
Graduate Theses, Dissertations, and Problem Reports

2023

An Empirical Analysis of Approximation Algorithms for the An Empirical Analysis of Approximation Algorithms for the

Unweighted Tree Augmentation Problem Unweighted Tree Augmentation Problem

Jacob Thomas Restanio
West Virginia University, jtr0018@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Restanio, Jacob Thomas, "An Empirical Analysis of Approximation Algorithms for the Unweighted Tree
Augmentation Problem" (2023). Graduate Theses, Dissertations, and Problem Reports. 12089.
https://researchrepository.wvu.edu/etd/12089

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F12089&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=researchrepository.wvu.edu%2Fetd%2F12089&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/12089?utm_source=researchrepository.wvu.edu%2Fetd%2F12089&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

An Empirical Analysis of Approximation Algorithms for the
Unweighted Tree Augmentation Problem

Jacob Restanio

Thesis submitted
to the Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science in
Computer Science

K. Subramani, Ph.D., Chair
Donald Adjeroh , Ph.D.

Piotr Wojciechowski, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2022

Keywords: Tree Augmentation
Copyright 2022 Jacob Restanio

Abstract

An Empirical Analysis of Approximation Algorithms for the Unweighted Tree
Augmentation Problem

Jacob Restanio

In this thesis, we perform an experimental study of approximation algorithms for the
tree augmentation problem (TAP). TAP is a fundamental problem in network design.
The goal of TAP is to add the minimum number of edges from a given edge set to a
tree so that it becomes 2-edge connected. Formally, given a tree T = (V,E), where V
denotes the set of vertices and E denotes the set of edges in the tree, and a set of edges
(or links) L ⊆ V × V disjoint from E, the objective is to find a set of edges to add
to the tree F ⊆ L such that the augmented tree (V,E ∪ F) is 2-edge connected. Our
goal is to establish a baseline performance for each approximation algorithm on actual
instances rather than worst-case instances. In particular, we are interested in whether
the algorithms rank on practical instances is consistent with their worst-case guarantee
rankings. We are also interested in whether preprocessing times, implementation diffi-
culties, and running times justify the use of an algorithm in practice. We profiled and
analyzed five approximation algorithms, viz., the Frederickson algorithm [16], the Nag-
amochi algorithm [31], the Even algorithm [12], the Adjiashivili algorithm [1], and the
Grandoni algorithm [19]. Additionally, we used an integer program and a simple random-
ized algorithm as benchmarks. The performance of each algorithm was measured using
space, time, and quality comparison metrics. We found that the simple randomized is
competitive with the approximation algorithms and that the algorithms rank according
to their theoretical guarantees. The randomized algorithm is simpler to implement and
understand. Furthermore, the randomized algorithm runs faster and uses less space than
any of the more sophisticated approximation algorithms.

iii

Acknowledgments

I would like to thank my advisor and chair of my committee, Dr. K. Subramani, whose

many insights and directions has given me inspiration and motivation in both my explo-

ration and research into many problems in computer science. His experience in previous

implementation and practical analysis allowed me to approach my implementation with

more forethought. Without his help this thesis would not have been possible. Without

his keen eye for detail and language this thesis would not be nearly as easy to read.

I would like to extend my sincere thanks to the Air Force Research Laboratory. The

funding from the summer fellowship and opportunity to conduct research at the Air Force

lab made it possible to complete my thesis and gave me the opportunity to meet and

discuss with many like-minded peers.

The project would not have been possible without the help of Dr. Alvaro Velasquez,

whose work on the exact integer program was a great service and allowed me to focus my

time and efforts on the approximation algorithms. The project would also not have been

possible without Cody Klingler, and acquaintance and friend whose collaboration on the

Nagamochi algorithm was the only reason that algorithm was able to be implemented.

I extremely grateful to my family and friends, whose support has kept me in school

and following my dreams and passions. I would have quit many times if it was not for

the encouragement of my family. I would have gone mad many times if I did not have

the occasional distraction with my friends.

Contents

1 Introduction 1

2 Statement of Problem 4

2.1 Preliminaries . 4

2.2 Tree augmentation problem (TAP) . 8

3 Motivation and Related Work 10

4 Empirical Setup 15

4.1 Trees Types . 15

4.2 Checking for Validity of Solutions . 16

4.3 Algorithms considered . 17

4.3.1 The Randomized Tree Augmentation Algorithm 17

4.3.2 Exact Integer Program . 18

4.3.3 Frederickson Algorithm . 19

4.3.4 Nagamochi Algorithm . 22

4.3.5 Even Algorithm . 22

4.3.6 Adjiashvili Algorithm . 23

4.3.7 Grandoni Algorithm . 24

4.4 Hardware and Implementation . 27

5 Results 29

5.1 Size 10 . 29

5.2 Size 100 . 32

iv

CONTENTS v

5.3 Size 1000 . 34

6 Conclusion 36

List of Figures

1.1 A network where a single edge failure disconnects it 1

1.2 A network being disconnected by the removal of an edge 1

1.3 A network that is single fault tolerant . 1

1.4 Reducing a graph to a tree . 2

2.1 A 2-edge connected graph. 8

2.2 An instance of TAP and an optimal solution 9

4.1 Frederickson example . 20

5.1 Box plots of each algorithm and each graph type of size 10. 30

5.2 The running time of the algorithms on all graphs of size 10. 31

5.3 The memory usage of the algorithms on all graphs of size 10. 32

5.4 Box plots of each algorithm and each graph type of size 100. 33

5.5 The running time of the algorithms on all graphs of size 100. 33

5.6 The memory usage of the algorithms on all graphs of size 100. 33

5.7 Box plots of each algorithm and each graph type of size 1000. 34

5.8 The running time of the algorithms on all graphs of size 1000. 34

5.9 The memory usage of the algorithms on all graphs of size 1000. 35

vi

List of Algorithms

1 Randomized Tree Augmentation . 18

2 Frederickson Bridge-connectivity Augmentation 20

3 Edmond’s Minimum Weighted Arborescence 21

4 Nagamochi Tree Cover Algorithm . 22

5 Even Tree Cover Augmentation . 23

6 Adjiashvili Algorithm . 24

vii

Chapter 1

Introduction

TAP is a well-studied, fundamental networking problem [25] [19] [34]. Consider the

network shown in Figure 1.1. The network becomes disconnected if any of the connections

in the network are removed (Figure 1.2). A network that can become disconnected by

a single point of failure is vulnerable to incidental failures or attack. It is imperative

any network that serves a critical role is made single fault tolerant by adding additional

connections so that any one failure will not disconnect the network (Figure 1.3). However,

adding connections to a network has an associated cost. It is therefore vital to add as

few connections as possible. It is valuable to know the fewest number of additional

connections necessary to make the network single fault tolerant. We define a graph to

be 2-edge connected when any edge can be removed without breaking connectivity. TAP

takes a tree as input and the objective is to find the minimum number of edges to add

to make the tree 2-edge connected.

Formally, we are interested in the fundamental graph connectivity augmentation prob-

a)

Figure 1.1: A network
where a single edge failure
disconnects it

b)

Figure 1.2: A network be-
ing disconnected by the re-
moval of an edge

c)

Figure 1.3: A network that
is single fault tolerant

1

2

lem. Given a tree T = (V,E), where V denotes the set of vertices and E denotes the set

of edges in the tree, and a set of edges (or links) L ⊆ V × V that is disjoint from E, the

objective is to find a set of edges to add to the tree F ⊆ L such that the augmented tree

(V,E ∪ F) is 2-edge connected. We formulate the problem by assuming the graph G we

are given is a tree. We can make this assumption due to the fact that strongly connected

components in the graph can be contracted into a single node (see Figure 1.4). Under

this assumption, the problem is known as the Tree Augmentation Problem [11].

a

b

c a

b

c

Figure 1.4: A graph being reduced to a tree by contracting the strongly connected com-
ponents

We are able to assume the graph given is a tree without loss of generality. If we are

given a graph, we can find all of the connected components in O(|V |+ |E|) time [36]. We

can contract each connected component into a single node, making the graph into a tree.

Assuming the graph is a tree eliminates the need to perform this search and contraction.

The assumption also allows us to restrict our analysis to different types of trees instead

of types of trees and graphs.

We only consider the unweighted variant of the problem, where any edge added is of

unit cost. the unweighted variant can be viewed as finding the minimum number of edges

to add that makes a tree into a 2-edge connected graph. In the weighted case, the optimal

solution may not be the minimal edge solution. Most of the algorithms considered require

only minor changes to deal with the weighted case.

The rest of this thesis is organized as follows: Chapter 2 formally specifies the problem

3

under consideration. Chapter 3 contains our motivation and describes the related work

in the literature. The empirical setup for our experiments is described in Chapter 4. The

results of our implementation are discussed in Chapter 5. We conclude in Chapter 6 by

summarizing our results and identifying avenues for future research.

Chapter 2

Statement of Problem

In this chapter, we formally define the tree augmentation problem and also define the

various terms that will be used in the rest of the thesis.

2.1 Preliminaries

A decision problem is a problem that has a yes or no solution. A problem is decidable if

there exists a program to solve the problem in finite time. We group decision problems

into a hierarchy of complexity classes.

R problems decidable in finite time

EXP problems decidable in exponential time 2n
O(1)

P problems decidable in polynomial time nO(1)

These sets are distinct, i.e. P ⫋ EXP ⫋ R.

Definition 1. NP - The complexity class NP is defined as the set of decision problems

that can be solved by a nondeterministic Turing machine in O(nk) time. Formally,

NP =
⋃
k∈N

NTIME(nk),

where NTIME is the set of decision problems solved by a nondeterministic Turing ma-

chine and NTIME(nk) constrains the set to only problems solvable in O(nk) time (poly-

nomial time).

4

2.1. PRELIMINARIES 5

Alternatively, NP can be defined using deterministic Turing machines as verifiers.

NP is the set of decision problems in which there is a verification algorithm V that takes

as input an instance I of a problem and a certificate bit string of length polynomial in

the size of I, such that

� V always runs in polynomial time in the size of I,

� if I is a yes input, then there is some certificate c so that V outputs yes on input

(I, c), and

� if I is a no input, then no matter what certificate c we choose, V always outputs

no on input (I, c).

Definition 2. Reduction - A reduction from problem A to problem B is a function that

maps an instance x of problem A to an instance x′ of problem B.

Because problem B can be used to solve A, B is at least as hard as A. We often

denote A ≤m B where m is the type of reduction. Problem A is NP-hard if every

problem in NP has a log-space reduction to A. A problem is NP-complete under log-

space reductions if it is NP and NP-hard. All NP-complete problems are reducible

to each other.

Definition 3. NP-completeness - A decision problem P is considered NP-complete

under polynomial-time reductions if it is in NP, and every problem in NP is reducible

to P in polynomial time.

In more practical settings, we are typically concerned with optimization problems.

The goal of an optimization problem is to find the best solution to a given problem.

Definition 4. Optimization Problem - An optimization problem consists of the fol-

lowing:

� a set of instances of the problem;

� for each instance, a set of possible solutions, each with a nonnegative cost; and,

2.1. PRELIMINARIES 6

� an objective, either minimization or maximization.

The goal of an optimization problem is to find a solution for any instance that achieves

the objective for the cost.

We use the shorthand OPT(x) to refer to the cost of the optimal solution for an

instance x.

Definition 5. Linear Programming (LP) - Linear programming is a technique for the

optimization of a linear objective function, subject to linear equality and linear inequality

constraints.

Linear programs are problems that can be expressed in canonical form as

maximize (or minimize)
∑n

i=1 cixi

subject to
∑n

i=1 aj,ixi ≤ b

and x ≥ 0.

The elements of x are the variables to be determined. The function whose value is to

be maximized or minimized, x 7→ cTx, is called the objective function. The inequalities

Ax ≤ b and x ≥ 0 are called constraints.

Definition 6. Approximation Algorithm - An approximation algorithm is an algo-

rithm that finds an approximate solution to optimization problems with provable guaran-

tees on the distance of the returned solution to the optimal one.

Definition 7. ϵ-approximation Algorithm - Let M be an approximation algorithm.

M is considered an ϵ-approximation algorithm, where ϵ ≥ 0:

� in the minimization case if for all valid instances x,
M(x)

OPT (x)
≤ ϵ (ϵ ≥ 1);

� in the maximization case if for all valid instances x,
M(x)

OPT (x)
≥ ϵ (ϵ ≤ 1).

We generally only have interest in approximation algorithms that run in polynomial

time. If a problem has an exact solution in exponential time, there is not as much benefit

to approximating it in exponential time as well. There are many factors that influence

2.1. PRELIMINARIES 7

the quality of an approximation algorithm beyond the approximation factor ϵ, such as

space usage and running time. The ϵ approximation factor for a given approximation

algorithm may also not be tight. Solutions for a 2-approximation algorithm, for example,

may generally give results closer to 1.5 of the optimal solution.

Definition 8. Integrality Gap - The maximum ratio between the solution quality of an

integer program and of its linear programming relaxation is defined as its integrality gap.

Definition 9. Polynomial-time Approximation Scheme (PTAS) - A PTAS is an

algorithm which takes an instance of an approximation problem and a parameter ϵ > 0

and produces a solution that is within a factor 1 + ϵ of being optimal.

The running time of a PTAS is polynomial in the problem size for every fixed ϵ, but

can vary with different ϵ. So, both O(n
1
ϵ) and O(n2

1
ϵ) would be considered PTAS in

terms of running time.

Definition 10. APX - The class APX is the set of NP optimization problems that

have polynomial-time constant-factor approximation algorithms.

Definition 11. PTAS-reduction - A PTAS reduction is an approximability preserving

reduction consisting of

� a pair of mappings f(·), g(·), where f and g are computable in polynomial time.

� f maps an instance x of the problem A we are reducing to an instance x′ of the

problem B we are reducing to.

� g maps a feasible solution y′ of an instance x′ of the problem B to a feasible solution

y of an instance s of the problem A.

� The following condition must hold:

– ∀ϵ > 0, ∃δ = δ(ϵ) > 0, such that if y′ is a (1 + δ(ϵ))-approximation to B, then

y is a (1 + ϵ)-approximation to A.

Definition 12. APX-hard - A problem is APX-hard if there exists a PTAS-reduction

from any problem in APX to the given problem.

2.2. TREE AUGMENTATION PROBLEM (TAP) 8

2.2 Tree augmentation problem (TAP)

Before discussing TAP, we first need to define edge connectivity, since it is a fundamental

property of TAP.

Definition 13. Edge-Connectivity - A graph G = (V,E) is considered k-edge-connected

if a subgraph G′ = (V,E\X) is connected for all X ⊆ E where |X| < k. More simply

stated, a graph is k-edge connected if it remains connected when fewer than k edges are

removed.

A tree, by definition, is 1-edge connected. See Figure 2.1 for an example of a graph

that is 2-edge connected. Notice that the removal of any edge keeps the graph connected.

In order to disconnect the graph, you must remove at least 2 edges.

Figure 2.1: A 2-edge connected graph.

Tree Augmentation Problem

Instance: A tree T = (V,E) and an edgeset L ⊆ V × V disjoint from E.

Problem: Find a minimum sized subset F ⊆ L of edges such that T = (V,E ∪ F) is

2-edge-connected.

Note that we cannot choose any arbitrary edge to add to our tree to make it 2-edge

connected. We are given a set of edges we must choose from. Figure 2.2 shows an instance

of TAP. A simple lower-bound on the optimal solution is the ceiling of the number of

leaves in the tree divided by 2. Since there are 5 leaves in the example, there must be at

least 3 edges in the optimal solution. Since our solution contains only 3 edges, we know it

2.2. TREE AUGMENTATION PROBLEM (TAP) 9

Figure 2.2: An instance of TAP and an optimal solution, the dashed lines represent the
edgeset L and the red lines represent the selected edges F .

is also optimal. On any given instance, our edge set L may not contain leaf to leaf edges.

So, not every instance will have an optimal solution that is equal to this lower bound.

However, the given lower bound can be used to approximate OPT(x) for the purpose of

determining the solution quality of our approximation algorithms.

Some common definitions shared among multiple algorithms are as follows.

Definition 14. Shadow - A link s is a shadow of another link l if the endpoints u and

v of s are in the path Pl in the tree.

Definition 15. Shadow-complete - An instance of TAP is shadow-complete if for any

link l and two vertices u and v in the path Pl, there exists a shadow link. You can assume

every instance of TAP is shadow-complete. If you include a shadow s in the solution, you

can change the link to l without uncovering any edges or increasing the number of links

in your solution.

Definition 16. Up-links, in-links, and cross-links - Let r be the root of the tree. A

link l ∈ Lup is an up-link if one of its two endpoints u and v, say u, lies on the path from

r to v. A link l ∈ Lin is an in-link if the path Pl does not cross the root r, but it can end

at r. A link l ∈ Lcross is a cross-link if the path Pl crosses r but does not end at r.

Chapter 3

Motivation and Related Work

In this chapter, we give some applications and motivation for studying TAP. We also give

a comprehensive overview of the work in the literature.

Graph augmentation, and by extension the tree augmentation problem, is of great

interest in network design. TAP is equivalent to finding a minimum sized cover of a lami-

nar set-family [7, 26, 29]. Laminar families and augmentation problems have applications

to the generalized Steiner network problem, also called the survivable network design

problem. The problem consists of finding minimum-cost subgraphs such that there are

at least a number n unique paths between every pair of vertices. Another way to view

the problem is given any cut in a subgraph, there are at least n crossing edges. The gen-

eralized Steiner network problem has applications to the design of water and electricity

supply networks, communication networks, and any large system where inoperability a

single point can affect other parts of the system [42, 41, 18, 23]. A survey of connectivity

problems was conducted by Kortsarz and Nutov on general connectivity problems [26].

Despite there being numerous approximation algorithms proposed for TAP, none of them

have been studied in an empirical experiment. More factors than theoretical guarantee

affect the choice of best algorithm in practice.

The tree augmentation problem was first proposed among many other graph aug-

mentation problems by Eswaran and Tarjan [11]. TAP was shown to have an efficient

algorithm if the link set was complete and unweighted. When the edges are weighted

10

11

(WTAP), the problem was shown to be NP-complete by reduction from Hamiltonian

circuits. Frederickson and Ja’Ja’ showed the WTAP is NP-complete for the more gen-

eral case on graphs by reduction from 3-dimensional matching [16]. It is important to

note that TAP is NP-complete when the edge set given is not complete.

Tarjan and Eswaran gave an efficient algorithm to 2-connect any tree given a complete

unweighted edge set [11]. Extending this work, Ueno, Kajitani, and Wada show an

efficient method of finding the minimum number of unweighted edges that need to be

added to a tree to produce a k-connected graph when the edge set is complete [40]. The

proof relies on the fact that in a k-connected graph, each vertex must have a degree of

at least k. Let d(v) be the degree of vertex v. Let the deficiency of a vertex be the

max(k − d(v), 0) It follows that the minimum number of edges needed to be added to a

tree to make it k connected is at least the sum of the deficiencies of the vertices divided

by 2 (since each edge added increases the overall degree of the graph by 2). Kajitani

and Ueno extend their work to directed trees being augmented to k-connected directed

graphs as well by using the greatest of in-degree or out-degree deficiencies [24]. Extending

the work to graphs in general, Cai and Sun give an efficient method for constructing a

k-connected graph from any arbitrary unweighted graph even when the initial graph is

disconnected [2]. All efficient algorithms rely on being able to select any edge from a

complete edge set.

The first approximation algorithm for WTAP is a 2-factor approximation by Frederick-

son and Ja’Ja’ [16]. The algorithm consists of reducing WTAP to the minimum spanning

arborescence problem. The edges in the solution to the minimum spanning arborescence

problem are added to the original tree to make it 2-edge connected. The algorithm runs

in O(|V |2) time. Frederickson and Ja’Ja’s algorithm assumed the input was a connected

tree. Khuller and Vishkin gave a 2-factor approximation for undirected graphs that were

not necessarily connected [25]. The algorithm runs in O(|E|+ |V | · log |V |) time.

Nagamochi proposed an approximation algorithm that broke the 2-factor barrier [31].

The algorithm has an approximation factor of (1.875 + ϵ). The algorithm consists of

reducing any one of four cases repeatedly on the input tree, each case contracting the

12

graph, until none of the cases hold. The algorithms then checks whether a certain con-

dition holds and chooses between two subroutines. These steps alternate until the graph

is reduced to a single vertex. The same principle idea was later built on by Even et al.

to reduce the factor to 1.5 [12], though the initial proof was long and complex. Even

et al. also devised a much simpler proof that shows a factor 1.8 solution [13] for their

algorithm. Even et al. then provided another factor 1.5 approximation proof [14]. It

was shown recently that there was in error in [14] but the Even et al algorithm was a

1.5 factor approximation solution in a new proof by Kortsarz and Nutov [27]. The algo-

rithm consists of greedy contractions, rooting the subtree and contracting the tree at the

rooted subtree, and using a credit system to determine which vertex to root the subtree

in the next iteration. Traub and Zenklusen designed a relative greedy algorithm, which

takes a weak greedy solution and iteratively improves the solution by replacement and

has a (1 + ln 2)-factor approximation [38]. They improve their original algorithm using

local-search to achieve a (1.5 + ϵ)-factor approximation [39].

Let f ∈ L be the subset of links that will be inserted to the tree to make it 2-

edge connected. Guo and Uhlmann show that TAP admits a problem kernel with O(f 2)

vertices and links [20]. Expanding on that, Marx and Végh show that the minimum

cost augmentation of edge-connectivity from (k − 1) to k with at most f new edges is

fixed-parameter tractable parameterized by f and admits a polynomial kernel [30].

Much work has been done with respect to LP-based algorithms. The integrality ratio

was originally conjectured to be 4
3
by Cheriyan, Jordán, and Ravi [7]. They also give a

4
3
approximation algorithm for a special case of TAP called the tree plus cycle. Later,

Cheriyan et al. showed that the integrality ratio approaches 3
2
[8]. Whether the standard

LP-relaxation, called the cut-LP, had an integrality gap less than 2 for unit costs was

open until Nutov showed the integrality gap is at most 28
15

[35]. Additionally, Nutov gives

another LP-relaxation for TAP that has an integrality gap at most 7
4
.

Kortsarz and Nutov give two LP-relaxations with respect to the unweighted tree

augmentation problem that are a 1.75-factor approximation using a primal-dual ap-

proach [28]. An LP-based approximation algorithm for TAP was given by Adjiashvili

13

that achieves an approximation ratio of (5
3
+ ϵ) which uses bundle constraints [1]. The

algorithm consists of two phases, in the first phase, the fractional LP solution guides

a simple decomposition method that breaks the tree into well-structured tree with the

corresponding part of the LP solution. The second phase rounds each decomposition to

an integral solution with two rounding procedures. One rounding procedure exploits the

constraints of the LP, while the other exploits a connection to the edge cover problem.

Adjiashivili also gives the first approximation algorithm to break the 2-factor barrier for

WTAP using the bundle LP to achieve a (1.96417 + ϵ)-factor [1]. Fiorini et al. improves

on Adjiashvili’s algorithm by introducing an LP that uses {0, 1
2
}-Chvátal-Gomory cuts

in addition to the bundle constraints to achieve a (3
2
+ ϵ)-approximation for both WTAP

and TAP [15]. Cheriyan and Gao show another (1.5 + ϵ)-approximation using an SDP

relaxation [5, 6]. They propose a combinatorial algorithm that uses greedy contractions

and adds edges based on semiclosed trees. The analysis is done using SDP relaxation to

obtain their bounds, which produces fractional solutions of the Lasserre system via de-

composition. Grandoni, Kalaitzis, and Zenklusen break the 1.5 barrier by improving on

Fiorini et al. to achieve a 1.458-approximation [19]. They accomplish this by providing a

number of new techniques. They give a new approximation algorithm for O(1)-wide tree

instances. They use the property that wide trees naturally decompose into smaller sub-

trees with constant number of leaves, rather than rounding each subtree independently.

They also use rewiring techniques in the rounding scheme to reduce the number of edges

added to the integral solution.

Censor-Hillel and Dory extend the application of TAP and WTAP to distributed

network connectivity and give a 2-approximation algorithm that is considerably faster

than the other algorithms in the literature [4]. An online version of connectivity problems

is studied in [21]. The work is extended to an online version of WTAP and a constant

factor algorithm is given in [32]. Iglesias and Ravi use a top-down coloring algorithm to

achieve a 3
2
-approximation for special cases of WTAP [22].

The literature contains numerous examples of related and adjacent connectivity prob-

lems (e.g. [23, 26, 33, 9, 35]). The work for TAP and WTAP is often extended to

14

such generalized connectivity problems. A 1.393-approximation algorithm is given for

the more general connectivity augmentation problem, and therefore also TAP [3]. This

is the current best known approximation algorithm.

Chapter 4

Empirical Setup

In this chapter, we describe the setup for our experiment. We detail what types of trees

we use as input. We explain how we check a solution is valid. We give a more in depth

overview of the algorithms being tested. We describe the hardware that is used for the

experiment.

4.1 Trees Types

The trees used to evaluate the algorithms were of the following six types:

Path Tree A tree whose vertices can be listed

in the order v1, v2, ..., vn such that

the edges are vi, vi + 1 where i =

1, 2, ..., n− 1.

Star Tree A tree that contains exactly one

vertex with degree greater than 1

and (n− 1) leaves.

15

4.2. CHECKING FOR VALIDITY OF SOLUTIONS 16

Star-like

Tree

A tree that consists of a root node

with any number of paths at-

tached to it and contains exactly

one vertex with degree greater

than 2.

Caterpillar

Tree

A tree where all vertices are

within distance 1 of a central

path.

Lobster

Tree

A tree where all vertices are

within distance 2 of a central

path.

Uniform

Spanning

Tree

A spanning tree selected such

that all spanning trees on the

same vertex set are equally likely.

Each algorithm was evaluated using generated trees of each tree type on sizes 10, 100,

and 1000.

4.2 Checking for Validity of Solutions

Checking if a given graph is 2-edge connected can be done inO(|V |+|E|) time using depth-

first search. The algorithm finds bridges in a graph by checking if there is an alternate

path in the DFS tree to any ancestor of v from the subtree rooted at v. If no bridges

are found, the graph is 2-edge connected. When talking about the tree augmentation

problem, we call the edge set in the tree E and the edge set being considered (the

4.3. ALGORITHMS CONSIDERED 17

links) L. In this case, the running time for checking if a graph is 2-edge connected is

O(|V |+ |E|+ |L|).

4.3 Algorithms considered

We consider the following seven algorithms in our experiment.

Algorithm ρ(n) Time Complexity

Randomized N/A O(|V |2)
Exact 1 O(2|V |)

Frederickson [16] 2 O(|V |2)
Nagamochi [31] 1.875 + ϵ O(|V | 12 |L ∪ E|+ |V |2)
Even, et al [13] 1.5 O(|V |3)
Adjiashvili [1] 1.666 + ϵ |V |O(1)

Grandoni [19] 1.458 |V |O(1)

Table 4.2: The algorithms implemented, approximation factor, and time complexity

4.3.1 The Randomized Tree Augmentation Algorithm

In order to test the practicality of each approximation algorithm, a simple randomized

algorithm is also tested. The randomized algorithm is given in Algorithm 1. The ran-

domized algorithm first arbitrarily selects edge for all leaf vertices in the tree and adds

each edge to the solution set F . Selecting edges from all leaf vertices is justified because

in order for a graph to be 2-edge connected, it cannot have any leaves. The next step is

to check if the tree is 2-edge connected. If not, at random and uniformly select a vertex

v ∈ V and at random and uniformly add an edge incident to v not in the solution set.

Since the randomized algorithm is relatively fast, we can run the algorithm multiple times

and choose the smallest solution. For this experiment, we ran the algorithm 100 times

on each instance.

Lemma 1. The random tree augmentation algorithm runs in time O(|L| · (|V |+ |E|).

4.3. ALGORITHMS CONSIDERED 18

Proof. Inserting an edge to the solution takes constant time. When an edge is added to

the the solution F , it is removed from L so it cannot be selected again. So, the most

edges added to the solution possible is |L|. Once an edge is selected, the graph is checked

to see if it contains bridges, which takes O(|V | + |E|) time. Therefore, the algorithm

cannot take more than O(|L| · (|V |+ |E|) time.

Lemma 2. The random tree augmentation algorithm uses O(|V |+ |L|) space.

Proof. Checking if a graph is 2-edge connected uses O(|V |) space. The only data structure

that the random tree augmentation algorithm needs is an auxiliary graph to store the

solution. We use an adjacency list data structure. The maximum number of edges to be

added to F is |L|. So, the space required is O(|V |+ |E|). Hence, the total space usage is

O(|V |+ |L|).

Algorithm 1 Randomized Tree Augmentation

1: procedure Random(T, L)

2: F ← ∅
3: for all v ∈ T do

4: if degree of v < 2 then

5: Select a random edge e ∈ L incident to v

6: F ← e

7: while T is not 2-edge connected do

8: Select a random edge e ∈ L where e /∈ F

9: F ← e

10: return F

4.3.2 Exact Integer Program

This is the well-known set cover formulation for the tree augmentation problem. Let V [T]

and E[T] denote the vertices and edges of tree T . Let L (links) denote the set of edges

disjoint from E[T] (the edges in our tree). Denote a link l connecting two nodes u and v

by uv. Associate with every link l = uv ∈ L the unique path Puv ⊆ E[T] in T connecting

u and v. A set of links S ⊆ L is a solution for the TAP instance if and only if the union

of the corresponding paths covers the edge set of T . Namely, if ∪l∈SPl = E[T].

4.3. ALGORITHMS CONSIDERED 19

For a set X ⊆ E[T] denote by cov(X) ⊆ L the set of links that cover at least one

edge of X. When X is a singleton, we write cov(e). The exact integer program contains

one variable xl for each link l ∈ L and asks to solve

minimize
∑
l∈L

xl subject to

∑
l∈cov(e)

xl ≥ 1 ∀e ∈ E[T], (4.1)

xl ∈ [0, 1] ∀l ∈ L.

4.3.3 Frederickson Algorithm

Frederickson and Ja’Ja’ gave the first approximation algorithm for the tree augmenta-

tion problem in [16]. They called the problem bridge-connectivity augmentation.

The algorithm (Algorithm 2) given is a 2-approximation algorithm that uses a minimum

weight arborescence to find an approximate solution. The conceptual idea of the algo-

rithm is as follows. Root the tree at any leaf r and direct all edges in the tree towards

r. Next, add the links as bidirected edges to the tree. Assign a weight of 1 to each link

edge and 0 to edges in the tree. Find a minimum weight arborescence on the weighted

directed edges. The algorithm finishes by combining the edges in the arborescence with

the edges in the tree as an undirected graph. An example of this process can be seen in

Figure 4.1.

The algorithm has a few nice properties. First, weights of 1 are used in the unweighted

case, so the algorithm can easily be altered to supported the weighted version of TAP.

Second, the algorithm has a fast running time, with most of the running time being spent

on finding the minimum arborescence. We used Edmond’s algorithm (Algorithm 3) for

finding a weighted arborescence, which runs in O(|E| · |V |) [10]. Edmond’s algorithm

was selected for simplicity in its implementation. The original paper gives a running

time of O(|V |2), which assumes using an algorithm from Tarjan that runs in O(|V |2)

time on dense graphs [37]. There exists a more complex minimum spanning arborescence

4.3. ALGORITHMS CONSIDERED 20

algorithm that runs in O(|E|+ |V | · log |V |) using Fibonacci heaps [17].

Algorithm 2 Frederickson Bridge-connectivity Augmentation

1: procedure Frederickson(T, L)

2: F ← ∅
3: r ← v ∈ T such that v is a leaf

4: for all e ∈ E do

5: A′ ← e such that e is directed toward r

6: for all e = (u, v) ∈ L ∪ E do

7: A← e1, e2 such that e1 = ⟨u, v⟩ and e2 = ⟨v, u⟩

8: for all e = ⟨u, v⟩ ∈ A do

9: if e ∈ A′ and v ̸= r then

10: cost(e)← 0

11: else if e =∈ A′ and v = r then

12: cost(e)←∞
13: else

14: cost(e)← 1

15: A′′ ← Edmonds(D = (V,A))

16: for all e = ⟨u, v⟩ ∈ A′′ do

17: if cost(e) > 0 then

18: F ← (u, v)

19: return F

Lemma 3. The Frederickson bridge-connectivity augmentation algorithm uses O(|V |2)

space.

Proof. Creating a directed tree uses O(|V | + |E|) space. Creating a structure to store

a) b) c) d)

Figure 4.1: a) An instance of TAP with the tree given by solid lines and the links given
by dashed lines. b) The instance transformed into a directed graph with the red leaf
indicating the root. c) A minimum spanning arborescence from the directed graph in b.
d) The recombined solution to TAP from the edges in the original tree and the edges in
the arborescence from c.

4.3. ALGORITHMS CONSIDERED 21

edge weights using an adjacency list uses O(|V |+ |E ′|) space. The arboresence is another

directed tree that uses O(|V | + |E|) space. Since Edmond’s algorithm is recursive and

could potentially be called |V | − 1 times, creating a new structure to store the returned

edge weights and arborescence would use a lot of space, relatively. Instead, we contract

the arborescence and edge weights and use four auxiliary arrays of size |V | + 1 during

expansion. The contraction removes having to use O(|V | · |E|) space due to the recursion

and instead uses O(|V |2). Hence, the total space usage is O(|V |2).

Algorithm 3 Edmond’s Minimum Weighted Arborescence

1: procedure Edmonds(D = (V,E))

2: for all v ∈ V do

3: A← e = ⟨u, v⟩ such that cost(e) = min(cost(ei = ⟨ui, v⟩ ∈ E))

4: π(v)← u

5: if A contains a cycle C = (Vc, Ec) then

6: vc ← a new vertex representing the cycle

7: V ′ ← V \Vc ∪ vc

8: if e = ⟨u, v⟩ ∈ E with u /∈ Vc and v ∈ Vc then

9: E ′ ← e′ where e′ = ⟨u, vc⟩
10: cost(e′)← cost(⟨u, v⟩)− cost(⟨π(v), v)
11: else if e = ⟨u, v⟩ ∈ E with u ∈ Vc and v /∈ Vc then

12: E ′ ← e′ where e′ = ⟨vc, v⟩
13: cost(e′)← cost(⟨u, v⟩)
14: else if e = ⟨u, v⟩ ∈ E with u /∈ Vc and v /∈ Vc then

15: E ′ ← e′ where e′ = e

16: cost(e′)← cost(e)

17: A′ ← Edmonds(D′ = (V ′, E ′))

18: ec ← e′ = ⟨u, vc⟩ ∈ A′

19: ecorr ← ⟨u, v⟩ the corresponding edge of ec where ⟨u, v⟩ ∈ E and v ∈ Vc

20: for all e ∈ Ec\ecorr do
21: mark e

22: for all e′ ∈ A′ do

23: mark corresponding e ∈ E

24: A← marked edges

25: return A

4.3. ALGORITHMS CONSIDERED 22

4.3.4 Nagamochi Algorithm

The Nagamochi algorithm was the first algorithm to break the 2-factor approximation

[31]. However, the algorithm itself is complex and requires checking for a lot of cases and

structures inside the graph. The algorithm works by iteratively contracting the graph

using subsets of vertices and constructing the link set L during the process. The proof

for the running time O(|V | 12 |E ′ ∪ E|+ |V |2) is given in the paper.

Algorithm 4 Nagamochi Tree Cover Algorithm

1: procedure Nagamochi(T = (V,E), G = (V, L), ϵ)

2: F ← ∅
3: while T contains more than one vertex do

4: while Cases 1, 2, 3, or 4 holds do

5: Execute P1, P2, P3, or P4 respectively

6: F ← edges retained by the procedure

7: Choose a minimally leaf-closed subtree T [D(v)]

8: if condition A3 holds in T [D(v)] then

9: Compute an edge set F apx ⊆ L which covers edges in T [D(v)]

10: F ← F ∪ F apx

11: X ← vertices of edges e ∈ E covered by F apx

12: T ← T\X and G← G\X
13: else

14: Choose a lowest solo edge g

15: Fg ← all edges in T ∗
g

16: Compute an edge set F+ ⊆ L which covers Fg with ϵ > 0

17: F ← F ∪ F+

18: X ← vertices of edges e ∈ E covered by F+

19: T ← T\X and G← G\X

20: return F

4.3.5 Even Algorithm

The Even algorithm has an interesting history. First presented in 2001 [12] as a 1.5-

approximation as an extended abstract, the proof was excluded since it was long and

complex. Eventually, in 2016 [27] a simple and elegant proof would be published to

support the algorithm as a 1.5-approximation. The final evolution of the Even algorithm

4.3. ALGORITHMS CONSIDERED 23

(Algorithm 5) has numerous advantages to the Nagamochi algorithm. First, the algorithm

has a superior approximation factor to both the Nagamochi and Frederickson algorithms.

Second, there is no preprocessing required and fewer cases than in Nagamochi. The

Even algorithm boasts a much faster running time mainly restricted by the speed of the

blossom algorithm used in implementation. The paper does not include a running time

analysis; we provide one for our implementation in Lemma 4.

Lemma 4. The Even algorithm runs in time O(|E| · |V |2).

Proof. The blossom algorithm takes O(|E| · |V |2) time. Finding a non-deficient semi-

closed tree takes O(|V | · log |V |) time. It is obvious the blossom algorithm dominates the

running time.

Algorithm 5 Even Tree Cover Augmentation

1: procedure Even(T = (V,E), L))

2: F ← ∅
3: M ← maximum matching in L(Lf, Lf)\W
4: Assign 1 coupon to each unmatched leaf and r

5: Assign 3/2 coupons to every link in M

6: Exhaust greedy locking tree contractions

7: while T\F has more than one node do

8: Exhaust greedy link contractions and update F and M accordingly

9: T ′ ← a non-deficient semi-closed tree of T\F
10: F ′ ← an exact cover of T ′

11: Contract T with F ′

12: return F

4.3.6 Adjiashvili Algorithm

The Adjiashvili algorithm is an extension of the cut LP (4.1 relaxed to an LP), and is

called the bundle LP [1]. For an integer γ ∈ Z≥1, a γ-bundle is a union of γ paths in

G. These paths need not be disjoint. Denote by Bγ the set of all γ-bundles in G. The

bundle LP contains all the constraints from the natural LP and constraints that ensure

that each γ-bundle is covered in the fractional solution by links with sufficiently high

cost. Formally, we add the following constraint to the natural LP.

4.3. ALGORITHMS CONSIDERED 24

minimize
∑
l∈L

xl subject to

∑
l∈cov(e)

xl ≥ 1 ∀e ∈ E[T], (4.2)

∑
l∈cov(e)

cl · xl ≥ OPT(B) ∀B ∈ Bγ,

xl ≥ 0 ∀l ∈ L.

For any X ⊆ E[G], OPT(X) ∈ R≥0 is the minimum cost of a set of links in L that

covers all edges in X. Solving the bundle LP entails calculating the values OPT(B) for

all B ∈ Bγ. This can be done in polynomial time whenever γ is constant and in time

nγO(1)
in general.

The rounding scheme used for TAP is as follows:

Algorithm 6 Adjiashvili Algorithm

1: procedure Adjiashvili(T = (V,E), L)

2: F ← ∅
3: X ← solution of LPγ

4: while there exists an edge e ∈ E covered only by up-links in X do

5: F ← up-link l covering e that covers the most edges

6: Contract T with l

7: while there exists a link l connecting two leaves u, v ∈ V and l ∈ X do

8: F ← l

9: Contract T with l

10: while there exists an uncovered leaf v ∈ T ∪ F do

11: F ← an arbitrary l ∈ L ∩X covering v

12: return F

4.3.7 Grandoni Algorithm

The Grandoni algorithm is an improvement on Fiorini et al., which combines the Ad-

jiashvili bundle constraints and a new set of constraints [19]. Grandoni improves the

algorithm by introducing a rewiring step. Consider an IP of the form min{c⊺x | Ax ≥

4.3. ALGORITHMS CONSIDERED 25

b, x ∈ Zn}, where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Then a Chvátal-Gomory cut is a

constraint of the form

λ⊺Ax ≥ ⌈λ⊺b⌉

where the vector of multipliers λ ∈ Rm
≥0 is chosen in such a way that λ⊺A ∈ Zn. When

λ is restricted to be in {0, 1
2
}m, the constraint is called {0, 1

2
}-Chvátal-Gomory cut. The

necessary constraints can be derived by using the initial set of constraints from the cut

LP (4.1 relaxed to an LP).

Define S as the set of nodes S ⊆ V such that all edges with a corresponding λ-

coefficient of 1
2
are exactly the edges leaving the node set S. Such edges in the graph are

defined as δG(S) = {e = {u, v} ∈ E | u ∈ S, v /∈ S}. Let π(S) denote the multiset of

links l = (u, v) such that the path through the tree from u to v called Pl intersects δG(S),

and the multiplicity of l is defined as ⌈1
2
|Pl ∩ δG(S)|⌉. The {0, 1

2
}-Chvátal-Gomory cut

can then be rewritten as

x(π(S)) ≥ |δG(S)|+ 1

2
.

That is, the sum of the multiplicities of links in our solution covering the edges in our

tree with a corresponding λ-coefficient of 1
2
must be greater than half the number of such

edges.

When combined with the bundle LP (4.2), the rounding scheme used by Fiorini has

improvements over that used by Adjiashvili by reducing the cost of splitting in-links into

two up-links. This improvement comes over the rounding scheme for WTAP in Adjiashvili

that was not covered here, but Fiorini brings the approximation for WTAP down to 3
2
+ ϵ

which beats the 5
3
+ ϵ approximation for unweighted TAP and can be used on instances

of unweighted TAP.

Grandoni introduces a method of rewiring cross-links to further improve a solution.

The method considers the leaves of principle subtrees Ti = (Vi, Ei). A principle subtree is

one that includes the root r, u which is a child of r, and all descendants of u. In order to

be able to restrict the size of the leaves of all principle subtrees, the analysis consists of

only trees with all principle subtrees having O(1) leaves, bounded by some constant. We

4.3. ALGORITHMS CONSIDERED 26

call such trees O(1)-wide trees or k-wide instances. Such restrictions allows for the use

of bundle constraints on the leaves of principle subtrees to find integral solutions for the

restricted LP solution, which is shown in [1]. In [19] is a proof how algorithms for k-wide

trees can be used to approximate any tree with negligible increase to the approximation

factor.

Define two links l1 and l2 to be shadow-minimal if there exists no shadow s of one

link such that the link could be replaced and cover the same path, that is there is no

shadow such that Pl1 ∪Pl2 = Ps∪Pl2 . A set of links L′ ⊆ L is shadow-minimal if all links

in L′ are pairwise shadow-minimal. Any instance of TAP can be replaced by links that

are shadow-minimal. Each principle subtree Ti for a k-wide tree has at most k cross-links

with an endpoint inside Ti. There consists of many possible such shadow-minimal link

sets, so let Λi ⊆ 2cov(Ei) be the family of of all shadow-minimal subsets of all cross-links

with one endpoint in Vi. This gives us our cross-links, but we also need the links that

begin and end in the principle subtree. Let C(i, R) ⊆ L be a minimum cardinality set of

links with both endpoints in Vi that satisfies (i) R ∪ C(i, R) is shadow-minimal, and (ii)

R∪C(i, R) covers Ei. C(i, R) can be computed efficiently by contracting the edges of Ti

covered by R and solving on the residual tree. Since the tree has no more than k leaves,

it can be solved efficiently using the bundle LP. Additionally, we remove any link from

the residual instance that is not shadow-minimal with R and shorten any remaining links

in the solution to achieve a solution that is shadow-minimal.

Let LR
i = R ∪ C(i, R), which represents the shadow-minimal cross-links and in-links

that give an optimal solution to the subtree Ti. We can solve the entire instance of a

k-wide tree by taking the union of all q principle subtrees. That is, LR1
1 ∪ . . .∪L

Rq
q . Form

new LP constraints as follows. Let λR
i ≥ 0 be a variable for each principle subtree Ti and

each set R ⊆ Λi, where λR
i is interpreted as including the links LR

i in the solution. Our

new constraints, which are combined with the {0, 1
2
}-Chvátal-Gomory cut, is as follows:

4.4. HARDWARE AND IMPLEMENTATION 27

xl =
∑

R∈Λi:l∈LR
i

λR
i , ∀i ∈ {1, . . . , q},∀l ∈ cov(Ei)

∑
R∈Λi

λR
i = 1, ∀i ∈ {1, . . . , q}, (4.3)

λR
i ≥ 0, ∀i ∈ {1, . . . , q}, ∀R ∈ Λi

Let (x, λ) be an optimal fractional solution, where x comes from the {0, 1
2
}-Chvátal-

Gomory cut and λ comes from 4.3. Return the better of two solutions obtained by two

different rounding procedures. The first is essentially following the steps in 6 using x.

The second is detailed below as a randomized procedure.

Interpret the coefficients of λR
i as a probability distribution and sample from it, inde-

pendently for each Ti. Let Li be the sampled solution from Ti. Start by combining each

local solution ∪qi=1Li, which is a feasible integral solution. Each cross-link l that has its

endpoint in Ti and Tj is contained in each of Li and Lj with probability xl. We improve

the solution by rewiring pairs of cross-links into a single one. Consider all vertices in Vi

with a cross-link in Li for all subtrees. Maximizing the number of rewirings can be done

by solving a matching problem over the graph consisting of all such vertices with edges

being the cross-links between them.

4.4 Hardware and Implementation

Each algorithm was implemented in Python 3.10 using the NetworkX library. Where

possible, the functions implemented by the NetworkX library were used for deletion,

insertion, and merging of all graphs. Generation of the input graphs was done using

the NetworkX functions. An exception is when NetworkX used a random variable to

determine the number of vertices added to a generated graph or did not have a generator

for a specific graph type. In order to ensure each graph was of the correct size, some

generation functions were created manually. The graph types that had manual generation

were the caterpillar, lobster, and starlike graphs.

4.4. HARDWARE AND IMPLEMENTATION 28

Each algorithm was evaluated on the Thorny Flat High-Performance Computing

(HPC) cluster. The CPU used by the cluster could either be an Intel(R) Xeon(R) Gold

6138 Processor or an Intel(R) Xeon(R) Gold 6126 Processor depending on availability at

the time. Thorny Flat uses a time sharing scheme on a queue of user submitted tasks.

For this reason, time was measured using clock cycles, rather than wall time.

Chapter 5

Results

In this chapter, we discuss the results of our experiments. We split the discussion into

the three categories determined by the size of the input tree.

5.1 Size 10

The performance of each algorithm on each tree of size 10 is shown in Figure 5.1. The

caterpillar and lobster graphs are very similar, which is to be expected since the lobster

graph is just an extension of a caterpillar graph. All algorithms perform similarly on

the path graph. The star graph is where the Frederickson performs the worst, coming

close to its 2-factor upper bound. We will see this is exacerbated as the size of the

graph increases. The starlike graph has the widest distribution, but the way the starlike

graph is generated means that some instances are very close to path graphs while other

instances are very close to star graphs. The Grandoni algorithm consistently performs

better with respect to solution size than the Adjiashivili algorithm, which will be the case

for all sizes. Since the Grandoni algorithm uses the bundle constraints of the Adjiashvili

algorithm but improves upon it using additional techniques, this result is expected. The

Even algorithm appears comparable to the Grandoni algorithm for graphs of size 10. It is

not surprising that the randomized algorithm performs very well for small graphs, since

the size of the solution set is relatively small. The randomized algorithm takes the best

solution of 100 repetitions, so it is statistically likely to find a good solution for small

29

5.1. SIZE 10 30

Figure 5.1: Box plots of each algorithm and each graph type of size 10.

graphs.

Comparing the algorithms time and space usage will highlight differences between the

algorithms beyond solution quality. Figure 5.2 shows the time usage for each algorithm

on graphs of size 10. The main bulk of time for the Frederickson algorithm comes from

finding the minimum arborescence using Edmond’s algorithm. There will not be much

recursion on small graphs, so Edmond’s algorithm does not have a significant impact on

the running time. The Nagamochi algorithm runs slightly faster than the Even algorithm

on small graphs due to less access of the subroutines. Since the Grandoni algorithm

employs more techniques, such as the rewiring step, it has a consistently longer running

time compared to the Adjiashvili algorithm. The exact algorithm is by far the slowest,

and as the size of the graph increases, the exact algorithm did not finish finding a solution

in a reasonable amount of time.

5.1. SIZE 10 31

Figure 5.2: The running time of the algorithms on all graphs of size 10.

The peak memory usage for each algorithm on graphs of size 10 is shown in Figure

5.3. The Frederickson algorithm has to recurse up to (|V | − 1) times in the worst case,

making it the worst combinatorial algorithm when it comes to space metrics. This is not

captured adequately by the memory graphs, since they only show the memory on the heap

and recursive calls allocate memory to the stack. In fact, a naive implementation that

contracts the graph in each recursion by making a new copy (motivated by the fact that

we also need to expand the graph back to get our solution) quickly runs into space issues.

Using up too much memory necessitates the use to swap memory to the disk, greatly

slowing down the algorithm. A clever use of dictionaries to store the information of the

contracted vertices and their edges prevents the space complexity from being O(|V |2 · |E|)

and keeps it as O(|V |2) instead. The Even and Nagamochi algorithms do not need to

use auxiliary data structures, so they are very space efficient as well. The Adjiashvili

and Grandoni algorithms require a structure to store the LP solution, using about twice

the amount of space as the other approximation algorithms. The randomized algorithm

uses an auxiliary structure to store edges, and needs to check for bridges on the selected

edges combined with the original tree. Depending on implementation of the NetworkX

library, combining the graphs might create a third auxiliary structure. The space usage

of the randomized algorithm remains a constant factor of the input graph size. The large

search space of the exact solution causes the most memory usage.

5.2. SIZE 100 32

Figure 5.3: The memory usage of the algorithms on all graphs of size 10.

5.2 Size 100

As the graph size increases to 100, the differences between the algorithms become more

clear with respect to solution sizes but less clear with respect to time and memory metrics

(See Figures 5.4, 5.5, 5.6). The reason there are distinct peaks in the memory usage graph

is because generated link sets were of density 0.01, 0.1, and 1. Each greater density of links

generated requires more space in general, leading to the distinct spikes. The Nagamochi

and Even algorithm are nearly identical in terms of running time and memory usage.

The Frederickson algorithm remains the fastest in general. The running time of the the

randomized algorithm reaches its worst relative performance at size 100. The speed of the

randomized algorithm has not reached a point that it is fast enough where its repetitions

do not affect the performance relative to the other algorithms. It is interesting to note

that the theoretical bounds predict accurately the relative performance of each algorithm,

except for the randomized algorithm. The randomized algorithm performs exceptionally

well on smaller graphs and still wins out at size 100. Again, the exact algorithm could

not find a solution in a time meaningful enough to include in this comparison.

5.2. SIZE 100 33

Figure 5.4: Box plots of each algorithm and each graph type of size 100.

Figure 5.5: The running time of the algorithms on all graphs of size 100.

Figure 5.6: The memory usage of the algorithms on all graphs of size 100.

5.3. SIZE 1000 34

5.3 Size 1000

At size 1000, the randomized algorithm begins to be surpassed by the approximation

algorithms that give a guarantee of at most 1.5 (See Figure 5.7). The solution set begins

to grow such that the 100 repetitions are not sufficient to find good solutions. The

linear programming algorithms start to take much longer than the other approximation

algorithms, especially the Grandoni algorithm, since it includes a number of techniques

that require searching on the graph (Figure 5.8). Memory is generally not a problem for

any algorithm, though the library used for implementation of the linear programming

causes the two linear programs to use the most memory (Figure 5.9).

Figure 5.7: Box plots of each algorithm and each graph type of size 1000.

Figure 5.8: The running time of the algorithms on all graphs of size 1000.

5.3. SIZE 1000 35

Figure 5.9: The memory usage of the algorithms on all graphs of size 1000.

Chapter 6

Conclusion

In this thesis, we studied approximation algorithms for the tree augmentation problem.

We design a simple but novel randomized algorithm for the problem. We implemented

several approximation algorithms found in the literature. The randomized algorithm per-

forms as well as the exact algorithm on small graphs and continues to outperform the

other algorithms until size 1000, where it remains competitive. The results conclusively

show that algorithms with theoretical guarantees are not necessarily superior in practice

when applied to TAP. The results also show the relative performances of the approxi-

mation algorithms are predicted by their relative theoretical guarantees. For very large

graphs, the more sophisticated linear programming methods use more time. As graph

sizes grow to be greater than 1000, the time usage of LP based methods begins to grow

much faster than the combinatorial methods. The sophisticated but theoretically supe-

rior LP based methods are impractical to use on large graphs. The space usage for TAP

is primarily caused by the space used for the input graph. The LP based algorithms

use polynomial space in the size of the input which is unavoidable due to the techniques

used to solve the LP. The combinatorial methods all use linear space in the size of the

input since they all use small auxiliary data structures and searching. In conclusion, the

exact integer program for TAP is infeasible on anything but small graphs due to time

constraints. The LP based algorithms produce the best solutions but require more time

and space than the combinatorial approaches. The combinatorial algorithms are both

36

37

fast and space efficient, but are the most difficult to implement. A simple randomized

algorithm is fast, space efficient, and performs better or as well as on the graphs tested

than the more advanced LP and combinatorial algorithms implemented in this thesis.

Future work includes using additional memory metrics, such as including stack mem-

ory and memory usage of subroutines for better analyses. We could also use more sophis-

ticated time metrics, such as time usage of subroutines, for improved analyses. The simple

randomized algorithm can be augmented to use greedy heuristics to further improve its

results. There exist more algorithms that could be implemented for a more exhaustive

comparison of the existing literature. Not all algorithms were selected for time purposes

in implementation. Finally, the literature refers to [16] as showing weighted TAP to be

APX-hard. However, the authors do not attempt to prove or use formal methods to

show APX-hardness in this paper. The reduction used implies APX-hardness, but

a more formal approach should be done using modern techniques. There are a number

of open problems the literature has not addressed. It has not been shown whether un-

weighted TAP is APX-hard. There has been minimal work on producing better exact

exponential algorithms. Similarly, an lower bound on the running time for exact algo-

rithms could be found using techniques such as the exponential time hypothesis (ETH)

and the strong exponential time hypothesis (SETH). Most work related to TAP has been

strictly on finding better approximations. As a result, there remain many open problems

and potential research using other techniques concerning TAP.

Bibliography

[1] David Adjiashvili. Beating approximation factor two for weighted tree augmentation

with bounded costs. ACM Trans. Algorithms, 15(2), December 2018.

[2] Guo-Ray Cai and Yu-Geng Sun. The minimum augmentation of any graph to a

k -edge-connected graph. Networks, 19(1):151–172, 1989.

[3] Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree

and connectivity augmentation: unified and stronger approaches. In Samir Khuller

and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT

Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages

370–383. ACM, 2021.

[4] Keren Censor-Hillel and Michal Dory. Fast distributed approximation for TAP and

2-edge-connectivity. Distributed Comput., 33(2):145–168, 2020.

[5] Joseph Cheriyan and Zhihan Gao. Approximating (Unweighted) Tree Augmentation

via Lift-and-Project, Part I: Stemless TAP. Algorithmica, 80(2):530–559, 2018.

[6] Joseph Cheriyan and Zhihan Gao. Approximating (Unweighted) Tree Augmentation

via Lift-and-Project, Part II. Algorithmica, 80(2):608–651, 2018.

[7] Joseph Cheriyan, Tibor Jordán, and R. Ravi. On 2-Coverings and 2-Packings of

Laminar Families. In Jaroslav Nesetril, editor, Algorithms - ESA ’99, 7th Annual

European Symposium, Prague, Czech Republic, July 16-18, 1999, Proceedings, vol-

ume 1643 of Lecture Notes in Computer Science, pages 510–520. Springer, 1999.

38

BIBLIOGRAPHY 39

[8] Joseph Cheriyan, Howard J. Karloff, Rohit Khandekar, and Jochen Könemann. On

the integrality ratio for tree augmentation. Oper. Res. Lett., 36(4):399–401, 2008.

[9] S. Dhanalakshmi, N. Sadagopan, and V. Manogna. Tri-connectivity Augmentation

in Trees. Electron. Notes Discret. Math., 53:57–72, 2016.

[10] Jack Edmonds. Optimum branchings. National Bureau of Standards, 1967.

[11] Kapali P. Eswaran and R. Endre Tarjan. Augmentation problems. SIAM Journal

on Computing, 5(4):653–665, 1976.

[12] Guy Even, Jon Feldman, Guy Kortsarz, and Zeev Nutov. A 3/2-approximation

algorithm for augmenting the edge-connectivity of a graph from 1 to 2 using a subset

of a given edge set (extended abstract). Lecture Notes in Computer Science, 10 2001.

[13] Guy Even, Jon Feldman, Guy Kortsarz, and Zeev Nutov. A 1.8 approximation algo-

rithm for augmenting edge-connectivity of a graph from 1 to 2. ACM Transactions

on Algorithms, 5, 03 2009.

[14] Guy Even, Guy Kortsarz, and Zeev Nutov. A 1.5-approximation algorithm for

augmenting edge-connectivity of a graph from 1 to 2. Inf. Process. Lett., 111(6):296–

300, 2011.

[15] Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approximat-

ing weighted tree augmentation via chvátal-gomory cuts. In Artur Czumaj, editor,

Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 817–831.

SIAM, 2018.

[16] Greg N. Frederickson and Joseph Ja’Ja’. Approximation algorithms for several graph

augmentation problems. SIAM Journal on Computing, 10(2):270–283, 1981.

[17] Harold N. Gabow, Zvi Galil, Thomas H. Spencer, and Robert Endre Tarjan. Efficient

algorithms for finding minimum spanning trees in undirected and directed graphs.

Comb., 6(2):109–122, 1986.

BIBLIOGRAPHY 40

[18] Michel X. Goemans, Andrew V. Goldberg, Serge A. Plotkin, David B. Shmoys, Éva

Tardos, and David P. Williamson. Improved Approximation Algorithms for Network

Design Problems. In Daniel Dominic Sleator, editor, Proceedings of the Fifth Annual

ACM-SIAM Symposium on Discrete Algorithms. 23-25 January 1994, Arlington,

Virginia, USA, pages 223–232. ACM/SIAM, 1994.

[19] Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation

for tree augmentation: saving by rewiring. In Ilias Diakonikolas, David Kempe, and

Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Sympo-

sium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29,

2018, pages 632–645. ACM, 2018.

[20] Jiong Guo and Johannes Uhlmann. Kernelization and complexity results for con-

nectivity augmentation problems. Networks, 56(2):131–142, 2010.

[21] Anupam Gupta, Ravishankar Krishnaswamy, and R. Ravi. Online and Stochastic

Survivable Network Design. SIAM J. Comput., 41(6):1649–1672, 2012.

[22] Jennifer Iglesias and R. Ravi. Coloring down: 3/2-approximation for special cases

of the weighted tree augmentation problem. Oper. Res. Lett., 50(6):693–698, 2022.

[23] Kamal Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Net-

work Problem. Comb., 21(1):39–60, 2001.

[24] Yoji Kajitani and Shuichi Ueno. The minimum augmentation of a directed tree to

a k -edge-connected directed graph. Networks, 16(2):181–197, 1986.

[25] Samir Khuller and Ramakrishna Thurimella. Approximation Algorithms for Graph

Augmentation. J. Algorithms, 14(2):214–225, 1993.

[26] Guy Kortsarz and Zeev Nutov. Approximating minimum cost connectivity prob-

lems. In Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dániel Marx, editors,

Parameterized complexity and approximation algorithms, 13.12. - 17.12.2009, vol-

ume 09511 of Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, Germany, 2009.

BIBLIOGRAPHY 41

[27] Guy Kortsarz and Zeev Nutov. A Simplified 1.5-Approximation Algorithm for

Augmenting Edge-Connectivity of a Graph from 1 to 2. ACM Trans. Algorithms,

12(2):23:1–23:20, 2016.

[28] Guy Kortsarz and Zeev Nutov. LP-relaxations for tree augmentation. Discret. Appl.

Math., 239:94–105, 2018.

[29] Yael Maduel and Zeev Nutov. Covering a laminar family by leaf to leaf links. Discret.

Appl. Math., 158(13):1424–1432, 2010.

[30] Dániel Marx and László A. Végh. Fixed-Parameter Algorithms for Minimum-Cost

Edge-Connectivity Augmentation. ACM Trans. Algorithms, 11(4):27:1–27:24, 2015.

[31] Hiroshi Nagamochi. An approximation for finding a smallest 2-edge-connected sub-

graph containing a specified spanning tree. Discrete Applied Mathematics, 126(1):83–

113, 2003. 5th Annual International Computing and combinatorics Conference.

[32] Joseph (Seffi) Naor, Seeun William Umboh, and David P. Williamson. Tight Bounds

for Online Weighted Tree Augmentation. Algorithmica, 84(2):304–324, 2022.

[33] N. S. Narayanaswamy and N. Sadagopan. A Novel Data Structure for Biconnectivity,

Triconnectivity, and k-Tree Augmentation. In Alex Potanin and Taso Viglas, editors,

Seventeenth Computing: The Australasian Theory Symposium, CATS 2011, Perth,

Australia, January 2011, volume 119 of CRPIT, pages 45–54. Australian Computer

Society, 2011.

[34] Zeev Nutov. Approximation Algorithms for Connectivity Augmentation Problems.

In Rahul Santhanam and Daniil Musatov, editors, Computer Science - Theory and

Applications - 16th International Computer Science Symposium in Russia, CSR

2021, Sochi, Russia, June 28 - July 2, 2021, Proceedings, volume 12730 of Lecture

Notes in Computer Science, pages 321–338. Springer, 2021.

[35] Zeev Nutov. On the tree augmentation problem. Algorithmica, 83(2):553–575, 2021.

BIBLIOGRAPHY 42

[36] Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J.

Comput., 1(2):146–160, 1972.

[37] Robert Endre Tarjan. Finding optimum branchings. Networks, 7(1):25–35, 1977.

[38] Vera Traub and Rico Zenklusen. A Better-Than-2 Approximation for Weighted

Tree Augmentation. In 62nd IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1–12. IEEE,

2021.

[39] Vera Traub and Rico Zenklusen. Local Search for Weighted Tree Augmentation

and Steiner Tree. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings

of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual

Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 3253–3272. SIAM,

2022.

[40] Shuichi Ueno, Yoji Kajitani, and Hajime Wada. Minimum augmentation of a tree

to a K-edge-connected graph. Networks, 18(1):19–25, 1988.

[41] David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A

primal-dual approximation algorithm for generalized steiner network problems. In

Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,

STOC ’93, page 708?717, New York, NY, USA, 1993. Association for Computing

Machinery.

[42] Pawel Winter. Generalized Steiner Problem in Series-Parallel Networks. J. Algo-

rithms, 7(4):549–566, 1986.

	An Empirical Analysis of Approximation Algorithms for the Unweighted Tree Augmentation Problem
	Recommended Citation

	Introduction
	Statement of Problem
	Preliminaries
	Tree augmentation problem (TAP)

	Motivation and Related Work
	Empirical Setup
	Trees Types
	Checking for Validity of Solutions
	Algorithms considered
	The Randomized Tree Augmentation Algorithm
	Exact Integer Program
	Frederickson Algorithm
	Nagamochi Algorithm
	Even Algorithm
	Adjiashvili Algorithm
	Grandoni Algorithm

	Hardware and Implementation

	Results
	Size 10
	Size 100
	Size 1000

	Conclusion

