303 245 259 275 

RF mtry 4 2 3 4 37 

SVM-Poly 

degree 2 1 2 3 2 

scale 0.01 10 0.01 0.01 0.01 

cost 1 2 4 2 1 

SVM-Radial 
sigma 0.01 0.01 0.01 0.01 0.01 

cost 256 2 2 128 2 

NNET 
size 7 11 9 13 11 

decay 0.1 0.006 0.006 0.025 0.025 

XGB-Linear 

lambda 0.003 1e-4 0.003 0.1 0.1 

alpha 1e-4 1e-4 1e-4 0.1 0.003 

#rounds 150 200 100 200 150 

eta 0.3 0.3 0.3 0.3 0.3 

XGB-Tree 

#rounds 841 774 1000 819 889 

eta 0.46 0.16 0.28 0.38 0.15 

max_depth 10 7 8 5 5 

gamma 1.21 1.83 1.64 1.27 0.39 

colsample_bytree 0.49 0.48 0.43 0.46 0.39 

min_child_weight 6 8 2 2 7 

subsample 0.83 0.79 0.69 0.96 0.63 
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Model Selection 

 After doing within-model comparison and finding the tunned values of the parameters, 

now, we will do between-model comparison to select the best models for classification. Table 5.20 

shows the summary statistics of the performance metrics for the best tuned models. 

Model Parameter I6 I7 I8 I9 I10 

KNN k 213 253 297 283 137 

RF mtry 4 2 37 3 3 

SVM-Poly 

degree 1 2 1 3 2 

scale 0.1 0.01 10 0.01 0.01 

cost 4 4 2 2 4 

SVM-Radial 
sigma 0.01 0.01 0.01 0.01 0.01 

cost 32 8 1 4 4 

NNET 
size 1 11 1 9 7 

decay 0.1 0.006 0.025 0.1 0.1 

XGB-Linear 

lambda 0.1 1e-4 0.1 1e-4 0 

alpha 0.003 0 1e-4 0.003 0 

#rounds 150 200 150 200 150 

eta 0.3 0.3 0.3 0.3 0.3 

XGB-Tree 

#rounds 926 431 690 816 938 

eta 0.33 0.39 0.03 0.11 0.28 

max_depth 3 8 10 10 7 

gamma 1.20 0.79 2.79 2.1 2.23 

colsample_bytree 0.38 0.44 0.6 0.68 0.44 

min_child_weight 2 8 12 8 2 

subsample 0.61 0.83 0.79 0.85 0.56 
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Based on these results, we can see that KNN and LDA models are performing worst in most cases 

and hence are dropped. Remaining models are performing similar in most cases. So, we will obtain 

their performances for the test dataset as given in Table 5.21. We see that GLM model is 

performing best for the test dataset with an overall accuracy score of 91.4%. But we can see that 

for some of the variables (I1, I2, I4, I6, I8), the other models (highlighted in yellow) are performing 

better than GLM. So, we can choose those for these variables and can get a best performance with 

an accuracy score of 92.6%. The final selected models for predicting variables Ig are given in Table 

5.22 along with the accuracy scores. 

Table 5.20 Accuracy of tunned models from repeated CV (10-Machine System) 

PM Var GLM KNN RF 
SVM

-P 

SVM

-R 
NN 

XGB

-L 

XGB

-T 
LDA 

A
cc

u
ra

cy
 

I1 0.934 0.885 0.928 0.934 0.934 0.939 0.941 0.939 0.931 

I2 0.904 0.844 0.905 0.910 0.902 0.911 0.928 0.923 0.901 

I3 0.935 0.853 0.938 0.942 0.943 0.947 0.947 0.943 0.934 

I4 0.939 0.878 0.948 0.942 0.943 0.959 0.957 0.951 0.923 

I5 0.926 0.845 0.926 0.931 0.931 0.941 0.941 0.939 0.913 

I6 0.950 0.805 0.940 0.955 0.947 0.955 0.952 0.950 0.931 

I7 0.917 0.805 0.920 0.927 0.932 0.939 0.936 0.929 0.904 

I8 0.920 0.826 0.908 0.926 0.910 0.924 0.923 0.920 0.910 

I9 0.912 0.868 0.941 0.938 0.939 0.936 0.953 0.951 0.911 

I10 0.927 0.802 0.930 0.930 0.926 0.930 0.938 0.937 0.895 

Com. 0.926 0.841 0.928 0.933 0.931 0.938 0.941 0.938 0.915 
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5.2.8 Stage 2: Production Decisions (Algo-1) 

In stage-2 of Algorithm-1, we will use the predicted commitment decisions obtained from 

stage-1 and solve the security constrained optimal dispatch problem formulated as a QP problem 

in chapter 4. Table 5.23 below shows a comparison between the solutions obtained using this 

Table 5.21 Accuracy of tunned models from test set (10-Machine System) 

PM Var GLM RF SVM-P SVM-R NN XGB-L XGB-T 
A

cc
u

ra
cy

 

I1 0.900 0.900 0.875 0.870 0.915 0.925 0.920 

I2 0.860 0.860 0.860 0.870 0.850 0.910 0.900 

I3 0.925 0.915 0.910 0.905 0.905 0.915 0.925 

I4 0.920 0.880 0.870 0.870 0.925 0.895 0.885 

I5 0.940 0.885 0.925 0.925 0.920 0.920 0.925 

I6 0.900 0.855 0.910 0.885 0.900 0.870 0.905 

I7 0.940 0.865 0.910 0.875 0.900 0.920 0.915 

I8 0.885 0.890 0.870 0.840 0.870 0.890 0.915 

I9 0.940 0.920 0.875 0.885 0.910 0.940 0.935 

I10 0.930 0.855 0.910 0.880 0.910 0.880 0.890 

Com. 0.914 0.883 0.892 0.881 0.901 0.907 0.912 

 

Table 5.22 Final selected models for predicting Ig (10-Machine System) 

Target Variable Predictive Model Accuracy 

I1 XGB-Linear 0.925 

I2 XGB-Linear 0.91 

I3 GLM 0.925 

I4 NNET 0.925 

I5 GLM 0.94 

I6 SVM-Poly 0.91 

I7 GLM 0.94 

I8 XGB-Tree 0.915 

I9 GLM 0.94 

I10 GLM 0.93 

Combined 0.926 
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approach and the actual solutions obtained by solving the original MIQP problem. We can see that 

the presented approach produces solutions which, on average, have a +0.2% higher cost. 

 

5.2.9 Stage 2: Production Decisions (Algo-2) 

In this stage, we will train predictive models for predicting the active power of the 

committed generators obtained from stage 1. These models include GLM, KNN, RF, SVM, NNET 

and XGB. Like previous stage, we will train one model for predicting each variable Pg. 

Hyperparameter Tuning 

The hypermeter tuning profiles for some of the used models are shown in Figure 5.33 through 

Figure 5.36. MAE has been used as the performing metric for tuning the parameters. 

Table 5.23 Final results for the test dataset (10-Machine System) 

 
Avg. 

Cost 

[$/hour] 

Avg. Cost 

Difference 

[%] 

Avg. 

GLI 

no. of 

GLV 

no. of 

LLV 

Avg. Time 

(1000 Instances) 

[sec] 

Predicted 

(Algorithm-1) 
44021 +0.2 0 0 0 ~ 11 

Observed 

(CPLEX) 
43931 0 0 0 0 ~ 114 
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Figure 5.33 Tuning of parameter k to train KNN for predicting Pg (10-Machine System) 

 

 
Figure 5.34 Tuning of parameter mtry to train RF for predicting Pg (10-Machine System) 
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Figure 5.35 Tuning of parameter cost to train SVM-Radial for predicting Pg 

(10-Machine System) 

 

 
Figure 5.36 Tuning of parameters size and decay to train NNET for predicting Pg 

(10-Machine System) 
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The parameter values of the final tunned models are given in Table 5.24. 

 

Model Selection 

After tuning the parameters, now, we will do between-model comparison.  shows the performance 

metrics for the best tuned models obtained from repeated cross validation. We see that KNN is 

performing the worst, hence dropped, and NNET is performing the best Table 5.25. 

Table 5.24 Tuning Parameters Values (10-Machine System) 

Model Parameter P1 P2 P3 P4 P5 

KNN k 37 39 25 13 55 

RF mtry 50 57 57 57 57 

SVM-Poly 

degree 2 1 1 1 3 

scale 0.01 0.1 0.1 0.1 0.01 

cost 1 0.5 0.5 0.5 2 

SVM-Radial 
sigma 0.009 0.009 0.009 0.009 0.009 

cost 4 8 4 4 8 

NNET 
size 1 1 1 1 1 

decay 0.1 0.1 0.1 0.1 0.1 

XGB-Linear 

lambda 0.1 0.1 0.1 0.1 0.1 

alpha 1e-4 0.1 0 0.1 0 

#rounds 50 100 150 150 150 

eta 0.3 0.3 0.3 0.3 0.3 

Model Parameter P6 P7 P8 P9 P10 

KNN k 45 25 5 31 39 

RF mtry 50 57 57 44 50 

SVM-Poly 

degree 2 1 3 2 1 

scale 0.01 0.01 0.01 0.01 0.1 

cost 2 1 1 2 1 

SVM-Radial 
sigma 0.009 0.009 0.009 0.009 0.009 

cost 8 1 8 4 2 

NNET 
size 1 1 9 1 1 

decay 0.1 0.1 0.1 0.1 0.1 

XGB-Linear 

lambda 0.1 0.1 0 0.1 0.1 

alpha 0 0.1 0 0 0 

#rounds 150 100 150 100 150 

eta 0.3 0.3 0.3 0.3 0.3 
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Table 5.26 shows the MAE score of the models for the test dataset. We can see that SVM-Radial 

is performing better with an overall MAE score of 51.66 MW. However, for some variables, other 

models performing are better than SVM-Radial. So, we can further improve the MAE score to 

49.87 MW if we select them for predicting Pg. Table 5.27 shows the final selected models. 

Table 5.25 MAE of tunned models from repeated CV (10-Machine System) 

PM Var GLM KNN RF SVM-P SVM-R NN XGB-L 

M
A

E
 

P1 33.72 73.23 46.10 33.49 35.65 32.91 46.52 

P2 26.89 70.62 41.75 27.16 29.85 26.13 41.73 

P3 48.62 101.6 61.02 49.74 52.61 44.31 59.19 

P4 42.38 83.93 44.58 42.44 44.33 37.23 42.50 

P5 39.81 59.12 32.35 37.55 37.73 23.95 31.59 

P6 47.09 76.96 53.18 45.86 47.95 36.49 53.30 

P7 35.60 44.52 28.77 33.44 33.51 30.14 27.88 

P8 46.65 54.44 39.06 43.11 42.51 45.15 39.16 

P9 51.07 118.9 67.58 49.29 53.47 55.96 67.12 

P10 50.14 138.6 82.60 50.37 57.14 60.89 80.81 

Comb. 42.20 82.19 49.70 41.25 43.48 39.32 48.98 

 

Table 5.26 MAE of tunned models from test set (10-Machine System) 

PM Var GLM RF SVM-P SVM-R NN XGB-L 

M
A

E
 

P1 47.64 51.56 45.29 46.50 47.80 52.37 

P2 39.50 43.20 38.26 38.17 41.39 45.20 

P3 54.85 65.37 54.16 54.67 54.61 62.41 

P4 54.56 57.92 53.72 55.13 53.69 57.22 

P5 40.06 41.98 39.06 39.99 34.07 38.29 

P6 70.04 73.63 69.21 69.72 64.47 75.25 

P7 45.13 48.86 45.20 45.88 42.37 48.87 

P8 57.88 58.06 57.55 57.39 57.33 57.98 

P9 51.84 56.35 50.54 50.58 51.72 56.72 

P10 68.53 72.87 65.97 58.54 69.80 72.47 

Com. 53.00 56.98 51.90 51.66 51.73 56.68 
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5.2.10 Stage 3: Constraints Satisfaction (Algo-2) 

In this stage, the solutions obtained from the first two stages are further processed to make 

sure none of the security constraints are violated. Table 5.28 shows the percentage of the instances 

(out of 200 total instances) in the test dataset where violations were detected (along with the types 

of observed violations), and the solutions were adjusted to fulfill the constraints. Table 5.29 shows 

the performance metrics for the final solutions for the test dataset obtained using the proposed 3-

stage algorithm. 

 

Table 5.27 Final selected models for predicting Pg (10-Machine System) 

Target 

Variable 

Predictive 

Model 
MAE R2 

P1 SVM-Poly 45.29 0.80 

P2 SVM-Radial 38.17 0.82 

P3 SVM-Poly 54.16 0.84 

P4 NNET 53.69 0.81 

P5 NNET 34.07 0.86 

P6 NNET 64.47 0.78 

P7 NNET 42.37 0.82 

P8 NNET 57.33 0.72 

P9 SVM-Poly 50.54 0.87 

P10 SVM-Radial 58.54 0.88 

Combined 49.87 0.83 

 

Table 5.28 Instances in the Test Set with Constraint Violations (10-Machine System) 

           Type of Violation 

 

Number of 

Instances 

Generator 

Limits 

Violation 

Total 

Reserve 

Requirement 

Violation 

Generation 

Load 

Imbalance 

(>1% of 

total load) 

Transmission 

Line Limits 

Violation 

Before Stage-3 0 13.5 % 90.5 % 37.5 % 

After Stage-3 0 0 0 0 
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Table 5.30 below shows the comparison between the predicted and observed solutions. We can 

see that the presented approach produces solutions which, on average, have a +0.3% higher cost. 

It also made sure no constraints (GLI, GLV, LLV, RR) are violated. 

 

 

Table 5.29 Performance metrics for the test dataset (10-Machine System) 

 Before Stage-3 After Stage-3 

Var MAE RMSE R2 MAE RMSE R2 

P1 45.3 101 0.80 60.3 114 0.77 

P2 38.2 80 0.82 46.8 86 0.80 

P3 54.1 122 0.84 61.8 119 0.85 

P4 53.7 116 0.81 57.5 113 0.81 

P5 34.1 86 0.86 42.2 89 0.85 

P6 64.5 144 0.78 71.7 137 0.79 

P7 42.4 118 0.82 50.9 121 0.80 

P8 57.4 137 0.72 62.3 132 0.73 

P9 50.5 122 0.87 66.3 128 0.85 

P10 58.5 122 0.88 84.9 142 0.83 

Comb. 49.9 116 0.83 60.5 119 0.82 

 

Table 5.30 Final results for the test dataset (10-Machine System) 

 
Avg. 

Cost 

[$/hour] 

Avg. Cost 

Difference 

[%] 

Avg. 

GLI 

no. of 

GLV 

no. of 

LLV 

Avg. Time 

(1000 Instances) 

[sec] 

Predicted 

(Algorithm-2) 
44069 +0.3 0 0 0 ~ 6 

Observed 

(CPLEX) 
43931 0 0 0 0 ~ 114 
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5.3 Case Study 3: IEEE 118-Bus Power System 

5.3.1 System Data 

The system has 118 buses, 54 generating units, 99 loads and 186 transmission lines. The 

single line diagram of the system is shown in Figure 5.37. Further details of the system can be 

obtained from the MATPOWER case file case118. Bus 69 is the reference bus for the system. 

 

5.3.2 MIQP Problem Formulation 

From the system data, we can see that 𝑁𝐵 = 118, 𝑁𝐺 = 54, 𝑁𝐿 = 186 and the sets 𝐵 =

{1,2,3, … ,118}, 𝐺 = {1,2,3, … ,54}, 𝐿 = {1,2,3, … ,186}. The single-period MIQP problem formulation 

for this system is similar to the one presented in section 5.2.2. There are a total of 708 constraints 

(i.e., 372: line limits, 118: nodal balance, 108: generator power limits, 54: spinning reserve limits, 

54: binary variable restrictions, 1: reference bus angle, 1: total spinning reserve requirement).  

 

Figure 5.37 Single Line Diagram (54-Machine System) 
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5.3.3 Data Generation 

To train the predictive model, the dataset is generated by solving the above MIQP problem 

using IBM CPLEX toolbox for MATLAB (this solver is used as a base line method for comparing 

the performance of the presented approach). A dataset of 3500 random samples, representing 

different scenarios of power demands and price signals, is generated assuming normal distributions 

for the loads (𝑑𝑏) and the cost coefficients (𝑎𝑔 , 𝑏𝑔 , 𝑐𝑔). Figure 5.38 shows the nodal demand 

distributions of some of the buses. 

 

To label the generated dataset, the instances are solved through simulations by solving the SC-UC 

problem presented earlier. MATLAB (R2021a) and CPLEX toolbox for MATLAB are used to 

solve the MIQP problem presented above. This data is then used for training and testing of the 

learning algorithms using R-Studio. 

 
Figure 5.38 Load Distributions in the Generated Dataset (54-Machine System) 
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 For prediction, we will train one model for each binary variable (𝐼𝑔) and another model for 

predicting its active power output (𝑃𝑔). Hence for each generator, we will train two predictive 

models i.e., one to predict its commitment status and another to predict its production level. 

5.3.4 Data Splitting 

The dataset is divided into 80/20% train/test split using stratified random sampling. Initial 

model selection is done based on the train dataset performance using 10-fold repeated cross-

validation. After that, the top performing model for the test dataset is selected for prediction. 

5.3.5 Stage 1: Commitment Decisions (Algo-1 & Algo-2) 

In this stage, we will train several predictive models for each of the binary variables 𝐼𝑔. 

These models include GLM, LDA, KNN, RF, SVM, NNET and DT. After that we will select top 

few models by comparing their performance on the training dataset. Then these models will be 

tested on the test dataset and the best performing model will be selected as the predictive model. 

The train set and the test set performances of the trained models for stage-1 predictions are shown 

in Table 5.31. 

 

Table 5.31 Stage-1 Models Performance (54-Machine System) 

Model 
Train 

Accuracy 

Test 

Accuracy 

GLM 0.949 0.949 

RF 0.929 0.927 

SVM-Radial 0.908 0.910 

LDA 0.938 0.941 

KNN 0.68 0.681 

NNET 0.926 0.928 

DT 0.921  0.919 
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5.3.6 Stage 2: Production Decisions (Algo-1) 

In stage-2 of Algorithm-1, we will use the predicted commitment decisions obtained from 

stage-1 and solve the security constrained optimal dispatch problem formulated as a QP problem 

in chapter 4. Table 5.32 below shows a comparison between the solutions obtained using this 

approach and solutions obtained by solving the original MIQP problem using CPLEX. We can see 

that the presented approach produces solutions which, on average, have a +0.55% higher cost but 

4 times faster in solution time. 

 

5.3.7 Stage 2: Production Decisions (Algo-2) 

In this stage, we will train predictive models for predicting the active power of the 

committed generators obtained from stage 1. These models include GLM, KNN, SVM, NNET and 

DT. Like previous stage, we will train one model for predicting each variable Pg. Table 5.33 shows 

the train set and the test set performances of the trained models for stage-2 predictions of 

Algorithm-2. 

Table 5.32 Final results for the test dataset (54-Machine System) 

 
Avg. 

Cost 

[$/hour] 

Avg. Cost 

Difference 

[%] 

Avg. 

GLI 

no. of 

GLV 

no. of 

LLV 

Avg. Time 

(1000 Instances) 

[sec] 

Predicted 

(Algorithm-1) 
70523 +0.55 0 0 0 ~ 52 

Observed 

(CPLEX) 
70133 0 0 0 0 ~ 218 
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5.3.8 Stage 3: Constraints Satisfaction (Algo-2) 

In this stage, the solutions obtained from the first two stages are further processed to make 

sure none of the security constraints are violated. Table 5.34 shows the percentage of the instances 

in the test dataset where violations were detected (along with the types of observed violations), 

and the solutions were adjusted to fulfill the constraints. 

 

Table 5.35 below shows the comparison between the predicted and observed solutions. We can 

see that the presented approach produces solutions which, on average, have a +0.68% higher cost. 

It also made sure no constraints (GLI, GLV, LLV, RR) are violated. 

Table 5.33 Stage-2 Models Performance (54-Machine System) 

Model Train MAE Test MAE 

GLM 14.97 18.03 

SVM-Radial 16.28 19.42 

KNN 29.86 29.12 

NNET 27.36 26.89 

DT 29.86 29.12 

 

Table 5.34 Instances in the Test Set with Constraint Violations (54-Machine System) 

           Type of Violation 

 

Number of 

Instances 

Generator 

Limits 

Violation 

Total 

Reserve 

Requirement 

Violation 

Generation 

Load 

Imbalance 

(>1% of 

total load) 

Transmission 

Line Limits 

Violation 

Before Stage-3 0 25 % 83.9 % 51 % 

After Stage-3 0 0 0 0 
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5.4 Case Study 4: South Carolina 500-Bus Power System 

5.4.1 System Data 

The system has 500 buses, 90 generating units, 200 loads and 584 transmission lines. This 

is an entirely synthetic 500 bus case, geographically situated in the northwestern part of the US 

state of South Carolina. The case is designed with a 345 and 138 kV transmission network to serve 

a load that roughly mimics the actual population of its geographic footprint. The system diagram 

of the system is shown in Figure 5.39. Further details of the system can be obtained from the 

MATPOWER case file case_ACTIVSg500. Bus 17 is the reference bus for the system. 

 

Table 5.35 Final results for the test dataset (54-Machine System) 

 
Avg. 

Cost 

[$/hour] 

Avg. Cost 

Difference 

[%] 

Avg. 

GLI 

no. of 

GLV 

no. of 

LLV 

Avg. Time 

(1000 Instances) 

[sec] 

Predicted 

(Algorithm-2) 
70613 +0.68 0 0 0 ~ 41 

Observed 

(CPLEX) 
70133 0 0 0 0 ~ 218 

 

 

Figure 5.39 System Diagram (90-Machine System) 
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5.4.2 MIQP Problem Formulation 

From the system data, we can see that 𝑁𝐵 = 500, 𝑁𝐺 = 90, 𝑁𝐿 = 584 and the sets 𝐵 =

{1,2,3, … ,500}, 𝐺 = {1,2,3, … ,90}, 𝐿 = {1,2,3, … ,584}. The single-period MIQP problem formulation 

for this system is similar to the one presented in section 5.2.2. There are a total of 2030 constraints 

(i.e., 1168: line limits, 500: nodal balance, 180: generator power limits, 90: spinning reserve limits, 

90: binary variable restrictions, 1: reference bus angle, 1: total spinning reserve requirement). 

5.4.3 Data Generation 

To train the predictive model, the dataset is generated by solving the above MIQP problem 

using IBM CPLEX toolbox for MATLAB (this solver is used as a base line method for comparing 

the performance of the presented approach). A dataset of 3500 random samples, representing 

different scenarios of power demands and price signals, is generated assuming normal distributions 

for the loads (𝑑𝑏) and the cost coefficients (𝑎𝑔 , 𝑏𝑔 , 𝑐𝑔). Figure 5.40 shows the nodal demand 

distributions of some of the buses. 

 

 
Figure 5.40 Load Distributions in the Generated Dataset (90-Machine System) 
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To label the generated dataset, the instances are solved through simulations by solving the SC-UC 

problem presented earlier. MATLAB (R2021a) and CPLEX toolbox for MATLAB are used to 

solve the MIQP problem presented above. This data is then used for training and testing of the 

learning algorithms using R-Studio. 

 For prediction, we will train one model for each binary variable (𝐼𝑔) and another model for 

predicting its active power output (𝑃𝑔). Hence for each generator, we will train two predictive 

models i.e., one to predict its commitment status and another to predict its production level. 

 

5.4.4 Data Splitting 

The dataset is divided into 80/20% train/test split using stratified random sampling. Initial 

model selection is done based on the train dataset performance using 10-fold repeated cross-

validation. After that, the top performing model for the test dataset is selected for prediction. 

 

5.4.5 Stage 1: Commitment Decisions (Algo-1 & Algo-2) 

In this stage, we will train several predictive models for each of the binary variables 𝐼𝑔. 

These models include NB, KNN, DA, DT, RF, Ensemble-KNN, Ensemble-DA, NNET and DT. 

After that we will select top few models by comparing their performance on the training dataset. 

Then these models will be tested on the test dataset and the best performing model will be selected 

as the predictive model. The train set and the test set performances of the trained models for stage-

1 predictions are shown in Table 5.36. 
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5.4.6 Stage 2: Production Decisions (Algo-1) 

In stage-2 of Algorithm-1, we will use the predicted commitment decisions obtained from 

stage-1 and solve the security constrained optimal dispatch problem formulated as a QP problem 

in chapter 4. Table 5.37 below shows a comparison between the solutions obtained using this 

approach and solutions obtained by solving the original MIQP problem using CPLEX. We can see 

that the presented approach produces solutions which, on average, have a +1.6% higher cost but 7 

times faster in solution time. 

 

Table 5.36 Stage-1 Models Performance (90-Machine System) 

Model 
Train 

Accuracy 

Test 

Accuracy 

NB 0.842 0.845 

KNN 0.834 0.830 

DA 0.846 0.848 

DT 0.843 0.843 

NNET 0.848 0.848 

En-KNN 0.795 0.790 

En-DA 0.846 0.847 

RF 0.848 0.846 

 

Table 5.37 Final results for the test dataset (90-Machine System) 

 
Avg. 

Cost 

[$/hour] 

Avg. Cost 

Difference 

[%] 

Avg. 

GLI 

no. of 

GLV 

no. of 

LLV 

Avg. Time 

(1000 Instances) 

[sec] 

Predicted 

(Algorithm-1) 
7225 + 1.6 0 0 0 ~ 93 

Observed 

(CPLEX) 
7110 0 0 0 0 ~ 637 

 



CHAPTER 5. CASE STUDIES AND SIMULATION RESULTS 

 

113 
 

5.4.7 Stage 2: Production Decisions (Algo-2) 

In this stage, we will train predictive models for predicting the active power of the 

committed generators obtained from stage 1. These models include LM, SVM, DT, NNET, KD, 

and RF. Like previous stage, we will train one model for predicting each variable Pg. Table 5.38 

shows the train set and the test set performances of the trained models for stage-2 predictions of 

Algorithm-2. Based on their performance NNET was selected for predicting 𝑃𝑔 variables. 

 

5.4.8 Stage 3: Constraints Satisfaction (Algo-2) 

In this stage, the solutions obtained from the first two stages are further processed to make 

sure none of the security constraints are violated. Table 5.39 shows the percentage of the instances 

in the test dataset where violations were detected (along with the types of observed violations), 

and the solutions were adjusted to fulfill the constraints. 

 

Table 5.38 Stage-2 Models Performance (90-Machine System) 

Model Train Error Test Error 

LM 9.32 9.37 

SVM 9.23 9.30 

DT 9.10 9.04 

KD 9.09 9.11 

NNET 8.85 8.88 

RF 8.93 8.98 

 

Table 5.39 Instances in the Test Set with Constraint Violations (90-Machine System) 

           Type of Violation 

 

Number of 

Instances 

Generator 

Limits 

Violation 

Total 

Reserve 

Requirement 

Violation 

Generation 

Load 

Imbalance 

(>1% of 

total load) 

Transmission 

Line Limits 

Violation 

Before Stage-3 0 48.6 % 64.6 % 8.2 % 

After Stage-3 0 0 0 0 
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Table 5.40 below shows the comparison between the predicted and observed solutions. We can 

see that the presented approach produces solutions which, on average, have a +2% higher cost. It 

also made sure no constraints (GLI, GLV, LLV, RR) are violated. 

 

5.5 Case Study 5: IEEE 9-Bus Power System (12-Hour) 

So far, we have implemented the proposed approaches to solve a single period UCP. Now, 

we will present results for solving a multi-period UCP problem using a standard IEEE power 

system. The system data is given below. 

5.5.1 System Data 

The system has 9 buses, 3 generating units, 3 loads and 9 transmission lines. The system 

diagram of the system is shown in Figure 5.41. Further details of the system can be obtained from 

the MATPOWER case file case9. Bus 1 is the reference bus for the system. 

 

Table 5.40 Final results for the test dataset (90-Machine System) 

 
Avg. 

Cost 

[$/hour] 

Avg. Cost 

Difference 

[%] 

Avg. 

GLI 

no. of 

GLV 

no. of 

LLV 

Avg. Time 

(1000 Instances) 

[sec] 

Predicted 

(Algorithm-2) 
7252 + 2.0 0 0 0 ~ 45 

Observed 

(CPLEX) 
7110 0 0 0 0 ~ 637 

 

 

Figure 5.41 System Diagram (IEEE 9-Bus System) 
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5.5.2 Multi-Period MIQP Problem Formulation 

We will be solving the UCP for the time horizon of 12 hours. Hence, we can see that 𝑁𝐵 =

9, 𝑁𝐺 = 3, 𝑁𝐿 = 9, 𝑁𝑇 = 12 and the sets 𝐵 = {1,2,3, … ,9}, 𝐺 = {1,2,3}, 𝐿 = {1,2,3, … ,9} and 𝑇 =

{1,2,3, … ,12}. The multi-period MIQP problem for this system is formulated as given below. There 

are a total of 41 constraints for each hour in the time horizon (i.e., 18: line limits, 9: nodal balance, 

6: generator power limits, 3: spinning reserve limits, 3: binary variable restrictions, 1: reference 

bus angle, 1: total spinning reserve requirement). For a period of 12-h, the total number of non-

temporal constraints will be 41𝑥12 = 492, in addition to the temporal constraints like min 

up/down time and ramp up/down limits. We can see that due to the involvement of multiple time 

periods, the problem size increases tremendously even for a small system like the one presented 

here. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
𝐼𝑔𝑡, 𝑃𝑔𝑡 , 𝑅𝑔𝑡, 𝛿𝑏𝑡

                                           ∑ ∑(𝑃𝐶𝑔𝑡 + 𝑆𝑈𝐶𝑔𝑡)𝐼𝑔𝑡

𝑔∈𝐺𝑡∈𝑇

                                                   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                              ∑ 𝑃𝑔𝑡

𝑔∈𝐺𝑏

= 𝑑𝑏𝑡 + ∑ 𝑃𝑙𝑡

𝑙∈𝐿𝑏

                       ∀𝑡 ∈ 𝑇, ∀𝑏 ∈ 𝐵 

−𝑃𝑙  ≤  𝑃𝑙𝑡 =
𝛿𝑙𝑡

𝑋𝑙
≤  𝑃𝑙                               ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿 

𝛿𝑏𝑟𝑒𝑓
= 0                                                                       

𝑃𝑔𝐼𝑔𝑡  ≤  𝑃𝑔𝑡 ≤  𝑃𝑔𝐼𝑔𝑡                           ∀𝑡 ∈ 𝑇, ∀𝑔 ∈ 𝐺 

∑ 𝑅𝑔𝑡

𝑔∈𝐺

𝐼𝑔𝑡 ≥ 𝑅𝑡                                                ∀𝑡 ∈ 𝑇  

(𝑇𝑔(𝑡−1)
𝑜𝑛 − 𝑇𝑔

𝑢𝑝)(𝐼𝑔(𝑡−1) − 𝐼𝑔𝑡) ≥ 0               ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 

(𝑇𝑔(𝑡−1)
𝑜𝑓𝑓

− 𝑇𝑔
𝑑𝑜𝑤𝑛) (𝐼𝑔(𝑡−1) − 𝐼𝑔𝑡) ≥ 0               ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 

−𝑅𝑑𝑜𝑤𝑛 ≤ 𝑃𝑔𝑡 − 𝑃𝑔(𝑡−1) ≤ 𝑅𝑢𝑝                    ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 

𝑃𝑔𝑡 + 𝑅𝑔𝑡  ≤ (𝑃𝑔 − 𝑃𝑔) 𝐼𝑔𝑡                    ∀𝑡 ∈ 𝑇, ∀𝑔 ∈ 𝐺 
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𝐼𝑔𝑡 ∈ {0,1}                                      ∀𝑡 ∈ 𝑇, ∀𝑔 ∈ 𝐺 

𝑃𝑔𝑡 ≥ 0                                             𝑡 ∈ 𝑇, ∀𝑔 ∈ 𝐺 

Here, the angles (𝛿𝑙𝑡) are in radians while all the other non-binary variables are in per unit. 𝑑𝑏𝑡 is 

the forecasted net power demand at bus 𝑏 in time period 𝑡, 𝑃𝑙𝑡 is the power injection from bus 𝑏 

into the line 𝑙 in time 𝑡, 𝛿𝑙𝑡 is the angle difference between bus 𝑏 and the bus at the other end of 

the line 𝑙 in time 𝑡, 𝑃𝑙 and 𝑋𝑙 are the maximum power carrying capacity and reactance of the line 

𝑙, 𝛿𝑏𝑟𝑒𝑓
 is the phase angle of the reference bus of the system, 𝑃𝑔, 𝑃𝑔 and 𝑅𝑔𝑡 are the maximum 

power output, minimum power output, and the spinning reserve of the generator 𝑔 in time 𝑡 and 

𝑅𝑡 is the total minimum reserve requirements of the system in time period 𝑡. 

5.5.3 Data Generation 

To train the predictive model, the dataset is generated by solving the above MIQP problem 

using IBM CPLEX toolbox for MATLAB (this solver is used as a base line method for comparing 

the performance of the presented approach). A dataset of 1000 random samples, representing 

different scenarios of power demands and price signals, is generated. To generate different 

scenarios, we considered three types of uncertainties: 

(1) Uncertainty in the System-Wide Temporal Load Profile: To generate uncertainty in the 

temporal profile, we analyzed the PJM historical load forecast hourly demand data for the 1st week 

of January 2020. The data was obtained from the PJM Data Miner 2 as shown in Figure 5.42. 

There are 10 load areas (i.e., AEP, APS, ATSI, COMED, DAY, DEOK, DOM, DUQ, EKPC and 

MIDATL) in the PJM RTO, similar to 10 buses in a power system, while the total RTO load is 

given under the area named as RTO and is the sum of demands of all the load areas. For data 

generation, we used normalized (to scale down w.r.t IEEE 9-bus system-wide load) 7-day average 
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12-hour temporal load profile of the RTO load area as our system’s temporal load profile. The 24-

hour temporal profiles for the PJM RTO for 7 days are shown in Figure 5.43.  

 

 

Based on our analysis of the profiles, the system load varies within +/- 10% of the daily load 

average of the profile. So, to represent this uncertainty in generated dataset, we used random 

variables αt drawn independently from the uniform distribution in the interval [0.9, 1.1]. The 

 

Figure 5.42 PJM Data Miner 2 

 

Figure 5.43 PJM RTO 7 Day Temporal Load Profiles (January 1-7, 2020) 
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spread of the load profiles in the generated dataset is shown in Figure 5.44. The histogram of the 

nodal MW demands in the generated dataset are shown in Figure 5.45.  

 

(2) Uncertainty in the Geographical Load Distribution: In a power system, each load bus is 

responsible for a certain percentage of the total system load. Based on our analysis of the PJM data 

for 7 days, the nodal demand sharing percentages vary within +/- 2% of its average load sharing 

percentage. However, to generate more uncertainty in the generated dataset, we used uncertainty 

of +/- 10%. Hence, to generate variations in these nodal load percentages, 𝑏 (no. of load buses) 

random numbers 𝛽𝑏 were independently drawn from the uniform distribution in the interval [0.9, 

1.1]. 

(3) Uncertainty in the Production Cost: Based on the PJM data analysis, the price bids of the 

generators taking part in the day ahead energy market, do not vary more than +/- 5 % over different 

days. In fact, most of the time the cost data stays same throughout a day. To generate uncertainty 

 

Figure 5.44 Spread of the Temporal Load Profiles in the Generated Dataset 
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in the production cost coefficients 𝑎𝑔, 𝑏𝑔 and 𝑐𝑔, we used 𝑔 (no. of generators) random variables 

𝛾𝑔 independently drawn from normal random distributions with a standard deviation of 10% of its 

mean value for each generator 𝑔. The histogram of the cost coefficients in the generated dataset 

are shown in Figure 5.46. 

 

 

 

Figure 5.45 Histogram of the Nodal Demands in the Generated Dataset (IEEE 9-Bus System) 

 

 
Figure 5.46 Histogram of the Cost Coefficients (IEEE 9-Bus System) 
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To label the generated dataset, the instances are solved through simulations by solving the SC-UC 

problem presented earlier. MATLAB (R2021a) and CPLEX toolbox for MATLAB are used to 

solve the MIQP problem presented above. This data is then used for training and testing of the 

learning algorithms using R-Studio. 

 For prediction, we will train one model for each binary variable (𝐼𝑔𝑡) and another model 

for predicting its active power output (𝑃𝑔𝑡). Hence for each generator, we will train two predictive 

models in each hour i.e., one to predict its commitment and another to predict its production level. 

5.5.4 Data Splitting 

The dataset is divided into 80/20% train/test split using stratified random sampling. Initial 

model selection is done based on the train dataset performance using 10-fold repeated cross-

validation. After that, the top performing model for the test dataset is selected for prediction. 

5.5.5 Stage 1: Commitment Decisions (Algo-1 & Algo-2) 

In this stage, we will train several predictive models for each of the binary variables 𝐼𝑔. 

These models include NB, KNN, DA, DT, RF, Ensemble-KNN, Ensemble-DA, NNET and RF. 

After that we will select top few models by comparing their performance on the training dataset. 

Then these models will be tested on the test dataset and the best performing model will be selected 

as the predictive model. The train set and the test set performances of the trained models for stage-

1 predictions are shown in Table 5.41. 
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5.5.6 Stage 2: Production Decisions (Algo-1) 

In stage-2 of Algorithm-1, we will use the predicted commitment decisions obtained from 

stage-1 and solve the security constrained optimal dispatch problem formulated as a QP problem 

in chapter 4. Table 5.42 below shows a comparison between the solutions obtained using this 

approach and solutions obtained by solving the original MIQP problem using CPLEX. We can see 

that the presented approach produces solutions which, on average, have a +0.3% higher cost but 

almost 2 times faster in solution time. 

 

Table 5.41 Stage-1 Models Performance (IEEE 9-Bus System) 

Model 
Train 

Accuracy 

Test 

Accuracy 

NB 0.912 0.940 

KNN 0.906 0.901 

DA 0.928 0.948 

DT 0.895 0.914 

NNET 0.945 0.971 

En-KNN 0.690 0.632 

En-DA 0.921 0.926 

RF 0.933 0.939 

 

Table 5.42 Final results for the test dataset (IEEE 9-Bus System) 

 
Avg. 

Cost 

[$/hour] 

Avg. Cost 

Difference 

[%] 

Avg. 

GLI 

no. of 

GLV 

no. of 

LLV 

Avg. Time 

(1000 Instances) 

[sec] 

Predicted 

(Algorithm-1) 
20802 + 0.3 0 0 0 ~ 127 

CPLEX 20731 0 0 0 0 ~ 232 
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5.5.7 Stage 2: Production Decisions (Algo-2) 

In this stage, we will train predictive models for predicting the active power of the 

committed generators obtained from stage 1. These models include LM, SVM, DT, NNET, KD, 

and RF. Like previous stage, we will train one model for predicting each variable Pg. Table 5.43 

shows the train set and the test set performances of the trained models for stage-2 predictions of 

Algorithm-2. 

 

5.5.8 Stage 3: Constraints Satisfaction (Algo-2) 

In this stage, the solutions obtained from the first two stages are further processed to make 

sure none of the security constraints are violated. Table 5.44 shows the percentage of the instances 

in the test dataset where violations were detected (along with the types of observed violations), 

and the solutions were adjusted to fulfill the constraints. 

Table 5.43 Stage-2 Models Performance (IEEE 9-Bus System) 

Model Train Error Test Error 

LM 4.24 4.20 

SVM 4.18 4.22 

DT 4.39 4.17 

KD 4.36 4.28 

NNET 3.85 3.66 

RF 4.03 3.67 
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Table 5.45 below shows the comparison between the predicted and observed solutions. We can 

see that the presented approach produces solutions which, on average, have a +0.4% higher cost. 

It also made sure no constraints (GLI, GLV, LLV, RR) are violated. 

 

5.6 Performance Comparison 

5.6.1 Cost Comparison 

First, we will perform the cost comparison between the solutions obtained from the 

proposed approaches and from the conventional MIQP approach solved using IBM CPLEX 

MATLAB Toolbox. Table 5.46 presents the summary of the cost comparison for the test dataset 

for each case study. It is clear from the table that the proposed approaches predicted the solutions 

while staying within 1% of the optimality gap on average. 

Table 5.44 Instances in the Test Set with Constraint Violations (IEEE 9-Bus System) 

           Type of Violation 

 

Number of 

Instances 

Generator 

Limits 

Violation 

Total 

Reserve 

Requirement 

Violation 

Generation 

Load 

Imbalance 

(>1% of 

total load) 

Transmission 

Line Limits 

Violation 

Before Stage-3 0 % 0 % 65.4 % 0 % 

After Stage-3 0 % 0 % 0 % 0 % 

 

Table 5.45 Final results for the test dataset (IEEE 9-Bus System) 

 
Avg. 

Cost 

[$/hour] 

Avg. Cost 

Difference 

[%] 

Avg. 

GLI 

no. of 

GLV 

no. of 

LLV 

Avg. Time 

(1000 Instances) 

[sec] 

Predicted 

(Algorithm-2) 
20814 +0.4 0 0 0 ~ 3 

CPLEX 20731 0 0 0 0 ~ 232 
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5.6.2 Computational Time Comparison 

Next, we will do the computational time comparison. We will solve 100 instances from the 

test dataset and observe the time taken by an approach to obtain the solutions. This will be repeated 

several times and then we will find the average time to solve 100 instances. From there we will 

calculate the average time to solve 1000 instances. Figure 5.47 shows the average time taken by 

Table 5.46 Cost Comparison with MIQP approach 

Case 

Study 
Sys Approach 

Avg Cost 

[$/hour] 

Avg Cost Difference 

[$] [%] 

1 
4 

Bus 

Algo-1 5416 +11 +0.2 

Algo-2 5424 +19 +0.3 

CPLEX 

MIQP 
5405 0 

2 
39 

Bus 

Algo-1 44021 +90 +0.2 

Algo-2 44069 +138 +0.3 

CPLEX 

MIQP 
43931 0 

3 
118 

Bus 

Algo-1 70523 +390 +0.56 

Algo-2 70613 +480 +0.68 

CPLEX 

MIQP 
70133 0 

4 
500 

Bus 

Algo-1 7225 +115 +1.6 

Algo-2 7252 +142 +2.0 

CPLEX 

MIQP 
7110 0 

5 
9 Bus 

(12-h) 

Algo-1 20802 +71 +0.3 

Algo-2 20814 +83 +0.4 

CPLEX 

MIQP 
20731 0 
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the approaches to solve 1000 instances. It can be observed that the proposed data driven approaches 

are considerably faster than the CPLEX MIQP solver. 

 

 

 

 

 

 

Figure 5.47 Computational Time Comparison 
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CHAPTER 

CONCLUSION AND 

FUTURE WORK 

 
6 

 

 

6.1 Conclusion 

In this thesis, two data driven algorithms are proposed to solve a SC-UC. The first 

algorithm (Algo-1) has two stages while the second algorithm (Algo-2) has three stages. In the first 

stage of both the algorithms, classification predictive models are trained using supervised learning 

methods to predict the commitment status of each of the generators. In stage-2 of Algo-1, a security 

constrained economic dispatch (SC-ED) problem is solved to obtain the production decisions of 

the committed generators. In stage-2 of Algo-2, regression predictive models are trained to predict 

the production status of each of the committed generators followed by the third stage of Algo-2, in 

which a post processing algorithm polishes the obtained generation schedule and performs a 

feasibility check of the obtained predicted solution to makes sure all security constraints are 
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satisfied. The proposed approaches were validated through simulations on several power systems, 

i.e., 4-bus, 9-bus, 39-bus, 118-bus, and 500-bus systems, to study the effectiveness of the proposed 

approaches. The accomplishments of the completed work are outlined below: 

• A modeling framework has been developed to solve a SC-UC using predictive modeling 

techniques. In this regard, we proposed two algorithms which can be used in parallel to an 

MIP solver either as alternative back-up methods or to provide a warm start for solving a 

full MIP SC-UC problem. 

• The computational performance of the proposed approaches was validated through 

numerical simulations using several test systems i.e., a 4-bus 3-machine system, and IEEE 

9-bus, 39-bus, 118-bus, and 500-bus power systems. 

• We investigated the performance of the proposed approaches on large power systems 

having tens of generators and a lot of constraints to satisfy e.g., IEEE 118-bus 54-machine 

and South Carolina 500-bus 90-machine power systems. 

• We also implemented and validated the performance of the presented approaches to solve 

a multi-period SC-UC problem, by incorporating the intertemporal constraints, using an 

IEEE 9-bus 3-machine power system, and solving the UCP for a time horizon of 12 hours. 

6.2 Future Work 

 As discussed in chapter 5, the performance of the proposed approaches is prominent 

especially for a large power system. So far, we have not considered variations in the power system 

topology and uncertainty in the fleet size of the generators taking part in the bidding process. 

Moreover, we would also like to study the effectiveness of the approaches for systems having 

renewable energy sources along with the electric vehicles integration in the power system. 

Including contingencies of the transmission lines and the generating stations is another aspect that 
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we would like to look at. These are the research areas which can be considered in the future work 

of this research study. Some of the research areas which can be considered in the future work of 

this study are given below: 

• Investigate the performance of the proposed approaches to solve a multi-period UCP for a 

large power system having tens of generators and a lot of constraints to satisfy. 

• Study the effectiveness of the approaches in the presence of renewable energy sources and 

dispatchable loads. 

• Furthermore, in the post processing stage of Algo-2, we would like to implement a 

decentralized framework for re-scheduling the generators’ production decision to fulfill 

transmission constraints. For this purpose, we can use fast community detection algorithm 

proposed by the authors in an earlier research work [59]. 

• Implementation of the proposed approaches to solve a DSC-UC in a decentralized manner. 

• Implementation and investigation of the performance of the proposed approaches with the 

involvement of grid scale EV charging stations with bi-directional power flow. 

• Include uncertainties in the power network topology by considering contingencies and 

availability of the generators. 

• Consider AC power flow in the UCP formulation instead of DC power flow.  
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APPENDICES 

APPENDIX A: SYSTEM DATA 

4-Bus 3-Machine System Data 

% %% MATPOWER Case Format : Version 2 
% mpc.version = '2'; 
%  
% %%-----  Power Flow Data  -----%% 
% %% system MVA base 
% mpc.baseMVA = 100; 
%  
% %% bus data 
% % bus_i   type    Pd  Qd  Gs  Bs  area    Vm  Va  baseKV  zone    Vmax    Vmin 

% mpc.bus = [ 

%   1       3      0    0   0   0   1       1   0   138     1       1.1 0.9; %ref bus 

%   2       2      300  0   0   0   1       1   0   138     1       1.1 0.9; 

%   3       2      0    0   0   0   1       1   0   138     1       1.1 0.9; 

%   4       1      200  0   0   0   1       1   0   138     1       1.1 0.9; 

% ]; 

%  

% %% generator data 

% % bus Pg      Qg  Qmax Qmin   Vg  mBase   status  Pmax    Pmin    Pc1 Pc2 Qc1min  Qc1max  

Qc2min  Qc2max  ramp_agc    ramp_10 ramp_30 ramp_q  apf 

% mpc.gen = [ 

%   1   200 0   300 -300    1   100     1       500     0   0   0   0   0   0   0   0   0   0   0   

0; 

%   2   100 0   300 -300    1   100     1       500     0   0   0   0   0   0   0   0   0   0   0   

0; 

%     3 200 0   300 -300    1   100     1       500     0   0   0   0   0   0   0   0   0   0   0   

0; 

% ]; 

%  

% %% branch data 

% % fbus    tbus    r   x       b   rateA   rateB   rateC   ratio   angle   status  angmin  

angmax 

% mpc.branch = [ 

%   1       2       0   0.25    0   200 200 200             0       0       1       -360    360; 

%     1       3       0 0.25    0   200 200 200             0       0       1       -360    360; 

%   1       4       0   0.25    0   200 200 200             0       0       1       -360    360; 

%   2       3       0   0.25    0   200 200 200             0       0       1       -360    360; 

%   3       4       0   0.25    0   200 200 200             0       0       1       -360    360; 

% ]; 

%  

% %%-----  OPF Data  -----%% 

% %% generator cost data 

% % 1   startup shutdown    n   x1  y1  ... xn  yn 

% % 2   startup shutdown    n   c(n-1)  ... c0 

% mpc.gencost = [ 

%   2   0   0   3   0.01    0.3 0.2; 

%   2   0   0   3   0.01    0.3 0.2; 

%   2   0   0   3   0.01    0.3 0.2; 

% ]; 

%  

% %%-----  Reserve Data  -----%% 

% %% reserve zones, element i, j is 1 if gen j is in zone i, 0 otherwise 

% mpc.reserves.zones = [ 

%   1   1   1; 

% ]; 
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%  

% %% reserve requirements for each zone in MW 

% mpc.reserves.req   = 1; 

%  

% %% reserve costs in $/MW for each gen that belongs to at least 1 zone 

% %% (same order as gens, but skipping any gen that does not belong to any zone) 

% mpc.reserves.cost  = [    0;  0;  0;]; 

% %mpc.reserves.cost  = [   6;  5;  4;  3;  2;  1   ]; 

%  

% %% OPTIONAL max reserve quantities for each gen that belongs to at least 1 zone 

% %% (same order as gens, but skipping any gen that does not belong to any zone) 

% mpc.reserves.qty   = [500;500;500]; 

 

39-Bus 10-Machine System Data 

See MATPOWER case file “case39” 

 

118-Bus 54-Machine System Data 

See MATPOWER case file “case118” 
 

500-Bus 90-Machine System Data 

See MATPOWER case file “case_ACTIVSg500” 
 

9-Bus 3-Machine System Data 

Matpower case file: 

See MATPOWER case file “case9”, “ex_case3a” and “ex_case3b” 

%CASE9    Power flow data for 9 bus, 3 generator case. 
% %   Please see CASEFORMAT for details on the case file format. 
% % 
% %   Based on data from p. 70 of: 
% % 
% %   Chow, J. H., editor. Time-Scale Modeling of Dynamic Networks with 
% %   Applications to Power Systems. Springer-Verlag, 1982. 
% %   Part of the Lecture Notes in Control and Information Sciences book 
% %   series (LNCIS, volume 46) 
% % 
% %   which in turn appears to come from: 
% % 
% %   R.P. Schulz, A.E. Turner and D.N. Ewart, "Long Term Power System 
% %   Dynamics," EPRI Report 90-7-0, Palo Alto, California, 1974. 
%  
% %   MATPOWER 
%  
% %% MATPOWER Case Format : Version 2 
% mpc.version = '2'; 
%  
% %%-----  Power Flow Data  -----%% 
% %% system MVA base 
% mpc.baseMVA = 100; 
%  
% %% bus data 
% % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin 
% mpc.bus = [ 
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%  1 3       0 0 0 0 1 1 0 345 1 1.1 0.9; 
%  2 2       0 0 0 0 1 1 0 345 1 1.1 0.9; 
%  3 2       0 0 0 0 1 1 0 345 1 1.1 0.9; 
%  4 1       0 0 0 0 1 1 0 345 1 1.1 0.9; 
%  5 1       90 30 0 0 1 1 0 345 1 1.1 0.9; 
%  6 1       0 0 0 0 1 1 0 345 1 1.1 0.9; 
%  7 1       100 35 0 0 1 1 0 345 1 1.1 0.9; 
%  8 1       0 0 0 0 1 1 0 345 1 1.1 0.9; 
%  9 1       125 50 0 0 1 1 0 345 1 1.1 0.9; 
% ]; 
% % mpc.Pd = [339,332,329,328,323,331,340,354,346,344,342,338,334,330,326,326,330,353,359,359,357,348,337,324]; 
% %% generator data 
% % bus Pg      Qg      Qmax Qmin Vg      mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max
 Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf 
% mpc.gen = [ 
%  1 72.3*0    27.03 300 -300 1.04 100 1 250 0 0 0
 0 0 0 0 0 250 250 0 0; 
%  2 163*0     6.54 300 -300 1.025 100 1 300 0 0 0
 0 0 0 0 0 300 300 0 0; 
%  3 85*0     -10.95 300 -300 1.025 100 1 270 0 0 0
 0 0 0 0 0 270 270 0 0; 
% ]; 
%  
% %% branch data 
% % fbus tbus r         x       b       rateA rateB rateC ratio angle status angmin angmax 
% mpc.branch = [ 
%  1 4 0           0.0576 0       250 250 250         0 0 1 -360 360; 
%  4 5 0.017*0     0.092 0.158*0 250 250 250         0 0 1 -360 360; 
%  5 6 0.039*0     0.17 0.358*0 150 150 150         0 0 1 -360 360; 
%  3 6 0           0.0586 0       300 300 300         0 0 1 -360 360; 
%  6 7 0.0119*0 0.1008 0.209*0 150 150 150         0 0 1 -360 360; 
%  7 8 0.0085*0 0.072 0.149*0 250 250 250         0 0 1 -360 360; 
%  8 2 0           0.0625 0       250 250 250         0 0 1 -360 360; 
%  8 9 0.032*0     0.161 0.306*0 250 250 250         0 0 1 -360 360; 
%  9 4 0.01*0      0.085 0.176*0 250 250 250         0 0 1 -360 360; 
% ]; 
%  
% %%-----  OPF Data  -----%% 
% %% generator cost data 
% % 1 startup shutdown n x1 y1 ... xn yn 
% % 2 startup shutdown n c(n-1) ... c0 
% mpc.gencost = [ 
%  2 1500 0           3 0.11 5 150; 
%  2 2000  0           3 0.085 1.2 600; 
%  2 3000 0           3 0.1225 1 335;  
% ]; 
%  
%  
%  
% %%-----  Reserve Data  -----%% 
% %% reserve zones, element i, j is 1 if gen j is in zone i, 0 otherwise 
% mpc.reserves.zones = [ 
%  1 1 1; 
% ]; 
%  
% %% reserve requirements for each zone in MW 
% mpc.reserves.req   = 1; 
%  
% %% reserve costs in $/MW for each gen that belongs to at least 1 zone 
% %% (same order as gens, but skipping any gen that does not belong to any zone) 
% mpc.reserves.cost  = [ 0; 0; 0]; 
%  
%  
% %% OPTIONAL max reserve quantities for each gen that belongs to at least 1 zone 
% %% (same order as gens, but skipping any gen that does not belong to any zone) 
% mpc.reserves.qty   = [250;300;270]; 
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%  
% %% xgdata [MUg MDg UT0 DT0] 
% mpc.xgd = [  
%     2 1 0 0; 
%     2 1 0 0; 
%     3 1 0 0; 
%     ];  

 

Extra Generator Data:  
function xgd_table = xgd_9B3G9L(mpc) 
% %EX_XGD_UC  Example xGenData table for stochastic unit commitment. 
%  
% %   MOST 
% %   Copyright (c) 2015-2016, Power Systems Engineering Research Center (PSERC) 
% %   by Ray Zimmerman, PSERC Cornell 
% % 
% %   This file is part of MOST. 
% %   Covered by the 3-clause BSD License (see LICENSE file for details). 
% %   See https://github.com/MATPOWER/most for more info. 
%  
% %% initial xGenData 
% xgd_table.colnames = { 
%     'CommitKey', ... 
%         'CommitSched', ... 
%             'MinUp', ... 
%                 'MinDown', ... 
%                     'PositiveActiveReservePrice', ... 
%                             'PositiveActiveReserveQuantity', ... 
%                                     'NegativeActiveReservePrice', ... 
%                                             'NegativeActiveReserveQuantity', ... 
%                                                     'PositiveActiveDeltaPrice', ... 
%                                                             'NegativeActiveDeltaPrice', ... 
%                                                                     'PositiveLoadFollowReservePrice', ... 
%                                                                             'PositiveLoadFollowReserveQuantity', ... 
%                                                                                 'NegativeLoadFollowReservePrice', ... 
%                                                                                         'NegativeLoadFollowReserveQuantity', ... 
% }; 
% xgd_table.data = [ 
%     1   1   2   1   0    500*0.5*inf     0    500*0.5*inf     0    0    0    500*0.5*inf  0    500*0.5*inf; 
%     1   1   2   1   0    600*0.5*inf     0    600*0.5*inf     0    0    0    600*0.5*inf  0    600*0.5*inf; 
%     1   1   3   1   0    540*0.5*inf     0    540*0.5*inf     0    0    0    540*0.5*inf  0    540*0.5*inf; 
% ]; 

Load Profile Variations Data:  

function loadprofile = load_profile_9B3G9L 
% %EX_LOAD_PROFILE  Example load profile data file for stochastic unit commitment. 
%  
% %   MOST 
% %   Copyright (c) 2015-2016, Power Systems Engineering Research Center (PSERC) 
% %   by Ray Zimmerman, PSERC Cornell 
% % 
% %   This file is part of MOST. 
% %   Covered by the 3-clause BSD License (see LICENSE file for details). 
% %   See https://github.com/MATPOWER/most for more info. 
%  
% %% define constants 
% [CT_LABEL, CT_PROB, CT_TABLE, CT_TBUS, CT_TGEN, CT_TBRCH, CT_TAREABUS, ... 
%     CT_TAREAGEN, CT_TAREABRCH, CT_ROW, CT_COL, CT_CHGTYPE, CT_REP, ... 
%     CT_REL, CT_ADD, CT_NEWVAL, CT_TLOAD, CT_TAREALOAD, CT_LOAD_ALL_PQ, ... 
%     CT_LOAD_FIX_PQ, CT_LOAD_DIS_PQ, CT_LOAD_ALL_P, CT_LOAD_FIX_P, ... 
%     CT_LOAD_DIS_P, CT_TGENCOST, CT_TAREAGENCOST, CT_MODCOST_F, ... 
%     CT_MODCOST_X] = idx_ct; 
% loadprofile = struct( ... 
%     'type', 'mpcData', ... 
%     'table', CT_TBUS, ... 
%     'rows', 1:9, ... 
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%     'col', 3, ... 
%     'chgtype', CT_REP, ... 
%     'values', [] ); 
% % loadprofile.values(:, 1, 1) = squeeze(Dbt(1,:,:))'; 

 

UC Profile Variations Data: 
function UCprofile = uc_profile_9B3G9L 
% %EX_LOAD_PROFILE  Example load profile data file for stochastic unit commitment. 
%  
% %   MOST 
% %   Copyright (c) 2015-2016, Power Systems Engineering Research Center (PSERC) 
% %   by Ray Zimmerman, PSERC Cornell 
% % 
% %   This file is part of MOST. 
% %   Covered by the 3-clause BSD License (see LICENSE file for details). 
% %   See https://github.com/MATPOWER/most for more info. 
%  
% %% define constants 
% [CT_LABEL, CT_PROB, CT_TABLE, CT_TBUS, CT_TGEN, CT_TBRCH, CT_TAREABUS, ... 
%     CT_TAREAGEN, CT_TAREABRCH, CT_ROW, CT_COL, CT_CHGTYPE, CT_REP, ... 
%     CT_REL, CT_ADD, CT_NEWVAL, CT_TLOAD, CT_TAREALOAD, CT_LOAD_ALL_PQ, ... 
%     CT_LOAD_FIX_PQ, CT_LOAD_DIS_PQ, CT_LOAD_ALL_P, CT_LOAD_FIX_P, ... 
%     CT_LOAD_DIS_P, CT_TGENCOST, CT_TAREAGENCOST, CT_MODCOST_F, ... 
%     CT_MODCOST_X] = idx_ct; 
%  
% UCprofile = struct( ... 
%     'type', 'xGenData', ... 
%     'table', 'CommitSched', ... 
%     'rows', 1:3, ... 
%     'col', 2, ... 
%     'chgtype', CT_REP, ... 
%     'values', [] ); 
% % loadprofile.values(:, 1, 1) = squeeze(Dbt(1,:,:))'; 

 

APPENDIX B: CODE FOR DATA GENERATION 

4-Bus 3-Machine System (MATLAB Code) 

% % with reserve constraints 
% % added 1 more line L13 and Gen 2 
% clear 
% clc 
%  
% %% data generation 
% rng('default'); 
% n_scenarios = 1200; 
% basekV = 138;  
% baseMVA = 100; 
%  
% % Load_max = [2 2]; 
% % rng(123); Load_scenarios = round(normrnd(1.50,0.25,[n_scenarios,2]),2); 
% rng(123); Load_scenarios = [round(normrnd(300,75,[n_scenarios,1])) round(normrnd(200,55,[n_scenarios,1]))]/baseMVA; 
%  
% rng(34); a_scenarios = round(normrnd(150,20,[n_scenarios,3])); 
% rng(56); b_scenarios = round(normrnd(10*baseMVA,2*baseMVA,[n_scenarios,3])); 
% rng(78); c_scenarios = round(normrnd(0.005*baseMVA*baseMVA,0.001*baseMVA*baseMVA,[n_scenarios,3])); 
% % rng(56); b_scenarios = [round(normrnd(11*baseMVA,2*baseMVA,[n_scenarios,1])) 
round(normrnd(12*baseMVA,3*baseMVA,[n_scenarios,1])) round(normrnd(13*baseMVA,4*baseMVA,[n_scenarios,1]))]; 
% % rng(34); a_scenarios = round(rand(n_scenarios,2)*250); 
%  
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% data = [Load_scenarios a_scenarios b_scenarios c_scenarios]; 
% data = array2table(data); 
% data.Properties.VariableNames = {'L2','L4','a1','a2','a3','b1','b2','b3','c1','c2','c3'}; 
% writetable(data,'UC_4b3g_1200Labc.csv'); 
%  
% %% with TL limits 
% clc 
% clear 
%  
% data_Labc = table2array(readtable('UC_4b3g_1200Labc.csv')); 
% n_scenarios = size(data_Labc,1); 
%  
% % sys info ---------------------------------------------------------------- 
% sys = d_4B3G5L; 
% nbus = length(sys.bus(:,1)); 
% basekV = 138;  % kV 
% baseMVA = 100; % MVA 
% Pmin = sys.gen(:,10)/baseMVA; % pu 
% Pmax = sys.gen(:,9)/baseMVA; % pu 
% TLcap = sys.branch(:,6)/baseMVA; % pu 
% n_gen = length(Pmin); 
% [Bp,~] = Bp_Bdp(sys); % pu 
% ref_bus = find(sys.bus(:,2)==3); % matpower gives ref bus type-number '3' 
%  
% n_vars = 10; % x' = [I1 I2 I3 P1 P2 P3 d1 d2 d3 d4]; 1x10 
% lb = [zeros(1,3) Pmin' -2*pi*ones(1,4)]'; 
% ub = [ones(1,3) Pmax' 2*pi*ones(1,4)]'; 
% I_ind = 1:n_gen; 
% P_ind = (n_gen+1):(2*n_gen); 
% d_ind = (2*n_gen+1):(2*n_gen+nbus); 
% % r_ind = (2*n_gen+nbus+1):(2*n_gen+nbus+n_gen) 
% gen_ind = find(sys.bus(:,2)~=1); 
%  
% % CPLEX MIQP -------------------------------------------------------------- 
% % Aeq.x=beq 
% ref_eq = 1; 
% nodal_eq = 2:(nbus+1); 
% Aeq = zeros(nbus+1,n_vars); 
% Aeq(ref_eq,d_ind(ref_bus))= 1; % ref bus angle 
% Aeq(nodal_eq,d_ind) = Bp; % nodal balance eqs 
% Aeq(nodal_eq(gen_ind),P_ind) = eye(n_gen)*-1; 
%  
% x = sys.branch(:,4).*(sys.branch(:,6)/baseMVA); 
% nTL = length(sys.branch(:,1)); 
% TLf = sys.branch(:,1); 
% TLt = sys.branch(:,2); 
%  
% A = zeros(nTL*2+n_gen*2+1,n_vars); 
% %TL limits 
% for i = 1:nTL 
%     A(i,d_ind(TLf(i))) = 1; % di 
%     A(i,d_ind(TLt(i))) = -1; %-dj 
%      
%     A(i+nTL,d_ind(TLf(i))) = -1; %dj 
%     A(i+nTL,d_ind(TLt(i))) = 1; %-di 
% end 
% %gen limits  
% for i = 1:n_gen 
%     A(2*nTL+i,I_ind(i)) = Pmin(i); %gen lower 
%     A(2*nTL+i,P_ind(i)) = -1;      %limits 
%      
%     A(2*nTL+n_gen+i,P_ind(i)) = 1; %gen upper 
%     A(2*nTL+n_gen+i,I_ind(i)) = -Pmax(i); %limits 
% end 
%  
% % spinning reserve req (R = 30% of Load_total) 
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% A(2*nTL+2*n_gen+1,I_ind) = -1*[Pmax-Pmin]';  
% A(2*nTL+2*n_gen+1,P_ind) = 1; 
%  
% data = zeros(n_scenarios,28); 
% no_sol = []; 
% L_cols = 1:2; 
% a_cols = 3:5; 
% b_cols = 6:8; 
% c_cols = 9:11; 
% RP = 0.3; % 30% spinning reserve requirement 
% SimTime = []; 
% for i=1:n_scenarios   
%      
%     L = zeros(1,nbus); L([2,4]) = data_Labc(i,L_cols); 
%     a_gen = data_Labc(i,a_cols); 
%     b_gen = data_Labc(i,b_cols); 
%     c_gen = data_Labc(i,c_cols); 
%      
%     %Aeq.x=beq 
%     beq = [0 -L]'; 
%     %A.x<=b 
%     b=[x' x' zeros(1,2*n_gen) -RP*sum(L)]'; 
%     % x0 = zeros(15,1);     
%     f = [a_gen b_gen zeros(1,4)]; 
%     H = zeros(10); 
%     H(P_ind,P_ind) = diag(2*c_gen); 
%  
%     [v,fv,ef,time]=cplexmiqp(H,f,A,b,Aeq,beq,[],[],[],lb,ub,'IIICCCCCCC'); 
%  
%     if (ef==1) 
%         SimTime = [SimTime;time.time]; 
%         l = L*baseMVA; 
%         a = a_gen; 
%         b = b_gen/baseMVA; 
%         c = c_gen/(baseMVA*baseMVA); 
%         I = round(v(I_ind))'; 
%         P = v(P_ind)'*baseMVA; 
%         d = v(d_ind)'; 
%         Lt = sum(l); 
%         Gt = sum(P); 
%         Rt = sum((Pmax'*baseMVA-P).*I); 
%         cost = fv;             
%         data(i,:) = [l a b c I P d Lt Gt Rt cost time.time]; 
%     else 
%         no_sol = [no_sol i]; 
%     end 
% end 
% mean(SimTime)*1000 % 55.26s for 1000 instances 
%  
% data1 = data; 
% data1(no_sol,:) = []; 
% data1 = data1(1:1000,:); 
%  
% %% preparing for export 
% data = data1; 
% del = data(:,20:23); % del cols in data 
% X = sys.branch(:,4); 
% LineFlows = [(del(:,1)-del(:,2))/X(1) (del(:,1)-del(:,3))/X(2) (del(:,1)-del(:,4))/X(3) (del(:,2)-del(:,3))/X(4) (del(:,3)-del(:,4))/X(5)]*baseMVA; 
%  
% fdata = [data(:,1:(end-5)) LineFlows data(:,(end-4):end)]; 
%  
% % exporting 
% T = array2table(fdata); 
%  
% x1=strcat({strseq('P',TLf)},{strseq('_',TLt)}); 
% x2=strcat(x1{1,1}(:,1),x1{1,1}(:,2)); 
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%  
% col_names = {strseq('L',1:nbus);strseq('a',1:n_gen);strseq('b',1:n_gen);strseq('c',1:n_gen);strseq('I',1:n_gen);strseq('P',1:n_gen);... 
%     strseq('d',1:nbus);x2;'Lt';'Gt';'Rt';'cost';'time'}; 
%  
% T.Properties.VariableNames = cat(1,col_names{:,1})'; 
%  
% writetable(T,'UC_4b3g_1000.csv'); 

 

39-Bus 10-Machine System (MATLAB Code) 

% % Matpower "case39" 
%  
% clear 
% clc 
%  
% %% data generation 
% rng('default'); 
% n_scenarios = 1500; 
% basekV = 345;  
% baseMVA = 100; 
% sys = d_39B10G46L; 
% sys.branch(:,[3,5]) = 0; % neglecting shunt flows 
% nbus = length(sys.bus(:,1)); 
% TLcap = sys.branch(:,6); 
% Pmin = sys.gen(:,10); 
% Pmax = sys.gen(:,9); 
% n_gen = length(Pmin); 
% ng_hydro = 1; 
% idx_hydro = 1; 
% ng_intrcnct = 1; 
% idx_intrcnct = 10; 
% ng_fossil = 3; 
% idx_fossil = [4,5,7]; 
% ng_nuke = 5; 
% idx_nuke = [2,3,6,8,9]; 
%  
% % Load Scenarios 
% load_means = 0.5*sys.bus(:,3); 
% Load_scenarios = zeros(nbus,n_scenarios); 
% rng(123); 
% for i =1:nbus 
%     Load_scenarios(i,:) = round(normrnd(load_means(i),.1*load_means(i),[1,n_scenarios]),2); 
% end 
% Load_scenarios = Load_scenarios'; 
%  
% % make sure no -ve prices are generated ----------------------------------- 
% rng(34); a_scenarios = round([normrnd(1000,100,[n_scenarios,ng_hydro]) normrnd(500,50,[n_scenarios,ng_intrcnct]) 
normrnd(600,60,[n_scenarios,ng_fossil]) normrnd(800,80,[n_scenarios,ng_nuke])]); 
% a_scenarios(:,[idx_hydro,idx_intrcnct,idx_fossil,idx_nuke]) = a_scenarios; 
% rng(56); b_scenarios = round([normrnd(10*baseMVA,2*baseMVA,[n_scenarios,ng_hydro]) 
normrnd(11.5*baseMVA,2*baseMVA,[n_scenarios,ng_intrcnct]) normrnd(12*baseMVA,2*baseMVA,[n_scenarios,ng_fossil]) 
normrnd(12*baseMVA,2*baseMVA,[n_scenarios,ng_nuke])]); 
% b_scenarios(:,[idx_hydro,idx_intrcnct,idx_fossil,idx_nuke]) = b_scenarios; 
% rng(78); c_scenarios = round([normrnd(0.008*baseMVA*baseMVA,0.001*baseMVA*baseMVA,[n_scenarios,ng_hydro]) 
normrnd(0.008*baseMVA*baseMVA,0.001*baseMVA*baseMVA,[n_scenarios,ng_intrcnct]) 
normrnd(0.004*baseMVA*baseMVA,0.001*baseMVA*baseMVA,[n_scenarios,ng_fossil]) 
normrnd(0.0035*baseMVA*baseMVA,0.0005*baseMVA*baseMVA,[n_scenarios,ng_nuke])]); 
% c_scenarios(:,[idx_hydro,idx_intrcnct,idx_fossil,idx_nuke]) = c_scenarios; 
%  
% data = [Load_scenarios a_scenarios b_scenarios c_scenarios]; 
% data = array2table(data); 
% col_names = {strseq('L',1:nbus);strseq('a',1:n_gen);strseq('b',1:n_gen);strseq('c',1:n_gen)}; 
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% data.Properties.VariableNames = cat(1,col_names{:,1})'; 
% writetable(data,'UC_39b10g_1200Labc.csv'); 
%  
% %% with TL limits 
% clear 
%  
% fdata1 = table2array(readtable('UC_39b10g_1200Labc.csv')); 
% n_scenarios = size(fdata1,1); 
%  
% % sys info ---------------------------------------------------------------- 
% sys = d_39B10G46L; 
% sys.branch(:,[3,5]) = 0; % neglecting shunt flows 
% nbus = length(sys.bus(:,1)); 
% basekV = 345;  % kV 
% baseMVA = 100; % MVA 
% Pmin = sys.gen(:,10)/baseMVA; % pu 
% Pmax = sys.gen(:,9)/baseMVA; % pu 
% TLcap = sys.branch(:,6)/baseMVA; % pu 
% n_gen = length(Pmin); 
% [Bp,~] = Bp_Bdp(sys); % pu 
% ref_bus = find(sys.bus(:,2)==3); % matpower gives ref bus type-number '3' 
%  
% n_vars = 59; % x' = [I1...I10 P1...P10 d1...d39]; 1x59 
% lb = [zeros(1,n_gen) Pmin' -2*pi*ones(1,nbus)]'; 
% ub = [ones(1,n_gen) Pmax' 2*pi*ones(1,nbus)]'; 
% I_ind = 1:n_gen; 
% P_ind = (n_gen+1):(2*n_gen); 
% d_ind = (2*n_gen+1):(2*n_gen+nbus); 
% % r_ind = (2*n_gen+nbus+1):(2*n_gen+nbus+n_gen) 
% gen_bus = find(sys.bus(:,2)~=1); 
%  
% % CPLEX MIQP -------------------------------------------------------------- 
% % Aeq.x=beq 
% ref_eq = 1; 
% nodal_eq = 2:(nbus+1); 
% Aeq = zeros(nbus+1,n_vars); 
% Aeq(ref_eq,d_ind(ref_bus))= 1; % ref bus angle 
% Aeq(nodal_eq,d_ind) = Bp; % nodal balance eqs 
% Aeq(nodal_eq(gen_bus),P_ind) = eye(n_gen)*-1; 
%  
% x = sys.branch(:,4).*(sys.branch(:,6)/baseMVA); 
% nTL = length(sys.branch(:,1)); 
% TLf = sys.branch(:,1); 
% TLt = sys.branch(:,2); 
%  
% A = zeros(nTL*2+n_gen*2+1,n_vars); 
% %TL limits 
% for i = 1:nTL 
%     A(i,d_ind(TLf(i))) = 1; % di 
%     A(i,d_ind(TLt(i))) = -1; %-dj 
%      
%     A(i+nTL,d_ind(TLf(i))) = -1; %dj 
%     A(i+nTL,d_ind(TLt(i))) = 1; %-di 
% end 
% %gen limits  
% for i = 1:n_gen 
%     A(2*nTL+i,I_ind(i)) = Pmin(i); %gen lower 
%     A(2*nTL+i,P_ind(i)) = -1;      %limits 
%      
%     A(2*nTL+n_gen+i,P_ind(i)) = 1; %gen upper 
%     A(2*nTL+n_gen+i,I_ind(i)) = -Pmax(i); %limits 
% end 
%  
% % % spinning reserve req 
% A(2*nTL+2*n_gen+1,I_ind) = -1*(Pmax-Pmin)'; 
% A(2*nTL+2*n_gen+1,P_ind) = 1; 
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%  
% data = zeros(n_scenarios,nbus*2+n_gen*5+4+1); %[L abc I P d Lt Gt Rt cost time] 
% no_sol = []; 
% L_cols = 1:39; 
% a_cols = 40:49; 
% b_cols = 50:59; 
% c_cols = 60:69; 
% RP = 0.1; % 10% spinning reserve requirement------------------------------- 
% SimTime = []; 
% st = tic; 
% for i=1:n_scenarios   
%      
%     L = fdata1(i,L_cols)/baseMVA; 
%     a_gen = fdata1(i,a_cols); 
%     b_gen = fdata1(i,b_cols); 
%     c_gen = fdata1(i,c_cols); 
%      
%     %Aeq.x=beq 
%     beq = [0 -L]'; 
%     %A.x<=b 
%     b=[x' x' zeros(1,2*n_gen) -RP*sum(L)]'; 
%     % x0 = zeros(15,1);     
%     f = [a_gen b_gen zeros(1,n_vars-2*n_gen)]; 
%     H = zeros(n_vars); 
%     H(P_ind,P_ind) = diag(2*c_gen); 
%  
%     [v,fv,ef,time] = cplexmiqp(H,f,A,b,Aeq,beq,[],[],[],lb,ub,'IIIIIIIIIICCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC'); 
%  
%     if (ef==1) 
%         SimTime = [SimTime;time.time]; 
%         l = L*baseMVA; 
%         a = a_gen; 
%         b = b_gen/baseMVA; 
%         c = c_gen/(baseMVA*baseMVA); 
%         I = round(v(I_ind))'; 
%         P = v(P_ind)'*baseMVA; 
%         d = v(d_ind)'; 
%         Lt = sum(l); 
%         Gt = sum(P); 
%         Rt = sum((Pmax'*baseMVA-P).*I); 
%         cost = fv;             
%         data(i,:) = [l a b c I P d Lt Gt Rt cost time.time]; 
%     else 
%         no_sol = [no_sol i]; 
%     end 
% end 
% et = toc(st) 
% mean(SimTime)*1000 % 114 seconds 
%  
% data1 = data; 
% data1(no_sol,:) = []; 
% data1 = data1(1:1000,:); 
%  
% %% preparing for export 
% data = data1; 
% del = data(:,(nbus+5*n_gen+1):(2*nbus+5*n_gen)); % del cols in data 
% LineFlows = zeros(size(del)); 
% for i = 1:nTL 
%     LineFlows(:,i) = [(del(:,TLf(i))-del(:,TLt(i)))/sys.branch(i,4)]*baseMVA; 
% end 
%  
% fdata = [data(:,1:(end-5)) LineFlows data(:,(end-4):end)]; 
%  
% % exporting 
% T = array2table(fdata); 
%  
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% x1=strcat({strseq('P',TLf)},{strseq('_',TLt)}); 
% x2=strcat(x1{1,1}(:,1),x1{1,1}(:,2)); 
%  
% col_names = {strseq('L',1:nbus);strseq('a',1:n_gen);strseq('b',1:n_gen);strseq('c',1:n_gen);strseq('I',1:n_gen);strseq('P',1:n_gen);... 
%     strseq('d',1:nbus);x2;'Lt';'Gt';'Rt';'cost';'time'}; 
%  
% T.Properties.VariableNames = cat(1,col_names{:,1})'; 
%  
% writetable(T,'UC_39b10g_1000new.csv'); 
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