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Abstract 

The Influence of Instrumental Sources of Variance on Mass Spectral Comparison 

Algorithms 

Isabel Cristina Gálvez Valencia 

 

Current search algorithms for the identification of substances based only on their electron 

ionization mass spectra provide the correct compound as their top result approximately 80% of the 

time. One contributing factor to the ~20% deviation in the first-hit recognition rate is that 

traditional algorithms work by comparing the unknown spectrum to an ‘ideal’ or consensus 

spectrum of each reference compound. The inclusion of replicate reference spectra in a database 

has been shown to improve the probability of ranking the correct identity in the number one 

position, but the variance in ion abundances caused by different conditions or different instruments 

remains an intractable problem and the major source of uncertainty in mass spectral identification.  

To assess the relative contributions of different factors to the spectral variance of replicate 

spectra, this study initially considered the repeller voltage, focus lens voltage, and ion energy as 

primary parameters. A three-factor, three-level, full-factorial design of experiments was conducted 

using cocaine as a model compound. A library of cocaine spectra was collected with a gas 

chromatography-electron ionization-mass spectrometer (GC-EI-MS) by extracting each spectrum 

across the eluting peak. The 20 most abundant ions in the library of cocaine spectra were extracted 

to assess the contribution of each instrument parameter on the variance in ion abundances by 

performing multivariate analysis of variance (MANOVA). Results showed that these instrument 

parameters were responsible for only ~3% of the total variance in the normalized abundances. This 

initial finding prompted a subsequent study that monitored the branching ratios of cocaine during 

random fluctuations in the vacuum chamber pressure. Random changes in vacuum pressure 

accounted for ~90% of the natural variance in the relative ion abundances of the two most abundant 

peaks of cocaine (not including the base peak). 

The database of 389 cocaine spectra was then used to compare the traditional consensus 

approaches to spectral matching with two variants of a novel algorithm called the Expert 

Algorithm for Substance Identification (EASI). EASI uses multivariate linear modeling to predict 

the ion abundances of 20 ions in each spectrum, assuming that each of the 20 ion abundances is 

continuously dependent on the other 19 ion abundances. One variant of this model includes 

intercepts in the linear models, and the other does not. To assess the effect of spectral variance on 

spectral identifications, traditional measures of spectral similarity or dissimilarity were calculated 

between each query spectrum and the consensus cocaine spectrum, including the Pearson product-

moment correlation (PPMC) coefficients, mean absolute residuals (MARs), Euclidean distances, 

and NIST scores. These metrics were then used as binary classifiers to obtain true positives, true 

negatives, false positives, and false negatives at a range of decision thresholds. The models were 

tested on a database of spectra that included more than 300 cocaine spectra from different 



 

 

laboratories, more than 700 spectra of 5 common drugs, and 10 spectra of cocaine diastereomers: 

allococaine, pseudococaine, and pseudoallococaine. The EASI models outperformed the 

consensus approach on every metric. EASI coupled with the PPMC values, MARs and Euclidean 

distances had accuracies greater than 90% with zero false positives, including spectra of cocaine 

diastereomers and cocaine collected on different instruments. The Mahalanobis distances to the 

training set as a binary classifier were also reported, and they were found to be as good or better 

than EASI at discriminating between cocaine and non-cocaine spectra. 

Each measure of spectral similarity was used to build receiver operating characteristic 

(ROC) curves and calculate the area under the ROC curve (AUC). When taking only the cocaine 

diastereomers as known negatives, the EASI without a constant had the highest area under the 

curve (AUC=0.925), followed by EASI including a constant (AUC=0.907), and lastly the 

consensus model with (AUC=0.829). This work shows that random variations in vacuum pressure 

are responsible for most of the short-term variance in replicate mass spectra and that a model 

(EASI) that accounts for cross-correlations between the different fragment ions allow superior 

compound identification to traditional algorithms. 
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1. Statement of problem 

One of the main tasks of a forensic chemist is to identify controlled substances in seized 

drugs. This operation is usually accomplished using gas chromatography-electron ionization-mass 

spectrometry (GC-EI-MS), which produces mass spectra that can be compared to spectra of known 

or reference compounds through the help of search algorithms. However, current algorithms do 

not account for inter-instrument variance, so laboratories are required to perform spectral matching 

with reference standards collected on the same instrument, on the same day, under the same 

conditions as the query spectrum, and algorithms generally are not as successful at comparing 

results obtained on different instruments or in different laboratories. This presents a problem, 

especially for novel psychoactive substances (NPS), because reference materials can be expensive, 

hard to obtain, and hazardous to handle. If an algorithm could be developed that could tolerate the 

spectral variance caused by instrument variance, then labs could operate more safely, more quickly 

and with reduced costs, while improving the confidence in their drug identifications.  

This project aims to develop and test a new mass spectral comparison algorithm for the 

identification of seized drugs. The project will first determine the effects of different parameters—

such as the ion energy, repeller voltage and focus lens voltage—on replicate EI-MS spectra of 

cocaine and then test an algorithm that can identify cocaine, with improved confidence, from a 

wide array of seized drugs, including the three major diastereomers of cocaine. 

2. Introduction 

GC-EI-MS is the most widely used method for compound identification, including drugs 

of abuse.1–5 This technique is classified by the Scientific Working Group for the Analysis of Seized 

Drugs (SWGDRUG) as a category A method, which means that it provides structural information 

with a level of selectivity that is among the highest of all analytical techniques.6 
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During electron ionization in the ion source of a mass spectrometer, molecular ions are 

produced via vertical (Franck-Condon) transitions that result in internal energies that can exceed 

the bond dissociation energy by tens of electron volts. Statistical theories, including Rice–

Ramsperger–Kassel–Marcus (RRKM) and quasi-equilibrium theory (QET) describe how the 

excess internal energy is effectively distributed throughout the molecule before the molecule takes 

the time to move through a particular transition state to the fragments. The kinetics of unimolecular 

fragmentation through the various pathways depend on factors like the internal degrees of freedom 

of the ion, the internal (excitation) energy of the ion, the steric or entropic requirements of each 

transition state and the bond dissociation energies of different transition states.7 

Once ions are created, a bias voltage of 10-40 V applied to the repeller electrode pushes 

the ions out of the ionization chamber towards a series of ion lenses. These lenses accelerate and 

focus the ion beam just before they enter the mass analyzer, which is typically a quadrupole mass 

analyzer. The quadrupole separates the ions by applying an appropriate ratio of rf and dc potentials 

to alter the stable trajectories of ions according to their mass-to-charge ratios (m/z).7,8 Depending 

on the application, analysts then either interpret the fragmentation pattern according to common 

rules about fragmentation mechanisms or compare the measured peak intensities with those of 

reference spectra. 

One of the earliest ways to identify an unknown compound was to directly compare mass 

peaks against a ‘master deck’ of standards that were previously sorted by their top ten highest 

peaks using an IBM computer.9 Later, Crawford and Morrison tried different normalization 

methods for the spectra, comparing them through a discrepancy factor derived from the 

normalization equation. This method only considered the ion abundances as variables, which 

revealed other factors that had effects on the spectra, like impurities and differences between 
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instruments over peak heights.10 A variation of this method was later used in 1971 to identify 

drugs. This method involved arranging both the queried and ‘master deck’ spectra by their top five 

most abundant peaks and matching their m/z values, if no match was found, the computer would 

look for a match within the top four ions, and so on, until there was only one peak left.11 

Later, with the increased availability of computers, it became apparent that spectral 

interpretation had potential for automation and more complex statistical analyses. Grotch 

developed a new approach that proved to be suitable for digital computation.12 The new algorithm 

consisted of comparing an unknown spectrum to a library of previously studied compounds. To 

ease the calculations, he encoded the data to one bit. Then, he compared the encoded peak value 

at each m/z to a known spectrum in a pairwise manner and assigned a value of 1 for each 

disagreement and 0 for each agreement. Comparisons with the lowest scores were considered the 

best matches. Here, the paradigm shifted from subjective human judgments to objective 

mathematical justifications for matching spectra.12 

Knock and coworkers continued this research by using non-one-bit encoded data. This 

project revealed that different operating conditions on mass spectrometers could affect the 

breakdown pathways, thus influencing the mass spectra. They also introduced the importance of 

considering the peaks’ intensity as a deciding factor when matching spectra.13 

Following previous work, Hertz et al. introduced a measure of similarity that provides a 

quantitative result and considers the entire spectrum, not just the top five or ten most intense 

peaks.14 The product of this research was the ‘similarity index’ (Eqn. 1), a ratio that is equivalent 

to the probability of agreement, which ranges from 0 for complete disagreement to 1 for complete 

agreement. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑟𝑎𝑡𝑖𝑜

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 + 1
 

Eqn. 1 
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The similarity index is the average weighted ratio of the reference to an unknown reduced 

spectrum taken mass for mass.14 The ratios are weighted by a specific factor depending on their 

normalized abundance. This weighing process allows the larger intensity peaks to be more 

significant than the smaller ones.14 A similar algorithm is still used by NIST today.15–17 

Next came the probability-based matching (PBM) technique by McLafferty and 

coworkers. PBM was an improvement because it considered how unique and how abundant the 

peaks were, as well as the absence of other peaks. This technique analyzed the probability that a 

specific compound was present in a sample by establishing a ‘confidence index’, K (Eqn. 2), which 

is defined as the summation of four individual probabilities U, A, D and W. 

𝐾 = ∑(𝑈𝑗 − 𝐴𝑗 − 𝐷 + 𝑊𝑗) 

In Eqn. 2, 𝑈𝑗 represents the probability that the abundance of the jth peak is greater than 

50% of the base peak of a randomly selected spectrum, 𝐴𝑗 is a modification on 𝑈𝑗 in which 𝐴𝑗 

defines a minimum value for a particular mass abundance based on the relative abundance of the 

peak in the reference spectrum of the target compound. These two values had to be modified to 

account for different abundance distributions. The term 𝐷 factors in the dilution of the sample, 

further correcting the abundance (D = 0 in a pure sample). 𝑊𝑗 is the window tolerance and refers 

to the expected degree a sample has of matching the abundance requirements by chance, and it 

reflects experimental factors like reproducibility and background so that it will depend on mass 

and instrumentation. 

A high K value indicates higher confidence in the identification of the unknown spectrum, 

whereas a low K value denotes the opposite. Results also show that K values are influenced by the 

sample size, where pure samples of average size (10 μg) can yield K values between 75 to 125, 

and a smaller sample of 0.1 μg will result in K values between 20 and 40.1 

Eqn. 2 
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In the following years, as the PBM algorithm was popularized for illicit drug identification, 

several research groups contributed to improving the technique, which is still used by some Agilent 

instruments.3,18–22 One of the most important developments was the peak flagging process. This 

action consisted of flagging the least abundant peaks not to be included in the final calculations.23 

Parallel to the development of PBM algorithm, Atwater and coworkers developed a 

matching indicator, called the reliability value (RL), based on the predicted match reliability of the 

PBM. This matching indicator focused on providing the overall probability of a correct match 

instead of the probability that the unknown compound was present in the reference library, like 

previous metrics.1,14 To accomplish this goal, the RL used the confidence value K (Eqn. 2), a 

quadratic scaling factor, the number of peak flagging operations, and whether the molecular ion 

was used for the matching process or not.21 The scaling process used for the RL was based on the 

quadratic polynomial adjustment of the peak abundances of the reference spectrum to minimize 

the sum of squares between the queried and reference spectra.21 This quadratic scaling process was 

added to compensate for variations in sample concentrations during scans or variations in mass 

abundance due to mass discrimination by quadrupole mass filters.16 

Alternatively, other algorithms during the ‘90s were based on the statistical comparison of 

the unknown and the database spectra. The most popular methods include Euclidean distance,16,24 

absolute value distance,16,24 and weighted or unweighted dot-products, which uses the cosine of 

the angle between unknown and reference vector representations.16,24 In the dot-product 

comparison, a value of 1 conveys perfect correlation, and therefore higher confidence in the 

identification, and a value of 0 denotes the opposite.16 

To compare the performance of the main algorithms at the time, Stein and Scott selected 

the five most popular algorithms: the similarity index, PBM, Euclidean distance, absolute value 
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distance, and the dot-product approach. They started by optimizing the intensity scaling and mass 

weighting factors of all the algorithms except PBM, for which they used the previously optimized 

values.16 This optimization process is important since it de-emphasizes the value of the most 

abundant peaks, which are not always the most characteristic, and gives more importance to larger 

m/z values, which generally have greater significance in spectral identification.1,25 These weight 

factors are dependent on the mass spectral library used.26 Next, they determined the accuracy of 

the optimized algorithms as percentage correct as a function of rank in the hit list.  

Using the criteria of first-hit recognition, the dot-product algorithm performed best with 

75% correct, followed by the Euclidean distance at 72% correct, absolute value distance at 68%, 

PBM at 65%, and finally similarity index at 64%.16 When expanding the criteria to include second- 

and third-hit identifications, all estimations increased by approximately 18%.16 One of the main 

problems with these retrieval algorithms is that they entirely rely on the real compound's inclusion 

in the reference library, which cannot always be guaranteed. Additionally, even if the real 

compound is in the reference library, it must then be assigned a high match factor.  

To account for both requirements, Stein developed a match factor based on the probability 

of a correct identification. Stein derived two spectral match factors from a weighted average of 

two comparison functions.15 The first is a measure of the angle between the two spectra (Eqn. 3), 

similar to the dot-product approach. 

𝐹1 =
∑ 𝑀(𝐴𝐿𝐴𝑈)1 2⁄

[∑ 𝑀𝐴𝐿 ∑ 𝑀𝐴𝐿]
1 2⁄

 

Where 𝐿 and 𝑈 denote peaks in the library and unknown spectra, respectively, and for each 

peak,  𝑀 is the mass-to-charge ratio and 𝐴 is the abundance normalized to the base peak. 

The second factor is based on the relative intensities of pairs of adjacent peaks present in 

the library and unknown spectra,15 

Eqn. 3 
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𝐹2 = (
1

𝑁𝑈&𝐿
) ∑ (

𝐴𝐿,𝑖

𝐴𝐿,𝑖−1
)

𝑛

(
𝐴𝑈,𝑖

𝐴𝑈,𝑖−1
)

−𝑛𝑁𝑈&𝐿

𝑖=2

 

Where 𝑁𝑈&𝐿 is the number of peaks shared between the library and unknown spectra, and 

𝑛 = 1 if the first abundance ratio is less than the second, or 𝑛 = – 1 if the opposite is true. 

The match factor, MF, is obtained when both factors are combined.15 

𝑀𝐹 =  
1000

𝑁𝑈 + 𝑁𝑈&𝐿

(𝑁𝑈𝐹1 + 𝑁𝑈&𝐿𝐹2) 

The scale for match factor ranges from 0, for no peaks in common, to 1000 for a perfect 

match.15  

Over time, the match factor was adapted to obtain the Simple Similarity Search (SSS), 

which is defined in Eqn. 6 as:17 

𝑆𝑆𝑆 (𝑸, 𝑳) = 𝐶
(∑ √𝑄𝑖  × √𝐿𝑖𝑖 )

2

∑ 𝑄𝑖  ×  ∑ 𝐿𝑖𝑖𝑖
 

where 𝑄 and 𝐿 are the vectorial representations of the queried and library spectra, 

respectively,  𝑄𝑖  and 𝐿𝑖 are their corresponding abundances at unit mass 𝑖, and 𝐶 is a constant that, 

for historical reasons, has a value of 999. Similar to MF, the range for SSS is from 0 to 999, where 

a score above 800 is considered “good”, and a score below 700 is questionable.17,27  

Today, the most widely used algorithm is probably the SSS, as it is implemented by the 

NIST Search Program.27 However, this method still has its limitations when it comes to providing 

a reasonable match factor when the reference library does not contain the correct compound. To 

circumvent this drawback, Moorthy et al. developed a hybrid match factor that does not require 

the spectrum of a query sample to be included in the library.17 

The Hybrid Similarity Search (HSS) is a natural extension of the SSS system that can match 

query peaks with a shifted library peak, in addition to a direct m/z match.17 This shift is referred to 

Eqn. 4 

Eqn. 5 

Eqn. 6 
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as DeltaMass (𝛥𝑚) and it is the nominal mass difference between the query and library 

compound.15 The hybrid match factor is given by: 

𝐻𝑆𝑆(𝑸, 𝑳, ∆𝑚) =  𝑆𝑆𝑆(𝑸, 𝑯) 

where 𝐻 is the vector that contains the matching peak intensity information from the library 

and shifted peaks. 

The main limitation of the HSS is the need for the molecular mass of the query compound, 

which is not always known. Acknowledging this drawback, Moorthy et al. provided a method to 

estimate the nominal mass of an unknown molecule.17 

Koo et al. developed an approach based on the Discrete Fourier Transform (DFT) and 

Discrete Wavelet Transform (DWT), creating a composite method that was able to recover 4% 

more information than the dot-product algorithm optimized by Stein and Scott. Overall, the 

DFT/DWT-based composite approach correctly identified ~3% more spectra than Stein and 

Scott’s algorithm.16,25 

Different multivariate statistics have also been explored to discriminate spectrally similar 

compounds.28,29 Bonetti focused on performing principal component analysis (PCA) followed by 

linear discriminant analysis (LDA) for the differentiation of positional isomers, achieving zero 

misclassifications for two different sets of isomers.28 On the other hand, Setser et al. aimed their 

research at classifying emerging synthetic drugs according to their structural class. They used prior 

knowledge of the molecule’s structure and PCA to select the variables that were then used to build 

two LDA models, which resulted in 93% and 86% successful classification rate, respectively.29 

Neither study included spectra collected on different instruments, which is the most challenging 

aspect of spectral identifications. 

Eqn. 7 
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There has also been research into the development of a mass spectral equivalent of an error 

rate. Bodnar Willard et al. designed a way to calculate a random match probability (RMP) that the 

specific mass spectral fragmentation pattern occurred by chance. This estimation was done to 

spectra previously determined to be significantly similar, obtaining RMP values less than 10-29.30 

However, these RMPs require that relative or normalized ion abundances are independently 

variable, which is not the case.31,32 

Given the high vacuum conditions of electron ionization (EI) sources, EI spectra are the 

result of unimolecular dissociations.33 The abundance of the fragments depends on four main 

factors:33–35 1) the internal energy distribution of the molecule prior to ionization, 2) the excitation 

energy accompanying the ionization event, 3) the observation time specific to the instrument, and 

4) mass bias and spectral distortion caused by ion optics and instrument operation.21,36 The 

fragmentation rates of a molecule can be modeled by the Rice–Ramsperger–Kassel–Marcus 

(RRKM) theory or quasi-equilibrium theory, which have very similar principles but different 

mathematical details.37–41 RRKM theory describes the fragmentation pathways in terms of the 

enthalpy and entropy of activation associated with the transition states.33,42 Fragmentation 

pathways are usually divided into two categories: rearrangements and direct bond cleavages. 

Rearrangements require a ‘tight’ transition state, which means they require a specific arrangement 

and geometry, usually close to those of the product. Tight transition states tend to have the lowest 

activation barriers and are typically favored at low internal energies.33 In contrast, direct bond 

cleavages tend not to have specific conformational requirements. Instead, they have ‘loose’ 

transition states with higher activation barriers and therefore tend to be favored at high internal 

energies.33 Therefore, fragments deriving from low energy, slow rearrangements are relatively 

more abundant at the lowest excitation energies and fragments from high-energy, fast cleavages 
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are relatively more abundant at higher internal energies. Each fragment ion abundance can be 

calculated at different internal energies at a fixed reaction time. Although branching ratios are non-

linearly related to variations in internal energy or apparent observation time, branching ratios do 

display strong empirical linear correlations in replicate measurements.31,32,43 These empirical linear 

correlations imply that certain ion ratios are relatively constant over a wide range of internal 

energies, and taking a weighted average of several ratios within a spectrum can be an effective 

way to extrapolate data across different internal energies, and thus, instruments. The relationship 

between RRKM/QET theories and the empirical correlations of a ~128 replicate spectra of cocaine 

from crime laboratories are described in detail in our recent publications.32,43  

3. Materials and methods 

3.1 Materials 

Cocaine and ACS-grade methanol were purchased from Sigma Aldrich (St. Louis, MO). 

A stock solution of cocaine in methanol was prepared to obtain a final concentration of 200 ppm. 

Additionally, the NIST-EPA-NIH database, containing different compounds from different 

laboratories and instruments was used. Most of the replicate spectra of cocaine and its 

diastereomers from the NIST archive came from a select number of laboratories, including the 

NYC Police Laboratory, the NIST MS Data Center, the Defense and Civil Institute for 

Environmental Medicine, Canada, the Georgia Bureau of Investigation, and the Virginia 

Department of Forensic Science (see Table 1).  
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Table 1. Existing database of in-house and NIST spectra. 

Name 
Molecular 

formula 

Molecular weight 

(g/mol) 
Number of spectra 

Ecgonine methyl ester C10H17NO3 199.25 69 

Fentanyl C22H28N2O 336.5 216 

Heroin C21H23NO5 369.4 158 

Hydromorphone C17H19NO3 285.34 134 

Methamphetamine C10H15N 149.23 133 

Pseudococaine C17H21NO4 303.35 8 

Allococaine C17H21NO4 303.35 1 

Pseudoallococaine C17H21NO4 303.35 2 

Cocaine C17H21NO4 303.35 895 

 

3.2 Gas chromatography-Mass spectrometry 

3.2.1 Instrument parameters and data extraction 

All samples were run on an Agilent Technologies (Santa Clara, CA, USA) 7890B GC 

system fitted with an HP-5MS column (30 m × 0.25 mm × 0.5 µm) and an Agilent 5977A mass 

spectrometer. 

 

Table 2. GC-MS parameters for the analysis of cocaine. 

Injection volume 1.0 μl 

Split ratio 20:1 

Carrier gas Helium 

Scan region (m/z) 30 - 350 

Initial temperature 190 ºC 

Initial hold time 0 min 

Ramp rate 15 ºC/min 

Final temperature 265 ºC 

Final hold time 0 min 

Solvent delay 1.5 min 

Total separation time 5 min 

 

The cocaine samples were analyzed using 27 different treatments stemming from the 

combination of three factors—repeller voltage, ion focus voltage, and electron ionization energy—

each with three levels, as defined in Table 3. 
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Table 3. Different treatments for the GC-MS analysis of cocaine. 

Treatment Repeller voltage Ion focus voltage 
Electron ionization 

energy 

1 

20 

70 

67 

2 70 

3 72 

4 

90 

67 

5 70 

6 72 

7 

110 

67 

8 70 

9 72 

10 

30 

70 

67 

11 70 

12 72 

13 

90 

67 

14 70 

15 72 

16 

110 

67 

17 70 

18 72 

19 

40 

70 

67 

20 70 

21 72 

22 

90 

67 

23 70 

24 72 

25 

110 

67 

26 70 

27 72 

 

Each treatment was run in triplicate. To accomplish randomized data acquisition, all 

samples were divided into three blocks, where each block contained all possible combinations 

exactly once (Table 3). Each block was independently randomized using Excel to ensure no bias 

when running the samples. The different parameters were set and saved to individual tune files 

that were then assigned their unique MS method. A methanol blank was run before each sample 
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to limit the possibility of carryover from previous samples. This design had 81 injections of cocaine 

resulting in an average of 7 scans per eluting peak for a total of 583 extracted spectra. Each scan 

was extracted using the ‘Export 3D data’ tool on ChemStation. 

3.3 Data analysis 

The MANOVA and consequent analysis of results were performed with Statistical Package 

for the Social Sciences (IBM SPSS, version 28). EASI was developed using a combination of 

Microsoft Excel for the data filtering and SPSS for building and testing the algorithms. SPSS was 

also used for calculations of metrics to determine the effectiveness of the algorithm, like mean 

absolute residuals, Pearson product-moment correlation (PPMC) coefficients, NIST scores, 

Mahalanobis distances and Euclidean distances.  

3.3.1 Data selection and filtering 

The extracted data from ChemStation was compiled into a master Excel spreadsheet that 

contained a unique ID number—comprised of a sequence of numbers associated with the treatment 

used, the block the sample belongs to and the scan number—the parameter conditions, the 

sequence order and the scan number. Next, the spectra underwent a data selection process that 

determined the 20 most abundant non-background ions in the cocaine database. Then, the data was 

filtered to remove poor quality spectra, which were defined as spectra with contamination (e.g., 

m/z 44, 73, 149, 210), high noise levels, and low-abundance spectra. This filtering process included 

removing any spectra whose base peak was less than 8,000 counts and ensuring that all ion 

abundances for the 20 selected m/z values were greater than 2,000 counts. After the data was 

filtered, all spectra were normalized relative to their corresponding base peaks at 100%. The base 

peak was typically, but not always, m/z 82. 
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3.3.2 Analysis of variance 

The three factors (repeller voltage, ion focus voltage and electron ionization energy) and 

three levels (low, medium and high) for each factor resulted in a 33 full factorial design. To 

determine the effects of each parameter on the ion abundances, MANOVA was carried out using 

the master Excel file with the filtered, normalized data. Each top 20 m/z value was iteratively 

considered to be the response or dependent variable, and the three factors were the independent 

variables. The F-statistics and p-values were used to assess the significance of each independent 

variable and their possible interactions. In addition, the eta squared values of the factors and their 

interactions were calculated to quantify their contribution to the observed variance. 

3.3.3 General linear model calculation 

The EASI algorithm requires the prediction of 20 ion abundances using 20 linear models. 

To build one linear regression model, SPSS assigns one of the 20 most abundant peaks as the 

dependent, or response, variable and identifies the coefficients (βn) of a subset of the remaining 19 

independent variables to explain as much of the variance in the dependent variable as possible 

without overfitting, as described below. SPSS then reports estimates and ranges for each βn value  

�̂� = 𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 … +  𝛽𝑛𝑥𝑛 

where  �̂� is the predicted ion abundance, xn represents each m/z value included in the model, and 

β0 is the intercept. The predicted and measured ion abundances differ by a residual error, 𝜀, which 

for multiple predictions should be randomly distributed if the model accurately explains the 

sources of variance in the data. The Normality of the residuals was demonstrated before and 

confirmed here.32,43 In this project we evaluated two linear models, one that includes an intercept 

and one without (labeled EASI WO). 

Eqn. 8 
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Each linear model is the result of the sequential addition or removal of independent 

variables based on the correlation between them and the response. The highly correlated covariates 

are added if they contribute significantly to the variance explained by the model (p ≤ 0.05) and the 

least correlated covariates already included in the model are removed if they are no longer 

significant (p ≥ 0.10). This process stops when all included covariates have a p-value less than 

0.10 and all remaining covariates have a larger p-value than 0.05. This setup allows the final model 

to only include significant independent variables and reduce the risk of producing models that 

over-fit the data. 

In addition to providing the β value for each linear model, SPSS also provides the predicted 

value of the dependent variable (based on the regression line) and the absolute residual to the 

measured value. To assess the normality of the residuals, we examined the frequency distribution 

of normalized residuals, scatter plots of normalized residuals versus normalized predicted values 

and probability-probability plots (P-P plots) of residuals. 

  

3.3.4 Model predictions and assessment 

The metrics used to assess the accuracy of the model are PPMC, mean absolute residuals 

(MAR), Euclidean distance values, NIST scores and Mahalanobis distances.  

The PPMC values are defined by 

𝑟 =
𝑛(∑ 𝑥�̂�) − (∑ 𝑥)(∑ �̂�)

√[[𝑛 ∑ 𝑥2 − (∑ 𝑥)2][𝑛 ∑ �̂�2 − (∑ 𝑥)2]]

 

Where r is the PPMC value, n is the sample size, �̂� is the predicted ion abundance, and x 

is the measured ion abundance. The PPMC values are a measure of the linear correlation between 

two data sets, in this case, the predicted values and the measured values. These values range from 

Eqn. 9 
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-1 to 1, where -1 is a perfect negative correlation and 1 is a perfect positive correlation. Although 

improbable, it is hypothetically possible to obtain a PPMC of 1 or -1 and still have constant or 

proportional differences between predicted and measured ion abundances. In this respect, forcing 

the linear regression line through the origin or using a simple dot product would be superior. 

The next metric is the mean absolute residuals. The residuals are a measure of the pairwise 

error between the predicted and measured data. Thus, MAR is defined by: 

𝑀𝐴𝑅 =
∑|�̂�𝑖 − 𝑥𝑖|

𝑛
 

Where �̂�𝑖, xi and n are as described above for PPMC. Unlike the PPMC values, the MAR 

uses the same units as the data being analyzed and ranges from zero to a theoretical maximum of 

100 assuming the unlikely scenario of 20 predictions with the maximum error of 100% each. 

Instead, MARs tend to be greater than 5% for known negatives and less than 5% for known 

positives relative to the mean of all known positives (the consensus exemplar spectrum). 

The third measure of assessment of the model is the Euclidean distance, described by: 

𝑑𝐸𝑢𝑐𝑙𝑖𝑑 = √∑(�̂�𝑖 − 𝑥𝑖)2 

where �̂�𝑖 and xi are defined as above. The Euclidean distance finds the straight-line distance 

between the multivariate data. Euclidean distances tend to be greater than 62 for known negatives 

and less than 9 for known positives and range from zero to a hypothetical upper limit of ~447 for 

20 predictions of 100% error. 

To calculate the NIST scores, the first step is to adjust the peak intensities to obtain 

weighted variables w:  

𝑤 = [𝑝𝑒𝑎𝑘 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒]0.6 ∙ [𝑝𝑒𝑎𝑘 𝑚𝑎𝑠𝑠]3 

Eqn. 10 

Eqn. 11 

Eqn. 12 
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where the exponents 3 and 0.6 correspond to the optimized values reported by Stein.16 This 

metric is designed to decrease the emphasis on the most abundant peaks, which tend to be less 

diagnostic for a particular substance, and to enhance the relative significance of higher mass peaks 

since they are the least common and the most diagnostic.16  

The next step to obtain the NIST scores is to calculate the dot product between the w values 

for both the query and the reference spectra, and finally multiply that by 999 to obtain a weighted 

score between 0 and 999, where 999 represents a perfect match. 

An additional measure of dissimilarity used when presented with correlated variables is the 

Mahalanobis distance. The Mahalanobis distance represents the distance between a datapoint in 

multivariate space and the distribution of datapoints of a given dataset, in this case the training set. 

Unlike the Euclidean distance, the Mahalanobis distance considers the correlation between the 

variables and provides the distance in multivariate space.  

𝑑𝑀𝑎ℎ𝑎𝑙 = √(𝑥𝑖 − �̅�)𝑇 ∙ 𝑪−1 ∙ (𝑥𝑖 − �̅�) 

In this equation, 𝑥𝑖 is an object vector, �̅� is the arithmetic mean vector, T is the transpose 

matrix, and 𝑪 is the sample covariance matrix. The Mahalanobis distances are calculated directly 

to the training set using the normalized spectra, with no additional linear modeling. Mahalanobis 

distances are not commonly used in mass spectrometry because relative ion abundances are 

assumed to be independently variable.30,44,45 The assumption of channel independence contrasts 

many correlation studies that demonstrate strong correlations between branching ratios in replicate 

spectra.31,32,43,46 

Additionally, to compare the EASI approach to the NIST consensus approach, we 

computed the same assessment values against a consensus spectrum, which in this case will be the 

average spectrum of all the cocaine spectra in the database. We will also use scatter plots, 

Eqn. 13 
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frequency distribution plots, and binary classifiers to compare both algorithms. Performance as a  

binary classifier will be assessed through receiver operating characteristic (ROC) curves.47–49 

A receiver operating characteristic (ROC) curve is a graphical representation of the 

sensitivity (y axis) and 1–specificity (x axis) of a binary classifier. The sensitivity, or true positive 

rate (TPR), corresponds to the proportion of correct positive classifications, whereas 1–specificity, 

or false positive rate (FPR), corresponds to the proportion of incorrect positive classifications. A 

ROC curve allows the user to use metrics as binary classifiers, in this case a positive or negative 

identification. A plot showing FPR versus TPR helps visualize the trade-off between true positives 

and false positives at a chosen threshold. Using the similarity and dissimilarity measures described 

above as continuous variables, the number of true positives (TPs), true negatives (TNs), false 

negatives (FNs) and false positives (FPs) were calculated at different thresholds using every mass 

spectra in the database sorted into training set and testing for the GLM-based algorithms and the 

consensus approach.  

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

𝑇𝑃𝑅 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑁𝑅 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

In addition to the ROC curves, we also calculated the area under the curve (AUC) as this 

has been continuously used to assess the discriminatory power of a test. The area under the ROC 

curve (AUC) ranges from 0.5-1. A value of 0.5 indicates no better than guessing and a value of 1 

Eqn. 14 

Eqn. 15 

Eqn. 16 

Eqn. 17 

Eqn. 18 
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indicates perfect classification. An AUC of less than 0.5 would indicate that the classification rule 

needs to be inverted to beat random odds.  

4. Results and discussion 

4.1 MANOVA analysis 

The 27 sets of conditions tested in the full-factorial design of experiments resulted in an 

average of 22 spectra per condition. Summary statistics are provided in Table 4 for m/z 94. Similar 

tables were produced for the 20 most abundant fragments of cocaine. The statistics include the 

mean, standard deviation, and number of observations (N) for the 27 combinations. Table 4 shows 

a slight decrease in the average ion abundances when the repeller voltage increases from 20-30 V, 

but no discernable differences between repeller voltages of 30-40 V. The same trend is observed 

for m/z values in the middle range (77, 81, 83, 94, 96, 97 and 105). The m/z values in the low range 

(41, 42, 51, 55, 67 and 68) showed decreased ion abundances when going from low (20 V) to high 

(40V) repeller voltage (see Table 29 in the appendix) and the ion abundances of the high m/z 

values (122, 152, 182, 183, 198, 272 and 303) increased with increasing repeller voltages (see 

Table 30 in the appendix). 

The ion abundances for m/z values in the low and middle range generally increased when 

the ion focus voltage increased from low to high. However, the abundances seemed to slightly 

decrease when the repeller voltage was set to high. These differences already show the impact of 

interactions between factors on the ion abundances. On the other hand, the ion abundances of the 

high m/z values increased and then decreased across the low, medium and high levels of the ion 

focus voltage. 
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Lastly, the ion abundances show a general decrease when increasing the EI energy. This 

behavior is mostly observed in m/z values in the low and middle ranges. For the high m/z values, 

there is no significant change. 

In general, the within-group variance was not significantly smaller than the between-group 

variance, resulting in conditions that are not significantly different. This behavior demonstrates 

the small variance observed throughout the experiment. 

These overall descriptive statistics highlight the differences the individual parameters can 

have depending on the m/z values, in addition to indicating the interaction between effects might 

be significant. However, the small variance and overlap between configurations can obscure these 

trends or make them irrelevant. 
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Table 4. Descriptive statistics for all 27 possible combinations of factors for m/z 94. 

m/z 
Repeller 

voltage 

Ion focus 

voltage 
EI energy Average 

Std. 

Deviation 
N 

94 

20 

70 

65 37.268 1.3894 12 

70 36.538 1.4201 14 

80 33.593 1.6134 18 

Total 35.532 2.2084 44 

90 

65 43.739 0.9091 12 

70 40.772 2.5659 15 

80 38.194 2.0572 17 

Total 40.585 2.9964 44 

110 

65 45.949 2.0913 11 

70 44.493 2.4741 12 

80 41.038 2.4923 16 

Total 43.486 3.1580 39 

30 

70 

65 34.695 2.4995 23 

70 34.035 2.0162 22 

80 34.128 1.6212 22 

Total 34.292 2.0736 67 

90 

65 37.379 2.5559 26 

70 36.786 2.3901 25 

80 35.695 2.5642 30 

Total 36.572 2.5794 81 

110 

65 41.425 2.2640 23 

70 40.951 2.4670 23 

80 39.164 2.0590 25 

Total 40.475 2.4418 71 

40 

70 

65 38.933 2.5916 22 

70 38.926 1.7321 20 

80 38.080 1.4666 19 

Total 38.665 2.0257 61 

90 

65 38.476 2.2905 29 

70 37.479 3.0405 31 

80 37.349 2.4552 29 

Total 37.762 2.6440 89 

110 

65 41.271 2.4879 28 

70 40.004 3.1062 29 

80 38.395 2.6640 30 

Total 39.857 2.9802 87 
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The main advantage of performing MANOVA over multiple ANOVAs is the ability to 

measure the effects of independent factors on multiple dependent variables. Consequently, a 

MANOVA can assess the variance contribution of the interactions between factors. Additionally, 

MANOVA can decrease the risk of type I error, which is the rejection of the null hypothesis when 

it is true. 

Table 5 shows a summary of the MANOVA results. The reported F-statistics and p-values 

are based on the Wilks’ Lambda statistical test. Significant factors are characterized by larger F-

statistics that provide p-values less than 0.05 (for 95% confidence). By these standards, all the 

parameters were deemed significant except for the interaction between ion focus and EI energy. 

Table 5 also shows the eta squared values, which represent the percent variance explained by that 

source. Most of the variance is explained by the intercept, which is unrelated to any of the studied 

factors. Of the three factors studied, the repeller voltage had the largest effect, but only explained 

~3% of the observed variance. The lowest eta squared value corresponds to the ion focus and EI 

energy interaction. This double interaction accounts for less than 0.001% of the variance observed, 

which is consistent with the higher p-value obtained. 

Table 5. Summary of MANOVA results showing the F-statistic, p-value and eta squared for each 

source. 

Source F-statistic p-value Eta squared 

Intercept 56439.560 0 93.731 

Repeller 114.906 0 2.792 

Ion Focus 67.957 <0.001 0.404 

EI Energy 23.732 <0.001 0.057 

Repeller * Ion Focus 14.139 <0.001 0.131 

Repeller * EI Energy 9.412 <0.001 0.086 

Ion Focus * EI Energy 1.031 0.406 0.007 

Repeller * Ion Focus * EI Energy 1.893 <0.001 0.014 
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Table 6 shows that the behaviors outlined previously can be broken down further if we 

consider the m/z values as a scale with low, middle, and high values as before. Now, the eta squared 

values allow us to analyze mass bias for each parameter, including the interactions. Again, most 

of the variance is not explained by the studied factors. Although some of the factors and 

interactions are significant, the eta squared values are still small relative to the overall variance. 

The repeller voltage is most impactful for high m/z values and explains about 7% of the observed 

variance in the relative ion abundances. The intercept, which explains most of the variance, 

therefore explains less variance for high m/z values. 

Table 6. Averaged eta squared values by source and m/z values. 

 Average eta squared values 

Source Total 
Low m/z 

(m/z 44-68) 

Middle m/z 

(m/z 77-107) 

High m/z 

(m/z 122-303) 

Intercept 93.73 97.33 98.87 85.44 

Repeller 2.792 0.555 0.147 7.372 

Ion Focus 0.404 0.589 0.205 0.474 

EI Energy 0.057 0.050 0.045 0.082 

Repeller * Ion Focus 0.131 0.164 0.056 0.186 

Repeller * EI Energy 0.086 0.189 0.036 0.051 

Ion Focus * EI Energy 0.007 0.006 0.004 0.011 

Repeller * Ion Focus * EI Energy 0.014 0.028 0.005 0.011 

 

The effect of the repeller mass bias is more evident in a bivariate plot of percent change in 

relative ion abundance per volt when going from a repeller voltage of 20 V to 40 V versus m/z 

value. Figure 1 shows a linear increase of the percent change in ion abundance as the m/z values 

grow larger. For m/z values between 44 and 68, an increase in repeller voltage decreases the 

relative abundance. For m/z values between 77-105, the repeller voltage has very little effect on 

the relative ion abundance. For m/z values greater than m/z 122, the increase in repeller voltage 

translates into an increase in relative abundance. The line of best fit in this case can explain 95% 

of the behavior displayed by the data. 
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Figure 1. Percent change in relative ion abundance as a function of m/z when going from a low 

(20 V) to a high (40 V) repeller voltage. 

 

The repeller causes mass bias in this experiment because it was altered independently of 

the focus lens. When the instrument autotunes to provide unbiased mass spectra (of the calibration 

gas, perfluorotributylamine, PFTBA), the repeller and focus lens are both optimized to 

simultaneously enhance the extraction efficiency while negating the incurred mass bias.43 

Previous studies by the Jackson group also explored the effects of column flow rate, ion 

source temperature and transfer line temperature on the top 10 relative ion abundances of various 

drugs using MANOVA. Column flow rate and ion source temperature were shown to be 

significant, with eta squared values of 0.15 and 0.73 for cocaine.50 This same study monitored the 

vacuum chamber pressure while analyzing perfluorotributylamine (PFTBA) to determine the 

effects of natural pressure fluctuations on relative ion abundances. The results showed that the 

pressure explained up to 84% of the variance in the relative abundance of m/z 219 (Figure 2).50 
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Figure 2. Relative ion abundance of PFTBA versus high vacuum (Torr) for m/z 219. The pressure 

randomly drifted over a ~2-min period during these observations. 

 

To explore if this trend is reproducible with cocaine, the high vacuum was tracked while 

cocaine was continuously analyzed in manual tune mode. This setup only allowed the visualization 

and recording of three m/z values at a time. We therefore selected abundant ions that spanned the 

mass range and contained the important molecular ion; m/z 82, m/z 182 and m/z 303. Consequently, 

the high vacuum was monitored for 2 minutes and 20 seconds while the ion abundances were 

recorded every 5 seconds. Each ion abundance was then normalized to the most abundant peak of 

the three, in this case m/z 82. These results are summarized in Table 7. 
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Table 7. Pressure, absolute abundances, and relative abundances of cocaine ions m/z 82, 182 and 

303 collected every 5 seconds for 2 minutes and 20 seconds. The pressure drifted without control 

during this period. 

Time (sec) 

Absolute 

abundance 

m/z 82 

Absolute 

abundance 

m/z 182 

Absolute 

abundance 

m/z 303 

Relative 

abundance 

m/z 82 

Relative 

abundance 

m/z 182 

Relative 

abundance 

m/z 303 

Pressure 

(Torr) 

0 54263 29334 4768 100 54.1 8.8 5.42E-05 

5 53696 28028 4498 100 52.2 8.4 5.42E-05 

10 61282 32671 5532 100 53.3 9.0 5.42E-05 

15 62814 34462 5850 100 54.9 9.3 5.42E-05 

20 70891 39467 6280 100 55.7 8.9 5.42E-05 

25 80589 44046 7554 100 54.7 9.4 5.42E-05 

30 86912 47878 7942 100 55.1 9.1 5.42E-05 

35 94294 54086 9091 100 57.4 9.6 5.42E-05 

40 106418 59576 9830 100 56.0 9.2 5.42E-05 

45 110607 63602 10069 100 57.5 9.1 5.45E-05 

50 121134 67150 11382 100 55.4 9.4 5.48E-05 

55 117389 65432 11083 100 55.7 9.4 5.54E-05 

60 110942 61771 10423 100 55.7 9.4 5.54E-05 

65 114905 62965 10277 100 54.8 8.9 5.54E-05 

70 113411 61954 10132 100 54.6 8.9 5.60E-05 

75 115911 61991 10182 100 53.5 8.8 5.70E-05 

80 117660 63130 10611 100 53.7 9.0 5.80E-05 

85 120493 64075 10372 100 53.2 8.6 5.86E-05 

90 117057 61019 10034 100 52.1 8.6 5.96E-05 

95 126555 65606 10774 100 51.8 8.5 6.06E-05 

100 128886 67333 11183 100 52.2 8.7 6.13E-05 

105 135992 68333 11308 100 50.2 8.3 6.24E-05 

110 139555 69243 11672 100 49.6 8.4 6.34E-05 

115 141302 68761 11302 100 48.7 8.0 6.49E-05 

120 145778 69951 11226 100 48.0 7.7 6.71E-05 

125 146991 69218 11359 100 47.1 7.7 6.86E-05 

130 148611 66460 11119 100 44.7 7.5 7.10E-05 

135 143595 62974 10200 100 43.9 7.1 7.42E-05 

140 143545 60270 9894 100 42.0 6.9 7.76E-05 

 

A scatter plot of relative abundance of m/z 182 is the dependent variable versus pressure 

as the independent variable resulted in a linear plot with a negative slope with a coefficient of 
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determination of 0.93 (Figure 3). This means that the high vacuum explains 93% of the variance 

observed in the relative abundance of the peak in question, which is in close agreement with the 

percent variance that was not explained by the controlled factors. 

 
Figure 3. Relative abundance of cocaine peak m/z 182 versus the uncontrolled high vacuum 

pressure (Torr). 

 

Similarly, a linear regression using the relative abundance of m/z 303 also revealed a 

negative correlation between the high vacuum and the 303 peak (Figure 4). The determination 

coefficient was 0.878, which represents 87.8% of the variation of the relative abundance of m/z 

303 that can be attributed to the high vacuum. 

These results suggest that the fluctuations in the high vacuum is responsible for most of 

the unexplained variance in the major peaks of cocaine.  
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Figure 4. High vacuum (Torr) vs. relative abundance of cocaine peak m/z 303. 

 

Additionally, Figure 5 and Figure 6 show that there is no significant correlation between 

the absolute and relative abundances of each of the analyzed ions. This means that the absolute 

abundances are not increasing and decreasing together, so the effect is not caused by self-chemical-

ionization in the source.  
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Figure 5. Absolute abundance vs. relative abundance of m/z 182. 

 

 
Figure 6. Absolute abundance vs. relative abundance of m/z 303. 

 

y = -1E-04x + 58.043
R² = 0.1022

40

42

44

46

48

50

52

54

56

58

20000 30000 40000 50000 60000 70000 80000

R
el

at
iv

e 
ab

u
n

d
an

ce
 m

/z
 1

82

Absolute abundance m/z 182

y = -9E-05x + 9.4794
R² = 0.0696

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

4000 5000 6000 7000 8000 9000 10000 11000 12000

R
el

at
iv

e 
ab

u
n

d
an

ce
 m

/z
 3

03

Absolute abundance m/z 303



30 

 

Figure 7 shows the exponential increase in pressure as time passes. However, this behavior 

is not replicated by the absolute abundances, which suggests the increase in pressure is not caused 

by cocaine, but by random drift in the base pressure of the instrument. These observations are 

related to classical experiments in the early development of mass spectrometry in which precursor 

or intermediate ions were found to fragment after being accelerated out of the ion source. The post-

extraction fragmentation either occurs naturally—because of the long lifetime of the activated 

ion—or because of collisions with residual gasses during flight.34 Such long-lived intermediates 

would often show up as metastable peaks/ions in magnetic sector instruments. The current 

observations support the hypothesis that random drift in the base pressure of the instrument could 

be inducing extra collisional activation as the ions migrate the ion optics en route to detection. 

 
Figure 7. Pressure (Torr) vs. time while continuously analyzing cocaine. 
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Although in this case the base peak was always m/z 82, cocaine can also have the base peak at m/z 

182.32,43 After the data selection and filtering process, the total number of reasonable quality 

cocaine spectra was 583. Of those, 389 made up the training set and 194 were used as a validation 

or test set. 

The correlation tables (Table 8 and Table 9) show the pairwise correlation coefficients for 

19 of the ion abundances. The peak at m/z 82 was excluded because this value is always the base 

peak at 100%, so has no variance. Absolute correlation coefficients with a value greater than 0.6 

or less than -0.6 indicate a significant correlation, which can be a direct relationship (positive 

correlation coefficients) or an inverse relationship (negative correlation coefficients). The 

correlation coefficients were significant for most of the pair-wise comparisons, which confirms 

the validity of the use of a multivariate linear regression approach. These findings are qualitatively 

similar to a completely different training set of 128 cocaine spectra from an operational crime 

laboratory.32 

Table 8 shows highly correlated variables, like m/z 182 and m/z 183 (R=0.957), while also 

showing some highly inversely correlated variables, like m/z 83 and m/z 152 (R=0.782). These 

behaviors establish a trend where ion abundances close in m/z value tend to increase or decrease 

together (e.g., m/z 41 and m/z 42) and ion abundances with relatively different m/z values tend to 

show less correlation or inverse correlation. This correlation analysis presents a good indicator of 

which independent ions will be included in the models, i.e., the ions with the highest correlation 

coefficient have a higher probability of being included in the general linear models. 

 

 

 



32 

 

Table 8. Part one of the bivariate Pearson correlations between the top 20 most abundant ions of 

cocaine based on the training set (n=389). 

  41 42 51 55 67 68 77 81 83 94 

41 1.000 0.692 0.791 0.742 0.630 0.664 0.554 0.345 -0.381 0.169 

42 0.692 1.000 0.772 0.838 0.140 0.695 0.861 -0.132 0.195 0.571 

51 0.791 0.772 1.000 0.745 0.480 0.731 0.770 0.159 -0.198 0.464 

55 0.742 0.838 0.745 1.000 0.333 0.693 0.724 0.058 -0.011 0.386 

67 0.630 0.140 0.480 0.333 1.000 0.430 0.173 0.557 -0.770 -0.124 

68 0.664 0.695 0.731 0.693 0.430 1.000 0.714 0.136 -0.190 0.446 

77 0.554 0.861 0.770 0.724 0.173 0.714 1.000 -0.203 0.148 0.774 

81 0.345 -0.132 0.159 0.058 0.557 0.136 -0.203 1.000 -0.607 -0.322 

83 -0.381 0.195 -0.198 -0.011 -0.770 -0.190 0.148 -0.607 1.000 0.329 

94 0.169 0.571 0.464 0.386 -0.124 0.446 0.774 -0.322 0.329 1.000 

96 -0.372 0.085 -0.122 -0.144 -0.663 -0.174 0.165 -0.494 0.727 0.529 

97 -0.484 -0.068 -0.299 -0.242 -0.681 -0.319 -0.032 -0.490 0.737 0.349 

105 0.452 0.500 0.607 0.451 0.358 0.526 0.710 0.027 -0.168 0.728 

122 0.135 -0.449 0.005 -0.237 0.627 -0.041 -0.334 0.594 -0.771 -0.287 

152 0.114 -0.440 0.012 -0.225 0.623 -0.025 -0.303 0.570 -0.782 -0.230 

182 -0.356 -0.539 -0.253 -0.530 -0.011 -0.316 -0.303 0.078 -0.189 0.130 

183 -0.366 -0.519 -0.268 -0.526 -0.066 -0.319 -0.308 0.081 -0.132 0.128 

198 -0.347 -0.566 -0.264 -0.524 0.040 -0.294 -0.337 0.150 -0.241 0.073 

272 -0.212 -0.529 -0.190 -0.447 0.217 -0.210 -0.305 0.245 -0.423 -0.008 

303 -0.215 -0.543 -0.196 -0.455 0.241 -0.222 -0.317 0.251 -0.447 -0.036 
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Table 9. Part two of the bivariate Pearson correlations between the top 20 most abundant ions of 

cocaine based on the training set (n=389). 

  96 97 105 122 152 182 183 198 272 303 

41 -0.372 -0.484 0.452 0.135 0.114 -0.356 -0.366 -0.347 -0.212 -0.215 

42 0.085 -0.068 0.500 -0.449 -0.440 -0.539 -0.519 -0.566 -0.529 -0.543 

51 -0.122 -0.299 0.607 0.005 0.012 -0.253 -0.268 -0.264 -0.190 -0.196 

55 -0.144 -0.242 0.451 -0.237 -0.225 -0.530 -0.526 -0.524 -0.447 -0.455 

67 -0.663 -0.681 0.358 0.627 0.623 -0.011 -0.066 0.040 0.217 0.241 

68 -0.174 -0.319 0.526 -0.041 -0.025 -0.316 -0.319 -0.294 -0.210 -0.222 

77 0.165 -0.032 0.710 -0.334 -0.303 -0.303 -0.308 -0.337 -0.305 -0.317 

81 -0.494 -0.490 0.027 0.594 0.570 0.078 0.081 0.150 0.245 0.251 

83 0.727 0.737 -0.168 -0.771 -0.782 -0.189 -0.132 -0.241 -0.423 -0.447 

94 0.529 0.349 0.728 -0.287 -0.230 0.130 0.128 0.073 -0.008 -0.036 

96 1.000 0.797 0.117 -0.442 -0.436 0.293 0.333 0.218 0.031 -0.013 

97 0.797 1.000 -0.052 -0.420 -0.409 0.286 0.338 0.228 0.033 -0.003 

105 0.117 -0.052 1.000 0.175 0.213 0.216 0.171 0.175 0.222 0.216 

122 -0.442 -0.420 0.175 1.000 0.935 0.570 0.523 0.610 0.710 0.723 

152 -0.436 -0.409 0.213 0.935 1.000 0.616 0.564 0.660 0.762 0.789 

182 0.293 0.286 0.216 0.570 0.616 1.000 0.957 0.971 0.919 0.902 

183 0.333 0.338 0.171 0.523 0.564 0.957 1.000 0.943 0.871 0.842 

198 0.218 0.228 0.175 0.610 0.660 0.971 0.943 1.000 0.928 0.913 

272 0.031 0.033 0.222 0.710 0.762 0.919 0.871 0.928 1.000 0.977 

303 -0.013 -0.003 0.216 0.723 0.789 0.902 0.842 0.913 0.977 1.000 

 

Table 10 summarizes the 19 general linear regression models when the model is allowed 

to include an intercept. There is no regression model for m/z 82 since it is always 100 and thus, 

can be described by a constant. For the same reason, m/z 82 was not selected as one of the 

covariates used for the models. Table 10 shows the final selected covariates by the stepwise 

process using SPSS. The coefficients were stored in real-time and applied to all the selected mass 

spectra (e.g., training set spectra, validation spectra, known negative spectra). 
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Table 10. Model summary for the 19 regression models built including a constant. The summary 

includes the covariates that made it to the final model as part of the stepwise process. 

Dependent 

m/z 

No. of 

stepwise 

additions 

and 

removals 

Covariates included in the final model 

R squared 

of final 

model 

42 5 51, 55, 77, 152, 303 0.894 

51 5 42, 67, 77, 81, 122 0.793 

55 8 42, 51, 68, 83, 152, 182 0.777 

67 9 51, 55, 77, 83, 94, 96, 122, 152, 183 0.799 

68 9 42, 55, 77, 81, 83 0.656 

77 13 42, 51, 67, 68, 81, 94, 97, 105, 152, 182, 303 0.922 

81 7 122, 152, 182, 183, 198 0.489 

83 6 67, 96, 97, 122, 152, 272 0.850 

94 11 51, 67, 68, 77, 96, 105, 122, 182, 198, 272, 303 0.876 

96 9 51, 67, 83, 94, 97, 152, 182, 183, 303 0.815 

97 4 51, 83, 96, 183 0.759 

105 7 42, 67, 68, 77, 94, 122, 303 0.803 

122 9 42, 67, 81, 94, 105, 152, 182, 183, 303 0.901 

152 11 42, 55, 67, 81, 83, 96, 122, 183, 198, 272, 303 0.933 

182 13 51, 55, 68, 77, 81, 94, 96, 105, 122, 183, 198, 272, 303 0.975 

183 6 81, 97, 182, 198, 272, 303 0.930 

198 6 42, 68, 81, 182, 183, 272 0.958 

272 7 55, 83, 122, 152, 183, 198, 303 0.967 

303 5 55, 81, 122, 152, 272 0.962 

 

 

Similar to the summary for the regression models including an intercept, Table 11 shows 

the summary for models without an intercept, including m/z 82 since there is no constant that can 

model it now. 
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Table 11. Model summary for the 20 regression models built excluding a constant. The summary 

includes the covariates that made it to the final model as part of the stepwise process. 

Depende

nt m/z 

No. of 

stepwise 

additions 

and 

removals 

Covariates included in the final model 
R squared of 

final model 

42 11 51, 55, 68, 77, 82, 96, 105, 122, 198 0.997 

51 5 42, 67, 77, 83, 122 0.995 

55 15 42, 51, 68, 82, 83, 152, 182 0.997 

67 12 51, 55, 77, 82, 83, 94, 96, 122, 152, 183 0.995 

68 5 42, 55, 67, 77, 81 0.995 

77 12 42, 51, 67, 68, 81, 94, 105, 152, 182, 303 0.999 

81 8 82, 122, 152, 182, 183, 198 0.997 

82 12 42, 51, 67, 68, 81, 83, 96, 105, 122, 183 0.999 

83 9 67, 82, 96, 97, 122, 152, 272 0.999 

94 10 51, 67, 68, 77, 96, 105, 122, 182, 198, 272 0.999 

96 9 42, 67, 82, 83, 94, 97, 152, 182, 303 0.999 

97 4 67, 83, 96, 183 0.997 

105 7 55, 67, 68, 77, 94, 122, 303 0.999 

122 8 42, 67, 81, 94, 105, 152, 182, 303 0.994 

152 11 42, 55, 67, 81, 83, 96, 122, 183, 198, 272, 303 0.991 

182 13 
51, 55, 68, 77, 81, 94, 96, 105, 122, 183, 198, 272, 

303 
0.998 

183 7 67, 97, 122, 182, 198, 272, 303 0.995 

198 5 42, 68, 182, 183, 272 0.996 

272 8 68, 83, 182, 183, 198, 303 0.993 

303 8 55, 122, 152, 182, 183, 272 0.991 

 

 

Comparing Table 10 and Table 11, we can see that the models that include an intercept 

have the same number of variables or less, never more, than the models that exclude an intercept. 

This correlation analysis presents a good indicator of which covariate ions are likely to be included 

in the final models because ions with the highest correlation coefficient are more likely to be 

included in the model. 

The R squared values shown in Table 10 and Table 11 demonstrate that the spectral 

variance is not random, as implicitly assumed by other algorithms.30 On average, EASI can 
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describe at least 84.5% (regression with intercept) of the training set variance. These high R 

squared values illustrate how EASI can account for inter-instrument and inter-laboratories 

variations.32,43 

Table 12 and Table 13 show summaries of the resulting unstandardized coefficients 

generated through general linear modeling with and without an intercept, respectively. The 

coefficients in Table 12 share significant qualitative similarities with the coefficients determined 

from a completely different training set in which the 128 cocaine replicates were collected over a 

6-month period in an operational crime laboratory and the three factors in question were not 

deliberately manipulated as they were here. Despite the differences in instruments and controlled 

experimental perturbations, many similarities are present in the linear models. For example, in 

both models, the GLMs for m/z 303 include a small intercept of 2-3%, they have large coefficients 

of 2-3 for m/z 272, and they both include a negative coefficient for m/z 81 on the order of -0.2 to -

0.5. The models do contain some differences, however, as one might expect for a dataset with such 

highly correlated variables. 
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Table 12. Summary of the unstandardized coefficients for 19 general linear regression models 

using the abundance of each m/z value as a dependent variable and the remaining 18 abundances 

as possible covariates. This model also includes a constant. 

Dependent 

m/z value 

Unstandardized coefficients for independent m/z values 

βo 42 51 55 67 68 77 81 83 94 96 97 105 122 152 182 183 198 272 303 

42 -4.44   0.57 1.47     0.31               -0.41         -0.06 

51 -5.10 0.25     0.27   0.15 0.18           0.20             

55 2.28 0.13 0.06     0.12     0.03           0.14 -0.02         

67 6.11   0.08 0.10     0.06   -0.06 -0.04 -0.08     0.15 0.15   -0.11       

68 2.60 0.04   0.13     0.07 0.08 -0.05                       

77 4.68 0.21 0.54   0.30 0.50   -0.48   0.58   -0.25 0.30   -0.39 -0.09       0.21 

81 10.87                         0.19 0.16 -0.06 0.14 0.17     

83 25.64       -0.46           0.33 0.89   -0.16 -0.38       -0.18   

94 2.15   -0.22   -0.28 0.52 0.44       0.17   0.37 -0.19   0.10   0.37 -0.33 -0.12 

96 7.09   0.12   -0.26       0.20 0.10   0.33     -0.24 0.07 0.16     -0.07 

97 -0.99   -0.04           0.19   0.15           0.18       

105 1.79 0.10     0.35 -0.36 0.24     0.39       0.37           0.09 

122 3.70 -0.05     0.33     0.20 -0.06 -0.11     0.09   0.64 0.05       -0.09 

152 1.99 -0.04   0.22 0.19     0.11 -0.11   -0.09     0.40     0.13 0.15 -0.27 0.18 

182 5.10   0.53 -0.84   -1.06 -0.39 -0.89   0.44 0.61   0.31 0.37     2.15 2.79 0.95 0.40 

183 -1.84             0.08       0.14       0.08   0.25 0.16 -0.08 

198 -0.88 -0.04       0.13   0.07               0.08 0.21   0.16   

272 0.77     0.08         -0.05         0.06 -0.12   0.17 0.16   0.32 

303 2.94     -0.23       -0.21           -0.20 0.56       2.06   
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Table 13. Summary of the unstandardized coefficients for 20 general linear regression models 

using the abundance of each m/z value as a dependent variable and the remaining 19 abundances 

as possible covariates. This model does not include a constant. 

Dependent 

m/z value 

Unstandardized coefficients for independent m/z values 

42 51 55 67 68 77 81 82 83 94 96 97 105 122 152 182 183 198 272 303 

42   0.57 1.31   0.38 0.21   -0.07     0.19   0.11 -0.30       -0.39     

51 0.27     0.22   0.13     -0.07         0.19             

55 0.13 0.06     0.12     0.02 0.03           0.13 -0.02         

67   0.08 0.11     0.06   0.06 -0.06 -0.04 -0.08     0.15 0.15   -0.12       

68 0.03   0.11 0.14   0.07 0.10                           

77 0.19 0.53   0.38 0.57   -0.36     0.59     0.32   -0.37 -0.10       0.21 

81               0.11           0.19 0.16 -0.06 0.14 0.17     

82 -0.20 -0.25   1.83 1.21   1.84   1.22   0.49   0.27 0.61     -0.43       

83       -0.47       0.26     0.33 0.88   -0.16 -0.38       -0.18   

94   -0.23   -0.23 0.58 0.44         0.26   0.36 -0.16   0.09   0.35 -0.57   

96 0.08     -0.27       0.07 0.21     0.33 0.07   -0.24 0.08 0.16     -0.09 

97       -0.10         0.18   0.13           0.20       

105 0.16 -0.20       0.48   0.05           0.27 0.22 0.13 -0.23 -0.31     

122 -0.07     0.45     0.25               0.72 0.03       -0.07 

152 -0.04   0.23 0.23     0.15   -0.08   -0.08     0.41     0.13 0.14 -0.26 0.18 

182     -0.66   -0.93   -0.71       0.77   0.37 0.43     2.29 3.10 0.75 0.38 

183       -0.11               0.10   0.05   0.07   0.26 0.17 -0.08 

198 -0.04       0.15                     0.08 0.22   0.19   

272     0.08                           0.16 0.16   0.30 

303                           -0.22 0.52 0.07 -0.43   1.92   

 

We assessed the fitness of the GLM models by assessing the normality of the residuals. If 

the model is reliable, the residuals should be Normally distributed, as demonstrated by the 

histogram of the standardized residuals in (Figure 8) and a Normal probability plot (P-P plot) in 

(Figure 9). 
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Figure 8. Histogram of standardized residuals of the m/z 105 from the training set model including 

an intercept (n = 389) compared to a Normal distribution. 

 

Figure 8 shows a histogram of the standardized residuals using linear regression with an 

intercept for the training set of m/z 105. The black line represents a normal distribution. This plot 

shows that the residuals are normally distributed around zero, which means that the residuals are 

random and there is no variance left that could be explained. 

Figure 9 displays the normal probability plot of the residuals of the training set model that 

includes a constant for m/z 105. This further demonstrates the normality of the error terms. 
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Figure 9. Normal probability plot showing the cumulative frequency of the distribution of the 

standardized residuals of the training set model including a constant (n=389) for m/z 105 compared 

to the normal probability graph scale. 

 

One of the advantages of the EASI approach is the potential for extrapolation between 

spectra from different labs, as demonstrated in our first publication.32 This potential can be 

visualized in Figure 10. 
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Figure 10. Scatter plot of measure versus predicted abundance of m/z 96 using EASI with a 

constant. The training set data (in blue) was collected at WVU Department of Forensic and 

Investigative Science (N = 389), whereas the Lab 2 data (in red) was curtesy of Benny Lum at 

Broward Sheriff’s Office Crime Laboratory (N = 132). 

For Figure 10, the replicate data from the full factorial design of experiments was used as 

the training set to build the GLM model for m/z 96 with a constant. The model was then applied 

to all the training set data and 132 cocaine spectra from a different laboratory. Details of the data 

acquisition for the data from Broward Sheriff’s Office Crime Laboratory are provided 

elsewhere.31,32 The mean measured abundance for m/z 96 for the two data sets are significantly 

different (two-tailed t-test, =0.05); the training set has a mean abundance of 23.9% (s.d. = 2.1) 

and the test set from lab 2 has a mean of 29.4% (s.d. = 2.7). However, although the variance of the 

data from Lab 2 falls outside the variance of the training set range, the linear regression based on 

the training data can be extrapolated to effectively predict the abundances in Lab 2. In other words, 

the ability to extrapolate to Lab 2 the trend from the training set demonstrates the potential of EASI 
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in comparing inter-laboratory and inter-instrument data. Naïve, non-expert algorithms that lack a 

fundamental basis of operation like RRKM theory would not be able to predict that linear behavior 

could be extrapolated between instruments. 

4.2.1 Penalization for the EASI without a constant 

The exclusion of a constant in the multivariate linear modeling approach can be 

rationalized by the following thought experiment: If 19 of the 20 most abundant ions in a spectrum 

of a suspected drug measure 0%, the 20th ion abundance should also be zero. There would be no 

reason to assume that the 20th peak would register any signal. In contrast, the inclusion of an 

intercept in the GLM models simply allows the resultant model to better fit the data, regardless of 

chemical expectations. However, GLM modeling with and without a constant suffers one potential 

problem when known negatives have multiple ion abundances at or near 0%. Ion abundances of 

zero for known negatives make sense because we are only looking at the most abundant ions of 

cocaine, which might not include abundant ions for other substances. However, when each 

coefficient in the GLM is multiplied by ~0% abundance, the entire term (predicted dependent 

value) becomes ~zero. Therefore, any linear combination of zeros as the independent variables 

results in a predicted abundance of zero. This means that a known negative with all 20 measured 

ion abundances at or close to zero will have near-perfect predictions and therefore appear to fit the 

model well. From a mathematical perspective, the small residual error between the measured and 

known values of ~0% would mean that a known negative would appear to be a positive. Figure 

11 exemplifies the rise of false positives as a direct result of this problem. In this case, known 

negatives include methamphetamine, fentanyl, heroin and hydromorphone, which share almost no 

spectral overlap. Almost all the measured values are close to zero, so there are hundreds of known 

negative spectra provide that provide mean absolute residuals close to zero. 
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Figure 11. Population pyramid of mean absolute residuals (MAR) of known positives (N = 1478) 

and known negatives (N = 721) using EASI without a constant. 

 

To avoid false positive classifications due to abundances at or close to zero, each measured 

ion abundance equal to zero was penalized with a value of 50%. This penalization included known 

positives and known negatives to maintain consistency. When each penalty of 50% is averaged 

across 19 predictions, the mean absolute residual is increased by 2.63% per penalty. This is usually 

enough to make a known negative have a significantly larger MAR than known positives. 
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Figure 12. Population pyramid of mean absolute residuals (MAR) of known positives (N =1478) 

and known negatives (N=721) using EASI without an intercept in the models and with a 

penalization for abundances of zero. 

Moving forward, EASI models without a constant and employing a penalty will be referred 

to as EASI without a constant (EASI WO). 

4.2.2 Mean absolute residuals calculations and graphs 

The mean absolute residual is a common measure by which to assess the residuals in 

multivariate modeling. Consequently, the MARs were calculated as described before from the 19 

residuals for the 19 predictions for each spectrum. Table 14 presents a summary of minimum and 

maximum mean absolute residuals to highlight the possibility of overlap between the distributions 

of known positives and known negatives. 
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Table 14. Minimum and maximum mean absolute residuals (MAR, %) by compound and model. 

Bold values are the largest MARs for known positives. Underlined values are the smallest MARs 

for known negatives that overlap with the distribution of known positives. 

 EASI EASI WO Consensus 

 Min Max Min Max Min Max 

KPs (Training set) 0.22 1.80 0.24 1.90 0.67 5.76 

KPs (Test set) 0.22 5.07 0.29 5.22 0.89 14.40 

Pseudoallococaine 2.74 4.37 4.03 13.68 4.12 4.58 

Pseudococaine 2.60 4.59 2.49 22.28 4.11 10.58 

Allococaine 3.56 3.56 8.66 8.66 6.40 6.40 

Ecgonine methyl ester 7.92 10.80 24.32 43.95 13.18 15.61 

Fentanyl 5.26 8.66 11.95 41.20 16.01 20.36 

Heroin 4.65 13.12 8.69 37.54 16.98 20.00 

Hydromorphone 6.95 18.24 13.87 39.90 15.29 19.98 

Methamphetamine 4.80 5.17 35.06 49.60 21.95 22.19 

 

The mean absolute residuals for the training set were the smallest for all three models. This 

was expected because the training set was used to build the model, so there is some bias in favor 

of good predictions for this set. However, the range of MARs is considerably wider for the 

consensus model. For the consensus model, KPs from the test set have a MAR as large as 14.40%. 

On the other hand, while the ranges of MARs for both EASI models also grew larger for the test 

set of KPs relative to the training set of KPs, the maximum only reached 5.07% and 5.22%, 

respectively, for EASI and EASI WO. 

For the cocaine diastereomers (pseudococaine, allococaine and pseudoallococaine), EASI 

and EASI WO yields non-overlapping ranges between the diastereomers and the training set. 

However, there is overlap between the cocaine test set and its diastereomers. The overlap in 

distributions means that a binary classifier based on MARs could not be 100% accurate. Depending 

on the threshold, a binary classifier would either result in false positives (diastereomers being 

classified as cocaine), false negatives (cocaine being classified as one of the diastereomers), or 
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both, depending on the threshold. For the consensus approach, the ranges for pseudococaine and 

pseudoallococaine overlap with the those of training set so the consensus approach would be less 

effective at correctly predicting binary classification for the diastereomers relative to the training 

set. These trends already show that EASI makes more accurate spectral predictions for KP’s than 

the consensus approach, so EASI has significantly greater potential for successful binary 

classification than the consensus approach. 

Table 14 also shows that for EASI there are two more compounds that have overlapping 

ranges with the test set of KP’s: heroin and methamphetamine. For the EASI WO there are no 

other known negatives that present overlapping ranges that could lead to false positives or false 

negatives. Lastly, the consensus model shows overlapping ranges between the cocaine and 

ecgonine methyl ester. 

The figure below (Figure 13) shows population pyramids from EASI using the mean 

absolute residuals separated by known positives, and various known negatives. Figure 13 shows 

a tight cluster with a narrow tail for the KP’s, which range from 0.22 to 5.07, according to Table 

14. The distribution of MARs for some KN’s are very wide, like hydromorphone, which spans 

from 6.95 to 18.24. The distribution in MARs for other KNs are much tighter, like 

methamphetamine, which spans from 4.80 to 5.17. This figure helps visualize the overlap 

mentioned before between the known positive cocaine spectra in the test set and the known 

negative spectra of cocaine diastereomers, heroin and methamphetamine. However, Figure 13 

shows that the overlap between the known positives and the cocaine diastereomers is more 

extensive than the overlap between heroin and methamphetamine. As stated before, these 

overlapping distributions create a problem when trying to set a threshold that eliminates false 

positives and false negatives. 
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Figure 13. Population pyramid from EASI using the mean absolute residuals. NKP=1478, 

NEME=69, Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11.  

 

Figure 14 shows a close-up view of the EASI population pyramid by all the known 

positives (left) and known negatives (right). This figure allows us to see that the overlap between 

known positives, heroin and methamphetamine ranges is mainly due to a couple of cocaine 

datapoints and not the bulk of known positives. In general, the distributions of KPs and KNs are 

very well separated. Of course, if more spectra of diastereomers were included, the distributions 

would overlap much more. Unfortunately, additional spectra of cocaine diastereomers could not 

be obtained because there are no commercial vendors available. Several vendors list cocaine 

diastereomers in their inventories, but when we requested quotes, they reported that they could not 

validate the isomeric purity unless we paid a substantial fee or completed a bulk order.  
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Figure 14. Close-up view of the population pyramid from the EASI using the mean absolute 

residuals. The left distribution (in blue) shows the known positives (N=1478), and the right 

distribution (in red) represents the known negatives (N=721). 

 

Figure 15 presents the EASI WO population pyramid of the MARs by KPs (to the left in 

blue) and KNs classified by compounds. The KP’s range (0.24-5.22) is similar to that of EASI 

with constants in the models. However, one of the main differences between EASI and EASI WO 

is the wider range of MARs for the known negatives as a result of the penalization process. This 

trend is evident especially for the methamphetamine, whose range increased from 4.80-5.17 for 

EASI to 35.06-49.60 for EASI WO, and ecgonine methyl ester, whose range increased from 7.92-

10.80 for EASI to 24.32-43.95 for EASI WO. For EASI WO, the diastereomers are the only 

column that provide any overlap with the KPs. 
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Figure 15. Population pyramid from EASI WO using the mean absolute residuals NKP=1478, 

NEME=69, Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11. 

Figure 16 shows population pyramids for the MARs using the consensus approach. 

Compared to the EASI and EASI WO models in Figure 13 and Figure 15, the consensus approach 

in Figure 16 shows a much wider spread in the MARs for the KPs. This wider range causes 

significant overlap with the cocaine diastereomers and one KP overlaps with the distribution of 

MARs of ecgonine methyl ester. 
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Figure 16. Population pyramid from the consensus model using the mean absolute residuals. 

NKP=1478, NEME=69, Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11. 

Figure 17 shows ROC curves generated from the mean absolute residuals of EASI, EASI 

WO, and the consensus model using all known positives and all known negatives. The curves for 

all three models look similar because the known negatives are dominated by spectra that are easy 

to resolve from cocaine, like hydromorphone, fentanyl, and heroin. 
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Figure 17. ROC curves generated using the mean absolute residuals of all known positives 

(N=1478) and negatives (N=721).  

 

Table 15 presents the AUCs for the ROC curve in Figure 17. These AUCs further 

demonstrate the similarities in results for the three models when analyzing all known positives and 

known negatives. Again, the classification rates are dominated by spectra other than the 

diastereomers. 

Table 15. The AUCs generated using the mean absolute residuals and all known negatives and 

positives.  

Model AUC 

EASI 0.9997 

EASI WO 0.9998 

Consensus 0.9987 

 

EASI and EASI WO had very high and similar AUCs which demonstrate the effectiveness 

of the models when coupled with MARs as a binary classifier. However, the consensus approach 
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also had a high AUC of 0.9987, which is comparable to the EASI and EASI WO. These values 

show that the differences between the three models are not highlighted when analyzing all the known 

negatives because most of the known negatives are easy to distinguish. 

To highlight the model differences, Figure 18 shows the ROC curve generated from the mean 

absolute residuals of the EASI, EASI WO, and the consensus model using all known positives and 

only the cocaine diastereomers as known negatives. 

 

 
Figure 18. ROC curve generated using the mean absolute residuals of all known positives 

(N=1478) and, pseudococaine, allococaine and pseudoallococaine as known negatives (N=11). 

 

Taking only the cocaine diastereomers as known negatives allows for the examination of 

the models when faced with more structurally similar and spectrally similar compounds. This 

similarity in structure poses a greater challenge for the models when trying to classify them as 

cocaine or not cocaine. 
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Table 16. The AUCs generated using the mean absolute residuals and all known positives and the 

cocaine diastereomers as the known negatives.  

Model AUC 

EASI 0.9873 

EASI WO 0.9878 

Consensus 0.9149 

 

Table 16 shows that the EASI WO has the highest AUC, with a 98.8% chance of correctly 

ranking a cocaine sample as cocaine. The EASI is very close with a discriminatory chance of 

98.7%, whereas the consensus approach is only 91.5% effective at distinguishing cocaine from its 

diastereomers. The 0.1% difference represents 1 extra false identification between the two EASI 

models. The difference between the consensus model and EASI WO model is 109 false 

identifications, most of which are false positives of cocaine (there are only 11 known negatives 

available).  

4.2.3 Euclidean distance calculations and graphs 

The Euclidean distance is another measure used to assess the residuals in multivariate 

modeling, and it is the shortest straight-line distance between two points in multidimensional 

space. The Euclidean distances were calculated as described before from the 19 residuals for the 

19 predictions for each spectrum. Table 17 presents a summary of minimum and maximum 

Euclidean distances. 
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Table 17. Minimum and maximum Euclidean distances by compound and model. Bold values are 

the largest Euclidean distances for known positives. Underlined values are the smallest Euclidean 

distances for known negatives that overlap with the distribution of known positives. 

 EASI EASI WO Consensus 

 Min Max Min Max Min Max 

KPs (training set) 1.28 12.15 1.66 15.11 4.39 39.95 

KPs (test set) 1.31 39.23 1.74 39.79 5.12 96.63 

Pseudoallococaine 17.16 26.10 24.84 101.67 28.03 32.12 

Pseudococaine 14.41 27.54 14.17 165.91 28.01 64.71 

Allococaine 22.10 22.10 65.39 65.39 44.23 44.23 

Ecgonine methyl ester 46.88 65.89 151.65 395.65 86.77 98.67 

Fentanyl 35.33 57.07 92.37 387.52 124.25 136.53 

Heroin 30.99 83.16 62.70 299.39 120.42 136.04 

Hydromorphone 41.83 119.82 88.37 274.27 96.51 138.34 

Methamphetamine 31.45 32.83 314.48 397.48 142.83 143.56 

 

As with the mean absolute residuals, the training provided the smallest upper limit for all 

three models. The maximum value for the known positives for the EASI and EASI WO were very 

similar at 39.23 and 39.79, respectively. Similar to the trend described for MAR’s, the consensus 

Euclidean distance range for known positives (5.12-96.63) was considerably larger than EASI 

(1.31-39.23) and EASI WO (1.74-39.79). This larger range can pose a problem when trying to use 

the Euclidean distance with the consensus model to classify query samples as cocaine or not 

cocaine. 

For the cocaine diastereomers, both EASI and the consensus model have completely 

overlapped ranges that would not allow the differentiation between cocaine and its diastereomers. 

On the other hand, the EASI WO has the potential to distinguish the diastereomers because the 

ranges do not completely overlap. For pseudococaine and pseudoallococaine, several Euclidean 

distances are larger than the upper limit of the KP’s range, and for allococaine there is no overlap 

at all.  
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For the rest of the known negatives, Table 17 shows two partial overlaps using EASI 

between the KPs and fentanyl (35.33-57.07) and heroin (30.99-83.16). This means that the ranges 

for these known negatives are not entirely within the KP’s range, but overlap a little. In contrast, 

all the methamphetamine spectra have Euclidean distances (31.45-32.83) that fall within the range 

of KP cocaine spectra. The consensus model has two partially overlapping ranges with the KPs: 

ecgonine methyl ester (86.77-98.67) and hydromorphone (96.51-138.34). The EASI WO model 

was the only model with no overlaps besides pseudococaine and pseudoallococaine.  

The figure below (Figure 19) shows population pyramids for EASI using the Euclidean 

distances separated by known positives and a variety of known negatives.  

 
Figure 19. Population pyramid from the EASI using the Euclidean distances. NKP =1478, 

NEME=69, Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11. 

 

Figure 19 shows the overlapping distributions discussed above. Additionally, this figure 

shows where the bulk of the data is within each category. The distribution of known positives 

shows a narrow tail with a single datapoint farther away from the main cluster. This datapoint 

expands the spread of the known positives to the point of overlapping with methamphetamine’s 
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tight distribution and some samples of heroin and fentanyl. The figure also shows the overlap of 

the cocaine diastereomers with the known positives. 

Figure 20 shows a summary population pyramid split by all known positives and known 

negatives to highlight the overlap as a binary classifier. The datapoint around 40 in the distribution 

of known positives belongs to a NIST spectra that has a base peak at m/z 182. Although cocaine 

can have its base peak at either m/z 82 or 182, none of the collected data has the base peak at m/z 

182. This difference in behavior results in a lack of spectra in the training set that could help 

minimize the spread in the distribution. In prior work cocaine spectra from two different crime 

labs each contained some replicates with base peaks at either m/z 82 or 182.32,43 

 
Figure 20. Close-up view of the population pyramid from the EASI using the Euclidean distances. 

The left distribution (in blue) shows the known positives (N=1478), and the right distribution (in 

red) represents the known negatives (N=721). 

 

Figure 21 presents the population pyramid from the EASI WO using the Euclidean 

distances separated by known positives and a variety of known negatives. 
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Figure 21. Population pyramid from EASI WO using the Euclidean distances. NKP=1478, 

NEME=69, Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11. 

 

Figure 21 shows how the penalization process divided some compound’s distributions 

depending on how many penalties were incorporated. For example, the first penalty of ~50% to 

one m/z channel adds 50% to the Euclidean distance. Two penalties of 50% provide a total penalty 

of 70% to the Euclidean distance, so the second penalty effectively adds an additional 20% to the 

first penalty.  The effective magnitude of each additional penalty decreases, so that the 10th penalty 

(if there was one) would only add 8% to the growing Euclidean distance.  Each additional penalty 

caused by a measured ion abundance of zero in a particular channel leads to a discrete jump in the 

Euclidean score. At least four such groups are observed for ecgonine methyl ester, and many more 

are observed for fentanyl and methamphetamine compared to the distributions they exhibited with 

EASI.  

Figure 22 shows a close-up of the population pyramid divided only by known positives 

and known negatives. 
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Figure 22. Close-up view of the population pyramid from EASI WO using the Euclidean 

distances. The left distribution (in blue) shows the known positives (N=1478), and the right 

distribution (in red) represents the known negatives (N=721). 

 

Although the range of the known positives for EASI and EASI WO are similar (Table 17), 

their distributions are different. Whereas EASI had a single datapoint reaching a maximum 

Euclidean distance of 39.23, EASI WO has a tail with no visible outliers. However, like EASI, 

spectra in the tail of the distribution of known positives is due to spectra from the NIST archive 

with a base peak at m/z 182 instead of m/z 82. Figure 22 also shows the minimal overlap between 

known positives and known negatives, with only six diastereomers falling within the range of 

known positives. 

Figure 23 shows the population pyramid from the consensus approach using the Euclidean 

distances separated by known positives and a variety of known negatives. 
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Figure 23. Population pyramid from the consensus model using the Euclidean distances. 

NKP=1478, NEME=69, Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11. 

 

Here, the distribution of known positives is much wider that either EASI or EASI WO, 

with a maximum value of 96.6. Two of the cocaine spectra are obvious outliers. Again, these two 

datapoints are due to differences in base peaks and can cause an increase in false positives, 

specifically with ecgonine methyl ester, when using this metric as a binary classifier. Figure 24 

shows a close-up of the population pyramids separated by known positives and known negatives. 
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Figure 24. Close-up view of the population pyramid from the consensus model using the 

Euclidean distances. The left distribution (in blue) shows the known positives (N=1478), and the 

right distribution (in red) represents the known negatives (N=721). 

 

Figure 24 above shows the known negatives that could be classified as cocaine if we chose 

a threshold with zero false negatives. This figure also shows that even if the two outliers were 

removed, binary classification is likely to result in many incorrect classifications. 

Figure 25 shows the ROC curve generated from the Euclidean distances of EASI, EASI WO 

and, the consensus model using all known positives and known negatives. The differences are not 

visible because most of the compounds are spectrally distinct from cocaine and therefore correctly 

classified. This is further proved by the AUCs of the ROC curves shown in Table 18. The AUCs for 

all three models were close to 1, with the highest value being 0.9997 for EASI WO. For all three 

models, AUCs using Euclidean distances and MAR’s were almost indistinguishable within models. 
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Figure 25. ROC curve generated using the Euclidean distances of all known positives (N=1478) 

and negatives (N=721). 

 

Table 18. The AUCs generated using the Euclidean distances and all known negatives and 

positives.  

Model AUC 

EASI 0.9994 

EASI WO 0.9997 

Consensus 0.9981 

 

To better compare the performance of the models, new ROC curves were generated using 

the same known positives and only the cocaine diastereomers as known negatives, since they are 

the most difficult to distinguish from cocaine. 
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Figure 26. ROC curve generated using the Euclidean distances of all known positives (N=1478) 

and only pseudococaine, allococaine and pseudoallococaine as known negatives (N=11). 

 

Figure 26 shows the ROC curves using the cocaine diastereomers as known negatives. 

Clearly, both EASI models offer superior performance relative to the consensus approach. Table 

19 shows that EASI and EASI WO have the same AUC, with a 98.3% chance of correctly 

identifying a sample, whereas the consensus model only has an 88.1% chance of correct 

identification to the binary groups. 

Table 19. The AUCs generated using the Euclidean distances and all known positives and the 

cocaine diastereomers as the known negatives.  

Model AUC 

EASI 0.9831 

EASI WO 0.9832 

Consensus 0.8809 
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4.2.4 PPMC calculations and graphs 

The Pearson product-moment correlation (PPMC) coefficients were also calculated using the 

predicted and measured abundances for all 19 m/z values, as previously described (Table 20). 

Table 20. Minimum and maximum PPMC coefficients by compound and model. Bold values are 

the smallest PPMCs for known positives. Underlined values are the largest PPMCs for known 

negatives that overlap with the distribution of known positives. 

 EASI EASI WO Consensus 

 Min Max Min Max Min Max 

KPs (training set) 0.987 0.9999 0.994 0.9999 0.931 0.9991 

KPs (test set) 0.911 0.9999 0.949 0.9999 0.599 0.9991 

Pseudoallococaine 0.916 0.964 0.895 0.973 0.962 0.969 

Pseudococaine 0.916 0.990 0.654 0.993 0.842 0.969 

Allococaine 0.924 0.924 0.892 0.892 0.937 0.937 

Ecgonine methyl ester 0.694 0.795 0.076 0.457 0.642 0.704 

Fentanyl 0.058 0.369 -0.310 -0.089 0.177 0.237 

Heroin -0.176 0.195 -0.331 0.073 0.059 0.192 

Hydromorphone -0.049 0.573 -0.194 0.380 0.101 0.467 

Methamphetamine -0.318 -0.147 -0.368 -0.170 -0.004 0.102 

 

Unlike the metrics before, where the overlap between known positives and known 

negatives was due to the known positives’ maximum value and the known negatives’ minimum 

value, for the PPMC coeffiecients the overlap is between the known positives’ minimum value 

and the known negatives’ maximum value. Emulating previous trends, the narrowest ranges for 

all three models belong to the training set. For the known positives, EASI WO had the narrowest 

range (0.949-0.9999), followed closely by EASI (0.911-0.9999) and lastly the consensus model 

with a much wider range (0.599-0.9991). 

Both EASI and consensus models had overlapping ranges between the known positives 

and pseudoallococaine and pseudococaine. Additionally, EASI and consensus models also have 
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problems differentiating between cocaine and allococaine. Lastly, the consensus model presented 

overlapping ranges between the known positives and ecgonine methyl ester.  

For EASI, Figure 27 makes it clear that there is no overlap between the known positives 

and most of the compounds. This means that it is possible to set an errorless threshold to separate 

cocaine from ecgonine methyl ester, fentanyl, heroin, hydromorphone and methamphetamine. 

However, Figure 29 shows that complete overlap between cocaine and its diastereomers makes it 

impossible to select a threshold that results in errorless classification. 

 
Figure 27. Population pyramid from EASI using the PPMC values. NKP=1478, NEME=69, 

Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11. 
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Figure 28. Close-up view of the population pyramid from EASI using the PPMC values. The left 

distribution (in blue) shows the known positives (N=1478), and the right distribution (in red) 

represents the known negatives (N=721). 

 

For EASI WO, the different model and the penalization process in general decreased the 

PPMC values of all the known negatives and caused some of these distributions to divide into 

more than one cluster, which facilitates determining an errorless threshold for a binary classifier 

(Figure 29). The distribution of known positives using EASI WO was also tighter in comparison 

to EASI because of the penalization (Figure 30), which helped distinguish cocaine from 

allococaine. Similar to EASI, there is still complete overlap with pseudococaine and 

pseudoallococaine that hinders the selection of an errorless binary classifier. 
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Figure 29. Population pyramid from EASI WO using the PPMC values. NKP=1478, NEME=69, 

Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11.  

 

 
Figure 30. Close-up view of the population pyramids from EASI WO using the PPMC values. 

The left distribution (in blue) shows the known positives (N=1478), and the right distribution (in 

red) represents the known negatives (N=721). 
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For the consensus model, the distribution of known positives is much wider than for either 

EASI or EASI WO, which results in complete overlap with ecgonine methyl ester and the cocaine 

diastereomers. This means that there is no threshold that can prevent at least one false negative for 

cocaine relative to its diastereomers or ecgonine methyl ester.  However, it is possible to select a 

threshold that prevents false positives or false negatives when analyzing cocaine against the known 

negatives of fentanyl, heroin, hydromorphone and methamphetamine. (Figure 31 and Figure 32).  

 
Figure 31. Population pyramid from the consensus model using the PPMC values. NKP=1478, 

NEME=69, Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11. 
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Figure 32. Close-up view of the population pyramid from the consensus model using the PPMC 

values. The left distribution (in blue) shows the known positives (N=1478), and the right 

distribution (in red) represents the known negatives (N=721). 

 

To compare binary classifiers that use the PPMC values derived from EASI, EASI WO 

and consensus approach, Figure 33 shows ROC curves resulting from all cocaine spectra as the 

known positives and all other spectra as known negatives, including the cocaine diastereomers. 
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Figure 33. ROC curve generated using the PPMC values of all known positives (N=1478) and 

negatives (N=721). 

 

Table 21 shows the area under the curve of a receiving-operator characteristic (ROC) using 

PPMC values as the classification metric. EASI and EASI WO provided almost indistinguishable 

AUCs of 0.9997 and 0.9998, respectively, and the consensus approach provided an AUC of 

0.9985, which was similar to the results using MARs and Euclidean distances. As before, all three 

models are adequate to distinguish cocaine from most of the known positives. 

 

Table 21. The AUCs generated using the PPMC values and all known negatives and positives.  

Model AUC 

EASI 0.9997 

EASI WO 0.9998 

Consensus 0.9985 
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To further assess the performance of the models, we also generated ROC curves using only 

the cocaine diastereomers as the known negatives (Figure 34).  

 
Figure 34. ROC curve generated using the PPMC values of all known positives (N=1478) and, 

pseudococaine, allococaine and pseudoallococaine as known negatives (N=11). 

 

In this case, the models have more significant differences. Table 22 shows that EASI WO 

still has the highest AUC with a 98.8% probability that the classifier will rank a randomly selected 

cocaine sample higher than a randomly selected known negative. The EASI is not far behind with 

an AUC of 98.0%, whereas the consensus model only has a probability of 90.4%. 

Table 22. The AUCs generated using the PPMC values and all known positives and the cocaine 

diastereomers as the known negatives. 

Model AUC 

EASI 0.9798 

EASI WO 0.9883 

Consensus 0.9037 
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4.2.5 NIST scores calculations and graphs 

We calculated the NIST score as the weighted dot products using the optimized values as 

described by Stein et. al.16 The results are seen in Table 23. 

Table 23. Minimum and maximum NIST scores by compound and model. Bold values are the 

smallest NIST scores for known positives. Underlined values are the largest NIST scores for 

known negatives that overlap with the distribution of known positives. 

 EASI EASI WO Consensus 

 Min Max Min Max Min Max 

KPs (training set) 977.8 999.0 966.9 999.0 968.2 999.0 

KPs (test set) 760.8 999.0 766.3 999.0 909.8 998.9 

Pseudoallococaine 982.9 987.7 979.9 987.6 990.5 994.4 

Pseudococaine 982.9 996.6 978.0 995.9 984.4 995.6 

Allococaine 989.5 989.5 991.1 991.1 991.7 991.7 

Ecgonine methyl ester 798.9 925.1 155.7 350.8 386.7 498.5 

Fentanyl 108.3 424.5 5.4 301.2 102.0 421.1 

Heroin 215.7 579.3 116.6 460.6 407.9 530.4 

Hydromorphone 21.5 547.1 86.5 575.0 191.1 509.9 

Methamphetamine 40.6 77.2 4.8 17.8 63.3 90.3 

 

In this case, the narrowest spread for the training set belonged to EASI (977.8-999.0), 

followed by the consensus model (968.2-999.0), and EASI WO (966.9-999.0). However, the 

spread for the test set did not adhere to the same trend. Instead, the consensus model had the 

narrowest spread (909.8-998.9), followed by EASI WO (766.3-999.0), and EASI (760.8-999.0). 

These scores indicate that by giving different weights to different m/z values and abundances, the 

dot product can be weighted to favor the consensus approach, upon which the NIST scores were 

essentially optimized. 

Both EASI WO and the consensus model had no problems distinguishing cocaine from 

ecgonine methyl ester, fentanyl, heroin, hydromorphone, and methamphetamine based on the non-

overlapping ranges of their NIST scores. However, all three models have complete overlapping 

ranges between cocaine and its diastereomers. In addition to the cocaine diastereomers, EASI also 
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presented a complete overlap between the NIST score ranges of cocaine and ecgonine methyl ester 

(Figure 35). 

Figure 35  shows the population distribution for the NIST scores using EASI. It shows that 

although the bulk of the data for the cocaine is clustered around 999, there is a narrow tail or 

cocaine spectra with poorer NIST scores spreading from 999 to 760. This tail results in the 

complete overlap of cocaine and ecgonine methyl ester and eliminates the possibility of an 

errorless classifier. Additionally, in Figure 36 the end of the cocaine tail consists of a few 

datapoints. These datapoints represent cocaine spectra that have m/z 182 as their base peak, which 

causes the NIST score to decrease. 

Figure 36 shows that, unlike the distribution of ecgonine methyl ester, the distribution of 

cocaine diastereomers overlaps with a significant proportion of the cocaine distribution. This 

means that there is no threshold that would result in an errorless classification. 

 
Figure 35. Population pyramid from EASI using the NIST scores. NKP=1478, NEME=69, 

Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11. 
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Figure 36. Close-up view of the population pyramid from EASI using the NIST scores. The left 

distribution (in blue) shows the known positives (N=1478), and the right distribution (in red) 

represents the known negatives (N=721). 

 

Similar to EASI, the cocaine distribution using EASI WO also had a tail, but unlike EASI, 

this tail does not include the distribution of ecgonine methyl ester scores (Figure 37). Thanks to 

the penalization process, the NIST scores for the ecgonine methyl ester went from 798.9-925.1 

with EASI to 155.7-350.8 with EASI WO. For EASI WO, the only overlap is therefore between 

cocaine and its diastereomers. Figure 38 shows the complete overlap between these compounds, 

which demonstrates the inability to set an errorless threshold. 
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Figure 37. Population pyramid from EASI WO using the NIST scores. NKP=1478, NEME=69, 

Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11. 

 

 
Figure 38. Close-up view of the population pyramid from EASI WO using the NIST scores. The 

left distribution (in blue) shows the known positives (N=1478), and the right distribution (in red) 

represents the known negatives (N=721). 
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 As stated before, the consensus model coupled with the NIST scoring was able to clearly 

separate cocaine from ecgonine methyl ester, fentanyl, heroin, hydromorphone, and 

methamphetamine. But, like EASI and EASI WO, the consensus approach had overlapping ranges 

between cocaine and its diastereomers (Figure 39). Although the cocaine distribution has a tail 

(like EASI and EASI WO), the resulting NIST scores formed a tighter cluster around 999 than 

with either EASI or EASI WO. This means that it can be easier to set a threshold that minimizes 

the false positives. 

 
Figure 39. Population pyramid from the consensus model using the NIST scores. NKP=1478, 

NEME=69, Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11. 
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Figure 40. Close-up view of the population pyramid from the consensus model using the NIST 

scores. The left distribution (in blue) shows the known positives (N=1478), and the right 

distribution (in red) represents the known negatives (N=721). 

 

The ROC curves generated using the NIST scores for all known positives and all known 

negatives are shown in Figure 41. All three models had comparable AUCs (Table 24). The lowest 

AUC was 0.980 for EASI WO, followed by a tie between EASI and the consensus model with an 

AUC of 0.994. This shows that the three models have a high chance of correctly classifying cocaine 

against drugs that are not its diastereomers. 
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Figure 41. ROC curve generated using the NIST scores of all known positives (N=1478) and 

negatives (N=721). 

 

Table 24. The AUCs generated using the NIST scores and all known negatives and positives. 

Model AUC 

EASI 0.9941 

EASI WO 0.9797 

Consensus 0.9941 

 

When analyzing the ROC curves generated using the NIST scores and the cocaine 

diastereomers as the known negatives (Figure 42) the performance is worse than when the easy-

to-distinguish known negatives are removed (e.g., Figure 41). This deterioration is consistent with 

all the measures of spectral comparison and is more evident if we look at the AUCs in Table 25. 

The model with the highest AUC was EASI WO with 0.739, whereas the consensus model only 

has a chance of a correct identification of 61.6%. The EASI had an AUC of 0.676.  
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These results show that even though the consensus model had one of the highest AUCs 

using all known negatives, when trying to classify cocaine among its diastereomers it does not 

perform better than any of the EASI models. Note that for distinguishing cocaine from its 

diastereomers, NIST scores performed significantly worse than any of the other spectral 

comparison methods. This outcome demonstrates that the success in distinguishing cocaine from 

its diastereomers is not enhanced by favoring high mass ions or low-abundance ions. In fact, Casale 

et al. and Smith have shown that cocaine diastereomers are best resolved from cocaine using peak 

ratios at m/z 94:96 and m/z 152:150.51,52 

 

Figure 42. ROC curve generated using the NIST scores of all known positives (N=1478) and, 

pseudococaine, allococaine and pseudoallococaine as known negatives (N=11). 
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Table 25. The AUCs generated using the NIST scores and all known positives and the cocaine 

diastereomers as the known negatives. 

Model AUC 

EASI 0.6758 

EASI WO 0.7386 

Consensus 0.6158 

 

4.2.6 Mahalanobis distances calculations and graphs 

As a final measure of spectral comparison, the Mahalanobis distances were calculated as 

described before without any linear modeling needed, using the measured abundances of all 20 

m/z values (Table 26) in the training set as the basis for establishing the covariance matrix.  

 

Table 26. Minimum and maximum Mahalanobis distances by compound. Bold values are the 

largest Mahalanobis distances for known positives. Underlined values are the smallest 

Mahalanobis distances for known negatives that overlap with the distribution of known positives. 

 Min Max 

KPs (training set) 2.04 73.30 

KPs (test set) 1.69 261.68 

Pseudoallococaine 123.40 177.14 

Pseudococaine 95.28 301.65 

Allococaine 182.89 182.89 

Ecgonine methyl ester 770.53 995.67 

Fentanyl 323.49 641.18 

Heroin 317.08 1118.40 

Hydromorphone 456.52 1267.53 

Methamphetamine 304.01 315.31 

 

The Mahalanobis distances followed the basic trends discussed above for the other spectral 

comparison methods. The training set range had the smallest maximum distance, with a value of 

73.30. The validation set had a larger maximum Mahalanobis distance of 261.68, which is high 

enough to include all three cocaine diastereomers and make it impossible to set an errorless 

threshold. 
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These ranges are better visualized in Figure 43. This figure shows that the distribution for 

Mahalanobis distances for the training set of cocaine also had tail, as a result of KPs in the test set 

with a different base peak than the training set. Figure 44 shows that the presence of this tail causes 

overlap between cocaine and its diastereomers. This tail could also cause a problem when trying 

to distinguish between cocaine and methamphetamine, if the Mahalanobis distance start to overlap. 

 
Figure 43. Population pyramid using the Mahalanobis distances. NKP=1478, NEME=69, 

Nfentanyl=216, Nheroin=158, Nhydromorphone=134, Nmeth=133, Ndiastereomers=11. 
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Figure 44. Close-up view of the population pyramid using the Mahalanobis distances. The left 

distribution (in blue) shows the known positives (N=1478), and the right distribution (in red) 

represents the known negatives (N=721). 

The ROC curve generated using all known negatives and the Mahalanobis distances as the 

decision metric shown in Figure 45 had an area under the curve of 0.999967. This AUC reflects 

the excellent ability of this classifier to easily distinguish most cocaine spectra from most known 

negatives. 
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Figure 45. ROC curve generated using the Mahalanobis distance of all known positives (N=1478) 

and negatives (N=721). The area under the curve was 0.999967. 

The ROC curve shown in Figure 46 was generated using the cocaine diastereomers as the 

only known negatives and it resulted in an area under the curve of 0.997847, meaning that it has a 

99.8% chance of correctly identifying cocaine from its diastereomers. The slight decrease in AUC 

from the previous ROC curve is logical considering the overlapping ranges between cocaine and 

its diastereomers. 
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Figure 46. ROC curve generated using the Mahalanobis distance of all known positives (N=1478) 

and only pseudococaine, allococaine and pseudoallococaine as known negatives (N=11). The area 

under the curve was 0.997847. 

 

4.2.7 Model and metrics comparison 

To assess and compare the three models coupled to the five metrics discussed above, Table 

27 shows the true positives, true negatives, false positives, false negatives, true positive rate, false 

positive rate and accuracy at a threshold that results in a 0% false positive rate (or 100% true 

negative rate). This 0% false positive rate was chosen given that the GC-MS technique is a 

confirmatory test, and it is important to minimize the false positive rate in these tests. 

Table 27 shows that within each metric of spectral comparison, one of the GLM-based 

algorithms (EASI or EASI WO) results in greater accuracy and true positive rate than the 
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consensus approach. The Mahalanobis distance as a binary classifier provides the highest accuracy 

and true positive rate overall with values of 99.6% and 99.5%, respectively. However, if the 

Mahalanobis test was used in conjunction with a Hotelling’s T-squared distribution, many of the 

cocaine spectra in the training and test set would be considered outliers and would be classified as 

false negatives. The GLM-based models in EASI have the added advantage of extrapolation 

outside of the training set’s variance. The lowest accuracies for each model were obtained using 

the NIST scores, which can be partly attributed to optimization of this metric to the consensus 

approach. Excluding the NIST scores results, more than 85% of the known positives can be 

correctly identified as cocaine with zero false positives using either of the GLM-based algorithms. 

After the Mahalanobis distance, the best classification rates were obtained using EASI 

coupled with the mean absolute residuals as a binary classifier. A threshold of 2.60 resulted in zero 

false positives and 49 false negatives, for an accuracy of 97.8%. These results align closely with 

EASI models based on a completely different training set and a test set from a third laboratory.43 

Table 27. Confusion matrix with all known negatives at 0% FPR. 
 Mean absolute residual PPMC Euclidean distance NIST score 

Mahala

nobis   EASI 
EASI 

WO 
CNS EASI 

EASI 

WO 
CNS EASI 

EASI 

WO 
CNS EASI 

EASI 

WO 
CNS 

Threshold 2.60 2.49 4.11 0.990 0.993 0.969 14.41 14.17 28.01 996.6 995.9 995.6 95.28 

TPs 1429 1399 1255 1222 1314 1208 1391 1334 1156 762 845 556 1470 

TNs 721 721 721 721 721 721 721 721 721 721 721 721 721 

FPs 0 0 0 0 0 0 0 0 0 0 0 0 0 

FNs 49 79 223 256 164 270 87 144 322 716 633 922 8 

TPR 96.7 94.7 84.9 82.7 88.9 81.7 94.1 90.3 78.2 51.6 57.2 37.6 99.5 

FNR 3.3 5.35 15.09 17.32 11.10 18.27 5.89 9.74 21.79 48.44 42.83 62.38 0.54 

Accuracy 97.8 96.4 89.9 88.4 92.5 87.7 96.0 93.5 85.4 67.4 71.2 58.1 99.6 

 

Using only the diastereomers as known negatives while maintaining a 0% false positive 

rate results in decreased accuracies and increased false negative rates for all models (Table 28). 

However, the GLM-based models still outperform the consensus approach using any of the 
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spectral comparison metrics. The EASI coupled with the mean absolute residuals still has the 

highest accuracy (96.7%) after the Mahalanobis approach (99.5%), followed by EASI WO coupled 

with the mean absolute residuals (94.7%). 

Table 28. Confusion matrix with the cocaine diastereomers as known negatives at 0% FPR. 
 Mean absolute residual PPMC Euclidean distance NIST score 

Mahala

nobis   EASI 
EASI 

WO 
CNS EASI 

EASI 

WO 
CNS EASI 

EASI 

WO 
CNS EASI 

EASI 

WO 
CNS 

Threshold 2.60 2.49 4.11 0.990 0.993 0.969 14.41 14.17 28.01 996.6 995.9 995.6 95.28 

TPs 1429 1399 1255 1222 1314 1208 1391 1334 1156 762 845 556 1470 

TNs 11 11 11 11 11 11 11 11 11 11 11 11 11 

FPs 0 0 0 0 0 0 0 0 0 0 0 0 0 

FNs 49 79 223 256 164 270 87 144 322 716 633 922 8 

TPR 96.7 94.7 84.9 82.7 88.9 81.7 94.1 90.3 78.2 51.6 57.2 37.6 99.5 

FNR 3.3 5.35 15.09 17.32 11.10 18.27 5.89 9.74 21.79 48.44 42.83 62.38 0.54 

Accuracy 96.7 94.7 85.0 82.8 89.0 81.9 94.2 90.3 78.4 51.9 57.5 38.1 99.5 

 

These results demonstrate the superiority of the GLM-based models (EASI and EASI WO) 

over the consensus approach. Additionally, they show the potential of the Mahalanobis distances 

as a binary classifier, albeit without the advantage of the ability to understand the behavior of 

individual ions or extrapolate models for specific m/z values from one set of data to another. The 

NIST scores represented the lowest accuracies with 51.9%, 57.5% and 38.1% for EASI, EASI WO 

and consensus approach, respectively. These low values can be due to the added artificial variance 

in the training set, which serves as a basis for the three models. Additionally, the NIST scores have 

been shown to be highly dependent on the optimization variables.16 

The results of this project serve as a proof of concept for GLM-based model to predict ion 

abundances more accurately than the current consensus model. Additionally, EASI and EASI WO 

can be coupled with at least four different metrics to create binary classifiers that perform better 

than the consensus model. This provides freedom for users to select the metric that best suits their 

needs. 
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5. Conclusions and future work 

When assessing the impact of the repeller voltage, focus lens voltage and the electron 

ionization energy, uncharacteristically large changes in these three factors only explained around 

3% of the variance observed in the training set comprised of 389 spectra from a full-factorial design 

of experiments. Instead, more than 90% of the variance in the product ion abundances of an 

additional 28 spectra collected over ~2.5 minutes could be explained by random drift in the high 

vacuum. Similar results were shown by a previous lab member with the calibration gas PFTBA as 

the analyte.  This study showed that the pressure caused significant changes in the branching ratios 

of cocaine, with some ions correlating more strongly with one another than others. These findings 

support the recent proposal that empirical correlations and anticorrelations between normalized 

ion abundances in replicate mass spectra are predicted by RRKM theory. The underlying statistical 

foundations provide a robust platform for empirical modeling using general linear models. 

Each of the 20 most abundant ions in the training set of 389 cocaine spectra were iteratively 

conserved to be the dependent variable. Stepwise addition in SPSS was used to build general linear 

models for each m/z as the dependent variable with as many covariates as were necessary to explain 

the maximum about of variance in the dependent variable, without overfitting. The statistical 

validity of the GLM models were assessed through analysis of the residuals between modeled and 

measured abundances. GLM models were built with and without constants in the linear models, 

and with and without the inclusion of a penalty of 50% residual error each time an expected ion 

was missing in a spectrum. 

EASI accounted for more than 80% of the variance in replicate spectra. Four different 

measures of similarity and dissimilarity were coupled to the GLM-based algorithms, EASI and 

EASI WO had consistently fewer false negatives when a 0% false positive threshold was set. The 
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EASI and EASI WO also outperformed the consensus approach when classifying cocaine based 

on ROC curves and AUCs, with both GLM-based algorithms generally presenting higher AUCs. 

EASI WO had slightly higher AUCs than EASI, but both GLM-based models resulted in reliably 

higher AUCs than the consensus approach. Additionally, Mahalanobis distances from the training 

set of 389 cocaine spectra was a very reliable binary classifier since this method produced the 

lowest false negative rate with zero false negatives.  

Unlike Mahalanobis distance, the GLM-based models can be used to understand and 

extrapolate the measured data in one lab to the measured data in a second lab. GLM-based models 

can therefore account for variance in normalized mass spectra that cannot be controlled by factors 

such as drift in the high vacuum. This project serves as a proof-of-concept for GLM-based 

algorithms, showing their robustness and versatility. We were able to postulate different metrics 

that can be coupled to EASI or EASI WO to serve as binary classifiers, providing measures of 

accuracy for each one to inform the user. 

The next step to continue this work is to expand the training set database to include cocaine 

spectra with m/z 182 as the base peak. This could potentially limit the outliers among the known 

positives in the test set and thus reduce the overlap between known positives and known negatives. 

In addition to this measure, it would also be beneficial to include more cocaine diastereomers in 

the database of known negatives because it is difficult to draw conclusions from only 11 spectra. 

To further try and differentiate the cocaine diastereomers, more importance could be given to m/z 

ratios 94:96 and 152:150, which have been previously shown to distinguish cocaine from its 

diastereomers.52 Emphasizing these m/z values could potentially increase the accuracy of EASI 

and EASI WO. 
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7. Appendix 

Table 29. Descriptive statistics for all 27 possible combinations of factors for m/z 42. 

m/z 
Repeller 

voltage 

Ion focus 

voltage 
EI energy Mean 

Std. 

Deviation 
N 

42 

20 

70 

65 27.577 1.9244 12 

70 22.747 1.7045 14 

80 19.135 1.7177 18 

Total 22.586 3.8647 44 

90 

65 34.189 2.2169 12 

70 30.231 2.3211 15 

80 26.278 1.7084 17 

Total 29.783 3.8003 44 

110 

65 34.495 1.5744 11 

70 32.322 1.5283 12 

80 29.777 1.4356 16 

Total 31.891 2.4585 39 

30 

70 

65 18.927 1.3839 23 

70 20.957 1.3669 22 

80 21.175 1.4871 22 

Total 20.332 1.7297 67 

90 

65 22.236 1.3861 26 

70 22.790 1.2411 25 

80 21.321 1.1836 30 

Total 22.068 1.3970 81 

110 

65 27.118 1.0262 23 

70 27.434 1.5563 23 

80 26.297 1.1719 25 

Total 26.931 1.3421 71 

40 

70 

65 19.007 1.6114 22 

70 20.313 1.1476 20 

80 21.736 1.4009 19 

Total 20.285 1.7833 61 

90 

65 19.247 0.9546 29 

70 19.901 1.1329 31 

80 20.355 1.2712 29 

Total 19.836 1.2025 89 

110 

65 23.407 0.9945 28 

70 23.480 1.2045 29 

80 22.683 1.1121 30 
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Total 23.182 1.1546 87 

 

Table 30. Descriptive statistics for all 27 possible combinations of factors for m/z 303. 

m/z 
Repeller 

voltage 

Ion focus 

voltage 
EI energy Mean 

Std. 

Deviation 
N 

303 

20 

70 

65 3.086 0.5379 12 

70 3.570 0.6704 14 

80 3.930 0.9112 18 

Total 3.585 0.8108 44 

90 

65 3.720 0.4509 12 

70 3.632 0.6380 15 

80 4.612 0.8313 17 

Total 4.034 0.8110 44 

110 

65 3.540 0.5375 11 

70 3.984 0.4301 12 

80 4.663 0.7210 16 

Total 4.137 0.7496 39 

30 

70 

65 7.257 2.3307 23 

70 6.874 2.2110 22 

80 7.513 2.5104 22 

Total 7.215 2.3324 67 

90 

65 8.069 2.0944 26 

70 8.349 2.4591 25 

80 9.402 2.9500 30 

Total 8.649 2.5864 81 

110 

65 7.761 1.6088 23 

70 7.752 1.7745 23 

80 8.972 2.6182 25 

Total 8.185 2.1203 71 

40 

70 

65 10.305 3.7389 22 

70 10.533 3.5857 20 

80 10.000 3.5333 19 

Total 10.285 3.5715 61 

90 

65 15.198 5.3935 29 

70 15.130 5.5943 31 

80 15.922 6.3536 29 

Total 15.410 5.7357 89 

110 

65 13.455 4.6028 28 

70 14.020 4.8801 29 

80 14.678 5.5878 30 
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Total 14.065 5.0187 87 

 

 

Table 31. Eta squared values for all m/z values including total averages and averages by m/z values. 

m/z Intercept Repeller Ion Focus EI Energy 
Repeller * 

Ion Focus 

Repeller * 

EI Energy 

Ion Focus 

* EI 

Energy 

Repeller * 

Ion Focus 

* EI 

Energy 

Error 

41 96.16 0.471 1.066 0.004 0.198 0.230 0.011 0.048 1.810 

42 96.52 1.381 1.001 0.109 0.296 0.302 0.011 0.046 0.335 

51 97.30 0.565 0.879 0.019 0.354 0.268 0.003 0.025 0.592 

55 98.37 0.550 0.246 0.059 0.056 0.143 0.003 0.032 0.545 

67 97.07 0.048 0.144 0.015 0.010 0.075 0.006 0.010 2.625 

68 98.58 0.314 0.200 0.095 0.068 0.119 0.004 0.006 0.613 

77 98.32 0.583 0.458 0.108 0.153 0.141 0.009 0.004 0.220 

81 99.32 0.032 0.004 0.005 0.004 0.005 0.001 0.001 0.624 

82 100 0 0 0 0 0 0 0 0 

83 99.08 0.046 0.008 0.000 0.001 0.005 0.002 0.004 0.857 

94 99.02 0.096 0.286 0.078 0.105 0.022 0.007 0.004 0.383 

96 99.12 0.031 0.047 0.002 0.007 0.002 0.001 0.004 0.791 

97 98.60 0.082 0.019 0.010 0.006 0.022 0.004 0.004 1.257 

105 99.09 0.046 0.412 0.071 0.065 0.026 0.003 0.009 0.275 

122 93.61 2.361 0.141 0.045 0.035 0.032 0.006 0.006 3.764 

152 84.83 5.113 0.306 0.072 0.073 0.069 0.013 0.016 9.508 

182 91.70 5.310 0.315 0.067 0.020 0.056 0.004 0.008 2.514 

183 91.75 5.371 0.386 0.073 0.011 0.086 0.004 0.006 2.312 

198 89.29 6.722 0.254 0.062 0.036 0.064 0.007 0.011 3.549 

272 76.59 12.26 0.945 0.125 0.373 0.029 0.009 0.013 9.660 

303 70.29 14.47 0.969 0.128 0.757 0.017 0.033 0.017 13.32 

Average 93.73 2.792 0.404 0.057 0.131 0.086 0.007 0.014 2.778 

Average 

high m/z 
85.44 7.372 0.474 0.082 0.186 0.051 0.011 0.011 6.375 

Average 

low m/z 
97.33 0.555 0.589 0.050 0.164 0.189 0.006 0.028 1.087 

Average 

middle 

m/z 

98.87 0.147 0.205 0.045 0.056 0.036 0.004 0.005 0.630 
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