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Abstract

One of the most leading candidates for dark matter (DM) is QCD axion. In addition
to nonperturbative effects of QCD, the QCD axion could acquire extra potentials from
the other explicit breaking effects of shift symmetry that is nothing but the Peccei-Quinn
(PQ) symmetry. Such extra PQ breaking potentials must be suppressed to satisfy the
experimental bound on the neutron electric dipole moment. However, the axion potential
from QCD is negligibly small at high temperatures in the early universe, and therefore the
extra potentials can have a sizable effect on the dynamics of axion. In particular, when the
axion is temporarily trapped by the extra PQ breaking potential, the dynamics is expected
to be significantly modified compared to the conventional scenario. This is the trapping
effect. In this thesis, we study the trapping effect on the dynamics of the QCD axion
and identify a viable parameter region in which the axion can explain DM. We begin with
investigating the fundamental properties of the trapping effect in a general setup. Thanks
to the analysis, we find that the adiabaticity in the physical system is an important factor
in determining the dynamics of axion. To study the detail further, we consider two types
of extra PQ breaking potential. First, we consider the case when the axion acquires a
time-independent potential with multiple minima. We find that the abundance of axion
can be enhanced or suppressed, depending on the initial position of axion, and that the
isocurvature perturbation can be significantly suppressed. In particular, when the axion
is temporarily trapped around a wrong vacuum, the abundance is independent of the
decay constant as long as the trapping effect is strong enough. As a result, the axion can
explain DM for arbitrary decay constant fϕ without isocurvature problem. It is nontrivial
that the axion with small fϕ can saturate the total DM abundance, and such axions
have relatively strong couplings with the SM particles, so that they can be probed by
future haloscope experiments, such as MADMAX and BREAD. Second, we consider a
time-dependent extra potential from the Witten effect of hidden monopoles. In this work,
we investigate the trapping effect by the Witten effect in a broader parameter region of
θini than previous studies. We find that the abundance can be suppressed as long as the
trapping effect is sufficiently strong. The analysis of these two concrete cases helps us
understand how the violation of adiabaticity affects the axion dynamics. We clarify that
the trapping effect by extra PQ breaking has a significant impact on the viable parameter
region for QCD axion DM, and the new predictions of axion DM motivate experiments
scanning a different parameter region from the conventional QCD axion DM.
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Chapter 1

Introduction

1.1 Overview and motivation

The existence of dark matter (DM) has been established by various observations. For
instance, cosmic microwave background radiation (CMB) [1], rotational curves of spiral
galaxies [2], and the bullet cluster [3], and so on. From these observational results, we
have known some information on DM. First, DM is almost electrically neutral and has
very feeble or possibly no interactions other than gravity. Second, it is so stable that the
lifetime is much longer than the age of the current universe. According to some literature,
e.g. [4, 5, 6], if DM particle is allowed to decay into dark radiation, the lifetime must
be at least 10 times longer than the cosmic age. Third, the energy density amounts to
about a quarter of the total one, ΩDM ∼ 0.24 [1]. Here the density parameter is defined as
ΩDM ≡ ρDM0/ρcrit, where ρDM0 is the present energy density of DM and ρcrit is the critical
energy density. Also, DM is cold i.e. non-relativistic so that it plays an important role in
structure formation.

Nevertheless, the detailed properties of DM are yet unknown: “What is it composed
of?”, “How does it couple to known particles?”, “How is it produced?”, etc. To answer
these questions, it is essential to make a plausible hypothesis based on new experimental
fact and propose theoretical predictions. At first, such hypotheses must satisfy the prop-
erties or conditions described above. So far, various possibilities have been proposed. If
DM is composed of some particle, a new undiscovered particle beyond SM (BSM) physics
is necessary, because there is no DM candidate in the SM.1 One of the well-studied candi-
dates is Weakly Interacting Massive Particles (WIMP). WIMP is predicted in many BSM
physics such as a supersymmetric extension. WIMP is assumed to be in thermally equilib-
rium with the SM particles in the early universe. When the universe cools down below the
WIMP mass and WIMP is decoupled from thermal bath, the thermal relic explains DM.
Interestingly, for the annihilation cross section ⟨σv⟩ ∼ 10−9 GeV−2, it is consistent with
the observed abundance. However, WIMP with an expected mass (O(10 − 100) GeV)
is tightly constrained by direct DM search experiments. Thus, it is timely to explore
alternative DM candidates and the corresponding BSM physics.

In addition to WIMP DM, very light particles are attractive. A typical example of
light DM is QCD axion. The QCD axion is a pseudo Nambu-Goldstone boson associated

1As a possibility of non-particle DM, a primordial black hole has been proposed. It is assumed to be
produced from some dense region of energy density in the early universe.
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with spontaneous breaking of a global U(1) symmetry, the so-called Peccei-Quinn (PQ)
symmetry [7, 8, 9, 10]. The first motivation of axion is to solve the Strong CP problem.
The discovery of QCD anomaly [11, 12] and nontrivial vacuum structure [13, 14, 15]
has revealed that the strong CP phase θ̄ has observable effects [16, 17, 18]. However,
measurements of the neutron electric dipole moment (nEDM) constrains the CP phase as
|θ̄| ≲ 10−10 [19]. This fine-tuning problem is the Strong CP problem. The axion acquires
a potential from nonperturbative effects of QCD and settles down at the CP conserving
minimum of the potential. In this way, the axion can solve the Strong CP problem. Note
that the ‘axion’ often includes the QCD axion and axion-like particles (ALP). The QCD
axion is the main subject in this thesis, but ALP will be also discussed later. ALP is a
pseudo-scalar field theoretically predicted by BSM physics such as the string theory [20].
It has properties similar to the QCD axion, but is not necessarily related to the Strong
CP problem.

The QCD axion has various cosmological implications, and there are two different
types of cosmological scenarios. The first scenario is the case in which the PQ symmetry
is spontaneously broken after inflation or, even if the PQ symmetry is broken during
inflation, it is restored after inflation. This is known as the post-inflationary scenario.
The axions are initially positioned near some different minima, and domain walls attached
by cosmic strings appear, which contributes to the axion density. The second scenario
is the case in which the PQ symmetry is already spontaneously broken during inflation
and not restored afterwards. This is called pre-inflationary scenario. In this case, the
axion acquires quantum fluctuations during inflation. Such fluctuations give rise to a
different contribution to cosmological structure from the currently observed fluctuation
induced by the inflaton field. The axionic fluctuation induces what is called isocurvature
perturbation. The isocurvature fluctuation is severely constrained by observation, which
can be recast as the upper bound on the inflation scale. In this thesis, we focus on the
pre-inflationary scenario.

In the pre-inflationary scenario, the initial position θini of axion is a free parameter
that is naturally expected to be of the order of unity. At the QCD phase transition, the
axion starts to oscillate due to the potential induced from nonperturbative effects of QCD,
and is nonthermally produced as nonrelativistic matter. This production mechanism is
known as the misalignment mechanism [21, 22, 23]. The energy density of axion is given
by the oscillation energy, and if the initial amplitude θini is of order unity, the axion with
fϕ ≲ 1012 GeV is consistent with the observed DM abundance. Here, fϕ is the decay
constant which is close to the PQ symmetry breaking scale in a simple setup. Also, the
stability of axion is attributed to the light mass thanks to the shift symmetry, and the
interactions with other particles are suppressed by the decay constant fϕ. This is why
the QCD axion is a leading DM candidate. The cosmologically viable range of the decay
constant is known as the QCD axion window,

108 GeV ≲ fϕ ≲ 1012 GeV. (1.1)

While the upper bound is set by the axion DM abundance for θini = O(1), the lower
bound is given by the stellar cooling argument [24, 25, 26, 27, 28, 29, 30, 31, 32].

For fϕ ≲ 1012 GeV, the axion abundance is not enough to explain DM in the case of
θini = O(1). One solution is to take the initial position of axion near the top of potential.
Then, the delay of commencement of oscillations significantly enhances the abundance.
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This is known as the anharmonic effect [33, 34, 35, 36, 37, 38, 39]. However, the isocur-
vature perturbation is also enhanced, and we need some prescription for overcoming this
drawback. For fϕ ≳ 1012 GeV, we can simply take small θini to reduce the abundance.
For instance, considering the stochastic dynamics of axion during inflation, the initial
amplitude can be suppressed, as long as the inflation scale is lower than the QCD scale
[40, 41] (cf. [42, 43] for ALP DM).

The axion could acquire an additional potential from the other shift symmetry (PQ
symmetry) breaking than the QCD effect. In order for the PQ mechanism to work well,
the PQ symmetry has to be of high quality. However, quantum gravity theory predicts
that any global symmetry is explicitly broken [44, 45, 46, 47, 48]. Thus the QCD axion
may acquire a small extra potential in addition to the potential from the QCD effect.
Such a potential would not seem to affect the axion dynamics, because it should be tightly
constrained by experiments of nEDM. However, it is premature to make a conclusion. This
is because the QCD potential is negligibly small well before the QCD phase transition.
If the axion is temporarily trapped by the additional potential, the dynamics would be
completely different. We call this phenomenon the trapping effect. In this thesis, we
study the trapping effect on the abundance and isocurvature perturbation of the QCD
axion.

In Chapter 3, we will analytically study the trapping effect by a general extra potential.
What is important here is the adiabaticity that is an essential property of the system and
determines if an extra oscillation of the axion is induced. When the adiabaticity is broken,
an extra oscillation occurs and enhances the abundance. We will find that the dynamics
can be systematically categorized into two regimes by the adiabaticity. However, we need
the model-dependent analysis to understand what determines the adiabaticity, in which
parameter region DM can be explained, and how much the isocurvature perturbation is
produced. To answer these question, Chapter 4 and 5 are devoted to the analysis in
specific situations.

First, we consider a time-independent extra potential with multiple minima [49]. In
order for the PQ mechanism to work well, extra potentials should be tiny compared to
the potential by nonperturbative effects of QCD. Even such small potentials can affect
the axion dynamics, because of the asymptotic freedom of QCD. In fact, we will see
in Chapter 4 that the axion dynamics is significantly altered by the extra PQ breaking
potential. We will clarify the allowed parameter region for explaining DM and identify
the bound by the isocurvature perturbations.

Second, we consider a time-dependent extra potential from the Witten effect [50, 51]
of hidden monopole [52, 53]. The effective mass is proportional to the number density
of monopole, and the axion is strongly trapped in the early universe. In the previous
literature [54, 55], the authors assumed that the axion is initially around the minimum
of QCD potential. In this case, the trapped axion adiabatically follows the temporal
minimum after the QCD phase transition, so that any additional amplitude is not gen-
erated and the abundance is suppressed. This is called adiabatic suppression mechanism
[56, 57, 54, 55, 58]. In Chapter 5, taking a broader region of θini, we will study whether
the adiabatic suppression mechanism works well in the presence of the anharmonic effect,
based on [58].

These two specific analysis will provide us with the further understanding of the trap-
ping effect. In particular, we will reveal in which case the adiabaticity is broken.
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1.2 Organization

This thesis is organized as follows. In Chapter 2, we review the standard arguments on
the QCD axion. In Chapter 3, we introduce other PQ symmetry breaking potentials, and
summarize the fundamental properties of the trapping effect by an extra PQ breaking
potential. We discuss specific models : a time-independent potential (in Chapter 4) and
a time-dependent potential (in Chapter 5). We conclude the thesis in Chapter 6.

1.3 Notations

• The natural unit is used, c = ℏ = kB = 1.

• The reduced Planck mass is defined byMPl ≡ 1/
√
8πG with G the Newton constant.

• We adopt the mostly minuses, (+,−,−,−), except for Appendix D.

• The Euclidean action is defined as

SE ≡ −iS|A0→−iA4
t→−ix4 , (1.2)

where A0 is the time component of gauge field.

• The Pauli matrices are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.3)

• The density parameter of some component is defined as Ωi ≡ ρi0/ρcrit, where ρi0 is
the present energy density and ρcrit is the critical energy density.
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Chapter 2

QCD axion

It is known that there is nontrivial vacuum structure in QCD sector, which implies the
nonzero contribution to CP violation of the Chern-Simons term (also called the θ-term).
The CP violation mainly induces neutron electric dipole moment as observables, but it
must be tightly suppressed in accord with current experimental results. The puzzle of why
CP is preserved to such a high accuracy in QCD is called the Strong CP problem. The
most plausible solution is to introduce a pseudo-Nambu-Goldstone boson, i.e. QCD axion,
which is associated with spontaneous breakdown of a global U(1) symmetry. The QCD
axion acquires a potential with CP conserving minima by nonperturbative effects of QCD.
The dynamics on the potential also plays an essential role in a nonthermal production of
axion DM. Thus the QCD axion is highly motivated by the solution to the Strong CP
problem and DM, and a number of experiments and observations have been carried out
and planned rigorously.

In this chapter, we summarize properties of the QCD axion (for more details, see
e.g. [59, 60, 61, 62, 63, 64]). First we explain the Strong CP problem and the solution
by the Peccei-Quinn (PQ) mechanism in Sec. 2.1 and 2.2. After introducing the axion
potential induced from QCD nonperturbative effect in Sec. 2.3, the axion DM is discussed
in Sec. 2.4, which includes the non-thermal production mechanism of axion DM, known
as the misalignment mechanism, and generation of axionic isocurvature perturbation.
Finally, focusing on the axion-photon coupling, we will briefly summarize the experiments
and observations of axion detection in Sec. 2.5.

2.1 Strong CP problem

The QCD is based on an SU(3) gauge group, which describes well various phenomena
associated with the strong interaction among quarks and gluons. To introduce the Strong
CP problem, let us begin with discussing the field configuration of gluons. The gauge
invariance and the renormalizability give the following terms,

Lgauge = −1

4
Ga
µνG

aµν − θ
g2s

32π2
Ga
µνG̃

aµν , (2.1)

where the gluon field strength and its dual are respectively written as Ga
µν = ∂µA

a
ν −

∂νA
a
µ + gsf

abcAbµA
c
ν and G̃a

µν = 1
2
ϵµναβG

aαβ. gs is the gauge coupling constant, and fabc

denotes the structure constant for SU(3). The second term is a pseudo-scalar term whose
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coefficient is an arbitrary parameter, and is called the Chern-Simons term (or the θ-term).
Actually, the θ term is ineffective to observables in perturbation theory. It is written in
terms of the Chern-Simons current Kµ as [65]

Ga
µνG̃

aµν = ∂µK
µ = ∂µϵ

µαβγ
(
AaαG

a
βγ −

gs
3
fabcA

a
αA

b
βA

c
γ

)
, (2.2)

which seems not to contribute to path integral as long as we consider a trivial configuration
of gluon fields, Aaµ = 0, at the boundary in Euclidean space, since it is a total derivative.
However, it is found that there exist nontrivial field configurations of the Yang-Mills
gauge field, or instanton solution [13, 14, 15], such that the θ-term provides a nonzero
contribution,

g2s
32π2

∫
d4xGa

µνG̃
aµν = ν, (2.3)

with an integer ν being the winding number. The winding number ν categorizes the
topologically stable vacua which cannot be continuously deformed into each other by
small gauge transformation. For the discussion of the QCD nontrivial vacuum structure,
see Appendix B.

In addition to the Chern-Simons term, the QCD possesses another CP violation source
in the quark mass phases. In the SM, quarks acquire a mass through the Yukawa coupling
to the Higgs field, and the quark mass term can be described by −Lmass = q̄LMqqR+h.c.,
where Mq is the complex, nf × nf mass matrix with nf being the number of flavor.
The right- (left-) handed quark field is defined by multiplying projection operators (1 +
(−)γ5)/2 to Dirac spinors. However, it is nontrivial whether these two sources of CP
violation are physical or not. Consider the axial U(1) transformation, qi → eiαiγ5/2qi
with αi a constant parameter for each flavor labeled by i. The axial U(1) symmetry is
anomalous as represented by triangle diagrams [11, 12], and in fact, the coefficient of the
Chern-Simons term is transformed as θ → θ −∑i αi. We can understand it explicitly in
terms of the transformation of the functional measure,1 [66]

Dq̄iDqi → Dq̄iDqi exp

[
−i
∑
i

αi
g2s

32π2

∫
d4xGa

µνG̃
aµν

]
. (2.4)

Thus the θ-term can be removed by the chiral rotation, but instead, the quark mass
phase is induced and the CP violations never vanish unless the two contributions cancel
each other. Diagonalizing the quark mass matrix by using unitary matrices, we obtain
−Lmass =

∑
i q̄
m
iLmie

iθiqmiR + h.c., where mi and θi are a mass and a phase of each flavor.
Imposing the axial U(1) transformation, the mass phase is shifted as θi → θi + αi. The
combination θ̄ ≡ θ +

∑
θi = θ + arg(detMq) is the only physical contribution of CP

violation and is invariant under the chiral rotation.
The most sensitive observable of θ̄ is the neutron electric dipole moment (nEDM).

The nEDM is defined by the non-relativistic Hamiltonian for the interaction between a
neutron and an external electric field, H = −dnE⃗ · Ŝ, where E⃗ denotes the electric field

1The electromagnetic anomaly is also induced, but it does not give any contribution to the action,
because it is a total derivative. However, if magnetic monopole exists, the anomalous term can contribute
to physics. See Sec. 3.2 for hidden U(1) anomaly.
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and Ŝ ≡ S⃗/|S⃗| is a normalized spin vector. The strong CP phase θ̄ gives rise to the nEDM
as [17]

|dn| = 1.2× 10−16|θ̄|e cm. (2.5)

The nEDM is tightly constrained according to the current experimental result, |d(exp)n | <
1.8× 10−26e cm [19], which can be recast to the bound on θ̄,

|θ̄| ≲ 10−10. (2.6)

It is a puzzle in QCD why the strong CP phase θ̄ is so suppressed. This fine tuning
problem is called the Strong CP problem.

2.2 Peccei-Quinn mechanism

The most plausible solution to the Strong CP problem2 is to introduce a pseudo-scalar
boson, the QCD axion [7, 8, 9, 10]. Introducing an axion and using the chiral rotation to
put all the quark mass phases collectively into the Chern-Simons term, the Lagrangian is
written as

LQCD+ϕ =
1

2
∂µϕ∂

µϕ+
∑
i

q̄i(i��D −mi)qi −
1

4
Ga
µνG

aµν −
(
θ̄ +

ϕ

fϕ

)
g2s

32π2
Ga
µνG̃

aµν , (2.7)

where ϕ(t, x⃗) denotes the axion field and fϕ is called the decay constant which determines
the strength of the axion coupling to other particles. The Lagrangian is invariant under the
shift transformation ϕ → ϕ + κfϕ up to the last term, where κ is an arbitrary constant.
The axion corresponds to a Nambu-Goldstone boson associated with the spontaneous
breaking of a global U(1) symmetry which is called the PQ symmetry U(1)PQ. We can
choose the parameter κ so that θ̄ is removed. This prescription means that the parameter
θ̄ is promoted to a dynamical field ϕ and the effective θ-parameter becomes ⟨ϕ⟩.

It is shown that the QCD instanton effect provides the potential energy whose mini-
mum is exactly at ϕ = 0, leading to the strong CP conservation [72, 73]. To see it without
the direct calculation of potential, let us analyze the Euclidean functional derivative.
In the Euclidean space, integrating out the quark and gluon, we can write the effective
potential V (ϕ) as

exp

(
−
∫
d4xEV (ϕ)

)
=

∫
DADq̄Dq exp

[
−
∫
dx4E

(∑
i

q̄i(��DE +mi)qi +
1

4
Ga
µνG

a
µν −

iϕ

fϕ

g2s
32π2

Ga
µνG̃

a
µν

)]

=

∫
DA

∏
i

Det(��DE +mi) exp

[
−
∫
dx4E

(
1

4
Ga
µνG

a
µν −

iϕ

fϕ

g2s
32π2

Ga
µνG̃

a
µν

)]
, (2.8)

2There are some other possibilities left. For instance, one possibility is a scenario that CP symmetry is
exact symmetry and θ̄ = 0 in high energy scale, and then is spontaneously broken to induce the expected
θ̄ [67, 68, 69, 70, 71].
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where Euclidean values are labeled by the subscript ‘E’. In the second equality, the Gaus-
sian integration is performed. The gamma matrices in the Euclidean space can be repre-
sented by γE4 = γ0 and γEi = −iγi, and thus, i��D is a Hermitian operator whose eigenvalues
λ are real. Writing the eigenfunction as ψ, (i��DE)(γ

5ψ) = −λ(γ5ψ) when (i��DE)ψ = λψ is
satisfied. Then the determinant of the Dirac operator is given by

Det(��D +mi) =
∏
λ

(−iλ+mi) = (mi)
N0

∏
λ>0

(λ2 +m2
i ) > 0, (2.9)

whereN0 is the number of zero mode. Using this results and applying the Schwarz inequal-
ity to the absolute value of (2.8), we obtain the relation of the potential, | exp

(
−
∫
V (ϕ)

)
| ≤

| exp
(
−
∫
V (0)

)
|, i.e. V (0) ≤ V (ϕ). The minimum of the potential is at ϕ = 0 which

preserves the strong CP symmetry. As a result, the axion is dynamically stabilized there
and can resolve the Strong CP problem. This is called the PQ mechanism.

Lastly, let us comment on UV completed models of the axion. To obtain the axion
with an anomalous coupling to gluons, we should introduce the PQ symmetry. In the
framework, the axion is identified with a Nambu-Goldstone mode of the additional Higgs
field. The model depends on how to construct the Higgs sector and how the PQ charges
are assigned to the Higgs and quarks running in the loop of triangle diagrams. There are
two benchmark models, KSVZ model and DFSZ model, named after the initials of the
authors of [74, 75] and [76, 77], respectively. However, the following discussion of this
thesis can be applied to both models, and therefore, we do not assume any specific model.

2.3 Axion potential from QCD effect

The QCD axion acquires an effective potential from nonperturbative effects of the QCD.
At temperatures lower than the QCD phase transition, i.e. at T ≪ ΛQCD, where ΛQCD is
the confinement scale, we can evaluate the potential using the chiral effective Lagrangian
[9, 78, 79, 80]. Considering the two-light-flavor (u and d) effective field theory [78, 79],
the potential at zero temperature is given by

VChPT(ϕ) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
ϕ

2fϕ

)
, (2.10)

where fπ = 92.21 MeV is the pion decay constant, mπ ≃ 135 MeV is the neutral pion
mass, and mu and md denote the mass of the u and d quarks. The ratio of mu and md is
given by z ≡ mu/md ≃ 0.48 from the average of the lattice results [81, 82, 83]. Then the
axion mass is given by

mϕ,0 =

√
z

1 + z

fπmπ

fϕ
(2.11)

≃ 5.7µeV

(
1012 GeV

fϕ

)
, (2.12)

where, in the second line, we take the NNLO result in chiral perturbation theory [80].
The important ingredient for the non-thermal production of axion DM is the potential

and mass at temperature around or higher than ΛQCD. However, the above chiral per-
turbation theory is no longer applicable to such high temperature region, because of the
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asymptotic freedom, that is, the system should be described by the quark-gluon plasma
rather than hadrons. We should rely on alternative methods, such as the dilute instanton
gas approximation [84] or the lattice simulation [85, 86, 87, 88, 89]. The result of the
former method provides the temperature-dependent potential of the axion, [90]

VDIGA(ϕ, T ) = (m
(DIGA)
ϕ (T ))2f 2

ϕ

(
1− cos

ϕ

fϕ

)
(2.13)

with m
(DIGA)
ϕ (T ) ∝ T−4 for the 3-flavor model.

On the other hand, lattice simulations are also useful. In Fig. 2.1, we show the latest
lattice result [86] which covers the temperature region of 100 MeV < T < 3 GeV. The
lattice result does not reach the region of temperatures higher than 3GeV, but the result
from 1 GeV to 3 GeV is consistent with the dilute instanton gas approximation which
is applicable at such high temperatures. In fact, we fit the lattice result from 1 GeV to
3 GeV to obtain the temperature dependence of the axion mass,

mϕ(T ) ≃ mϕ,0

(
T

ΛQCD

)−b

(2.14)

with b = 3.92 and ΛQCD ≡ 0.15 GeV. The fitting function is shown by the black dashed
line in Fig. 2.1, and its dependence on the temperature is consistent with dilute instanton
gas approximation. We note that this function can be continuously connected with the
zero-temperature mass (2.12) at T = ΛQCD. Thus we assume in this thesis that the
potential form at high temperature is described by

VQCD(ϕ, T ) = m2
ϕ(T )f

2
ϕ

(
1− cos

ϕ

fϕ

)
. (2.15)

Note that the axion mass around 1GeV is most relevant for the estimate of the axion
dynamics, and that the precise axion mass above 3GeV does not significantly change our
results as long as it decreases smoothly with increasing temperature.

Before going to the next discussion, let us comment on the shape of the potential at
the lower temperature. While the dilute instanton gas approximation predicts the cosine-
shape potential (2.15), the chiral perturbation theory gives the potential (2.10) with
somewhat spiky top. Though we assume the former potential even in the region of low
temperature, the difference does not alter our results presented in subsequent chapters,
which in fact, we confirmed numerically.

2.4 Axion dark matter

In the PQ mechanism, the axion dynamically washes out the strong CP violation, which
has interesting cosmological implications. Here we will see that when the axion starts to
oscillate around the potential minimum, the axion behaves like matter whose abundance
can explain that of DM (Sec. 2.4.1). Also, we will discuss a measurable quantity for
the existence of the quantum fluctuation of axion during inflation in Sec. 2.4.2. Note
that when the PQ symmetry is spontaneously broken before or during inflation and not
restored afterwards, the axionic fluctuation has an impact on density perturbation. This
is called the pre-inflationary scenario that we focus on throughout this thesis. On the
contrary, if the PQ symmetry is broken after inflation, topological defects such as cosmic
string and domain wall are produced. This is called the post-inflationary scenario.
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Figure 2.1: The temperature dependence of mϕ(T ) obtained by the lattice result (red
line) [86] for fϕ = 1012 GeV. The width of the red line represents the statistical and
systematic errors. The black dashed line is the numerical fit obtained from the lattice
result between T = 1 GeV and 3 GeV assuming the power-law function (2.14).

2.4.1 Misalignment mechanism

The axion dynamics on the potential is important for understanding its cosmological
implications. At first, let us begin with taking a rough look at the cosmic history before
the QCD transition. See Fig. 2.2 for the schematic picture. When the PQ symmetry is
spontaneously broken, the axion degree of freedom appears as a Nambu-Goldstone boson.
At this moment, the axion is positioned somewhere (ϕ = ϕini) according to uniform
distribution. The Hubble patch at the spontaneous breakdown of the PQ symmetry
(yellow shaded region), within which things were causally correlated with each other and
all the axion fields have the same position ϕini plus small fluctuations, stretches out by the
inflationary expansion. After the end of inflation, both the uniform region of ϕini (yellow
shaded region) and the causal region continue expanding. In this way, the uniform region
of ϕini contains the whole of the currently observed universe (blue circle), and we can find
only the axions with the same initial field value, leading to the spatially homogeneous
axion density up to the density fluctuation which will be discussed in the next subsection.
Note that the initial position ϕini is chosen arbitrarily, and so, it is a free parameter. In
the following, the initial misalignment angle is defined as θini ≡ ϕini/fϕ.

To this time, the axion is massless and stays at the initial position. When the universe
undergoes the QCD phase transition at T ∼ ΛQCD, the axion acquires the potential and
starts to oscillate around the potential minimum. While the axion dynamics solves the
Strong CP problem because the minimum of the potential conserves CP symmetry, the
oscillating axion becomes a non-relativistic matter component which contributes to the
DM. Such a production mechanism of the axion cold DM (CDM) is called misalignment
mechanism [22, 23, 21], whose schematic picture is shown in Fig. 2.3.

Let us analyze the dynamics described above quantitatively. Assuming the minimal
coupling to gravity, we obtain the equation of motion for the spatially homogeneous axion
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Figure 2.2: The schematic picture for the evolution of ϕini-distribution (yellow shaded
region) in the pre-inflationary scenario. The blue dashed line is the Hubble horizon. The
blue circle represents the currently observed region.
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Figure 2.3: The schematic picture of the misalignment mechanism. The blue circle rep-
resents the axion field. At T ∼ ΛQCD, the QCD potential grows and the axion starts to
oscillate.

field,

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0, (2.16)

where H ≡ ȧ/a is the Hubble parameter with a(t) the scale factor, and the prime and
the dot represent the derivatives with respect to axion field ϕ and time t, respectively.
We can solve this equation for the initial conditions of position and velocity (ϕini, ϕ̇ini) to
follow the evolution.3 In this thesis, we choose the zero initial velocity. The second term
works as a friction effect so that the axion sticks to the initial position before the QCD
phase transition. Assuming the axion is initially near the potential minimum so that
the potential can be approximated to be quadratic, when the Hubble parameter becomes

3In Appendix C, the dimensionless equation of motion is shown for the numerical computation. Our
numerical results were estimated by solving it.
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comparable to the axion mass, the axion is driven by the potential toward the minimum.
The temperature at the onset of oscillations is given by

T (conv)
osc ≃ 1.1 GeV

( g∗
80

)−0.084
(

fϕ
1012 GeV

)−0.17

. (2.17)

which satisfies mϕ(T
(conv)
osc ) = 1.67H(T

(conv)
osc ), and the superscript (conv) represents the

case when there is no extra potential.4 Here we use the mass relations (2.12) and (2.14).
Henceforth, we assume the radiation-dominated universe until the matter-radiation equal-
ity, and using (A.1) and (A.4), the Hubble parameter is given by

H2 =
π2

90M2
Pl

g∗(T )T
4, (2.18)

where g∗(T ) is defined as the effective relativistic degrees of freedom for energy density,
and MPl is the reduced Planck mass.

When the axion oscillates around the potential minimum, the number density is con-
served in the fixed comoving volume, and so, nϕ/s is a conserved quantity because
sa3 = const., where s(T ) is the entropy density. The basic strategy to estimate the
QCD axion energy density is to follow the time evolution of nϕ/s and multiply the zero
temperature mass after the increase of the mass stops. The present ratio is given by

nϕ(T0)

s0
≃ nϕ(T

(conv)
osc )

s(T
(conv)
osc )

=
45

4π2g∗s(T
(conv)
osc )

mϕ(T
(conv)
osc )ϕ2

ini

(T
(conv)
osc )3

, (2.19)

where the subscript ‘0’ denotes the present value, and g∗s is the effective relativistic degrees
of freedom for entropy density. The density parameter is given by

Ω
(conv)
ϕ h2 =

ρϕ(T0)

ρcrith−2
=
mϕ,0nϕ(T0)

ρcrith−2
. (2.20)

In the above estimate, we assume that the potential can be approximated to be
quadratic, but when a broader parameter region of θini, the abundance is altered by
the anharmonic parts of potential. When the initial position is close to the potential
maximum, the abundance increases logarithmically. This is known as the anharmonic
effect. Including the anharmonic effect, we obtain the axion abundance [91],

Ω
(conv)
ϕ h2 ≃ 0.14F (conv)(θini)θ

2
ini

(
fϕ

1012 GeV

)1.17

, (2.21)

where θini ≡ ϕini/fϕ is defined as the dimensionless initial angle. The coefficient F (conv)(θini)
represents the anharmonic effect, and is given by [33, 35, 36]

F (conv)(θini) =

[
ln

(
e

1− θ2ini/π
2

)]1.17
. (2.22)

4The numerical coefficient is determined by comparing with the numerical calculations of the axion
abundance.
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We can understand the anharmonic effect as follows. In the hilltop limit, the axion finds
the potential so flat that it does not feel strong dragging due to the potential. Thus
the onset of the axion oscillation is delayed significantly, resulting in the less suppression
of abundance due to the cosmic expansion. This is how the anharmonicity causes the
enhancement of the axion abundance.

In order to explain the total DM density ΩDMh
2 ≃ 0.12, the decay constant should

be ∼ 1012 GeV for θini ∼ 1. For smaller fϕ, the abundance is inadequate. In this case,
the anharmonic effect can enhance the abundance, but there is another problem. The
anharmonic effect also enhances the isocurvature perturbation which will be discussed in
the next subsection. Although the post-inflationary scenario is not the main theme in this
thesis, topological defects possibly complement the abundance in this scenario [92, 93].
On the other hand, for larger fϕ, the axion is overproduced. A simple solution is to tune
θini small. In the pre-inflationary scenario, θini is randomly chosen, but for instance, by
considering the competition between the effect of quantum fluctuation and the classical
axion dynamics during inflation, θini can be naturally small [40, 41] (cf. [42, 43] for ALP
DM). Anyway, it is nontrivial and important to investigate whether the axion can totally
explain dark matter for both smaller and larger fϕ, which motivates our works presented
in this thesis.

2.4.2 Isocurvature perturbation

To explain the isocurvature perturbation, let us begin with briefly discussing density
perturbations. Hereafter, only when we discuss the cosmological perturbation, we define
quantities Xi (e.g. ni, ρi, Pi, etc) as Xi = X̄i(t) + δXi(t,x), where X̄i and δXi(≪ X̄i)
denote the homogeneous part and the perturbation of Xi, and the subscripts ‘i’ represents
particle species, like radiation, CDM, etc.

The present universe contains complicated structures such as stars and galaxies, but
what their seeds are is an open question. Now it is broadly believed that a light scalar
field, inflaton is responsible for its origin. The inflaton acquires quantum fluctuations
during inflation [94]. When the inflation ends, the inflaton decays into various particles.
The SM particles of the decay products are promptly thermalized to each other. At the
moment, the perturbation of the inflaton is converted to that of them. Since the origin is
the same, the ratio of number density between two components is expected to be spatially
homogeneous, which is written by

δni
n̄i

=
δnj
n̄j

, (2.23)

in the superhorizon scale. The homogeneous energy density ρ̄i obeys the energy conser-
vation Eq. (A.3), and we obtain ρ̄i ∝ a−3(1+wi). Noting n̄i ∝ a−3, the above equation can
be rewritten as

δρi
ρ̄i + P̄i

=
δρj

ρ̄j + P̄j
, (2.24)

where Pi denotes the pressure. We can further rewrite it as ζi = ζj by using the gauge
invariant combination of perturbations

ζi ≡ −ψ − δρi
3(ρ̄i + P̄i)

, (2.25)
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where ψ is defined as the curvature perturbation, i.e. the perturbation of expansion
rate. This is a conserved perturbation on superhorizon scale [95, 96]. All the observed
perturbations exit the horizon during inflation and is conserved until the horizon re-entry,
and (2.25) is the initial condition for their evolution.

The definition of ζi (2.25) indicates that if the energy density of one component is
dense, so is that of the other. This is called adiabatic perturbation. All the current
observations are consistent with the adiabatic perturbation, and there is only narrow
room for deviations from it. Nevertheless, the existence of non-adiabatic perturbation is
not completely excluded, and next we consider the axion-induced one.

Since an axion is almost massless during inflation, it acquires quantum fluctuations like
inflaton. The axion exists as a spectator during inflation, and the axionic fluctuation is
independent of the inflaton one. Thus the axionic fluctuation can induce a non-adiabatic
perturbation, which provides nonzero perturbations of the relative number density in
contrast to an adiabatic perturbation. The relevant perturbation is defined as

S(x) ≡ 3(ζCDM − ζrad). (2.26)

This non-adiabatic perturbation obeys the initial condition that both the curvature per-
turbation and the perturbation of the total energy density are zero well before the horizon
re-entry, and such an initial condition is called isocurvature perturbation [97, 98]. The
axion density perturbation produced just after the QCD phase transition obeys this initial
condition. It is converted to the curvature perturbation through the entropy perturbation
and thus leaves a distinctive imprint on observables.

In Fig. 2.4, we show the schematic picture for the initial conditions of density pertur-
bations as a function of spatial coordinates (only one direction is depicted for simplicity).
The left and right panel respectively denotes the adiabatic and isocurvature perturbation.
The lower black line denotes the energy density of CDM, and the upper one does the to-
tal density, ρrad + ρCDM. In the case of the adiabatic perturbation, both radiation and
CDM fluctuates with the similar spatial dependence. On the other hand, the isocurva-
ture perturbation fluctuates so that the total density is zero. Such a difference generates
the difference of observed perturbations. For instance, distinct signatures appear in the
spectrum for CMB temperature anisotropy. The evolution equations of density pertur-
bations around the recombination can be written by wave equations which possess two
types of solution. The periodicity of these solutions differs by half a period, and thus, the
isocurvature mode has a distinct peak at different scale from the adiabatic mode.

The statistical information on perturbations can be extracted by correlation functions.
The important calculable quantity is the power spectrum which is defined by

⟨S(k)S(k′)⟩ ≡ (2π)3PS(k)δ(3)(k + k′) (2.27)

∆2
S ≡ k3

2π2
PS(k), (2.28)

where S(k) with k ≡ |k| is the Fourier transformation of S(x), and ⟨·⟩ represents a
spatially averaged value. The second equation is the definition of the dimensionless power
spectrum, which is compared to observational results. Higher order correlation functions
can be calculated as non-Gaussianity.

The recent Planck data of the CMB anisotropy constrains the scale-invariant and
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Figure 2.4: The schematic picture for the initial conditions for density perturbation as a
function of spacial coordinates (only one direction is depicted for simplicity): the adiabatic
mode (left) and the isocurvature mode (right).

uncorrelated isocurvature perturbation as [99]:

βiso(k0) < 0.038 (95%CL), (2.29)

where k0 = 0.05 Mpc−1 is the pivot scale and βiso is defined as the ratio between the power
spectrum of the adiabatic perturbation Pζ and the isocurvature one PS, i.e. βiso ≡ PS/Pζ .
Thus the current upper bound on the isocurvature power spectrum reads

∆2
S < 8.3× 10−11. (2.30)

For instance, let us here consider the QCD axion with the potential approximated
to be quadratic. When the universe is highly dominated by radiations, the QCD axion
becomes DM, and δρrad/ρ̄rad ≪ δρCDM/ρ̄CDM. Noting ρϕ ∝ ϕ2

ini, we obtain

S(x) ≃ −δρCDM

ρ̄CDM

= − Ωϕ

ΩDM

δρϕ
ρ̄ϕ

≃ − Ωϕ

ΩDM

2δϕ∗

ϕ∗
, (2.31)

where δϕ∗(t,x) is defined as the perturbation of the axion field at the horizon exit. In
the second equality, we assume that other CDM components than the axion have no
isocurvature perturbation. The power spectrum of the isocurvature perturbation is given
by

PS(k) =

(
Ωϕ

ΩCDM

Hinf

πθinifϕ

)2
2π2

k3
, (2.32)

∆2
S ≃

(
Rϕ

Hinf

πθinifϕ

)2

≡ (Rϕ∆ϕ)
2, (2.33)

where Rϕ ≡ Ωϕ/ΩCDM, Hinf is the Hubble parameter during inflation, and we use the

power spectrum of the axion field perturbation, Pδϕ∗(k⃗) ≃ H2
inf/2k

3. The point is that
the isocurvature bound provides the upper bound on the inflation scale. According to the
observational esults (2.30), the bound on Hinf is given by

Hinf ≲ 3 · 107 GeVθini

(
fϕ

1012 GeV

)
, (2.34)
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Figure 2.5: The isocurvature bound on Hinf as a function of fϕ. We set the axion abun-
dance, Rϕ = 1 (blue solid), 0.1 (green dotted), 0.01 (red dashed).

where we assume Rϕ = 1. For smaller decay constant, the bound is tighter and the
universe requires low-scale inflation.

The above estimate is limited to the quadratic potential. To study the anharmonic
effect, we can use more precise analytic formula [100],

∆2
S ≃

(
Rϕ

∂ lnΩϕ

∂θini

Hinf

2πfϕ

)2

. (2.35)

The formula is derived in Sec. D.2. Including the anharmonic effect, the bound becomes
much severe, because the abundance becomes very sensitive to the initial position of
the axion when it is close to the potential maximum. To see it explicitly, we show the
upper bound on Hinf in Fig. 2.5. The axion abundance is set to be Rϕ = 1 (blue solid),
0.1 (green dotted), 0.01 (red dashed). Note that θini is fixed by the abundance of the
axion (2.21). Looking at the blue solid line, one can see that the bound becomes intensely
severe for fϕ ≲ 1011 GeV, because the initial position θini has to be close to the top of the
potential to saturate the DM density.

2.5 Axion detection

Axions can weakly but surely couple to the SM sector, and experiments and observations
for the axion detection have been carried out and planned energetically. Here we sum-
marize the axion detection experiments, particularly related to our research. There are
mainly three types of experiment: Haloscope, Helioscope, and astrophysical arguments in
terms of e.g. supernovae or neutron star.

Before going on to the discussion about each experiment, let us present the definition
of the axion coupling to the SM particles. First, we consider only the axion-photon
coupling. Taking account of the non-conservation of the axial current associated with the
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PQ symmetry, the axion effective Lagrangian includes

Laxion = −N g2s
16π2

ϕ

vϕ
Ga
µνG̃

aµν − E e2

16π2

ϕ

vϕ
FµνF

µν , (2.36)

where N and E denote the anomaly coefficient for QCD and electromagnetism, respec-
tively, e is an electric charge, and vϕ is the vacuum expectation value of the additional
Higgs field which spontaneously breaks the PQ symmetry. When the decay constant is
defined as fϕ ≡ vϕ/2N , the Lagrangian is rewritten as

Laxion = − g2s
32π2

ϕ

fϕ
Ga
µνG̃

aµν − E
N

e2

32π2

ϕ

fϕ
FµνF̃

µν

= − g2s
32π2

ϕ

fϕ
Ga
µνG̃

aµν −
g0ϕγ
4
ϕFµνF̃

µν . (2.37)

Here we define g0ϕγ ≡ (αEM/2πfϕ) · (E/N ) as the dimensionful, model-dependent coupling
that is determined by UV physics.

We impose the field-dependent chiral rotation to doublet quarks, q → e
−iγ5 ϕ

2fϕ
Qϕ
q,

where qT = (u, d) denotes the doublet quark field and Qϕ represents a matrix acting on
the doublet quark field which is specified in the process of the chiral effective theory. The
chiral anomaly is induced on both terms. Taking Tr[Qϕ] = 1 to vanish the GG̃ term,
we obtain the Lagrangian for the axion-photon coupling, Laγ = −gϕγ

4
ϕFµνF̃

µν with the
coupling

gϕγ = g0ϕγ −
αEM

2πfϕ

(
3

2
Tr[QϕQ

2]

)
=
αEM

2πfϕ

( E
N − 2

3

4md +mu

mu +md

)
, (2.38)

where, in the second equality, we use the specific matrix Qϕ = M−1
q /TrM−1

q so that
the axion-pion mass mixing disappears, which enables us to estimate the axion-photon
coupling simply from ϕFF̃ term. Though the second term in the last equation is estimated
about −2, more precisely, we can obtain the NLO result from the chiral perturbation
theory [101],

gNLO
ϕγ =

αEM

2πfϕ

( E
N − 1.92

)
. (2.39)

The orange shaded region in Fig. 2.6 shows the coupling strength of QCD axion to photon,
whose uncertainty is attributed to the model-dependence of E/N .

In addition to the photon coupling, the axion have the coupling to nucleon. According
to the chiral effective theory [101], these Lagrangian terms are written by

Laxion ⊃ CϕN
∂µϕ

2fϕ
N̄γµγ5N, (2.40)

where the model-dependent coefficient CϕN = diag(Cϕp, Cϕn) is given at the leading order
in the chiral expansion (see [101], for the values).

Below, each detection strategy is listed up. In particular, we show the parameter
regions of the axion-photon coupling (mϕ,0, |gϕγ|) in Fig. 2.6 which is taken from the
website [102]. While the already excluded region is depicted in the upper panel, the
future sensitivity is shown in the lower panel.

17



| g
ϕγ

| [G
eV

−1
]

mϕ [eV]
10°

12
10°

11
10°

10
10°

9
10°

8
10°

7
10°

6
10°

5
10°

4
10°

3
10°

2
10°

1
100

101
102

103
104

105
106

107

ma [eV]

10°19

10°18

10°17

10°16

10°15

10°14

10°13

10°12

10°11

10°10

10°9

10°8

10°7

10°6

|g
ag

g
|[

G
eV
°

1 ]

KSVZ

DFSZ

So
la

r
ba

si
n

A
D

M
X

H
A

Y
STA

C

O
R

G
A

N

R
B

F+U
F

C
A

PP

Q
U

A
XB

A
SE

A
D

M
X

SLIC

Chandra
SN1987A

MWD X-rays

MWD
Polarisation

M
U

SE V
IM

O
S

XMM-Newton

Leo T

INTEGRAL

Neutron stars

10°
12

10°
11

10°
10

10°
9

10°
8

10°
7

10°
6

10°
5

10°
4

10°
3

10°
2

10°
1

100
101

102
103

104
105

106
107

ma [eV]

10°19

10°18

10°17

10°16

10°15

10°14

10°13

10°12

10°11

10°10

10°9

10°8

10°7

10°6

|g
ag

g
|[

G
eV
°

1 ]

So
la

r
ba

si
n

ADMX

ORGAN

D
M

-R
ad

io

SRF-m 3

ALPHA
MADMAX

FLASH

TOO
RAD

BRASS
BREAD

CADEx

ADBC

D
AN

CE

aLIGO

WISPLC

LA
M

PO
ST

H
al

os
co

pe
s

IAXO

MWD X-rays

M
U

SE V
IM

O
S

XMM-Newton

Leo T

THESEUS

eROSITA

Neutron stars

| g
ϕγ

| [G
eV

−1
]

mϕ [eV]

Figure 2.6: The axion-photon coupling |gϕγ| as a function of the axion mass mϕ. These
figures are taken from [102]. The upper panel shows the excluded region by current
experiments and observations. In the lower panel, the future sensitivities are also depicted.

■ Astrophysics In the laboratory experiments, the axion properties can be probed as
will be explained later, but the use of astrophysical objects is a good way to constrain
it. Since the axion couples to photon and nucleon, it can be thermally produced in some
high temperature environment, such as supernova core and neutron star, but it runs away
with energy due to its large free-streaming scale. The cooling process of such astrophysical
objects is understood for each object, and so, the energy loss rate by the axion provides
an upper bound on the strength of the axion coupling.

According to the stellar cooling arguments of supernovae [24, 25, 26, 27, 28] and

18



neutron star [29, 30, 31, 32], the lower bound on fϕ is about 108 GeV. In addition of the
upper bound from the axion abundance assuming θini ∼ 1, the bound becomes close and
is called axion window,

108 GeV ≲ fϕ ≲ 1012 GeV. (2.41)

■ Haloscope Around us, dark matter is expected to exist. The local energy density is
fixed as ρ

(local)
DM ≃ 0.45 GeV/cm3, so we can detect DM particle on the Earth. If the axion

is really dark matter, we are surrounded by a greater number of axion particle compared
to the case of the other heavier candidates, because the axion is very light. Thus the
ground-based experiments look a good idea for axion detection.

Haloscope is an experimental set where the axion in dark matter halo is detected. The
principle is based on the axion-photon conversion in strong external magnetic field. For
instance, when the axion enters into the container (resonant cavity) applying magnetic
field and is converted to photon, we can extract the information about the axion mass and
coupling strength by detecting the produced photons. Now haloscope experiments have
been carried out and planned, e.g. ADMX [103], MADMAX [104], ABRACADABRA
[105] (see Fig. 2.6).

■ Helioscope It is possible that the axion not only lives with us but also comes to fly
from outside (but it may not be dark matter). The main source is the Sun. The axion
can be produced by axion-photon conversion due to the external electric field around ions
in the Sun, which is called the Primakoff effect, and propagates to the Earth. We can
search for the sign of axion by using the axion-photon conversion again in laboratory. The
sensitivity is less than haloscope, but a broader mass region can be probed. For instance,
helioscope experiments include CAST [106], IAXO [107, 108]
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Chapter 3

Extra Peccei-Quinn symmetry
breaking and trapping effect

In the previous chapter, it has been clearly shown that the minimal extension of the SM
introducing the QCD axion successfully conserves the CP symmetry in QCD sector. It
must require single PQ symmetry breaking by the QCD anomaly. Still, there can be a
vast room for the extra PQ breaking in a UV completed theory, and the strong CP phase
can be deviated from the origin. This is called quality problem of the PQ symmetry,
which will be discussed in Sec. 3.1. There, we will see how much the PQ breaking effect
should be suppressed using a concrete example. In Sec. 3.2, the Witten effect of hidden
monopoles will be explained as an example for time-dependent extra potential. The
above extra PQ breaking potentials must be significantly suppressed to satisfy the nEDM
bound. However, the QCD potential is negligibly small in the early universe, and the axion
dynamics can be altered. In Sec. 3.3, we will study the case that the axion is initially
trapped by the extra potential. We will classify the axion dynamics by the adiabaticity
and evaluate the abundance of axion analytically.

3.1 Quality problem of PQ symmetry

The global symmetry U(1)PQ is the building block of the PQ mechanism. To resolve
the Strong CP problem, any other explicit PQ breaking must be so suppressed that the
potential minimum satisfies the nEDM bound. However, in quantum gravity theory, it
is strongly believed that any global symmetry is explicitly broken [44, 45, 46, 47, 48].
An example is the absorption process of black hole. When a black hole eats particles
with some global charges, it becomes impossible to observe it. Such a quantum gravity
effect and other effects may induce extra potentials for axion in the low energy effective
field theory. The, the effective strong CP phase might be largely altered, and the PQ
mechanism could be spoiled. This is known as the quality problem of PQ symmetry. For
instance, non-renormalizable operators induce explicit breaking of the PQ symmetry.1

1Actually, even some renormalizable operators can break down the PQ symmetry, but it is usually
assumed to be protected as an accidental symmetry by e.g. discrete symmetry.
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Let us consider a d-dimensional Planck suppressed operator,

L��PQ ⊃ c|Φ|2mΦn

Md−4
Pl

e−iδ + h.c., (3.1)

where Φ denotes the PQ scalar whose phase corresponds to the axion, d = 2m + n, and
c and δ are a real constant. Parametrizing the PQ scalar field as Φ = (vϕ/

√
2)eiϕ/vϕ

(dropping the radial component), we obtain the PQ breaking potential for axion as

V��PQ = −
v4ϕc

2

(
vϕ
MPl

)d−4

cos

(
n
ϕ

vϕ
− δ

)
. (3.2)

One can see that δ represents the shift from the origin, and the suppression factor vϕ/MPl

and the dimension d determines its size.
The axion mass from this potential is given as an expansion coefficient of the second

order, m2
��PQ

= (cn2v2ϕ/2)·(vϕ/MPl)
d−4. Both the QCD potential and the Planck suppressed

potential are approximated as quadratic one, and we can obtain the effective strong CP
phase,

⟨θ⟩ ≃
m2
��PQ tan δ

n(m2
ϕ0 +m2

��PQ)
. (3.3)

To solve the strong CP problem, we require |⟨θ⟩| ≲ 10−10. This result gives a nontrivial
constraint on UV theory. Taking c and tan δ to be of the order unity and setting the
power n to unity, the dimension has to be d ≳ 8, 12, 28 for vϕ = 108, 1012, 1016 GeV,
respectively. For this estimate, we use the mass relation (2.12) assuming the unit domain
wall number, i.e. vϕ = fϕ. The suppression of all lower dimension operators than the
required dimension must be explained by some additional symmetry, like a ZN symmetry
with large N .

In this thesis, we are interested in how such ubiquitous PQ breaking effects change the
axion properties. If the potential is modified, then so is the axion dynamics, leading to the
nontrivial cosmological implications, such as the axion abundance and the isocurvature
fluctuations.

To estimate the impact of the extra PQ breaking on the axion dynamics, let us first
evaluate which parts in the parameter region are allowed by the nEDM bound (2.6). In
addition to the QCD potential (2.15), we consider an additional PQ breaking term in the
form of

V��PQ(ϕ) = Λ4
H

[
1− cos

(
N

(
ϕ

fϕ
− θH

))]
, (3.4)

which is parametrized by the potential height ΛH , a rational number N , and a phase θH .
We assume θH > 0 without loss of generality. Here ΛH is take to be a constant, but it
can be time-dependent. A time-dependent potential can also violate the PQ symmetry,
but it is less problematic as far as diluted enough with time. The potential term via the
Witten effect will be discussed in the next section. Thus, the total potential is

V (ϕ, T ) = VQCD(ϕ, T ) + V��PQ(ϕ)

= m2
ϕ(T )f

2
ϕ

(
1− cos

ϕ

fϕ

)
+ Λ4

H

[
1− cos

(
N

(
ϕ

fϕ
− θH

))]
. (3.5)
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Figure 3.1: The nEDM constraint (3.6) for N = 3. The gray shaded region is excluded.
The axion remains trapped at a false minimum in the case of r ≳ N−1/4 denoted by the
black dashed line, leading to a too much contribution to θ̄.

The neutron EDM bound (2.6) can be converted to the limits on ΛH and θH . One can
solve the equation V ′(ϕ) = 0 to evaluate the effective strong CP phase θ̄ modified by the
extra PQ breaking term. For convenience, let us define r as the relative size of V��PQ with
respect to VQCD at T ≪ ΛQCD, and the limit is expressed as

r ≡ ΛH√
mϕ,0fϕ

≲

∣∣∣∣ 10−10

N sin(N(10−10 − θH))

∣∣∣∣1/4 . (3.6)

The excluded parameter region for N = 3 is shown by the gray shaded region in Fig. 3.1.
While it is trivial for the upper bound to disappear at θH < 10−10, the upper bound
is coincidently relaxed at particular values of θH = π/N where the minimum of V��PQ
is aligned with that of VQCD. If Nr4 ≳ 1 (shown by the black dashed line), there are
multiple false vacua even in the low energy, and the axion would be trapped at one of
them if |θini − θH | ≳ π/N . Then, it would give a too large contribution to θ̄ unless the
axion escapes from the wrong minimum by tunneling.

We note that a relatively large extra potential can avoid the constraint from the nEDM,
if some mild tuning of θH is allowed. In the previous literature [109, 110, 111, 112, 113],
assuming θH ∼ O(π/N), the axion quality problem was estimated. However, the quantum
gravity effect necessarily induces the explicit breaking of PQ symmetry, and it is important
to investigate a broader parameter region. In Chapter 4, the dynamics, abundance, and
isocurvature in this setup will be studied in detail.

3.2 Witten effect on axion potential

We found in the previous section that the axion acquires additional potentials from other
explicit PQ breaking effects, which leads to the necessity of high quality PQ symmetry.
Of these additional potentials, there is a type of potential that does not to spoil the PQ
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mechanism. It is the case when the extra PQ breaking potential is time-dependent and
decreases with time. For example, the Hubble-induced mass originating from the coupling
to the Ricci curvature [114], and the Witten effect [50]. Here and in Chapter 5, we discuss
the latter case and its implications about the axion dark matter.

The Witten effect is a phenomenon related to magnetic monopole. The electromag-
netic monopole are tightly constrained by experiments [115]. Still, there is a room for
inducing sizable effects in nature if the monopole is in hidden sectors. Throughout this
thesis, we consider the hidden monopole as the ’t Hooft-Polyakov monopole [52, 53]. The
monopole is a solution of the SU(2)H gauge theory which is spontaneously broken to the
hidden Abelian gauge group.

First let us begin with a hidden U(1)H gauge theory in the presence of a ’t Hooft-
Polyakov monopole [52, 53]. Including the Chern-Simons term associated with hidden
gauge group, the Lagrangian in the gauge sector is given by

L ⊃ −1

4
XµνX

µν − e2HΘH

32π2
XµνX̃

µν , (3.7)

where eH is the gauge coupling, ΘH is a constant parameter, and Xµν and X̃µν ≡
ϵµναβXαβ/2 represent the field strength of the hidden gauge field and its dual, respec-
tively. While the Chern-Simons term has no effects perturbatively because it is a total
derivative, a non-trivial effect exists in the presence of magnetic monopole. From the
Lagrangian, we can derive the equation of motion,

∂µ

(
Xµν +

e2HΘH

8π
X̃µν

)
= 0, (3.8)

which corresponds to the Maxwell equation for hidden gauge theory modified by the
Chern-Simons term. Using the hidden electric field E and magnetic field B, the modified
Gauss’s law is given by

∇ ·E = − e2H
8π2

∇ · (ΘHB), (3.9)

where Ei ≡ X0i and Bi ≡ −ϵijkXjk/2. In the presence of hidden monopole, the magnetic
flux becomes nonzero since the magnetic monopole possesses a point-like magnetic charge
density, gH(nM+−nM−) where gH = 4π/eH is a magnetic charge, and nM+ (nM−) denotes
the number density of the (anti-)monopole. Thus the ΘH-term shifts the hidden electric
charge by QE/eH = −ΘH/2π, that is, the magnetic monopole becomes dyon. This is
called the Witten effect [50].

The next step is to introduce the QCD axion coupled to the U(1)H such as

Lϕ =
1

2
∂µϕ∂

µϕ− VQCD(ϕ)−
e2H
32π2

(
ΘH +

ϕ

fH

)
XµνX̃

µν , (3.10)

where fH is the axion decay constant associated with the hidden sector. When the
anomaly coefficient of color and hidden U(1)H are respectively given by N (see Eq. (2.36))
and EH , it is defined by

fH =
N

EH
fϕ ≡

NDW

NH

fϕ. (3.11)
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In the last equality, we redefine the anomaly coefficients as the domain wall numbers for
each group. By imposing shift transformation of the axion so that the θ-term in QCD
disappears, the axion is coupled to the hidden gauge field instead of the parameter ΘH ,

Lϕ ⊃ − e2H
32π2

(ϕ− ϕ∗)

fH
XµνX̃

µν , (3.12)

where ϕ∗ is given as a free parameter. Note that ΘH generally differs from θ̄ in QCD, so
ϕ∗ has a nonzero value. In the presence of the axion, we can rewrite the relation for the
electric charge of dyon as

QE

eH
= −(ϕ− ϕ∗)

2πfH
. (3.13)

Therefore, as the axion field value changes, the electric charge of the dyon changes. At
ϕ ̸= ϕ∗, the monopole has an electric charge so that the coupling to hidden electric fields
induces the axion effective potential whose minimum is determined by ϕ = ϕ∗.

To see the effective potential explicitly, the axion-dependent contribution to the elec-
tromagnetic energy of a single monopole is estimated as [51]

VM ∼ βfH
(ϕ− ϕ∗)

2

f 2
H

, (3.14)

β =
αH
32π2

1

rcfH
, (3.15)

where αH ≡ e2H/4π, and rc is the radius of the monopole core. In the case of the ’t
Hooft-Polyakov monopole, rc is the inverse of the heavy gauge boson mass, mW , which is
about αH times the monopole mass. Taking a spatial average over the whole space, we
obtain the energy density of the axion ground state in the plasma with monopoles and
anti-monopoles as U = nMVM , where nM = nM+ + nM−. Thus, the homogeneous mode
of the axion effectively obtains a potential

VM(ϕ) =
1

2
m2
ϕ,M(ϕ− ϕ∗)

2, (3.16)

where the mass mϕ,M is given by

m2
ϕ,M(T ) = 2β

nM(T )

fH
(3.17)

=
α2
H

16π2

ρM(T )

f 2
H

. (3.18)

The mass (3.18) decreases in time due to the cosmic expansion, so that this does not
spoil the Peccei-Quinn mechanism to solve the strong CP problem. The Chapter 5 will
be devoted to the detailed analysis in this situation.

Lastly we comment on an upper bound on the coupling constant αH . The SU(2)H in-
stanton effect gives another effective mass to the axion, which is proportional to e−π/αH [116,
117, 118] and does not decrease in time in the low energy. The effective mass squared
from this contribution should be smaller by a factor of 10−10 than that from the QCD
effect, otherwise the PQ mechanism would be spoiled. This requires

αH ≲ 0.07. (3.19)

In the following, we assume that this condition is satisfied.
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3.3 Trapping effect

So far, we saw that the QCD axion can acquire an additional potential from the other
PQ symmetry breaking. Although a time-independent potential is constrained by the
experiments of nEDM, there is still a broad parameter region where the potential can
alter the axion dynamics. Since an effective potential from the Witten effect becomes
stronger in the earlier universe, the dynamics can be significantly modified. If the axion
is temporarily trapped by such an additional potential, we expect that the dynamics
becomes completely different. We call such an effect the trapping effect.

Here we will study the trapping effect on the axion dynamics by the extra PQ breaking
potential. We do not assume any specific extra potential. Categorizing the dynamics
neatly and analyzing the abundance and the isocurvature perturbation, we will present
the importance of the trapping effect on the axion DM.

We consider the potential,

V (ϕ, T ) = VQCD + V
(G)

��PQ , (3.20)

where the second term denotes the potential from the extra PQ breaking which induces the
trapping effect. We perform a general analysis of the axion dynamics without specifying
the form of the PQ breaking potential, and the superscript ‘(G)’ of the second term
indicates the generality. The temperature dependence of the PQ breaking potential does
not matter. The given consequences will be applied to the specific potentials in the
subsequent two chapters.

Here let us categorize the axion dynamics into two regimes, and calculate the abun-
dance for each regime. At first, let us explain the dynamics (see the schematic picture
in Fig. 3.2). We are interested in the case when the PQ breaking potential drives the
axion oscillations before the QCD phase transition, Tosc ≫ ΛQCD, where Tosc is the tem-
perature at the onset of oscillation. In the following, the subscript ‘osc’ implies that the
variable is evaluated at T = Tosc. Also, we define the position of potential minimum at
T = Tosc as ϕmin. If the trapping effect is small enough compared to the QCD poten-
tial, and Tosc ≲ ΛQCD, then the dynamics would not differ from that of the conventional
case. After the axion oscillates about the minimum of PQ breaking potential (ϕ = ϕmin),
the QCD potential becomes dominant over the PQ breaking potential, and the structure
of potential minima is deformed. All the minima, except for the origin, disappear, and
the axion is eventually stabilized at the CP conserving minimum to solve the Strong CP
problem.2 Note that we assume that the potential satisfies the nEDM bound (2.6), and

the size of V
(G)

��PQ in Fig. 3.2 is exaggerated for illustration purpose..
The temperature of onset of oscillation is determined by the ratio of the Hubble

parameter to the effective mass of V
(G)

��PQ
. The effective mass is given by the potential

curvature near the minimum (ϕ = ϕmin), i.e. m
2
��PQ ≡ |(V (G)

��PQ )′′(ϕmin)|. We define Tosc by
H(Tosc) = m��PQ(Tosc). Note that the anharmonic effect can delay the onset of oscillation,
but the contribution is introduced by multiplying the anharmonic factor (e.g. Eq. (2.22))

to the abundance. In the following, we focus on the case of Tosc ≳ T
(conv)
osc where T

(conv)
osc

2Here we do not consider the case that the axion remains trapped at a wrong minimum even after
the QCD phase transition. The situation can be realized if the trapping effect is very strong and time-
independent. Such a quasi-eternal trapping was considered in [119].
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Figure 3.2: The schematic picture of the potential V (ϕ) : the extra PQ breaking potential

V
(G)

��PQ (the black solid line) plus the QCD potential VQCD (the gray dashed lines). The size of

V
(G)

��PQ is exaggerated for illustration purpose. Before the QCD phase transition T ≫ ΛQCD,

the position of potential minimum is determined only by V
(G)

��PQ , and the PQ breaking
potential drives the axion oscillation at T = Tosc. At T ∼ ΛQCD, the vacuum structure
starts to be deformed, and finally, there remains only the CP conserving minimum (the
origin).

is the oscillation temperature without any extra potential (see Eq. (2.17)). It means that
the axion starts to oscillate around the minimum of V��PQ before the QCD phase transition.
The oscillating axion generically acquires an additional oscillation amplitude because of
the deformation of entire potential shape. Naively speaking, there are two contributions
to the axion abundance,

Ωϕ ≃ Ω
(1)
ϕ + Ω

(2)
ϕ . (3.21)

Here, the first and second term denote the contributions of the primary oscillation by
the PQ breaking potential and the secondary oscillation induced by the deformation of
potential, respectively. The temperature at the onset of deformation (defined as Tdef) is
determined by mϕ(Tdef) = m��PQ(Tdef). The temperature at the onset of the secondary
oscillation (defined as Tosc2) is roughly given by the same temperature, Tosc2 ∼ Tdef ,
but more precisely, we require model-dependent analysis. Hereafter, the subscript ‘osc2’
(‘def’) implies that the variable is evaluated at T = Tosc2 (Tdef).

In fact, it is not possible to separate the axion abundance into such two parts com-
pletely, because the primary oscillations are mixed with the secondary ones when the
potential deformation occurs, T ∼ Tdef . Thus we need numerical calculations to obtain
the accurate abundance. Nevertheless, by considering special situations, the abundance
can be approximately saturated only by either contribution, which decomposes the ax-
ion dynamics into two regimes. One case corresponds to the regime where the axion is
always trapped around the same minimum due to the strong PQ breaking potential. In
this regime, the additional amplitude is almost not induced, and the abundance is fixed
only by the primary oscillation, Ωϕ ≃ Ω

(1)
ϕ . The primary oscillations are protected adi-

abatically by the trapping effect of extra potential, and we refer to this regime as the
adiabatic regime. In the other case, a sizable amplitude is generated, and the secondary
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oscillation dominates over the primary one, Ωϕ ≃ Ω
(2)
ϕ . In this regime, the strong trapping

effect induces the primary oscillation at T ≫ T
(conv)
osc , but the primary oscillations are not

protected adiabatically due to model-dependent factors that we will see later. This case
is referred to as the non-adiabatic regime. Note that the primary oscillations have to
start well before the conventional onset of oscillation, Tosc ≫ T

(conv)
osc , in the non-adiabatic

regime. If the onset of primary oscillation is earlier than but comparable to that of the
conventional one, the primary amplitude is non-negligible at the timing of deformation.
As a result, the primary oscillations can also contribute to the abundance, and thus, if
the trapping effect is not so strong in the non-adiabatic regime, the above naive classifi-
cation is spoiled. In this case, we need numerical calculations which will be shown in the
subsequent chapters.

Adiabaticity

The axion dynamics can be categorized into the two regimes described above. What
is important is whether the primary oscillations are protected adiabatically or not. We
can call this property the adiabaticity in the system. Before beginning the analysis of
each regime, let us clarify the condition that the adiabaticity is broken. To this end, we
introduce a parameter that describes the violation of adiabaticity, ϵ(t), defined by

ϵ(t) ≡
∣∣∣∣ 1

m2
eff(ϕ)

dmeff(ϕ)

dt

∣∣∣∣ , (3.22)

where the effective mass is defined by m2
eff ≡ |V ′′(ϕ)| for the temporal position ϕ of the

axion field. If ϵ ≪ 1, the effective mass changes adiabatically, which implies that the
system also evolves adiabatically. The axion field tracks the temporal minimum, as long
as the effective mass is larger than the Hubble parameter. On the contrary, if ϵ ∼ 1, the
axion cannot follow the deformation of potential minima, and it acquires an additional
amplitude which induces the secondary oscillation. In particular, we are interested in the
value at T = Tdef , because the violation of adiabaticity is expected to become the largest
when the potential minima start to be deformed. Importantly, this parameter will be also
useful for estimating the dependence of the abundance on the strength of the trapping
effect, which will be demonstrated in a toy model soon later.

Using the violation of adiabaticity at T = Tdef , we can summarize the categorization
of axion dynamics:

(i) Adiabatic regime : ϵ(tdef) ≪ 1 (Ωϕ ≃ Ω
(1)
ϕ )

(ii) Non-adiabatic regime : ϵ(tdef) ∼ 1 (Ωϕ ≃ Ω
(2)
ϕ )

Below, the axion abundance in each regime is calculated analytically, and in Chapter
4 and 5, we will use specific extra PQ breaking potentials to study the axion dynamics
both analytically and numerically.

Adiabatic regime

In this regime where ϵ(tdef) ≪ 1, the axion field follows the temporal minimum, and any
extra oscillation is almost not generated. When the potential minimum smoothly shifts

27



from a wrong vacuum to the true (CP conserving) vacuum, the abundance is fixed only

by the primary oscillations, Ωϕ ≃ Ω
(1)
ϕ . As with the standard misalignment mechanism,

the number density in the comoving volume remains conserved after the oscillation, and
we obtain the ratio of the number density to the entropy density,

nϕ,0
s0

=
nϕ,osc
sosc

=
45m��PQ(Tosc)(ϕini − ϕmin)

2

4π2g∗s(Tosc)T 3
osc

, (3.23)

or equivalently,

Ωϕh
2 ≃ mϕ,0m��PQ(ϕini − ϕmin)

2

2ρcrith−2

g∗s0
g∗s(Tosc)

(
T0
Tosc

)3

· F (AD)(θini). (3.24)

The coefficient F (AD)(θini) is defined as the anharmonic factor, written by

F (AD)(θini) =

[
ln

(
e

1− (θini − θmin)2/θ2d

)]k
. (3.25)

The exponent k is model-dependent and determined in the way suggested by Refs. [33, 36],
and θd represents the distance between the minimum and the maximum of extra PQ
breaking potential. Estimating the oscillation temperature Tosc and the mass m��PQ by PQ
breaking potential, and fixing the form of the anharmonic factor F (AD)(θini), this result is
applicable to any PQ breaking potential, as long as ϵ(tdef) ≪ 1. In general, the abundance
is suppressed compared to the conventional case, because of the earlier oscillation.

In the above estimate, we assume no secondary oscillations, but precisely speaking,
how much the secondary oscillation is suppressed depends on the strength of trapping
effect by the extra PQ breaking potential. It is known that the contribution of secondary
oscillations is exponentially suppressed due to the strong trapping effect. This is why
this phenomena in the adiabatic regime is called adiabatic suppression mechanism [56,
57, 120, 54, 55].

Let us see explicitly the adiabatic suppression mechanism on the basis of the sim-
plest setup [56].3 Suppose that a massive scalar field acquires an effective mass that is
proportional to the Hubble parameter such as

V (χ) =
1

2
m2
χχ

2 +
1

2
C2H2(χ− χmin)

2 , (3.26)

where C (≥ 0) is a constant that represents the size of the Hubble-induced mass term, χmin

is its minimum, and mχ is the scalar mass at low energy when the Hubble-induced mass
is negligible. In the radiation dominated era, the Hubble parameter decreases as H ∝ T 2,
and the potential minimum changes with time; at high temperatures the minimum is at
χ ≃ χmin, while at low temperatures it is at χ ≃ 0. In the case of 0 ≤ C ≲ 1, the scalar
field is not strongly trapped by the Hubble-induced mass term, and it begins to oscillate
around χ = 0 when H ∼ mχ. The result is the same with the case of no Hubble induced
mass. In the case of C ≫ 1, on the other hand, the scalar field is trapped so strongly

3The adiabatic suppression mechanism originally studied in a context of the Polonyi/moduli problem,
which was recently applied to the axion dynamics in Refs. [54, 55].
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that it begins to track the potential minimum adiabatically when H(Tdef) ∼ mχ/C. The
abundance of the scalar field is exponentially smaller than the case with 0 ≤ C ≲ 1. This
is the adiabatic suppression mechanism.

The amount of suppression can be evaluated by solving the equation of motion for the
homogeneous scalar field:

χ̈+ 3Hχ̇+ V ′(χ) = 0 . (3.27)

An analytic result for the suppression factor can be obtained from (3.27) with the initial
condition (χ, χ̇) = (χmin, 0) at H ≫ mχ as [56]

Ωχ(C ≫ 1)

Ωχ(C = 1)
∝ C5/2 exp (−Cπ/2) . (3.28)

One can see that the amplitude of the scalar field is exponentially suppressed for C ≫ 1.
This is the important feature of the adiabatic suppression.

The exponent in (3.28) can be understood by using the adiabatic parameter ϵ. In this
case, it is given by

ϵ(t) =
2C2H3

(m2
χ + C2H2)3/2

. (3.29)

At T = Tdef when mχ ≃ CH, ϵ(tdef) = 1/
√
2C. We can see that the exponent of the

suppression factor is given by ϵ−1(tdef) up to some coefficients. Thus, ϵ(tdef) ≪ 1 is the
reasonable condition for the adiabatic regime. Using this result, we can also see that if
the extra PQ breaking potential can be approximated to be quadratic, and the trapping
is strong enough, then the adiabatic suppression works well.

Non-adiabatic regime

In the region where ϵ(tdef) ∼ 1, the axion cannot follow the deformation of potential
shape, and an additional amplitude is induced. Defining the axion position at the onset
of secondary oscillations T = Tosc2 as θosc2 ≡ θ(Tosc2), the oscillation amplitude is given
by |θosc2 − θ̄eff | ≃ θosc2 where θ̄eff is the eventual minimum and contributes to the nEDM.

Thus, assuming Tosc ≫ T
(conv)
osc , the abundance is estimated as

Ωϕh
2 ≃ Ω

(2)
ϕ h2 ≃

mϕ,0mϕ(Tosc2)f
2
ϕθ

2
osc2

2ρcrith−2

g∗s0
g∗s(Tosc2)

(
T0
Tosc2

)3

· F (NAD)(θosc2). (3.30)

The anharmonic factor is given by

F (NAD)(θosc2) =

[
ln

(
e

1− θ2osc2/θ
2
d

)]k
. (3.31)

Tosc2 and θosc2 are model-dependent parameters. Importantly, the abundance is indepen-
dent of the initial position of the axion field θini.

Lastly, it is worth mentioning that it is nontrivial to realize the non-adiabatic regime
or to satisfy the conditions, Tosc ≳ T

(conv)
osc and ϵ(tdef) ∼ 1, simultaneously. According to
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the discussion of adiabatic regime, the violation of the adiabatic condition requires the
weak trapping effect, but the condition Tosc ≳ T

(conv)
osc requires the strong trapping effect.

One might wonder it is inconsistent. However, it is possible that the adiabaticity is broken
by some factor independent of the strength of the trapping effect. We need the analysis
of specific models to understand the factors violating the adiabaticity. In Chapter 4 and
5, we will consider concrete extra PQ breaking potentials and estimate the violation of
the adiabaticity. We also need model-dependent analysis for estimating the isocurvature
perturbations and identifying a viable region where the axion can explain DM.
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Chapter 4

Trapping effect on axion dark matter

The PQ symmetry plays an essential role in addressing the Strong CP problem, but it
must be of high quality and all the breaking terms be significantly suppressed as a result
of the severe constraints on the nEDM. Such a tiny correction to the axion potential
would not seem to leave any imprint on the predicted axion nature. However, we saw in
Sec. 3.1 that there is still room to investigate the possibility of its nontrivial effects by
small breaking terms, since the potential from nonperturbative effects of QCD is almost
negligible in the very early universe (T ≫ ΛQCD).

While we studied the general features of the trapping effect on the axion in the previous
chapter, we focus on a time-independent, concrete potential V��PQ, based on the paper [49].
After introducing our setup and classifying the axion dynamics by taking account of the
adiabaticity, the axion abundance and isocurvature power spectrum will be evaluated
numerically in Sec. 4.2 and 4.3. We will find that the abundance and the isocurvature
power spectrum can be altered depending on the initial position of the axion.

4.1 Axion potential

We consider the same setup with the last discussion in Sec. 3.1 where the axion acquires
a potential with multiple minima from explicit PQ breaking in addition to the nonper-
turbative effect of QCD,

V (ϕ, T ) = VQCD(ϕ, T ) + V��PQ(ϕ)

= m2
ϕ(T )f

2
ϕ

(
1− cos

ϕ

fϕ

)
+ Λ4

H

[
1− cos

(
N

(
ϕ

fϕ
− θH

))]
. (4.1)

The schematic picture of the potential is shown in Fig. 4.1 for N = 3 and a negligibly
small θH that is assumed to be positive. VQCD(ϕ, T ) and V��PQ(ϕ) are denoted by the
gray dotted and red dashed line, respectively. In the very early universe T ≫ ΛQCD, the
potential is dominated only by V��PQ. When the temperature becomes close to the QCD
scale, the QCD potential deforms the entire form of the potential and eventually becomes
dominant over the extra PQ breaking potential, denoted by the blue solid line.
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Potential shape
θH = 10−7 N = 3

V(ϕ)

ϕ/fϕ

r = π/N ≃ 0.76

VQCD

VPQ

Figure 4.1: The schematic picture of the total potential V (ϕ) at the zero temperature
(solid blue line) for N = 3 and a negligibly small θH . VQCD(ϕ) and V��PQ(ϕ) are denoted
by the gray dotted and red dashed line, respectively. The size of V��PQ is exaggerated for
illustration purpose.

Here let us remember the definition of the dimensionless, relative height of the potential
compared to the QCD potential,

r ≡ ΛH√
mϕ,0fϕ

. (4.2)

It is an important parameter in the following discussion.

4.2 Axion abundance

In this section, the abundance of axion will be studied analytically and numerically,
when the extra PQ symmetry breaking satisfies the constraints (3.6) from the nEDM
experiment. The previous literature focused only on the vicinity of θH ∼ O(π/N), or
equivalently r ≲ O(10−3), and the impact on the abundance was neglected [109, 110,
111, 112, 113]. We investigate the whole of allowed space in Fig. 3.1 comprehensively.
As explained in Chapter 3, the results are systematically classified into two regimes, and
the trapping effect due to the extra PQ breaking potential has a nontrivial impact on the
dynamics of the axion in both regimes.

4.2.1 Dynamics and analytical estimate

First let us begin with estimating the dynamics of the axion on the basis of the conse-
quences given in Chapter 3. The effective mass which is evaluated around the potential
minimum is approximately given by m��PQ = Nr2mϕ,0. Then the temperature at the onset
of oscillations is given by

Tosc ≃ 0.91 GeV

(
g∗(Tosc)

80

)−1/4(
Nr2

3× 10−4

)1/2(
fϕ

1012 GeV

)−1/2

, (4.3)

where we have used Nr2mϕ,0 = 1.67H(Tosc). We focus on the case of Tosc ≳ T
(conv)
osc , or

equivalently,

Nr2 ≳ 3.0× 10−4

(
g∗(Tosc)

80

)0.33(
fϕ

1012 GeV

)0.66

. (4.4)

32



10-11 10-9 10-7 10-5 0.001 0.100
0.001

0.005
0.010

0.050
0.100

0.500
1

nEDM constraint

r ≡ ΛH

m2
a,0 f 2

a

r

θH

Excluded by nEDM
( | θ̄ | > 10−10)

fϕ = 1014GeV
fϕ = 1012GeV
fϕ = 1010GeV

Figure 4.2: The region of our interest with the nEDM constraint (3.6) for N = 3 (cf.

Fig. 3.1). The red, green, and blue dotted lines show the condition Tosc ≳ T
(conv)
osc for

fϕ = 1014, 1012, and 1010 GeV, respectively. In the region above each dotted line, the
extra PQ breaking potential drives the axion oscillation, which is our interest.

The lower bound on fϕ is set by the stellar cooling arguments (see Eq. (2.41)), and for
the boundary point, r is also bounded from below as Nr2 ≳ 6.7 × 10−7. Note that for
fϕ ≳ 1011 GeV, some tuning of θH is required for a sizable effect on the axion dynamics,
while the effect can be important for smaller fϕ without tuning of θH . The lower bound
on r for different fϕ is shown as colored dotted lines in Fig. 4.2.

The axion dynamics can be categorized into two regimes according to the adiabaticity,
ϵ(tdef). In this case, the value of initial position θini is the criterion:

(i) Adiabatic regime : |θini − θH | < π/N (↔ ϵ(tdef) ≪ 1)

(ii) Non-adiabatic regime : |θini − θH | > π/N (↔ ϵ(tdef) ∼ 1).

The schematic picture of the axion dynamics is shown in Fig. 4.3 for N = 3 and θH ≪ 1.
In the adiabatic regime, the minimum of the extra PQ breaking term (θ = θH) where

the axion first starts to oscillate is continuously deformed to the eventual minimum where
θ̄ vanishes. In this case, the adiabaticity is obviously tiny, ϵ ≪ 1, because the axion
always feels only the quadratic potential as with the analysis of a toy model [56]. Thus,
the minimum smoothly shifts to the origin as VQCD becomes dominant, which is nothing
but the adiabatic suppression mechanism.

In the non-adiabatic regime, the axion initially starts to oscillate in a wrong vacuum,
and gets trapped there for a while until the wrong minimum disappears. It is not necessary
to calculate it to know that the adiabaticity is broken, because the axion cannot move until
the potential wall is completely gone and gains extra amplitudes. We will see the axion
abundance is enhanced in contrast to the adiabatic regime. If r ≳ N−1/4, i.e. the region
above the black dashed line in Fig. 4.2, the axion cannot escape from a wrong minimum.
In this case, the tunneling process is required for solving the Strong CP problem, and
such a trapping was discussed in [119].

Below, let us analytically estimate the axion abundance in each regime.
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Consider the case that the axion starts to oscillate due to the PQ 
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Figure 4.3: The schematic picture for the dynamics of the axion denoted by blue circles
for N = 3 and θH ≪ 1. The blue solid and red dashed line represent the total potential
after the QCD phase transition and the explicit PQ breaking potential, respectively.

■ Adiabatic regime In the adiabatic regime, i.e. |θini − θH | < π/N , the axion oscilla-
tion starts around the closest minimum to the origin. When VQCD becomes relevant, the
minimum smoothly shifts to the origin. Thus the oscillating axion adiabatically follows
the temporal minimum without extra particle production, as long as the effective mass by
the extra PQ breaking potential is much larger than the Hubble parameter. As a result,
the axion abundance is significantly suppressed. According to the analytic formula (3.24),
the axion abundance is determined by the primary oscillation with the initial amplitude
|θini − θH |. Thus we obtain the axion abundance as

Ωϕh
2 ≃ 5.0× 10−3F1(θini)

(
g∗(Tosc)

80

)− 1
4

(θini − θH)
2

(
Nr2

3× 10−2

)− 1
2
(

fϕ
1012 GeV

) 3
2

,

(4.5)

where we assume g∗(Tosc) ≃ g∗s(Tosc). Here the coefficient F1(θini) represents the contri-
bution of the anharmonic effect for the extra PQ breaking term,

F1(θini) =

[
ln

(
e

1− (θini − θH)2/(π/N)2

)]3/2
, (4.6)

which is obtained following the way suggested by Refs. [33, 36] under the assumption
that the extra term has no temperature dependence. For larger r, the abundance is
more suppressed, because the axion starts to oscillate earlier than the conventional case,
with no additional oscillation. We also note that (4.5) is expected to become consistent
with (2.21) in the conventional case as r decreases and the condition (4.4) is violated, or

Tosc ≲ T
(conv)
osc .

■ Non-adiabatic regime Next, let us consider the non-adiabatic regime with |θini −
θH | ≳ π/N , where the axion is temporarily trapped in a wrong minimum at |θ − θH | =
2πk/N with k = 1, 2, ..., N − 1. As long as the extra breaking term is subdominant
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compared to VQCD at low temperatures, i.e. Nr4 ≲ 1, all theN−1 local minima disappears
at a certain point, and the axion begins to oscillate around the true minimum at θ ≃ 0.
As discussed in Chapter 3, the axion abundance can be roughly divided into two parts:
the primary oscillations around a wrong vacuum, and the secondary oscillations around
the true vacuum. However, as long as Tosc ≫ T

(conv)
soc , the contribution of the primary

oscillations is washed out by the second oscillations.1 Thus the final axion abundance
is determined mainly by the difference between the disappearing local minimum and the
true minimum, and thus it is not sensitive to the initial position θini. Such a temporal
trapping of the axion in a wrong vacuum was studied in Refs. [121, 122, 123], and the
final axion abundance can be enhanced compared to the conventional case.

The axion starts to fall into the true minimum when the wrong vacuum disappears,
i.e., V ′(ϕosc2) = 0 and V ′′(ϕosc2) = 0. The temperature and the oscillation amplitude
satisfy the following equations,

N tan θosc2 = tan[N(θosc2 − θH)], (4.7)

Tosc2
ΛQCD

≃ (Nr4)−0.13

[
1 +

(
1

N2
− 1

)
cos2 θosc2

]0.064
. (4.8)

Note that the first equation has N solutions. One solution is the minimum closest to θ = 0
which corresponds to the adiabatic regime. The other N − 1 solutions correspond to this
regime. If the axion is trapped in the k-th wrong vacuum, the oscillation amplitude will
be about θosc2 ∼ (2k−1)π/N . Note that θosc2 is mainly determined only by N and θH but
is independent of fϕ or r. Barring cancellation in the parenthesis in (4.8), or equivalently
unless focusing on N ≫ 1, the temperature Tosc2 is approximated by

Tosc2 ∼ 0.4 GeV

(
Nr4

3× 10−4

)−0.13

. (4.9)

Using the analytic formula (3.30), we can obtain the axion abundance as

Ωϕh
2 ≃ 0.25θ2osc2

(
g∗(Tosc2)

60

)−1(
Nr4

10−6

)0.88

. (4.10)

Interestingly, the axion abundance does not depend on the decay constant because it
is determined only by the potential height at Tosc2. We note that this relation is valid
when the trapping effect by the PQ breaking term is strong enough, or equivalently,
Tosc ≫ T

(conv)
osc , because we have neglected the contribution from the primary oscillations.

We will see numerically in the next subsection that, as the trapping effect becomes smaller,
the abundance becomes dependent on fϕ and then converges to the conventional one. The
dependence of the abundance on fϕ also mildly appears even in the region of high r, which
will be explicitly shown in Fig. 4.7.

4.2.2 Numerical calculations

Here let us present results of our numerical calculations of the axion abundance in the
presence of the extra PQ breaking. By following the axion dynamics numerically, we
can estimate the axion abundance. The useful description for the equation of motion in
Appendix C can be also used in this setup.

1We will see in Sec. 4.3 that the primary oscillations actually give the dominant contribution to the
isocurvature perturbations.
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Figure 4.4: The numerical results of the axion abundance Ωϕh
2 as a function of θini for fϕ =

1015 GeV (red •), 1014 GeV (orange ◦), 1013 GeV (green △), 1012 GeV (dark green □),
1011 GeV (blue ♢), and 1010 GeV (purple ⋆). In the upper panel, we take N = 3, r = 0.1,
and θH = 10−7, and in the lower panel, we take N = 3, r = 0.015, and θH = 10−7. The
colored dashed lines represent the analytical solutions (4.5) and the black one denotes
(4.10). The gray shaded region above the black dotted line indicates the overproduction
of the DM axion Ωϕ > ΩDM. The vertical gray dot-dashed lines denote the local maxima
of the PQ breaking term |θini − θH | = π/3.

First we show in Fig. 4.4 how the axion abundance depends on the initial angle θini
for various values of the decay constant fϕ. Here we take N = 3, θH = 10−7, and
r = 0.1 (0.015) in the upper (lower) panel. Note that although we have adopted a
nonzero θH , the result is not sensitive to θH unless it is of the order of unity, or for
fϕ ≳ 1011 GeV as shown in Fig. 4.2. The red (•), orange (◦), green (△), dark green (□),
blue (♢), and purple (⋆) points denote the case of fϕ = 1015, 1014, 1013, 1012, 1011, and
1010 GeV, respectively, and each colored dashed line and the black dashed line are the
analytic solutions (4.5) and (4.10). The gray shaded region above the black dotted line
represents the overproduction of the DM axion, Ωϕ > ΩDM. The vertical gray dot-dashed
lines denote the position of the local maxima of the PQ breaking term, θini = ±π/3, which
separates the two regimes.
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In the adiabatic regime, the axion abundance increases in proportion to (θini − θH)
2

in good agreement with the analytical estimate (4.5). By comparing both panels, one
can also see that the axion abundance is more suppressed for larger r. Note that the
abundance near the top of the PQ breaking term denoted by the gray dot-dashed lines is
enhanced by the anharmonic effect.

In the non-adiabatic regime, the axion abundance becomes independent of the initial
position, and can be analytically explained well by Eq. (4.10). For r ≲ 0.02, it becomes
possible to explain DM in the non-adiabatic regime (see the lower panel). Note also that
the results for fϕ ≳ 1015 GeV in the upper panel or for fϕ ≳ 1013 GeV in the lower
panel deviate from the analytical expectations in both regimes. This is because the PQ
breaking term becomes relatively ineffective or Tosc < T

(conv)
osc , which should reproduce the

results for the conventional QCD axion.
Next we discuss how the axion abundance depends on r. In Figs. 4.5 and 4.6, we show

the contour plots of the axion abundance on the (θH , r) plane in the adiabatic regime and
the non-adiabatic regime, respectively. In both regimes we take N = 3. In Fig. 4.5 for the
adiabatic regime, we set θini = 1 (< π/3), and fϕ = 1012 GeV (left) and 1013 GeV (right).
The gray shaded region denotes the nEDM bound. One can see that the abundance
decreases with r in the region where T

(conv)
osc ≲ Tosc or Eq. (4.4) is satisfied. On the other

hand, there is a plateau in the complementary region of (4.4), because the axion starts to
oscillate around θ = 0 due to VQCD, leading to the same results for the conventional case.

In Fig. 4.6 for the non-adiabatic regime, we set θini = 3/2 (> π/3), and fϕ = 1011 GeV
(left) and 1010 GeV (right). The horizontal part of the gray region represents the con-
dition, Nr4 ≳ 1, where the axion remains trapped a wrong vacuum, giving a too large
contribution to the strong CP phase. The axion abundance increases with r because the
axion is trapped for a longer time, and the potential height at Tosc2 becomes higher. Such
r-dependence should be contrasted to the adiabatic regime. As with the adiabatic regime,
there is a plateau in the region of small r which gives the conventional results.

Finally it is worth mentioning the dependence of Ωϕ on fϕ in the non-adiabatic regime
since the strength of the extra PQ breaking effect differs for different decay constants.
In other words, the trapping starts later for larger fϕ, and the effect of the PQ breaking
should become relevant at larger values of r for larger fϕ. In Fig. 4.7 we show the
numerical results of Ωϕh

2 as a function of N1/4r, where we set N = 3, θH = 10−7, and
θini = 3/2 (> π/3). The red (•), green (◦), and blue (□) denote the abundance for
fϕ = 1012 GeV, 1011 GeV, and 1010 GeV, from top to bottom. The purple star on each

line represents a point that satisfies Tosc = T
(conv)
osc , and to the right of it, Tosc > T

(conv)
osc .

The black dashed line denotes the analytic estimate (4.10). The horizontal black dotted
line represents the observed DM abundance, ΩDMh

2 ≃ 0.12. The gray shaded region
represents the nEDM bound. On the right of each star, it is consistent with the analytic
solution (4.10), because the axion oscillation begins before the barrier at θ ∼ π/N + θH
disappears. On the other hand, on the left of it, the dynamics of axion and its abundance
are similar to the usual scenario. Note that there is a small deviation among the results
for different fϕ even in the deep non-adiabatic regime. In particular, the abundance is
slightly larger for larger fϕ. This is because, when the false vacuum disappears, it takes a
bit longer for the axion to start oscillating for larger fϕ due to smaller hierarchy between
the curvature of the potential and the Hubble parameter. The delay of the onset of the
secondary oscillations results in a slight enhancement of the axion abundance.
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Figure 4.5: Contours of the axion abundance Ωϕh
2 in the adiabatic regime as a function

of (θH , r) for N = 3, and θini = 1. We set fϕ = 1012 GeV (left) and fϕ = 1013 GeV (right).
The red horizontal line represents Ωϕh

2 = ΩDMh
2 = 0.12. The axion abundance is almost

constant when r is sufficiently small, but gradually decreases with respect to r, because
of the early oscillations and the adiabatic suppression.
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Figure 4.6: Contours of the axion abundance Ωϕh
2 in the non-adiabatic regime as

a function of (θH , r) for N = 3, and θini = 3/2. We set fϕ = 1011 GeV (left) and
fϕ = 1010 GeV (right). The red horizontal line represents Ωϕh

2 = ΩDMh
2 = 0.12. The

horizontal part of the gray region at small θH denotes the condition that the axion remains
trapped in the CP violating minimum, i.e., Nr4 ≳ 1. The abundance increases with
respect to r, and becomes independent of fϕ, because of the trapping effect.

Let us briefly summarize the parameter region where it is possible to explain DM by
axion with the explicit PQ breaking. First, in the adiabatic regime, we can explain DM
completely even for fϕ ≳ 1012 GeV due to the adiabatic suppression mechanism if r is
relatively large. However, such a large value of r is severely constrained by nEDM, and
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Figure 4.7: The axion abundance in the non-adiabatic regime as a function of N1/4r for
fϕ = 1012 GeV (red •), 1011 GeV (green ◦) and 1010 GeV (blue □). The purple stars

denote the points satisfying Tosc = T
(conv)
osc . We take N = 3, θH = 10−7, and θini = 3/2.

The black dashed line denotes the analytical estimate (4.10), which is consistent with the

numerical ones at Tosc ≳ T
(conv)
osc , i.e., (4.4). The black dotted line denotes the observed

DM abundance. The gray shaded region represents the nEDM bound. The right DM
abundance can be explained at N1/4r ∼ 0.02 for any fϕ ≲ 1011 GeV.

we need some tuning of θH , e.g. θH ≲ 10−6 for r ≃ 0.1. In addition, even if the tuning
of θH is allowed, we also need a tuning of θini for fϕ ≳ 1014 GeV. We show the allowed
parameter region satisfying Ωϕ = ΩDM as a function of (fϕ, θH) in Fig. 4.8, where we take
N = 3 and θH = 0. The red bullets, green circles, and purple stars denote the numerical
results for N1/2r = 0.01, 0.1, and 0.5, respectively. The red solid line represents the case
of the conventional QCD axion (2.21). The blue dashed line is the bound obtained by
using (4.4) and (4.5), above which the PQ breaking term is important. The gray shaded
region indicates the non-adiabatic regime. From this figure, one can explicitly see that
DM can be explained for fϕ ≳ 1012 GeV without tuning of θini. At larger fϕ, some tuning
of θini is required, but it is still milder compared with the conventional case. Secondly,
one can explain DM for arbitrary small fϕ in the non-adiabatic regime, which is very
interesting. As one can see in Fig. 4.7, if N1/4r ≃ 0.015, the DM abundance can be
totally explained for any fϕ ≲ 1011 GeV, almost independent of fϕ. This size of the PQ
breaking requires a tuning of θH ≲ 10−3, described in Fig. 4.2. Here, the quality problem
of the PQ symmetry appears as some tuning of θini, and this will be discussed in Sec. 4.4.

4.3 Isocurvature perturbation

In the presence of the extra PQ breaking potential, the QCD axion has a nonzero but
tiny mass compared to the Hubble scale during inflation, and it generates almost scale-
independent perturbations. In Sec. 2.4.2, we estimated the power spectrum in the stan-
dard setup analytically, but we need numerical calculations for more complicated setup.
Here we compute the isocurvature power spectrum analytically and numerically in the
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a function of (fϕ, θini) in the adiabatic regime where we take N = 3 and θH = 0. The red
bullets, green circles, and purple stars denote the numerical results for N1/2r = 0.01, 0.1,
and 0.5, respectively. The red solid and blue dashed lines represent the conventional QCD
axion case (2.21) and the lower bound for our interest which is analytically estimated by
using (4.4) and (4.5). The gray shaded region indicates the non-adiabatic regime.

presence of the extra PQ breaking potential, and the upper bounds on the inflation scale
Hinf are presented.

4.3.1 Analytical evaluation

First let us estimate the power spectrum of the isocurvature perturbation analytically.
In the adiabatic regime, we can use the formula (2.35) straightforwardly to estimate the
power spectrum,

∆2
S ≡ (Rϕ∆ϕ)

2 ≃
(
Rϕ

Hinf

πfϕ(θini − θH)

)2

. (4.11)

Although the parameter dependence is similar to the conventional case, we can expect
the looser isocurvature bounds than those of the conventional case, since the suppression
of the axion abundance due to the adiabatic suppression allows the tuning of θini to be
relaxed, which will be explicitly shown in the next subsection together with numerical
results.

In contrast to the adiabatic regime, we need more careful estimate in the non-adiabatic
regime. This is because the axion abundance is almost determined by the amplitude θosc2
of the secondary oscillations and thus apparently does not depend on the initial position
θini. However, we note that the axion fluctuation δϕ∗ is diluted in proportion to a−3/2(t)
because of the cosmic expansion, as long as the axion oscillates around the quadratic
potential. We obtain the fluctuation at Tosc2 as δϕosc2 ≃ (Tosc2/Tosc)

3/2δϕini. Thus, in the
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non-adiabatic regime, the isocurvature power spectrum is given by

∆2
S ≃

(
Rϕ

∂ lnΩϕ

∂θosc2

(
Tosc2
Tosc

) 3
2 Hinf

2πfϕ

)2

. (4.12)

Using (4.3) and (4.9), the suppression factor is given by

(
Tosc2
Tosc

) 3
2

=

(
(1.67)2π2g∗(Tosc)Λ

4
QCD

90NM2
Plm

2
ϕ,0

) 3
8

· (N 1
4 r)−

2
b
−1

≃ 1.5× 10−2N− 3
8

(
Nr4

3× 10−4

)−0.57(
fϕ

1012 GeV

) 3
4

. (4.13)

The suppression becomes stronger for larger r and smaller fϕ. Note that the above
estimate does not take account of the anharmonic effect of the oscillations around the false
vacuum, nor the axion dynamics when the false vacuum disappears and the trapping ends.
In fact it is not possible to completely separate the trapped epoch from the subsequent
oscillations, and the above analytical estimate should be considered as a rough order
evaluation. Further refinements require taking account of the effects of the velocity of
the axion field and the evolution of the axion fluctuation in a time-dependent potential
that deviates significantly from the quadratic one toward the end of the trapping. As we
shall see shortly, however, the above analytical estimate gives an overall good fit to the
numerical results, and the dependence on θini is relatively mild.

4.3.2 Numerical results

Here let us present our numerical results of the axionic isocurvature power spectrum. We
explain how to estimate it numerically in Appendix D.2.

In the left panel of Fig. 4.9, we show the results of the isocurvature power spectrum as
a function of θini, with the abundance in the non-adiabatic regime put in the right panel to
see the comparison to ∆2

ϕ. We set N = 3, r = 0.1, θH = 10−7, fϕ = 1012 GeV, and Hinf =
5× 107 GeV. The red and blue bullets denote the numerical values of ∆2

ϕ and Ωϕh
2. The

black dashed lines are the analytical results, (4.11) and (4.12). Let us comment that we
can basically choose an arbitrary value of Hinf . However, δθini/θini ≃ Hinf/2πfϕθini ≪ 1 is
required for the linear approximation with good accuracy in δN expansion (see Appendix
D.2).

In the adiabatic regime, the numerical results are consistent with the analytical one,
and the anharmonic effect starts to be effective and enhances the isocurvature perturbation
at |θini| ≳ π/6, or at the place higher than the inflection points of V��PQ.

In the non-adiabatic regime, the isocurvature perturbation is significantly suppressed
because the axion fluctuation is damped due to the cosmic expansion until the end of
the trapping. Note that the time derivative of the axion field at T ∼ Tosc2 makes the
θini-dependence complicated. Just before the potential barrier disappears at T ∼ Tosc2,
the axion generically has a (non-negligible) small velocity which depends on the evolution
during the oscillations in the false vacuum as well as the anharmonicity of the PQ breaking
term. If the axion has a velocity in the opposite direction with the shift of the potential
minimum, then its abundance is slightly enhanced because the onset of oscillations is
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Figure 4.9: The isocurvature power spectrum (left) and the axion abundance (right) as a
function of the initial position. We set N = 3, r = 0.1, θH = 10−7, fϕ = 1012 GeV, and
Hinf = 5×107 GeV. The red (blue) bullets denote the numerical results of the isocurvature
power spectrum (abundance), and the black dashed line is the analytical formula (4.11)
and (4.12). The gray dotted lines represent the maxima of the PQ breaking term.

delayed. In the opposite case, the abundance is suppressed for similar reason. As a
result, complicated wiggles appear in the behavior of the axion abundance as well as
the isocurvature power spectrum. Our analytical formula (4.12) cannot explain such a
complicated dependence. When it comes to the dependence of the axion abundance on
θini, we find that it has a local minimum and maximum at |θini| ≈ 1.7 and 2.4. At these
points, ∂Ωϕ/∂θini vanishes, which means that the corresponding isocurvature fluctuations
disappear in the linear approximation.

Next, let us show the dependence of ∆2
ϕ on r for the non-adiabatic regime in Fig. 4.10,

although the power spectrum in the adiabatic regime is not sensitive to r. We take N = 3,
θH = 0, θini = 3/2, fϕ = 1012 GeV, and Hinf = 5× 107 GeV. The adopted parameters are
same as in Fig. 4.9, from which one can see that the analytical and numerical results agree
with each other at θini = 3/2. This value of θini was chosen in order to check numerically
the r-dependence of the analytical solution of the isocurvature fluctuation. The red bullets
denote the numerical results, and the blue dotted line denotes the analytic solution (4.12)
combined with the conventional one. At r ≳ 0.01 where (4.4) is satisfied, one can see that
the isocurvature perturbation is more suppressed for higher r. This is because the axion
is trapped at a wrong vacuum for a longer time for higher r, i.e. Tosc ≫ Tosc2, and the
axionic fluctuations are suppressed due to the cosmic expansion. Thus, the dependence of
the isocurvature perturbation on r is well explained by the analytical estimate. However,
we note that the overall agreement is partly due to our special choice of θini, as described
above.

Lastly let us present the isocurvature bound on the axion DM in our scenario. Using
the observational bound (2.30), we obtain Fig. 4.11, which shows the upper bound on
the Hubble parameter Hinf during inflation as a function of fϕ for the adiabatic regime.
We set N = 3, θH = 0, and Ωϕ = ΩDM that fixes θini. The red bullet (•), green cir-
cle (◦), and blue diamond (♢) denote the numerical results for N1/2r = 0.01, 0.1, and
0.5, respectively. In each case, numerical results correspond to the result for θini =
1, 0.8, 0.6, 0.4, 0.2, 0.1, 0.05, 0.025 in the order from the left point. The green dashed and
blue solid line represent the analytical results for N1/2r = 0.1 and 0.5, respectively. The
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Figure 4.10: The isocurvature power spectrum as a function of r for fϕ = 1012 GeV,
N = 3, θH = 0, θini = 3/2, and Hinf = 5× 107 GeV. The red bullets denote the numerical
results. The blue dotted line denotes the analytic formula (4.11) with the quadratic
approximation.

purple dotted line denotes the analytical result for the conventional QCD axion. Here we
have taken into account the anharmonic effect. One can see that the isocurvature bound
on Hinf is relaxed compared to the conventional case, and we have Hinf ≲ 108 − 109 GeV
for fϕ ≳ 1013 GeV. This is because the axion abundance is suppressed due to the adiabatic
suppression mechanism and the early oscillations, and θini increases in order for the axion
to explain DM abundance. For fϕ ≲ 1012 GeV, the isocurvature bound becomes tighter
than the usual case because of the anharmonic effect of the extra PQ breaking potential,
because we need to put the initial position of the axion near top of the PQ breaking term
to explain DM. For fϕ ≳ 1014 GeV and N1/2r = 0.1, the numerical results start to deviate
from the analytical results and approach asymptotically to the conventional case. This is
because the trapping effect becomes less effective for higher fϕ.

We show in Fig. 4.12 the isocurvature bound on Hinf for the non-adiabatic regime.
We take N = 3, θH = 0, and Ωϕ = ΩDM which sets N1/4r (∼ 0.02). The red bullet (•),
green diamond (♢), and blue circle (◦) denote the numerical results for θini = 5/4, 3/2,
and 7/4, respectively. The blue solid line represents the analytical result (4.12). The
purple star (⋆) and the purple dotted line denote the numerical and analytical results
for the conventional case, respectively. Interestingly, the isocurvature bound is much
more relaxed than the conventional result especially for small fϕ ≲ O(1010) GeV. This
is because of the suppression of the axionic fluctuation by the cosmic expansion. As
expected, the analytical results agree reasonably well with the numerical ones, but do not
completely fit to the dependence on fϕ and θini.

4.4 Discussions

We have so far focused on the case of N = 3 in our numerical calculations. In the case
of N = 2, when the axion is trapped around a wrong vacuum θ = π in the non-adiabatic
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Figure 4.11: The upper bound on the Hubble parameter Hinf during inflation as a function
of fϕ for the adiabatic regime. We take N = 3, θH = 0, and Ωϕ = ΩDM. The red bullet,
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results for the conventional case, respectively. The gray shaded region is the lower bound
on fϕ from astrophysical facts.

regime, the final abundance can be strongly enhanced due to the anharmonic effect in
addition to the trapping effect, because the minimum turns into a potential maximum at
T ≲ Tosc2. In the case of even integer N , the situation is similar, and one of the vacua
is located near θ = π, if |θH | ≪ 1. On the other hand, the usual enhancement of the
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isocurvature perturbations due to the anharmonic effect is expected to be milder because
of the earlier oscillations.

Let us briefly comment on the quality problem of the PQ symmetry. Our work has
opened up a new parameter region allowed for the axion DM. In particular, the axion
abundance can be significantly enhanced in the non-adiabatic regime due to the extra PQ
breaking, and its abundance is independent of fϕ. As a result, if we assume the anthropic
bound on the axion DM is close to the observed DM abundance, the size of the PQ
breaking should satisfy r ≲ 0.02. Thus, the quality problem is equivalent to fine-tuning
the relative phase as |θH| ≲ 10−3 (see Fig. 4.6). One of the important implications we
have obtained is that the quality problem of the PQ symmetry becomes closely related
to the anthropic argument on the axion DM abundance when there is extra breaking of
the PQ symmetry.

The parameter region for DM axion is extended by the extra PQ breaking effect,
and a vast parameter region can be searched for by various experiments (see Fig. 2.6).
In the non-adiabatic regime, the DM abundance can be explained independently of fϕ
if r ∼ 0.02. In particular, it is very attractive that the axion with fϕ ≲ 1011 GeV is
allowed. Such a relatively heavy axion coupled to photon can be searched for by DM
axion search experiments, such as ADMX [103], MADMAX [104], ORGAN [124], and
TOORAD [125, 126]. Moreover, a new way to detect DM axion with fϕ ∼ 1010−1011 GeV
using a correlation with “condensed matter axion” has been proposed recently [127]. We
have also shown that, in the adiabatic regime, the axion abundance is suppressed, and
so one can relax the fine-tuning of θini to have the right DM abundance by axions for
fϕ ≳ 1013 GeV. Such relatively light axions can be searched for by ABRACADABRA
[105] or DMRadio [128], and KLASH [129]. In addition, if θH is near the upper limit
of the nEDM experiments, it could be probed through nEDM in the near future. For
instance, |dn| < 10−27e cm for nEDM collaboration [130], n2EDM collaboration [131],
and PanEDM[132].
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Chapter 5

QCD axion with the Witten effect

In contrast to Chapter 4, we consider a time-dependent extra PQ breaking potential from
the Witten effect in a broader region of θini. The basic consequences of the axion abun-
dance are roughly consistent with the results presented in Chapter 3, but the deviations
from the analytic solution have to be estimated numerically. Also, the important and
distinct feature lies in when the adiabatic condition ϵ(tdef) ≪ 1 is satisfied or violated. In
the case of time-independent extra potential, we saw in Chapter 4 that the adiabaticity
is broken due to the tapping effect around a wrong minimum. In the time-dependent
case, the key to this question is the anharmonicity of the potential induced from the QCD
nonperturbative effect. The discussion here is mainly based on [58].

First let us introduce the setup including the Witten effect and clarify the motivation
of this research in Sec. 5.1. We will review the case that the QCD potential can be ap-
proximated by the quadratic potential (corresponding to the adiabatic regime) in Sec. 5.2.
After that, we will begin with discussing the adiabatic parameter ϵ(tdef) to understand
how the violation of adiabaticity can be caused by the anharmonicity of the QCD poten-
tial, and then estimate the abundance for the non-adiabatic regime (Sec. 5.3). Next let
us present the numerical results of the abundance of the axion (Sec. 5.4).

5.1 Setup and motivation

Let us consider an SU(2)H group in hidden sector in addition to the visible sector. As
explained in Sec. 3.2, the spontaneous breakdown into U(1)H leaves a magnetic monopole,
and if the axion couples to the U(1)H gauge boson, it acquires an effective potential from
the plasma in the hidden sector. The total potential is given by

V (ϕ) = VQCD(ϕ, T ) + VM(ϕ, T )

= m2
ϕ(T )f

2
ϕ

(
1− cos

ϕ

fϕ

)
+

1

2
m2
ϕ,M(T )(ϕ− ϕ∗)

2. (5.1)

The mass term originating from the Witten effect has the minimum at ϕ = ϕ∗, which is
generically deviated from the low-energy minimum at ϕ = 0 where the strong CP phase
vanishes. We focus on a pre-inflationary scenario where the PQ symmetry is spontaneously
broken during inflation, and assume that hidden monopoles are generated sometime after
inflation when the phase transition takes place in the hidden sector. We also assume that,
the second term dominates over the first one in the early universe, that is, Tosc ≳ T

(conv)
osc ,
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and the temporal minimum of the potential is located at ϕ ≃ ϕ∗ where the axion starts
to oscillate. Eventually the axion is expected to oscillate around ϕ = 0.

On the assumption that VQCD is approximated to be quadratic, the abundance of
the axion was studied [54, 55] which will be reviewed in the next section, and it showed
that if the trapping effect of V��PQ is strong enough, the axion abundance is adiabatically
suppressed. Such an assumption is valid for a generic potential only if |ϕ∗/fϕ| ≪ 1.
However, it is worth investigating the adiabatic suppression mechanism for a more general
position of ϕ∗, since ϕ∗ is an arbitrary parameter (−π < ϕ∗/fϕ ≤ π). In particular, in the
vicinity of the top of VQCD (ϕ∗ ≃ π), the axion cannot follow the temporal minimum at the
timing of the deformation of the potential because of the anharmonicity of VQCD. Thus we
can expect the anharmonicity breaks down the adiabaticity. In the subsequent sections,
we will evaluate the violation of the adiabaticity ϵ(tdef) to see the above expectation
explicitly, and we will analyze the abundance and isocurvature power spectrum on the
basis of the results in Chapter 3 or numerically.

5.2 Dynamics of axion

Let us begin with describing the dynamics of the axion that acquires a time-dependent
potential from the Witten effect, and evaluate important physical quantities such as the
temperature at the onset of oscillations and the axion abundance for qualitative under-
standing. Note that the discussion here is limited only to the case that VQCD is approxi-
mately quadratic, in other words, the system adiabatically evolves [54, 55, 120].

First, we define ω that is useful to parametrize the strength of the Witten effect:

ω ≡ α2
H

(
NH

NDW

)2

ΩMh
2, (5.2)

≃ 5.9× 10−4
( αH
0.07

)2( NH

NDW

)2(
ΩMh

2

0.12

)
, (5.3)

where ΩM ≡ ρM/ρcrit represents the monopole density parameter. Using this definition,
the mass can be rephrased as

m2
ϕ,M(T ) =

α2
H

16π2

ρM(T )

f 2
H

.

=
ωρcrith

−2

16π2f 2
ϕ

s(T )

s0
. (5.4)

In addition, the sum of the axion and the monopole abundance should not be larger than
the dark matter abundance, i.e.,

Ωϕh
2 + ΩMh

2 ≲ ΩDMh
2 ≃ 0.12 , (5.5)

since the monopole is stable and behave like matter. Thus ω is smaller than 5.9 × 10−4

unless NH > NDW.
The axion starts to oscillate around the temporal minimum of the potential, ϕ = ϕ∗,

when the Hubble parameter becomes comparable to the mass due to the Witten effect,
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H(Tosc) ≃ mϕ,M(Tosc). Here Tosc is the temperature at the onset of oscillations, and it is
given by [54, 55]

Tosc ≃ 64 GeV
( ω

0.12

)( fϕ
1012 GeV

)−2

. (5.6)

Remembering that when the potentials are quadratic, the system is adiabatic (see the
analysis of a toy model in Chapter 3), and using the formula (3.24), the axion abundance
is determined by the first oscillation as

Ωϕh
2 ≃ 3× 10−4 (θini − θ∗)

2
( ω

0.12

)−1
(

fϕ
1012 GeV

)3

. (5.7)

where θ∗ ≡ ϕ∗/fϕ. Here we assume 0 ≤ θ∗ < π without loss of generality, and θini and θ∗
satisfy |θini − θ∗| ≤ π(NDW/NH). The abundance is adiabatically more suppressed by the
stronger trapping effect from the Witten effect.

Let us estimate the temperature Tdef when the temporal minimum starts to move
toward ϕ = 0. As the temperature goes down, the potential from the Witten effect
becomes comparable to that from non-perturbative QCD effects. Solving m2

ϕ,M(Tdef) ≃
m2
ϕ(Tdef), we obtain the temperature at this time,

Tdef ≃ 0.8 GeV

(
g∗s(T )

80

)−1/(3+2b) ( ω

0.12

)−1/(3+2b)

, (5.8)

where we assume Tosc > Tdef , i.e.,( ω

0.12

)q ( fϕ
1012 GeV

)−2(
g∗(T )

80

)1/(3+2b)

≳ 0.01 (5.9)

with q ≡ (2b + 4)/(2b + 3). This gives the lower bound on the parameter ω for a given

fϕ. This condition is equivalent to Tosc ≳ T
(conv)
osc .

If the potentials can be approximated by quadratic ones, then the production of extra
axion oscillations are exponentially suppressed in this process. However, when the po-
tential VQCD has a more generic form, it is nontrivial whether the adiabatic suppression
really works because of the anharmonic effect. In the following, we will study under what
condition the adiabatic suppression does not work.

5.3 Violation of adiabaticity

To see the condition that the adiabaticity is broken, we calculate the parameter ϵ(tdef)
defined by Eq. (3.22). Let us focus on the potential around the temporal minimum ϕtemp

min ,
which can be written as

V (ϕ) =
1

2

(
m2
ϕ,M(T )−m2

ϕ(T )
) (
ϕ− ϕtemp

min

)2
+

1

24

m2
ϕ(T )

f 2
ϕ

ϕ4 + . . . , (5.10)

where the dots represent higher-order terms in terms of ϕ/fϕ and we define the temporal
minimum as

ϕtemp
min ≡

m2
ϕ,M(T )

m2
ϕ,M(T )−m2

ϕ(T )
ϕ∗ . (5.11)
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Note here that we expand the potential around ϕ = ϕtemp
min after transforming as ϕ →

ϕ+ πfϕ for simplicity, so the final result is given by re-transformation ϕ→ ϕ− πfϕ. The
effective mass squared at a field value ϕ is given by

m2
eff(ϕ) = m2

ϕ,M(T )−m2
ϕ(T ) +

1

2

m2
ϕ(T )

f 2
ϕ

ϕ2 . (5.12)

As T approaches Tdef , the first and second term becomes canceled and the third term
becomes relevant. If we take ϕ = ϕtemp

min , the threshold of the temperature Tth (≈ Tdef)
below which the third term becomes relevant is given by

m2
ϕ,M(Tth)−m2

ϕ(Tth) =

(
1

2

m2
ϕ(Tth)

f 2
ϕ

m4
ϕ,M(Tth)ϕ

2
∗

)1/3

. (5.13)

Now we shall calculate the parameter for the violation of adiabaticity ϵ, assuming
that it is sufficiently small. From this assumption, we expect that ϕ follows its temporal
minimum, ϕtemp

min , until T = Tth. Then it is calculated as

ϵ(T ) ≃
∣∣∣∣ 1

|meff |3
1

2t

(
−3m2

ϕ,M(T )− 2bm2
ϕ(T )

)∣∣∣∣ , (5.14)

for T ≳ Tth. At T = Tdef(≈ Tth), it is given by

ϵ(Tdef) ≃ (3 + 2b) fϕ√
2tthmϕ(Tth)ϕ∗

∝ T
1/2
def ω

−1/2 |θ∗ − π|−1

∝ ω−q/2 |θ∗ − π|−1 , (5.15)

where we use Eq. (5.13) and ϕ∗/fϕ → |θ∗ − π| which means the distance from the top of
VQCD (ϕ = πfϕ). The last line comes from Eq. (5.8). When ϵ≪ 1, the resulting abundance
is exponentially suppressed by a factor of e−O(1)/ϵ. Thus, even if the trapping effect is so
strong, the adiabatic condition is not necessarily satisfied due to the anharmonic effect.

If ϵ(tdef) ∼ 1, i.e. in the non-adiabatic regime, the delayed start of the axion field gives
rise to additional amplitudes whose oscillation dominates over the primary oscillation. To
estimate the abundance, we can use the formula of the non-adiabatic regime (3.30), but
considering the situation, we can more easily estimate it. The timing of the deformation
almost corresponds to the conventional onset of oscillation, Tdef ≈ T

(conv)
osc , because the

QCD potential increases more intensely than the Hubble parameter and the potential
induced from the Witten effect. Now we consider the vicinity of the top of VQCD, so the

practical oscillation timing is later than T
(conv)
osc . Thus we can use the conventional formula

of the abundance with the anharmonic effect (2.21). Noting that the oscillation amplitude
is roughly given by θosc2 ≃ θ∗, we obtain the abundance,

Ωϕh
2 ≃ 0.14FNAD(θ∗)θ

2
∗

(
fϕ

1012 GeV

)1.17

, (5.16)

where the anharmonic factor is given by

F (NAD) =

[
ln

(
e

1− θ2∗/π
2

)]1.17
. (5.17)
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In the non-adiabatic regime of this model, the abundance depends on the decay con-
stant, instead of the case of time-independent potential with multiple minima described
in Chapter 4. Not depending on fϕ comes from the trapping effect at a wrong minimum.
Note that this analytic solution is roughly estimated, and actually the abundance should
slightly depend on ω. Numerical calculations are required for the correct behavior.

5.4 Numerical estimate of abundance

Here we solve the equation of motion for the axion taking account of the Witten effect,
to see if the adiabatic suppression works and to find a parameter space in which we can
explain the observed dark matter density.

Substituting (3.5) to (C.4), we obtain the following equation of motion,

F 2(τ)
d2θ

dτ 2
+ F (τ)

{
dF (τ)

dτ
+
√
g∗(τ)τ

−2

}
dθ

dτ
+

10M2
Pl

π2T 4
n

m2
ϕ(τ) sin θ

+κωg∗s(τ)τ
−3(θ − θ∗) = 0, (5.18)

and

κ ≡ M2
Plρcrith

−2

36π2Tnf 2
ϕs0

(5.19)

The time variable τ ≡ Tn/T is defined, where in this work, the normalization factor is
chosen as

Tn =
√
mϕ,0MPl. (5.20)

In order to see if the adiabatic suppression mechanism works, we plot the ratio between
the density parameter with a given nonzero ΩMh

2 and the one without it (i.e., with
ΩMh

2 = 0) in Fig. 5.1. We take θini = θ∗ and ∂τθini = 0 for the initial condition. In this
case, the contribution from the first oscillation, Eq. (5.7), is negligible because the initial
field value is close to the temporal minimum of the potential.

Fig. 5.1 shows our results as a function of ω for fϕ = 1012 and 1011 GeV, where the
lines with •, ◦,△,□,×, ⋆ correspond to |θ∗ − π| = 0.01, 0.05, 0.1, 0.5, 1, π/2, respectively.
As one can see from the left figure, the abundance is not strongly suppressed for fϕ =
1012 GeV. This is because the potential from the Witten effect is weaker for a larger fϕ
and the trapping effect is smaller. In both figures, the abundance is more suppressed for
a larger ω. This is because the axion is trapped by the Witten effect more strongly for a
larger ω and the adiabatic suppression mechanism works more efficiently.

Next, we evaluate the density parameter for the axion Ωϕh
2 to determine a realistic

parameter space where both the axion and the monopole can explain dark matter. The
results for NH = NDW and αH = 0.07 are shown in Fig. 5.2 for fϕ = 1010 GeV (left panel)
and fϕ = 1011 GeV (right panel), where the lines with •, ◦,△,□, ⋆ correspond to the
cases with |θ∗ − π| = 0.5, 1, π/2, π− 1, π− 0.1, respectively. Each solid line represents the
solution for θini = θ∗ + (NDW/NH) (= θ∗ +1), and each dashed line represents the one for
θini = θ∗. In the former case, an oscillation is induced at T = Tosc and Eq. (5.7) may not
be negligible. In the latter case, the contribution from the first oscillation, Eq. (5.7), is
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Figure 5.1: The axion abundance normalized by the case without the Witten effect as
a function of ω for various initial conditions, |θ∗ − π| = 0.01 (red •), 0.05 (orange ◦),
0.1 (green △), 0.5 (blue □), 1 (magenta ×), and π/2 (black ⋆) from top to bottom. We
take fϕ = 1012 (left panel) and 1011 GeV (right panel).
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Figure 5.2: The axion abundance Ωϕh
2 as a function of ΩMh

2 for |θ∗ − π| = 0.5 (red •),
1 (orange ◦), π/2 (green △), π − 1 (blue □), and π − 0.1 (magenta ⋆) from top to
bottom. We set αH = 0.07 and fϕ = 1010 GeV (left panel) and for fϕ = 1011 GeV
(right panel). Each solid line represents the numerical result for the initial condition with
θini = θ∗ + (NDW/NH) (= θ∗ + 1), and each dashed line represents the one with θini = θ∗.
The black dotted line denotes Ωϕh

2 + ΩMh
2 = 0.12. We are not interested in the gray

shaded region where Tosc ≲ Tdef .

negligible because the initial field value is close to the temporal minimum of the potential.
The black dotted line represents the upper bound Eq. (5.5).

The left panel of Fig. 5.2 for fϕ = 1010 GeV shows that the axion abundance is
more suppressed for a larger fraction of monopole, and the axion is only a subdominant
component of dark matter. In particular, for Ωϕh

2 ∼ 10−(8 - 6), (i.e., for small θ∗ and large
ΩMh

2), the solid lines are deviated from the dashed lines. This is because the contribution
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Figure 5.3: Same as the right panel of Fig. 5.2 (i.e., fϕ = 1011 GeV, αH = 0.07, and
|θ∗ − π| = 0.5, 1, π/2, π − 1, π − 0.1) but with NH/NDW = 5.

from the first oscillation becomes important for the case of θini = θ∗+1 in that parameter
space. Substituting θini = θ∗+1 into Eq. (5.7), we obtain Ωϕh

2 ≃ 6× 10−8(ΩMh
2/0.12)−1

for fϕ = 1010 GeV. This is also independent of |θ∗ − π|. These can be actually observed
in the left panel of Fig. 5.2, where the magenta and blue lines are overlapped and satisfy
Ωϕh

2 ∼ 6 × 10−8(ΩMh
2/0.12)−1 for ΩMh

2 ≳ 0.05. One can also see that the green line
becomes overlapped for ΩMh

2 ≳ 0.1. This means that the first oscillation around the
potential by the Witten effect is dominant in this parameter space, while the second
oscillation around the QCD potential is dominant in the other parameter space. In the
region of |θ∗ − π| ≲ 1 (the red and orange line), the adiabatic suppression only has a
weak effect so that the solid line corresponds to the dashed one. This is the non-adiabatic
regime, and it means that the anharmonicity breaks the adiabatic condition. In the case
of weak trapping effect (ΩMh

2 ≲ 0.01), the abundance is consistent with the analytical
result (5.16).

In the right panel, the solid lines are deviated from the dashed lines at a small ΩMh
2.

This is because the adiabatic suppression mechanism is not efficient as fϕ is larger than
in the left panel. For a small ΩMh

2, the condition Eq. (5.9) is barely satisfied and the
dynamics of the axion depends non-trivially on the initial condition. In the gray-shaded
region, the condition Eq. (5.9) is violated and we cannot distinguish between the timing
of oscillation by the Witten effect and the QCD effect.

Comparing the two panels in Fig. 5.2, we can see that the axion abundance becomes
larger as fϕ increases because the Witten effect is more suppressed. In the right panel,
the axion abundance can be comparable to or even larger than the monopole abundance.
On the other hand, the axion of fϕ ≳ 1011 GeV can be adiabatically suppressed if we take
NH > NDW. This can be seen from Fig. 5.3, which shows the axion abundance in the
case of NH/NDW = 5 and fϕ = 1011 GeV. The initial condition is taken to be θini = θ∗
for each solid line and θini = θ∗ + (NDW/NH) for each dashed line.
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Figure 5.4: Same as the right panel of Fig. 5.1 (i.e., fϕ = 1011 GeV and |θ∗ − π| =
0.01, 0.05, 0.1, 0.5, 1, π/2) but the horizontal axis is given by the inverse of the parameter
for the violation of adiabaticity, ωq/2 |θ∗ − π|.

The reason why the solid lines are deviated from the dashed lines in Fig. 5.3 is the
same as the one in the left panel in Fig. 5.2. Namely, the contribution Eq. (5.7) becomes
important for a very small Ωϕh

2. However, one can see an oscillating behavior in Fig. 5.3.
The deviation appears when the temporal minimum starts to shift around the time when
the axion oscillates due to the Witten effect, namely for the case of Tosc ∼ Tdef . In this case,
the oscillation amplitude at T = Tdef has a non-negligible effect on the axion dynamics
when the temporal minimum is moving. If the axion moves toward the same (opposite)
direction as the temporal minimum, the abundance gets suppressed (enhanced). The
result hence depends on the axion field value at T = Tdef , which non-trivially depends on
ΩMh

2.
To summarize the above argument, the adiabatic suppression mechanism works for

fϕ ≲ 1011 GeV and large ω, |θ∗ − π|. For a qualitative understanding of the suppression
factor in this case, we plot the ratio of the density parameter with and without the Witten
effect as a function of ωq/2 |θ∗ − π| in Fig. 5.4. We can fit the result by an exponential
function such as

log

[
Ωϕ(ω)

Ωϕ(0)

]
∝ −ωq/2 |θ∗ − π| , (5.21)

which is consistent with the analytical estimate of the adiabatic parameter ϵ−1(tdef) (see
Eq. (5.15)). Note that, while the lines in the figure are not completely overlapped, all of
them exhibit the same exponential dependence like Eq. (5.21). Their differences are only
O(1) factors and hence the exponential dependence of Eq. (5.21) is robust.

5.5 Discussions

We have considered the QCD axion DM scenario with an extra potential from the Wit-
ten effect in the presence of hidden monopoles. We have clarified the condition for the
adiabatic suppression mechanism to work in the vicinity of the top of the potential. The
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Figure 5.5: The isocurvature power spectrum as a function of ω. We set θini = θ∗ + 1,
θ∗ = π − 1, fϕ = 1011 GeV, and Hinf = 109 GeV.

condition can be understood by the violation of the adiabaticity ϵ(tdef). We need much
stronger trapping effect for the efficient adiabatic suppression near the potential top. It
looks difficult to realize the adiabatic suppression for fϕ ≳ 1011 GeV. However, the Wit-
ten effect can be stronger if the monopole abundance is larger than the observed DM
abundance. This scenario is consistent with observations if the monopole can disappear
before the BBN. Another possibility is to consider the case of NH ≫ NDW, which can be
realized in the clockwork QCD axion model [133, 121].

Let us comment on the isocurvature perturbations. In the adiabatic regime, the
isocurvature perturbation can be produced as with the case of quadratic potential (see
Eq. (2.33)). When the adiabatic suppression works well, the axion is a subdominant DM
component, and the power spectrum is expected to be significantly suppressed. In the
non-adiabatic regime, it is difficult to estimate the power spectrum analytically, as in the
previous chapter, but we can guess from the results of the previous chapter that it is
suppressed. We show the numerical results of the power spectrum as a function of ω in
Fig. 5.5. We set θini = θ∗ + 1, θ∗ = π − 1, fϕ = 1011 GeV, and Hinf = 109 GeV. The red
points represent the numerical results, and the gray dashed line is the lower bound on ω
of our interest, Tosc < T

(conv)
osc . As the trapping effect becomes strong, the power spectrum

decreases. At the intermediate strength, the anharmonic effect breaks the adiabaticity,
but Tosc < T

(conv)
osc is satisfied, i.e. this corresponds to the non-adiabatic regime. The

isocurvature power spectrum is suppressed as we expected. For stronger trapping, the
power spectrum becomes larger, because it enters the adiabatic regime and the isocu-
ravture perturbation is almost the same with the case of quadratic potential. Thus we
shortly conclude that the isocurvature perturbation is suppressed in both the adiabatic
and the non-adiabatic regime. In particular, the axion can explain a (sizable) fraction
of DM in the non-adiabatic regime with the isocurvature bounds highly relaxed. Such
axions with small fϕ are motivated by experiments for axion detection.

Lastly, we discuss the implications for an axion-like particle (ALP) in the presence
of the Witten effect of hidden monopoles. ALP is a pseudo-scalar field with a periodic
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potential, which is predicted e.g. in string theory [20]. If an ALP has a shallow potential
(mϕ ≲ 10−28 eV) in addition to the potential from the Witten effect, it remains trapped
by the Witten effect until sometime in the late-time universe. In Ref. [134], this idea was
applied to a mechanism that the ALP inducing cosmic birefringence. Cosmic birefringence
is a phenomenon which rotates the CMB photon polarization when the axion field starts
to oscillate after the recombination [135, 136, 137, 138, 139]. Without the Witten effect,
the ALP mass must be limited in the region of 10−33 eV ≲ mϕ ≲ 10−28 eV [140], which
leads to one question why the mass is so small, or coincidence problem. However, by
stabilizing the ALP due to the Witten effect until the recombination, we only require
the upper bound on the mass mϕ ≲ 10−28 eV for reasonable parameters, αH ∼ α and
fϕ ∼MGUT, if dark matter can be totally explained by the hidden monopole [134].
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Chapter 6

Conclusions

The existence of DM is the most crucial mystery in particle physics and cosmology. Of
various candidates, QCD axion can nicely explain both DM and the Strong CP problem,
and it looks a promising candidate for DM and new physics. In fact, various types of
experiments for axion detection have been carried out and planned, and we can expect
to obtain some signatures in the near future. DM axion can be non-thermally produced
via the misalignment mechanism, where the axion dynamics in the early universe is an
essential ingredient. Since the axion potential can be altered by interactions with other
particles, it is important to reveal what properties the axion has (e.g. mass, decay con-
stant) under various situations.

In this thesis, we have discussed the trapping effect on QCD axion by extra PQ
breaking potentials. We have focused on a scenario where the axion is initially trapped
by the potential and starts to oscillate around the minimum. Then, after the QCD
phase transition, the total potential form is deformed with time, and finally the axion is
stabilized around the origin where the Strong CP problem is solved. What is important
is how the axion moves at the timing of the deformation. We found in Chapter 3 that the
dynamics can be categorized in terms of the parameter ϵ(tdef) which describes the violation
of adiabaticity. For ϵ(tdef) ≪ 1 (adiabatic regime), the axion adiabatically follows the
temporal minimum, which does not induce any additional amplitude. The type of this
dynamics corresponds to the case that the adiabatic suppression mechanism works well.
On the contrary, for ϵ(tdef) ∼ 1 (non-adiabatic regime), the temporal minimum leaves the
axion near the initial minimum, and after a little while, it starts to oscillate again. The
delay of commencement of oscillation enhances the axion abundance. By categorizing as
such, we obtained the analytical formula of the abundance for both regimes. We note
that the analysis is applicable to a broad class of extra potential.

In Chapter 4, we considered a time-independent extra potential and estimated the
abundance and isocurvature power spectrum analytically and numerically. We have
opened up a new parameter region for DM axion. In the adiabatic regime, |θini − θH | ≲
π/N , the axion with fϕ ≳ 1012 GeV can explain DM with a milder tuning of θini than
the conventional case, thanks to the adiabatic suppression. In the non-adiabatic regime,
|θini − θH | ≳ π/N , if r ≃ 0.02 and fϕ ≲ 1011 GeV, the axion explains all DM, almost
independent of fϕ. Both cases have important implications for the current or projected
axion search experiments, e.g. ABRACADABRA for fϕ ∼ 1014, ADMX for fϕ ∼ 1011−13.
Also, in both regimes, the isocurvature perturbation can be suppressed compared to the
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conventional QCD axion without PQ breaking potentials. The upper bound on Hinf is
given by ∼ 108 − 109 GeV in the adiabatic regime and ∼ 107 − 108 GeV in the non-
adiabatic regime. We emphasize that in the non-adiabatic regime, since the isocurvature
perturbation is suppressed without the enhancement due to the anharmonic effect, the
isocurvature bound can be relaxed by many orders of magnitude with respect to the nor-
mal scenario. Together with the fact that the final axion abundance is independent of
fϕ, we have opened up a scenario that allows the axion with fϕ ≲ 1011 GeV to explain
all DM without running afoul of the isocurvature bounds. The price we have to pay is to
introduce an extra PQ breaking term with N1/4r ≈ 0.02 and |θH | ≲ 10−3. This requires a
mild tuning of the relative phase of the PQ breaking. Conversely, if θH is near the upper
limit, it could be observed through nEDM in the near future.

In Chapter 5, we considered an effective potential from the Witten effect of hidden
monopole. We obtained the condition that the adiabatic suppression mechanism works by
estimating the violation of adiabaticity ϵ(tdef). The non-adiabatic regime can be realized
by the anharmonic effect, in which case the isocurvature is significantly suppressed in
similar to the case of the time-independent potential. We have numerically estimated the
abundance and confirmed the consistency with the analytical estimate. In particular, we
saw that the exponent of suppression factor is consistent with the inverse of ϵ(tdef).

When the axion acquires the potential considered in Chapter 4 and is temporarily
trapped at a wrong minimum, the non-adiabatic regime is realized. In this case, the
movement of axion is disturbed by the potential barrier and cannot follow the minimum.
On the other hand, the non-adiabatic regime is caused by the anharmonic effect in the
case of the Witten effect. From these results, we conclude that the adiabaticity can be
broken by the non-linearity of the total axion potential. Thus, the properties of axion
DM are closely related with corrections to the axion potential induced from a UV physics
and can be probed by various future experiments for the axion detection and nEDM
measurements.
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Appendix A

Basics for standard cosmology

Here let us briefly summarize standard cosmology for the discussion in this thesis. We
consider the homogeneous, isotropic, and flat universe except for the discussion on the
axionic fluctuation. It is described by the Friedmann-Lemêitre-Robertson-Walker metric,
ds2 = dt2 − a2(t)dx2 with a(t) the scale factor. The space-time evolves with various
components (baryonic matter, radiation, dark matter, dark energy, and so on) according
to the Friedmann equation,

H2(t) =
1

3M2
Pl

∑
i

ρi, (A.1)

where H ≡ ȧ/a is defined as the Hubble parameter, MPl ≡ 1/
√
8πG ≃ 2.4 × 1018 GeV

denotes the reduced Planck mass with G the Newton constant, and ρi represent the energy
density for each component.

For later use, let us define the density parameter Ωi ≡ ρi/ρcrit, where the critical
energy density is given by

ρcrit = 3M2
PlH

2
0 ≃ (0.00300 eV)4h2, (A.2)

with H0 ≡ 100h km/s/Mpc the present Hubble constant. In the case of the flat universe,
the critical density can be simply identified with the total energy density.

Assuming no interaction with each component, the energy density ρi of individual
component obeys the energy conservation equation,

ρ̇i + 3H(ρi + Pi) = 0, (A.3)

where Pi represents the pressure. The equation of state is given by wi ≡ Pi/ρi. For
instance, the energy density for radiation is given by

ρrad =
π2

30
g∗(T )T

4, (A.4)

where g∗ is the effective degree of freedom for relativistic particle. This defines the tem-
perature of thermal equilibrium plasma, which determines the typical energy scale of the
universe. For wrad = 1/3, we obtain ρrad ∝ a−4, or aT ∼ const that means the radiation
energy is redshifted with time.
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Figure A.1: The effective degree of freedom of relativistic components g∗ (red) and g∗s
(blue) as a function of the temperature [141].

Besides, another conservation equation is associated with entropy density s(T ), given
by sa3 = const. The entropy density is given by

s(T ) =
2π2

45
g∗s(T )T

3, (A.5)

where g∗s denotes the effective degree of freedom of relativistic components associated with
entropy. The effective degrees of freedom g∗ and g∗s we use in this thesis are estimated
by using the lattice result [141]. See Fig. A.1. The entropy conservation is useful for
analyzing cosmological quantities.
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Appendix B

Vacuum structure in QCD

B.1 Nontrivial gauge configuration

Here let us briefly review a vacuum structure in QCD. The QCD Lagrangian is given by

Lgauge = −1

4
Ga
µνG

aµν − θ
g2s

32π2
Ga
µνG̃

aµν , (B.1)

where the gluon field strength and its dual are respectively written as Ga
µν = ∂µA

a
ν −

∂νA
a
µ + gsf

abcAbµA
c
ν and G̃a

µν = 1
2
ϵµναβG

aαβ. gs is the gauge coupling constant, and fabc

denotes the structure constant for SU(3). The θ term can be written by the Chern-Simons
current as [65]

Ga
µνG̃

aµν = ∂µK
µ = ∂µϵ

µαβγ
(
AaαG

a
βγ −

gs
3
fabcA

a
αA

b
βA

c
γ

)
, (B.2)

which seems not to contribute to path integral as long as we consider a trivial configuration
of gluon fields, Aaµ = 0, since it is a total derivative. In the Euclidean space, the action is
estimated as ∫

d4xEGG̃ =

∫
d4xE∂µKµ =

∫
S3

dσµKµ, (B.3)

where S3 is the 3-dimensional sphere at infinity and dσµ is an element of its hypersurface.
If the configurations at infinity is trivial, the integral vanishes.

We are interested in configurations of gauge field such that the action is finite. The
finite action requires the condition that Ga

µν → 0 at |x| → ∞, and we can obtain nontrivial
configurations by a gauge transformation with Ga

µν = 0 on S3 maintained. Defining the
gauge field as Aµ ≡ Aaµt

a in terms of SU(3) generators ta, it transforms as Aµ → U−1AµU+
ig−1
s U−1∂µU where U(x) is a unitary matrix. The configurations on the boundary is called

pure gauge, Aµ|S3 = ig−1
s U−1∂µU . To prove that the matrix U is not equivalent to the

identity matrix, we consider the SU(2) subgroup of SU(3) for simplicity. The SU(2)
configurations are constructed as S3 at infinity as with SU(3). The transformation matrix
can be expanded as U = a4 ·1+ iaiσi where σi is the Pauli matrices and the coefficients ai
and a4 are real constants. The unitarity gives a24+|a|2 = 1. Thus the gauge configurations
are the mapping S3 → S3. From the argument of topology, the mapping U(x) can be
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classified in different homotopy classes by integers which are called winding number. As
regards this mapping, the winding number is given by [142]

n ≡ 1

24π2

∫
d3xTr[ϵijk(U−1

(n)∂iU(n))(U
−1
(n)∂jU(n))(U

−1
(n)∂kU(n))]

=
ig3s
24π2

∫
d3xTr[ϵijkA

i
(n)A

j
(n)A

k
(n)], (B.4)

where we take pure gauge in the second equality, and the subscripts (n) denote the
configurations composed of gauge fields with winding number n. Such configurations are
known as instanton which is a solution to classical equation of motion in the Euclidean
space. The simplest instanton solution was discovered by the authers in [13]. It is known
that the above discussions are applicable to any Lie group which has an SU(2) as its
subgroup by Bott’s theorem [143].

B.2 θ vacua

In the Minkowski spacetime, let us consider the action again. We take temporal gauge
A0 = 0, and the action of the gauge configuration with a winding number ν is given by

g2s
32π2

∫
d4xGa

µνG̃
aµν =

g2s
32π2

∫
d4x∂0K

0 =
g2s

32π2

∫
d3xK0

∣∣∣∣t=∞

t=−∞

= n+ − n− ≡ ν ∈ Z, (B.5)

where we use K0 = (4igs/3)Tr[ϵ
ijkAiAjAk], and n+ (n−) represents the winding number

at t = ∞ (−∞). Thus this cofiguration corresponds to the solution of the transition
from one vacuum |n−⟩ to another vacuum |n+⟩. However, each individual vacuum is not
gauge-invariant. Consider a gauge transformation with winding number m. The gauge
field transforms as Ai(n) = ig−1

s U−1
(n)∂

iU(n) → ig−1
s (U(n)U(m))

−1∂i(U(n)U(m)), and we can see
that the resultant gauge configuration has winding number n+m. In this way, the vaccum
is changed by the gauge transformation as U(m)|n⟩ = |n+m⟩. As a physical vacuum, we
can consider a linear combination of all vacuum states,

|θ⟩ ≡
n=∞∑
n=−∞

einθ|n⟩, (B.6)

where θ ∈ [0, 2π) is a constant parameter. This is the θ vacuum. It is obvious that the θ
vacuum is not changed.

Let us find an important property of the θ vacuum. We consider the transition am-
plitude from |θ⟩ to |θ′⟩,

⟨θ′|e−HT |θ⟩ =
n=∞∑
n′=−∞

n=∞∑
n=−∞

e−i(n
′θ′−nθ)⟨n′|e−HT |n⟩, (B.7)

where we take Euclidean space. We define the variant of winding number as ν ≡ n′ − n,
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and then, we can use path integral to obtain

⟨θ′|e−HT |θ⟩ =
n=∞∑
n′=−∞

e−in
′(θ′−θ)

ν=∞∑
ν=−∞

∫
DA(ν) exp

[∫
d4xE

1

4
Ga
µνG

aµν − iνθ

]
= δ(θ′ − θ)

∫
DA exp

[
−
∫
d4xE

(
1

4
Ga
µνG

aµν + iθ
g2s

32π2
Ga
µνG̃

aµν

)]
.

(B.8)

DA(ν) is the pathe integral measure of gauge field with winding number ν and DA is
the measure of all the gauge configurations. Note that the delta function indicates the
stability of the θ vacuum. As a result, the nontrivial vacumm structures in QCD require
the θ term in the QCD Lagrangian.
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Appendix C

Useful equations for numerical
calculations of abundance

Here we derive a useful equation of motion for numerical calculations. First let us rewrite
the equation of motion (2.16) using the dimensionless time τ ≡ Tn/T , where Tn is an arbi-
trary normalization factor of mass-dimension one [58]. Taking account of the temperature-
dependence of g∗ and g∗s, we obtain the time derivative of the temperature

dT

dt
= − π

MPl

√
g∗(T )

10

s(T )

s′(T )
T 2

= −HT
(
3τK(τ)√
g∗(τ)

)
, (C.1)

where K(τ) is defined as

K(τ) ≡
√
g∗(τ)

3τ

g∗s(τ)

g∗s(τ)− τg′∗s(τ)/3
. (C.2)

We refer to Ref. [141] for the detailed temperature dependence of g∗ and g∗s (see Fig. A.1).
Assuming g∗s does not depend on the temperature, one can see that this relation is
consistent with the usual one, dT/dt = −HT or H = 1/2t. In other words, K(τ)
represents the time-dependence of g∗s.

Using this relation, we can obtain the derivative of the time t

d

dt
=

√
π2T 4

n

10M2
Pl

K(τ)
d

dτ
. (C.3)

Thus the equation of motion (2.16) becomes

K2(τ)
d2θ

dτ 2
+ K(τ)

[
dK

dτ
+
√
g∗τ

−2

]
dθ

dτ
+

10M2
Pl

π2T 4
nfϕ

V ′(ϕ) = 0. (C.4)

This equation is applicable to a homogeneous scalar field with any differentiable potential.
Note that in the above derivation we use only the fact sa3(T ) = const., so (C.4) generally
holds.
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Appendix D

Calculations of isocurvature
perturbation

The structures in the universe can originate from primordial perturbations generated
by scalar fields. The evolution of the perturbations follows the Einstein equation and
the conservation laws of energy and momentum. Since the perturbations are generically
smaller than the uniform components, perturbative expansion can be applied to these
equations. The metric and energy-momentum tensor are respectively expanded as

gµν = ḡµν + hµν (D.1)

Tµν = T̄µν + δTµν , (D.2)

where the quantity with a bar attatched denotes the unperturbed value, and hµν and
δTµν are perturbed values. Hereafter, we define quantities Xi (e.g. ni, ρi, Pi, etc) as Xi =
X̄i(t) + δXi(t,x), where X̄i and δXi denote the homogeneous part and the perturbation
of Xi, and the subscripts ‘i’ represents particle species, like radiation, cold dark matter
(CDM), etc. Due to the general covariance, we have infinite possibilities to take space-
time coordinates, and we should identify which quantities are physical by fixing the gauge
in order to estimate observables.

In Sec. D.1, we consider a specific metric of space time, and on the basis of δN -
formalism, derive a gauge-invariant quantity which is conserved on the superhorizon scale.
Next we present a method for calculating the isocurvature power spectrum using perturba-
tion theory in Sec. D.2. Numerical methods are described, and finally the useful analytical
formula is derived.

D.1 δN -formalism

Let us briefly review the δN -formalism [96]. Here N denotes the local e-folding number as
defined below, and we can see that the curvature perturbation is given by the perturbation
of the e-folding number.

We use the standard (3 + 1)-decomposition (ADM formalism) [144],1

ds2 = −N2
ℓ dt

2 + a2(t)e2ψγ̃ij(dx
i + βidt)(dxj + βjdt), (D.3)

1Throughout the thesis, we use the metric of the mostly minuses, but only in this Appendix, we use the
mostly pluses, because I would feel strange if I used the mostly minuses in the cosmological perturbation
theory.
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3+1 decomposition (ADM formalism)

t

t + δt
various 
time axes

nμ

βi

t

t + δt

Figure D.1: The schematic picture for the ADM formalism. The two planes are taken
at t and t + δt. The black solid curves represent time axes, and the black dashed line is
the vector perpendicular to the constant-time plane. the shift vector βi is denoted by the
blue arrow.

where Nℓ is the lapse function, a(t) a global scale factor, γ̃ij the spatial metric, βi the
shift vector, and ψ is the perturbation of the expansion rate, or equivalently, the curvature
perturbation. We show the schematic picture for the metric we are considering in Fig. D.1.
The two planes represent 3-dimensional surfaces in which time is constant. In this figure,
time is taken at t and t+δt on the constant-time planes with δt/t≪ 1, and nµ = (−Nℓ, 0)
is the vector perpendicular to the constant-time plane. The lapse function scales the length
of nµ, depending on how to take the constant-time plane. We can see that the shift vector
βi can represent a deviation of time axis from nµ, because the worldline can be chosen as
we like.

In the ADM formalism, space and time are apparently separated, and we can fix the
gauge by specifying a time axis and constant-time planes. The former prescription is
called ‘to fix the threading’, and the latter is ‘to fix the slicing’. All the ways to fix
the threading are equivalent to the comoving threading in the linear approximation [96].2

The comoving threading corresponds to the spatial coordinates which comove with fluids.
We have a room to choose the time slicing. In the following, we mainly use two kinds
of slicing. One is the flat slicing where the curvature perturbation ψ is zero. The other
is the uniform-density slicing where the perturbation of total energy density vanishes,∑

i δρi ≡ δρ = 0. We can also take only a part of energy density to be zero, δρi = 0.
Let us consider the relationship between the e-folding number and the curvature per-

turbation. In the ADM formalism, we can define the local Hubble parameter as

H̃(t, xi) ≡
1

Nℓ

˙̃a

ã
=

1

Nℓ

(
ȧ

a
+ ψ̇

)
, (D.4)

where ã = a(t)eψ is the local scale factor. Using the local Hubble parameter, the local

2In the δN -formalism, we use gradient expansion where the perturbations on the superhorizon scale
can be cut off.
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e-folding number can be given by

N (t2, t1;xi) ≡
∫ t2

t1

NℓdtH̃(t, xi) =

∫ t2

t1

dt

(
ȧ

a
+ ψ̇

)
. (D.5)

Thus we obtain

ψ(t2, xi)− ψ(t1, xi) = N (t2, t1;xi)− ln
a(t2)

a(t1)
, (D.6)

where time slicings are not fixed. The perturbation of the e-folding number is given by
the difference of the curvature perturbations.

Let us derive the important quantity which is conserved on the superhorizon scale. In
the linear approximation of the δN -formalism, the equation of motion is reduced to the
unperturbed form [96], and the energy conservation law is given by

1

Nℓ

dρ

dt
+ 3H̃(ρ+ P ) = 0, (D.7)

where ρ and P are the total energy density and pressure, respectively. We can rewrite
the right-hand side of (D.6) in the integral form as

ψ(t2, xi)− ψ(t1, xi) = −1

3

∫ ρ(t2,xi)

ρ(t2)

dρ

ρ+ P
+

1

3

∫ ρ(t1,xi)

ρ(t1)

dρ

ρ+ P
. (D.8)

From this equation, we can find a conserved quantity,

ζ(xi) = −ψ(t, xi)−
δρ(t, xi)

3(ρ+ P )
. (D.9)

If the energy exchange between different components is not allowed, similar conserved
quantities ζi can be defined for each component. Note that we consider only the super-
horizon mode in the δN -formalism.

Lastly, let us take an example for later use. We consider two sets of space-time
manifold, A and B, where the initial slicing at t = t1 is taken as the flat slicing. If the
final slicing in the space time A is taken as the uniform-density slicing and that in the
space time B as the δρi = 0 slicing, then we obtain the difference between them,

ζi = ζ +NA −NB ≡ ζ + δN (t2, t1;xi). (D.10)

Here we define δN as the difference of the number of e-folds between the uniform-density
and δρi = 0 slicing. The gauge invariant perturbation can be written by the perturbation
of N . On the uniform-density slicing, the energy density is given by

ρi(NA, xi) = ρ̄i + δρi(NA, xi). (D.11)

On the other hand, we obtain the energy density on δρi = 0 slicing,

ρi(NA + δN ) = ρ̄i. (D.12)

Assuming δN ≪ 1 and δρi/ρ̄i ≪ 1, we obtain [145, 146, 147]

δN ≃ −δρi
ρ̄′i
, (D.13)

where the prime denotes the derivative with respect to NA. Using this formula, we can
calculate the isocurvature power spectrum by following the e-folding number.
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D.2 Estimate of power spectrum

Numerical method

Here we present a numerical method for calculating the power spectrum of the axionic
isocurvaure perturbation on the basis of the δN -formalism described above.

The isocurvature perturbation is defined as

S(xi) ≡ 3(ζCDM − ζrad). (D.14)

Assuming that the other CDM components acquire only adiabatic fluctuations uncorre-
lated with the axionic fluctuation, we obtain

ζCDM + ψ = −δρϕ + δρm
ρ̄′ϕ + ρ̄′m

≃ −Rϕ
δρϕ
ρ̄′ϕ

, (D.15)

with Rϕ ≡ Ωϕ/ΩDM. Here ρ̄ϕ(m) and δρϕ(m) denote the homogeneous part and the fluctu-
ation of the axion (the other CDM) energy density, respectively. Note that we have used
δρm = 0 in the second equality. This is because we have approximately δρrad = δρm = 0
in the deep radiation dominated era.

Using Eq. (D.13), we obtain the CDM isocurvature perturbation using the fluctuation
of the e-folding number δN ,

S(x⃗) ≃ −3Rϕ
δρϕ
ρ̄′ϕ

≃ 3RϕδN . (D.16)

Note that δN is defined as the fluctuation of the number of e-folds from the initial flat
slicing at the horizon exit of the CMB scales to the uniform-ρϕ slicing after the axion
abundance gets fixed. We expand δN in terms of the axion fluctuation as

δN ≃ ∂N
∂ϕ∗

δϕ∗ +
1

2

∂2N
∂ϕ2

∗
(δϕ2

∗ − ⟨∂ϕ2
∗⟩) + · · ·, (D.17)

where δϕ∗ represents the initial fluctuation of the axion field at the horizon exit, and ϕ∗
is identified with the initial position ϕini in the previous section.

The isocurvature power spectrum is defined as

⟨S(k⃗1)S(k⃗2)⟩ ≡ (2π)3PS(k⃗1)δ(3)(k⃗1 + k⃗2), (D.18)

where S(k⃗) denotes the Fourier component of the isocurvature perturbation S(xi). Taking

account of the leading term of (D.17) and using the power spectrum of δϕ∗, Pδϕ∗(k⃗) =
H2

inf/2k
3, we obtain the dimensionless power spectrum,

∆2
S ≡ k3

2π2
PS(k⃗) ≃

(
3Rϕ

∂N
∂θini

Hinf

2πfϕ

)2

≡ (Rϕ∆ϕ)
2. (D.19)

where we have defined ∆ϕ.
This formula is a useful form to estimate the isocurvature perturbation numerically.

Noting that the e-folding number is measured as the difference between the final slicing of
δρϕ = 0 and δρ = 0, we can obtain its derivative by taking the difference of the e-folding
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numbers for slightly different initial positions. Numerically, it is sufficient to follow each
e-folding number until the axion number density becomes equal to a fixed value after nϕ/s
becomes constant with time. Specifically, we have the relation nI(TE) = nII(TE + ∆T ),
where TE is an arbitrary temperature (lower than Tosc or Tosc2) on the final slicing, nI is
the number density for the initial position θini, and nII is the number density for θini+∆θ.
After the (final) coherent oscillation started, nϕ/s becomes constant with time, and so we
get

s(TE +∆T )

s(TE)
=

nI/s

nII/s
. (D.20)

Thus the difference of the e-folding number is written by

δN = −1

3
ln

[
s(TE +∆T )

s(TE)

]
= −1

3
ln

[
nI/s

nII/s

]
, (D.21)

which is independent of the temperature TE but depends only on ∆θ as we expected.
Thus we can evaluate the isocurvature perturbation by calculating the ratio of nϕ/s for
slightly different initial conditions.

Analytical formula

Finally, let us derive the useful analytical formula of the isocurvature power spectrum
by using Eq. (D.19) [100]. We assume that the total DM abundance is saturated by the
axion and other CDM components, ΩDM = Ωϕ + Ωm. Since the other components have
adiabatic perturbations, the derivatives of energy density satisfies the relation,

∂ρDM

∂ϕ∗
=
∂ρϕ
∂ϕ∗

, (D.22)

or

∂N
∂ϕ∗

=
∂N
∂ρDM

∂ρϕ
∂ϕ∗

≃ 1

3ρDM

∂ρϕ
∂ϕ∗

. (D.23)

In the second equality, we use a(t) ∝ ρ
1/3
DM in the approximately matter-dominant universe

where the perturbations of our interest enters into the horizon. Thus we obtain the power
spectrum,

∆2
S ≃

(
1

ρDM

∂ρϕ
∂θ∗

Hinf

2πfϕ

)2

=

(
Rϕ

∂ lnΩϕ

∂θ∗

Hinf

2πfϕ

)2

. (D.24)
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