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ABSTRACT 
 

A Machine Learning Approach for Early Diagnosis of Transthyretin Amyloid 

Cardiomyopathy Among Heart Failure Patients 

 

Tanjim Ahmed 

 

Transthyretin Amyloid Cardiomyopathy (ATTR-CM) is a rare, progressive, and fatal disease. 

Prevalence of ATTR-CM ranges from 4 to 17 per 100000 cases where the mean survival time is 

less than 4 years. It has a history of being underdiagnosed and misdiagnosed. The diagnosis delay 

has a weighted mean of 6.1 years for wild-type ATTR-CM. Low awareness, the necessity of 

invasive procedures, and lack of treatment are the key reasons for delayed diagnosis. But, with the 

introduction of non-invasive tests like nuclear scintigraphy with 99mTC-PYP and the disease 

modifying drug Tafamidis, the diagnosis delay signifies a missed opportunity to increase life 

expectancy by early treatment. Studies show that mean life expectancy can be increased by 5.46 

years by early treatment if the 6.1 years of diagnosis delay can be eliminated, whereas the current 

mean survival time is less than 4 years. Though there is no definitive symptom for it, studies have 

found out some key prognostic flags: symptoms and comorbidities that are co-existent with ATTR-

CM. A prediction model can be developed using the electronic health records (EHR) information 

in hand to diagnose it early and aid to increase the mean life expectancy. This study aims to identify 

the top phenotypes that can be used for early diagnosis of ATTR-CM and to predict ATTR-CM 

using machine learning models among heart failure patients. Patient records from North American 

healthcare organizations were derived from an EHR system ‘TrixNetX’ for this study. Several 

statistical analyses (e.g., logistic regression, forward and backward elimination, LASSO, and 

Survival analysis) were utilized to find out the top diagnostic procedures and comorbidities related 

with the diagnosis of wild-type ATTR-CM. These key factors were used as features to train 

machine learning models (e.g., XGBoost, Random Forest) and predict ATTR-CM early among 

heart failure patients. The study results found the key factors related to diagnosis delay and 

predicting early cases to improve life expectancy and quality of life.  
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1. INTRODUCTION 

In medical science, the diseases that affect a small percentage of the population are classified as 

rare diseases. In the United States (US) the diseases that affect less than 200,000 people and in EU 

the diseases that affect fewer than 1 in every 2,000 people are classified as rare diseases [1]. There 

are approximately 7,000 diseases which are classified as rare diseases. Around 400 million people 

are affected by these diseases worldwide and only 5% of these diseases have approved treatments 

[2]. Patients with rare diseases often face challenges in obtaining accurate diagnosis. The certain 

disease conditions may not be familiar to many doctors or clinicians which results in delay in 

diagnosis or misdiagnosis. 

ATTR-CM stands for Transthyretin Amyloid Cardiomyopathy. It is a potentially fatal disease 

which is caused by transthyretin protein. The liver produces transthyretin which is a transport 

protein and carries thyroxine hormone and retinol through the bloodstream. Faulty, irregular 

misfolded protein or fibril clumps build up in the body including the left ventricle walls of the 

heart. Due to the thickening of left ventricle, the main pumping chamber, the heart fails to relax 

and fill with blood accurately, and squeeze to pump blood out effectively which can result into 

heart failure [3]. 

ATTR-CM is of two types: Hereditary and Wild type. ATTRv-CM (hereditary ATTR-CM) is the 

rarer of the two and is associated with specific geographical and ethnic groups. It is mostly 

observed in African-American population and it is present in around 3-4% of the cases. ATTRv-

CM occurs due to autosomal dominant mutation of the transthyretin (TTR) gene. The more 

common of the two types is ATTRwt-CM (wild-type ATTR-CM) which is associated with age 

related misfolding or wild-type allelic constitution of the TTR gene. Symptoms start from the age 

60 for this type and it is predominant in males [4].  

Prevalence of ATTR-CM is mostly under-estimated due to non-specific symptoms, phenotypic 

variability, and limited awareness. Symptoms overlap is one of the main reasons for ATTR-CM 

being mis-diagnosed. The associated symptoms are close to that of hypertensive heart disease or 

heart failure with preserved ejection fraction (HFpEF). HFpEF is prevalent in more than half of 

heart failure patients and almost half of the patients with HFpEF have increased left ventricular 

wall thickness. Prior studies show that 5% to 17% of the patients with HFpEF had prevalence of 
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ATTR-CM [5]. The prevalence of ATTR-CM in patients with HFpEF and left ventricular wall 

thickness of >12mm screened with bone scintigraphy was 13% [6]. The common symptom onset 

appears with heart failure symptoms or arrhythmias. The disease can cause various non-cardiac 

symptoms as well, such as: carpal tunnel syndrome, distal biceps tendon rupture, lumbar spinal 

stenosis, aortic stenosis, atrioventricular block, atrial fibrillation, and intestinal disorders [6] [7].  

Another reason contributing to the diagnosis delay of ATTR-CM is the need for invasive diagnosis 

of the heart tissue by cardiac biopsy. But currently imaging modalities like bone scintigraphy, 

speckle-tracking echocardiography, and cardiac MRI assist with non-invasive diagnosis of cardiac 

amyloidosis along with the invasive tests. Also, TCPYP (technetium TC 99m pyrophosphate 

single photon emission computed tomography) scan attributes to the non-invasive and accurate 

diagnosis of ATTR-CM.  

The unavailability of a disease modifying treatment was another factor to diagnosis delay. But the 

situation changed in recent years since the US FDA (Food and Drug Administration) and the EMA 

(European Medicines Agency) approved treatment by Tafamidis was established. Tafamidis is a 

transthyretin (TTR) stabilizer. Treatment by Tafamidis reduced all-cause mortality compared with 

a placebo (HR: 0.70 [95%CI: 0.51-0.95]; p= 0.0259) in its Phase III trial. It has also shown 

promising effects on health-related quality of life (HRQoL) and functional capacity of the patients 

[4].  

ATTR-CM has poor prognosis, and the typical survival form diagnosis is 2-6 years [4] with a 

median of less than 4 years [7]. Along with gradual decline in HRQoL and functional capacity, 

ATTR-CM patients have a usually high morbidity, hospitalization, and mortality. With the 

progression of the disease, patients suffer declining symptoms like fatigue, reduced exercise 

capacity, dyspnea or shortness of breath and less functional capacity.  

Diagnosis delay is greatly observed in ATTR-CM cases and for several years after symptom onset 

patients remain un-diagnosed or mis-diagnosed. Delayed diagnosis often results in more critical 

conditions at the time treatment starts and reduces the capacity of the treatment. With the recent 

use of non-invasive procedures for diagnosis and the use of Tafamidis to modify the disease, 

diagnostic delay signifies a missed opportunity for early treatment to extend mean survival years 

and improve quality of life of the patients. 
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The clinical and experimental studies on ATTR-CM have increased over the last few years 

focusing on the patient characteristics, co-morbidities, diagnosis delay and potential ‘red flags’. 

There remains a large gap in the knowledge of epidemiology of the disease as most of the research 

were based on subgroups of the population and covering shorter periods of time. Most of the 

research studies are accomplished without limited real-world evidence. Artificial intelligence 

methods such as machine learning models have been used to investigate the key factors related to 

diagnosis delay and predict ATTR-CM in heart failure patients using patient characteristics, 

morbidities, and the important red flags for identifying ATTR-CM in comparison with HF patients. 

[6] [7] 

In this study we aim to use statistical methods to find out the important factors like using the 

procedures, lab tests and morbidities in the real-world patient history. Based on these important 

patient characteristics, machine learning models can be used to predict the prevalence of ATTR-

CM in patients. They can predict future data based on previous characteristics. These data-driven 

models usually require a large amount of data for training and testing. 

For this research we have obtained patient records from TriNetX which is an electronic health 

record (EHR) system. The dataset contains patient records from 63 health care organizations of 

North America. We obtained medical records of 2.1 million Heart Failure patients in North 

America, which is a large dataset for training and testing machine learning models.  

The objectives of this research are thus given below: 

a) To use statistical and data mining analysis to find out the key procedures and combinations 

of these which are key variables in predicting ATTR-CM early in heart failure patients. 

b) To find out the top morbidities and combination of these for predicting of ATTR-CM 

among heart Failure patients earlier. 

c) To use the combination of all the above-mentioned variables as predictors in machine 

learning models and predict the risk of ATTR-CM in heart failure patients earlier.  

The rest of the thesis has been divided into the following sections. Chapter 2 has highlighted the 

literature review based on research works related to Prevalence of ATT-CM, Diagnosis delay in 

ATTR-CM diagnosis and machine learning (ML) based approaches to predict ATTR-CM. The 

data format and dataset are described in chapter 3.  In Chapter 4, the methodologies considered for 
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this work are described. The proposed model and its subsections are elaborated in Chapter 5. The 

results are discussed and explained in Chapter 6. Chapter 7 contains a discussion on the findings 

from this study. Finally, the work is concluded in Chapter 7. 
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2. LITERATURE REVIEW 

This chapter is divided into three sections where the first section is about research works related 

to prevalence of ATTR-CM. There are various directions where researchers have walked to predict 

the prevalence of ATTR-CM in patients based on patient characteristics, morbidities, and health 

records. In the second section, some studies on the diagnosis delay for ATTR-CM is discussed. In 

the last section, studies that used machine learning approaches to identify predictive features like 

patient characteristics and morbidities for ATTR-CM are discussed. 

2.1 Research Works on Prevalence of ATTR-CM  

There has been several research works on the prevalence of ATTR-CM in patients over the years. 

With the increase in awareness of the disease, its prevalence has been studied on patient groups 

from different geographical locations. Some papers regarding this will be discussed here. 

AbouEzzeddine OF, Davies DR, Scott CG, et al., in their study [5] aimed to determine the 

prevalence of ATTR-CM in patients with HFpEF and assessed the clinical characteristics of the 

patients. The study was conducted on a community cohort of 1235 HF patients in southern 

Minnesota. Out of them, 286 patients underwent screening with TCPYP and 18 were found with 

ATTR-CM. The authors mainly studied on the clinical characteristics and outcomes of the two 

groups: with ATTR-CM and without ATTR-CM. In this study, 6.3% of the patients with HFpEF 

had ATTR-CM and for this the authors emphasized on the importance of adding ATTR-CM in the 

differential diagnosis of HFpEF. It was found that ATTR-CM was prevalent in older patients (age 

70 and above), more likely in men (10.1%) and the patients had comorbidities as hypertension, 

diabetes, chronic kidney disease, carpal tunnel syndrome, and spinal stenosis. The authors also 

found that the patients with ATTR-CM had worse outcome with a higher rate of all-cause mortality 

and heart failure hospitalization. The study's retrospective methodology made it difficult to 

demonstrate a link between ATTR-CM and results. Also, the study was conducted on a fraction of 

the total population from a single healthcare center. 

Prevalence of ATTR-CM in HF patients in Sweden was estimated by Lauppe RE, Liseth Hansen 

J, Gerdesköld C, et al. using the Swedish National Patient Register [7]. In the patient data used, 

there was no definitive diagnosis code for ATTR-CM, so the authors used a combination and 

elimination-based model to identify the ATTR-CM cases. They performed statistical analyses to 
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find out the patient characteristics, prevalence, mortality, and Red Flag diagnosis. The study found 

that 30% of the total cases were female and 70% were male with a mean age of 72.2 years. The 

prevalence of ATTR-CM was 7.4 per 100000 patients in 2018 and the mean survival time was 

37.6 months after diagnosis, whereas the mean survival time for matched HF patients was 72.7 

months. The study found some Red Flag diagnoses like carpal tunnel syndrome, spinal stenosis, 

hearing loss and atrioventricular and left bundle branch block. Carpal tunnel syndrome was found 

statistically significant with 17% of the ATTR-CM patients vs 3% of the matched HF patients and 

was diagnosed 6.7 or more years before ATTR-CM. 

2.2 Research Works on Diagnosis Delay for ATTR-CM 

Diagnosis delay is a major concern in the case of ATTR-CM. Delay and misdiagnosis prevents 

early treatment and contribute to the low survival rate for this disease. In this section some 

literatures on the diagnosis delay and the benefit of early diagnosis are reviewed. 

Clinical history of ATTR-CM patients and comparison between the outcomes and quality of life 

(QOL) among patients was studied by Lane, Thirusha, et al. for patients in UK. The research was 

conducted on 711 ATTRwt-CM, 205 ATTRv-CM with V122I variant and 118 ATTRv-CM with 

non-V122I variant patients between the years 2000 to 2017. The study found median diagnostic 

delay of 39 months with more than 4 years for wild-type ATTR-CM after report of cardiac 

symptoms for 42% of the patients. The patients with diagnosis delay had a median of 17 hospital 

visits during 3 years before the diagnosis. The median survival from diagnosis were 31 months, 

57 months and 69 months for V122I variant ATTRv-CM, ATTRwt-CM and non-V122I variant 

ATTRh-CM respectively. The study also showed the role of non-invasive procedures in diagnosis 

of the disease. It was mentioned that the survival increased with median 60.2 months from 46.3 

months after the introduction of 99mTc-DPD scintigraphy. Before this, ATTR-CM was diagnosed 

mostly by invasive procedures like 63% diagnosis were via biopsy, usually endomyocardial biopsy 

[8].   

Rozenbaum, M.H., Large, S., Bhambri, R. et al. reviewed a large number of literatures focusing 

diagnosis delay for ATTR-CM, the rate of delayed diagnosis and the clinical outcomes of the 

ATTR-CM patients in their literature [9]. Out of 59 initial articles, 23 were included in this review. 

The weighted means of the mean and median of diagnostic delays reported in these 23 articles 

were 6.1 and 3.4 years for ATTRwt-CM and 5.7 and 2.6 years for ATTRv-CM. The articles 
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reported that 34-57% of the patients were misdiagnosed [9]. In most studies, the symptoms that 

were regarded to be the first symptom for ATTR-CM were unspecified. Some of the studies 

considered shortness of breath, fatigue, and peripheral edema as cardiac symptoms. Some studies 

considered carpal tunnel syndrome as symptom onset or the first symptom. The studies found the 

median diagnostic delay to be similar for different age and sex. The review also found that 

diagnosis delay was longer for patients who had cardiomyopathy phenotype predominant in their 

history than those who had a history of mixed phenotype. Carpal tunnel syndrome was found to 

be associated with the longest delays and this was followed by erectile dysfunction, ocular 

problems, and peripheral neuropathy. Misdiagnosis was also observed in significant number of 

cases and in some cases, patients were given diagnosed with diseases that overlapped with ATTR-

CM. Some of these overlapping diagnoses were hypertensive heart disease, hypertrophic 

cardiomyopathy, and ischemic heart disease [9].  

A study to assess the feasibility and efficacy of screening for ATTR-CM in everyday clinical 

practice was presented by Witteles, Ronald M., et al. [10] A list of diagnoses that raise suspicion 

for ATTR-CM and should prompt further investigation by definitive diagnosis procedure for 

ATTR-CM were discussed in this study. Among the diagnoses, HFpEF and restrictive 

cardiomyopathy, family history of cardiac disease, carpal tunnel syndrome, spinal stenosis and 

other peripheral neuropathies are important. Rapidly progressive HF, low voltage on ECG, 

ventricular wall thickening which is disproportionate to hypertension, and evidence of cardiac 

amyloidosis on cardiac MRI are some of the Red Flags for ATTR-CM. Authors have noted that 

non-invasive tests like the use of biomarkers such as BNP and troponin, imaging modalities such 

as echocardiography, cardiac MRI and nuclear scintigraphy can be used instead of invasive 

procedure such as endomyocardial biopsy for the definitive determination of ATTR-CM. Genetic 

testings can also be used to identify individuals suspected with ATTR-CM [10].  

The benefits from timely diagnosis of ATTR-CM and start of early treatment with Tafamidis was 

studied in [4]. In this study a discrete-time, cohort-level Markov state-transition disease simulation 

model was established and used to predict health outcomes for late diagnosis with treatment cases 

and early diagnosis with treatment cases. For wild-type ATTR-CM, the diagnosis delay considered 

in this study was 6.08 years and it was found that mean life expectancy can be extended by 5.46 

years by early or timely diagnosis and treatment. For hereditary ATTR-CM the mean diagnosis 
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delay was 5.67 years and life expectancy can be extended by 7.76 years by timely diagnosis and 

treatment. Also, the corresponding quality-adjusted life years gains were found to be 4.50 and 6.22 

years. Patients with delayed diagnosis usually have high healthcare resource utilization during the 

diagnostic journey, including hospitalization and a range of investigations for other conditions, but 

this aspect was not broadly studied in this research. [4] 

2.3 Research Works on Machine Learning Based Approcahes in 

ATTR-CM Study 

Diagnosis of ATTR-CM can be benefited through the implementation of statistical and machine 

learning methods. Some literatures are discussed below which used machine learning approaches 

to study the disease, find out the important features for it and detect it earlier. 

Huda, A., Castaño, A., Niyogi, A. et al., et al. used a machine learning approaches to find out 

patients who have risk of developing ATTR-CM. The authors used medical claims data from 

IQVIA and electronic health record or EHR data from Optum and NMEDW, to train, test and 

validate their machine learning model. The data included patient demographics, clinical diagnoses, 

laboratory results and medication use. The authors used three supervised machine learning 

algorithms: logistic regression, XGBoost and random forest, to find out the features important for 

predicting ATTR-CM. The comparison found out that Random Forest model was the best model 

and had the highest AUROC of 0.93. They also used logistic regression analysis to compare 

individual ATTR-CM associated phenotypes and combinations of these phenotypes among the 

case and the control cohort. Using the top ten phenotypes with the highest odds ratios, they 

obtained all the combinations containing up to five phenotypes. The top 5 phenotype and 

combination on the basis of prevalence in ATTR-CM patients were: Combined systolic and 

diastolic HF, HFpEF (52.1%); Carpal tunnel syndrome (31.9%); AF, joint disorders, HFpEF 

(29.7%); Heart block, cardiomegaly, HFpEF (28.7%); Cardiomegaly, joint disorders, HFpEF 

(28.7%). [6] 

Mitchell, Joshua D., et al. also used machine learning models to find out the key indicators or 

associated phenotypes for the disease and implemented the findings in EHR system to explore the 

real-world application of the study. The authors used Random Forest machine learning model and 

found out 9 phenotypes as features to predict ATTR-CM. From these 9 phenotypes, they created 
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another 20 combinations. They implemented their findings in EHR systems to generate 

notifications for patients who had phenotypes or combinations of phenotypes associated with high 

risk of ATTR-CM. Among the patients at risk, a high proportion had these two individual 

phenotypes: cardiomegaly; osteoarthrosis and these two phenotype combinations: carpal tunnel 

syndrome + HF, and atrial fibrillation + heart block + cardiomegaly + osteoarthrosis. [11] 
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3. DATA DESCRIPTION 

We used Electronic Health Record (EHR) data for this study. The data was extracted from TriNetX 

which is a cloud-based platform that provides real-world clinical data from a global network of 

healthcare organizations. Due to the de-identified nature of the data i.e., all protected health 

information (PHI) identifiable information was excluded.  

A brief overview of the data tables and the data dictionary is as follows: 

a) Cohort Details: This table contains the number of patients found for each cohort 

selected for data generation in TriNetX.  

b) Dataset Details: This table gives the number of total patients found and total number 

of health care organizations from which the data was taken. 

c) Patient Cohort: This table contains the patient IDs for each cohort selected in the EHR 

platform. 

d) Patient Demographic: This table contains all the demographic information for each 

patient ID. The demographics are sex, race, ethnicity, marital status, year of birth, year 

of death and patient regional location. 

e) Diagnosis: This table gives a list of all the recorded encounter IDs, diagnosis codes, 

principal diagnosis indicator, admitting diagnosis, reason for visit and date of diagnosis 

for each patient. All the diagnosis codes are of International Classification of Diseases 

ICD-9-CM & ICD-10-CM code systems. Figure 2 shows the structure of the diagnosis 

table.  

f) Encounter: This table contains information of each encounter for each patient with start 

date, end date and type of clinical visit. 

g) Lab Result: The lab tests on the patients are listed in this table with Logical Observation 

Identifiers Names and Codes (LOINC) code for the tests, date, and test results. 

h) Procedure: All the medical procedures on the patients are listed in this table with the 

procedure codes in Current Procedural Terminology (CPT), and Healthcare Common 

Procedure Coding System (HCPCS). Also, the dates of the procedures and principal 

procedure indicator are listed. 

i) Medication: This table contains list of medication for the patients with unique ids of 

the medications, codes, start date and brand. 
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Figure 1.  Data Tables Extracted from TriNetX 

 

From the figure:1 above we can deduce the usability of the tables in the dataset. The patient cohort 

gives the patient IDs for each cohort selected in the system to generate the data. For each patient 

ID we can find the demographics like sex, race, ethnicity, year of birth, year of death, region from 

the patient demographic table. Each patient might have multiple encounters and a list of that is 

given in the encounter table. For each encounter we can find patient’s vital signs, lab tests and 

their results, performed comorbidities and prescribed medications.  

For the purpose of this study, we will be using the Cohort details, patient cohort, patient 

demographic, encounter, diagnosis, procedure, lab result and medication tables. 
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Figure 2. A snapshot of the diagnosis table of the dataset 

 

To obtain the dataset from TriNetX different selection criteria was given. We wanted to obtain 

data of all the patients from North American who had reported cases of Heart Failure and ATTR-

CM. For this, we made a list of all the ICD-9-CM and ICD-10-CM codes for heart failure and used 

the ICD-10-CM code for ATTR-CM which is E85.82. We also generated 5 groups while retrieving 

the data: Patients diagnosed with HF, Patients diagnosed with ATTR-CM, Patients with HF and 

ATTR-CM, Patients diagnosed with ATTR-CM before HF, and Patients diagnosed with ATTR-

CM after HF. The data was generated on 10/16/2022 and TriNetX found a total of 2,577,621 

individual patients who matched these cohorts from a total of 63 health care organizations from 

USA.  

A table with the cohort details is given below in Table I: 

 

Cohort Name Total Number of Patients 

HF patients 2,57,7200 

ATTR-CM patients 2,431 

Patients diagnosed with HF and ATTR-CM 2,010 

Patients diagnosed with ATTR-CM before HF 1,953 

Patients diagnosed with ATTR-CM after HF 1,836 

Total number of individual patients 2,577,621 

Table 1. Cohort Details 
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The data obtained for the research has some limitations: 

• Not all the 2.5 million patients have full demographic information. There are patients who 

have some missing values for variables: year of birth, race and ethnicity. 

• The diagnosis data contains a mix of ICD-9-CM & ICD-10-CM codes. So, both older and 

newer code systems need to be considered while studying the patients. 

• The procedures data contains a mix of HCPCS, CPT, ICD-9-CM and ICD-10-CM codes. 

And in most cases principal procedure indicator is missing. 

• The lab tests data contain LOINC codes for the tests and missing principal procedure 

indicator in many cases. 

• While many patients have a long history of diagnosis, procedure and lab tests, some of the 

key cases (in this case some ATTR-CM positive patients) are probably missing some key 

information. For example, some ATTR-CM positive patients do not have any history of 

definitive tests or procedures of ATTR-CM in their records. 
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4. METHODOLOGY 

In this research we developed and utilized statistical and machine learning methods to find out the 

key procedures for early and late diagnosis of ATTR-CM and to develop a model that predicts 

ATTR-CM in patients earlier. Statistical models such as logistic regression, forward and backward 

elimination and Least Absolute Shrinkage and Selection Operator (LASSO) is selected to be used 

to find out the key procedures. The key procedures will then be validated using survival analysis. 

Machine learning models: XGBoost and Random Forest will be used to predict the prevalence of 

ATTR-CM in patients based on the procedures and the top comorbidities and their combinations 

found from previous studies. The characteristics and functions of the methods are described in the 

following sections. 

4.1 Logistic Regression 

Logistic regression is a statistical method for prediction or classification. It examines the 

correlation between a binary dependent variable and one or more independent variables and thus 

predict the probability of an event. The binary dependent variable can be in the form of yes/no, 

1/0, true/false and the independent variables may be binary, continuous, or categorical. Utilizing 

the logistic or sigmoid function, the dependent variable is expressed as a function of the 

independent variables. The logistic function converts any real-valued input into a value ranging 

from 0 to 1. The equation for logistic or sigmoid function is: 

𝑝 =
1

1 + 𝑒−𝑧
 

Here, p is the predicted probability of the event being forecasted or the positive class, z is called 

log-odds or logit which is the linear combination of the independent variables, and exp is the 

exponential function. The logistic regression model identifies the parameter values that best match 

the data by decreasing the difference between the expected probabilities and the actual outcomes. 

Maximum likelihood estimation or other optimization techniques are often employed to 

accomplish this. The cost function is set between 0 and 1 by the hypothesis of logistic regression. 

[12] 
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Figure 3. Visual illustration of logistic regression graph vs linear regression graph [13] 

After training the model, it can be used to make predictions on new data. For the new data the 

model calculates the probabilities for each observation and compares them to a threshold (usually 

0.5) and thus produces a binary classification. 

Logistic regression is frequently employed in various fields to estimate the likelihood of an event 

based on a set of predictor variables. It is also frequently employed in machine learning as an 

underlying component for more complicated models, like neural networks. 

4.2 Forward Selection and Backward Elimination 

Forward Selection and Backward Elimination are two methods used for feature selection in 

machine learning or in regression analysis. Forward selection is a stepwise approach in which 

variables are added to an empty model one by one. The process begins with a null model which 

has no predictor variables and adds variables that are strongly relevant to the dependent variable. 

The process begins with an intercept and the variable addition is continued until no additional 

variables meet the inclusion criterion. The pre-specified inclusion criterion can be a significant 

increase in model fit, lowest P-value or reduction in prediction error. [14] 

Backward elimination is also a stepwise approach, but it is opposite of the forward selection 

method. It starts with a model that includes all the predictor variables and removes variables one 

by one. The process continues until no further variables meet the exclusion criterion. The pre-

specified exclusion criterion can be same as the forward selection method. [14] 

Forward selection and backward elimination have their advantages and disadvantages. Forward 

selection can be computationally efficient as it requires fewer iterations than backward elimination. 

However, it may result in a suboptimal model if the initially selected variables are not the most 
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important ones. In contrast, backward elimination begins with a full model that includes all the 

variables and ensures that all important predictors are considered. Also, these stepwise regressions 

can tend towards overfitting if more variables with less potential are added. [14] 

4.3 Least Absolute Shrinkage and Selection Operator- (LASSO) 

Least Absolute Shrinkage and Selection Operator is a regression analysis which is used for feature 

selection and regularization. Like other regression models, it establishes relationship between a 

dependent variable and one or more explanatory variables. It is a modification of linear regression, 

and it is often used to address the overfitting in a model.  

Linear regression models find out the values of the model parameters that minimize the sum of 

squared errors between the predicted values and the actual values. On the other hand, Lasso adds 

a penalty term to the objective function which is a function of the absolute values of the parameters. 

The penalty term shrinks the coefficients of the less important features to zero and leads the model 

to select a subset of the most important features. This results in a more parsimonious model that is 

less prone to overfitting. 

The Lasso regression model can be written as follows: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀 

where y is the dependent variable, x1, x2, ..., xp are the independent variables, β0, β1, β2, ..., βp are 

the coefficients, and ε is the error term. The goal is to find the values of β0, β1, β2, ..., βp that 

minimize the objective function: 

min {(𝑦 − 𝛽0 − 𝛽1𝑥1 −  𝛽2𝑥2 − ⋯ −  𝛽𝑝𝑥𝑝)2 +  𝜆 ∑|𝛽𝑖|} 

where λ is the regularization parameter which controls the strength of the penalty term. It is a user 

defined parameter and the value of λ determines the degree of shrinkage applied to the feature 

coefficients. When λ is large the penalty term is dominant, and the coefficients are shrunk towards 

zero. This results in a sparse model with only a few non-zero coefficients. When λ is small the 

penalty term is negligible, and the Lasso regression model approaches the ordinary least squares 

regression model. [15] [16] 
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Lasso is useful when the number of features is much more than the number of observations. This 

method is robust to outliers and can handle correlated features by selecting one feature over the 

others thus addressing the multicollinearity of the features. 

4.4 Survival Analysis 

Survival analysis is a statistical method used to analyze time-to-event data and estimate the 

probability of an event or occurrence at a given time. Two important outputs of this analysis are 

the Survival function and the Hazard function. Survival function gives the fraction of population 

still at risk of experiencing the event at a specific period. It can be estimated using various methods, 

such as Kaplan-Meier estimator. Based on the observed data Kaplan-Meier estimator calculates 

the probability of survival at each point of time. If at distinct follow up times t1,t2,t3,t4,t5⋯tk, 

k patients have independent events occurring to them, then the cumulative survival probability can 

be obtained by multiplying all the probabilities of surviving in the time intervals (t1 - t2, t2 - t3, t3 - 

t4,….  ). At time tj, if the probability of being alive is denoted as S(tj), it can be calculated from the 

probability of being alive at time tj−1 which is denoted as S(tj−1), the number of patients alive just 

before time tj which is denoted as nj, and the number of events at time tj which is denoted as dj . 

The equation is:  

 

where t0=0 and S(0)=1. S(t) remains constant between the times of events. Thus, the estimated 

probability is a step function, and it changes value at the time of each event. [17]  

Another important concept in survival analysis is the hazard function. Given the event has not 

occurred yet, hazard function gives instantaneous rate at which events might occur at a given time 

in future. The hazard function can be estimated using various parametric and non-parametric 

models, such as Cox proportional hazard model.  

Survival analysis also involves censoring which occurs when some of the individuals in the study 

do not experience the event or have missing data. Right-censoring, left-censoring, and interval-

censoring are common in case of survival analysis. 

Survival analysis can also be performed on repeated measures. A subject may have repeated 

measures for multiple time dependent covariates. The best way to model such dataset is by 
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introducing time intervals between each type of event for a subject. Repeated events survival 

analysis has applications in clinical trials to estimate the time-to-event outcomes of different 

treatments. It also has application in reliability engineering to estimate the failure rates of products 

or systems, and in social sciences to estimate the time to outcomes of different policies. [17]  

4.5 Extreme Gradient Boosting (XGBoost)  

XGBoost stands for Extreme Gradient Boosting. It is a decision tree-based Machine Learning 

technique and is widely used for regression, classification, and prediction tasks. It is highly 

considered for small-to-medium structured or tabular data for being a decision tree-based 

algorithm. 

Decision trees are used by XGBoost as the base or weak learners in its ensemble. Decision trees 

are straightforward models that use hierarchical structure of binary splits to relate input data to 

output targets. Each tree has nodes and leaves, where each node stands for a feature and a threshold 

and each leaf for a prediction value. The performance of the model is quantified by an objective 

function, which XGBoost optimizes. A loss function and a regularization term make up the two 

parts of the objective function. The regularization term regulates the model's complexity and aids 

in preventing overfitting, while the loss function measures the discrepancy between anticipated 

and actual values. [18] The objective of XGBoost is:  

Obj(θ) = L(θ) + Ω ( θ )  

where L(θ) = ∑ 𝑙(𝑦𝑖, 𝑦𝑖)̂
𝑛
𝑖=1  is the loss function, 𝑦𝑖is the target and  𝑦�̂� is the prediction. Ω ( θ ) =  

∑ 𝛺(𝑓𝑘)𝑘
𝑘=1  penalizes the complexity of the model. 

The boosting methodology used by XGBoost is based upon the concept that each subsequent weak 

learner strives to fix the errors committed by the ones before them. It adds one tree at a time as it 

develops. The model calculates the gradients of the loss function with respect to the predicted 

values in each round of boosting. The following tree is then trained to reduce these gradients or 

errors, successfully fitting the prior trees' residuals. Gradient boosting is a method that XGBoost 

employs to calculate the gradients. The gradient of the loss function is calculated in relation to the 

expected values from the previous iterations. The gradient reveals the direction and size of the 

mistake, which enables following trees to concentrate on the regions where the model performs 

poorly. XGBoost builds decision trees level by level. The root node, which serves as a 
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representation of the complete dataset, is created first. To reduce the loss function, it then 

iteratively separates the nodes depending on various attributes and thresholds. A stopping 

requirement, such as reaching the maximum depth of the tree or having too few samples in a node, 

must be satisfied before the splitting process can cease. To manage the complexity of the trees and 

avoid overfitting, XGBoost uses regularization techniques. The objective function is given a 

regularization term that penalizes large or complicated trees.   

After the trees are built, XGBoost uses pruning strategies to cut off any branches that are 

superfluous or unimportant. Pruning helps the model become simpler and less complex, improving 

generalization and performance on untested data. XGBoost creates predictions by combining the 

results of all the decision trees after the boosting rounds are finished and the ensemble of trees has 

been constructed. While predictions for classification issues are often modified using a sigmoid 

function to provide probabilities or class labels, predictions for regression problems are typically 

the average of the leaf values. To improve its performance, XGBoost employs a number of 

optimization approaches. To efficiently create trees and generate predictions, parallel processing 

is used. Additionally, it offers approximate methods like histogram-based splitting and distributed 

computing that can speed up processing without compromising accuracy. 

 

Figure 4: A general architecture of XGBoost [18] 
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4.6 Random Forest 

Random Forest is a well-known machine learning technique that creates numerous decision trees 

during training and then combines their forecasts to produce the final prediction. It is renowned 

for its dependability, adaptability, and capacity to manage high-dimensional datasets. 

Both Random Forest and XGBoost are ensemble algorithms. But the ways in which they generate 

and aggregate the weak learners differ. XGBoost produces the ensemble sequentially where each 

new tree corrects the errors of the preceding ones. On the other hand, Random Forest builds an 

ensemble of decision trees independently. XGBoost employs gradient boosting, which minimizes 

the gradients or errors of the earlier predictions in order to optimize the objective function. On the 

other hand, Random Forest uses Bootstrap Aggregating, also known as Bagging, as a method to 

build a variety of decision trees. By sampling with replacement, bagging involves splitting up the 

initial training data into numerous subsets. Each subset is used to train a different decision tree, 

commonly referred to as a bootstrap sample. [19] 

 

Figure 5: A general structure of Random Forest [20] 
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When building decision trees, Random Forest uses random feature selection in addition to data 

sampling. A random subset of features is picked at each split as opposed to taking into account all 

features. Because of the unpredictability, the decision trees are more diverse because each one 

concentrates on a distinct group of features. Each decision tree in a Random Forest is 

independently built using a random subset of features and a subset of the training data. Without 

any pruning, the trees are often developed to their full depth, allowing them to capture complex 

relationships in the data. After each decision tree is built, the results are combined using Random 

Forest to get the final prediction. To get the outcome for regression problems, the predictions are 

frequently averaged. The majority voting method is used to choose the final prediction in 

classification problems, which is the most frequent class predicted by the trees. Based on the 

knowledge acquired by each feature in the ensemble, Random Forest delivers a measure of feature 

relevance. It measures the value of each feature in the prediction process by averaging the 

importance ratings from all the trees. When choosing features and comprehending the underlying 

relationships in the data, this knowledge can be helpful. In conclusion, decision trees are used by 

both Random Forest and XGBoost, but they differ in how they are built and how weak learners 

are combined. While XGBoost employs gradient boosting to continually improve the ensemble, 

Random Forest focuses on producing different trees using bagging and random feature selection. 
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5. THE PROPOSED MODEL 

In this chapter, firstly, we discussed how the cohorts are generated from the data. Secondly, the 

method of features selection is explained. Then, the process of predicting ATTR-CM in patients 

is described. Finally, the potential contributions of our proposed model are highlighted. 

5.1 Cohort generation 

To get the important features or procedures for early diagnosis of ATTR-CM, we generated few 

cohorts:  

1. Patients diagnosed with HF 

2. Patients diagnosed with ATTR-CM 

3. Patients diagnosed with HF and ATTR-CM 

4. Patients diagnosed with only HF and not ATTR-CM 

5. Patients diagnosed with ATTR-CM before HF 

6. Patients diagnosed with ATTR-CM after HF 

7. Patients diagnosed with ATTR-CM and HF on the same date 

All the data cleaning and cohort generation has been done using Python, and the Dask, Pandas and 

Numpy libraries. The steps of cohort generation are as follows: 

Step 1: From the diagnosis dataset we first filtered out the patients who had ATTR-CM diagnosis 

history. We used the Dask library package of python to read and compute the large dataset. From 

the diagnosis code column, we filtered out the cases which had ICD-10-CM code E85.82 which is 

exclusively for ATTR-CM diagnosis. There were multiple diagnoses for many individuals, that is 

why we sorted the table by date and only kept the first diagnosis. A total of 2,431 patients found 

who were diagnosed with ATTR-CM. 

Step 2: Next, we filtered out the patients who had Heart Failure diagnosis. There might be different 

scenarios for HF diagnosis and all of that are not relevant to our study such as post procedural HF. 

So, we first created a list of ICD-9-CM and ICD-10-CM codes that are relevant. We used the codes 

are shown in the table below:  
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Code System Diagnosis Codes 

ICD-9-CM 428, 428.1, 428.2, 428.21, 428.22, 428.23, 428.3, 428.31, 428.32, 428.33, 

428.4, 428.41, 428.42, 428.43, 428.9  

ICD-10-CM I50, I97.131, I509, I09.81, I97.130, I503, I97.13, I11.0, I11.9 

Table 2: ICD-9-CM & ICD-10-CM codes for heart failure diagnosis 

Using these codes, we found all the relevant cases of HF. We then sorted the data by date and kept 

only the first diagnosis cases. We found a total of 2568764 cases of HF. 

Step 3: Then using inner merge on the first two cohorts we filtered out the patients who were 

diagnosed with both HF and ATTR-CM. We found a total of 2,025 patients. 

Step 4: Using left merge on the previous two cohorts we filtered out the patients who were 

diagnosed with only HF and no ATTR-CM. We found a total of 2,566,739 patients. 

Step 5: We then created the last three cohorts with patients who had ATTR-CM diagnosed after 

HF diagnosis, before HF diagnosis and on the same date of HF diagnosis. We found 1531, 222 

and 272 patients for these three criteria, respectively. 

Step 6: Then the time difference between HF and ATTR-CM diagnosis was calculated for our 

focused group which is patients diagnosed with ATTR-CM after HF. 

Step 7: Lastly, we included all the demographic variables from the patient dataset to each of these 

cohort datasets. Age at which ATTR-CM was diagnosed was calculated from the year of birth to 

the date of ATTR-CM diagnosis. 

A summary table of the cohorts is given below:  

Cohort Name Total Number of Patients 

Total ATTR-CM patients 2,431 

Total HF patients 2,568,764 

Patients diagnosed with HF and ATTR-CM 2,025 

Patients diagnosed with only HF and no ATTR-CM 2,566,739 

Patients diagnosed with ATTR-CM after HF 1,531 

Patients diagnosed with ATTR-CM before HF 222 

Patients diagnosed with ATTR-CM and HF on same date 272 

Table 3. Summary of the cohort generated 
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Figure 6: Flow Diagram of Cohort Generation 

 

5.2 Features Selection by Statistical Analysis 

Statistical analysis was used to find out the top features for the prediction model. The goal was to 

get a list of top procedures that contribute to the early diagnosis of ATTR-CM. Our focus cohort 

was the 1531 patients who had ATTR-CM diagnosed after HF. The tasks in this section were 

conducted only on this group and the steps are given below: 
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Step 1:  First, from the procedure dataset we filtered out all the procedures performed on the 

patients who were diagnosed with ATTR-CM after HF.  

Step 2: We then took only the procedures that were performed in the time window between the 

patients’ HF and ATTR-CM diagnosis.  

Step 3: Grouping the patients with procedure codes and date we created a table which contains 

how many times each patient had each procedure performed on them. We also created a table 

which shows the frequency of occurrence for each procedure. 

Step 4: To find the procedures that are important to diagnose ATTR-CM, we first made a list of 

all the procedures used individually or as a combination to detect ATTR-CM. We used the 

following sources to list the procedures and then found out the codes for them. 

We found a total of 12 groups of procedures and 57 unique codes for these procedures. The codes 

are in CPT, HCPCS and ICD-10-CM system. 

Step 5: Next, we filtered out the ATTR-CM specific procedure occurrences in our focused group 

between the time of their HF and ATTR-CM diagnosis. We also calculated the occurrence of each 

procedure for each patient and the time difference of the procedure occurrence from the diagnosis 

of ATTR-CM.  

Out of 1531 patients we found a total of 1365 patients with a record of procedures in the selected 

timeframe.  The 166 patients who are missing from this list might not have a full record of their 

medical visits. Out of this 1365 patients, we found 1092 patients with the ATTR-CM specific 

procedures between the HF and ATTR-CM diagnosis. The missing 273 patients might not have a 

full record of their medical visits or might have the procedures in different code system format. 

For these 273 patients, we have made a list with the procedures they had between the selected time 

window to discuss with medical practitioners.  

Step 6: We then sorted the grouped data for patients and codes by date and took only the last 

occurrence of each procedure for each patient. From this data we generated a box plot to study the 

procedures responsible for diagnosis delay. 
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Figure 7. Diagnostic algorithm for patients with suspected cardiac amyloidosis [21] 

 

Step 7: To address diagnosis delay we then divided the patients into two groups: early and late 

diagnosis groups. For this study we considered the procedures performed in the 90 days prior to 

the diagnosis of ATTR-CM to be important as these procedures resulted in the definitive diagnosis 

of the disease. So, 90 days was set as the threshold for early diagnosis. If a patient had any of the 

ATTR-CM specific procedure in the 90 days prior to his ATTR-CM diagnosis, we refer it to early 

diagnosis. On the contrary, if a patient did not any of the ATTR-CM specific procedures in the 90 

days prior to ATTR-CM diagnosis, it means the procedure or combination of procedures the 

patient had has a higher delay, and hence these are referred as late diagnosis in our study. 
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Clinical Tests Findings 

ECG Normal or low ECG voltage; pseudo-infract pattern; atrioventricular 

block; bundle branch block 

ECHO Increased left or right ventricular wall thickness; increased atrial 

septal thickness; impaired longitudinal strain; apical sparing pattern 

by longitudinal strain; thickened valve leaflets; increased LV filling 

pressure; pericardial effusion 

CMR Increased biventricular wall thickness; increased LV mass, diffuse 

subendocardial or transmural late gadolinium enhancement, 

increased native non-contrast T1 and ECV 

99mTC bone scintigraphy 

(DPD/PYP/HMDP) 

Grade 2/3 myocardial uptake; 

Serum cardiac 

biomarkers 

Increased BNP or NT-proBNP levels, increased troponin T or 

troponin I level 

Table 4: Clinical Tests and Findings Potentially Suggestive of ATTR Amyloidosis [22] 

 

Step 8: To study the procedures contributing to early diagnosis, we created a box plot for 

procedures against the time of last occurrence prior ATTR-CM diagnosis. 

Step 9: A binary data frame was generated for statistical analysis. The procedure codes were taken 

as independent variables and valued as 0 if a patient did not have that procedure or 1 if the patient 

had the procedure. We also added patient demographics: age, sex, ethnicity and race as 

independent variables. The dependent variable was the criteria of late and early diagnosis. We 

have considered the early diagnosis 1 and late diagnosis 0.  

Step 10: Logistic regression, Forward and Backward elimination, and LASSO was used for 

statistical analysis on the data. From these analyses the variables, in this case the procedure codes 

were ranked based on their p-values and odds ratios. Comparing the four analyses, the top 

procedures or features were selected.  
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Figure 8: Box Plot for last occurrence of procedure to ATTR-CM diagnosis 

5.3 Propensity Score Matching 

To generate the case and control cohorts, propensity score matching was done. The control group 

was created from the 2566739 HF patient who had no ATTR-CM diagnosed. For generating the 

control cohort, patient who did not have their year of birth and sex on the dataset were dropped. 

The number of HF without ATTR-CM patient was 1:1 propensity score matching was done based 

on the age, sex, duration of medical history and number of hospital visits of the patients.  

Step 1: The procedure and patient table were used for creating the dataset for propensity score 

matching. Patient sex, and year of birth was added to the procedure table from the patient table. 

Step 2: Patient age was calculated form the date of first ATTR-CM diagnosis for the case cohort 

and first HF diagnosis for the control cohort. Finally, the rows with unknown demographics were 

dropped. 
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Step 3: Number of hospital visits was counted based on individual encounter IDs for each patient. 

Duration of medical history was found by subtracting the year of the first encounter latest. 

Step 4: 1:1 propensity score matching was done using R programming language taking age, 

number of hospital visits and duration of medical history as continuous values, and sex as factors. 

Binary column for ATTR-CM was the logical values.  

For matching, the nearest neighbors method was used. Other matching methods available were 

exact matching, caliper matching. With regards to our example, for each case in the patient sample 

exactly one case in the population sample was matched. For 1094 cases, equal number of matched 

control patients was found.  

  Control Group Case Group p 

n 2095642 1094  

Age (mean (SD)) 65.49 (14.23) 76.00 (8.47) <0.001 

sex (%)   <0.001 

   F 965040 (46.0) 198 (18.1)  

   M 1130367 (53.9) 896 (81.9)  

   Unknown 235 (0.0) 0 (0.0)  

number_of_visits (mean (SD)) 73.16 (123.69) 143.23 (158.83) <0.001 

duration_of_medical_history (mean (SD)) 3.07 (5.28) 6.38 (5.81) <0.001 

Table 5: Patient characteristics before propensity score matching 

 

  Control Group Case Group p 

n 1094 1094   

Age (mean (SD)) 76.24 (8.64) 76.00 (8.47) 0.506 

sex = M (%) 891 (81.4) 896 (81.9) 0.825 

number_of_visits (mean (SD)) 118.09 (136.14) 143.23 (158.83) <0.001 

duration_of_medical_history (mean (SD)) 6.90 (7.44) 6.38 (5.81) 0.07 

Table 6: Patient characteristics before propensity score matching 
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Figure 9: Distribution of propensity scores in all cohorts 

5.4 Survival Analysis 

To identify and evaluate the impact of the important procedures found from the statistical models, 

survival analysis was employed. Both case and control cohort were used to do the survival analysis. 

From the procedure table all the procedures on both the cohort patients were filtered. Then only 

the top three procedures based on P-values from the statistical models were taken. A dataset was 

created for survival analysis with patient ids, procedure codes, time intervals, age, sex and ATTR-

CM diagnosis columns. The initial date of observation was selected to be the first HF occurrence 

for each patient. Time intervals were calculated for each procedure for each patient.  

Survival analysis was done on R programming language using the ‘survival’ and ‘survminer’ 

packages. Survival or Kaplan-Meier curve was generated, and Cox proportional hazard model was 

fit.  
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5.5 Prediction of ATTRwt-CM by ML Models 

In the last stage of the study, machine learning models were used to predict ATTRwt-CM for the 

cohorts using the important procedures and the comorbidities found from previous studies. The 

tasks done for this section are given below:  

Step 1: For the prediction models, some features were selected from the reference study by Huda, 

A., Castaño, A., Niyogi, A. et al. [6]. In their study they used logistic regression to find out the 

important comorbidities and their combinations as features to predict the prevalence of ATTRwt-

CM. From the table of top cardiac and non-cardiac phenotypes predictive of ATTRwt-CM, the top 

10 phenotypes based on odds ratio (95% CI) was selected for this study. And from the table for 

combination of phenotypes based on their ICD codes and their effect on ATTRwt-CM, top 10 

phenotype combinations were selected based on the true positive scores.  

Step 2: ICD-9-CM and ICD-10-CM codes for the phenotypes selected from the literature were 

listed. The mapping of ICD codes was done at the Short Description (diagnosis description) level. 

The 2023 release of ICD-10-CM and the Version 32 of ICD-9-CM were used for the retrieval of 

the codes. A total of 520 diagnosis codes were found for the selected individual and combined 

phenotypes.  

Step 3: From the diagnosis table, for the control cohort all the diagnoses selected above were 

taken. For the case cohort the selected diagnoses occurred before the ATTRwt-CM diagnosis were 

taken. Then, for both the cohorts, the first occurrences of each diagnosis were kept. A column for 

group name of the diagnoses was added. 

Step 4: The occurrences of the top three procedures (found from the statistical analyses) on the 

case and control cohort were taken from the procedure table. Finally, the diagnosis data and the 

procedure data were joined to make the complete dataset.  

Step 5: A binary dataset was created with the patient IDs, selected diagnoses and procedures as 

features and ATTRwt-CM as event. This binary dataset was used for the initial prediction models.  

Step 6: The machine learning analyses (XGBoost and Random Forest) were performed in Python. 

The binary dataset was divided into train and test with a ratio of 80:20. Model was fitted using the 
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XGBoost and Random Forest packages for Python. For both models, accuracy, precision, recall 

and F1 score were calculated, AUROC curve was plot, and feature importance was summarized.  

Step 7: We then used XGBoost and Random Forest machine learning models with nested cross 

validation to validate our results. In the nested cross validation, in the outer loop we used 5-fold 

cross validation to select the training and the test sets. Then we used 5-fold cross validation to 

select the hyperparameters by grid search algorithm. The types and ranges of the parameters used 

for XGBoost were Number of trees: 10, 25, 50, 100, 200, 300 and Maximum depth of trees: 3, 5, 

10, 15, 20, None. The types and ranges of parameters used for Random Forest were Number of 

trees: 10, 25, 50, 100, 200, 300, Maximum depth of trees: 3, 5, 10, 15, 20, None, Minimum Samples 

Per Leaf: 2, 3, 4, 5, Minimum Samples Split: 2, 3, 5, 7, Bootstrap: True, False.  

Step 8: For the prediction we also used a larger dataset with the ratio of 1:2 for case and control 

cohort generated by propensity score matching. For this dataset we used the nested cross validation 

for train and test set split and hyperparameters tuning. For both models, accuracy, precision, recall 

and F1 score were calculated, AUROC curve was plot, and feature importance was summarized.  

Step 9: To observe the effect of these important feature in the prediction of ATTRwt-CM, the test 

dataset was modified. Data from 1, 2, 3, and 4 years prior to the ATTRwt-CM patients were taken 

for the test purpose. Then testing on this new dataset, the model evaluation parameters were 

calculated. 
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Figure 10: Flowchart of Proposed Model 
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6. RESULTS 

6.1 Selecting Important Procedures for Early Diagnosis 

From the logistic regression and LASSO the following tables were found for the ATTRwt-CM 

specific procedures. For logistic regression, the results are sorted based on the P-values and for the 

LASSO regression, the results are filtered based on the odds ratio.  

 Estimate 

Std. 

Error Pr(>|z|) OR 2.50% 97.50% 

sex M 0.453 0.179 0.012 1.573 1.105 2.235 

84134 -0.535 0.221 0.016 0.586 0.38 0.906 

93350 -1.158 0.499 0.02 0.314 0.114 0.825 

83520 0.707 0.306 0.021 2.028 1.139 3.812 

75565 0.6 0.298 0.044 1.822 1.029 3.325 

83883 0.363 0.181 0.044 1.438 1.011 2.054 

93351 -0.821 0.429 0.056 0.44 0.187 1.023 

81404 -1.23 0.657 0.061 0.292 0.076 1.064 

race White 0.264 0.149 0.076 1.302 0.974 1.746 

93308 0.267 0.176 0.13 1.306 0.928 1.854 

84484 0.305 0.202 0.132 1.356 0.911 2.016 

82553 0.452 0.322 0.16 1.572 0.843 2.991 

93505 -0.275 0.197 0.162 0.759 0.517 1.12 

83880 0.274 0.197 0.163 1.315 0.896 1.938 

76932 -0.428 0.391 0.273 0.652 0.304 1.415 

93303 -1.498 1.441 0.299 0.224 0.009 5.849 

Age -0.008 0.008 0.323 0.992 0.975 1.008 

82550 -0.231 0.239 0.334 0.794 0.498 1.273 

93306 -0.135 0.16 0.401 0.874 0.637 1.194 

81479 0.604 0.8 0.45 1.829 0.4 9.586 

Ethinicity Non-

hispanic -0.425 0.812 0.601 0.654 0.096 2.754 

93304 -0.514 1.459 0.725 0.598 0.022 16.035 

9538 0.046 0.158 0.77 1.047 0.769 1.429 

75561 -0.047 0.174 0.786 0.954 0.679 1.346 

93307 -0.124 0.626 0.843 0.883 0.266 3.252 

76498 13.738 548.692 0.98 925676.875 0 NA 

81403 -16.048 882.744 0.985 0 NA 8.40E+7 

82172 15.048 882.744 0.986 3430636.077 0 NA 

75557 0.006 0.918 0.995 1.006 0.188 8.09 

Table 7: Logistic Regression Results for ATTRwt-CM specific procedures 
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Variable Coefficient OR 

82172 0.815527266 2.260367174 

83520 0.528911477 1.697083988 

76498 0.495567046 1.641428741 

75565 0.412661761 1.510833916 

83883 0.253499312 1.288526493 

sex 0.247269887 1.280524664 

84484 0.230498879 1.259228056 

83880 0.208460951 1.231780829 

race 0.146684709 1.157988802 

93308 0.111855661 1.118351428 

82553 0.107701987 1.113715794 

Table 8: LASSO regression results for ATTRwt-CM specific procedures 

From the logistic regression, five procedures: 84134, 93350, 83520, 75565, 83883 had P-value 

less than 0.05 and can be decided to be significant in the early diagnosis of ATTR-CM. These 

codes are for Prealbumin test (84134), Transthoracic Echocardiography (93350), Serum Test - 

Transthyretin (TTR) protein analysis (83520), Cardiac MRI (75565), and Serum Test - Assay of 

free light chains; kappa and lambda with ratio (83883) respectively.  

From the LASSO regression the top five procedures based on odds ratio were 82172, 85520, 

76498, 75565, and 83883. Here 82172 is apolipoprotein testing and 76498 is MRI. From the two 

regression models, three common procedures: 83883, 83520 and 75565 were found. For the 

dependent variable in these regression models, we chose the criteria to be positive if the procedure 

was found within 90 days before ATTR-CM diagnosis or zero otherwise. The five procedures 

found form logistic regression and the eleven procedures found from LASSO are contributor to 

the event. So, it can be said that these procedures are responsible for early detection of ATTR-CM. 

6.2 Survival Analysis on the Important Procedures 

To evaluate the impact of the important procedures, survival analysis was performed. Survival 

curve was generated to observe the probability of identifying ATTR-CM using these procedures. 
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Figure 11: Survival analysis on the top procedures for early diagnosis 

On the plot, the horizontal axis (x-axis) represents time in days, and the vertical axis (y-axis) shows 

the probability of being diagnosed with ATTRwt-CM. The lines represent survival curves of the 

three procedures. Each vertical drop in the curves indicates an event or a diagnosis. The vertical 

tick marks on the curves represents that a patient was censored at this time. At time zero, the 

survival probability is 1.0 that is no patient was diagnosed.  

From the plot we can see that, at time 730 which is 2 years from the first heart failure diagnosis, 

the probability of diagnosing ATTRwt-CM with 75565 is 66.95%, 83520 is 59.71%, and 83883 is 
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58%. At time 1460 which is 4 years from the first heart failure diagnosis, the probability of 

diagnosing ATTRwt-CM with 75565 is 88.13%, 83520 is 78.35%, and 83883 is 78.25%.     

  n= 1429, number of events= 645  

   (80 observations deleted due to missingness) 

      
  coef exp(coef) se(coef)  z  Pr(>|z|) 

code83520 0.37015 1.447952 0.141699 2.612 0.009 

code83883 0.10444 1.110091 0.129737 0.805 0.4208 

Age 0.0109 1.010962 0.004015 2.715 0.00662 

sexM 0.20593 1.228666 0.095908 2.147 0.03178 

      
  exp(coef) exp(-coef) lower .95 upper .95   

code83520 1.448 0.6906 1.0968 1.911   

code83883 1.11 0.9008 0.8608 1.431   

Age 1.011 0.9892 1.003 1.019   

sexM 1.229 0.8139 1.0181 1.483   

      
Concordance= 0.522 (se = 0.016) 

Likelihood ratio test= 20.91 on 4 df, p=3e-04 

Wald test            = 20.56 on 4 df, p=4e-04 

Score (logrank) test = 20.62 on 4 df, p=4e-04 

Table 9: Cox Proportional Hazard Model Summary 

In the Cox proportional hazard model, the positive coefficients (coef) mean that the hazard (risk 

of ATTRwt-CM diagnosis) is higher. The R summary for the Cox model gives the hazard ratio 

(HR) for the subsequent groups relative to the first group, here the first group is patients with 

75565 procedures. The exponentiated coefficients are known as hazard ratios which give the 

effect size of covariates. It can be observed that 83520, 83883, Sex: Male, and Age all are 

associated with the diagnosis of ATTRwt-CM. 

Here, the p-values for the likelihood, Wald and score tests are significant This indicates that the 

model is significant. The test statistics are in close agreement in our model. In this multivariate 

analysis, the covariates Age and 83520 are significant as p-value < 0.05. However, the covariates 

sex and 83883 fail to be significant as p-value is greater than 0.05. 
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6.3 Prediction of ATTRwt-CM among Heart Failure Patients 

The demographic and clinical characteristics of patients included were taken from the 2568764-

patient dataset. Case (Patients with ATTR-CM after HF diagnosis and had the definitive 

procedures for ATTR-CM) and Control (Patients with HF diagnosis and no ATTRwt-CM 

diagnosis) patient cohorts were matched on age, sex, duration of medical history in the database, 

and number of healthcare visits. The mean age of patients across the cohorts was 76 years. There 

were similar proportions of male and female patients in both cohorts with 81.2 % male and 18.2 

% female. The total number of healthcare encounters and total duration of diagnostic 

history information in the datasets had a mean of 143 and 6.29 years respectively. For this study 

the Heart Failure (HF) diagnosis was considered as the symptom onset and the prediction was done 

for the time after HF diagnosis for all the patients. 

At first, we made our predictions using XGBoost, and Random Forest with 80:20 train and test 

split with default hyperparameters settings. Doing this we found, the Random Forest model had 

the highest accuracy of 80.14% (vs. 79.67% for XGBoost) as shown in Table 10. The model 

performed well in correctly predicting wild-type ATTR-CM HF vs. non-amyloid HF. The recall 

(sensitivity), and F1 score found were better for Random Forest model (Table 10), while the 

precision (positive predictive value [PPV]) was better for XGBoost. 

The accuracy measures how well the model's predictions were made overall. It is the percentage 

of accurate forecasts or true positives as well as true negatives out of all predictions. For example, 

in the case of the XGBoost model, the accuracy is 79.67%, which means that on about 79.67% of 

the occasions, the model accurately anticipated the outcome. In general, an accuracy of 79.67% is 

regarded as good. 

Precision is the percentage of positive instances that are accurately predicted compared to all the 

predicted positive instances of the model i.e., true positives and false positives. Greater precision 

means the model is producing fewer false positives. Recall is referred to as Sensitivity or True 

Positive Rate. It quantifies the percentage of positive cases that were correctly predicted to all 

positive instances actually observed that is true positives and false negatives. A greater recall value 

means that a bigger percentage of positive examples are being captured by the model. The 

harmonic mean of is the F1 score. It offers a balanced measurement that accounts for both recall 

and precision. A higher F1 score denotes a more favorable balance between recall and precision. 
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  XGBoost Random Forest 

Accuracy 79.67% 80.14% 

Precision 78.14% 78.08% 

Recall 80.77% 82.21% 

F1 Score 79.43% 80.93% 

Table 10: Performance evaluation of the prediction models 

We also plotted the AUROC curve to see the performance of our models. Both the models had 

area under the ROC curve or AUC of 0.87. This is a good score for a binary classification model. 

AUC score ranges from 0 to 1, where 0 is for poor classifier which suggests random guessing, and 

1 is for perfect classifier which suggests all the correct predictions were made. Our score of 0.87 

suggests that our models had good discrimination power and is capable of distinguishing positive 

and negative cases with moderately high accuracy.  

 

Figure 12: ROC Curve for XGBoost Model 
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Figure 13: ROC Curve for Random Forest Model 

The model outputs revealed the importance of the cardiac and non-cardiac clinical features that 

were associated with predicting ATTRwt-CM. Table 11 displays the feature importance for the 

International Classification of Disease (ICD) code-based cardiac and non-cardiac comorbidities 

and CPT code-based procedures used for predicting prevalence of ATTRwt-CM among heart 

failure patients. The strongest cardiac predictors included primary intrinsic cardiomyopathies, 

HFpEF, and First-degree AV block, whereas the strongest non-cardiac predictors included carpal 

tunnel syndrome, and synovitis/tenosynovitis, and ascites. The strongest combination of diagnoses 

included Combined systolic and diastolic Heart Failure + HFpEF, and Heart block + Cardiomegaly 

+ HFpEF. The strongest procedure predictive of the disease was found to be Serum Test - Assay 

of free light chains; kappa and lambda with ratio or CPT 83883. 
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Features XGBoost 

Random 

Forest 

Primary intrinsic cardiomyopathies 23.16% 19.61% 

Carpal tunnel syndrome 19.48% 10.37% 

Serum Test - Assay of free light chains; kappa and lambda with ratio 9.92% 6.22% 

HFpEF 6.61% 7.40% 

Cardiac MRI 3.76% 1.99% 

Heart block,Cardiomegaly,HFpEF 2.98% 2.56% 

Combined systolic and diastolic Heart Failure,HFpEF 2.71% 4.46% 

HFrEF 2.41% 5.89% 

First-degree AV block 2.40% 4.47% 

Serum Test - Transthyretin (TTR) protein analysis 2.32% 2.08% 

Secondary intrinsic cardiomyopathies 2.20% 6.19% 

Atrial Fibrillation,Cardiomegaly,Joint disorders,Combined systolic 

and diastolic Heart Failure 2.11% 0.99% 

Atrial Fibrillation,Joint disorders,HFpEF 2.10% 1.54% 

Pericardial effusion/pericarditis 2.10% 4.43% 

Synovitis and tenosynovitis 2.06% 2.74% 

Atrial Fibrillation 2.03% 4.91% 

Non-rheumatic heart valve disease 1.96% 5.07% 

Heart block,Joint disorders,Combined systolic and diastolic Heart 

Failure 1.88% 0.78% 

Heart block,Soft tissue disorders,HFpEF 1.83% 1.49% 

Heart block,CKD,HFpEF 1.79% 2.04% 

Atrial Fibrillation,Cardiomegaly,Soft tissue disorders,HFpEF 1.57% 1.96% 

Cardiomegaly,Joint disorders,HFpEF 1.36% 1.66% 

Heart block,Cardiomegaly,Joint disorders 1.23% 1.13% 

Table 11: Feature importance for predicting ATTRwt-CM among HF patients 

We then used nested cross validation for both machine learning models. In the outer loop of the 

nested cross validation, we used 5-fold cross validation to select the train and test set by shuffling 

the dataset. The then used 5-fold cross validation for a grid search algorithm to find out the best 

hyperparameters from our list. With the best set of hyperparameters the models were fit. Similar 

as before, in this case the Random Forest model had the highest mean accuracy of 79.14% (vs. 

77.83% for XGBoost) as shown in Table 12. The recall, and F1 score found were better for 

Random Forest model (Table 12), while the precision (positive predictive value [PPV]) was better 

for XGBoost. 
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 XGBoost Random Forest 

Mean Accuracy:  77.83% 79.14% 

Median Accuracy:  77.57% 79.39% 

Mean Precision: 79.10% 78.12% 

Median Precision:  79.43% 77.02% 

Mean Recall: 77.01% 82.07% 

Median Recall: 77.88% 82.11% 

Mean F1 Score: 77.98% 80.00% 

Median F1 Score: 79.22% 80.36% 

Table 12: Performance Evaluation of The Prediction Models with Nested Cross Validation 

 

 

Figure 14: ROC Curves for XGBoost Model with 5-Fold Nested Cross Validation 
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Figure 15: ROC Curves for Random Forest Model with 5-Fold Nested Cross Validation 

Figures 14 and 15 are the ROC curve plots for the XGBoost and Random Forest models with 5 

fold nested cross validation respectively. The AUROC for the XGBoost model had a mean of 

0.862 and the AUROC for the Random Forest model had a mean of 0.87. From the plots it can be 

seen that both the models were good fit and had good discrimination ability with high accuracy.  

Table 13 shows the mean of the feature importance of the cardiac and non-cardiac clinical features 

that were associated with predicting ATTRwt-CM. The strongest cardiac predictors included 

primary intrinsic cardiomyopathies, HFpEF, Secondary intrinsic cardiomyopathies, First-degree 

AV block, and HFrEF. he strongest non-cardiac predictors included carpal tunnel syndrome, and 

synovitis/tenosynovitis, and ascites. The strongest combination of diagnoses included Combined 

systolic and diastolic Heart Failure + HFpEF, and Heart block + Cardiomegaly + HFpEF. The 

strongest procedure predictive of the disease was found to be Serum Test - Assay of free light 

chains; kappa and lambda with ratio or CPT 83883. 
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Features XGBoost 
Random 

Forest 

Primary intrinsic cardiomyopathies 33.98% 28.17% 

Carpal tunnel syndrome 10.73% 13.77% 

HFpEF 8.69% 11.04% 

Serum Test - Assay of free light chains; kappa and lambda with ratio 7.43% 7.13% 

Combined systolic and diastolic Heart Failure,HFpEF 5.18% 4.54% 

Heart block,Cardiomegaly,HFpEF 4.90% 4.35% 

HFrEF 4.50% 5.67% 

Cardiac MRI 2.75% 1.06% 

Atrial Fibrillation 2.56% 3.49% 

First-degree AV block 2.34% 3.20% 

Secondary intrinsic cardiomyopathies 2.08% 6.46% 

Atrial Fibrillation,Cardiomegaly,Joint disorders,Combined systolic and 

diastolic Heart Failure 1.67% 0.53% 

Synovitis and tenosynovitis 1.63% 1.10% 

Pericardial effusion/pericarditis 1.55% 1.55% 

Atrial Fibrillation,Joint disorders,HFpEF 1.51% 0.88% 

Heart block,Soft tissue disorders,HFpEF 1.35% 0.73% 

Serum Test - Transthyretin (TTR) protein analysis 1.35% 0.57% 

Non-rheumatic heart valve disease 1.29% 1.54% 

Cardiomegaly,Joint disorders,HFpEF 1.08% 0.90% 

Atrial Fibrillation,Cardiomegaly,Soft tissue disorders,HFpEF 1.01% 1.11% 

Heart block,CKD,HFpEF 0.93% 0.91% 

Heart block,Joint disorders,Combined systolic and diastolic Heart 

Failure 0.76% 0.58% 

Heart block,Cardiomegaly,Joint disorders 0.71% 0.74% 

Table 13: Mean of feature importance for XGBoost and Random Forest models with nested cross 

validation 

To further validate our model, we used a larger dataset for the prediction model with 1:2 ratio for 

the case and control cohort. We used nested cross validation for both machine learning models in 

this case as well to select the train and test set by shuffling the dataset and to find out the best 

hyperparameters. With the best set of hyperparameters the models were fit. In this case the 

XGBoost model had the highest mean accuracy of 81.11% (vs. 80.38% for Random Forest) as 
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shown in Table 14. The precision, recall, and F1 score found were better for XGBoost model 

(Table 14) compared to the Random Forest model. 

  XGBoost Random Forest 

Mean Accuracy:  81.11% 80.38% 

Median Accuracy:  81.42% 80.79% 

Mean Precision: 75.15% 74.98% 

Median Precision:  76.82% 74.47% 

Mean Recall: 67.48% 64.93% 

Median Recall: 67.27% 64.65% 

Mean F1 Score: 70.98% 69.49% 

Median F1 Score: 70.79% 70.00% 

Table 14: Performance Evaluation of The Prediction Models with 1:2 case and control cohort 

ratio 

Features XGBoost 
Random 

Forest 

Primary intrinsic cardiomyopathies 45.50% 30.40% 

Carpal tunnel syndrome 8.32% 16.06% 

Serum Test - Assay of free light chains; kappa and lambda with ratio 7.74% 11.55% 

HFpEF 7.46% 7.58% 

Combined systolic and diastolic Heart Failure,HFpEF 6.62% 5.18% 

HFrEF 3.89% 4.79% 

Cardiac MRI 3.51% 1.84% 

First-degree AV block 2.47% 1.96% 

Secondary intrinsic cardiomyopathies 2.28% 5.06% 

Non-rheumatic heart valve disease 1.43% 1.85% 

Atrial Fibrillation 1.34% 1.71% 

Heart block,Cardiomegaly,HFpEF 1.30% 2.48% 

Pericardial effusion/pericarditis 1.15% 1.35% 

Serum Test - Transthyretin (TTR) protein analysis 1.14% 0.53% 

Atrial Fibrillation,Joint disorders,HFpEF 0.78% 0.75% 

Heart block,Soft tissue disorders,HFpEF 0.75% 0.73% 

Atrial Fibrillation,Cardiomegaly,Soft tissue disorders,HFpEF 0.73% 1.00% 

Heart block,Joint disorders,Combined systolic and diastolic Heart 

Failure 0.68% 0.47% 

Cardiomegaly,Joint disorders,HFpEF 0.66% 0.99% 

Synovitis and tenosynovitis 0.65% 1.01% 

Atrial Fibrillation,Cardiomegaly,Joint disorders,Combined systolic 

and diastolic Heart Failure 0.59% 0.63% 

Heart block,Cardiomegaly,Joint disorders 0.54% 0.51% 

Heart block,CKD,HFpEF 0.47% 1.55% 

Table 15: Mean of feature importance for XGBoost and Random Forest models with 1:2 case 

and control cohort ratio 



46 
 

From the mean of feature importance, it can be observed that the rank of the importance features 

remained almost the same for the smaller and the larger dataset. This shows consistency of our 

model. 

Table 16 and Table 17 shows the performance of the models when taking patient data until 1, 2, 

3, and 4 years before their ATTRwt-CM diagnosis. 5-fold nested cross validation was used for the 

XGBoost and Random Forest models for the prediction in each previous year. It can be observed 

that for both models the performance dropped significantly in the previous years.  

 

  1 Year Prior 2 Year Prior 3 Year Prior 4 Year Prior 

Accuracy 65.21% 66.44% 66.06% 68.93% 

Precision 66.98% 68.01% 64.40% 65.45% 

Recall 46.98% 36.61% 26.78% 21.09% 

F1 Score 55.10% 47.46% 37.58% 31.76% 

Table 16: XGBoost model performance for predicting antecedent test group data 

 

  1 Year Prior 2 Year Prior 3 Year Prior 4 Year Prior 

Accuracy 65.78% 67.06% 67.12% 70.37% 

Precision 68.23% 71.62% 74.65% 77.74% 

Recall 47.44% 34.17% 22.17% 19.50% 

F1 Score 55.72% 46.18% 33.99% 31.03% 

Table 17: Random Forest model performance for predicting antecedent test group data 

 

Procedures dropped for taking data up to 1 year before ATTRwt-CM 

diagnosis 779 

Procedures dropped for taking data up to 2 years before ATTRwt-CM 

diagnosis 1010 

Procedures dropped for taking data up to 3 years before ATTRwt-CM 

diagnosis 1148 

Procedures dropped for taking data up to 4 years before ATTRwt-CM 

diagnosis 1245 

Table 18: Numbers of procedures dropped from the dataset while going back in time 

 



47 
 

Table 18 shows the total number of the 3 procedures dropped while preparing the data for this 

analysis. From the table it is evident that the model performance dropped for the test data used 

after dropping the features. While the total number of occurrences of the procedures was 1436, 

more than 50% of those were done within 1 year before the ATTRwt-CM diagnosis of the patients. 

This relates to the drastic drop in the accuracy of the trained model on the new test set.  

Features 
1 Year 

Prior 

2 Year 

Prior 

3 Year 

Prior 

4 Year 

Prior 

Carpal tunnel syndrome 29.59% 27.55% 17.31% 9.91% 

HFpEF 5.20% 5.71% 9.40% 17.62% 

Synovitis and tenosynovitis 6.19% 6.74% 10.18% 8.05% 

Primary intrinsic cardiomyopathies 8.54% 5.84% 5.32% 3.30% 

HFrEF 2.81% 3.68% 7.48% 24.31% 

Non-rheumatic heart valve disease 4.91% 4.65% 5.26% 3.27% 

Pericardial effusion/pericarditis 2.02% 5.25% 4.87% 3.73% 

Secondary intrinsic cardiomyopathies 2.77% 3.74% 5.20% 4.48% 

Serum Test - Assay of free light chains; kappa and 

lambda with ratio 
3.06% 3.71% 2.94% 2.02% 

Cardiac MRI 4.12% 3.59% 2.37% 0.86% 

Heart block,CKD,HFpEF 2.23% 2.93% 2.63% 2.92% 

Combined systolic and diastolic Heart Failure,HFpEF 2.94% 2.97% 2.36% 2.57% 

Heart block,Cardiomegaly,Joint disorders 3.00% 2.90% 2.39% 1.30% 

Serum Test - Transthyretin (TTR) protein analysis 2.22% 2.28% 3.46% 2.88% 

Heart block,Soft tissue disorders,HFpEF 2.70% 2.27% 2.85% 1.64% 

Atrial Fibrillation,Joint disorders,HFpEF 2.04% 3.19% 2.49% 2.18% 

First-degree AV block 3.10% 2.16% 2.37% 1.17% 

Atrial Fibrillation 3.77% 2.25% 1.97% 1.72% 

Atrial Fibrillation,Cardiomegaly,Soft tissue 

disorders,HFpEF 
1.68% 2.19% 2.94% 1.27% 

Cardiomegaly,Joint disorders,HFpEF 1.99% 1.85% 2.35% 1.61% 

Heart block,Cardiomegaly,HFpEF 2.19% 1.62% 1.00% 1.67% 

Atrial Fibrillation,Cardiomegaly,Joint 

disorders,Combined systolic and diastolic Heart Failure 
2.00% 1.15% 1.63% 0.91% 

Heart block,Joint disorders,Combined systolic and 

diastolic Heart Failure 
0.92% 1.76% 1.22% 0.61% 

Table 19: XGBoost model feature importance for predicting antecedent test group data 
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From the feature importance for the XGBoost model prediction on the previous years’ data, 

changes in the top contributors of the full data can be observed. One of the major highlights of 

Table 19 is the important procedure for early analysis in the full data was “Serum Test - Assay of 

free light chains; kappa and lambda with ratio” has dropped down the list. The decrease in 

importance of this procedure indicates the decrease in number of this procedure in the previous 

years and it supports the fact that this procedure directly contributes to the early diagnosis of the 

disease. Table 20 shows the similar case for Random Forest model prediction. In both the tables 

similarity can be observed in the feature importance in every prior year.  

Features 
1 Year 

Prior 

2 Year 

Prior 

3 Year 

Prior 

4 Year 

Prior 

Carpal tunnel syndrome 27.39% 28.14% 18.90% 12.64% 

Synovitis and tenosynovitis 8.69% 12.10% 13.77% 11.97% 

HFrEF 4.31% 6.94% 15.98% 23.34% 

HFpEF 5.66% 6.26% 9.52% 17.47% 

Primary intrinsic cardiomyopathies 14.29% 7.09% 4.84% 3.52% 

Non-rheumatic heart valve disease 5.11% 5.76% 6.93% 5.54% 

Secondary intrinsic cardiomyopathies 4.54% 4.89% 5.27% 3.19% 

Atrial Fibrillation 4.60% 3.20% 2.95% 4.23% 

Pericardial effusion/pericarditis 1.98% 3.64% 3.88% 3.62% 

First-degree AV block 3.27% 2.70% 2.53% 2.17% 

Serum Test - Assay of free light chains; kappa and 

lambda with ratio 
2.99% 3.65% 2.15% 0.95% 

Cardiomegaly,Joint disorders,HFpEF 1.61% 1.92% 1.89% 1.91% 

Combined systolic and diastolic Heart 

Failure,HFpEF 
2.50% 1.94% 1.57% 1.73% 

Atrial Fibrillation,Joint disorders,HFpEF 1.69% 1.84% 1.79% 1.03% 

Heart block,CKD,HFpEF 1.07% 1.30% 1.79% 2.10% 

Heart block,Cardiomegaly,Joint disorders 1.67% 1.85% 1.12% 0.46% 

Atrial Fibrillation,Cardiomegaly,Soft tissue 

disorders,HFpEF 
1.31% 1.25% 1.24% 0.81% 

Heart block,Soft tissue disorders,HFpEF 1.32% 1.33% 1.10% 1.02% 

Serum Test - Transthyretin (TTR) protein analysis 0.88% 1.09% 1.02% 1.23% 

Heart block,Cardiomegaly,HFpEF 2.29% 1.17% 0.92% 0.81% 

Cardiac MRI 1.38% 0.89% 0.21% 0.01% 

Atrial Fibrillation,Cardiomegaly,Joint 

disorders,Combined systolic and diastolic Heart 

Failure 

0.90% 0.46% 0.52% 0.20% 

Heart block,Joint disorders,Combined systolic and 

diastolic Heart Failure 
0.56% 0.60% 0.12% 0.07% 

Table 20: Random Forest model feature importance for predicting antecedent test group data 
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7. DISCUSSION 

We created a machine learning prediction model for ATTRwt-CM using EHR data from a large 

national database. We made use of ATTRwt-CM-related procedures, and combinations of cardiac 

and non-cardiac diagnoses that have been previously documented in the literatures. The results of 

this study can be used for early detection of ATTRwt-CM patients, and earlier therapy if 

successfully implemented inside the EHR of healthcare systems. For our model we picked the top 

10 comorbidities and 10 combinations of the comorbidities from the literature of Huda, A., 

Castaño, A., Niyogi, A. et al. [6]. We also took all the procedures used in medical practices for 

diagnosis of ATTR-CM. Our goal was to establish a relation between these important features and 

diagnosis ATTRwt-CM earlier by using it. If the results are applied to the EHR system which 

contains all patient records, the patients with matching comorbidities and their combinations can 

be identified to be at risk for ATTRwt-CM and the procedures from this study can be done earlier 

to lead to definitive diagnosis of the disease.  

The main prediction of this study matches with the results of previous literatures. In our study, we 

found all the top comorbidities and their combinations to be contributing factors in the prediction 

of the disease. We found primary intrinsic cardiomyopathy, carpal tunnel syndrome, HFpEF to be 

the morbidities with highest importance in the prediction models. Patients having these morbidities 

in their record can be considered to be at risk of ATTRwt-CM. One of the main reasons for the 

diagnosis delay for the disease is the requirement of invasive tests for the definitive diagnosis. But 

now a combination of non-invasive tests can be used to identify it. In our study we first identified 

the procedures which can detect the presence of this disease in less than 90 days, i.e., from test day 

to result. By using the top 3 findings from the statistical analyses we found that non-invasive tests 

Serum Test - Assay of free light chains; kappa and lambda with ratio, and Cardiac MRI are the 

important procedures for the prediction model. So, these procedures can be performed on the 

patients with the predictive comorbidities which can result in early diagnosis. 

We also did prediction for the same train and test sets with dataset limited to 1, 2, 3, and 4 years 

prior to their ATTR-CM diagnosis to show the change in the important factors in predicting the 

outcome. The prediction accuracy and precision dropped significantly for years prior to the 

diagnosis. For prediction using XGBoost, though the comorbidities and their combinations had 

almost similar importance as the main prediction model, the importance of the non-invasive tests 
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dropped the most. The reason for this is the reduced number of the tests performed in the years 

prior to the diagnosis. From this observation we can establish a direct relation between the higher 

accuracy of prediction and the presence of the procedures for the patients. And thus, it can be 

realized that these procedures can contribute to the early diagnosis of the disease.  

One of the strengths of this study was that it was based on patient data from a large national EHR 

system which consisted of more than 2.5 million heart failure patients from 63 health care 

organizations from North America, among which 1531 patients were diagnose with ATTRwt-CM 

after their heart failure diagnosis. Therefore, we chose heart failure to be the exact symptom of 

ATTRwt-CM in our study, which was not the case for many of the previous literatures. To choose 

the important features for our statistical and prediction models, we used previously established 

literatures and clinical findings. We also considered different code systems available for 

procedures and diagnoses for our analyses. This study can be used in the EHR systems to find out 

the patients who have the combinations of the comorbidities in their clinical history and can be 

tested earlier in the progress of the disease using the important non-invasive tests found here. 

Our study also has some limitations. First, ICD codes were used to identify the case and control 

patients, and this imposes constraints on our investigation as HF and ATTRwt-CM can be 

incorrectly classified in the patient file. The model was built using an ICD code that only applies 

to ATTR-CM of the wild type. As a result of this diagnostic code's recent development and 

potential for inconsistent application, our model's applicability may be constrained by biases 

created by unique, institutional, or regional ICD coding practices. Additionally, control patients 

with HF who were not given a diagnosis can still have wild-type ATTR-CM. Having records from 

a large number of national health organizations in our datasets, and the long history of the patients 

it can be ruled that the selected diagnosis codes do not capture all the phenotypes. As a result, it is 

plausible that cardiac amyloidosis exists in some of the non-amyloid HF controls but has not yet 

been recognized. Secondly, we lack information on electrocardiographic voltage or 

echocardiographic markers as well as additional laboratory data which could contribute to the 

assignment of cases and controls. And lastly, some of the ATTRwt-CM diagnosed patients had 

missing or inconsistent data which forced us to drop them from the study. A larger cohort could 

give a more dependable analysis if used for our model. 
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8. CONCLUSION 

ATTRwt-CM is a specific cause of HF which is associated with high morbidity and mortality. This 

disease is often misinterpreted as other cardiac illnesses and kinds of heart failure. Since ATTRwt-

CM is more widespread than previously thought, it is crucial to identify it in time. Addressing the 

diagnosis delay has become essential because there is now a disease-modifying medication for 

ATTR-CM that has demonstrated treatment responsiveness for earlier treatment. Non-invasive 

investigations can also flag the potential presence of this condition and are essential to a thorough 

diagnosis.  

In the medical field, an increasing number of machine learning (ML) models have been developed 

to predict diseases and phenotypes using data from medical claims. ML is particularly beneficial 

as it enables the identification of more individuals who may have diseases like wild-type 

transthyretin amyloid cardiomyopathy (ATTRwt-CM). This approach is advantageous over 

statistical methods because it can efficiently analyze the complex relationships among the diverse 

input predictors, whereas this task would be time-consuming if traditional statistical methods were 

used. 

To create a prediction model for ATTRwt-CM, we utilized electronic health record (EHR) data 

from a large national database. EHR data provides more comprehensive information compared to 

claims data. Our model incorporated ATTRwt-CM-related diagnoses, combinations of cardiac and 

non-cardiac diagnoses, and techniques that have been previously documented in the literature. 

Implementing this model within healthcare systems' EHRs could potentially result in focused 

testing, early detection of ATTRwt-CM patients, and earlier initiation of therapy if successful. 

Machine learning models tend to perform optimally when applied to the data they were trained on. 

In our case, when the model was applied to the entire EHR dataset, it demonstrated favorable 

overall performance, achieving an accuracy of 81.61% with the XGBoost algorithm. Notably, the 

Random Forest model performed even better within this cohort, achieving an accuracy of 81.07%. 

Our research findings regarding the cardiac and non-cardiac phenotypes indicatory of wild-type 

ATTR-CM align with previous results in the literature and clinical practice related to this disease. 

The existence of comorbidities and their combinations for several years prior to the patients’ 

diagnosis of ATTRwt-CM emphasizes the potential for earlier detection. 
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The findings presented here have clinical implications not only for wild-type ATTR-CM, but also 

for other diseases that are misdiagnosed or underdiagnosed. ICD being the worldwide language of 

medical diagnoses and easy to utilize in the EHR system, the methodology that we used has 

widespread applicability. It can give a systematic outline for realizing varied sets of signs and 

symptoms, particularly in the case of rare or under-recognized diseases. In our case, patients 

having these confirming findings in their regular clinical diagnoses should subsequently undertake 

confirmatory non-invasive diagnostic testing (for example, bone scintigraphy).  

The generation of a statistical and prediction model for wild-type ATTR-CM from a sizeable 

EHR database is one of the study's strengths. Additionally, the use of ICD codes for 

phenotype mapping enabled us to look at the correlated symptoms and procedures that might 

suggest and precede wild-type ATTR-CM diagnosis. ML models have the capacity to identify 

patterns suggestive of the disease automatically.  These patterns may not be obvious to the 

clinicians as ML models usually derive these using data from diverse diagnostic codes across 

different disease domains and organ systems. 

When considering the results of our study, it is important to acknowledge several limitations. 

Firstly, the utilization of ICD codes to identify patients with heart failure (HF) imposes certain 

constraints on our investigation. HF is a clinical condition with a broad definition, and there is a 

possibility of misclassification in the patient records. Additionally, we lack crucial information 

such as electrocardiographic voltage, echocardiographic markers, and additional laboratory data, 

which could have aided in accurately assigning cases and controls. Given the nature of the datasets 

utilized in our analysis and the extensive medical history of the patients, it is evident that the 

diagnosis codes do not capture all the phenotypes. Consequently, it is plausible that some of the 

non-amyloid HF controls may actually have cardiac amyloidosis that has not yet been recognized. 

The model was developed based on ICD code E85.82 which is specific to wild-type transthyretin 

amyloid cardiomyopathy (ATTR-CM). However, the recent development of this diagnostic code 

and the potential for inconsistent application may introduce biases stemming from unique 

organizational or regional ICD coding practices, thus restricting the applicability of our model. 

Furthermore, control patients with HF who were not given a diagnosis could still have wild-type 

ATTR-CM. The different forms of cardiac amyloidosis may exhibit overlapping cardiac and 

extracardiac symptoms. 
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This model could serve as an initial step in identifying individuals at risk who may require further 

evaluation using techniques such as cardiac magnetic resonance imaging (cardiac MRI), speckle-

tracking echocardiography, bone scintigraphy, and blood tests for ATTRwt-CM. However, it is 

crucial not to interpret it as definitive evidence for the diagnosis of either ATTR-CM or cardiac 

amyloidosis. 
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