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In a wide array of disciplines, the high-dimensional dataset is being generated. However,
when the data dimension s large, a number of well-known multivariate analysis techniques are
known to become ineffective or even inaccurate (Bai-Silverstein, 2010). For datasets where and
the sample size are large, it is common to consider the limiting regime of random matrix theory:

, - o and / 5 > 0. In this asymptotic framework, Bai-Silverstein (2010) and Jiang
(2004) studied the limiting spectral distributions (LSDs) of a sample covariance matrix and a

sample correlation matrix. Here, the LSD of the sample correlation matrix is the limit of
empirical spectral distribution (ESD) F R in , - o, / 5 > 0, where ()=
H{l=s = | £ }with ;= ,=-- = being the eigenvalues of . A sample

correlation matrix is difficult and important in econometrics and finance because it is invariant
under the dilation and the shifting of data. However, is complicated because of its definition.
Hence, we focus on the LSDs of the sample correlation matrices.

A correlation coefficient may appear in a 1-dimensional sample: standard normal random
variables 1, 5,..., mutually correlated with a positive constant enjoy a decomposition

=V~ +VI— (1)

where and (1 < < ) areindependent, standard normal random variables. Walsh (1947)
employed (1) to prove that hypothesis tests worsen nonasymptotically, when a
sample 1, 5,..., drawn from a normal population is actually mutually correlated with a
positive constant r. Moreover, let two samples be 1, ,,..., | and 4, 2,..., , mutually
correlated with positive constants 1 and 5, respectively, drawn from two independent normal



(Bl#E#%R=5)

(NO. 2)

populations. By the decomposition (1), Walsh (1947) also showed that the proportion of the two
variances of the two samples obeys the Snedecor F-statistics scaled by (1 — 1)/(1 — »).

We are also concerned with correlation coefficients in multivariate datasets e.g., high
dimensional datasets of econometrics and finance. These datasets are often generated from factor
models having many factors. By averaging the effect of the factors, we get factor models with only

one factor. For example, we can consider an independent sample 4, 5,..., drawnfroma -
dimensional normal population such that all the p components of (1 < < ), all the
components of = [ Ji<< are mutually correlated by [0,1) (equi-correlated normal

population). In this case, we have the following decomposition:
=V tVI— (2)

We will explore an asymptotic deterioration of statistical inference by using the LSD of the
sample correlation matrix formed from an equi-correlated normal population. For this, we
combine the decomposition (2) and a simple linear algebraic technique, rank inequality (Bai-
Silverstein, 2010).

Theorem 1 (Akama-Husnagilati, 2022)
Suppose both and go to infinity with — going to positive . Then, almost surely, the empirical

spectral distribution () converges weakly to (JT) Here, () is the Marcéenko-Pastur
distribution of index

Theorem 1 answers a question from Fan-Jiang (2019) about the impacts of equi-correlation
coefficient on the LSD of

The application of Theorem 1 can be found in principal component analysis (Jolliffe, 2002)
which reduces the dimensionality of high-dimensional large samples by retaining the number of
new significant uncorrelated variables (principal components (Jolliffe, 2002)) that successively
maximize the variance of a dataset. The number of significant principal components is based on
some statistical inferences. One of these is Guttman-Kaiser criterion (Kaiser, 1992). It suggests that
the number of significant principal components is equal to the number eigenvalues of greater
than 1 (Jolliffe, 2002) . By Theorem 1, we prove the following phase transition of the limit theorem.

. _J3 (r=0);
Iim lim £,— {2) (v );

=0 P00 ) ( (?" = l])

pin—c

This elucidates mathematically the deterioration of Guttman-Kaiser criterion in high- dimensional
large samples by constant positive correlation among variables, and the convergence of / to1/2
for = O suggested by a simulation study of Yeomans-Golder (1982).

Finally, we provide the LSDs of various random matrices formed from equi-correlated
normal populations, by using the rank inequality with the decomposition (1) or the decomposition
(2). We first consider the product of the sample covariance matrix formed from an equi-
correlatted normal population with correlation coefficient ; [0, 1) and the inverse of the other
sample covariance matrix formed from an equi-correlatted normal population with correlation
coefficient 5 [0, 1). This matrix has the LSD given by (Bai et al., 1988, Silverstein, 1995) but
scaled by (1 — ,)/(1 — 1) (Husnaqilati, 2022). This result is a counterpart of the finding from
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Walsh (1947) about the Snedecor F-statistics for univariate statistical analysis. Moreover, the
combination of (1) and the rank inequality (Bai-Silverstein, 2010) establishes that a Wigner matrix
(a symmetric Toeplitz matrix, and Hankel matrix, resp.) with all entries mutually correlated by a
nonnegative < 1 has the LSD given by (Bryc et al., 2006) but scaled by v1 — (Husnaqilati,
2022).
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WES O KRB ERICT — % OB FFTIET —F OWRItp L FEARD K E Sn I pYIZ HER KT
W < ERE (Kolmogorov regime) 23 H T, ZOREICHIT D58 E L Tk, EARSBATSIO B A E

AR B9 5 WF%E (Z. D. Bai and J. W. Silverstein. Spectral analysis of large dimensional random
matrices. Springer, 2nd edition, 2010) <>, Jiang (The limiting distributions of eigenvalues of sample
correlation matrices. Sankhya: The Indian Journal of Statistics (2003-2007), 2004) YT 4E D HeinylZ £ %
FEAKH BEAT SR O [ A Al D45 [R5 A1 DFER D8 % o

BT 77 AT AORBRERITT —Z DERWRET VL, ZEOMO—EOFHBERE (F
FBERE) r A TH DL RTER LI TH Y | HBEITHIOWITH 2 @ ICEHE T 208N H
% g R 5 H7 (R. Engle and B. Kelly. Dynamic equicorrelation. J Bus Econ Stat, 2012) {Z3 W\ TEH =
NTWb, 7—2 Db - BEICEA L TARETH HEAHBEITIIRG B« 77 AT AEHK
Thbd, FMEERENIEATH L ZRICIERABERORDEFED NV T 55460 . Kolmogorov
regimelZ B D MR %, 7Y A M KOFank I 3 Y ¥ KO JiangX RV 2>1F 7= (J. Fan and T.
Jiang. Largest entries of sample correlation matrices from equi-correlated normal populations. Ann.
Probab., 2019),

TAFTXTT 4 T7 4 FT KO IIFan & Jiangd Z ORI E L=, ROEHFMD SNV 7 55
MM OMRMN, FEAER) 72 H AR T Y > 4340 (F. Hiai and D. Petz. The semicircle law, free random
variables and entropy, American Mathematical Society, 2000) (Marchenko=Pastur4y4fi (Z. D. Bai and J.
W. Silverstein. ibid.)) O 1-rfFIZINHET 25 2 & ZFEBH L 72,

BIEAFIE 7223, 7Y > A k2 K@ Walsh (Concerning the effect of intraclass correlation on certain
significance tests. Ann. Math. Stat., 1947)1%. 1R ITEDFEAR D ZEHL O I BN — E O 1E O FH B R For
WL E. A ZRHAMTIR EDIERZAI X DGR EDOE DK T &2, EARDA O & LT
Bl L T %, WalshiZ, —EDIEDHHBRE & FF O 1R GTTIEB D AMITHE 5 F 2 DEEKILT, K %12
AR 2 EHEREL 2 BOERHEHOMTHDLZ EE AW, T OERELRD SR
kY TAFTXTT 4 TT 4 T RO IE, @I H LR BTN A, 2
DOJFFL)FE % D F > & L4745 (Z. D. Bai and J. W. Silverstein. ibid.) \Z#EHAIRETH D Z & H MR L
TW5,

Marchenko=Pastur4y i O [ AH BRI L A NAE E B DS H & LT, ERIL KB T — % OFEEH IS

BT D2EL MR CEHAROBG Y 7 o = 725 &1 TV A Guttman-Kaiser JE ¥EDH 23, B D
BHC E WV IEOMBIRE N FEET 2HAICE LK T T2 &0 5 &I (H. F. Kaiser. On Cliff’s
formula, the Kaiser-Guttman rule, and the number of factors. Percept. Mot. Ski., 1992)i%. [FIH B4R %k
>0D IEHBHE R O EARMBIITHIRO B H B DA OMBREE OB T 2R TH 5 & HEMICiE
L7,

DX, FAFTXTT 4 TT 4T ROERKT, (1) EORMBEMREEZFFSZ R IEHBER
D EEARFH BT H1) 0 AR BR [E A il 53 A O ULAE E B, (2) (1) DJSH & LT, Guttman-Kaiser2&#E @D | [A]
FHEIRECBE T 2 HEEEERE, 3) (DMNRES EQRMEEREE R SZ KR ILIERE T O 45 fiF
JFREZOWT, £D3ELICHOME, 1Tk5,

HY L T RIEBI 2T ICHLBEREEOMRRBANLFHBREAFT LI LERL TS, Le> T,
TAFTHRTT 4 TT 4T REHOB LR CE, L (BY) OFRMLmILELTAEKLRD D,
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