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Abstract

In this thesis, we study two problems related to difference hierarchies. The difference
hierarchy for a point class Γ classifies the Boolean combinations of sets in Γ by their
complexity. Gale–Stewart games play essential roles in both problems.

In the first part of this thesis, we study the µ-calculus’ alternation hierarchy over
various semantics. The µ-calculus is obtained by adding least and greatest fixed-
point operators to modal logic. In general, it is much more expressive than modal
logic. While modal logic only allows us to express ‘local’ properties, the µ-calculus
allows us to express ‘global’ properties. For example, if we use fixed-points, we
can write a formula expressing that some statement is common knowledge; this is
not possible in modal logic without fixed-points. One can also think of fixed-point
formulas as abbreviations for infinitary formulas.

The µ-calculus’ alternation hierarchy classifies its formulas by how many inter-
dependent fixed-point operators appear in a given formula. This measure is called
alternation depth. Bradfield1 showed that the alternation hierarchy is strict, that is,
for all n ∈ N, there is a µ-formula with alternation depth nwhich is not equivalent to
any µ-formula with a smaller alternation depth. This may not happen if we modify
the semantics.

The µ-formulas are usually interpreted over Kripke models, labeled directed
graphs. Alberucci and Facchini2 showed that, if we restrict the µ-calculus to tran-
sitive frames, the alternation hierarchy collapses to its alternation-free fragment;
that is, every µ-formula is equivalent to a formula with no entangled fixed-point
operator. Similarly, they showed that over equivalence relations, the alternation
hierarchy collapses to modal logic; that is, every µ-formula is equivalent to a modal
formula without fixed-point operators.

We refine Alberucci and Facchini’s proof to show that the alternation hierarchy
collapses to modal logic in bigger classes of frames. We use this characterization
to study various epistemic logics. We define degrees of ignorance and show that
different logics imply the possibility of a different number of degrees of ignorance.

Afterwards, we study the collapse to alternative semantics for modal logic. We
show that, on graded semantics, constructive semantics and modal logic with im-
possible worlds, the alternation hierarchy collapses to modal logic over equivalence
relations. On the other hand, the alternation hierarchy is strict on multimodal µ-
calculus over equivalence relations. We also show that current proofs of the collapse
do not work on the non-monotone µ-calculus.

1J.C. Bradfield. “The modal mu-calculus alternation hierarchy is strict”. In: Theoretical Computer
Science 195.2 (1998), pp. 133– 153.

2L. Alberucci and A. Facchini. “The modal µ-calculus hierarchy over restricted classes of transition
systems”. In: The Journal of Symbolic Logic 74.4 (2009), pp. 1367–1400.
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Furthermore, we show that the alternation hierarchy collapses to its alternation-
free fragment over weakly transitive frames. We then use a finite model property
to extend the collapse to derivative topological semantics. Here, we interpret µ-
formulas over topologies and interpret the ♦modality as the Cantor derivative. At
last, we show that the weak alternation hierarchy is strict over transitive frames.
The weak alternation hierarchy classifies alternation-free µ-formulas by how many
nested quantifiers they contain.

In the second part of this thesis, we study the connection between Gale–Stewart
games and reflection principles in second-order arithmetic. In the Gale–Stewart
game with payoff A ⊆ ωω, two players alternate picking natural numbers to build
an infinite sequence α; the first player wins the game iff α ∈ A. Gale–Stewart games
have been studied in reverse mathematics since its beginning and are central to
descriptive set theory. Sets definable by the µ-calculus are exactly the winning
regions of Gale–Stewart games whose payoffs are Boolean combinations of Σ0

2 sets.
We study (syntactical) reflection principles of the form Π1

n-Ref(Γ) stating that
every Π1

n-formula provable in Γ is true. These reflection principles can be thought
as strengthenings of the consistency of Γ. Heinatsch and Möllerfeld showed that
a formalized version of the µ-calculus is equivalent to the determinacy of Boolean
combinations of Σ0

2 sets. In turn, Kołodziejczyk and Michalewski3 used this result
to prove that the determinacy of Boolean combinations of Σ0

2 sets is equivalent to
the reflection principle Π1

3-Ref(Π1
2-CA0).

Now, the alternation-free fragment of the µ-calculus defines the winning regions
of Gale–Stewart games whose payoffs are Boolean combinations of Σ0

1 sets. Fur-
thermore, the formalized alternation-free µ-calculus on second-order arithmetic is
closely related to Π1

1-CA0. This fact suggests a variation for the result above: the
determinacy of Boolean combinations of Σ0

1 sets is equivalent to the reflection princi-
ple Π1

3-Ref(Π1
1-CA0). We prove this result using finite sequences of coded β-models

of arbitrary length.
We also use the methods above to give a new proof of Kołodziejczyk and

Michalewski’s result. We also modify it to prove that the determinacy of Boolean
combinations of Σ0

1 sets of Cantor space is equivalent to the reflection principle
Π1

2-Ref(ACA0).

3L. A. Kołodziejczyk and H. Michalewski. “How unprovable is Rabin’s decidability theorem? In: 2016
31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). July 2016, pp. 1–10.
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Chapter 1

Introduction

We study two questions related to difference hierarchies. First, we study the collapse
of µ-calculus’ alternation hierarchy over various semantics. Then, we study the
connection between determinacy axioms and reflection principles in second-order
arithmetic.

Difference hierarchies classify the complexity of boolean combinations of sets.
For example, we consider the difference hierarchy for open sets. The first level
of the difference hierarchy consists of the open sets themselves; the second level
consists of differences A \B of two open sets; the third level consists of differences
A \ (B \ C) of three open sets; and so on. The boolean combinations of open sets
are the sets obtained by finite conjunction, finite disjunction, and complementation
starting from the open sets. Every boolean combination of open sets can be written
as a difference of open sets using application of de Morgan’s rule.

We will focus on difference hierarchies for Σ0
1 and Σ0

2 sets of the Baire space. In
this setting, there is a deep connection between determinacy of Gale–Stewart games,
the modal µ-calculus and reflection principles.

Fix a set X and set A ⊆ Xω. In the Gale–Stewart game G(A), two players—I and
II—alternate picking elements of X to form a sequence α ∈ Xω. Such a sequence
is called a run. We call A the payoff of G(A). Player I wins a run α of G(A) iff
α ∈ A; II wins otherwise. We say G(A) is determined iff one of the players has a
winning strategy. The axiom of determinacy states that all games are determined.
While the axiom of determinacy contradicts the axiom of choice, weaker versions
of determinacy are compatible with choice. In this thesis, we will study only cases
where X = {0, 1} and X = ω.

After a chain of results by Gale and Stewart [GS53], Wolfe [Wol55], Davis [Dav64],
and Paris [Par72], Martin [Mar75] proved Borel determinacy over ZFC—all games
whose payoffs are Borel sets are determined. These results on determinacy have
also been formalized in the setting of second-order arithmetic. This leads us to talk
about reverse mathematics.

In reverse mathematics, we want to classify the logical strength of theorems
of ordinary mathematics. Determinacy axioms have been a mainstay of reverse
mathematics since its beginning. Steel [Ste77] proved that the determinacy of open
sets is equivalent to the axiom system known as ATR0. Tanaka [Tan90] proved that
the determinacy of differences of open sets is equivalent to Π1

1-CA0. He also proved
that Π1

1-TR0 is equivalent to the determinacy of ∆0
2 sets—this proof depends on

1



CHAPTER 1. INTRODUCTION 2

the transfinite levels of the difference hierarchy. In [Tan91], Tanaka proved that
the determinacy of Σ0

2-sets is equivalent to Σ1
1-MI. Then, MedSalem and Tanaka

[MT07] proved that the determinacy for differences of n many Σ0
2 sets is equivalent

to [Σ1
1]n-ID. Therefore, the difference hierarchies for Σ0

1 and Σ0
2 induce a hierarchy of

determinacy axioms in second-order arithmetic.
Kołodziejczyk and Michalewski [KM16] proved that the determinacy of differ-

ences of arbitrarily many Σ0
2 sets is equivalent to the reflection principle for Π1

3-
formulas provable from Π1

2-CA0. This reflection principle states that all Π1
3-formulas

provable in Π1
2-CA0 are true. Their proof depended on a result by Heinatsch and

Möllerfeld [HM10] relating the determinacy axiom above to a formalized version of
the µ-calculus.

The µ-calculus is obtained by adding least and greatest fixed-point operators to
modal logic. It was first studied by Kozen [Koz83]. Modal logic extends proposi-
tional logic with modal operators � and ♦. Given a formula ϕ, �ϕ is read as “ϕ is
necessary” and ♦ϕ is read as “ϕ is possible”. The precise meaning of “necessary”
and “possible” will depend on the semantics under consideration.

The µ-calculus is much more expressive than modal logic. The fixed-point op-
erators µ and ν allow us to describe properties which otherwise would require
infinitary modal formulas. We give an example from epistemic logic—the modal
logic of knowledge. Read �ϕ as “everyone knows that ϕ”. Then ϕ is common
knowledge iff ϕ is true, �ϕ is true, ��ϕ is true, and so on. While common knowl-
edge of ϕ cannot be defined by a finitary modal formula, it can be defined by the
µ-formula νX.ϕ ∧�X .

Modal and µ-formulas are interpreted over Kripke models—labeled directed
graphs. We interpret the nodes as possible worlds, each world being a possible state
of affairs. Relation between the worlds are described by the edges of the graph.
While we can consider the semantics over all Kripke models, it is also common to
consider restricted classes of graphs. These restrictions are natural in modal logic,
and represent different interpretations for necessity and possibility. For example, if
we restrict ourselves to reflexive Kripke models, then necessity implies truth and
truth implies possibility.

The µ-calculus’ alternation hierarchy classifies the µ-formulas according to the
entanglement of its fixed-point operators. For example, the fixed-point operators
in the µ-formula νX.(µY.P ∨ ♦Y ) ∧�X are not entangled. On the other hand, the
fixed-point operators in νXµY ((P ∧♦X)∨ (¬P ∧♦Y )) are entangled. In the second
formula, the valuation of the inner fixed-point operator µY depends on the outer
operator νX , as the variable X is in the scope of µY .

Bradfield, Duparc and Quickert [BDQ05; BDQ10] proved that the µ-calculus
defines the winning regions of Gale–Stewart games whose payoffs are differences of
Σ0

2 sets. A µ-formula is alternation-free iff its least and greatest fixed-point operators
are not entangled. The author, Li and Tanaka [PLT22] proved that the alternation-
free µ-calculus defines the winning regions of Gale–Stewart games whose payoffs
are differences of Σ0

1 sets. These proofs also describe a close relation between the
levels of the difference hierarchies for Σ0

1 and Σ0
2 sets and the levels of the µ-calculus’

alternation hierarchy.
We now turn our focus on the µ-calculus’ alternation hierarchy. The alternation

depth of a µ-formula ϕ is a natural number measuring the entanglement between
least and greatest fixed-point operators in ϕ. Bradfield [Bra98b] proved that the
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alternation hierarchy is strict over all Kripke models. That is, for all natural number
n, there is a formula with alternation depth n + 1 which is not equivalent to any
formula with alternation depth n.

Alberucci and Facchini [AF09b] proved that the alternation hierarchy collapses
to its alternation-free fragment over transitive Kripke models—every µ-formula
is equivalent to a formula with alternation depth 1. They also proved that the
alternation hierarchy collapses to modal logic over equivalence relations—every
µ-formula is equivalent to a modal formula without fixed-point operators. The
alternation hierarchy has also been studied in other traditional classes of models,
but there are still few results outside these classes.

In the proofs relating to the alternation hierarchy’s strictness or collapse, we use
evaluation games. As their name indicates, evaluation games are used to evaluate
µ-formulas. They are also essential to understand the semantics of the µ-calculus.
Evaluation games are included in a special class of Gale–Stewart games called parity
games. Formulas defining the winning region of parity games are witnesses for the
alternation hierarchy’s strictness over all models. Evaluation games are also used
to prove the collapse to modal logic over equivalence relations. They also give a
clearer view of the collapse to the alternation-free fragment over transitive frames.

Outline of this thesis

This thesis consists of two parts.
Part I is a contribution to modal logic. We study the µ-calculus’ alternation hier-

archy on various settings. We extend the existing results on the alternation hierarchy
in two directions. First, we extend the collapse results to new classes of Kripke
models. Second, we show that the collapse to modal logic also holds over some
alternative semantics. In this direction, we also show that the alternation hierarchy
is strict over multimodal Kripke models where all the accessibility relations are
equivalence relations. This is work towards expanding the knowledge from where
the alternation hierarchy collapses to why the collapses happen.

Part II is a contribution to reverse mathematics in second-order arithmetic. We
study the relation between determinacy axioms and reflection principles. Our work
builds on existing work on the reverse mathematics of determinacy. We show
that the determinacy of boolean combination of Σ0

1 and Σ0
2 sets is closely related

to reflection principles. While reflection principles are well studied in first-order
arithmetic, not much is known about them in the setting of second-order arithmetic.

Part I

Chapter 2 contains preliminary definitions and results for Part I. We first review
basic definitions of modal logic. We then define the µ-calculus and its alternation
hierarchy. We also define the µ-calculus game semantics and parity games.

In Chapter 3, we extend the proof of the collapse to modal logic to more general
classes of models. We apply our results to the modal logics S4.2, S4.3, S4.3.2, and
S4.4. These logics are studied in epistemic logic. We show that the alternation
hierarchy collapses to the alternation-free fragment over S4.2 and S4.3, and to
modal logic over S4.3.2 and S4.4. We use the results on the collapse to study the
difference between these logics with respect to degrees of ignorance.
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In Chapter 4, we study the alternation hierarchy over equivalence relations using
alternative semantics. We show that the alternation hierarchy collapses to modal
logic over non-normal, graded and intuitionistic semantics. We then show that the
alternation hierarchy is strict over multimodal semantics. At last, we show that our
proof of the collapse does not work for the inflationary µ-calculus. This chapter
depends on Section 3.1.

In Chapter 5, we study the alternation hierarchy over weakly transitive frames
(and related classes of frames). We show that the alternation hierarchy collapses to
its alternation-free fragment over weakly transitive frames. We use this result to
show that the alternation hierarchy collapses to its alternation-free fragment over
derivative topological semantics.

Part II

Chapter 6 contains preliminary definitions and theorems for Part II. We first review
some basic definitions used for reverse mathematics in second-order arithmetic. In
the last three sections, we define reflection principles, determinacy axioms, and
axioms for inductive definitions.

In Chapter 7, we study the µ-arithmetic, a logic obtained by adding least and
greatest fixed-points to first-order arithmetic. We define the µ-arithmetic and explain
its relation to the µ-calculus. We also relate the alternation-free versions of µ-
arithmetic and µ-calculus. We then comment on the relation between µ-arithmetic
and Gale–Steward games. At last, we define a version of the µ-arithmetic formalized
in second-order arithmetic and comment on results relating it to determinacy axioms
and reflection principles. This chapter depends on Sections 2.2 and 2.3.

In Chapter 8, we prove various theorems relating determinacy axioms and re-
flection principles. We improve Kołodziejczyk and Michalewski’s result by showing
that, over ACA0, the determinacy of differences of arbitrarily many Σ0

2 sets is equiva-
lent to the reflection principle for Π1

3-formulas provable on Π1
2-CA0. We also prove

that the determinacy of differences of arbitrarily many Σ0
1 sets of Baire space is

equivalent to the reflection principle for Π1
3-formulas provable from Π1

1-CA0; and
that the determinacy of differences of arbitrarily many Σ0

1 sets of Cantor space is
equivalent to the reflection principle for Π1

2-formulas provable from ACA0.



Part I

Characterizing the collapse of the
alternation hierarchy
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Chapter 2

The µ-calculus

In this chapter we define the µ-calculus, its semantics and present its alternation
hierarchy. In section 2.1, we review some basic concepts of modal logic. In section 2.2,
we define the µ-calculus’ syntax and semantics; we also work out some examples. In
section 2.3, we define the µ-calculus’ alternation hierarchy and comment on existing
results. In section 2.4, we define game semantics for the µ-calculus, and explain its
relation to parity games.

2.1 Modal logic

In this section, we sketch the syntax and semantics of modal logic, while commenting
on some key properties and applications. This is meant as a warm-up for the µ-
calculus. While basic modal logic is essential for this thesis, it is not the main focus.
I leave here a few recommendations for the reader who wants more. The standard
textbook for modal logic is Blackburn et al. [BdV01]. The Handbook of Modal
Logic [BvW07] is also a good reference, in particular its first article [Bv07]. A more
recent textbook with pointers to many applications is van Benthem [van10]. Chellas
[Che80] is a little older, it has many exercises. Also see Priest [Pri08] for alternative
semantics for modal logic.

Modal logic is obtained by adding the modal operators � (read as “box”) and ♦
(read as “diamond”) to propositional logic. One way to read the formulas �ϕ and
♦ϕ is, respectively, “ϕ is necessary” and “ϕ is possible”. There are other alternative
readings, some of which we will see later. In Section 3.4, we study epistemic logic,
and read�ϕ as “the agent knows that ϕ is true”. In Section 5.3, we study topological
semantics and read ♦ϕ as “the Cantor derivative of ϕ” in topological semantics. Yet
more interpretations of the modalities are in Chapter 4.

THE MODAL FORMULAS. Fix a set Prop of propositional symbols. The modal
language LML contains the symbols in Prop; the logical constants ⊥ and >; the
logical connectives ¬, ∧, ∨, →; and the modal operators � and ♦. The modal
formulas are defined by the following grammar:

ϕ := P | ⊥ | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | �ϕ | ♦ϕ,

where P ∈ Prop. We use parenthesis to disambiguate formulas, when necessary. We
sometimes use4 to denote either � or ♦.

6



CHAPTER 2. THE µ-CALCULUS 7

KRIPKE MODELS. The standard semantics for modal logics is given by Kripke
models. A Kripke model is a triple M = 〈W,R, V 〉 consisting of:

• W , a non-empty set;

• R ⊂W ×W , a binary relation on W ; and

• V : Prop→ P(W ), a function from propositional symbols to subsets of W .

The elements ofW are called possible worlds, andW itself is called the set of possible
worlds. R is called the accessibility relation; when wRv we say that v is accessible
from w. V is called the valuation function, and assigns to each propositional symbol
P the set of worlds where P is true. If w ∈W , then we call (M,w) a pointed Kripke
model. The set of worlds accessible from w is denoted by wR := {w′ ∈W | wRw′}.
Denote the transitive closure of R by R∗.

Example 1. The following triples are Kripke models:

• M0 = 〈W0, R0, V0〉 with W0 = {w, u, v}, R0 = {〈w, u〉, 〈w, v〉, 〈v, w〉}, and
V0(P ) = {u, v}.

• M1 = 〈W1, R1, V1〉 with W1 = {r, s, t}, R1 = {〈r, t〉, 〈t, r〉, 〈s, s〉}, and V1(P ) =
{s, t}.

M0

w

u

v
M1

r

s

t

Figure 2.1: The models M0 and M1 from Example 1.

Kripke models are also known as transition systems. The elements of W and R
are called states and transitions, respectively. Yet another name for Kripke models is
labeled directed graphs. In this case the elements of W and R are called nodes and
edges, respectively; and V is called a labeling function on W .

KRIPKE SEMANTICS. Fix a Kripke model M = 〈W,R, V 〉. We define the valuation of
modal formulas by induction on the structure of the formulas:

• ‖P‖M = V (P );

• ‖⊥‖M = ∅;

• ‖>‖M = W ;

• ‖¬ϕ‖M = W \ ‖ϕ‖M ;

• ‖ϕ ∧ ψ‖M = ‖ϕ‖M ∩ ‖ψ‖M ;

• ‖ϕ ∨ ψ‖M = ‖ϕ‖M ∪ ‖ψ‖M ;

• ‖ϕ→ ψ‖M = ‖¬ϕ‖M ∪ ‖ψ‖M ;
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• ‖�ϕ‖M = {w ∈W | ∀v.wRv → v ∈ ‖ϕ‖M}; and

• ‖♦ϕ‖M = {w ∈W | ∃v.wRv ∧ v ∈ ‖ϕ‖M};

Given w ∈ W , we write M,w |= ϕ when w ∈ ‖ϕ‖M . When M,w |= ϕ we say that
ϕ is true at w, or that (M,w) satisfies ϕ. Define M |= ϕ to hold iff M,w |= ϕ for all
w ∈W . We say ϕ is valid iff M |= ϕ holds for all Kripke models M . If ϕ is valid, we
write |= ϕ. If L is a set of modal formulas, then M |= L iff M |= ϕ for all ϕ ∈ L.

Example 2. Consider the models from Example 1.

• Let M0 = 〈W0, R0, V0〉 with W0 = {w, u, v}, R0 = {〈w, u〉, 〈w, v〉, 〈v, w〉}, and
V0(P ) = {u, v}. Then

– ‖�P‖M0 = {w, u},
– ‖♦P‖M0 = {w},
– ‖♦�P‖M0 = {v}, and

– ‖�♦P‖M0 = {u, v}.

• M1 = 〈W1, R1, V1〉 with W1 = {r, s, t}, R1 = {〈r, t〉, 〈t, r〉, 〈s, s〉}, and V1(P ) =
{s, t}. Then

– ‖�P‖M1 = {r, s},
– ‖♦P‖M1 = {r, s},
– ‖♦�P‖M1 = {s, t}, and

– ‖�♦P‖M1 = {s, t}.

Do note that some of the symbols in LML are superfluous. For example, we may
work with only ¬, ∧ and �, as

• M,w |= ⊥ iff M,w |= P ∧ ¬P ;

• M,w |= > iff M,w |= P ∨ ¬P ;

• M,w |= ϕ ∨ ψ iff M,w |= ¬(¬ϕ ∧ ¬ψ);

• M,w |= ϕ→ ψ iff M,w |= ¬ϕ ∨ ψ; and

• M,w |= ♦ϕ iff M,w |= ¬�¬ϕ.

As the restricted language is as expressive as the full modal language, we use
whichever is most convenient in a given moment.

FRAME CORRESPONDENCE. A Kripke frame F is a pair 〈W,R〉 consisting of a set
of possible worlds and an accessibility relation. That is, a Kripke frame is a Kripke
model without a valuation function. Alternatively, a Kripke model is a Kripke frame
with a valuation function. In case if M = 〈W,R, V 〉 and F = 〈W,R〉, we say that the
model M extends the frame F . We say a Kripke frame F satisfies the formula ϕ iff
M |= ϕ for all model M extending F . If F satisfies ϕ, we write F |= ϕ.

Any formula ϕ defines a class of frames {F | F |= ϕ}. Some axioms and the
class of frames they define are listed in Table 2.1.
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Example 3. The formula �P → ��P defines the class of transitive frames. That is,
for any frame F = 〈W,R〉, F |= �P → ��P iff R is a transitive relation on W .

First, suppose that F is transitive. Let M = 〈W,R, V 〉 be a model extending
F and w ∈ W be such that M,w |= �P . Let v be a world accessible from w, then
any world u accessible from v is also accessible from w. Since M,w |= �P , then
M,u |= P . Since this holds for arbitrary u, M, v |= �P . Similarly, M,w |= ��P and
M |= ��P . Since this holds for any M extending F , we conclude F |= �P → ��P .

Now, suppose F |= �P → ��P . Let w, v, u ∈W be such that wRv and vRu. Let
M be obtained by adding to F the valuation V (P ) = {w′ | wRw′}. ThenM,w |= �P .
By our hypothesis on F , M,w |= ��P . Therefore M, v |= �P and M,u |= P . By the
definition of V , we have that u ∈ ‖P‖M = {w′ | wRw′}. That is, wRu. We conclude
that F is transitive.

Name Axiom Property Frame condition
4 �P → ��P transitive ∀w, v, u.wRv ∧ vRu→ wRu
T �P → P reflexive ∀w.wRw
D �P → ♦P serial ∀w∃v.wRv
5 ♦P → �♦P euclidean ∀w, v, u.wRv ∧ wRu→ vRu
B P → �♦P symmetric ∀w, v.wRv → vRw

.2 ♦�P → �♦P convergent ∀w, v, u.wRv ∧ wRu→ (∃s.vRs ∧ uRs)

.3 �(�P → Q) ∨�(�Q→ P ) weakly connected wRv ∧ wRu→ v = u ∨ vRu ∨ uRv
.3.2 (♦P ∧ ♦�Q)→ �(♦P ∨Q) semi-euclidean wRv ∧ wRu ∧ ¬uRw → vRu
.4 (P ∧ ♦�P )→ �P — wRv ∧ w 6= u ∧ wRu→ vRu

w4 ♦♦P → P ∨ ♦P weakly transitive ∀w, v, u.wRv ∧ vRu→ wRu ∨ w = u

Table 2.1: Some standard axioms and the frame properties they define.

PROOF SYSTEMS FOR MODAL LOGIC. In this paragraph, we consider Hilbert-style
proof systems for normal modal logics.

Define the axiom
K := �(ϕ→ ψ)→ �ϕ→ �ψ,

and the inference rules

(Nec)
ϕ

�ϕ
and (MP)

ϕ ϕ→ ψ

ψ
.

A normal modal logic is a set of formulas which includes all propositional tautologies
and all instances of K, and is closed under Nec and MP. The modal logic K is
the closure under Nec and MP of the set of all propositional tautologies and all
instances of K. K is the smallest normal modal logic. Given a modal logic L, we also
write `L ϕ when ϕ ∈ L.

Other modal logics can be obtained by adding other axioms to K. For example,
the logic K4 is obtained by adding the axiom �ϕ → ��ϕ (and taking the closure
by Nec and MP). Table 2.2 shows some of the logics obtainable using axioms from
Table 2.1. Note that some of these logics can be obtained in more than one way. For
example, S5 can also be obtained by adding D, 4 and B to K.

A modal logic L is strongly complete with respect to a class of frames defined
by L iff `L ϕ is equivalent to L |= ϕ. All the modal logics in Table 2.2 are strongly
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Logic Axioms
D K +D
T K + T
K4 K + 4
S4 K + T + 4
S5 K + T + 5
B K +B

S4.2 K + T + 4 + .2
S4.3 K + T + 4 + .3
S4.3.2 K + T + 4 + .3.2
S4.4 K + T + 4 + .4

wK4 K + T + w4

Table 2.2: Some normal modal logics.

K

D

T

KB

K4
K45

KB45

D4
D45

D5

K5

DB

TB

S4
S5

Figure 2.2: The modal cube. Adapted from [Gar21].

complete with respect to the class of frames they respectively define. Here L |= ϕ is
an abbreviation of, for all Kripke model M , M |= L implies M |= ϕ.

Example 4. K is strongly complete for all Kripke frames, that is, `K ϕ iff M |= ϕ
for all Kripke model M . This is proved using the canonical Kripke model MK =
〈WK, RK, V K〉 for K, where:

• WK consists of all maximal consistent extensions of K;

• ΓRK∆ iff �ϕ ∈ Γ implies ϕ ∈ ∆, for all modal formula ϕ; and

• Γ ∈ V K(P ) iff P ∈ Γ.

Remember, Γ is a maximal consistent extension of K iff, for all formula ϕ, exactly
one of ϕ ∈ Γ and ¬ϕ ∈ Γ hold.
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The Truth Lemma for K states that, for all Γ ∈Wx,

MK,Γ |= ϕ iff ϕ ∈ Γ.

Now, if `K ϕ then ϕ is valid. If 6`K ϕ, then there is a maximal consistent extension Γ
of K such that ¬ϕ ∈ Γ. By the Truth Lemma, MK,Γ |= ¬ϕ and so MK,Γ 6|= ϕ. The
Truth Lemma can be proved by induction on formulas; see Chapter 4 of [BdV01] for
a detailed proof.

CANONICAL LOGICS. For a given modal logic L, define the canonical model ML =
〈W L, RL, V L〉 as we defined MK above, but the elements of W L are now complete
extensions of L. If L is one of the logics on Table 2.1 and ML is its canonical model,
thenML |= L, with the exception of GL. For example,MS4 is a transitive and reflexive
model.

The logics L where ML |= L are called canonical logics. If L is canonical, then we
can prove its completeness with respect to the class of frames it defines the same
way we did for K. Do note that there exist non-canonical logics.

Example 5. Let GL be the logic obtained by adding Löb’s Axiom�(�P → P )→ �P
to K. GL is not both sound and strongly complete with respect to any class of frames,
and hence not canonical. For a proof, see Theorem 4.43 of [BdV01].

STANDARD TRANSLATION. We can think of any Kripke model M = 〈W,R, V 〉 as a
first-order structure Mfo with domain W , a binary relation symbol R and a predicate
symbol P for each propositional symbols P ∈ Prop. We inductively translate modal
formulas to first-order formulas as follows:

• STx(P ) := P (x);

• STx(¬ϕ) := ¬STx(ϕ);

• STx(ϕ ∧ ψ) := STx(ϕ) ∧ STx(ψ);

• STx(ϕ ∨ ψ) := STx(ϕ) ∨ STx(ψ);

• STx(ϕ→ ψ) := STx(ϕ)→ STx(ψ);

• STx(�ϕ) := ∀y.xRy → STy(ϕ); and

• STx(♦ϕ) := ∃y.xRy ∧ STy(ϕ);

where x and y are first-order variables. We have that

M,w |= ϕ iff Mfo |= STw(ϕ),

for any Kripke model M .
We can use the standard translation to transfer to modal logic results from first-

order logic. We are interested particularly in the compactness theorem for modal
logic. It states that any set of modal formulas is satisfiable iff all of its finite subsets
are. Furthermore, the compactness theorem also holds for the modal logics in Table
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2.2. For example, the compactness theorem for K4 is: Γ is satisfiable by a transitive
model iff all of its finite subsets are satisfied by transitive models.

Do note that the standard translation can only be used to transfer results from
first-order logic to modal logic, but not the reverse way. For example, modal logic is
decidable, but first-order logic is not decidable.

SAHLQVIST CORRESPONDENCE. Sahlqvist [Sah75] proved a result showing that
many modal formulas have a computable first-order correspondent. We follow here
the presentation of the Sahlqvist Theorems given in [vBH12].

We define the modal Sahlqvist formulas as follows: any formula without nega-
tions is a Sahlqvist formula; any formula of the form ¬� · · ·�P is a Sahlqvist
formula; and, if ϕ and ψ are Sahlqvist formulas, then ϕ ∨ ψ and �ϕ are Sahlqvist
formulas.

Theorem 1 (Sahlqvist Correspondence Theorem). For any Sahlqvist formula ϕ there
is a first-order sentence χϕ, the frame correspondent of ϕ, such that χϕ is true on a Kripke
frame iff ϕ is valid in that frame. Furthermore, χϕ can be computed from ϕ.

Theorem 2 (Sahlqvist Completeness Theorem). For any Sahlqvist formula ϕ, the modal
logic obtained by adding ϕ to K is complete for the class of frames defined by ϕ.

Note that Löb’s axiom �(�P → P )→ �P has no first-order correspondent, so
it is not equivalent to any Sahlqvist formula.

There are also formulas which are not Sahlqvist but have first-order correspon-
dent. For example, the conjunction

(�♦P → ♦�P ) ∧ (♦♦P → ♦P )

has a first order correspondent, but is not equivalent to any Sahlqvist formula. See
Example 3.57 of [BdV01] for details. Furthermore, Chagrova’s Theorem states that it
is undecidable whether an arbitrary modal formula has a first-order correspondent.

BISIMULATIONS. We use bisimulations to compare Kripke models. While bisimu-
lations are weaker than isomorphisms, they are enough to preserve modal truth.
A bisimulation between M0 = 〈W0, R0, V0〉 and M1 = 〈W1, R1, V1〉 is a non-empty
relation B ⊆W0 ×W1 such that

• if v0Bv1, then M0, v0 |= P iff M1, v1 |= P , for all P ∈ Prop;

• if v0R0v
′
0 and v0Bv1, then there is v′1 such that v1R1v

′
1 and v′0Bv

′
1; and

• if v1R1v
′
1 and v0Bv1, then there is v′0 such that v0R0v

′
0 and v′0Bv

′
1.

Now, let (M,w) and (N, v) be pointed models. (M,w) and (N, v) are bisimilar iff
wBv and there is a bisimulation B between M and N . If (M,w) and (N, v) are
bisimilar, then

M,w |= ϕ iff N, v |= ϕ,

for all modal formula ϕ. Not only does bisimulations preserve the truth value of
modal formulas; but modal logic is the biggest fragment of first-order logic where
bisimulations preserve truth values:
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Theorem 3 (Van Benthem’s Characterization Theorem). A first-order formula is equiv-
alent to a modal formula iff it is invariant under bisimulations.

Example 6. The following Kripke models are presented on Figure 2.3.

• M0 = {{w, v}, {〈w, v〉, 〈v, w〉}, V0(P ) = ∅};

• M1 = {{u}, {〈u, u〉}, V1(P ) = ∅};

• M2 = {{wi | i ∈ ω}, {〈wi, wi+1〉 | i ∈ ω}, V2(P ) = ∅}; and

• M3 = {{s, t}, {〈s, s〉, 〈s, t〉}, V3(P ) = ∅}.

The models M0, M1, and M2 are pairwise bisimilar. The models M3 and M4 are not
bisimilar to any of the other four models.

M0

w

v

M1

u
M2

w0

w1

w2

...

M3

s

t

Figure 2.3: The models M0, M1, M2, and M3 from Example 6. The dotted lines
describe bisimulations between M0 and M1, and between M1 and M2.

TREE MODEL PROPERTY. Let ϕ be a modal formula satisfied by a pointed model
(M,w). We can find a tree-like model Mt by unfolding (M,w): start at the root w
and whenever we can access some world v, we move to a fresh copy v′ of v. For an
example, see Figure 2.4. As (M,w) and (Mt, w) are bisimilar, Mt, w |= ϕ. Therefore
if ϕ is satisfiable, then it is satisfiable by a tree model.

FINITE MODEL PROPERTY. Again, let (M,w) be a pointed model and ϕ be a formula
such that M,w |= ϕ. We define the filtrated model Mf = 〈Wf , Rf , Vf 〉. We will
have Mf is finite and Mf , [w] |= ϕ. Let v ∼ v′ iff, for all subformula ψ of ϕ,
M, v |= ψ ⇐⇒ M,v′ |= ψ. Denote the equivalence class of ∼ containing v by [v].
Take Wf to be the set of equivalence classes of ∼, that is, Wf = {[v] | v ∈ W}. Let
[v]Rf [u] iff there are v′, u′ such that v ∼ v′, u ∼ u′ and v′Ru′. Let [v] ∈ Vf (P ) iff there
is v′ such that v ∼ v′ and v ∈ V (P ). For all subformula ψ of ϕ, we can show that

M, v |= ψ iff Mf , [v] |= ψ.

In particular, Mf , [w] |= ϕ. Furthermore, if ϕ has n subformulas, then the size of Mf

is at most 2n. Therefore any satisfiable formula is satisfiable by a finite model.
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M
w u

v

Mt

w u

v

w′ u′

v′

w′′ u′′

v′′

...

Figure 2.4: A pointed model (M,w) and its unfolding (Mt, w). The dotted lines
describe the bisimulation B = {〈w,wi〉, 〈v, vi〉, 〈u, ui〉 | i ∈ ω} between M and Mt.

GAME SEMANTICS. In this paragraph, we define the evaluation games for modal
logic. Let (M,w) be a pointed Kripke model and ϕ be a modal formula, the eval-
uation game G(M,w |= ϕ) has two players: V (verifier), who wants to show that
M,w |= ϕ; and R (refuter), who wants to show that M,w 6|= ϕ. We show that V wins
the evaluation game G(M,w |= ϕ) iff M,w |= ϕ; that is, game semantics and Kripke
semantics are equivalent. Game semantics will play a key role in our proofs for the
µ-calculus. Evaluation games can also be defined for many other logics, see [HV19;
Vää11].

The game positions are pairs 〈v, ψ〉where v is in W and ψ is a subformula of ϕ.
The game starts at the position 〈w,ϕ〉. The players advance in the game graph as
follows:

• at 〈v, ψ0 ∧ ψ1〉, R chooses one of 〈v, ψ0〉 and 〈v, ψ1〉;

• at 〈v, ψ0 ∨ ψ1〉, V chooses one of 〈v, ψ0〉 and 〈v, ψ1〉;

• at 〈v, ψ0 → ψ1〉, V chooses one of 〈v,¬ψ0〉 and 〈v, ψ1〉;

• at 〈v,�ψ〉, R chooses 〈v′, ψ〉with vRv′;

• at 〈v,♦ψ〉, V chooses 〈v′, ψ〉with vRv′; and

• at 〈v,¬ψ〉, the players move to 〈v, ψ〉 and exchange roles.

At a node 〈v, P 〉, V wins iff w ∈ V (P ) and R wins iff w 6∈ V (P ). Note that every
evaluation game for a modal formula ϕ is finite, indeed, the game length is bounded
by the length of ϕ.

Proposition 4. Let M = 〈W,R, V 〉 be a Kripke model and ϕ be a modal formula, then:

V wins G(M,w |= ϕ) iff M,w |= ϕ, and R wins G(M,w |= ϕ) iff M,w 6|= ϕ.
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Proof. Fix a Kripke model M = 〈W,R, V 〉. We proceed by structural induction on
modal formulas. We do three representative cases.

The base case is the simplest: V wins G(M,w |= P ) iff M,w |= P , by the
definition of evaluation games.

Suppose that ϕ is ψ ∨ θ and that V wins G(M,w |= ϕ) via the strategy σ. Then
σ(〈w,ϕ〉) is either 〈w,ψ〉 or 〈w, θ〉. Without loss of generality, suppose it is 〈w,ψ〉.
Then V wins G(M,w |= ψ) via σ. By the induction hypothesis, M,w |= ψ and so
M,w |= ψ ∨ θ. Now, if M,w |= ϕ then M,w |= ψ or M,w |= θ. Without loss of
generality, suppose M,w |= ψ. Let σ′ be a winning strategy for V in G(M,w |= ψ).
If we define σ(〈w,ϕ〉) := 〈w,ψ〉 and σ equal to σ′ on other positions, then σ is a
winning strategy for V in G(M,w |= ϕ).

Suppose that ϕ is �ψ and that V wins G(M,w |= ϕ) via the strategy σ. For any
w′ such that wRw′, V wins G(M,w′ |= ψ) via σ. Therefore M,w |= ϕ. If M,w |= ϕ,
then for all w′ such that wRw′, M,w′ |= ψ. By the induction hypothesis, there is a
winning strategy σw

′
for V on G(M,w′ |= ψ) for each w′. On G(M,w |= ϕ), define σ

by having V play σw′ after the first move 〈w′, ψ〉 by R.

MULTIMODAL LOGIC. One can also consider modal logics with multiple box and
diamond modalities. Let I be a set of labels. Define the multimodal logic formulas
by the grammar:

ϕ := P | ⊥ | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | �aϕ | ♦aϕ,

where P is a proposition symbol and a is a label in I . It is also common to denote
�a and ♦a by [a] and 〈a〉.

Kripke models for multimodal logics have multiple accessibility relations, one
for each label in I . Formally, a Kripke model M is a tuple 〈W, {Ra}a∈I , V 〉. We
define the semantics for propositional and logical symbols as in the unimodal case.
The semantics for the modal symbols are analogous, given by:

• M,w |= �aϕ iff for all v, wRav implies M,v |= ϕ; and

• M,w |= ♦aϕ iff there is v such that wRav and M, v |= ϕ.

The results stated above for unimodal logics also hold for multimodal logics.

EPISTEMIC LOGIC. Fix a set G of labels. We interpret each a ∈ G as an (epistemic)
agent. We write Ka for �a. Read Kaϕ as “the agent a knows that ϕ”. We can thus
model knowledge in modal logic. Common axioms for knowledge are:

T :Kaϕ→ ϕ,

4 :Kaϕ→ KaKaϕ, and
5 :¬Kaϕ→ Ka¬Kaϕ.

The first one states that knowledge is correct. The last two ones are known as
introspection axioms, and state that an agent knows what they know and what they
don’t know, respectively.
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One can add a belief modality Ba for each agent. Read Baϕ as “the agent a
believes that ϕ”. Common axioms for belief are

D :¬Ba⊥,
4 :Baϕ→ BaBaϕ, and
5 :¬Baϕ→ Ba¬Baϕ.

While we required that knowledge is true, we only require that belief is consistent.
We consider two extensions of epistemic logic in this thesis. The first one is the

ignorance modality:
Iaϕ := ¬Kaϕ ∧ ¬Ka¬ϕ,

first defined by van der Hoek and Lomuscio [vL04]. The second one is the common
knowledge modality:

Cϕ := ϕ ∧ Eϕ ∧ EEϕ ∧ · · · ,

where E is the “everyone knows” modality. Given a finite group of agents G, Eϕ is
defined as

Eϕ :=
∧
a∈G

Kaϕ.

Note that common knowledge cannot be expressed by a finitary formula using only
the knowledge modality.

MODEL CHECKING. We think of Kripke models as transition systems. We use
transition systems T = 〈W, {Ra}a∈I , V 〉 to model the execution of programs. Call
the elements of W states. Each a ∈ I represent a routine, and sRat means that when
we run the routine a at the state s, the system may go to state t. This process may be
nondeterministic, that is, there may be t 6= t′ such that sRat and sRat′.

We interpret T, s |= �aϕ to mean that, after the execution of a at s, the system
goes to a state where ϕ holds; we interpret T, s |= ♦aϕ to mean that, after the
execution of a at s, the system may go to a state where ϕ holds. The model checking
problem is to decide whether M,w |= ϕ, given a Kripke model M , a world w, and a
formula ϕ.

For model checking, modal logic is quite limited. We will show that the µ-
calculus describes properties not captured by modal logic. Indeed, the modal
µ-calculus was first defined by Kozen [Koz83], extending a model checking logic
called PDL. See also [BW18; Cla+18].

TOPOLOGICAL SEMANTICS. We can also interpret modal formulas over topological
spaces. A topological model is a triple X = 〈W, τ, V 〉where 〈W, τ〉 is a topological
space and V is a valuation function on W .

In Chapter 5, we study derivative topological semantics—where ‖♦ϕ‖X is the
Cantor derivative of ‖ϕ‖X . That is, w ∈ ‖♦ϕ‖X iff w is a limit point of ‖ϕ‖X .
Derivative semantics is complete for the logic wK4.

An alternative topological semantics is obtained by defining ‖�ϕ‖X as the inte-
rior of ‖ϕ‖X . Interior semantics is complete for the logic S4. Note that derivative
semantics is more expressive than interior semantics: the interior of a set A is defin-
able as A minus the Cantor derivative of its complement (W \A)′. Both derivative
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semantics and interior semantics were first defined by Tarski and McKinsey [MT44].
See also [vB07]

OTHER INTERPRETATIONS FOR MODAL LOGIC. Modal logic has many interpreta-
tions. We list here some of the applications we do not study in this thesis: alethic
logic, for pure necessity and possibility; deontic logic, for obligations; time logic,
with modalities for both past and future; and public announcement logic, an epis-
temic logic where we allow truths to be announced to all agents. See also [Gar21;
van10].

2.2 Basic definitions

THE µ-FORMULAS. Fix a set of propositional symbols Prop and a set of variable
symbols Var. The language Lµ of the µ-calculus utilizes the symbols in Prop and
Var along with logical symbols ¬,∧ and ∨; the modal operators � and ♦; and the
fixed-point operators µ and ν. The operators µ and ν are called least and greatest
fixed-point operators, respectively.

The µ-formulas of the µ-calculus are defined by the following grammar:

ϕ := P | ¬P | X | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | µX.ϕ | νX.ϕ,

where P ∈ Prop and X ∈ Var.
Fix a variable symbol X and a formula ϕ. Let η denote a fixed-point operator

µ or ν. An occurrence of X in ϕ is in the scope of a fixed-point operator η iff the
occurrence is in a subformula ηX.ψ of ϕ. An occurrence of X in ϕ is bound iff it
is in the scope of some fixed-point operator. An occurrence of X in ϕ is free iff
it is not bound. A formula without free variables is called a sentence. We write
ϕ(X) to specify the free occurrences of X in ϕ (with the possibility that there is no
occurrence). Let ϕ be a µ-formula and X be a variable bounded in ϕ. We say X is a
µ-variable iff it is bounded by a µ-operator; X is a ν-variable iff it is bounded by a
ν-operator.

Note that the negation symbol is only allowed before propositional symbols. We
can define the negation of formulas by the following recursive rules:

• ¬¬ϕ := ϕ;

• ¬(ϕ ∧ ψ) := ¬ϕ ∨ ¬ψ;

• ¬(ϕ ∨ ψ) := ¬ϕ ∧ ¬ψ;

• ¬(�ϕ) := ♦¬ϕ;

• ¬(♦ϕ) := �¬ϕ;

• ¬µX.ϕ(X) := νX.¬ϕ(¬X); and

• ¬νX.ϕ(X) := µX.¬ϕ(¬X).
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With this definition, the negation of a sentence is still a sentence.
We may allow the negation of arbitrary formulas if we put restrictions on the

formulas we can apply fixed-point operators. Consider the following grammar:

ϕ := P | X | ¬ϕ | ϕ ∨ ϕ | �ϕ | µX.ϕ,

where P ∈ Prop, X ∈ Var, and X is positive in ϕ. Say X is positive in ϕ when each
free occurrence of X in ϕ is in the scope of an even number of negation symbols
(possibly in the scope of none). The restriction of ηX.ϕ to formulas where X is
positive is necessary so that the operator Γϕ(X) := ‖ϕ(X)‖M is monotone on any
Kripke model M . We could also allow implication in our formulas. In case we do
so, X is positive in ϕ→ ψ iff it is positive in ψ and not positive in ϕ.

We will usually assume that µ-formulas are well-named. A formula ϕ is well-
named when:

• every fixed-point operator ηX in ϕ binds exact one occurrence of X ;

• every variable which occurs in ϕ occurs only once; and

• if the fixed-point operator ηX occurs in ϕ then there is a modality4 which is
in the scope of ηX and X is in the scope of4.

Proposition 5. Every µ-formula ϕ is equivalent to a well-named µ-formula wn(ϕ).

We tacitly suppose that all formulas below are well-named.

KRIPKE SEMANTICS. As in the semantics for modal logic, a Kripke model is a triple
M = 〈W,R, V 〉 consisting of:

• W , a non-empty set;

• R ⊂W ×W , a binary relation on W ; and

• V : Prop→ P(W ), a function from propositional symbols to subsets of W .

The elements ofW are called possible worlds, andW itself is called the set of possible
worlds. R is called the accessibility relation; when wRv we say that v is accessible
from w. V is called the valuation function, and assigns to each propositional symbol
P the set of worlds where P is true. If w ∈ W , we call (M,w) a pointed Kripke
model.

Kripke models are also called labeled directed graphs and transition systems.
The elements of W are also called nodes and states. These alternative names come
from distinct applications of modal logic.

Fix a Kripke model M = 〈W,R, V 〉 and w ∈ W . Define the operator Γϕ(X) :
P(W )→ P(W ) by

X 7→ ‖ϕ(X)‖.

Γϕ(X) is a monotone operator, that is, if X ⊆ Y ∈ P(W ) then Γϕ(X)(X) ⊆ Γϕ(X)(Y ).
The Knaster–Tarski Theorem implies that Γϕ(X) has least and greatest fixed-points.

Theorem 6 (Knaster, Tarski, see [AN01]). Given a set S and a function monotone with
respect to the set inclusion f : P(S) → P(S), then f has a least fixed-point lfpf and
greatest fixed-point gfpf such that:
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• lfpf = ∩{S′ ⊆ S | f(S′) ⊆ S′}; and

• gfpf = ∪{S′ ⊆ S | f(S′) ⊇ S′}.

Let M = 〈W,R, V 〉 be a Kripke model, A be a subset of W , and ϕ(X) be a
µ-formula where X is free. Define the augmented model M [X 7→ A] by setting
V (X) := A.

We define the valuation of formulas on M = 〈W,R, V 〉 by induction on the
structure of the formulas:

• ‖P‖M = V (P );

• ‖X‖M [X 7→A] = A;

• ‖⊥‖M = ∅;

• ‖>‖M = W ;

• ‖¬P‖M = W \ ‖P‖M ;

• ‖ϕ ∧ ψ‖M = ‖ϕ‖M ∩ ‖ψ‖M ;

• ‖ϕ ∨ ψ‖M = ‖ϕ‖M ∪ ‖ψ‖M ;

• ‖�ϕ‖M = {w ∈W | ∀v.wRv → v ∈ ‖ϕ‖M};

• ‖♦ϕ‖M = {w ∈W | ∃v.wRv ∧ v ∈ ‖ϕ‖M};

• ‖µX.ϕ(X)‖M is the least fixed-point of Γϕ(X); and

• ‖νX.ϕ(X)‖M is the greatest fixed-point of Γϕ(X).

We also write w ∈ ‖ϕ‖M as M,w |= ϕ. When M,w |= ϕ we say that ϕ is true at
w, or that (M,w) satisfies ϕ. Define M |= ϕ to hold iff M,w |= ϕ for all w ∈ W .
Furthermore |= ϕ holds iff M |= ϕ holds for all Kripke models M .

We can also define the valuations of fixed-point formulas using the expressions
given by the Knaster–Tarski theorem:

• ‖µX.ϕ‖M =
⋂
{W ′ ⊆W | ‖ϕ‖M [X:=W ′] ⊆W ′}; and

• ‖νX.ϕ‖M =
⋃
{W ′ ⊆W | ‖ϕ‖M [X:=W ′] ⊇W ′}.

Example 7. Fix a Kripke model M = 〈W,R, V 〉.

• M,w |= µX.P ∨ ♦X iff there is a world reachable in finitely many steps from
w where P holds.

• w ∈ ‖νX.P ∧ �X iff P holds in all worlds reachable in finitely many steps
from w.

• M,w |= µX.P ∨�X iff P eventually holds in all paths starting from w.

• M,w |= µX.(νY.P ∧�Y )∨♦X iff there is a world v reachable in finitely many
steps from w such that P holds in all worlds reachable in finitely many steps
from v.
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• M,w |= νXµY.(P ∧ ♦X) ∨ (¬P ∧ ♦Y ) iff there is a path starting at w where
eventually P always holds.

• M,w |= µX.�X iff there is no infinite path starting from w.

• M,w |= νX.♦X iff there is an infinite path starting from w.

NEGATION OF FORMULAS. We can inductively define the negation of µ-formulas by:

• ¬(¬ϕ) := ϕ;

• ¬(ϕ ∧ ψ) := ¬ϕ ∨ ¬ψ;

• ¬(ϕ ∨ ψ) := ¬ϕ ∧ ¬ψ;

• ¬(�ϕ) := ♦¬ϕ;

• ¬(♦ϕ) := �¬ϕ;

• ¬µX.ϕ := νX.¬ϕ[X/¬X]; and

• ¬νX.ϕ := µX.¬ϕ[X/¬X].

Note that on the negation of formulas of the form µX.ϕ and νX.ϕ the negation on
the variable X is eliminated when we push the other negation inside ϕ. So X is still
positive and the obtained formulas are well-defined.

Now, there are other ways to define Lµ are superfluous. The following equiva-
lences suggest some options we have:

• M,w |= ⊥ iff M,w |= P ∧ ¬P ;

• M,w |= > iff M,w |= P ∨ ¬P ;

• M,w |= ¬ϕ iff M,w |= ϕ→ ⊥;

• M,w |= ϕ ∨ ψ iff M,w |= ¬(¬ϕ ∧ ¬ψ);

• M,w |= ϕ→ ψ iff M,w |= ¬ϕ ∨ ψ;

• M,w |= ♦ϕ iff M,w |= ¬�¬ϕ; and

• M,w |= µX.ϕ(X) iff M,w |= ¬νX.¬ϕ(¬X).

APPROXIMANTS. Let ϕ(X) be a µ-formula and M be a Kripke model. We now
define the approximants of the fixed-points µX.ϕ and νX.ϕ. By ordinal recursion,
define the approximants of the least fixed-point µX.ϕ to be

• µ0X.ϕ := ∅;

• µα+1X.ϕ := ‖ϕ(X)‖[X 7→µαX.ϕ];

• µλX.ϕ :=
⋃
α<λ µ

αX.ϕ, for λ limit; and

• µ∞X.ϕ :=
⋃
α∈Ord µ

αX.ϕ;
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and the approximants of the greatest fixed-point νX.ϕ to be

• ν0X.ϕ := W ;

• να+1X.ϕ := ‖ϕ(X)‖[X 7→ναX.ϕ];

• νλX.ϕ :=
⋂
α<λ ν

αX.ϕ, for λ limit; and

• ν∞X.ϕ :=
⋂
α∈Ord ν

αX.ϕ.

Proposition 7. Let M = 〈W,R, V 〉 be a Kripke model. There are ordinals αlfp and αgfp

such that:

• µαlfpX.ϕ = µ∞X.ϕ = ‖µX.ϕ‖M ; and

• ναgfpX.ϕ = ν∞X.ϕ = ‖νX.ϕ‖M .

In this thesis, we will be mainly interested in the finite approximants ηnX.ϕ of
µ and ν operators. Approximants will play important roles in the collapses of the
alternation hierarchy. Define ϕ0(X) := X and ϕn+1(X) := ϕ(ϕn(X)). By induction,
‖ϕn(⊥)‖M = µnX.ϕ and ‖ϕn(>)‖M = νnX.ϕ for all n ∈ ω and Kripke model M .

PROOF SYSTEMS FOR µ-CALCULUS. A logic µK for modal µ-calculus was proposed
by Kozen [Koz83]. It consists of the axioms

K := �(ϕ→ ψ)→ �ϕ→ �ψ,
FP := νX.ϕ→ ϕ(νX.ϕ),

and the inference rules

(Nec)
ϕ

�ϕ
, (MP)

ϕ ϕ→ ψ

ψ
, (Ind)

ϕ→ ψ(ϕ)

ϕ→ νX.ψ
.

That is µK consists of the modal logic K with axioms for the fixed-point formulas.
Kozen proved the completeness of his proof system for a fragment of the µ-calculus.
Walukiewicz [Wal95] showed the completeness for the full µ-calculus. Note that
decidability [Wal95] and the finite model property [Koz88] also holds for the µ-
calculus.

Given a modal logic L, we can define the logic µL by adding the axiom FP and
the inference rule Ind to L. In general, the proof of completeness, decidability and
finite model property for µL is not easy. Indeed, some of these properties may fail.
For example, the finite model property fails for µB—the µ-calculus over symmetric
frames [DL13].

BISIMULATIONS AND THE CHARACTERIZATION THEOREM. Recall that bisimulation
between M0 = 〈W0, R0, V0〉 and M1 = 〈W1, R1, V1〉 is a non-empty relation B ⊆
W0 ×W1 such that: v0Bv1 implies M0, v0 |= P iff M1, v1 |= P , for all P ∈ Prop;
v0R0v

′
0 and v0Bv1 imply that there is v′1 such that v1R1v

′
1 and v′0Bv

′
1; v1R1v

′
1 and

v0Bv1 imply that there is v′0 such that v0R0v
′
0 and v′0Bv

′
1. If (M,w) and (N, v) are

pointed models, then (M,w) and (N, v) are bisimilar iff there is a bisimulation B
between M and N and wBv.
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We saw that bisimulations preserve truth values for modal formulas. The same
happens for µ-formulas: if (M,w) and (N, v) are bisimilar and ϕ is a µ-formula, then

M,w |= ϕ iff N, v |= ϕ.

Similar to modal logic being the biggest fragment of first-order logic invariant under
bisimulations; µ-calculus is the biggest fragment of monadic second-order logic
which is invariant under bisimulations [BW18]. Monadic second-order logic is an
extension of the first-order logic with set variables, the membership predicate, and
quantification using set variables.

STANDARD TRANSLATION. We can define a standard translation for the µ-calculus
to first-order logic with fixed-points. Let ϕ(x,X) be a first-order formula with X
positive in ϕ and M be a Kripke model. Define Γϕ(X)(X) := {w ∈ M | M |=
ϕ(w,X)}. Then ‖µxX.ϕ‖M is the least fixed-point of Γϕ(X) and ‖νxX.ϕ‖M is the
greatest fixed-point of Γϕ(X). Let

• STx(µX.ϕ) := µxX.STx(ϕ);

• STx(νX.ϕ) := νxX.STx(ϕ);

and STx(ϕ) be the same as in modal logic for other formulas. All µ-formula ϕ is
modally equivalent to STx(ϕ).

FRAME CORRESPONDENCE. As in modal logic, where some formulas had first-order
correspondents; in some µ-sentences have correspondents in first-order logic with
fixed-points. We follow here the presentation from van Benthem et al. [vBH12].

We define the PIA formulas1 as follows: any atom is a PIA formula; any variable
is a PIA formula; if ϕ and ψ are PIA formulas, so are ϕ ∧ ψ, �ϕ and νX.ϕ; and if ψ
is PIA and ϕ is a positive µ-sentence, ϕ→ ψ is a PIA formula.

We can now define the Sahlqvist µ-formulas as follows: Any positive µ-sentence
is a Sahlqvist µ-formula; any negated PIA sentence is a Sahlqvist µ-formula; any
variable is a Sahlqvist µ-formula; if ϕ and ψ are Sahlqvist µ-formulas, so are ϕ ∧ ψ ,
�ϕ and νX.ϕ; and if ϕ and ψ are Sahlqvist µ-formulas and, if one of them is not a
sentence then the other is a positive sentence, then ϕ ∨ ψ is a Sahlqvist µ-formula. A
Sahlqvist µ-sentence is a Sahlqvist µ-formula without free variables.

Theorem 8 (Sahlqvist Correspondence Theorem for the µ-calculus). Any Sahlqvist
µ-sentence ϕ has a correspondent χϕ in first-order logic with fixed-points. That is, χϕ is
true in a frame F iff ϕ is true in that same frame. The correspondent χϕ is computable from
ϕ.

Now, Löb’s axiom L := �(�P → P ) → �P is Sahlqvist µ-sentence, and so
has a correspondent in first-order logic with fixed-points: F |= L iff F is transitive
and reverse well-ordered. McKinsey’s axiom �♦P → ♦�P still does not have a
Sahlqvist correspondent.

1PIA stands for “positive implies atomic”.
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2.3 The alternation hierarchy

One measure of complexity for µ-formulas is their alternation depth. It gives rise to
the µ-calculus’ alternation hierarchy. In general, the alternation hierarchy is strict;
that is, for every n ∈ ω, there is a formula with alternation depth n which is not
equivalent to any formula with alternation depth lower than n. On the other hand,
if we restrict the µ-calculus to some class of frames, the alternation hierarchy may
collapse. That is, there is n ∈ ω such that every formula is equivalent to a formula
with alternation depth less or equal than n.

We define the alternation hierarchy as follows:

• Σµ
0 = Πµ

0 consists of all the formulas without fixed-point operators;

• Σµ
n+1 is the closure of Σµ

n ∪Πµ
n under conjunction, disjunction, �, ♦, µ, and the

substitution: if ϕ(X) ∈ Σµ
n+1, ψ ∈ Σµ

n+1 and the variable X does not appear
free in the scope of some fixed-point operator ηY for any variables Y free in ψ,
then ϕ(ψ) ∈ Σµ

n+1;

• Πµ
n+1 is the closure of Σµ

n ∪Πµ
n under conjunction, disjunction, �, ♦, ν, and the

substitution: if ϕ(X) ∈ Πµ
n+1, ψ ∈ Πµ

n+1 and the variable X does not appear
free in the scope of some fixed-point operator ηY for any variables Y free in ψ,
then ϕ(ψ) ∈ Πµ

n+1; and

• ∆µ
n = Σµ

n ∩Πµ
n.

The alternation hierarchy is also called the Niwiński alternation hierarchy [Niw86].
Two alternative formulations are:

• the Emerson–Lei alternation hierarchy [EL86], where the substitution rule
requires that ψ is a sentence; and

• the simple alternation hierarchy, where the substitution rule is omitted.

ALTERNATION DEPTH. An equivalent way to classify formulas by their complexity
is the alternation depth. We follow here the definition given in [BW18]. The de-
pendency order on bound variables of a µ-formula ϕ is the smallest partial order
such that X ≤ϕ Y if X occurs free in ηY.ψ ∈ Sub(ϕ). The alternation depth of
a µ-variable X in formula ϕ is the maximal length of a chain X1 ≤ϕ · · · ≤ϕ Xn

where X = X1, variables X1, X3, . . . are µ-variables and variables X2, X4, . . . are
ν-variables. The alternation depth of ν-variables is defined similarly. The alternation
depth of formula ϕ is the maximum of the alternation depths of variables bound in
ϕ, or zero if there are no fixed-points.

THE ALTERNATION-FREE FRAGMENT. The alternation-free fragment of the alterna-
tion hierarchy is ∆µ

2 = Σµ
2 ∩ Πµ

2 . Alternatively, a formula ϕ is alternation-free iff
it has alternation depth no larger than one. Alternation-free formulas allow only
simpler fixed-point operators, where the evaluation of subformulas does not depend
on the evaluation of some bigger formula.

Example 8. Consider the following formulas:
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• µX.(νY.P ∧�Y ) ∨ ♦X is alternation-free.

• νXµ.Y (P ∧ ♦X) ∨ (¬P ∧ ♦Y ) is not alternation-free.

• The winning region formula for parity games

W ′n = ηXn · · ·µX1νX0

∨
i≤n

(P∃ ∧ Pi ∧ ♦Xi) ∨
∨
i≤n

(P∀ ∧ Pi ∧�Xi)

are not alternation-free formula, whenever n ≥ 2. The formula W ′1 is an
alternation-free formula.

COLLAPSING THE ALTERNATION HIERARCHY. If we change the class of frames we
evaluate formulas on, the alternation hierarchy may be strict or collapse to some
fragment. Fix a class of frames F to evaluate the µ-formulas:

• if, for all n, there is ϕ ∈ Σµ
n+1 which is not equivalent to any formula ψ ∈

Σµ
n ∪Πµ

n over F ; then the alternation hierarchy is strict.

• if, for all µ-formula ϕ, there is an alternation-free formula ψ equivalent to ϕ
over F ; then the alternation hierarchy collapses to the alternation-free frag-
ment.

• if, for all µ-formula ϕ, there is a modal formula ψ equivalent to ϕ over F ; then
the alternation hierarchy collapses to modal logic.

When we say the alternation hierarchy collapses to the alternation-free fragment
over a class of frames F , we also implicitly mean that it does not collapse to modal
logic over F . The next theorem lists the existing results on the collapse of the
alternation hierarchy:

Theorem 9. The alternation hierarchy is strict over:

• all frames [Bra98b; Bra98a];

• recursive frames [Bra98b]; trees [Len96];

• binary trees [Arn99];

• reflexive frames [AF09b]; and

• symmetric frames [DL13; DL15].

The alternation hierarchy collapses to its alternation-free fragment over:

• finite directed acyclic graphs [Mat02];

• transitive frames [AF09b; DL10; DO05];

• transitive frames with feedback vertex set of bounded size [GKL14];

• ω-regular languages [Kai95];

• visibly pushdown ω-languages [GKL14];
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• weakly transitive frames [PT22];

• S4.2 frames [PT22]; and

• S4.3 frames [PT22].

The alternation hierarchy collapses to modal logic over:

• equivalence relations [AF09b; DO05];

• S4.3.2 frames [PT22]; and

• S4.4 frames [PT22].

We will prove the collapse for weakly transitive frames in Section 5.2; and prove
the collapse for frames of S4.2, S4.3, S4.3.2, and S4.4 in Section 3.4.

THE WEAK ALTERNATION HIERARCHY. We also define a hierarchy on the alternation-
free fragment. This hierarchy is called the weak alternation hierarchy. It is defined
as follows

• ΣWµ
0 = ΠWµ

0 consists of all the formulas without fixed-point operators;

• ΣWµ
n+1 is the closure of ΣWµ

n ∪ ΠWµ
n under conjunction, disjunction, �, ♦, and

the substitution: if ϕ(X) ∈ Σµ
1 and ψ ∈ ΣWµ

n+1 is closed, then ϕ(ψ) ∈ ΣWµ
n+1;

• ΠWµ
n+1 is the closure of ΣWµ

n ∪ΠWµ
n under conjunction, disjunction, �, ♦, and

the substitution: if ϕ(X) ∈ Πµ
1 and ψ ∈ ΠWµ

n+1 is closed, then ϕ(ψ) ∈ ΠWµ
n+1; and

• ∆Wµ
n = ΣWµ

n ∩ΠWµ
n .

The weak alternation hierarchy is strict over all Kripke frames [PLT22], that is, for all
n, there is a formula ϕ ∈ ΣWµ

n+1∪ΠWµ
n+1 which is not equivalent to any ψ ∈ ΣWµ

n ∪ΠWµ
n .

The author, Li and Tanaka showed the strictness of the weak alternation hierarchy
using formulas describing the winning region of weak parity games.

THE VARIABLE HIERARCHY. One can also measure the complexity of µ-formulas by
counting how many variables they use. Fix the set of variables Var := {Xi | i ∈ ω}.
A µ-formula ϕ is in Lµ[n] iff all variables occurring in ϕ are in {Xi | i < n}. That is,
ϕ is in Lµ[n] iff it uses up to n distinct variables, up to renaming of variables. All
alternation-free formulas are equivalent to formulas in Lµ[1], and vice-versa.

Example 9. Consider the following formulas:

• µX.(νY.P ∧�Y ) ∨ ♦X is in Lµ[1].

• νXµ.Y (P ∧ ♦X) ∨ (¬P ∧ ♦Y ) is in Lµ[2].

• The winning region formula for parity games

W ′n = ηXn · · ·µX1νX0

∨
i≤n

(P∃ ∧ Pi ∧ ♦Xi) ∨
∨
i≤n

(P∀ ∧ Pi ∧�Xi)

in Lµ[n]. Berwanger [BGL07] showed that, for all n, W ′n can be expressed by
an in Lµ[2]-formula.
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Berwanger [Ber03] proved that the same does not happen for Lµ[2]:

Theorem 10. The alternation hierarchy restricted to Lµ[n] is strict, for n ≥ 2. That is, for
all k, there is a formula in (Σµ

k+1 ∪Πµ
k+1) ∩ Lµ[n] which is not equivalent to any formula

in (Σµ
k ∪Πµ

k) ∩ Lµ[n].

Furthermore, Berwanger [BGL07] showed that more variables increase the µ-calculus’
expressiveness:

Theorem 11. The variable hierarchy is strict. That is, for all n, there is a formula in
Lµ[n+ 1] which is not equivalent to any formula in Lµ[n].

2.4 Game semantics and parity games

GAME SEMANTICS. Let M = 〈W,R, V 〉 be a Kripke model, w ∈W , and ϕ be a well-
named µ-formula. We define an evaluation game G(M,w |= ϕ) to decide whether
M,w |= ϕ. We require formulas to be well-named to simplify the description of the
game semantics. As every formula is equivalent to a well-named formula, there is
no loss.

The game G(M,w |= ϕ) has two players: verifier, who wants to show that
M,w |= ϕ; and refuter, who wants to show that M,w 6|= ϕ. We denote verifier by
V and refuter by R. The game positions are pairs 〈v, ψ〉where v is in W and ψ is a
subformula of ϕ. The game starts at 〈w,ϕ〉. The players advance in the game graph
as follows:

• at 〈v, ψ0 ∧ ψ1〉, R chooses one of 〈v, ψ0〉 and 〈v, ψ1〉;

• at 〈v, ψ0 ∨ ψ1〉, V chooses one of 〈v, ψ0〉 and 〈v, ψ1〉;

• at 〈v,�ψ〉, R chooses 〈v′, ψ〉with vRv′;

• at 〈v,♦ψ〉, V chooses 〈v′, ψ〉with vRv′;

• at 〈v, ηX.ψ〉, the players move to 〈v, ψ〉; and

• at 〈v,X〉, the players move to 〈v, ηX.ψ〉where ηX.ψ is a subformula of ϕ.

When the players go from a position labeled 〈v,X〉 to a position labeled 〈v, ηX.ψ〉,
we say the variable X was regenerated.

At a position 〈v, P 〉, V wins iff w ∈ V (P ) and R wins iff w 6∈ V (P ). Similarly,
at 〈v,¬P 〉, V wins iff w 6∈ V (P ) and R wins iff w ∈ V (P ). In an infinite run of an
evaluation game, V wins iff the outermost ηX.ψ which appears infinitely often in
the run is of the form νX.ψ.

Example 10. Let M = 〈{w, v, u}, {〈w, v〉, 〈v, u〉, 〈u, u〉}, V (P ) = {v}〉. Then V wins
the evaluation game G(M,w |= µX.P ∨ ♦X). V’s winning strategy σ is to choose
〈w,♦X〉 at 〈w,P ∨ ♦X〉, and 〈v, P 〉 at 〈v, P 〉. The player R never has any move
available. Figure 2.5 pictures M , the evaluation game G(M,w |= µX.P ∨♦X) and σ.

Game semantics and Kripke semantics are equivalent:
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Table 2.3: Rules of evaluation games for modal µ-calculus.

Verifier Refuter
Position Admissible moves Position Admissible moves
〈w,ψ1 ∨ ψ2〉 {〈w,ψ1〉, 〈ψ2〉} 〈w,ψ1 ∧ ψ2〉 {〈w,ψ1〉, 〈w,ψ2〉}
〈w,♦ψ〉 {〈v, ψ〉 | 〈w, v〉 ∈ R} 〈w,�ψ〉 {〈v, ψ〉 | 〈w, v〉 ∈ R}

〈w,P 〉 and w 6∈ V (P ) ∅ 〈w,P 〉 and w ∈ V (P ) ∅
〈w,¬P 〉 and w ∈ V (P ) ∅ 〈w,¬P 〉 and w 6∈ V (P ) ∅

〈w, µX.ψX〉 {〈w, µX.ψX〉} 〈w, νX.ψX〉 {〈w, νX.ψX〉}
〈w,X〉 {〈w,ψX〉} 〈w,X〉 {〈w,ψX〉}

M
w v u

P

G(M,w |= µX.P ∨ ♦X)

〈w, µX.P ∨ ♦X〉 〈w,P ∨ ♦X〉

〈w,P 〉

〈w,♦X〉

〈v,X〉

〈v, µX.P ∨ ♦X〉〈v, P ∨ ♦X〉

〈v, P 〉

〈v,♦X〉

〈u,X〉

〈u, µX.P ∨ ♦X〉 〈u, P ∨ ♦X〉

〈u, P 〉

〈u,♦X〉

〈u,X〉

〈u, µX.P ∨ ♦X〉〈u, P ∨ ♦X〉· · ·

〈u, P 〉

Figure 2.5: The model M of Example 10 and the evaluation game G(M,w |= µX.P ∨
♦X). The thick arrows describe V’s winning strategy.

Theorem 12. Let M = 〈W,R, V 〉 be a Kripke model, w ∈W and ϕ be a µ-sentence, then

V wins G(M,w |= ϕ) iff M,w |= ϕ, and R wins G(M,w |= ϕ) iff M,w 6|= ϕ.

Proof. We follow the proof from [Ong15].
Let M = 〈W,R, V 〉 be a Kripke model, w ∈W be a world and ϕ be a well-named

µ-formula. Suppose M,w |= ϕ.
We list the fixed-point subformulas of ϕ in decreasing order:

η0X0.χ0, η1X1.χ1, . . . , ηn−1Xn−1.χn−1.

That is, if i ≤ j then either ηiXi.χi and ηjXj .χj are uncomparable, or ηjXj .χj ∈
Sub(ηiXi.χi). We modify M so that when evaluating subformulas of ϕ where some
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Xi is free, the evaluation agrees with the interpretation of the fixed-points in ϕ. For
i < n, let

M0 := M ; and

Mi+1 := Mi[Xi 7→ ‖ηiXi.χi‖Mi ].

Given v ∈W and ψ ∈ Sub(ϕ), we say 〈v, ψ〉 is a true position of the evaluation game
iff Mn, w |= ψ. In particular 〈w,ϕ〉 is a true position.

Now, list the fixed-point formulas starting with a µ-operator in decreasing order:

µ0Y0.θ0, µ1Y1.θ1, . . . , µn−1Yn−1.θm−1.

Note that these are the fixed-points that verifier does not want to regenerate in-
finitely often in a play. We define refinements of the Mi, where we interpret the
µ-variables by their approximants. Let α = 〈α0, . . . , αm−1〉 be a sequence of m-many
ordinals. We call such sequences µ-signatures. We order the µ-signatures by the
lexicographical order. Given two signatures α and β, we say α =k β iff αl = βl for
all l < k.

Given a µ-signature α, define

Mα
0 := M ;

Mα
i+1 := Mi[Xi 7→ ‖νiXi.χi‖Mi ] if Xi is a ν-variable; and

Mα
i+1 := Mi[Xi 7→ ‖µαi Xi.χi‖Mi ] if Xi is a µ-variable.

By the well-ordering of the ordinals, if 〈v, ψ〉 is a true position then there is a least
signature α such that Mα

n , w |= ψ. Call this least signature sigµ(v, ψ).
When moving through the evaluation game G(M,w |= ϕ), the signatures of the

positions mostly decrease:

• sigµ(v, ψ0 ∨ ψ1) = sigµ(v, ψi) for i ∈ {0, 1};

• sigµ(v, ψ0 ∧ ψ1) ≤ sigµ(v, ψi) for i ∈ {0, 1};

• sigµ(v,♦ψ) = sigµ(v′, ψ) for some v′ such that vRv′;

• sigµ(v,�ψ) ≥ sigµ(v′, ψ) for all v′ such that vRv′;

• if Xi is a ν-variable, sigµ(v, νXi.χi) = sigµ(v,Xi) = sigµ(v, χi); and

• if Xi is a µ-variable, sigµ(v, νXi.χi) =i−1 sigµ(v,Xi) =i−1 sigµ(v, χi) and
sigµ(v,Xj)(j) > sigµ(v, χj)(j).

We can now define a winning strategy σ for V in G(M,w |= ϕ). At a true position
〈v, ψ0 ∨ ψ1〉 choose 〈v, ψi〉 such that ψi is a true position. If both 〈v, ψi〉 are true
positions, choose the one with least µ-signature. At a true position 〈v,♦ψ〉 choose
〈v′, ψ〉 such that vRv′ and 〈v′, ψ〉 has the smallest possible signature. At fixed-point
formulas and variables, there is only one choice of move. On false positions, V ’s
choice does not matter.

Now consider a play of G(M,w |= ϕ) where V uses σ. Note that if the players
are in a true position, R can only move to other true positions. Therefore, if V uses σ
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in a play, then all the positions are true positions. In particular, the last position in a
finite play is true. So V wins finite plays.

Now suppose ρ is an infinite play where V uses σ. For a contradiction, suppose
the outermost infinitely often repeated variable is the µ-variable Xi. The decrease of
µ-signatures implies the existence of an infinite descending sequence of ordinals.
This is a contradiction. Therefore, the outermost infinitely occurring variable in an
infinite play is a µ-variable (and the µ-signatures are eventually constant). Therefore
σ is winning for infinite plays too. We conclude V wins G(M,w |= ϕ).

Now, if M,w 6|= ϕ, we can build a winning strategy τ for R similarly. The
difference is that we consider false positions and ν-signatures.

PARITY GAMES. A parity game is a tuple P = 〈V∃, V∀, v0, E,Ω〉. We suppose V∃ and
V∀ are disjoint sets of vertices; E ⊆ (V∃∪V∀)2 is a set of edges; and Ω : V∃∪V∀ → n is
a priority function, for some n ∈ ω. While playing P , two players—∃ and ∀—move
a token in the graph 〈V∃ ∪ V∀, E〉. A play is the resulting path on the graph. We say
a parity game is weak iff Ω is non-increasing.

In any given moment, player ∃ chooses the next vertex when the token is in
some element of V∃; and player ∀ chooses the next vertex when the token is in some
element of V∀. If a player cannot move, then the other player wins. In an infinite
play ρ, the winner is determined by the following parity condition: ∃wins ρ iff the
largest priority which appears infinitely often in ρ is even; otherwise, ∀ wins ρ. ∃
wins the parity game P iff ∃ has a winning strategy; a winning strategy for ∃ is a
function σ from V∃ to V∃ ∪ V∀, where, if ∃ follows σ, all resulting plays are winning
for them. Similarly, ∀ wins P iff ∀ has a winning strategy. Parity games are Borel
Gale–Stewart games. By the Borel Determinacy, one of the players has a winning
strategy.

Example 11. Figure 2.6 pictures a parity game where ∃ wins in finite many plays.
In any infinite play of this parity game, 1 appears infinitely often, so ∀wins. Note
the resemblance to the evaluation game from Example 10.

P
1 0

0

0

0

10

0

0

...

Figure 2.6: The parity game P from Example 11. Black nodes are owned by ∀. The
thick arrows describe ∃’s winning strategy.

EVALUATION GAMES AS PARITY GAMES. Given an evaluation game G(M,w |= ϕ),
we can define an equivalent parity game GP (M,w |= ϕ); both games are played on
the same graph and V wins G(M,w |= ϕ) iff ∃wins G′.
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Let 〈V,E〉 be the game graph of G(M,w |= ϕ). We now define G(M,w |= ϕ) =
〈V∃, V∀, v0, E,Ω〉. Let V∃ be the set of vertices owned by V in G(M,w |= ϕ); and V∀
be the set of vertices owned by R in G(M,w |= ϕ). We let the set E of edges be as in
the graph of G(M,w |= ϕ). Remember that each vertex v ∈ V is of the form 〈w,ψ〉,
where ψ is a subformula of ϕ and w ∈W . Define

Ω(〈ψ,w〉) =


2i+ ε if ψ = µX.ψ′ ∈ Σµ

2i+ε \Πµ
2i+ε,

2i if ψ = νX.ψ′ ∈ Πµ
2i+ε \ Σµ

2i+ε,
0 otherwise;

with ε ∈ {0, 1}. It is straightforward to show that, given a run ρ ∈ Wω, the
outermost operator appearing infinitely often in ρ is a ν-operator iff the greatest
parity appearing infinitely often is even. Therefore, V wins G(M,w |= ϕ) starting at
an edge iff V wins G′ starting at w. In the following, we identify G(M,w |= ϕ) and
G′.

Example 12. If we rewrite the evaluation game G(M,w |= ϕ) of Figure 2.5, we get
the parity game in Figure 2.6.

PARITY GAMES AS KRIPKE MODELS. Let P = 〈V∃, V∀, v0, E,Ω〉 be a parity game. We
define a Kripke model PK = 〈W,R, V 〉 by

• W = V∃ ∪ V∀;

• R = E;

• ‖P∃‖ = V∃, ‖P∀‖ = V∀ and ‖Pn‖ = Ω−1(n), for all n ∈ ω.

Given n ∈ ω, define:

W ′n = ηXn · · ·µX1νX0

∨
i≤n

(P∃ ∧ Pi ∧ ♦Xi) ∨
∨
i≤n

(¬P∀ ∧ Pi ∧�Xi).

Bradfield [Bra98a] showed that the W ′n define the winning regions of player ∃ in a
parity game using priorities up to n. That is, V wins P starting at v iff PK, v |= W ′n,
whenever v ∈ V∃ ∪ V∀ and max{Ω(v) | v ∈ V∃ ∪ V∀} ≤ n. Again, we identify a parity
game with its correspondent Kripke model.

In [Bra98a], Bradfield constructs a (recursive) parity game G such that, for all
n ∈ ω, ‖W ′n‖G is a strict Σµ

n, that is, there is no formula ϕ ∈ Σµ
n−1 ∪ Πµ

n−1 such that
‖W ′n‖G = ‖ϕ‖G . Bradfield shows this by proving that ‖W ′n‖G is a strict arithmetic-Σµ

n

set. The strictness of the µ-arithmetic alternation hierarchy was shown by Lubarsky
[Lub93].

An alternative proof of the strictness can be found in Alberucci [Alb02], who
uses alternating tree automata. The author, Li and Tanaka [PLT22] adapted this
proof to show the strictness of the weak alternation hierarchy of alternation-free
formulas, using the µ-calculus and its game semantics.



Chapter 3

The collapse to modal logic on
Kripke semantics

In this chapter, we characterize some classes of frames on which the µ-calculus
collapses to modal logic. We use this result to study the µ-calculus’ alternation
hierarchy on the logics S4.2, S4.3, S4.3.2, and S4.4. We show that the alternation
hierarchy collapses to its alternation-free fragment on frames of S4.2 and S4.3; and
that the alternation hierarchy collapses to modal logic over frames of S4.3.2 and S4.4.
These logics have been also studied from the point of view of epistemic logic. We
study the effect on degrees of ignorance implied by the collapse of the alternation
hierarchy. We also show that our approach is not viable for degrees of doubt. The
results on this chapter are joint work with Kazuyuki Tanaka.

3.1 Warm-up: collapse on S5

THE MODAL LOGIC S5. We define S5 as the closure under Nec and MP of the set
of all propositional tautologies and all instances of the axioms K, T , 4, and 5. This
logic is commonly studied in epistemic logic [Fag+03; van10]. S5 also axiomatizes
Leibniz’s logic of necessity, where ϕ is necessary iff it is true in all possible worlds.

If a frame F = 〈W,R〉 satisfies S5, then R is an equivalence relation, that is, R is
reflexive, transitive and symmetric. In this case, we say F itself is an equivalence
relation. We can further show:

Proposition 13. S5 is complete over equivalence relations.

From the completeness over equivalence relations, it follows that every string of
modal operators is equivalent to its last modal operator: 4· · ·4�ϕ is equivalent
to �ϕ, and4· · ·4♦ϕ is equivalent to ♦ϕ. A similar idea can be used to show the
following:

Lemma 14 (Alberucci, Facchini [AF09b]). Let M = 〈W,R, V 〉 be a transitive Kripke
model, w′ be a member of the strongly connected component of w, ϕ be a µ-formula, and
4 ∈ {�,♦}. Then w ∈ ‖4ϕ‖M iff w′ ∈ ‖4ϕ‖M .

31
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Proof. Suppose w and w′ are in the same connected component, that is, there are
m,n ∈ ω such that wRmw′ and w′Rnw. By the transitivity of R, it follows that wRw′

and w′Rw.
Now, suppose w |= �ϕ, then v |= ϕ for all v accessible from w. As wRw′, if v′ is

accessible from w′, then v′ is also accessible from w. Therefore w′Rv′ implies v′ |= ϕ.
And so w′ |= �ϕ. We can do the same to show that w′ |= �ϕ implies w |= �ϕ. Also,
the proof that w′ |= ♦ϕ is equivalent to w |= ♦ϕ is similar.

THE COLLAPSE. Alberucci and Facchini [AF09b] showed that the alternation hierar-
chy collapses to modal logic over frames of S5. We do a slight modification on their
proof. The aim of this modification is to make the proof easier to understand, but
we do explain the original proof later.

Given a transitive model M = 〈W,R, V 〉, we suppose that, for a world w ∈W ,
M,w |= ϕ(ϕ(>)) and M,w 6|= ϕ(ϕ(ϕ(>))), and get to a contradiction. In our proof,
the players V and R simultaneously play the evaluation games G(M,w |= ϕ(ϕ(>)))
and G(M,w |= ϕ(ϕ(ϕ(>)))). In the former, V uses their winning strategy σ, and, in
the later, V plays moves analogous to the ones indicated by σ. Similarly, R uses his
winning strategy τ on the later and a modified τ on the former.

For example, let us start the games above on the positions 〈v, θ ∨�ψ(>)〉 and
〈v, θ ∨�ψ(ϕ(>))〉. Suppose V moves to 〈v,�ψ(>)〉 on the first game, then they
move to 〈v,�ψ(ϕ(>))〉 on the second game. Now, if R moves to 〈v′, ψ(ϕ(>))〉 on the
second game, they move to 〈v′, ψ(>)〉 on the first game. We illustrate these moves
in Figure 3.1.

G(M,w |= ϕ(ϕ(>)))
...

〈v, θ ∨�ψ(>)〉

〈v,�ψ(>)〉

〈v′, ψ(>)〉

...

G(M,w |= ϕ(ϕ(ϕ(>))))
...

〈v, θ ∨�ψ(ϕ(>))〉

〈v,�ψ(ϕ(>))〉

〈v′, ψ(ϕ(>))〉

...

Figure 3.1: Simultaneous plays of the evaluation games G(M,w |= ϕ(ϕ(>))) and
G(M,w |= ϕ(ϕ(ϕ(>)))).

If the players continue like this, we will eventually reach a contradiction, either
stating that M,v |= P and M,v 6|= P for some v, or violating Lemma 14. And so
w ∈W , M,w |= ϕ(ϕ(>)) is equivalent to M,w |= ϕ(ϕ(ϕ(>))).

Lemma 15 is the key result for the collapse of the alternation hierarchy over
equivalence relations. We define ϕ0(X) := X and ϕn+1(X) := ϕ(ϕn(X)). This
notation will be helpful when generalizing the Lemma 15 to other frame classes and
semantics.
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Lemma 15 (Alberucci, Facchini [AF09b]). Let M = 〈W,R, V 〉 be a Kripke model where
R is an equivalence relation, and νX.ϕ be a well-named µ-formula. Then

‖νX.ϕ‖M = ‖ϕ2(>)‖M and ‖µX.ϕ‖M = ‖ϕ2(⊥)‖M .

Proof. We first show that ‖νX.ϕ‖M = ‖ϕ2(>)‖M . Let M = 〈W,R, V 〉 be a Kripke
model where R is an equivalence relation, and νX.ϕ is a well-named µ-formula.
ThereforeX has a unique occurrence in ϕ and is in the scope of some modal operator.
Let α and β be formulas such that ϕ is of the form α(4β(X)) with4 ∈ {�,♦}.

We show that νX.ϕ is equivalent to ϕ2(>). As X is positive in ϕ(X), we have
that ‖ϕ3(>)‖M ⊆ ‖ϕ2(>)‖M . So we need only to show that ‖ϕ2(>)‖M ⊆ ‖ϕ3(>)‖M .

For a contradiction, suppose that w ∈ ‖ϕ2(>)‖M and w 6∈ ‖ϕ3(>)‖M . Then V
has a winning strategy σ for the evaluation game G2 = G(M,w |= ϕ2(>)); and R has
a winning strategy τ for the evaluation game G3 = G(M,w |= ϕ3(>)) We use σ and
τ to define strategies σ′ for V in G3 and τ ′ for R in G2.

Suppose the players are in positions 〈v, ψ(>)〉 in G2 and 〈v, ψ(ϕ(>))〉 in G3. Both
have the same owner, that is, either it is V’s turn in both games, or it is R’s turn
in both games. Suppose it is V’s turn; in G2, they play σ(〈v, ψ(>)〉) = 〈v′, ψ′(>)〉
using their existing strategy, and σ′(〈v, ψ(ϕ(>))〉) := 〈v′, ψ′(ϕ(>))〉 in G3. Similarly,
if it is R’s turn, they play τ(〈v, ψ(ϕ(>))〉) = 〈v′, ψ′(ϕ(>))〉 in G3 using their existing
strategy, and play τ ′(〈v, ψ(>)〉) := 〈v′, ψ′(>)〉 in G2.

The players continue both games following the strategies described above until
they get to a position of the form 〈v, P 〉 (or 〈v,¬P 〉) in both games; or they get to
positions of the form 〈w′′,4β(>)〉 in G2 and 〈w′′,4β(ϕ(>))〉 in G3.

Case 1. Suppose they players are in a position 〈v, P 〉 in both games. As σ is
winning for V in G2, v ∈ ‖P‖M . As τ is winning for R in G3, v 6∈ ‖P‖M . And so we
have a contradiction. A similar contradiction is reached if they are in a position
〈v,¬P 〉.

Case 2. Suppose the players are in positions of the form 〈w′′,4β(>)〉 in G2 and
〈w′′,4β(ϕ(>))〉 in G3. As τ is a winning strategy for R in G3, w′′ 6∈ ‖4β(ϕ(>))‖M .
Previously, the players must have been through some a position 〈w′,4β(ϕ(>))〉
in G2. As σ is a winning strategy for V in G2, w′ ∈ ‖4β(ϕ(>))‖M By the defini-
tion of the game semantics, w′R∗w′′. As R is an equivalence relation, w′Rw′′ and
w′′Rw′. By Lemma 14, w′ ∈ ‖4β(ϕ(>))‖M iff w′′ ∈ ‖4β(ϕ(>))‖M ; and we have our
contradiction.

Either way, we conclude that ‖ϕ2(>)‖M ⊆ ‖ϕ3(>)‖M .
We could do as above and show that ‖ϕ3(⊥)‖M ⊆ ‖ϕ2(⊥)‖M , but we prove

‖µX.ϕ‖M = ‖ϕ2(⊥)‖M by a direct calculation:

µX.ϕ ≡ ¬νX.¬ϕ(¬X) ≡ ¬(¬ϕ(¬¬ϕ(¬>))) ≡ ϕ(ϕ(⊥)).

The first equivalence follows by an alternative definition of µX.ϕ, the second by the
first half of Lemma 15, and the third by negation cancelling.

Alberucci and Facchini’s original proof constructs a winning strategy σ′ for V
in G(M,w |= ϕ3(>)) using the winning strategy σ for V in G(M,w |= ϕ2(>)), by
first emulating σ and then using Lemma 14 to find a new winning strategy when
necessary.
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Theorem 16 (Alberucci, Facchini [AF09b]). The alternation hierarchy collapses to modal
logic over equivalence relations.

Proof. We argue by structural induction on µ-formulas. First, some of the easy
cases. P is equivalent to a modal formula, as it is a modal formula. If ϕ and ψ
are equivalent to µ-formulas ϕ′ and ψ′ then ϕ ∧ ψ is equivalent to ϕ′ ∧ ψ′. If ϕ is
equivalent to the modal formula ϕ′, then �ϕ is equivalent to �ϕ′.

Now, the interesting cases. Suppose ϕ is equivalent to a modal formula ϕ′. Then
νX.ϕ is equivalent to νX.ϕ′. By Lemma 15, νX.ϕ′ is equivalent to ϕ′(ϕ′(>)), which
is a modal formula. Similarly, µX.ϕ′ is equivalent to ϕ′(ϕ′(⊥)) by Lemma 15.

Therefore every µ-formula is equivalent to a modal formula over equivalence
relations.

Alternatively, given a µ-formula, one could also repeatedly substitute its fixed-
point operators by iterations of the respective subformulas.

3.2 Warm-up: collapse on S4.3.2

In this section, we prove the collapse of the alternation hierarchy on frames of S4.3.2;
showing how to generalize the collapse to modal logic over equivalence relations to
bigger classes of frames. Our proof uses game semantics, and follows roughly the
same idea of the section above.

Our objective in this section is not to study S4.3.2 in specific, but to analyze a
simple generalization of the collapse of the alternation hierarchy to modal logic over
equivalence relations. Namely, we prove:

Theorem 17 (P., Tanaka [PT22]). The alternation hierarchy collapses to modal logic over
S4.3.2.

We will further generalize it in the next section.

THE MODAL LOGIC S4.3.2. The modal logic S4.3.2 is obtained by adding the axiom

(♦P ∧ ♦�Q)→ �(♦P ∨Q)

to S4. The logic S4.3.2 is complete for reflexive and transitive frames which can be
decomposed into two equivalence classes. This logic was first studied by Zeman
[Zem68].

FRAMES OF S4.3.2. We first generalize Lemma 15. In an equivalence relation
F = 〈W,R〉, we had that wRv implies vRw. In S4.3.2 frames, we get a similar
property:

Lemma 18. Let F = 〈W,R〉 be a Kripke frame. If F satisfies S4.3.2, then

wRv ∧ vRu→ vRw ∨ uRv.

Proof. Remember that S4.3.2 is obtained by adding to S4 the axiom

(♦P ∧ ♦�Q)→ �(♦P ∨Q).
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So any S4.3.2 is reflexive and transitive.
Suppose that F satisfies S4.3.2 and that wRvRu holds. Define a model M over

F by taking V (P ) := {w} and V (Q) := {u′ | uRu′}. Since wRw, M,w |= ♦P . Since
M,u |= �Q, M,w |= ♦�Q. So M,w |= �(♦P ∨Q). In particular, M, v |= ♦P ∨Q. If
M, v |= ♦P , then vRw; if M,v |= Q, then uRv.

Alternatively, one can characterize the S4.3.2 frames as follows:1

Lemma 19. If F = 〈W,R〉 satisfies S4.3.2, then we can decompose W into disjoint sets
Ini and Fin such that:

1. xRx′ for all x, x′ ∈ Ini;

2. yRy′ for all y, y′ ∈ Fin; and

3. xRy ∧ ¬yRx for all x ∈ Ini, y ∈ Fin.

Proof. First, as F = 〈W,R〉 satisfies S4.3.2, F is transitive and reflexive. Now, we
fix w ∈ W and suppose W = {w′ | wRw′}, as the evaluation of any formula on w
depends only on worlds accessible from w.

Define Ini := {v | vRw}. By the transitivity of R, xRx′ for all x, x′ ∈ Ini. Define
Fin := W \ Ini. By the definition of Ini and Fin, Ini∪Fin = W and Ini∩Fin = ∅ and
¬yRx for all x ∈ Ini and y ∈ Fin. By our supposition on W , xRy for all x ∈ Ini and
y ∈ Fin.

If Fin = ∅, we have nothing to do. Otherwise, let v, u ∈ Fin. Define a model M
over F by taking V (P ) := {w} and V (Q) := {v′ | vRv′}. Then M,w |= ♦P ∧ ♦�Q,
and so M,w |= �(♦P ∨ Q). In particular M,u |= ♦P ∨ Q. As M,u |= ♦P implies
uRw and u 6∈ Ini, we must have M,u |= Q. That is, vRu. We conclude that yRy′ for
all y, y′ ∈ Fin.

THE COLLAPSE TO MODAL LOGIC. While Lemma 18 is weaker than what we have
on equivalence relations, it is good enough to prove a version of Lemma 15 for
S4.3.2 frames:

Lemma 20. If M = 〈W,R, V 〉 is a Kripke model where F = 〈W,R〉 satisfies S4.3.2, and
ηX.ϕ is a well-named µ-formula, then

‖νX.ϕ‖M = ‖ϕ3(>)‖M and ‖µX.ϕ‖M = ‖ϕ3(⊥)‖M .

Proof. Let M = 〈W,R, V 〉 be a Kripke model where F = 〈W,R〉 satisfies S4.3.2, and
νX.ϕ is a well-named µ-formula. We suppose that ϕ is of the form α(4β(X)) with
4 ∈ {�,♦}.

We show that νX.ϕ is equivalent to ϕ3(>). As X is positive in ϕ(X), we have
that ‖ϕ4(>)‖M ⊆ ‖ϕ3(>)‖M . So we need only to show that ‖ϕ3(>)‖M ⊆ ‖ϕ4(>)‖M .

For a contradiction, suppose that w ∈ ‖ϕ3(>)‖M and w 6∈ ‖ϕ4(>)‖M . Then V
has a winning strategy σ for the evaluation game G3 = G(M,w |= ϕ3(>)); and R has

1This characterization is originally by Zeman, building on his semantics for S4.4—where Ini has
at most one element. See [Zem71; Zem72]. Semantics for S4.4 get the cooler name though: Zeman
calls it “end of the world semantics”.
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a winning strategy τ for the evaluation game G4 = G(M,w |= ϕ4(>)) We use σ and
τ to define strategies σ′ for V in G4 and τ ′ for R in G3.

Suppose the players are in positions 〈v, ψ(>)〉 in G3 and 〈v, ψ(ϕ(>))〉 in G4, both
owned by the same player; that is, either it is V’s turn in both games, or it is R’s turn
in both games. Suppose it is V’s turn; in G3, they play σ(〈v, ψ(>)〉) = 〈v′, ψ′(>)〉
using their existing strategy, and σ′(〈v, ψ(ϕ(>))〉) := 〈v′, ψ′(ϕ(>))〉 in G4. Similarly,
if it is R’s turn, they play τ(〈v, ψ(ϕ(>))〉) = 〈v′, ψ′(ϕ(>))〉 in G4 using their existing
strategy, and play τ ′(〈v, ψ(>)〉) := 〈v′, ψ′(>)〉 in G3.

The players continue both games following the strategies described above until
they get to a position of the form 〈v, P 〉 (or 〈v,¬P 〉) in both games; or they get to
positions of the form 〈w′′′, ψ(>)〉 in G3 and 〈w′′′, ψ(ϕ(>))〉 in G4.

Case 1. Suppose they players are in a position 〈v, P 〉 in both games. As σ is
winning for V in G3, v ∈ ‖P‖M . As τ is winning for R in G4, v 6∈ ‖P‖M . And so we
have a contradiction. A similar contradiction is reached if they are in a position
〈v,¬P 〉.

Case 2. Suppose the players are in positions of the form 〈w′′′,4β(>)〉 in G3 and
〈w′′′,4β(ϕ(>))〉 in G4. Previously, the players must have been through some a po-
sitions 〈w′,4β(ϕ2(>))〉 and 〈w′′,4β(ϕ((>))〉 in G3; and positions 〈w′,4β(ϕ3(>))〉
and 〈w′′,4β(ϕ2(>))〉 in G4. As the frame F is transitive, w′Rw′′ and w′′Rw′′′. By
Lemma 18, either w′′Rw′ or w′′′Rw′′. Remember that V played G3 with their winning
strategy σ and R played G4 with their winning strategy τ Ifw′′Rw′, as the players had
been in the position 〈w′,4β(ϕ2(>))〉 in G3 and in the position 〈w′′,4β(ϕ2(>))〉 in G4,
therefore w′ ∈ ‖4β(ϕ2(>))‖M and w′′ 6∈ ‖4β(ϕ2(>))‖M . This contradicts Lemma
14. Similarly if w′′′Rw′′, as the players had been in the position 〈w′′,4β(ϕ((>))〉 in
G3 and in position 〈w′′′,4β(ϕ(>))〉, we again contradict Lemma 14.

Either way, we conclude that ‖ϕ3(>)‖M ⊆ ‖ϕ4(>)‖M .

We prove Theorem 17 as we proved Theorem 16:

Proof of Theorem 17. We argue by structural induction on µ-formulas. We only prove
the interesting cases. Suppose ϕ(X) is equivalent to a modal formula ψ. Then
νX.ϕ is equivalent to νX.ψ. By Lemma 20, νX.ψ is equivalent to ψ3(>), which is a
modal formula. Similarly, µX.ψ is equivalent to ψ3(⊥). Therefore every µ-formula
is equivalent to a modal formula over frames which satisfy S4.3.2.

3.3 Generalizing the collapse to modal logic

In this section we generalize the proofs in Sections 3.1 and 3.2 to bigger classes of
frames.

Let M = 〈W,R, V 〉 be a Kripke model and w ∈ W . Denote the set of worlds
accessible from w by wR := {w′ ∈W | wRw′}. Denote the transitive closure of R by
R∗.

Theorem 21. Let F be a class of Kripke frames. Suppose there is n such that, for all frame
F = 〈W,R〉 ∈ F and for all sequence w0R

∗w1R
∗ · · ·R∗wn, there is i < j ≤ n such that

wiR = wjR. The µ-calculus’ alternation hierarchy collapses to modal logic over F .

The lemma below follows from the definition of the semantics for the modalities
� and ♦:
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Lemma 22. Let M = 〈W,R, V 〉 be a Kripke model, w,w′ ∈W , and wR = w′R. If ϕ be a
µ-formula and4 ∈ {�,♦}, then w ∈ ‖4ϕ‖M iff w′ ∈ ‖4ϕ‖M .

We now prove the Lemma 23 as we proved Lemmas 15 and 20:

Lemma 23. Let M = 〈M,R, V 〉 be a Kripke model. Suppose there is n such that, for
all sequence w0R

∗w1R
∗ · · ·R∗wn, there is i < j ≤ n such that wiR = wjR. If ηX.ϕ is

well-named, then

‖νX.ϕ‖M = ‖ϕn+1(>)‖M and ‖µX.ϕ‖M = ‖ϕn+1(⊥)‖M .

Proof. Suppose νX.ϕ is be a well-named µ-formula. We suppose that ϕ is of the
form α(4β(X)) with4 ∈ {�,♦}.

We show that νX.ϕ is equivalent to ϕn+1(>). Since X is positive in ϕ(X), a
straight induction argument show that ‖ϕn+2(>)‖M ⊆ ‖ϕn+1(>)‖M . So we need
only to show that ‖ϕn+1(>)‖M ⊆ ‖ϕn+2(>)‖M .

For a contradiction, suppose that w ∈ ‖ϕn+1(>)‖M and w 6∈ ‖ϕn+2(>)‖M . Then
V has a winning strategy σ for the evaluation game Gn+1 = G(M,w |= ϕn+1(>));
and R has a winning strategy τ for the evaluation game Gn+2 = G(M,w |= ϕn+2(>))
We use σ and τ to define strategies σ′ for V in Gn+2 and τ ′ for R in Gn+1.

Suppose the players are in positions 〈v, ψ(>)〉 in Gn+1 and 〈v, ψ(ϕ(>))〉 in Gn+2.
Both have the same owner, that is, either it is V’s turn in both games, or it is R’s turn in
both games. Suppose it is V’s turn and they play σ(〈v, ψ(>)〉) = 〈v′, ψ′(>)〉 in Gn+1.
Then set σ′(〈v, ψ(ϕ(>))〉) := 〈v′, ψ′(ϕ(>))〉 in Gn+2. Similarly, if it is R’s turn and
they play τ(〈v, ψ(ϕ(>))〉) = 〈v′, ψ′(ϕ(>))〉 in Gn+2, then they play τ ′(〈v, ψ(>)〉) :=
〈v′, ψ′(>)〉 in Gn+1.

The players continue both games following the strategies described above until
they get to a position of the form 〈v, P 〉 (or 〈v,¬P 〉) in both games; or they get to
positions of the form 〈wn,4β(>)〉 in Gn+1 and 〈wn,4β(ϕ(>))〉 in Gn+2.

Case 1. Suppose they players are in a position 〈v, P 〉 in both games. As σ is
winning for V in Gn+1, v ∈ ‖P‖M . As τ is winning for R in Gn+2, v 6∈ ‖P‖M . And so
we have a contradiction. A similar contradiction is reached if they are in a position
〈v,¬P 〉.

Case 2. Suppose the players are in positions of the form 〈wn,4β(>)〉 in Gn+1 and
〈wn,4β(ϕ(>))〉 in Gn+2. As ϕ is well named, there must be worlds w0, . . . , wn−1

such that the players have been through positions 〈wi,4β(ϕn−i(>))〉 in Gn+1 and
〈wi,4β(ϕn−i+1(>))〉 in Gn+2, for all i ∈ {1, . . . n− 1}. By the hypothesis on F , there
must be i < j ≤ n such that wiR = wjR, as w0R

∗w1R
∗ · · ·R∗wn. We represent a

partial play of Gn+1 and Gn+2 in Figure 3.2.
Since V is following a winning strategy in Gn+1, M,wi |= 4β(ϕn−i(>)) and

M,wj |= 4β(ϕn−j(>)) hold. AswiR = wjR, Lemma 22 impliesM,wi |= 4β(ϕn−j(>)).
By the positivity of X in4β(X),

M,wi |= 4β(ϕk(>)) for all k = n− i, . . . , n− j.

Similarly, using the fact that R is using a winning strategy in Gn+2,

M,wi 6|= 4β(ϕk(>)) for all k = n− i+ 1, . . . , n− j + 1.

For k0 = n− i+ 1, this means that

M,wi |= 4β(ϕk0(>)) and M,wi 6|= 4β(ϕk0(>)).
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Gn+1
...

〈wi,4β(ϕn−i(>))〉

...

〈wj ,4β(ϕn−j(>))〉

...

Gn+2
...

〈wi,4β(ϕn−i+1(>))〉

...

〈wj ,4β(ϕn−j+1(>))〉

...

Figure 3.2: Simultaneous runs of the games Gn+1 and Gn+2 of Lemma 23.

And so we have a contradiction.
As both cases result in contradictions, we conclude that ‖ϕn+1(>)‖ ⊆ ‖ϕn+2(>)‖M .
‖µX.ϕ‖ = ‖ϕn+1(⊥)‖M now follows by a direct calculation:

µX.ϕ ≡ ¬νX.¬ϕ(¬X) ≡ ¬((¬ϕ¬)n+1(>)) ≡ ϕn+1(⊥).

The first equivalence follows by an alternative definition of µX.ϕ, the second by the
first half of this proof, and the third by negation cancelling.

Proof of Theorem 21. We argue by structural induction on µ-formulas. Again, we
only prove the interesting cases. Suppose ϕ is equivalent to a modal formula ψ.
Then νX.ϕ is equivalent to νX.ψ. By Lemma 23, νX.ψ is equivalent to ψn+1(>),
which is a modal formula. Similarly, µX.ψ is equivalent to ψn+1(⊥). Therefore every
µ-formula is equivalent to a modal formula over frames of F .

A QUESTION. A frame F = 〈W,R〉 is reverse well-founded iff there is no infinite se-
quence {wi}i∈ω with wiRwi+1 for all n ∈ ω. Alberucci and Facchini [AF09b] proved
that the alternation hierarchy collapses on transitive and reverse well-founded
frames. These are the frames of the modal logic GL. Using Lemmas 63 and 64 from
Chapter 5, we can prove a generalization of their theorem:

Theorem 24. Fix n ∈ ω. Then, over reverse well-founded frames which satisfy♦µX.ϕ(X) ≡
♦ϕn(⊥), the alternation hierarchy collapses to modal logic.

Proof. Let νX.ϕ be well-named. Either X is weakly universal or existential in νX.ϕ.
That is, eitherX in the scope of some�modality or only in the scope of ♦modalities.
If X is weakly universal, then νX.ϕ is equivalent to ϕn+1(>).

Suppose X is existential.2 The formulas µX.ϕ and νX.ϕ are equivalent, as
there is no infinite plays in the evaluation games M,w |= µX.ϕ and M,w |= µX.ϕ.
Therefore these two games are equivalent. Now, X is weakly existential in µX.ϕ,
which is equivalent to ϕn+1(⊥) by Lemma 64.

Therefore, over reverse well-founded frames which satisfy♦µX.ϕ(X) ≡ ♦ϕn(⊥),
we can eliminate all fixed-point operators in any formula.

2X is existential iff X is not in the scope of any � in ψ, that is, X is only in the scope of diamonds.
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The class of reverse well-founded frames where ♦µX.ϕ(X) are equivalent
♦ϕn(⊥) contains frames not considered in Theorem 21.

Question 1. Are the proofs of collapses to modal logic in Theorems 21 and 24 sufficient to
capture all the collapses to modal logic?

3.4 Degrees of ignorance in epistemic logic

In this section, we analyze the meaning of some µ-formulas from the point of view
of Epistemic Logic. The formulas we consider describe degrees of ignorance. We
argue that logics “closer” to S4.2 allow greater degrees of ignorance compared to
logics “closer” to S5.

A LOGIC FOR KNOWLEDGE. In this section, we write K for � and K̂ for ♦, and
consider a second box modality B, for belief. We will work with only one agent,
so we read Kϕ as “the agent knows that ϕ is true”, K̂ϕ as “the agent considers ϕ
(epistemically) possible” and Bϕ as “the agent believes that ϕ’ is true’. We will also
consider conditional belief Bψϕ, read as “the agent believes that ϕ is true, given ψ”.

Before going into details, we reiterate that Kϕ is read as “the agent knows that
ϕ”. The conception of knowledge we study is different from “the agent knows
whether ϕ is true”—which can be formalized in our logic as Kϕ ∨K¬ϕ. It is also
different from knowledge how, knowledge about, etc.

We follow Stalnaker [Sta06] and Aucher [Auc14]. The modality K satisfies S4.
Remember, the axioms of S4 are:

• K := K(ϕ→ ψ)→ Kϕ→ Kψ,3

• T := Kϕ→ ϕ; and

• 4 := Kϕ→ KKϕ.

T means that if the agent knows that ϕ, then ϕ is indeed true. 4 means that if the
agent knows that ϕ, then they also know that they know ϕ. That is, the agent has
privileged access to their knowledge.

The axiom K and the necessitation rule Nec are instances of the so called log-
ical omniscience. K and Nec implies that the agent knows about all the logical
consequences of their knowledge. For example, suppose that the agent knows the
axioms of ZFC. Then logical omniscience implies they know Cohen’s proof of the
independence of the continuum hypothesis. We will see some ways to evade logical
omniscience in Chapter 4.

The belief modality B satisfies KD45:

• K := �(ϕ→ ψ)→ �ϕ→ �ψ,

• D := ¬B⊥;

• 4 := Bϕ→ BBϕ; and

• 5 := ¬Bϕ→ B¬Bϕ.
3We use K for both the axiom and the modality.
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K and 4 are as in knowledge. D is a weakening of T ; we do not require beliefs to
be true, only that they are consistent. 5 is analogous to 4, implying that if the agent
does not believe something, then they also believe that they do not believe it. It
allows the agent to access negative facts about their beliefs, while 4 only allows
access for positive facts.

The axioms above only describe how knowledge and belief behave indepen-
dently. We add the three interaction axioms below to our logic:

• Kϕ→ Bϕ;

• Bϕ→ KBϕ; and

• ¬Bϕ→ K¬Bϕ.

These axioms imply that: if an agent knows something, they must also believe it; if
they believe something, they must know about their belief; and if they do not believe
something, they must know about their disbelief. This conception of belief is called
strong belief [Auc14]—in contrast to weak belief, where Bwϕ iff the agent considers
probability that ϕ holds to be greater that 1/2. If K and B satisfy these axioms,
then Bϕ can be defined as K̂Kϕ, so we can assume we have only the modality
K. Furthermore, the assumptions we have on K and B imply that K satisfies .2:
K̂KP → KK̂P . Proof of these result can be found in the appendices of [Auc14].

We suppose conditional belief satisfies the following properties:

• Bψψ;

• Bψϕ0 ∧Bψϕ1 → Bψ(ϕ0 ∧ ϕ1);

• Bψ0ϕ ∧Bψ1ϕ→ Bψ0∨ψ1ϕ;

• Bψϕ ∧Bψχ→ Bψ∧ϕχ;

• if ψ ↔ ψ′ then Bψϕ↔ Bψ′ϕ; and

• if ϕ↔ ϕ′ then Bψϕ↔ Bψϕ′.

This logical system is usually called P.

SOME EPISTEMIC LOGICS. We briefly review the systems of epistemic logic we will
study.

The basic logic we use for knowledge is S4.2. This logic is Lenzen’s [Len78]
and Stalnaker’s [Sta06] logic of knowledge. It also axiomatizes Voorbraak’s logic of
justified knowledge [Voo93]. If we supposeK satisfies S4.2 and defineBϕ :↔ K̂Kϕ,
then B satisfies KD45 and the interaction axioms above hold.

S4.3 is obtained by adding the axiom

K(KP → Q) ∨K(KQ→ P )

to S4.2. Aucher [Auc14] shows that .3 is a consequence of the following interaction
axioms for knowledge and conditional belief:

• Kϕ→ Bψϕ;
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• Bψϕ→ KBψϕ; and

• ¬Bψϕ→ K(K̂ψ → ¬Bψϕ).

S4.3 is Lehrer and Paxon’s [LP69] logic of knowledge, with knowledge being unde-
feated justified true belief. It is also van der Hoek’s logic of knowledge in [van93].

S4.3.2 is obtained by adding the axiom .3.2 defined by (K̂P ∧ K̂�Q)→ K(K̂P ∨
Q) to S4.2. Aucher[Auc14] shows that .3.2 is a consequence of the interaction axiom

(Kϕ→ Kψ) ∧B(Kϕ→ Kψ)→ K(Kϕ→ Kψ).

It is also the consequence of the interaction axioms for knowledge and conditional
belief which implied .3 above and:

B¬ψ → (Bψϕ→ K(ψ → ϕ)).

S4.3.2 appear in non-monotonic contexts [ST92]. It has also been studied in Lenzen
[Len78].

S4.4 is the logic of knowledge as true belief. It is obtained by adding the interac-
tion axiom:

Kϕ↔ ϕ ∧Bϕ.

It can also be obtained by adding (P ∧ K̂KP ) → KP to S4.2. Aucher says its the
logic of knowledge considered by Kutschera in [Kut76].

S5 is the standard logic for multi-agent epistemic logic. It is obtained by adding
the axiom ¬Kϕ→ K¬Kϕ to S4.2. In S5, belief collapses to knowledge. That is, Kϕ
iff Bϕ. It is a quite uninteresting logic for epistemic logic with only one agent, but it
is much better with multiple agents—we study what happens to the µ-calculus on
multimodal S5 in Section 4.4.

THE ALTERNATION HIERARCHY ON EPISTEMIC LOGICS. We now use Theorem 21
to study the epistemic logics we described above. We first show that, as S4.3 is an
extension of S4.2, the later logic has fewer frames. We then show that the alternation
hierarchy collapses to the alternation-free fragment over frames of S4.3.

Proposition 25. Every S4.3 frame is also an S4.2 frame.

Theorem 26. The alternation hierarchy collapses to its alternation-free fragment over S4.2
and S4.3. Furthermore, the alternation hierarchy does not collapse to modal logic over S4.2
and S4.3.

Proof. As frames of S4.2 and S4.3 are transitive, it is enough to show that the alter-
nation hierarchy collapses to its alternation-free fragment over transitive frames.
This result is already established [AF09b; DL10].

Now, we prove that the non-collapse to modal logic for S4.3 implies the non-
collapse for S4.2. Letϕ(X) := ♦(P∧♦(¬P∧X)). We show νX.ϕ(X) is not equivalent
to any modal formula. For a contradiction, suppose νX.ϕ(X) is equivalent to a
modal formula ϕ′. Given a model M = 〈W,R, V 〉 over an S4.3 frame F = 〈W,R〉
and w0 ∈ W , νX.ϕ holds on w0 iff there is a sequence {wi}i∈ω such that wiRwi+1,
w2i+1 ∈ ‖P‖ and w2i+2 ∈ ‖¬P‖. For n ∈ ω, define a model Mn = 〈Wn, Rn, Vn〉 by

• Wn = {w1, w2, . . . , w2n};
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• Rn = {〈wi, wj〉 | 0 ≤ wi ≤ wj ≤ 2n− 1}; and

• Vn(P ) = {wi | i is odd}.

Mn has a path of length 2n with P and ¬P appearing alternately, but no such path
is infinite; that is, Mn, w1 |= ϕn(>) ∧ ¬ϕ′.

Define L = S4.3 + ¬ϕ′ + {>, ϕ1, ϕ2, . . . }. Note that the compactness theorem
holds for S4.3, as its frames are first-order definable. As each finite subtheory of L
is satisfied by some Mn, L has a model with an S4.3 frame. S4.3 also has the finite
model property, and so there is a finite model (Mf , wf ) of L with S4.3 frame. An
application of the Pigeonhole Principle implies that νX.ϕ holds on (Mf , wf ), as
Mf is finite and has paths of arbitrary length starting from wf where P and ¬P
hold alternately. Therefore (Mf , wf ) satisfies both νX.ϕ and ¬νX.ϕ, a contradiction.
Therefore νX.ϕ is not equivalent to any modal formula over frames of S4.3.

Mn

w1 w2 w3 w4 · · · w2n

P ¬P P ¬P ¬P

Figure 3.3: Models Mn used to show the alternation hierarchy does not collapse to
modal logic over S4.3.2 frames. We omit the reflexive and transitive arrows.

We now characterize S4.4 frames:

Lemma 27. If F = 〈W,R〉 satisfies S4.4, then we can decompose W into sets Ini and Fin
such that:

• Ini has at most one element;

• Fin is not empty;

• xRx′ for all x, x′ ∈ Ini;

• yRy′ for all y, y′ ∈ Fin; and

• xRy ∧ ¬yRx for all x ∈ Ini, y ∈ Fin.

Proof. Since S4.4 is a strengthening of S4.3.2, every S4.4 frame F is also an S4.3.2
frame. So we can decompose F into sets Ini and Fin as above, and need only to
check if |Ini| ≤ 1.

Suppose w, v ∈ Ini. Let M = 〈W,R, V 〉 be defined by setting V (P ) = Fin ∪ {w}.
ThenM,w |= P ∧K̂KP all elements of Fin satisfyKP . By the axiom .4,M,w |= KP .
As wRv, M, v |= P . Therefore v = w.

Frames of KD45 may fail reflexivity, but they are quite similar to S4.4 frames.
The next lemma implies that we can apply Theorem 21 to KD45 frames.

Lemma 28. If F = 〈W,R〉 satisfies KD45, then we can decompose W into sets Ini and Fin
such that:
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• Ini has at most one element;

• Fin is not empty;

• ¬xRx for all x ∈ Ini;

• yRy′ for all y, y′ ∈ Fin; and

• xRy ∧ ¬yRx for all x ∈ Ini, y ∈ Fin.

Theorem 29. The alternation hierarchy collapses to modal logic over S4.3.2, S4.4, and
KD45.

Proof. Let F = 〈W,R〉 be an S4.3.2 frame. By Lemma 19, we suppose W can be
decomposed into two disjoint sets Ini and Fin such that x ∈ Ini and y ∈ W imply
〈x, y〉 ∈ R; x, y ∈ Fin imply 〈x, y〉 ∈ R; and there is no 〈x, y〉 ∈ R with x ∈ Fin and
y ∈ Ini. Therefore, if wR∗vR∗u, then either wR = vR or vR = uR. Theorem 21
implies the alternation hierarchy collapses to modal logic over S4.3.2 frames.

Now, every S4.4 frame is an S4.3.2 frame where |Ini| ≤ 1. And so the alternation
hierarchy collapses to modal logic over S4.4 frames. Similarly, a KD45 is almost an
S4.4, but we assume R is not reflexive on the world in Ini.

IGNORANCE. Ignorance is a traditional concept in epistemology, already discussed
by Plato in his Theaetetus. It is also an active research topic within epistemic logic
[Car+21; Fan21; Rv21]; Peels and Blaauw [PB16] compile many recent papers on
ignorance.

Van der Hoek and Lomuscio [vL04] defined the ignorance modality:

Iϕ :↔ ¬Kϕ ∧ ¬K¬ϕ.

We read Iϕ as “the agent is ignorant whether ϕ holds”. Fine [Fin18] studied high-
order versions of the ignorance modality: I1ϕ := Iϕ, In+1ϕ := I(Inϕ). Fine showed
that even second-order ignorance is unobtainable on S4 frames: ¬KInϕ is valid on
all S4 frames for any formula ϕ and n ≥ 2. We will develop below another method
of distinguishing types of ignorance.

One can also think about the ignorance modality Iϕ as the epistemic version
of the contingency modality ∇ϕ := ¬�ϕ ∧ ¬�¬ϕ. See Fan et al. [FWD15] for the
connection between ignorance and contingency.

DEGREES OF IGNORANCE. Fix a µ-sentence ϕ, we define formulas αnϕ for n ∈ ω∪{∞}.
We read αnϕ as “the agent has nth degree ignorance whether ϕ”. Define:

• αϕ(X) := K̂(ϕ ∧X) ∧ K̂(¬ϕ ∧X);

• α1
ϕ := αϕ(>);

• αn+1
ϕ := αϕ(αnϕ); and

• α∞ϕ := νX.αϕ(X).
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The monotonicity of αϕ implies that any degree of ignorance implies the weaker
degrees of ignorance. That is, if i ≤ j, then αjϕ → αiϕ. In particular, α1

ϕ is equivalent
to Iϕ, so we may say that our αiϕ are refinements of van der Hoek and Lomuscio’s
ignorance modality.

Over S4.2 and S4.3, the formulas

α∞ϕ , α
1
ϕ, α

2
ϕ, α

3
ϕ, . . .

are pairwise disjoint. We now look at formulas of the form αnϕ ∧¬αn+1
ϕ . The formula

α1
ϕ ∧¬α2

ϕ is equivalent to the agent having a false belief and, in all accessible worlds,
believing that they know ϕ. Similarly, α2

ϕ ∧ ¬α3
ϕ holds when the agent has a true

belief but thinks it is possible to have a false belief. We can generalize this to other
αiϕ ∧ ¬αi+1

ϕ , and express higher degrees of self-doubt.
When the alternation hierarchy collapses to modal logic, we do not have infinitely

many degrees: α∞ϕ is equivalent to a modal formula. Over S4.3.2 and S4.4, α2
ϕ is

equivalent to α∞ϕ , so we have only two degrees of ignorance: α1
ϕ, the agent has a

false belief; and α2
ϕ, the agent has no belief. In S5, α1

ϕ is equivalent to α∞ϕ and we
have only one degree of ignorance; here, Bϕ is equivalent to Kϕ and the agent
cannot have wrong beliefs.

In settings other than S5, having no belief implies a high degree of ignorance,
but it is possible to have a high degree of ignorance and a belief at the same time,
that is: for any 1 ≤ n <∞, ¬(Bϕ ∨B¬ϕ) implies α∞ϕ ; and α∞ϕ ∧Bϕ and α∞ϕ ∧B¬ϕ
are satisfiable. In S5, ignorance and lack of belief are equivalent.

Stalnaker’s [Sta06] criticism of S4.3 and S4.3.2 is that in both systems false belief
can deny knowledge the agent may be justified in having: in S4.3, a false belief
denies some knowledge; in S4.3.2, a false belief denies all non-trivial knowledge.
From our point of view, S4.3.2 allows us to express only a few degrees of ignorance,
while S4.3 allows us to express infinitely many degrees.

DEGREES OF DOUBT. One can also do a similar analysis to belief and doubt. Olsson
and Proietti [OP16] defined a doubt modality D by Dϕ := ¬Bϕ ∧ ¬B¬ϕ. We can
then define degrees of doubt by substituting belief for knowledge in the definition
of degrees of ignorance. Formally, fix ϕ and define:

• δϕ(X) := B̂(ϕ ∧X) ∧ B̂(¬ϕ ∧X);

• δ1
ϕ := δϕ(>);

• δn+1
ϕ := δϕ(δnϕ); and

• δ∞ϕ := νX.δϕ(X).

A short argument shows that δ1
ϕ and δ∞ϕ are equivalent over frames of KD45. There-

fore we can only define one degree of doubt in our framework.
Our analysis of degrees of ignorance and disbelief contrasts with existing dis-

cussions of degrees of knowledge and belief. Olsson and Proietti [OP16] argue that
belief and doubt have many degrees but knowledge has only one. They also argue
that ignorance has only one degree. Hetherington [Het01] argues that knowledge
also has many degrees.



Chapter 4

The alternation hierarchy on
variations of S5

In this chapter, we study the µ-calculus’ alternation hierarchy over frames of variants
of S5. We begin by studying non-normal semantics, where the necessitation rule
ϕ ` �ϕ does not hold. We then take a look at graded semantics; here we have
formulas such as ♦>1ϕ, stating the existence of more than one accessible world
satisfying ϕ. Next, we study intuitionistic semantics, where the law of the excluded
middle does not holds. On these semantics, the alternation hierarchy is going
to collapse to modal logic. These are all semantics considered in the context of
epistemic logic. Variations of Theorem 21 also hold for these semantics; we omit
them for simplicity’s sake.

Another semantics studied in epistemic logic is multimodal semantics, where
we have more than one pair of� and ♦modalities. Here, the alternation hierarchy is
strict. We show its strictness using parity games and their winning region formulas.
Multimodal semantics is also used in model checking, a context where the µ-calculus
first appeared.

At last, we study inflationary semantics, where we allow the use of fixed-point
operators on non-positive variables. We show that the direct adaptation of the proof
of the collapse to modal logic is not enough to show the collapse with inflationary
semantics. We contrast this situation with the case over GL frames.

4.1 Non-normal modal logics

NON-NORMAL WORLDS. The modal logics we studied in chapters 2 and 3 were all
normal modal logics, that is, they satisfied the necessitation rule

(Nec)
ϕ

�ϕ
.

Every Kripke frame validates Nec. Therefore, to study logics where Nec doesn’t
hold, we need to modify our semantics.

We now consider Kripke models with non-normal worlds. In a non-normal
world, everything is possible and nothing is necessary. Non-normal were first

45
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considered by Kripke in [Kri65] as models to Lewis logics S2 and S3 [LL59].1 Non-
normal worlds are also known as impossible worlds. In epistemic logic, the neces-
sitation rule is a form of logical omniscience: if some statement is true, then every
agent knows that it is true.

For more information on non-normal worlds, see [Pri08] and [BJ22].

SEMANTICS. Non-normal Kripke models are tuples W = 〈W,N,R, V 〉 where W is a
set of worlds, R ⊆ W ×W is an accessibility relation, and V is a valuation on W ,
as in usual Kripke models; the set N ⊆W is the set of normal worlds. On normal
worlds, we interpret �ϕ and ♦ϕ as usual; in non-normal worlds, we interpret �ϕ
and ♦ϕ respectively as false and true. That is, we define:

• ‖�ϕ‖M = {w ∈ N | ∀v.wRv → v ∈ ‖ϕ‖M}; and

• ‖♦ϕ‖M = {w ∈ N | ∃v.wRv ∧ v ∈ ‖ϕ‖M} ∪ (W \N).

The defining conditions for the other formulas are unchanged from normal Kripke
models.

A non-normal Kripke modelM = 〈W,N,R, V 〉 satisfies a formula ϕ iffM,w |= ϕ
for all w ∈ N . If M satisfies ϕ, we write M |= ϕ. We define non-normal Kripke
frames as triples F = 〈W,N,R〉. We say that F satisfies a formula ϕ iff for all M
extending F , M |= ϕ. We write F |= ϕ when F satisfies ϕ.

Note that if F |= T + 4 + 5, then R � N ×N is an equivalence relation. One can
also suppose R ⊆ N ×N , as the valuation of formulas4ϕ on non-normal worlds
does not depend on the accessibility relation.

GAME SEMANTICS. We can adapt the µ-calculus’ standard game semantics for
Kripke models with non-normal worlds.2 As the definition of Kripke semantics for
non-normal worlds suggests, we need only to modify the positions of the forms
〈w,�ϕ〉 and 〈w,♦ϕ〉.

Let M = 〈W,N,R, V 〉 be a non-normal Kripke model, w ∈ W and ϕ be a µ-
formula. We define the non-normal evaluation game G(M,w |= ϕ). On a normal
world w, we proceed as in the usual game semantics, that is, on a vertex 〈w,4ϕ〉
either V or R choose a vertex w′ accessible from w and move to 〈w′, ϕ〉. If w is
non-normal, we treat �ϕ and ♦ϕ as the propositions ⊥ and >, respectively. So R
wins at 〈w,�ϕ〉 and V wins at 〈w,♦ϕ〉. Table 4.1 describe the possible moves for the
players in a non-normal evaluation game.

Theorem 30. Let M = 〈W,N,R, V 〉 be a non-normal Kripke model, w ∈ W and ϕ be a
µ-formula. Then

M,w |= ϕ iff V wins G(M,w |= ϕ), and
M,w 6|= ϕ iff R wins G(M,w |= ϕ).

Proof. The proof is the same as the proof of Theorem 12. On normal worlds, there
is no difference; on non-normal worlds, formulas of the forms �ϕ and ♦ϕ are
essentially the same as ⊥ and >.

1Models S2 are reflexive and models for S3 are reflexive and transitive. Equivalence relations are
models for the non-Lewis logic S3.5. Semantics for S1 were obtained by Cresswell in [Cre95].

2As far as I know, this game semantics do not appear in the literature.
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Table 4.1: Rules of evaluation games for non-normal µ-calculus.

Verifier Refuter
Position Admissible moves Position Admissible moves
〈w,ψ1 ∨ ψ2〉 {〈w,ψ1〉, 〈w,ψ2〉} 〈w,ψ1 ∧ ψ2〉 {〈w,ψ1〉, 〈w,ψ2〉}

〈w,♦ψ〉 and w ∈ N {〈v, ψ〉 | 〈w, v〉 ∈ R} 〈w,�ψ〉 and w ∈ N {〈v, ψ〉 | 〈w, v〉 ∈ R}
〈w,�ψ〉 and w 6∈ N ∅ 〈w,♦ψ〉 and w 6∈ N ∅
〈w,P 〉 and w 6∈ V (P ) ∅ 〈w,P 〉 and w ∈ V (P ) ∅
〈w,¬P 〉 and w ∈ V (P ) ∅ 〈w,¬P 〉 and w 6∈ V (P ) ∅

〈w, µX.ψX〉 {〈w, µX.ψX〉} 〈w, νX.ψX〉 {〈w, νX.ψX〉}
〈w,X〉 {〈w,ψX〉} 〈w,X〉 {〈w,ψX〉}

COLLAPSE TO MODAL LOGIC. We can show that the alternation hierarchy col-
lapses to modal logic over non-normal equivalence relations. We need only slight
modifications to the proof of Theorem 16.

As in transitive normal models, if two worlds are in the same strongly connected
component, then they satisfy the same formulas of the form4ϕ:

Lemma 31. Let M = 〈W,N,R, V 〉 be a transitive non-normal Kripke model, and w,w′ ∈
N , and wRw′Rw. If ϕ be a µ-formula, and 4 ∈ {�,♦}, then w ∈ ‖4ϕ‖M iff w′ ∈
‖4ϕ‖M .

Using Lemma 31, we can prove a non-normal version of Lemma 15. The proof is
essentially the same, but we need to take care of the case where the play end in a
position 〈w,ψ〉with w 6∈ N .

Lemma 32. If M = 〈W,N,R, V 〉 is a Kripke model where R is an equivalence relation,
and νX.ϕ is a well-named µ-formula, then ‖νX.ϕ‖M = ‖ϕ2(>)‖M and ‖µX.ϕ‖M =
‖ϕ2(⊥)‖M .

Proof. Let M = 〈W,N,R, V 〉 be a Kripke model where R is an equivalence relation.
Suppose νX.ϕ is a well-named µ-formula of the form α(4β(X)), with4 ∈ {�,♦}.
We show that ‖νX.ϕ‖M = ‖ϕ2(>)‖M .

Remember that ϕ0(X) := X and ϕn+1(X) := ϕ(ϕn(X)). As in Lemma 15, we
suppose that w ∈ ‖ϕ2(>)‖M and w 6∈ ‖ϕ3(>)‖M to get a contradiction. Again, the
two player V and R will play simultaneously the games G(M,w |= ϕ2(>)) and
G(M,w |= ϕ3(>)). In the former game, V uses their winning strategy σ, and, in the
latter, V plays moves analogous to the ones they did σ. Similarly, R uses his winning
strategy τ on the latter game, and a strategy analogous to τ on the former game.

The players continue both games until

1. they get to a position of the form 〈v, P 〉 (or 〈v,¬P 〉) in both games;

2. they get to positions of the form 〈v,4β(>)〉 in G2 and 〈v,4β(ϕ(>))〉 in G3,
with v ∈ N ; or

3. they get to positions of the form 〈v,4ψ(>)〉 in G2 and 〈v,4ψ(ϕ(>))〉 in G3

with v 6∈ N .
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Case 1 and 2 are proved as in Lemma 15, with the use of Lemma 14 replaced by
Lemma 31. We need only to consider Case 3: the players are in positions 〈v,4ψ(>)〉
in G2 and 〈v,4ψ(ϕ(>))〉 in G3 with v 6∈ N . Since σ is winning for V in G2 and τ is
winning for R in G3, M,v |= 4ψ(>) and M,v |= 4ψ(ϕ(>)). As v is non-normal, if
4 is �, then both must be false; and if4 is ♦, then both must be true. Either way,
we get a contradiction.

As all three cases end in contradictions, we can conclude that ‖νX.ϕ‖M =
‖ϕ2(>)‖M .

Again, we prove ‖µX.ϕ‖M = ‖ϕ2(⊥)‖M by a direct calculation:

µX.ϕ ≡ ¬νX.¬ϕ(¬X) ≡ ¬(¬ϕ(¬¬ϕ(¬>))) ≡ ϕ(ϕ(⊥)).

The proof of the alternation hierarchy’s collapse to modal logic over non-normal
equivalence relations is now the same as proof for normal equivalence relations, but
using Lemma 32:

Theorem 33. The alternation hierarchy collapses to modal logic over non-normal equiva-
lence relations.

NEIGHBORHOOD MODELS. Another way to evade the necessitation rule is to use
neighborhood models. A neighborhood model is a tuple M = 〈W,N , V 〉, where
W is a set of possible worlds, N : W → P(P(W )) is a neighborhood function,
and V is a valuation function. Given w ∈ W , the elements of N (w) are called the
neighborhoods of w.

As in the case of non-normal worlds, to define the semantics for neighborhood
models we need only to define the valuation of formulas �ϕ and ♦ϕ:

• w |= �ϕ iff ‖ϕ‖M ∈ N (w); and

• w |= ♦ϕ iff ‖¬ϕ‖M 6∈ N (w).

For more on neighborhood models, see [Che80] and [Pac17]. Neighborhood seman-
tics is also known as Scott–Montague semantics.

Neighborhood models are more general than non-normal Kripke models.

Proposition 34. Every non-normal Kripke model M = 〈W,N,R, V 〉 is equivalent to a
neighborhood model Mnbhd = 〈W,N , V 〉.

Proof. We only need to define the neighborhood function N . The set of worlds
and valuation of Mnbhd are the same as those of M . Let w ∈ W . If w ∈ N , define
wR = {w′ | wRw} and N(w) = {S ⊆ W | wR ⊆ S}. If w 6∈ N , define N(w) = ∅.
Then M,w |= ϕ iff M ′, w |= ϕ, for all formula ϕ.

The following examples show a non-normal Kripke model along with its equiva-
lent neighborhood model, and a neighborhood model which is not equivalent to
any non-normal Kripke model.

Example 13. Let M = 〈W,N,R, V 〉 be a non-normal Kripke model with

• W = {w, v, u};
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• N = {w, u};

• R = {〈w, v〉, 〈w, u〉, 〈u, v〉}; and

• valuation V (P ) = ∅ for all proposition P .

The model M is modally equivalent to the neighborhood Mnbhd = 〈W,N , V 〉with
neighborhood function defined by

N (w) = {{v, u}, {w, v, u}}; and
N (v) = N (u) = {{v}, {v, u}, {w, v}, {w, v, u}}.

M and Mnbhd are represented in Figure 4.1.

Example 14. Let N = 〈W,N , V 〉 be a neighborhood model with:

• W = {w, v, u};

• N (w) = {{w}, {w, v, u}};

• N (v) = {∅}, N (u) = ∅; and

• V (P ) = {w}, V (Q) = {w, v}.

There is no non-normal Kripke equivalent to N .
Here, we have that N,w |= �(P → Q) and N,w |= �P , but N,w 6|= �Q.

Furthermore, N, v 6|= �> and N, v |= �⊥. N is represented in Figure 4.1.

M
w

u

v

Mnbhd

w v u

{w, v, u}{v, u} {w, v} {v}

N
w
P,Q

v
Q

u

{w, v, u} {v} ∅

Figure 4.1: The non-normal model M and the equivalent neighborhood model
Mnbhd from Example 13; along with the neighborhood model N from Example 14.

The neighborhood models obtained from non-normal Kripke models are regular
neighborhood models, that is, they satisfy the axiom

(Df♦) ♦ϕ↔ ¬�¬ϕ

and validate the inference rule

(Reg)
ϕ ∧ ψ → θ

�ϕ ∧�ψ → �θ
.
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If M = 〈W,N〉 is a regular neighborhood frame, then the following properties
hold: if A ⊆ B ⊆ W and A ∈ N (w), then B ∈ N (w); and, if A,B ∈ N (w), then
A ∩B ∈ N (w).

On a model extending regular neighborhood frame, if ϕ(X) is a µ-formula, and
X is positive in ϕ(X), then the operator Γϕ(X) is monotone. Therefore the µ-calculus
is well-defined on regular neighborhood model. But the µ-calculus can also be
extended to a greater class of frames. We say a neighborhood frame is monotone iff
it satisfies the axiom Df♦ and validates the inference rule

(Mon)
ϕ→ ψ

�ϕ→ �ψ
.

On a monotone frame, if A ⊆ B ⊆W and A ∈ N (w) then B ∈ N (w).
Again, on a model extending neighborhood frame, if ϕ(X) is a µ-formula, and X

is positive in ϕ(X), then the operator Γϕ(X) is monotone. Therefore the µ-calculus is
also well-defined on monotone neighborhood frames. As in normal Kripke models,
modal axioms define classes of Kripke frames.

Proposition 35. Let F = 〈W,N〉 be a neighborhood frame. Then

• F satisfies T iff w ∈
⋂
N | N ∈ N (w), for all w ∈ F ;

• F satisfies 4 iff X ∈ N (w) implies {v | X ∈ N (v) ∈ N (w); and

• F satisfies 5 iff X 6∈ N (w) implies {v | X 6∈ N (v) ∈ N (w).

We have the following question:

Question 2. Does the µ-calculus’ alternation hierarchy collapse to modal logic over mono-
tone neighborhood frames which satisfy the axioms T , 4 and 5?

4.2 Graded modal logics

We generalize the modalities � and ♦ to modalities �≤n and ♦>n, for n ∈ ω. The
formula �≤nϕ holds at a world w iff there are at most n pairwise different worlds
accessible from w where ϕ fails. A formula �>nϕ holds at a world w iff there are
more than n pairwise different worlds accessible from w where ϕ holds. We follow
[van92] in our treatment of graded modalities.

BASIC DEFINITIONS. The graded µ-formulas are defined by the grammar

ϕ := P | ¬P | X | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | �≤nϕ | ♦>nϕ | µX.ϕ | νX.ϕ.

�≤n and ♦>n are dual. That is �≤nϕ is equivalent to ¬♦>n¬ϕ. As in the µ-calculus,
every graded µ-formula is equivalent to a well-named graded µ-formula.

Kripke semantics for graded modalities are similar to Kripke semantics for the
standard µ-calculus. We use the same Kripke models M = 〈W,R, V 〉, with

• w ∈ ‖�≤nϕ‖M iff |{v ∈W | wRv and v ∈ ‖ϕ‖M}| ≤ n; and

• w ∈ ‖♦ϕ‖M iff |{v ∈W | wRv and v ∈ ‖ϕ‖M}| > n.
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As each variable occurring in a graded µ-formula ϕ is positive, the semantics for
µX.ϕ and νX.ϕ as fixed-points is well-defined.

Proposition 36. Graded modal logic is stronger than modal logic.

Proof. Consider the Kripke models M = 〈{w0}, {〈w0, w0〉}, V (P ) = {w0}〉 and N =
〈{v0, v1}, {〈v0, v0〉, 〈v0, v1〉, 〈v1, v0〉, 〈v1, v1〉}, V (P ) = {v0, v1}〉. The modelsM andN
are bisimilar via B = {〈w0, v0〉, 〈w0, v1〉}.

Note that M,w0 6|= ♦>1P and N, v0 |= ♦>1P . If ♦>1P was equivalent to a modal
formula, then we would have M,w |= ♦>1ϕ, as bisimulations preserve the truth of
modal formulas. This is impossible.

GAME SEMANTICS. We modify the µ-calculus’ game semantics to obtain a game
semantics with graded modalities. Intuitively, on a position 〈w,�≤nϕ〉, R needs to
choose n+ 1 worlds accessible from w where (R thinks) ϕ fails; to refute R’s choice,
V needs only to show that ϕ holds in one of these worlds. We embed V’s choice into
the evaluation game, and so we do not need to play n+ 1 simultaneous games, only
one game. The case for a position 〈w,♦>nϕ〉 is analogous: V picks n+ 1 worlds, and
R picks one to show that ϕ fails.

Formally, when the players are in a position 〈w,♦>nϕ〉, V chooses a list of n+ 1
pairwise different accessible worlds 〈w0, . . . , wn〉 and move to 〈〈w0, . . . , wn〉, ϕ〉. R
chooses one of the wi, and moves to 〈wi, ϕ〉. When the players are in a position
〈w,�nϕ〉, R chooses a list of pairwise different accessible worlds 〈w1, . . . , wn〉, moves
to 〈[w0, . . . , wn], ϕ〉. V then chooses one of thewi and moves to 〈wi, ϕ〉. To distinguish
V’s lists and R’s lists, we denote the list of worlds chosen by R by [w1, . . . , wn], using
square brackets.

The game semantics is equivalent to the standard semantics:

Theorem 37. Let M = 〈W,R, V 〉 be a Kripke model, w ∈W and ϕ be a graded µ-formula.
Then

M,w |= ϕ iff V wins G(M,w |= ϕ), and
M,w 6|= ϕ iff R wins G(M,w |= ϕ).

Proof. Similar to the proof of Theorem 12.

COLLAPSE TO MODAL LOGIC. As in standard µ-calculus, the evaluation of formulas
of the form �≤ϕ (or ♦>nϕ) is the same on all worlds in a same equivalence class.

Lemma 38. Let M = 〈W,R, V 〉 be a Kripke model where R is an equivalence class, and
worlds w,w′ ∈ N . If ϕ is a graded µ-formula and4 ∈ {�≤n,♦>n}, then

w ∈ ‖4ϕ‖M iff w′ ∈ ‖4ϕ‖M .

Proof. Suppose M = 〈W,R, V 〉 is a Kripke model and R is an equivalence relation.
Fix two worlds w and w′ such that wRw′ Suppose w ∈ ‖♦>n‖M . There are pairwise
distinct w0, . . . , wn such that wRwi and wi ∈ ‖ϕ‖M , for all i ≤ n. Since R is an
equivalence relation, w′Rwi for all i ≤ n. Therefore w′ ∈ ‖♦>nϕ‖M too. The proof
that w′ ∈ ‖♦>nϕ‖M implies w ∈ ‖♦>nϕ‖M is symmetric.
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Table 4.2: Rules of evaluation games for the graded modal µ-calculus.

Verifier
Position Admissible moves
〈w,ψ1 ∨ ψ2〉 {〈w,ψ1〉, 〈w,ψ2〉}

〈w,♦nψ〉 and w ∈ N {〈〈w0, . . . wn〉, ψ〉 | 〈w,wi〉 ∈ R for all i ≤ n and i 6= j implies wi 6= wj}
〈[w0, . . . wn], ψ〉 {〈wi, ψ〉 | i = 1, . . . , n}

〈w,P 〉 and w 6∈ V (P ) ∅
〈w,¬P 〉 and w ∈ V (P ) ∅

〈w, µX.ψX〉 {〈w,ψX〉}
〈w,X〉 {〈w, µX.ψX〉}

Refuter
Position Admissible moves
〈w,ψ1 ∧ ψ2〉 {〈w,ψ1〉, 〈w,ψ2〉}

〈w,�nψ〉 and w ∈ N {〈[w0, . . . wn], ψ〉 | 〈w,wi〉 ∈ R for all i ≤ n and i 6= j implies wi 6= wj}
〈〈w0, . . . wn〉, ψ〉 {〈wi, ψ〉 | i = 1, . . . , n}

〈w,P 〉 and w ∈ V (P ) ∅
〈w,¬P 〉 and w 6∈ V (P ) ∅

〈w, νX.ψX〉 {〈w,ψX〉}
〈w,X〉 {〈w, νX.ψX〉}

Now, suppose w ∈ ‖�≤nϕ‖M . As R is an equivalence relation, the worlds
accessible from w′ are the same as the worlds accessible from w. Therefore there are
at most n worlds accessible from w′ where ϕ fail. That is, w′ ∈ ‖�≤nϕ‖M .

We can then show the key lemma for the graded µ-calculus:

Lemma 39. If M = 〈W,R, V 〉 is a Kripke model where R is an equivalence relation, and
νX.ϕ is a well-named graded µ-formula, then

‖νX.ϕ‖M = ‖ϕ2(>)‖M and ‖µX.ϕ‖M = ‖ϕ2(⊥)‖M .

Proof. Let M = 〈W,R, V 〉 be a Kripke model where R is an equivalence relation. We
suppose νX.ϕ is a well-named µ-formula of the form α(4β(X)), with4 ∈ {�,♦}.
We show that ‖νX.ϕ‖M = ‖ϕ2(>)‖M .

Remember that ϕ0(X) := X and ϕn+1(X) := ϕ(ϕn(X)). As in Lemma 15, we
suppose that w ∈ ‖ϕ2(>)‖M and w 6∈ ‖ϕ3(>)‖M to get a contradiction. The two
player V and R will play simultaneously the games G2 = G(M,w |= ϕ2(>)) and
G3 = G(M,w |= ϕ3(>)). In the former game, V uses their winning strategy σ, and,
in the later, V plays moves analogous to the ones they did σ. Similarly, R uses his
winning strategy τ on the later game, and a strategy analogous to τ on the former
game. For example, if V plays σ(〈v,♦>nψ(>)〉) = 〈〈v0, . . . , vn〉, ψ(>)〉, then they
play 〈〈v0, . . . , vn〉, ψ(ϕ(>))〉 in G3.

The players continue both games until they get to a position of the form 〈v, P 〉
(or 〈v,¬P 〉) in both games—which implies v ∈ V (P ) and v 6∈ V (P )—or they get
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to positions of the form 〈v,4β(>)〉 in G2 and 〈v,4β(ϕ(>))〉 in G3—which implies
v ∈ ‖4β(ϕ(>))‖M and v 6∈ ‖4β(ϕ(>))‖M . Either case gives a contradiction as in
Lemma 15.

Yet again, we prove ‖µX.ϕ‖M = ‖ϕ2(⊥)‖M by a direct calculation:

µX.ϕ ≡ ¬νX.¬ϕ(¬X) ≡ ¬(¬ϕ(¬¬ϕ(¬>))) ≡ ϕ(ϕ(⊥)).

Theorem 40. The graded µ-calculus’ alternation hierarchy collapses to graded modal logic
over equivalence relations.

Proof. We argue by structural induction on µ-formulas. Yet again, we only prove
the interesting cases.

Supposeϕ is equivalent to the graded modal formulaψ. Then�≤nϕ is equivalent
to �≤nψ and ♦>nϕ is equivalent to ♦>nψ, for all n ∈ ω.

Similarly, νX.ϕ is equivalent to νX.ψ. By Lemma 39, νX.ψ is equivalent to
ψ2(>), which is a graded modal formula. The same argument shows that µX.ψ is
equivalent to ψ2(⊥).

Therefore every graded µ-formula is equivalent to a graded modal formula over
equivalence relations.

4.3 Intuitionistic modal logic

We now consider IS5, an intuitionistic variant of S5. Over IS5, the excluded middle
fails and � is not the dual of ♦. That is, there are models where P ∨ ¬P fail and
worlds where �P ↔ ¬♦¬P fails. To study IS5, we need to modify our Kripke
frames. We follow [Sim94].

INTUITIONISTIC FRAMES. We can use Kripke frames to give semantics to intu-
itionistic logic. If F = 〈W,�〉 is an intuitionistic frame, then � is a transitive and
reflexive relation. On Kripke models for intuitionistic logic, we have an additional
requirement: if M = 〈W,�, V 〉 is an intuitionistic model, wRv and w ∈ V (P ), then
v ∈ V (P ).

The intuitionistic propositional formulas are given by the following grammar:

ϕ := P | ⊥ | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ.

Sometimes different symbols are used to differentiate classical and intuitionistic
versions of negation and implication. As we will not use both in our formulas, we
use the same symbols.

Over an intuitionistic model M = 〈W,�, V 〉, we define the valuation of formulas
as follows:

• ‖P‖M = V (P );

• ‖⊥‖M = ∅;

• ‖>‖M = W ;

• ‖¬ϕ‖M = {w | ∀v.if w � v then v 6∈ ‖ϕ‖M};

• ‖ϕ ∧ ψ‖M = ‖ψ‖M ∩ ‖ψ‖M ;
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• ‖ϕ ∨ ψ‖M = ‖ψ‖M ∪ ‖ψ‖M ; and

• ‖ϕ→ ψ‖M = {w | ∀v.if w � v then v ∈ ‖ϕ‖M implies v ∈ ‖ψ‖M}.

One can also define ¬ϕ as the abbreviation of ϕ→ ⊥.
One can think of the relation � as relating the amount of information contained

in worlds. In a intuitionistic Kripke modelM , if w � v andM,w |= ϕ thenM, v |= ϕ.
The proof is done by structural induction on formulas.

Example 15. The law of excluded middle does not hold on intuitionistic semantics.
Consider the model M = 〈W,�, V 〉 defined by W = {w, v, u}, R = {〈w, v〉, 〈w, u〉}
and V (P ) = {u}. Then

• M,w 6|= P and M,w 6|= ¬P .

• v |= ¬P .

• u |= P .

INTUITIONISTIC S5. The intuitionistic S5 (denoted by IS5) consists of all the intu-
itionistic tautologies; the inference rules

(Nec)
ϕ

�ϕ
and (MP)

ϕ ϕ→ ψ

ψ
;

and the axioms

• K := �(ϕ→ ψ)→ (�ϕ→ �ψ) ∧�(ϕ→ ψ)→ (♦ϕ→ ♦ψ),

• T := �ϕ→ ϕ ∧ ϕ→ ♦ϕ,

• 4 := �ϕ→ ��ϕ ∧ ♦♦ϕ→ ♦ϕ,

• 5 := ♦ϕ→ �♦ϕ ∧ ♦�ϕ→ �ϕ,

• FS := (♦ϕ→ �ψ)→ �(ϕ→ ψ),

• DP := ♦(ϕ ∨ ψ)→ ♦ϕ ∨ ♦ψ,

• N := ¬♦⊥.

BI-RELATIONAL FRAMES FOR IS5. We consider bi-relational Kripke frames F =
〈W,�,≡〉 where 〈W,�〉 is an intuitionistic frame, 〈W,≡〉 is an S5 frame, and the
following confluence conditions are satisfied:

• F = 〈W,�,≡〉 is forward confluent: w � w′ and w ≡ v imply there is v′ such
that v � v′ and w′ ≡ v′.

• F = 〈W,�,≡〉 is backward confluent: w ≡ v � v′ implies there is w′ such that
w � w′ ≡ v′.
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Figure 4.2: Schematics for forward and backward confluence.

The two confluence conditions are illustrated in Figure 4.2. We call such frames IS5
frames.A bi-relational model is a tuple 〈W,�,≡, V 〉 where 〈W,�,≡〉 is an IS5 frame,
V is a valuation, and if wRv and w ∈ V (P ), then v ∈ V (P ).

Let M = 〈W,�,≡, V 〉 be an IS5 frame. Then �ϕ holds at w iff, for all w′ �-
accessible from w and for all w′′ ≡-accessible from w′, ϕ holds at w′′. Similarly, ♦ϕ
holds at w iff, for all w′ �-accessible from w and there w′′ ≡-accessible from w′ such
that ϕ holds at w′′. That is,

• ‖�ϕ‖M = {w | ∀v � w∀u ≡ v.u ∈ ‖ϕ‖M}; and

• ‖♦ϕ‖M = {w | ∀v � w∃u ≡ v.u ∈ ‖ϕ‖M}.

Theorem 41 (Ono [Ono77], Fischer Servi [Fis78]). IS5 is complete over IS5 frames.

INTUITIONISTIC µ-FORMULAS. In the standard µ-calculus, we supposed every for-
mula is in negative normal form. We cannot do the same on intuitionistic semantics.
For example, ¬♦¬ϕ is not equivalent to �ϕ over intuitionistic semantics. Let X be a
variable symbol, then:

• X is positive and negative in P ;

• X is positive in X ;

• if Y 6= X , X is positive and negative in Y ;

• if X is positive (negative) in ϕ, then X is negative (positive) in ϕ;

• if X is positive (negative) in ϕ and ψ, then X is positive (negative) in ϕ ∧ ψ,
ϕ ∨ ψ, �ϕ, and ♦ϕ;

• if X is positive (negative) in ϕ, then X is negative (positive) in ϕ→ ψ;

• if X is positive (negative) in ψ, then X is positive (negative) in ϕ→ ψ;

• X is not free in ηX.ϕ.

The intuitionistic µ-formulas are defined by the following grammar:

ϕ := P | X | ⊥ | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | �ϕ | ♦ϕ | µX.ϕ | νX.ϕ,

where ηX.ϕ is defined iff X is positive in ϕ. Positiveness will guarantee that the
operators Γϕ(X) are monotone.
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Proposition 42. Fix a bi-relational model M = 〈W,�,≡, V 〉 and sets of worlds A ⊆ B ⊆
W . If X is positive in ϕ, then ‖ϕ(A)‖M ⊆ ‖ϕ(B)‖M . Symmetrically, if X is negative in
ϕ, then ‖ϕ(B)‖M ⊆ ‖ϕ(A)‖M .

Proof. We prove the proposition above by structural induction on µ-formulas. We
will only prove a few representative cases.

The cases of formulas of the form P , X , Y , ϕ ∧ ψ, and ϕ ∨ ψ, the proposition
follows by direct calculations. For example, suppose X is positive in ϕ ∨ ψ. Then X
is positive in ϕ and in ψ. Therefore:

‖(ϕ ∨ ψ)(A)‖M = ‖ϕ(A)‖M ∪ ‖ψ(A)‖M

⊆ ‖ϕ(B)‖M ∪ ‖ψ(b)‖M = ‖(ϕ ∨ ψ)(B)‖M .

The case for formulas of the form ηX.ϕ is trivial, as X is not free in ηX.ϕ.
The proof for formulas of the form ¬ϕ or ϕ → ψ is a little bit more complex.

SupposeX is positive in ϕ→ ψ, thenX is positive in ψ and negative in ϕ. Therefore:

w ∈ ‖(ϕ→ ψ)(A)‖M ⇐⇒ ∀v � w.v ∈ ‖ϕ(A)‖M implies ‖ψ(A)‖M

=⇒ ∀v � w.v ∈ ‖ϕ(B)‖M implies ‖ψ(B)‖M

⇐⇒ w ∈ ‖(ϕ→ ψ)(B)‖M .

Now, we prove the proposition for formulas are of the form �ϕ or ♦ϕ. Suppose
X is positive in �ϕ, then X is positive in ϕ. Therefore:

w ∈ ‖�ϕ(A)‖M ⇐⇒ ∀v � w∀u ≡ v.u ∈ ‖ϕ(A)‖M

=⇒ ∀v � w∀u ≡ v.u ∈ ‖ϕ(B)‖M

⇐⇒ w ∈ ‖�ϕ(B)‖M .

GAME SEMANTICS FOR INTUITIONISTIC µ-CALCULUS. We can also define game se-
mantics for intuitionistic µ-calculus. We now need to consider negation of formulas,
as we cannot assume formulas are in the negation normal form.

Fix a bi-relational model M = 〈W,�,≡, V 〉, a world w ∈W , and a µ-formula ϕ.
The evaluation game G(M,w |= ϕ) has two players. We call them I and II. The two
players will alternate the roles of Verifier and Refuter. The games begin at the state
〈w,ϕ〉, with I in the role of V and II in the role of R.

At a position of the form 〈v,¬ψ〉, R chooses v′ � v and challenges V to show that
M, v′ 6|= ϕ; that is, the game goes to the position 〈v′, ψ〉 and the players exchange
roles. Positions of the form 〈v, ψ → θ〉 is similar. In this case, R chooses v′ � v and V
chooses whether to show that M,v′ 6|= ψ or M,v′ |= θ; in case V chooses 〈v′, ψ〉, the
players exchange roles.

On a position of the form 〈v,�ψ〉, R chooses v′ and v′′ such that v � v′ ≡ v′′,
and then the game goes to the position 〈v′′, ψ〉. On a position of the form 〈v,♦ψ〉, R
chooses v′ � v, V chooses v′′ ≡ v′, and then the game goes to the position 〈v′′, ψ〉.

Theorem 43. Let M = 〈W,�,≡, V 〉 be an IS5 model, w ∈W and ϕ be a µ-formula. Then

I wins G(M,w |= ϕ) iff M,w |= ϕ, and
II wins G(M,w |= ϕ) iff M,w 6|= ϕ.
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Table 4.3: Rules of evaluation games for the intuitionistic modal µ-calculus.

Verifier
Position Admissible moves
〈w,ψ1 ∨ ψ2〉 {〈w,ψ1〉, 〈w,ψ2〉}
〈w,ψ0?ψ1〉 {〈w,ψ0〉 and exchange roles, 〈w,ψ1〉}
〈[w], ψ〉 {〈v, ψ〉 | w ≡ v}

〈w,P 〉 and w 6∈ V (P ) ∅
〈w, µX.ψX〉 {〈w,ψX〉}
〈w,X〉 {〈w, µX.ψX〉}

Refuter
Position Admissible moves
〈w,ψ1 ∧ ψ2〉 {〈w,ψ1〉, 〈w,ψ2〉}
〈w,¬ψ〉 {〈v, ψ〉 | w � w} and exchange roles

〈w,ψ1 → ψ2〉 {〈v, ψ0?ψ1〉 | w � w}
〈w,♦ψ〉 {〈〈v〉, ψ〉 | w � v}
〈w,�ψ〉 {〈[v], ψ〉 | w � v}
〈〈w〉, ψ〉 {〈v, ψ〉 | w ≡ v}

〈w,P 〉 and w ∈ V (P ) ∅
〈w, νX.ψX〉 {〈w,ψX〉}
〈w,X〉 {〈w, νX.ψX〉}

Proof. Similar to the proof of Theorem 12. Here, instead of players being verifier
and refuter, the players alternate the roles of verifier and refuter.

We define signatures as we did in Theorem 12, but we consider I-signatures
and II-signatures tracking the variables which each player does not want to appear
infinitely often. We can do this since, given ϕ and ηX.ψ ∈ Sub(ϕ), a player will
always have the same role in a position of the form 〈v, ψ〉.

COLLAPSE TO MODAL LOGIC. Yet again, for the third time in this chapter, we
generalize the proof of Lemma 15. We cannot prove Lemma 14 in intuitionistic
semantics, but we get a good enough lemma:

Lemma 44. If M = 〈W,�,≡, V 〉 is a bi-relational model, then �;≡ is transitive.

Proof. Suppose w � w′ ≡ v � v′ ≡ u. By backward confluence, there is u′ such that
w′ � u′ ≡ v′. By the transitivity of � and ≡, w � u′ ≡ u.

Lemma 45. Let M = 〈W,�,≡, V 〉 be a bi-relational model, ϕ be a µ-formula, and ρ
be a play of the evaluation game G(M,w |= ψ). For all i < len(ρ), if ρi = 〈v, ψ〉 and
ρi+1 = 〈v′, ψ′〉, then v �;≡ v′. Therefore if i < j and ρi = 〈v, ψ〉 and ρj = 〈v′, ψ′〉, then
v �;≡ v′.
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Lemma 46. Let M = 〈W,�,≡, V 〉 be a bi-relational model and w �;≡ w′. Then

M,w |= 4ϕ implies M,w′ |= 4ϕ,

where4 ∈ {�,♦}.

Proof. Suppose w �;≡ w′ and M,w |= ♦ϕ. For all v � w, there is u ≡ v such that
M,u |= ϕ. Let v, v′ be such that w � v ≡ w′ � v′. By downward confluence, there is
u such that v � u ≡ v′. By the transitivity of �, w � u. So there is u′ � w such that
u ≡ u′ and M,u′ |= ϕ. As v′ ≡ u ≡ u′, v′ ≡ u′. So for all v′ � w′ there is u′ ≡ v′ such
that M,u′ |= ϕ. That is, M,w′ |= ♦ϕ.

Lemma 47. Let M = 〈W,�,≡, V 〉 be a bi-relational model and ϕ be a formula where X is
positive. Then

‖µX.ϕ‖M = ‖ϕ2(>)‖M and ‖νX.ϕ‖M = ‖ϕ2(⊥)‖M .

Proof. We first show that ‖νX.ϕ‖M = ‖ϕ2(>)‖M . Let M = 〈W,R, V 〉 be a Kripke
model where R is an equivalence relation, and νX.ϕ is a well-named µ-formula. We
can also suppose that ϕ is of the form α(4β(X)) with4 ∈ {�,♦}.

We show that νX.ϕ is equivalent to ϕ2(>). As X is positive in ϕ(X), we have
that ‖ϕ3(>)‖M ⊆ ‖ϕ2(>)‖M . So we need only to show that ‖ϕ2(>)‖M ⊆ ‖ϕ3(>)‖M .

For a contradiction, suppose that w ∈ ‖ϕ2(>)‖M and w 6∈ ‖ϕ3(>)‖M . Then I has
a winning strategy σ for the evaluation game G2 = G(M,w |= ϕ2(>)); and II has a
winning strategy τ for the evaluation game G3 = G(M,w |= ϕ3(>)). We use σ and
τ to define strategies σ′ for I in G3 and τ ′ for II in G2. Remember that I starts on the
role of V and II starts on the role of R.

Yet again, we have the players use analogous strategies on both games. Suppose
the players are in positions 〈v, ψ(>)〉 in G2 and 〈v, ψ(ϕ(>))〉 in G3. Both positions
have the same owner, in the same role. That is, if I’s turn in some game, it is I’s turn
in both games; and the owner’s role is V in some game, their role is V in both games.
For example, suppose I is playing the role of R and the players are in positions
〈v,¬ψ(>)〉 and 〈v,¬ψ(ϕ(>))〉 in G2 and G3. If I plays σ(〈v,¬ψ(>)〉) = 〈v′, ψ(>)〉 in
G2, they play 〈v, ψ(ϕ(>))〉 in G3. After there moves, I is playing the role of V in both
games.

The players continue both games following the strategies described above until
they get to a position of the form 〈v, P 〉 in both games; or they get to positions of the
form 〈w′′,4β(>)〉 in G2 and 〈w′′,4β(ϕ(>))〉 in G3.

Case 1. Suppose the players are in a position 〈v, P 〉 in both games. Without loss
of generality, suppose I is V and II is R. As σ is winning for I in G2, v ∈ ‖P‖M . As
τ is winning for II in G3, v 6∈ ‖P‖M . And so we have a contradiction. A similar
contradiction is reached if I is R and II is V.

Case 2. Suppose the players are in positions of the form 〈w′′,4β(>)〉 in G2 and
〈w′′,4β(ϕ(>))〉 in G3. Without loss of generality, suppose I is V and II is R. As
τ is a winning strategy for II in G3, w′′ 6∈ ‖4β(ϕ(>))‖M . Previously, the players
must have been through some a position 〈w′,4β(ϕ(>))〉 in G2. As σ is a winning
strategy for I in G2, w′ ∈ ‖4β(ϕ(>))‖M . By Lemma 45, w′ �;≡ w′′. By Lemma 44,
w′′ ∈ ‖4β(ϕ(>))‖M since w′ ∈ ‖4β(ϕ(>))‖M . We have our contradiction.

Either way, we conclude that ‖ϕ2(>)‖M ⊆ ‖ϕ3(>)‖M . And so ‖νX.ϕ‖M =
‖ϕ2(⊥)‖M .
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In intuitionistic semantics, we cannot prove ‖µX.ϕ‖M = ‖ϕ2(⊥)‖M by a direct
calculation as before, as the proof of Lemma 15 required the use of the law of
excluded middle. But we can prove it directly.

First, ‖ϕ2(⊥)‖M ⊆ ‖µX.ϕ‖M holds as X is positive in ϕ(X). If we suppose there
is w such that w ∈ ‖µX.ϕ‖M and w 6∈ ‖ϕ2(⊥)‖M , we get a similar contradiction.

Theorem 48. Over models of IS5, every µ-formula is equivalent to a modal formula.

Proof. Yet one more time, we argue by structural induction on µ-formulas. We only
prove the interesting cases.

Suppose ϕ is equivalent to the modal formula ψ. Then �ϕ is equivalent to �ψ
and ♦ϕ is equivalent to ♦ψ.

Similarly, νX.ϕ is equivalent to νX.ψ. By Lemma 47, νX.ψ is equivalent toψ2(>),
which is a modal formula. The same argument shows that µX.ψ is equivalent to
ψ2(⊥).

Therefore every µ-formula is equivalent to a modal formula over models of
IS5.

4.4 Multimodal semantics

Consider the modal µ-calculus with two modalities �0 and �1, both satisfying S5.
We prove how to show the alternation hierarchy is strict in this setting via evaluation
games. We restrict ourselves to two modalities, as this will be enough to show the
strictness of the alternation hierarchy on multimodal S5. We also describe how the
methods used on S5 frames can be generalized for other frame classes.

FUSION LOGICS. Let L1 and L2 be modal logics with disjoint sets of modal operators.
The fusion L1 ⊗ L2 is the smallest modal logic which contains L1 and L2. We study
frames of S5⊗ S5 in this section. S5⊗ S5 is also known as S52. In general, if L is a
modal logic, define Ln by L⊗ · · · ⊗ L︸ ︷︷ ︸

n times

. For more on fusion logics, see [CC20; Kur07].

EPISTEMIC LOGIC. G is a finite group of agents. For each a ∈ G, let Kaϕ mean “the
agent a knows that ϕ is true”. Define “everyone knows” modality by

Eϕ :=
∧
a∈G

Kaϕ.

Then we define the common knowledge modality by

Cϕ := νX.ϕ ∧ Eϕ.

For any ϕ, Cϕ is not equivalent to any modal fomula, over frames where the
modalities Ka satisfy S5.

MULTIMODAL FORMULAS. Fix a nonempty set of labels Λ. The multimodal µ-
formulas are defined by the grammar below:

ϕ := P | ¬P | X | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | �0ϕ | ♦iϕ | �iϕ | µX.ϕ | νX.ϕ,
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where P are propositional symbols, X are variable symbols, and i ∈ Λ. We will
focus on the case Λ = {0, 1}.

MULTIMODAL SEMANTICS. Fix a nonempty set of labels Λ. A Kripke model is a
tuple M = 〈W, {Ri}i∈Λ, V 〉 consisting of a set W of possible worlds, an accessibility
relation Ri for each label i ∈ Λ, and a valuation function V . Semantics are defined
as in the standard µ-calculus, with the valuation of �i and ♦i depending on the
relation Ri:

• ‖P‖M = V (P );

• ‖X‖M [X 7→A] = A;

• ‖⊥‖M = ∅;

• ‖>‖M = W ;

• ‖¬P‖M = W \ ‖P‖M ;

• ‖ϕ ∧ ψ‖M = ‖ψ‖M ∩ ‖ψ‖M ;

• ‖ϕ ∨ ψ‖M = ‖ψ‖M ∪ ‖ψ‖M ;

• ‖�iϕ‖M = {w ∈W | ∀v.wRiv → v ∈ ‖ϕ‖M}, for i ∈ Λ;

• ‖♦iϕ‖M = {w ∈W | ∃v.wRiv ∧ v ∈ ‖ϕ‖M}, for i ∈ Λ;

• ‖µX.ϕ(X)‖M is the least fixed-point of Γϕ(X); and

• ‖νX.ϕ(X)‖M is the greatest fixed-point of Γϕ(X).

EVALUATION GAMES. Let Λ be a set of labels, M = 〈W, {R0}i∈Λ, V 〉 be a Kripke
model, w ∈ W , and ϕ be a well-named multimodal µ-formula. We define an
evaluation game G(M,w |= ϕ) to decide whether M,w |= ϕ as we did for the
unimodal µ-calculus

Again, the game G(M,w |= ϕ) has two players: verifier, who wants to show that
M,w |= ϕ; and refuter, who wants to show that M,w 6|= ϕ. We denote verifier by
V and refuter by R. The game positions are pairs 〈v, ψ〉where v is in W and ψ is a
subformula of ϕ. The game starts at 〈w,ϕ〉. The only difference from the games for
the unimodal µ-calculus is that there are more than one accessibility relation. The
players advance in the game graph as follows:

• at 〈v, ψ0 ∧ ψ1〉, R chooses one of 〈v, ψ0〉 and 〈v, ψ1〉;

• at 〈v, ψ0 ∨ ψ1〉, V chooses one of 〈v, ψ0〉 and 〈v, ψ1〉;

• at 〈v,�iψ〉, R chooses 〈v′, ψ〉with vRiv′;

• at 〈v,♦iψ〉, V chooses 〈v′, ψ〉with vRiv′;

• at 〈v, ηX.ψ〉, the players move to 〈v, ψ〉; and

• at 〈v,X〉, the players move to 〈v, ηX.ψ〉where ηX.ψ is a subformula of ϕ.
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We summarize the possible plays in Table 4.4.
As in the unimodal case, fame semantics and Kripke semantics are equivalent:

Theorem 49. Let M = 〈W,R, V 〉 be a Kripke model, w ∈W and ϕ be a µ-sentence, then

V wins G(M,w |= ϕ) iff M,w |= ϕ; and
R wins G(M,w |= ϕ) iff M,w 6|= ϕ.

Proof. The proof is the same as Theorem 12.

Table 4.4: Rules of evaluation games for multimodal µ-calculus.

Verifier Refuter
Position Admissible moves Position Admissible moves
〈w,ψ1 ∨ ψ2〉 {〈w,ψ1〉, 〈ψ2〉} 〈w,ψ1 ∧ ψ2〉 {〈w,ψ1〉, 〈w,ψ2〉}
〈w,♦iψ〉 {〈v, ψ〉 | 〈w, v〉 ∈ Ri} 〈w,�iψ〉 {〈v, ψ〉 | 〈w, v〉 ∈ Ri}

〈w,P 〉 and w 6∈ V (P ) ∅ 〈w,P 〉 and w ∈ V (P ) ∅
〈w,¬P 〉 and w ∈ V (P ) ∅ 〈w,¬P 〉 and w 6∈ V (P ) ∅

〈w, µX.ψX〉 {〈w, µX.ψX〉} 〈w, νX.ψX〉 {〈w, νX.ψX〉}
〈w,X〉 {〈w,ψX〉} 〈w,X〉 {〈w,ψX〉}

PARITY GAMES. Remember, parity game is a tuple P = 〈V∃, V∀, v0, E,Ω〉 where two
players ∃ and ∀move a token in the graph 〈V∃ ∪ V∀, E〉. We suppose V∃ and V∀ are
disjoint sets of vertices; E ⊆ (V∃ ∪ V∀)2 is a set of edges; and Ω : V∃ ∪ V∀ → n is a
priority function. If a player cannot move, then the other player wins. In an infinite
play ρ, the winner is determined by the following parity condition: ∃wins ρ iff the
longest priority which appears infinitely often in ρ is even; otherwise, ∀wins ρ. ∃
wins the parity game P iff ∃ has a winning strategy; a winning strategy for ∃ is a
function σ from V∃ to V∃ ∪ V∀, where, if ∃ follows σ, all resulting plays are winning
for them. Similarly, ∀wins P iff ∀ has a winning strategy.

Fix a parity game P = 〈V∃, V∀, v0, E,Ω〉. The set of winning positions for ∃ in P
is the set of positions v where ∃wins the parity game if the players start at v. That
is, v ∈ V∃ ∪ V∀ is a winning position for ∃ iff ∃ wins Pv = 〈V∃, V∀, v, E,Ω〉. We will
define µ-formulas Wn such that, if max{Ω(v | v ∈ V∃ ∪ V∀)}, then Wn defines the set
of winning positions for ∃ in P .

For technical convenience, we suppose all parity game is tree like. That is, for
all v ∈ V∃ ∪ V∀, there is no path v = v0R · · ·Rvn = v, for all n ∈ ω. Any parity game
P = 〈V∃, V∀, v0, E,Ω〉 can be unfolded into a tree-like parity game. In the unfolded
game, instead of moving to a node v, the players move to a fresh copy of v. The
unfolded parity game is bisimilar to the original game.

WINNING REGION FORMULAS. We define modified versions of Bradfield’s winning
region formulas [Bra98a] for parity games. For n ∈ ω, define:

Wn :=ηXn . . . νX0.∨
0≤i≤3

Qi ∧ ∨
0≤j≤n

[(Pj ∨ P∃ ∨ ♦r(i)(Qs(i) ∧Xj)) ∨ (Pj ∨ P∀ ∨�r(i)(Qs(i) → Xj))]

 .
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Here, r(i) is i ≡ modulo 2 and s(i) is i+ 1 ≡ modulo 4. We explain the intended
meaning of the proposition symbols below.

Let P = 〈V∃, V∀, v0, E,Ω〉 be a parity game. We represent P a the Kripke model
PK = 〈W,R0, R1, V 〉. Define W := V∃ ∪ V∀. Given v ∈W , d(v0, v) denotes the least
n such that v0R

nv. Define

• R0 := {〈v, v′〉, 〈v′, v〉 | d(v0, v) is even} ∪ {〈v, v〉 | v ∈W}; and

• R1 := {〈v, v′〉, 〈v′, v〉 | d(v0, v) is odd} ∪ {〈v, v〉 | v ∈W}.

The frame 〈W,R0, R1〉 is essentially the graph of P , with the arrows partitioned in
two alternating sets, and with their reverses added.

The proposition symbols P∃ and P∀ indicate the ownership of the positions:
v ∈ V (P∃) iff v ∈ V∃ and v ∈ V (P∃) iff v ∈ V∃. As V∃ ∪ V∀ = W and V∃ ∩ V∀ = ∅,
PK |= P∃ ∨ P∀ and PK |= ¬(P∃ ∧ P∀).

The proposition symbols P0, . . . , Pn indicate the parities of the positions: v ∈
V (Pi) iff Ω(v) = i. At each world, exactly one of the Pi will hold. The proposition
symbols Q0, Q1, Q2, Q3 are technical devices to control the flow of the game.

We set Q0 true at v0 and at each step we make the next Qi be true (looping back
to Q0). Formally, define: v ∈ V (Qi) iff d(v0, v) = i modulo 4.

Proposition 50. Let P = 〈V∃, V∀, v0, E,Ω〉 be a parity game and PK = 〈W,R0, R1, V 〉
be Kripke model defined above. If max{Ω(v) | v ∈W} ≤ n, then

PK , v0 |= Wn iff ∃ wins P .

Proof. Suppose PK, w0 |= Wn. Let σ be a winning strategy for V in the evaluation
game G := G(PK, v0 |= Wn). We define a winning strategy σ′ for ∃ in P while
playing simultaneous runs of G and P .

The games G and P start at positions 〈v0,Wn〉 and v0, respectively. In G, have
the players move to the position〈
v0,

∨
0≤i≤3

Qi ∧ ∨
0≤j≤n

[(Pj ∨ P∃ ∨ ♦r(i)(Qs(i) ∧Xj)) ∨ (Pj ∨ P∀ ∨�r(i)(Qs(i) → Xj))]

〉 .

Now, suppose the players are at positions〈
v,

∨
0≤i≤3

Qi ∧ ∨
0≤j≤n

[(Pj ∨ P∃ ∨ ♦r(i)(Qs(i) ∧Xj)) ∨ (Pj ∨ P∀ ∨�r(i)(Qs(i) → Xj))]

〉 .

in G and v in P . As σ is winning for V in G, σ does not make any immediately losing
move. That is, V picks i = d(v0, v) modulo 4, j = Ω(v) and P∃ or P∀ according to v’s
owner. We also have ∀make non-immediately losing moves. We have two possible
cases.

Case 1. The players are in the position 〈v,♦r(i)(Qs(i) ∧Xj)〉 in G. Then v is a
position for ∃ in P . If v′ is such that σ(♦r(i)(Qs(i) ∧ Xj)) = 〈v′, Qs(i) ∧Xj〉, then ∃
moves to σ′(v) := v′ in P .

Case 2. The players are in the position 〈v,�r(i)(Qs(i) → Xj)〉 in G. Then v is a
position for ∀ in P . If ∀moves to v′, have R move to 〈v′, Qs(i) → Xj)〉 in G.
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Now, have the players regenerate Xj in G and move until they get to a position
of the form〈
v,

∨
0≤i≤3

Qi ∧ ∨
0≤j≤n

[(Pj ∨ P∃ ∨ ♦r(i)(Qs(i) ∧Xj)) ∨ (Pj ∨ P∀ ∨�r(i)(Qs(i) → Xj))]

〉 .

again. We are back to the initial situation. Repeat this process to define σ′.
We consider parallel runs ρ in G and ρ′ in P played according to σ and σ′,

respectively. Suppose the players are in a position v owned by ∃ in P . In G, V is in
a position 〈v,♦r(i)(Qs(i) ∧Xj)〉 in G. As σ is winning for V, there must be v′ such σ
makes V move to 〈v′, Qs(i) ∧Xj〉. By the definition of G, this means that vEv′, so ∃
has a move. Therefore, if ρ′ is finite, then the last position’s owner is ∀—therefore ∃
wins ρ′.

If ρ′ is infinite, ρ is also infinite. As ρ is won by V, the outermost infinitely often
occurring fixed-point operator is some νX2k. This means the greatest infinitely often
occurring parity in P is 2k, as the regenerated Xj depend on the parities. Therefore
∃wins ρ′.

On the other hand, suppose ∃wins P via σ′. We define σ for V in G. At vertices
of the form 〈v,♦r(i)(Qs(i) ∧Xj)〉 in G, have

σ(〈v,♦r(i)(Qs(i) ∧Xj)〉) := 〈v′, Qs(i) ∧Xj〉,

with v′ = σ′(v). On other positions, have σ be the non-immediately losing moves
for V.

Consider parallel runs ρ in G and ρ′ in P played according to σ and σ′, respec-
tively. If ρ is finite, then one of the players made a bad move, where one of the Qi,
Pj , P∃ or P∀ is false. By the definition of σ, V makes no such move. So it must be R’s
move, and so V wins.

If ρ is infinite, the greatest parity appearing infinitely often in ρ′ is even. Therefore
the outermost infinitely often occurring fixed-point operator in ρ is a ν-operator. ρ
is winning for V.

EVALUATION GAMES AS PARITY GAMES. Given a modelM = (W,R0, R1, V ), w ∈W
and a bimodal µ-formula ϕ we defined the evaluation game G(M,w |= ϕ) for
M,w |= ϕ. This evaluation game is equivalent to the parity game GP(M,w |=
ϕ) = 〈V∃, V∀, v0, E,Ω〉. The set of positions V∃ consists of the positions for V in
G(M,w |= ϕ); and V∀ consists of the positions for ∀. The set of edges E consists
of the transitions of V in G(M,w |= ϕ). The initial position v0 is 〈w,ϕ〉. Define the
parity function:

• Ω(〈v, µX.ψ〉) = 2(i+ ε)− 1 if µX.ψ ∈ Σµ
2i+ε \Πµ

2i+ε;

• Ω(〈v, νX.ψ〉) = 2i if νX.ψ ∈ Πµ
2i+ε \ Σµ

2i+ε;

• Ω(〈v, ψ〉) = 0 for ψ not of the form ηX.ψ;

where ε ∈ {0, 1}.
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Proposition 51. Let M = (W,R0, R1, V ) be a bimodal Kripke model, w ∈ W , and ϕ a
bimodal µ-formula. Then:

V wins G(M,w |= ϕ) ⇐⇒ ∃ wins GP(M,w |= ϕ).

Proof. Denote G(M,w |= ϕ) by G and GP(M,w |= ϕ) by GP. As both games are on
the same board, strategies for V and R in G are strategies for ∃ and ∀ in GP. As any
position is owned by V in G iff it is owned by ∃ in G, any finite run is winning for V
iff it is winning for ∃.

Consider an infinite run ρ. The parity Ω(〈v, ψ〉) is odd iff ψ is strictly in Σk

for some k ∈ ω. That is, ψ ∈ Σµ
k \ Πµ

k . If the greatest infinitely often occurring
parity in ρ is odd, then some µX.ψ is the outermost infinitely often occurring
fixed-point formula. Otherwise, if µX.ψ ∈ Sub(νY.θ) and νY.θ is the outermost
infinitely occurring fixed-formula formula, then Ω(〈v, νY.θ〉) ≥ Ω(〈v, µX.ψ〉) is even.
Similarly, if the greatest infinitely often occurring parity in ρ is even, then some
νX.ψ is the outermost infinitely often occurring fixed-point formula. Either way, ρ
is winning for V in G iff ρ is winning for ∃ in GP.

Furthermore, given an evaluation game G(M,w |= ϕ), we define the Kripke
model GK(M,w |= ϕ) as (GP(M,w |= ϕ))K.

Theorem 52. Let M = (W,R0, R1, V ) be a bimodal Kripke model, w ∈ W , and ϕ a
bimodal µ-formula. Then:

M,w |= ϕ iff GK(M,w |= ϕ), 〈w,ϕ〉 |= Wn,

as long as the greatest parity used in the evaluation game is less or equal than n.

Proof. We prove this theorem using the results above:

M,w |= ϕ iff V wins G(M,w |= ϕ)

iff ∃wins GP(M,w |= ϕ)

iff GK(M,w |= ϕ), 〈w,ϕ〉 |= Wn.

The first equivalence holds by Theorem 49, the second one follows from 51, the third
one follows from 50

Let GK(M,w |= ϕ) be the pointed Kripke model representing the parity game
GP(M,w |= ϕ).

A FIXED-POINT LEMMA. Given a formula ϕ, define fϕ(M,w) = (GK(M,w |=
ϕ), 〈w,ϕ〉). That is, fϕ maps a pointed model to its evaluation game with respect to
ϕ (as a pointed Kripke model).

Let (M0, w0) = 〈W0, R0,0, R0,1, V0, w0〉 and (M1, w1) = 〈W1, R1,0, R1,1, V1, w1〉 be
pointed transition systems without loops in their graphs. (M0, w0) is isomorphic to
(M1, w1) iff there is a bijection I : W0 →W1 such that:

• I(w0) = w1;

• for all w,w′ ∈W0, wR0,0w
′ iff I(w)R1,−I(w′);



CHAPTER 4. ALTERNATION HIERARCHY ON VARIATIONS OF S5 65

• for all w,w′ ∈W0, wR0,1w
′ iff I(w)R1,1I(w′); and

• for all w ∈W , w ∈ V0(P ) iff I(w) ∈ V1(P ).

For all n ∈ ω, let (M � n,w) be the submodel of (M,w) obtained by restricting W to
worlds with distance less than n from w. We say (M,w) is n-isomorphic to (N, v) if
and only if (M � n,w) is isomorphic to (N � n, v). For any (M,w), (M � 0, w) is an
empty Kripke model. we assume empty Kripke models to be isomorphic.

Lemma 53. Fix some µ-formula ϕ. If (M,w) and (N, v) are n-isomorphic via a function
I , fϕ∧ϕ(M,w) and fϕ∧ϕ(N, v) are (n+ 1)-isomorphic via the function J defined by

J(〈w,ψ〉) = (〈I(w), ψ〉), for w ∈WM and ψ ∈ Sub(ϕ).

Proof. As (M,w) and (N, v) are n-isomorphic, the evaluation games G(M,w |= ϕ∧ϕ)
and G(N, v |= ϕ ∧ ϕ) are going to be same for up to n-many plays from positions
〈w,4ψ〉 to positions 〈w′, ψ〉. As the first move in an evaluation game for the formula
ϕ ∧ ϕ is to choose between a conjunction, we can guarantee that the two games
above are the same up to n+ 1 moves.

Lemma 54. For all µ-formula ϕ, the function fϕ∧ϕ has a fixed-point (up to isomorphism).
That is, there is a model (M,w) such that fϕ(M,w) is isomorphic to (M,w).

Proof. Let (M0, w0) be an arbitrary pointed Kripke model. trivially, (M0, w0) and
fϕ∧ϕ(M0, w0) are 0-isomorphic.

For n ∈ ω, let us define (Mn+1, wn+1) = fϕ∧ϕ(Mw, wn). We already have that
(M0, w0) and (M1, w1) are 0-isomorphic. By Lemma 53, (Mw, wn) and (Mn+1, wn+1)
are (n+ 1)-isomorphic via induction on n.

For m > n, (Mn, wn) is n-isomorphic to (Mm, wm). Therefore, we define a
pointed Kripke model (M,w) which is n-isomorphic to (Mn, wn) for all n. To define
M , we identify (Mn � n,wn) and (Mn+1 � n,wn+1), as they are n-isomorphic. Take
the graph of M to be the union of the graph of the Mn � n, the valuation of M to be
the union of the valuation of the Mn � n and w as w0. Finally, we have that (M,w) is
isomorphic to fϕ∧ϕ(M,w). Otherwise, there world be n such that (Mn, wn) is not
n-isomorphic to (Mn+1, wn+1).

Theorem 55. Let n ∈ ω, then Wn is not equivalent to any formula in Σµ
n ∪ Πµ

n over S52

frames. Therefore the alternation hierarchy is strict over bimodal S5.

Proof. Let n be even. We know thatWn ∈ Πµ
n+1. For a contradiction, suppose that

Wn is equivalent to some formula in Πµ
n. Let ϕ ∈ Σµ

n be equivalent to ¬Wn.
Let (M,w) be a fixed-point of fϕ∧ϕ. Then

M,w |= ¬Wn ⇐⇒ M,w |= ϕ ∧ ϕ
⇐⇒ fϕ∧ϕ(M,w) |= Wn

⇐⇒ M,w |= Wn.

This is a contradiction.
The case for n odd is symmetric. Wn ∈ Πµ

n+1 if n is odd. Suppose Wn is
equivalent to some formula in Σµ

n. Let ϕ be a Πµ
n-formula equivalent to ¬Wn. If

(M,w) is a fixed-point of fϕ∧ϕ, then M,w |= ¬Wn iff M,w |= Wn.

Question 3. The alternation hierarchy is strict over finite unimodal frames. Is the alterna-
tion hierarchy strict over finite frames of bimodal S5?
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4.5 Inflationary µ-calculus

If X is not positive on ϕ(X), then the least and greatest fixed-point as we defined
above are not well-defined. Even so, we can define inflationary least and greatest
fixed-points. We will show that the proof of the collapse to modal logic over S5
studied above does not generalize to inflationary µ-calculus.

BASIC DEFINITIONS. Instead of the (monotone) least and gratest fixed-point opera-
tors µ and ν, we use inflationary fixed-point operators lfp and gfp. The formulas of
the inflationary µ-calculus are defined by the grammar

ϕ := P | X | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | lfpX.ϕ | gfpX.ϕ,

where P ∈ Prop and X ∈ Var. Note that we allow fixed-point operators to bind
non-positive occurrences of variables.

The inflationary µ-calculus is also interpreted over Kripke models. The semantics
for propositional connectives and modalities are as in the standard µ-calculus. Given
an inflationary µ-formula, define the operator Γϕ(X) : P(W )→ P(W ) by

X 7→ X ∪ ‖ϕ(X)‖M .

Γϕ(X) is a monotone operator. Note that if X is positive in ϕ, then the operator Γϕ(X)

is the same as the operator for the standard µ-calculus.
Dawar et al. proved that the inflationary µ-calculus is much more expressive than

the standard µ-calculus. [DGK04]. Evaluation games for the inflationary µ-calculus
were studied in [DGK06].

THE DE JONGH–SAMBIN THEOREM. The modal logic GL is obtained by adding the
axioms �P → ��P and �(�P → P )→ �P to the basic modal logic K. This logic
is complete over the class of transitive reverse well-founded frames. GL is central in
provability logic, with the �modality formalizing the provability predicate.

Alberucci and Facchini [AF09a] proved that the µ-calculus collapses to modal
logic over frames of GL. This is an instance of a classical theorem of provability
logic:

Theorem 56 (The de Jongh–Sambin Theorem [Smo85]). Let ϕ(X) be a modal formula
whose only free-variable is X . Over frames of GL, there is a unique modal formula ψ such
that ψ has no free-variables and ψ is equivalent to ϕ(ψ) over frames of GL.

This implies the inflationary µ-calculus collapses to modal logic over frames of GL.

A QUESTION. The collapses to modal logic of the standard µ-calculus over equiva-
lence relations and the inflationary µ-calculus over reverse well-founded transitive
frames leads us to the following question:

Question 4. Does the inflationary µ-calculus’ alternation hierarchy collapse to modal logic
over equivalence relations? If not, is the inflationary µ-calculus’ alternation hierarchy strict
over equivalence relations?
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We show that the proof considered in Section 3.1 does not work. This proof did
generalize to non-normal semantics, graded semantics, and intuitionistic seman-
tics. Do note that while the proof did use game semantics, we only needed game
semantics for modal logic.

Given a µ-formula ψ(X), define ψ0(⊥) := ⊥ and ψn+1(⊥) := ψn(⊥) ∨ ψ(ψn(⊥)).
As in the standard case, ψn(⊥) is the nth approximant of the least fixed-point lfpX.ψ.

Given n ∈ ω, define a formula ϕn by:

ϕn(X) := P0 ∨ [¬X ∧ P1 ∧ ♦(X ∧ P0)]

∨ [¬X ∧ P2 ∧ ♦(X ∧ P1)]

∨ [¬X ∧ P3 ∧ ♦(X ∧ P2)]

· · ·
∨ [¬X ∧ Pn ∧ ♦(X ∧ Pn−1)]

By a direct calculations, ϕi+1
n is equivalent to P0 ∨ · · · ∨ Pi. In particular lfpX.ϕn is

equivalent to ϕn+1
n and to P0 ∨ · · · ∨ Pn. Furthermore, µX.ϕn is not equivalent to ϕin

for any i ≤ n. So the proof of the Theorem 16 (or its generalized version Theorem
21) does not show that the inflationary µ-calculus collapses to modal logic over
equivalence relations. We were not able to show the collapse nor via a different
proof. We also were not able to show the non-collapse.



Chapter 5

The collapse to the alternation-free
fragment on Kripke semantics

In this chapter, we prove that the µ-calculus collapses to its alternation-free fragment
over weakly transitive frames—and frames which satisfy similar properties. Our
proof is a generalization of D’Agostino and Lenzi’s proof of the collapse over
transitive frames [DL10]. This is joint work with Kazuyuki Tanaka [PT22].

5.1 Weakly transitive frames

A DEFINITION. We say a frame F = 〈W,R〉 is weakly transitive iff wRvRu implies
wRu or w = u. Weakly transitive are characterized by the modal logic wK4. We
define wK4 by adding the axiom P ∧ �P → ��P to the basic modal logic K.
Esakia [Esa04] showed that wK4 is complete over weakly transitive frames and over
derivational topological semantics. He also showed that the finite model property
holds for wK4.

A LEMMA. Letϕ(X) be a µ-formula. Define by recursionϕ0(X) = X andϕn+1(X) =
ϕ(ϕn(X)), for all n ∈ N. Note that, since we suppose all formulas are well-named,
ϕn+1(X) is actually ϕ′(ϕn(X)), where ϕ′ is obtained by substituting the variables of
ϕ for fresh variables.

Proposition 57. Let ϕ(X) be a µ-formula. Over transitive frames,

♦µX.ϕ(X) ≡ ♦ϕ(⊥) and �νX.ϕ(X) ≡ �ϕ(>).

Proof. We first prove ♦µX.ϕ ≡ ♦ϕ(⊥). Fix a transitive Kripke model M = 〈W,R, V 〉
and a world w ∈W . We suppose W = {w}∪ {v | wRv}, as only w worlds accessible
from w affect the valuation of µ-formulas at w andR is transitive. SinceX is positive
in ϕ(X), w ∈ ‖♦ϕ(⊥)‖ implies w ∈ ‖♦µX.ϕ(X)‖.

Suppose now that w ∈ ‖♦µX.ϕ‖. Then v ∈ ‖µX.ϕ‖ for some v accessible from
w. As ‖µX.ϕ‖ is not empty, ‖ϕ(⊥)‖ is also not empty. Let v′ ∈ ‖ϕ(⊥)‖. Then wRv′

and so w ∈ ‖♦ϕ(⊥)‖.
The second equivalence follow from the first equivalence and a direct calculation:

�νX.ϕ(X) ≡ ¬♦µX.¬ϕ(¬X) ≡ ¬♦¬ϕ(¬⊥) ≡ �ϕ(>).

68
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The key lemma for the collapse over weakly transitive frames is:

Lemma 58. Let ϕ(X) be a µ-formula. Over weakly transitive frames,

♦µX.ϕ(X) ≡ ♦ϕ2(⊥) and �νX.ϕ(X) ≡ �ϕ2(>).

Proof. We first prove ♦µX.ϕ ≡ ♦ϕ2(⊥). Fix a Kripke model M = 〈W,R, V 〉 with
R weakly transitive and a world w ∈ W . By weak transitivity, we can suppose
W = {w} ∪ {v | wRv}, as only w worlds accessible from w affect the valuation of
µ-formulas at w. As X is positive in ϕ(X), w ∈ ‖♦ϕ2(⊥)‖ implies w ∈ ‖♦µX.ϕ(X)‖.

Suppose now that w ∈ ‖♦µX.ϕ‖. Then v ∈ ‖µX.ϕ‖ for some v accessible from
w. As ‖µX.ϕ‖ is not empty, ‖ϕ(⊥)‖ is also not empty. We now have two cases:

• If v ∈ ‖ϕ(⊥)‖ for some v accessible from w, then v ∈ ‖ϕ2(⊥)‖ and we have
finished the proof.

• Otherwise, ‖ϕ(⊥)‖ = {w} and wRw does not hold. If ‖ϕ(ϕ(⊥))‖ had no
element of W \ {w}, we would have ‖µX.ϕ‖ = {w}, a contradiction.

Therefore w ∈ ‖♦ϕ2(⊥)‖.
We show that ♦µX.ϕ ≡ ♦ϕ2(⊥) holds via a direct calculation:

�νX.ϕ(X) ≡ ¬♦µX.¬ϕ(¬X) ≡ ¬♦¬ϕ(¬¬ϕ(¬⊥)) ≡ ¬♦¬ϕ2(>) ≡ �ϕ2(>).

A QUESTION. The converse of Proposition 57 holds:

Proposition 59. If F |= ♦µX.ϕ(X) ≡ ♦ϕ(⊥) then F is transitive.

Proof. Let F = 〈W,R〉 be a frame which satisfies ♦µX.ϕ(X) ≡ ♦ϕ(⊥). Suppose
wRvRu. Consider the modelM = 〈W,R, V 〉 extending F with the valuation V (P ) =
{u}. Then M,w |= ♦µX.P ∨ ♦X ; and so M,w |= ♦P . Therefore wRu holds. We
conclude R is transitive.

But the converse of Proposition 58 fails:

Proposition 60. There is F such that F |= ♦µX.ϕ(X) ≡ ♦ϕ2(⊥) and F is not weakly
transitive.

Proof. Consider the frameF = 〈{w, v, u}, {〈w, v〉, 〈v, u〉}〉. WhileF satisfies♦µX.ϕ(X) ≡
♦ϕ2(⊥), it is not weakly transitive. We picture F in Figure 5.1.

M0

w v u

Figure 5.1: The frame F from Proposition 60.

Question 5. Which class of frames is characterized by ♦µX.ϕ(X) ≡ ♦ϕ2(⊥)? Which
class of frames is characterized by ♦µX.ϕ(X) ≡ ♦ϕn(⊥), for n > 2?



CHAPTER 5. THE COLLAPSE TO THE ALTERNATION-FREE FRAGMENT 70

5.2 Collapse over weakly transitive frames

In this section, we prove the alternation hierarchy’s collapse to its alternation-free
fragment over frames which satisfy

♦µX.ϕ(X) ≡ ♦ϕn(⊥) and �νX.ϕ(X) ≡ �ϕn(>)

for some fixed n ∈ ω. For ease of understanding, we do the proofs for n = 2 and
for general n. Remember that the n = 2 is enough to show the collapse for weakly
transitive frames.

EXISTENTIAL AND WEAKLY UNIVERSAL FORMULAS. Let ϕ be a well-named µ-
formula and X be a bound variable in ϕ. Let ψ be such that X occurs in ψ and
ηX.ψ ∈ Sub(ϕ). X is existential iff X is not in the scope of any � in ψ, that is, X is
only in the scope of diamonds. X is universal iff it not in the scope of any ♦ in ψ. X
is weakly universal iff X is in the scope of some � in ψ. X is weakly existential iff it is
in the scope of some ♦.

Example 16. Consider the formula ϕ below:

ϕ := νXνY νZ.(�X ∨ ♦Y ∨�♦Z).

X is universal and weakly universal in ϕ; Y is existential and weakly existential in
ϕ; and Z is weakly universal and weakly existential in ϕ.

Lemmas 62 and 63 below will allow us to eliminate weakly universal ν-variables.
Before doing so, we prove a small auxiliary lemma:

Lemma 61 (D’Agostino, Lenzi [DL10]). Let α and β be µ-formulas. Then

β(νX.α(�β(X))) ≡ νY.β(α(�Y )).

Proof. Let M = 〈W,R, V 〉 be a Kripke model. Fix a world w ∈W and µ-formulas α
and β. We show that V wins the evaluation game GLHS = G(M,w |= β(νX.α(�β(X))))
iff V wins GRHS = G(M,w |= νY.β(α(�Y ))). The evaluation games GLHS and GRHS

are essentially the same game.
Let σ be a strategy for V in GLHS. We define a strategy σ′ for V in GRHS while si-

multaneously playing GLHS and GRHS. The games start at positions 〈w, β(νX.α(�β(X)))〉
and 〈w, νY.β(α(�Y ))〉, respectively. The players begin by moving to the position
〈w, β(α(�Y ))〉 on GRHS.

After the initial play, the players use analogous moves in both games for a while.
For example, if they are in positions 〈v, (ψ ∨ θ)(νX.α(�β(X)))〉 and 〈v, (ψ ∨ θ)(α(�Y ))〉
and V moves to 〈v, ψ(νX.α(�β(X)))〉 on GLHS, then V moves to 〈v, ψ(α(�Y ))〉
on GRHS. Similarly, if the players are in positions 〈v,�ψ(νX.α(�β(X)))〉 and
〈v,�ψ(α(�Y ))〉 and R moves to 〈v′, ψ(α(�Y ))〉 on GRHS, then R moves to 〈v′, ψ(νX.α(�β(X)))〉
on GLHS.

The players continue using analogous moves until they reach positions 〈v, νX.α(�β(X))〉
and 〈v, α(�Y )〉, then they move to 〈v, α(�β(X))〉 on GLHS. Again, the players con-
tinue by using analogous moves. That happens until they reach 〈v, β(X)〉 and 〈v, Y 〉;
here, they move to 〈v, β(α(�Y ))〉 on GRHS. And so the players keep using analogous
moves or adjusting the positions on X and Y .



CHAPTER 5. THE COLLAPSE TO THE ALTERNATION-FREE FRAGMENT 71

GLHS

〈w, β(νX.α(�β(X)))〉

...

〈w, νX.α(�β(X))〉

〈w,α(�β(X)〉

...

〈w, β(X)〉

...

GRHS

〈w, νY.β(α(�Y ))〉

〈w, β(α(�Y ))〉

...

〈w,α(�Y )〉

...

〈w, Y 〉

〈w, β(α(�Y ))〉

...

Figure 5.2: Simultaneous runs of the evaluation games GLHS and GRHS from Lemma
61. Zigzagged lines indicate equivalent states.

Suppose σ is a winning strategy for V in GLHS and σ′ the strategy for GRHS

defined above. Let ρLHS, ρRHS be the parallel plays given by the procedure above.
If ρLHS ends on a position 〈v, P 〉, then ρRHS also ends on the position 〈v, P 〉. Both
are winning for V. Remember that we say X is regenerated when the players go
from a position 〈v,X〉 to a position 〈v, ηX.ψ〉. If ρLHS is an infinite play where X is
regenerated infinitely often, then Y is regenerated infinitely often in ρRHS; if ρLHS in
an infinite play where X is not regenerated infinitely often, then the same variables
are regenerated infinitely often in ρRHS. Either way, if ρLHS is winning for V, then
ρRHS is also winning for V.

Given a winning strategy σ′ for V in GRHS, we define σ for V in GLHS by the same
method as above.

Lemma 62. Suppose the formula νX.ϕ is well-named and X is weakly universal in it.
Then, over weakly transitive frames,

νX.ϕ(X) ≡ ϕ3(>).

Proof. As νXϕ is well-named and X is weakly universal variable, we can write
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νX.ϕ(X) as νX.α(�β(X)). We have that (see Lemma 3.8 of [DL10]). We calculate:

ϕ3(>) ≡ α(�β(α(�β(α(�β(>)))))) unfold ϕ3(>)

→ α(�β(α(�β(α(>))))) monotonicity
≡ α(�νY.β(α(�Y ))) Lemma 58
≡ α(�β(νX.α(�β(X)))) Lemma 61
≡ νX.α(�β(X)) ν is a fixed-point operator
≡ νX.ϕ(X) fold ϕ

So ϕ3(>) implies νX.ϕ(X). AsX is positive in ϕ, νX.ϕ(X) implies ϕ3(>). Therefore
νX.ϕ(X) and ϕ3(>) are equivalent.

Lemma 63. Suppose the formula νX.ϕ is well-named and X is weakly universal in it.
Then, over frames which satisfy ♦µX.ϕ(X) ≡ ♦ϕn(⊥),

νX.ϕ(X) ≡ ϕn+1(>).

Proof. Again, we can write νX.ϕ(X) as νX.α(�β(X)). Therefore:

ϕn+1(>) ≡ (α(�β))n(α(�β(>))) unfold ϕn+1(>)

→ (α(�β))n(α(�>)) monotonicity
≡ α(�[(β(α(�)))n(>)]) reorganize parenthesis
≡ α(�νY.β(α(�Y ))) hypothesis
≡ α(�β(νX.α(�β(X)))) Lemma 61
≡ νX.α(�β(X)) ν is a fixed-point operator
≡ νX.ϕ(X) fold ϕ

So ϕn+1(>) implies νX.ϕ(X). As X is positive in ϕ, we can show by induction that
νX.ϕ(X) implies ϕn+1(>). Therefore νX.ϕ(X) and ϕn+1(>) are equivalent.

We get the dual version of the Lemmas 62 and 63 above by direct calculations:

Lemma 64. Suppose the formula µX.ϕ is well-named and X is weakly existential in it.
Over weakly transitive frames,

µX.ϕ(X) ≡ ϕ3(⊥).

Over frames which satisfy ♦µX.ϕ(X) ≡ ♦ϕn(⊥),

µX.ϕ(X) ≡ ϕn+1(⊥).

BIDISJUNCTIVE FORMULAS. Just eliminating weakly universal and weakly existen-
tial fixed-point operators is not enough to show that all formulas are equivalent to
alternation-free formulas over frames which satisfy the equivalence ♦µX.ϕ(X) ≡
♦ϕn(⊥). To do so, we show that any µ-formula is equivalent to a bidisjunctive
formula. Bidisjunctive formulas were defined by D’Agostino and Lenzi in [DL10],
generalizing Janin and Walukiewicz’s disjunctive formulas [JW95].
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Let Γ be a finite set of µ-formulas, define

Cover(Γ) :=

∧
ϕ∈Γ

♦ϕ

 ∧�
∨
ψ∈Γ

ψ

 .

The class of disjunctive formulas is the least class containing all literals and closed
under:

• disjunctions;

• restricted fixed-points: if ϕ is disjunctive and there is no subformula of ϕ of
the form X ∧ ψ, then ηX.ϕ is disjunctive; and

• covers: if Γ is a finite set of disjunctive formulas and σ is a conjunction of
literals, then σ ∧ Cover(Γ) is also disjunctive.

Janin and Walukiewicz proved that every µ-formula is equivalent to a disjunctive
formula using tableaus for the µ-calculus. Furthermore, their proof imply that every
Πµ

2 -formula is equivalent to a disjunctive Πµ
2 -formula.

If Cover(Γ) is a subformula of ϕ and some variable X occurs in some formula
of Γ, then ϕ is not well-named, as X will occur twice in ϕ. To solve this problem,
D’Agostino and Lenzi defined the generalized cover operator Cover(Γ,∆). Let Γ,∆
be finite sets of µ-formulas, we define

Cover(Γ,∆) :=

∧
ϕ∈Γ

♦ϕ

 ∧�
 ∨
ψ∈∆

ψ

 .

The class of bidisjunctive formulas is the least class containing all literals and closed
under:

• disjunctions;

• restricted fixed-points: if ϕ is bidisjunctive and there is no subformula of ϕ of
the form X ∧ ψ, then ηX.ϕ is bidisjunctive; and

• covers: if Γ,∆ are finite sets of bidisjunctive formulas and σ is a conjunction
of literals, then σ ∧ Cover(Γ,∆) is also bidisjunctive.

Given a set of formulas Γ, let Γ′ consist of the formulas of Γ rewritten with fresh
variables. Given a disjunctive formula ϕ, we substitute every instance of Cover(Γ)
by Cover(Γ,Γ′); and for each new fresh variable X ′ where X was bounded in ϕ,
we substitute ηX by ηXηX ′. The obtained formula is going to be bidisjunctive.
Furthermore, if ϕ was Πµ

2 , so is the new formula.
Not only every formula is equivalent to a bidisjunctive formula, but we can

suppose there is a cover operator between any two alternating fixed-point operators.
That is, if µY.ψ is a subformula of νX.ϕ, then there is Cover(Γ,∆) such that µY.ψ is a
subformula of Cover(Γ,∆), and Cover(Γ,∆) is a subformula of νX.ϕ. Suppose µY.ψ
is a subformula of νX.ϕ, but there is no cover operator between these formulas. We
can substitute ψ(µY.ψ) for µY.ψ in νX.ϕ. As Y is guarded in µY.ψ, there is a cover
operator between the fixed-point operators in the newly defined formula.
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WEAKLY UNIVERSAL PRENEX FORM. We say a µ-formula ϕ is in weakly universal
prenex form iff it is of the form

νXk . . . νX1.ψ,

whereX1, . . . , Xk are weakly universal and ψ does not contain any weakly universal
occurrence of ν. Let ϕ := νX1.ψ be in weakly universal prenex form. By Lemmas
62 and 63, ϕ is equivalent to ψ3(>) over weakly transitive frames, and to ψn+1 over
frames where ♦µX.ϕ(X) ≡ ♦ϕn(⊥). Therefore we can eliminate weakly universal
occurrences of ν.

Now, suppose ϕ is not in weakly universal prenex form. Then ϕ has a smallest
subformula νX.ψ with X weakly universal. Let θ be such that ϕ = θ(νX.ψ). Since
νX.ψ is equivalent to ψ2(>), θ(νX.ψ) is equivalent to θ(ψ2(>)); on θ(ψ2(>)), we
note that, for every Y ∈ Sub(µX.ψ), if ηY appeared in θ, we substitute it by ηY ηY ′,
where Y ′ is the fresh variable which appears in ψ2(>). Now, if ϕ was a bidisjunctive
Πµ

2 -formula, the new formula is too bidisjunctive and Πµ
2 .

COLLAPSE TO THE ALTERNATION-FREE FRAGMENT. Let νX.ϕ be a bidisjunctive Πµ
2 -

formula without weakly universal occurrences of ν. We also suppose that between
any alternating fixed-point operators there is a cover operator. Suppose that there is
a biggest subformula µY.ψ of νX.ϕ with X ∈ Sub(ψ). By our hypothesis, there is a
smallest Cover(Γ,∆) ∈ Sub(νX.ϕ) such that µY.ψ is a subformula of some formula
in Γ or ∆. If µY.ψ was a subformula of a formula in ∆ then X would be weakly
universal. So µY.ψ is a subformula of some formula in Γ We can write Γ as

Γ = {θ1 ∨ (θ2 ∨ (· · · (θk ∨ µY.ψ) · · · )} ∪ Σ,

where the θi are µ-formulas and Σ is a set of µ-formulas. Let Cover(Γ′,∆) be

Γ′ = {θ1 ∨ (θ2 ∨ (· · · (θk ∨ ψn(⊥)) · · · )} ∪ Σ.

Over frames where♦µX.ϕ(X) ≡ ♦ϕn(⊥) holds, Cover(Γ,∆) is equivalent to Cover(Γ′,∆),
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as ♦ distributes over ∨:

Cover(Γ,∆) ≡

∧
ϕ∈Γ

♦ϕ

 ∧�
 ∨
ψ∈∆

ψ


≡ ♦(θ1 ∨ (θ2 ∨ (· · · (θk ∨ µY.ψ) · · · ) ∧

∧
ϕ∈Σ

♦ϕ

 ∧�
 ∨
ψ∈∆

ψ


≡ (♦θ1 ∨ (♦θ2 ∨ (· · · (♦θk ∨ ♦µY.ψ) · · · ) ∧

∧
ϕ∈Σ

♦ϕ

 ∧�
 ∨
ψ∈∆

ψ


≡ (♦θ1 ∨ (♦θ2 ∨ (· · · (♦θk ∨ ♦ψn(⊥)) · · · ) ∧

∧
ϕ∈Σ

♦ϕ

 ∧�
 ∨
ψ∈∆

ψ


≡ ♦(θ1 ∨ (θ2 ∨ (· · · (θk ∨ ψn(⊥)) · · · ) ∧

∧
ϕ∈Σ

♦ϕ

 ∧�
 ∨
ψ∈∆

ψ


≡

 ∧
ϕ∈Γ′

♦ϕ

 ∧�
 ∨
ψ∈∆

ψ

 .

Therefore, if we substitute Cover(Γ′,∆) for Cover(Γ,∆) in ϕ, we get a formula ϕ′

which is equivalent to ϕ. Furthermore, ϕ′ has one less pair of alternating variables
than ϕ; our choices of µY.ψ and Cover(Γ,∆) imply that no new alternating pair is
introduced in ϕ′.

Theorem 65. The alternation hierarchy collapses to the alternation-free fragment over
weakly transitive frames.

Proof. We can then suppose that ϕ is equivalent to a µ-formula ϕ′ such that: if
νX.ϕ ∈ Sub(ϕ′) then there is no µY.ψ ∈ Sub(νX.ϕ) with a free occurrence of X . As
we can build ϕ′ from Σµ

1 ∪Πµ
1 using only substitutions allowed in the construction

of both Σµ
2 and Πµ

2 , ϕ′ is ∆µ
2 . That is, ϕ′ is alternation-free and ϕ is equivalent to an

alternation-free formula.

Theorem 66. Fix n ∈ ω. The alternation hierarchy collapses to the alternation-free fragment
over frames where ♦µX.ϕ(X) ≡ ♦ϕn(⊥) holds.

Proof. We can then suppose that ϕ is equivalent to a µ-formula ϕ′ such that: if
νX.ϕ ∈ Sub(ϕ′) then there is no µY.ψ ∈ Sub(νX.ϕ) with a free occurrence of X . As
we can build ϕ′ from Σµ

1 ∪Πµ
1 using only substitutions allowed in the construction

of both Σµ
2 and Πµ

2 , ϕ′ is ∆µ
2 . That is, ϕ′ is alternation-free and ϕ is equivalent to an

alternation-free formula.

COLLAPSE TO FIRST-ORDER LOGIC. Let F class of frames. We say the alternation
hierarchy collapses to first-order logic over F when each µ-formula is equivalent to a
first-order formula over frames of F . Remember that modal logic is the fragment of
first-order logic invariant under bisimulations, and so is not equivalent to first-order
in general.

D’Agostino and Lenzi [DL10, Therem 4.1] proved:
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Theorem 67. The alternation hierarchy collapses to first-order logic on finite weakly transi-
tive frames.

We can ask if the same happens on the frames studied in this section.

Question 6. Fix n ∈ ω. Does the alternation hierarchy collapse to first-order logic on finite
frames where ♦µX.ϕ(X) ≡ ♦ϕn(⊥)?

We conjecture the answer is positive, and that this can be proved using D’Agostino
and Lenzi’s methods.

5.3 Collapse over topological semantics

TOPOLOGICAL SEMANTICS. We now define derivative topological models X =
〈W, τ, V 〉. As in a Kripke model, W is the set of possible worlds and V is the valua-
tion function. τ is a topology on W . We define the valuation ‖ϕ‖X inductively as in
relational semantics. The definition of the valuation of conjunctions, disjunctions,
negations, and fixed-points is the same as in relational semantics. We think of the ♦
modality as the Cantor derivative:

w ∈ ‖♦ϕ‖X iff w is a limit point of ‖ϕ‖X ,

where w is a limit point of a set X ⊆ W for all open set U , if x ∈ U then there is
y ∈ A such that y ∈ U \ {x}. We denote the Cantor derivative of a set A by A′. The
dual operator � of the derivative is called the co-derivative.

Interior topological semantics is also studied in the literature. We denote the box
modality for interior topological semantics by �i. Here the semantics for ‖�iϕ‖X
defined to be the interior of ‖ϕ‖X . The dual modality �i of the interior modality is
the closure modality: ‖�ϕ‖X is the closure of ‖ϕ‖X . The closure of a set X consists
of the points in X and the limit points of X . Therefore, the interior modality can
be defined using derivative topological semantics: �iϕ := ϕ ∧ ♦¬ϕ. This implies
derivative topological semantics is more expressive than interior topological seman-
tics. For more information on topological semantics see [BBF21; vB07]. Internal
topological semantics was first studied by McKinsey and Tarski in [MT44]—they
also suggested derivative topological semantics in the same paper.

McKinsey and Tarski [MT44] proved that S4 is complete for interior topological
semantics. Esakia [Esa04] showed that wK4 is complete for derivative topological
semantics. Furthermore, the finite model property holds for wK4.

Let X = 〈W, τ, V 〉 be a topological model and M = 〈W,R, V 〉 be a Kripke model.
We say X and M are modally equivalent iff ‖ϕ‖X = ‖ϕ‖M for all µ-formula ϕ. We
say topological space is Alexandroff iff arbitrary intersections of open sets are open.

Proposition 68. Each Alexandroff topological model is modally equivalent to an irreflexive
weak transitive model.

Proof. Let X = 〈W, τ, V 〉 be an Alexandroff topological space. Given A ⊆, let A′

denote the set of limit points of A. Define M = 〈W,R, V 〉 by taking wRv iff w ∈ {v}′.
M is irreflexive, as x 6∈ {x}′.
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Suppose that wRvRu and w 6= u. Since wRv, there is y ∈ U \ {w} such that
y ∈ {v}, for all open set U . Therefore w ∈ U implies v ∈ U \ {w}. Similarly, vRu
implies that if v ∈ U then u ∈ U \ {v}, for all open set U . Now, if U is an open set,
then w ∈ U , v ∈ U , and u ∈ U . Therefore, if w ∈ U then there is y ∈ {u} such that
y ∈ U \ {w}. That is, w ∈ {u}′. That is, wRu. Therefore M is weakly transitive.

We can show that X and M are modally equivalent by a straight proof by
structural induction.

FINITE MODEL PROPERTY FOR TOPOLOGICAL SEMANTICS. Note that wK4 is a modal
logic. We extend it to a logic µwK4 for the µ-calculus by adding the fixed-point
axiom

νX.θ → θ(νX.θ),

and the induction rule
ϕ→ θ(ϕ)

ϕ→ νX.θ
.

One can directly check that the fixed-point axiom and the induction rule are valid
over weakly transitive frames.

We will use the following result to relate the alternation hierarchies on weakly
transitive frames and derivative topological semantics:

Theorem 69 (Baltag et al. [BBF21]). µwK4 is complete for weakly transitive frames and
for derivative topological semantics. Furthermore, the µwK4 has the finite model property
with respect to these semantics—if a formula is satisfiable by some weakly transitive model,
then it is satisfiable by a finite weakly transitive model; and, if a formula is satisfiable by
some topological model, then it is satisfiable by a finite topological model.

This theorem is proved by using final canonical models, as the standard canonical
models are not amenable to µ-calculus. We outline the basic definitions for final
models below.

The canonical model Mc = 〈W c, Rc, V c〉 for µwK4 is defined as in modal logics
without fixed-points:

• W c consists of all maximal consistent extensions of µwK4;

• ΓRc∆ iff �ϕ ∈ Γ implies ϕ ∈ ∆, for all modal formula ϕ; and

• Γ ∈ V c(P ) iff P ∈ Γ.

The truth lemma does not hold for µwK4 and Mc.
Let ϕ be a formula and Σ be a set of formulas. We say a world Γ ∈W c is ϕ-final

iff

• ϕ ∈ Γ; and

• ϕ ∈ ∆ and ΓRc∆ imply ∆RcΓ.

A world Γ ∈W c is Σ-final iff it is θ-final for some θ ∈ Σ. Now we are ready to define
final models.

Define 〈∗〉ϕ := ϕ ∨ ♦ϕ. If ♦ satisfies wK4, then 〈∗〉 satisfies S4. Let ϕ be a consis-
tent formula. Let Σ be the least set which contains ϕ; is closed under subformulas;
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and is closed under 〈∗〉 and ¬ up to logical equivalence. Σ is a finite set. The truth
lemma holds on MΣ

c

Lemma 70 (Baltag et al. [BBF21]). Let MΣ
c be the restriction of Mc to Σ-final worlds, then

MΣ
c ,Θ |= ψ iff ψ ∈ Θ,

for all ψ ∈ Σ.

This implies that the µwK4 is complete for topological semantics. Furthermore,
as Σ is finite, if we take the quotient of Mc modulo Σ-bisimilarity, the resulting
model is finite. A Σ-bisimulation is like a bisimulation—instead of requiring that
bisimilar worlds satisfy the same propositions, we only require that they agree on
formulas of Σ.

THE COLLAPSE OVER TOPOLOGICAL SEMANTICS. The collapse of the alternation
hierarchy over weakly transitive Kripke frames implies the collapse over derivative
topological semantics:

Theorem 71. The alternation hierarchy collapses to its alternation-free fragment on deriva-
tive topological semantics.

Proof. Fix a µ-formula ϕ and a topological model X = 〈W, τ, V 〉. Suppose ϕ is not
equivalent to the alternation-free formula ψ. Theorem 69 implies that there is a finite
topological model Mϕ where ϕ is not equivalent to ψ. Any finite topological model
is Alexandroff, as infinite intersections of open sens are actually finite intersections.
By Proposition 68, Mϕ is modally equivalent to a Kripke model M ′ψ with a weakly
transitive accessibility relations. So ϕ and ψ are not equivalent over M ′ψ, they
are not equivalent over weakly transitive frames. This argument holds for any
alternation-free ψ; so if the alternation hierarchy collapses to its alternation-free
fragment over derivative topological semantics, then it al so collapses over weakly
transitive frames. This contradicts Theorem 65.

5.4 Other semantics and open problems

In Chapter 4, we studied variations of S5 over various alternative semantics. While
the strictness for multimodal S5 frames implies the strictness for multimodal S4
frames, we were not able to generalize the results of Sections 4.1, 4.2 and 4.3 to
variations of S4 and wK4 frames.

Question 7. Does the alternation hierarchy collapse to its alternation-free fragment over:

• non-normal weakly-transitive frames?

• graded semantics with weakly-transitive frames?

• intuitionistic weakly-transitive frames?

As with equivalence relations, we could not determine what happens to the
alternation hierarchy for the inflationary µ-calculus over transitive and weakly
transitive frames.
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Chapter 6

Reverse mathematics

In this chapter, we review second-order arithmetic and some of its subsystems.

6.1 Second-order arithmetic

In this subsection we review some basic definitions for reverse mathematics in
second-order arithmetic. The standard reference for reverse mathematics is Simp-
son’s monograph [Sim09]. See also Dzhafarov and Mummert [DM22], Hirschfeldt
[Hir15], and Stillwell [Sti18].

REVERSE MATHEMATICS. Simpson [Sim09] states the main question of reverse
mathematics as

Which set existence axioms are needed to prove the theorems of ordinary,
non-set-theoretic mathematics?

That is, we want to find axioms which are necessary and sufficient to prove theorems
of ordinary mathematics.

We work over a basic theory TB , which is expressive enough to define the
necessary concepts but not strong enough to prove the theorems under study. We
then prove the equivalence between an axiom ϕa and a theorem ϕt. When proving ϕt
from ϕa it is common to formalize a standard proof of ϕt—sometimes it is necessary
to find a new proof. We are doing reverse mathematics when we prove the reverse
implication from ϕt to ϕa.

SECOND-ORDER ARITHMETIC. The language L2 of second-order arithmetic consists
of the symbols 0, 1, +, ·, <, ∈ with two sorts of variables—variables for natural
numbers and for sets of natural numbers. Formulas are defined by the following
grammar:

ϕ := x ∈ X | t = t | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∀x.ϕ | ∃x.ϕ | ∀X.ϕ | ∃X.ϕ,

where t are terms. ∀ and ∃ are called quantifiers. We distinguish number and set
quantifiers. A bounded (number) quantifier is a quantifier of the forms ∃x < t.ϕ :=
∃x(x < t ∧ ϕ) and ∀x < t.ϕ := ∀x(x < t→ ϕ).

We say a formula is Σ0
0 iff it has only bounded number quantifiers; Σ0

k+1 iff it is
equivalent to some formula of the form ∃x.ϕ with ϕ ∈ Π0

k; Π0
k iff it is equivalent to

80
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the negation of a Σ0
k-formula; and ∆1

0 iff it is Σ0
k for some k. Let Σ1

0 = Π1
0 := ∆1

0. A
formula is Σ1

k+1 iff it is of the form ∃X.ϕ with ϕ ∈ Π1
k; and Π1

k iff it is equivalent to
the negation of a Σ1

k-formula. A formula is ∆i
k iff it is in Σ1

k and Π1
k. A formula is

Σk,X
k iff it is in Σi

k and its only set parameter is X . The formulas in ∆1
0 are known as

arithmetic formulas.
Second-order arithmetic Z2 consists of the axioms for discrete ordered semirings:

• n+ 1 6= 0;

• m+ 1 = n+ 1→ m = n;

• m+ 0 = m;

• m+ (n+ 1) = (m+ n) + 1;

• m · 0 = 0;

• m · (n+ 1) = m · n+m;

• ¬(m < 0);

• m < n+ 1↔ m < n ∨m = n;

full comprehension:
∃X∀n.n ∈ X ↔ ϕ(n),

for all formula ϕ where X is not free; and the induction axiom:

0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X)→ ∀n.n ∈ X.

An L2 structure is a tuple M = 〈|M |,SM , 0M , 1M ,+M , ·M , <M 〉; |M | is the quan-
tification domain of number variables; SM is the quantification domain of set vari-
ables and is a subset of the power set of |M |; 0M and 1M are elements of |M |; +M

and ·M are binary functions; and <M is a binary relation. We call structures by
models when they satisfy some theory under consideration. The intended model
for Z2 is

〈ω,P(ω), 0, 1,+, ·, <〉
consisting of the “real” set of natural numbers, its powerset, and the standard
interpretations for 0, 1, +, · and <.

A model M is an ω-model iff its first-order part |M | is the set of natural numbers
ω. If a model M is not an ω-model, then its first-order part includes non-standard
natural numbers. For more on non-standard natural numbers, see [Kay91]. We
reserve N for the set of natural numbers in second-order arithmetic and ω for the
“real” set of natural numbers.

THE BIG FIVE. The following subsystems of Z2 are called the big five:

• RCA0 contains the axioms for discrete ordered semirings; Σ0
1-induction:

ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1))→ ∀n.ϕ(n),

for all Σ0
1-formula; and ∆0

1-comprehension:

∃X∀n.n ∈ X ↔ ϕ(n),

for all ∆0
1-formula.
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• WKL0 is obtained by adding to RCA0 the weak König’s lemma: every infinite
binary tree has an infinite path.

• ACA0 is obtained by adding to RCA0 the scheme of arithmetical comprehen-
sion:

∃X∀n.n ∈ X ↔ ϕ(n),

for all ∆1
0-formula. We can alternatively characterize ACA0 by the existence of

Turing jumps: “for all X , the Turing jump TJ(X) of X exists”.

• ATR0 is obtained by adding to ACA0 the scheme of arithmetic transfinite
recursion. Intuitively, ATR0 states that the Turing jump can be iterated along
any well-order starting from any set.

• Π1
1-CA0 is obtained by adding to RCA0 the scheme of Π1

1-comprehension:

∃X∀n.n ∈ X ↔ ϕ(n),

for all Π1
1-formula. Alternatively, we can characterize Π1

1-CA0 by the existence
of hyperjumps: “for all X , the hyperjump HJ(X) of X exists”.

Let π0
1 be a universal lightface Π0

1-formula. See Section 6.2 for the definition of
universal lightface formulas. The Turing jump of X is the set {m | ¬π0

1(m,X)}. The
hyperjump of X is the set {〈m,w〉 | ∃f.π0

1(e,m, f,X)}.

Example 17. We usually take RCA0 as our base system. While it is enough to define
many concepts of ordinary mathematics, it is not strong enough to prove most
classical theorems. The system ACA0 is stronger than RCA0; and the system Π1

1-CA0

is stronger than ACA0. We can show that

• RCA0 proves the intermediate value theorem;

• ACA0 is equivalent to the Bolzano–Weierstrass theorem over RCA0; and

• Π1
1-CA0 is equivalent to the Cantor–Bendixson theorem over RCA0.

Therefore the Cantor–Bendixson theorem is strictly stronger that the Bolzano–
Weierstrass, which is strictly stronger than the intermediate value theorem.

OTHER SUBSYSTEMS. In addition to the big five, many other subsystems of Z2

are studied nowadays. For a general picture see the reverse mathematics zoo
at https://rmzoo.math.uconn.edu/ and https://www.computability.
org/zoo-viewer/. Some systems on the reverse mathematics zoo are also studied
in [DM22] and [Hir15].

We study in this thesis the subsystems below:

• ACA′0 is obtained by adding to RCA0 an axiom stating that arbitrary finite
iterations of the Turing jump exist: for all n ∈ N and X ⊆ N, there is a tuple
〈X0, . . . , Xn〉 such that X0 = X and Xk+1 = TJ(Xk) for all k < n.
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• Π1
1-CA′0 is obtained by adding “for all n and X , there is a sequence of coded

β-models 〈X0, . . . , Xn〉 such that X ∈ X0 and, for all i < n, Xi ∈ Xi+1 and
Xi ⊆β Xi+1” to RCA0. An alternative formulation is to add to RCA0 the
statement “for all n and X , the iterated hyperjump HJn(X) of X exists” to
RCA0.

• Strong Σ1
k-DC0 is ACA0 plus the following scheme:

∃Z∀n∀Y.(η(n, (Z)n, Y )→ η(n, (Z)n, (Z)n)),

where η(n,X, Y ) is a Σ1
k-formula in which Z does not occur, (Z)n = {〈i,m〉 |

〈i,m〉 ∈ Z ∧m < n}, and (Z)n = {i | 〈i, n〉 ∈ Z}.

• Π1
k-CA0 is obtained by adding to RCA0 Π1

1-comprehension:

∃X∀n.n ∈ X ↔ ϕ(n),

for all Π1
k-formula.

The following systems will be explained in detail in the sections below:

• [Σ1
1]k-ID states the existence of the sets inductively definable by combinations

of k-many Σ1
1-transfinite induction operators.

• Γ-Det states that every Gale–Stewart game with payoff definable by a formula
in Γ is determined.

• Γ-Ref(T ) states that all formula in Γ which is provable by the theory T is true.

While it has a natural definition, Π1
1-CA′0 did not appear in the literature before the

preprint [PY22]. Its naming is in parallel to ACA′0.

ω-MODELS AND β-MODELS. Let k ∈ ω, then M is a (coded) βk-model iff every
Π1
k-sentence ϕ with parameters inM is true inM iff it is true (in the ground model).

For k ≥ 1, Strong Σ1
k-DC0 is equivalent to “for all X , there is a βk-modelM such

that X ∈M”. If i = 1, 2, then Strong Σ1
k-DC0 is equivalent to Π1

k-CA0. Furthermore,
if we assume a formalized version of V = L, then Strong Σ1

k-DC0 is equivalent to
Π1
k-CA0 for any k. We denote the ground model by N . Given a coded modelM

and an L2-sentence ϕ with parameters inM, writeM |= ϕ to mean thatM satisfies
ϕ. See Section VII.2 of [Sim09] for a precise definition of the satisfaction relation in
second order arithmetic.

LetM,N be coded models. The sets (M)i ofM are defined by (M)i = {〈n, i〉 |
〈n, i〉 ∈ M}. M is a submodel of N iff every set in M is also in N , that is, for
all i ∈ N there is j ∈ N such that (M)i = (N )j . Given two coded models M
and N ,M is a βk-submodel of N iff for all Σ1

k-formula ϕ with parameters inM,
M |= ϕ ⇐⇒ N |= ϕ. WhenM is a βk-submodel of N , we writeM ⊆βk N . The
axiom β(T ) states the existence of a coded β-model of the theory T .
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6.2 Reflection principles

PROVABILITY AND TRUTH PREDICATES. Fix i ∈ {0, 1} and k ∈ ω. Let πik(e, m̄, X̄) be
a Πi

k-formula with exactly e, m̄ as free number variables and X̄ as free set variables.
πik is a universal lightface Πi

k-formula iff for all Πi
k-formula π′ with the same free

variables as πik, RCA0 proves

∀e∃e′∀m̄∀X̄.πik(e′, m̄, X̄)↔ π′(e, m̄, X̄).

Denote the code of a formula ϕ by pϕq. We define the code in a way such that
πik(pϕq) is equivalent to ϕ if ϕ is Πi

k. Given a finitely axiomatizable theory T , we can
define a Σ0

1-formula PrT (pϕq) stating that ϕ is provable in T . We can show that if
ϕ is provable in T , then RCA0 proves PrT (pϕq). For the detail in the definition of
PrT (pϕq), see Section II.8 of [Sim09].

Given n ∈ ω, we define a formula TrΠ1
n
(pϕq) stating that the sentence ϕ ∈ Π1

n is
true. Note that Tarski proved that there is no formula Tr capturing the truth of all
formulas in arithmetic.

REFLECTION PRINCIPLES. Let T be a finitely axiomatizable theory. Let PrT be a
provability predicate for T and TrΠ1

n
be a truth predicate for Π1

n-sentences. We
only consider Π1

n-sentences with arithmetic part in Σ0
2 or Π0

2. If we suppose ACA′0,
we can also consider sentences with non-standard length. The reflection principle
Π1
n-Ref(T ) is the sentence

∀ϕ ∈ Π1
n.PrT (pϕq)→ TrΠ1

n
(pϕq).

Note that we consider all Π1
n-sentences inside our system, including nonstandard

sentences. Reflection principles for a theory T can be thought as strengthening of
the consistency of T .

REFLECTION SCHEMES. We could also consider reflection schemes. Define Π1
n-RFN(T )

to be the scheme consisting of

∀x.PrT (pϕ(x)q)→ ϕ(x)

for all standard Π1
n-formula ϕ(x). Reflection schemes are equivalent to reflection

principles:

Proposition 72. Let T be a finitely axiomatizable theory extending ACA0. Then Π1
n-Ref(T )

and Π1
n-RFN(T ) are equivalent over ACA0.

Proof. Work inside a model of ACA0. First, suppose that the reflection principle
Π1
n-Ref(T ) holds. Fix a standard formula ϕ(x). Let a ∈ N be such that PrT (pϕ(a)q).

ϕ(a) is a sentence inside the model, so we can use the reflection principle, and thus
ϕ(a) is true.

Now, suppose the reflection scheme Π1
n-RFN(T ) holds. Let ϕ be a sentence

such that PrT (pϕq) holds. For a contradiction, suppose that ϕ is false. Let π1
n be a

universal lightface formula Π1
n-formula. For some index e ∈ N, PrRCA0(pϕ↔ π1

n(e)q)
holds. The instance of Π1

n-RFN(T ) for π1
n implies that PrRCA0(pπ1

n(e)q) holds.
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We take the arithmetical parts of ϕ and π1
n to be Σ0

2. Therefore, ¬ϕ is of the form
∃X∀m0∃m1.ψ(X,m0,m1) for some ψ ∈ Σ0

0. FixX0 such that ∀m0∃m1.ψ(X0,m0,m1)
holds. We use ACA0 to construct an ω-modelMwhich satisfies RCA0 and includes
X0. Since X0 ∈ M, we have M |= RCA0 + ¬ϕ, and so M |= ¬π1

n(e). Since the
arithmetical part of π1

n is Σ0
2, we can show thatM |= π1

n(e) also holds. This is a
contradiction. We conclude that ϕ is true.

OTHER RESULTS ON REFLECTION IN SECOND-ORDER ARITHMETIC. There are two
categories of reflection principles—syntactic reflection and semantic reflection. Syn-
tactic reflection principles state that, if something is provable, then it is true. Seman-
tic reflection principles state that, if something is true, then it is true in a smaller
model. Both kinds have been studied in the context of second-order arithmetic. The
author surveyed these results [Pac22]. We describe some of the surveyed results
below.

The relation between reflection and induction in first-order arithmetic is well-
known; Frittaion [Fri22] extended these results to second-order arithmetic. He
proved that if T0 is a finitely axiomatizable second-order arithmetic theory and T is
obtained by adding full induction to T0, then

T0 + Ref(T0) ≡ T ; and
T0 + Ref(T ) ≡ T0 + TI(ε0).

He also proved that, if T0 is a Π1
k+2 finitely axiomatizable extension of RCA0, then

Π1
n+2-Ref(T0) ≡ Π1

n-Ind ⊇ (Π1
n-Ind)− ≡ Σ1

n+1-Ref(T0); and

Π1
n+2-Ref(T ) ≡ Π1

n-TI(ε0) ⊇ Π1
n-TI(ε0)− ≡ Σ1

n+1-Ref(T ),

whenever n ≥ k + 1. Here, TI(ε0) is the scheme of transfinite induction up to ε0;
Γ-Ind is the scheme of induction for formulas in Γ; and (Γ-Ind)− is the scheme of
induction on formulas in Γ without set parameters.

Paris and Harrington [Par77] proved the equivalence between the Paris-Harrington
theorem and reflection for Π2(PA). In [Yok22], Yokoyama characterizes variations of
the Paris-Harrington theorem as reflection theorems for subsystems of second-order
arithmetic.

Pakhomov and Walsh [PW22; PW18; PW21] studied the relation between iterated
reflection principles and ω-model reflection principles, and used iterated reflection
principles to study the Π1

1 proof-theoretic ordinals of theories extending ACA0. Fix a
theory T finitely axiomatizable by a Π1

2-formula. They studied the following iterated
reflection principles:

Π1
n-Refα(T ) := T + {Π1

n-Ref(Π1
n-Refβ(T )) | β < α}; and

Π1
n-RefON(T ) := ∀α(WO(α)→ Π1

n-Ref(Π1
n-Refβ(T ))).

They showed that Π1
1-RefON(T ) is equivalent to every set being contained in an ω-

model of T ; and that, if T is a Π1
n+1 axiomatizable theory, Π1

n-RefON(T ) is equivalent
to Π1

n-ωRefON(T ). Here, Π1
n-ωRef(T ) formalizes “for all Π1

n-formula ϕ(X) and all
set X ⊆ N, there is a coded ω-model M such that X ∈M , M |= ϕ(X) and M |= T”.
Pakhomov and Walsh use this result to uniformly prove that |ACA+

0 |Π1
1

= φ2(0),



CHAPTER 6. REVERSE MATHEMATICS 86

|Σ1
1-AC0|Π1

1
= |Π1

2-Refε0(Σ1
1-AC0)| = φε0(0), |ATR0|Π1

1
= Γ0, and |ATR|Π1

1
= Γε0 .

Here, |T |Π1
1

is the Π1
1 proof theoretic ordinal of T .

We can also consider reflection principles for logics stronger than second-order
arithmetic. ω-logic is obtained by adding the ω-rule to second-order arithmetic:

ϕ(0),Γ ϕ(1),Γ ϕ(2),Γ · · ·
∀x.ϕ(x),Γ

.

Fernández-Duque [Fer15] mentions three ways to model the statement “ϕ is a
theorem of ω-logic”:

• there is a well-founded derivation tree formalizing an ω-proof of ϕ;

• there is a well-ordering Λ such that ϕ belongs to the set of theorems of ω-logic
obtained by recursion along Λ;

• ϕ is in the least set closed under axioms and rules of ω-logic.

Denote “ϕ is a theorem of ω-logic” in these ways by [P ]ϕ, [R]ϕ, and [I]ϕ, respectively.
Therefore we have three varieties of reflection for ω-logic, one for each way. If X
is one of P , R or I , let [X|A]ϕ mean “there is an ω-logic proof of ϕ using A as an
oracle”. Γ-ωXRef(T ) formalizes the sentence “for all formula ϕ in Γ and A ⊆ N, if
[X|A]ϕ holds then so does ϕ”. We omit Γ when it is the set of all formulas, omit A
when no oracle is used, and omit T when it is empty.

Cordón-Franco et al. [Cor+17] proved that Π1
2-ωRRef is equivalent to ATR0.

They also proved that Σ1
n+1-ωRRef(ACA0) is equivalent to ATR0 + Π1

n-TI, where
Σ1
n+1-ωRRef(ACA0) is obtained by adding the axioms of ACA0 to the ω-logic.

Fernández-Duque [Fer15] proved that Π1
3-ωIRef is equivalent to Π1

1-CA0. He
also proved an analogous result for Π1

1-CA0: Σ1
n+1-ωIRef(ACA0) is equivalent to

Π1
1-CA0 + Π1

n-TI.
Arai [Ara98] has proved the equivalence between ω-logic reflection and a trans-

finite induction: RCA0 + ωPRef is equivalent to RCA0 + Π1
ω-TI0.

6.3 Gale-Stewart games

GALE–STEWART GAMES. Let X be a set and fix A ⊆ XN. Denote Gale–Stewart game
with payoff A by G(A). In G(A), two players I and II alternate picking elements of X
to build a sequence α.

I x0 x2 x4 · · · x2n · · ·
II x1 x3 x5 · · · x2n+1 · · ·
α = 〈x0, x1, x2, x3, x4, x5, . . .〉

Such sequences are called runs. The player I wins a run α of G(A) iff α is in the
payoff A. A strategy σ for I is a function from finite sequences of even length in X
to elements of X , telling I to play σ(s) at the position s ∈ X<N. Similarly, a strategy
τ for II is a function from finite sequences of odd length in X to elements of X . A
strategy is winning iff its owner wins any run where they use the strategy. A Gale–
Stewart game is determined iff there is a winning strategy for one of the players. It is
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not possible for both players to win. Suppose both players used winning strategies
simultaneously in G(A). The resulting run α is such that α ∈ A and α 6∈ A.

The axiom of determinacy AD states that all Gale–Stewart games are determined.
AD is incompatible with the axiom of choice. On the other hand, Martin [Mar75;
Mar85] proved that ZFC proves the determinacy of Gale–Stewart fames whose
payoff are Borel. This is the result of a chain of increasingly stronger results:

Theorem 73. Let Γ-Determinacy state the determinacy of sets in Γ.

• (Gale, Steward [GS53]) ZF proves Σ0
1-Determinacy.

• (Wolfe [Wol55]) ZF proves Σ0
2-Determinacy.

• (Davis [Dav64]) ZF proves Σ0
3-Determinacy.

• (Paris [Par72]) ZF proves Σ0
4-Determinacy.

• (Martin [Mar75; Mar85]) ZFC proves ∆1
1-Determinacy.

We will consider only Gale–Stewart games withX = N andX = 2(= {0, 1}). The
axiom Γ-Det states that every game with payoff in NN whose payoff is Γ-definable
is determined; and Γ-Det∗ states the same for games with payoff in 2N. NN is known
as the Baire space, and 2N as the Cantor space.

See one of [Jec03; Kec94; Mos09] for more details on Gale–Stewart games. An-
other reference is Martin’s unpublished book [Mar]. For determinacy on second-
order arithmetic, see Sections V.8 and VI.5 of [Sim09], or the survey [Yos17].

DIFFERENCE HIERARCHIES. The difference hierarchy for Σ0
k captures all boolean

combinations of Σ0
k sets. It is usually defined by induction: a set X is (Σ0

k)1 iff X is
Σ0
k; and X is (Σ0

k)n+1 iff X is the difference of a Σ0
k set and a (Σ0

k)n set: X = Y \ Z,
with Y ∈ Σ0

k and Z ∈ (Σ0
k)n.

In this thesis we use a formalized version of the difference hierarchy. Fix k ∈ ω.
Let x be a number variable and f be a distinguished second-order variable. ϕ(f) is
a (Σ0

k)x-formula iff there is a Σ0
k-formula ψ(y, f) (possibly with other free variables)

such that: ψ(x, f) always holds; if z < y < x then ψ(z, f) implies ψ(y, f); and ϕ(f)
holds iff the least y ≤ z such that x = y ∨ ψ(y, f) holds is even. Intuitively, we think
of ϕ(f) as the disjunction

ψ(0, f) ∨ (ψ(2, f) ∧ ¬ψ(1, f) ∨ · · · ∨ (ψ(2bx/2c, f) ∧ ¬ψ(2bx/2c − 1, f),

where bx/2c is the greatest integer n such that n ≤ x/2.

GALE–STEWART GAMES IN SECOND-ORDER ARITHMETIC. We now show how to
formalize Gale–Stewart games in second-order arithmetic. Given k ∈ ω, Σ0

k-Det
states that every Σ0

k-definable set in NN is determined. Formally, Σ0
k-Det is the

scheme
∃σ∀τ.ϕ(σ ⊗ τ) ∨ ∃τ∀σ.¬ϕ(σ ⊗ τ),

where ϕ is a Σ0
k-formula. Here, σ ⊗ τ is the play obtained when I uses the strategy

σ and II uses the strategy τ . Similarly, (Σ0
k)n-Det states that every (Σ0

k)n-definable
set in NN is determined. Finally, ∀n.(Σ0

k)n-Det states that, for every set X in NN, if X
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Table 6.1: Existing results on the reverse mathematics of determinacy up to differ-
ences of Σ0

2 sets.

Determinacy in NN Determinacy in 2N

WKL0 ∆0
1, Σ0

1

ACA0 (Σ0
1)n, for n ∈ ω

ATR0 ∆0
1, Σ0

1 ∆0
2, Σ0

2

Π1
1-CA0 (Σ0

1)n, for n ∈ ω Sep(Σ0
1,Σ

0
2)

Π1
1-TR ∆0

2 Sep(∆0
2,Σ

0
2)

Σ1
1-ID Σ0

2 (Σ0
1)2

{[Σ1
1]n-ID | n ∈ ω} {(Σ0

1)n | n ∈ ω} {(Σ0
1)n | n ∈ ω}

is (Σ0
k)n-definable for some n ∈ N, then X is determined. The schema Γ-Det∗ state

the same as Γ-Det but for sets in 2N. They are obtained by restricting the players to
playing inside 2N.

SURVEY ON EXISTING RESULTS. Up to a certain point, determinacy axioms of
increasing strength generate sequence of equivalent subsystems of second-order
arithmetic. We describe the results up to standard finite differences of Σ0

2 sets in
Table 6.1.

The situation above boolean combinations of Σ0
2 sets is more complicated. Med-

Salem and Tanaka [MT07] showed that ∆0
3-Det is proved by ∆1

3-CA0 plus Σ1
3-

induction and by Π1
2-CA0 plus transfinite Π1

3-induction. They also showed that
even if we increase the respective inductive axioms to all L2-formulas, we cannot
prove Σ0

3-Det. On the other hand, we do not have a reversal: even ∆1
1-Det does not

prove ∆1
2-CA0. Hachtman [Hac19] proved that Σ0

3-Det is equivalent to the existence
of countable β-models of Σ1

1-MI.
Montalbán and Shore [MS12; MS14] proved that, for every m ≥ 1, Π1

m+2-CA0

proves (Π0
3)m-Det. They also showed that, if m ≥ 1 and X ⊆ N, then (Π0

3)m-Det
proves the existence of a β-modelM of ∆1

m-CA0 with X ∈ M. These results will
allow us to study the relation between determinacy for differences of Σ0

3 sets and
reflection for subsystems of Z2.

6.4 Inductive definitions

INDUCTIVE OPERATORS. An operator is a function taking sets of natural numbers to
sets of natural numbers. An operator is Σ1

1 iff its graph is definable by a Σ1
1-formula.

We say the operator Γ is monotone iff X ⊆ Y implies Γ(X) ⊆ Γ(Y ).
Given an operator Γ, the set Γ∞ inductively defined by Γ is obtained by iterating

Γ:

• Γ0 := ∅;

• Γα+1 := Γα ∪ Γ(Γα), if α is a successor ordinal;

• Γλ :=
⋃
α<λ Γα, if λ is a limit ordinal; and

• Γ∞ :=
⋃
α∈Ord Γα.
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If Γ is monotone, we can simplify the definition of successor steps to Γα+1 := Γ(Γα).
Let Γ0,Γ1 be operators. To define the set [Γ0,Γ1]∞ inductively via Γ0 and Γ1, we

need to mix applications of both operators. Intuitively, we start from the empty set,
and apply Γ0 until we obtain a fixed-point Γ∞,00 :

∅,Γ0(∅),Γ0(Γ0(∅)) ∪ Γ0(∅), . . .

We then apply Γ1 once, and generate another fixed-point Γ∞,10 for Γ0:

Γ1(Γ∞,10 ),Γ0(Γ1(Γ∞,10 )),Γ0(Γ0(Γ1(Γ∞,10 ))) ∪ Γ0(Γ1(Γ∞,10 )), . . .

Repeat this process until we obtain a fixed-point for both Γ0 and Γ1. Formally,

• Γ0,0
1 := ∅;

• Γ0,β
0 := Γβ1 ;

• Γα+1,β
0 := Γα,β0 ∪ Γ0(Γα,β0 ), if α is a successor ordinal;

• Γλ,β0 :=
⋃
α<λ Γα,β0 ;

• Γ∞,β0 :=
⋃
α∈Ord Γα,β0 ;

• Γα+1
1 := Γα1 ∪ Γ1(Γ∞,α0 );

• Γλ1 :=
⋃
α<λ Γα1 ; and

• Γ∞1 :=
⋃
α∈Ord Γα1 .

In case we are combining three operators Γ0,Γ1,Γ2, we apply Γ2 whenever we
get a fixed-point for Γ0 and Γ1, and repeat until we get a fixed-point for all three
operators. The general case with k operators follows the same idea.

INDUCTIVE DEFINITIONS IN SECOND-ORDER ARITHMETIC. The scheme [Σ1
1]k-ID

states the existence of sets inductively defined by k-many Σ1
1-operators. MedSalem

and Tanaka [MT07] defined [Σ1
1]2-ID as follows: [Σ1

1]-ID asserts that for any Γ0,Γ1 ∈
Σ1

1, there exist a pre-wellorderW ⊆ N×N on its fieldF ,and V ′,〈V m ⊆ N ×N | m ∈ F 〉,
such that for all m ∈ F

• V m is a pre-wellorder on its field Fm;

• ∀y ∈ Fm, V m
u = ΓW<m

0 (V m
<y) ∪ V m

<y;

• Wm = Γ1(Fm) ∪W<m;

• ΓW<m
0 (Fm) ⊆ Fm;

• V ′ is a pre-wellorder on its field F ′;

• ∀y ∈ F ′, V ′y = ΓF0 (V ′<y) ∪ V ′<y;

• ΓF0 (F ′) ⊆ F ; and

• Γ1(F ′) ⊆ F .
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The definition above can be generalized to a definition of [Σ1
1]k-ID (uniform on k).

We use [Σ1
1]k-ID below in the proof of Lemma 98, but we need only the existence

of the fixed-points. Therefore we use a simpler variation of [Σ1
1]-ID: For n ∈ N,

[Σ1
1]n-LFP asserts that for any sequence 〈Γi | i < n〉, there exists a smallest set X

which satisfies Γi(X) = X for all i < n.

Lemma 74. ∀n.[Σ1
1]n-ID implies ∀n.[Σ1

1]n-LFP over RCA0.

Proof. ∀n.[Σ1
1]n-ID gives us the least simultaneous fixed-point of the operators

Γ0, . . . ,Γn, but it also registers when each point enters the fixed-point. We need only
to forget this information.



Chapter 7

µ-arithmetic

This chapter explains the connection between Part I and Part II of this thesis. We
will study the µ-arithmetic—a logic obtained by adding fixed-point operators to
first-order arithmetic. We also study its relation to the µ-calculus and to determinacy
of Gale–Stewart games. This is joint work with Wenjuan Li and Kazuyuki Tanaka
[PLT22].

7.1 Basic definitions

µ-ARITHMETIC. In this section, we define the µ-arithmetic, obtained by adding the
fixed-point operators µ and ν to the first-order arithmetic. In this context, µxX.ϕ
will be the least fixed-point of the operator Γϕ(x,X) = {x ∈ ω | ϕ(x,X)}, and νxX.ϕ
is the greatest fixed-point of Γϕ(x,X).

FORMULAS. We add to the language of first-order arithmetic the fixed-point opera-
tors µ and ν, set variables, and the inclusion relation ∈. Number terms represent
natural numbers. They are defined by the grammar

t := 0 | 1 | x | t+ t | t · t,

where x is a number variable. Set terms represent sets of natural numbers, they are
defined by the grammar

S := X | µxX.ϕ | νxX.ϕ,

where ϕ is a formula where the set variable X is positive. A set variable is positive
in a formula ϕ iff it is under the scope of an even number of negations. The formulas
of µ-arithmetic are defined by the following grammar

ϕ := t ∈ S | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ψ,

where t is a number term and S is a set term.1 Note that when using the µ-operator
we bind a number variable x and a set variable X . As in the µ-calculus, we say that

1We also call the formulas of µ-arithmetic by µ-formulas, the intended meaning will be clear in
context. If necessary we say that a formula of µ-calculus is a modal µ-formula and that a formula of
µ-arithmetic is an arithmetic µ-formula.
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the occurrences of x or X in µxX.ϕ are bound, and if x or X is not bound they are
free. If a formula has no free set variable we say it is closed.

We will also consider an infinitary extension of the µ-arithmetic (and the µ-
calculus). If {ϕi}i∈ω is an recursive enumerable sequence of formulas with finitely
many free variables, then

∨
i∈ω ϕi and

∧
i∈ω ϕi are also formulas.

SEMANTICS. Formulas of the µ-arithmetic are interpreted over the natural numbers
and its power set. 0, 1, + and · all have their standard interpretations. Given ϕ
where X is positive, define Γϕ(x,X) := {x ∈ ω | ϕ(x,X)}. Then ‖µxX.ϕ‖ is the least
fixed-point of Γϕ(x,X) and ‖νxX.ϕ‖ is the greatest fixed-point of Γϕ(x,X). If

∨
i∈ω ϕi

is a formula, then its valuation ‖
∨
i∈ω ϕi‖ is defined as

⋃
i∈ω ‖ϕi‖.

Example 18. The following formula defines the set of even numbers in the µ-
calculus:

µxX.(x = 0 ∨ (x− 2) ∈ X).

By negation, we get that the set of odd numbers are defined by:

νxX.(x 6= 0 ∧ (x− 2) ∈ X).

THE ALTERNATION HIERARCHY. The µ-arithmetic’s alternation hierarchy is defined
analogously to the µ-calculus’. For each α < ωck

1 , define:

• Σµ
0 is the set of all set variables and formulas without fixed-point operators.

• Σµ
α+1 is generated from Σµ

α ∪ Πµ
α by closing it under ∨, ∧, ∈ and µxX.ϕ for

X-positive ϕ ∈ Σµ
α+1. Here µxX.ϕ is called a Σµ

α+1 term.

• Πµ
α+1 contains all the negations of formulas and set terms in Σµ

α+1.

• If λ is a limit ordinal, then Σµ
λ is generated from

⋃
α<λ Σµ

α and closed under∨
i<ω.

• Πµ
λ contains all the negations of Σµ

λ formulas and terms.

The ordinal ωck
1 is the Church–Kleene ordinal, the least non-computable ordinal.

We say a µ-formula is Σµ
α-definable iff it is equivalent to a Σµ

α-formula. And we
say a µ-term is Σµ

α-definable iff it is equal to some Σµ
α µ-term. If ϕ ∈ Σµ

0 , we say it is
arithmetical. We could possibly define Emerson–Lei and Niwińsky versions for the
µ-arithmetic alternation hierarchy, but in this case all three hierarchies are equal, for
details see Section 4 of [Bra98b]. We could also check the validity of formulas of the
µ-arithmetic by games—known as model checking games.

µ-CALCULUS OVER COMPUTABLE MODELS. We say a Kripke model M = 〈W,R, V 〉
is computable iff W is a computable subset of ω, R is a computable binary relation
over ω, and V : Prop→ {0, 1} is computable.

We extend the µ-calculus’ alternation hierarchy to the transfinite by defining: If
λ is a limit ordinal, then Σµ

λ is generated from
⋃
α<λ Σµ

α and closed under
∨
i<ω. The

definition of the successor levels of the alternation hierarchy is as in the finite case.
As in the µ-arithmetic, ‖

∨
i∈ω ϕi‖M is

⋃
i∈ω ‖ϕi‖M

The sets of natural numbers definable by arithmetic µ-formulas and the sets
definable by modal µ-formulas over computable Kripke models are the same. This
justifies the overload of meanings for the symbols Σµ

α .
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Theorem 75 (Bradfield [Bra98b]). Let ϕ(z) be a Σµ
n-formula of µ-arithmetic. There is an

computable Kripke model M and a Σµ
n modal µ-formula ϕ such that ϕ(s) iff s ∈ ‖ϕ‖M .

Theorem 76 (Bradfield [Bra98b]). For each modal µ-calculus formula ϕ ∈ Σµ
n and for

each computable Kripke model M , ‖ϕ‖M is Σµ
n-definable set of natural numbers.

THE WEAK ALTERNATION HIERARCHY. We define the weak alternation hierarchy
for the µ-arithmetic as follows:

• ΣWµ
0 is the set of all the first-order formulas and all set variables.

• ΣWµ
α+1 is generated from ΣWµ

α ∪ΠWµ
α by closing it under ∨, ∧ and the following

substitution rules: (a) If ϕ(X) is Σµ
1 and if ψ is a ΣWµ

α+1 term without free set
variables, then ϕ(X\ψ) is also ΣWµ

α+1; (b) if ϕ is a Σµ
1 , ϕ′ is a subformula of ϕ

and ψ is a ΣWµ
α+1 term without free set variables,then ϕ(ϕ′\ψ) is also ΣWµ

α+1. In
these substitution rules, ϕ can be either a formula or a term.

• If λ is a limit ordinal, then ΣWµ
λ is generated from

⋃
α<λ ΣWµ

α and closed under∨
i<ω.

• ΠWµ
α contains all the negations of formulas and set terms in ΣWµ

α .

• ΠWµ
λ contains all the negations of ΣWµ

λ formulas and terms.

Observe that we abuse the notation of substitution in this definition. This is nec-
essary in the transfinite levels of the weak hierarchy, as there are no weak µ-term
strictly in the limit levels.

We also have the equivalence between weak µ-arithmetic and the weak µ-
calculus over computable frames:

Theorem 77 (P., Li, Tanaka [PLT22]). Let ϕ(z) be a ΣWµ
α -formula of µ-arithmetic. There is

a computable Kripke model M and a ΣWµ
α modal µ-formula ϕ such that ϕ(s) iff s ∈ ‖ϕ‖M .

Theorem 78 (P., Li, Tanaka et al [PLT22]). For each modal µ-calculus formula ϕ ∈ ΣWµ
α

and for each computable Kripke model M , ‖ϕ‖M ⊆ ω is ΣWµ
α -definable set of integers.

7.2 µ-definable sets of natural numbers

THE GAME QUANTIFIER. We define the game quantifier a by

aα.P (α, ~x) = {~x | I wins the Gale–Stewart game with payoff P (α, ~x)} ⊆ ωk.

where P ⊆ ωω × ωk for some k ∈ ω. aα.P (α, ~x) describes the parameters which
make the player I win the game P (α, ~x).

If Γ is a subset of P(ωk), define aΓ = {S | S = aα.P (α, ~x) for some P ∈ Γ}.
Kechris and Moschovakis proved that aΣ0

1 is the collection of Π1
1-definable sets of

natural numbers. Solovay proved that aΣ0
2 is the collection of sets given via an

inductive definition over a Σ1
1 predicate. See [Mos09] for proofs of these results.
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THE TRANSFINITE DIFFERENCE HIERARCHY. Fix k ∈ ω. We now define the difference
hierarchy for Σ0

k-definable sets as follows. For each α < ωck1 , let

S ∈ (Σ0
k)α ⇐⇒ S =

⋃
β∈Opp(α)

(Aβ − ∪ζ<βAζ)

where {Aβ}β<α is an effective enumeration of a sequence of sets in Σ0
k and Opp(α) is

the set of ordinals less that α whose parity is opposite to the parity of α. We consider
the limit ordinals to be even.

For the finite levels of the difference hierarchy we can consider an alternative
definition. For n ∈ ω, let:

• (Σ0
k)1 = Σ0

1,

• (Π0
k)n = ¬(Σ0

k)n, and

• (Σ0
k)n+1 = Σ0

k ∧ (Π0
k)n.

We are now ready to describe the connection between the difference hierarchy
for Σ0

2 sets to the alternation hierarchy of the µ-arithmetic. Bradfield et al. [BDQ05;
BDQ10] proved that, for all α < ωck1 , a(Σ0

2)α = Σµ
α+1. MedSalem and Tanaka [MT07]

proved a formalized version of the Hausdorff–Kuratowski theorem:
⋃
α<ωck1

(Σ0
2)α =

∆0
3. Combining the two theorems above, we have that⋃

α<ωck1

Σµ
α = a∆0

3,

since the game quantifier commutes with unions.
The connection above also holds between the differences of Σ0

1 sets and the weak
alternation hierarchy. The author, Li and Tanaka [PLT22] proved that ΣWµ

α+1 = aΣδ,1
α ,

for all α < ωck1 . Tanaka [Tan90] proved the following version of the Hausdorff–
Kuratowski theorem:

⋃
α<ωck1

(Σ0
1)α = ∆0

2. As a consequence the following holds:⋃
α<ωck1

ΣWµ
α = a∆0

2.

7.3 µ-arithmetic and determinacy

µ-ARITHMETIC IN SECOND-ORDER ARITHMETIC. In this section we formalize the
µ-arithmetic inside Z2. These results are from [Möl02].

We define the language Lµ of µ-arithmetic by adding the constructor µ to L2.
Define the set of Lµ-formulas and Lµ-terms to be the smallest set which includes
the L2-formulas and is closed under the usual rules for forming L2-formulas and
the following rule: if ϕ(x,X) is an X-positive formula of Lµ, we add a set term
µxX.ϕ(x,X), with the restriction that ϕ(x,X) has no second-order quantifiers.
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The term µxX.ϕ(x,X) denotes the least fixed-point of the operator Γϕ(X) =
{x | ϕ(x,X)}. To formalize this idea we define for each X-positive formula ϕ(x,X)
the following formula:

LFP(ϕ, I) ⇐⇒ ∀x.(x ∈ I ↔ ϕ(x, I)) ∧ ∀Y.(∀x.(ϕ(x, Y )→ x ∈ Y )→ I ⊂ Y

LFP stands for least fixed-point and LFP(ϕ, I) means that I is a fixed-point of Γϕ(X)
and is the least such fixed-point.

µ-arithmetic is the system containing the axioms of ACA0 (including comprehen-
sion forLµ-formulas with no set quantifiers) and contains LFP(ϕ(x,X), µxX.ϕ(x,X))
for each X-positive formula ϕ ∈ Lµ with no set quantifiers. Note that we do not
consider µ a set quantifier, so we can take fixed-points of formulas which include µ.

We also define

IGF(ϕ, S,�,≺) ⇐⇒ (S,�,≺) is a pre-well-ordering and
∀x, y(x � y ↔ x ≺ y ∨ ϕ(x, {z | z ≺ y})).

Over ACA0, if ϕ(x,X) is an X-positive formula, S is a set and ≺,� are binary
relations on S, then IGF(ϕ, S,�,≺) implies LFP(ϕ, S).

A generalized quantifier Q is a subset of P(N) such that

∅ 6∈ Q

Q 6= ∅
X ⊂ Y ∧X ∈ Q⇒ Y ∈ Q.

We abbreviate {x | ϕ(x)} ∈ Q by Qx.ϕ(x). We define the inverse quantifier Q by
Q = {¬X | X 6∈ Q}. We have that ∀ = {N}, ∃ = P(N) \ {∅}, ∀ = ∃ and ∃ = ∀.

The next quantifier or open game quantifier Q∨ is defined by

Q∨x.ϕ(x) ⇐⇒ (Qx0)(Qx1)(Qx2)(Qx3) · · ·
∨
n∈ω

ϕ(〈x0, . . . , xn〉).

We will only consider the following generalized quantifiers:

∃0 = ∃; ∀n = ∃n;∃n+1 = (∃n)∨

These quantifiers are not definable in L2, but we define an adequate extension to
L2 in which all the quantifiers ∃n and ∀n are definable. We define La by adding the
quantifier symbols ∃n and ∀n for all n ∈ ω. The La-formulas are defined the same
way L2-formulas are defined, with the additional rule that ∃nx.ϕ(x) and ∀nx.ϕ(x)
are valid formulas if and only if ϕ has no second-order quantifiers (even if ∃n and
∀n occur in ϕ).

The theory aame (with language La) consists of the following axioms:

• the axioms of ACA0, with comprehension for all La-formulas without second-
order quantifiers.

• ∃0x.ϕ(x)↔ ∃x.ϕ(x)

• ∃n+1x.ϕ(x, ~y, ~Y )↔ ∀X(∀x.(ϕ∃n(x, ~y,X, ~Y )→ x ∈ X)→ 〈〉 ∈ X)
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• ∀nx.ϕ(x)↔ ¬∃nx.¬ϕ(x)

where ϕ varies over formulas without second-order quantifiers.
Above, we have that ϕQ is an abbreviation for

Qx.sa〈x〉 6∈ X → ϕ(s, ~y, ~Y )

As ϕQ is X-positive, ∀X(∀x.(ϕ∃n(x, ~y,X, ~Y )→ x ∈ X)→ 〈〉 ∈ X) expresses that 〈〉
is in the least fixed-point operator defined by ϕ∃

n
(x,X).

Möllerfeld [Möl02] showed that the µ-arithmetic and aame prove the same
L2 sentences. Heinatsch and Möllerfeld [HM10] used this result to show that the
µ-arithmetic and ∀n.(Σ0

2)-Det prove the same L2 sentences over ACA0. In turn, this
result was used by Kołodziejczyk and Michalewski to prove the following theorem:

Theorem 79 (Kołodziejczyk, Michalewski [KM16]). The following are equivalent over
Π1

2-CA0:

• ∀n.(Σ0
2)-Det;

• Π1
3-Ref(Π1

2-CA0);

• the complementation theorem for non-deterministic tree automata;

• the decidability of the Π1
3 fragment of monadic second-order arithmetic on the infinite

binary tree; and

• the positional determinacy of parity games.



Chapter 8

Determinacy of differences

In this chapter, we prove the following theorem.

Theorem 80. Over ACA0:

1. ACA′0, ∀n.(Σ0
1)n-Det, Π1

3-Ref(Π1
1-CA0), and Π1

1-CA′0 are pairwise equivalent.

2. ∀n.(Σ0
1)n-Det∗, Π1

2-Ref(ACA0), and ACA′0 are pairwise equivalent.

3. ∀n.(Σ0
2)n-Det, Π1

3-Ref(Π1
2-CA0), and ∀n.[Σ1

1]n-ID are pairwise equivalent.

Proof. These results are Theorems 92, 95, and 96.

Item (3) is an improvement of a theorem by Kołodziejczyk and Michalewski
[KM16], who proved the equivalence of ∀n.(Σ0

2)n-Det and Π1
3-Ref(Π1

2-CA0) over
Π1

2-CA0. The results of this section are joint work with Keita Yokoyama [PY22].

8.1 Folklore results on determinacy

We now prove a few folklore results. These results also appear on the preprint
[PY22].

DIFFERENCES OF Σ0
1 SETS IN CANTOR SPACE. Nemoto et al. [NMT07] proved that

(Σ0
1)n-Det∗ is equivalent to ACA0, for all n ∈ ω. We can adapt their proof to show

that determinacy of arbitrary finite differences of open sets is equivalent to ACA′0.
This includes differences of non-standard many sets.

Proposition 81. Over ACA0, ∀n.(Σ0
1)n-Det∗ implies ACA′0.

Proof. Fix n ∈ N and X ⊆ N. We prove that the nth Turing jump of X exists. That
is, we show the existence of a sequence 〈X0, . . . , Xn〉 of sets such that X0 = X and
Xi+1 = TJ(Xi), for i < n. Remember, the Turing Jump TJ(X) of X is the set of m
such that ¬π0

1(m,X) holds, where π0
1 is a fixed universal lightface Π0

1-formula.
We consider the following two player game. I starts the game by playing 〈m, i〉,

with i ≤ n, to ask II whether m ∈ Xi. II then plays 1 to answer ‘yes’, or 0 to answer
‘no’. If II answers 1, they must show that m ∈ Xi; if II answers 0, I must show that
m ∈ Xi. Denote by V the player who is trying to show m ∈ Xi and by R the other
player. V stands for verifier; R stands for refuter.

97



CHAPTER 8. DETERMINACY OF DIFFERENCES 98

Suppose i > 0. V wants to show m ∈ Xi. So they play a finite sequence Xf
i−1

witnessing so. Xf
i−1 is intended to be an initial segment of Xi−1. Then, R plays

m′ ≤ lh(Xf
i−1), to state that Xi−1(m′) 6= Xf

i−1(m′). If Xf
i−1(m′) = 0, R is stating

that m′ ∈ Xi−1, so V and R exchange roles. Otherwise, R is asking V to show that
m′ ∈ Xi−1, and the roles stay the same. Either way, V and R proceed to argue
whether m′ ∈ Xi−1.

Now suppose V and R are arguing whether m′ ∈ X0. V wins automatically iff
m′ ∈ X0.

Before we consider the complexity of the payoffs of these games, let us see an
example. We can think of a game as a dialogue between I and II:

I : Is m ∈ X3?
II : Yes.

Xf
2 is an initial segment of X2 witnessing m ∈ X3.

I : Xf
2 (m′) = 0 is false.

Xf
1 is an initial segment of X1 witnessing m′ ∈ X2.

II : Xf
1 (m′′) = 1 is false.

I : Xf
0 is an initial segment of X0 witnessing m′′ ∈ X1.

Note that in this game I and II play both roles V and R.
We can formalize this dialogue as a Gale–Stewart game on the Baire space:

I 〈m, 3〉 m′ Xf
1 Xf

0

II yes Xf
2 m′′

Since we want plays in Cantor space, we cannot directly play natural numbers.
Code a play of a natural number m by a play 0m1 consisting of m zeroes and a one.
Also code finite sequences of natural numbers as sequences of zeroes followed by
a one. The players play 0s while the other player is playing some coded natural
number or sequence. We therefore can write the payoffs of the game defined above
above as a finite difference of open sets on Cantor space, uniformly in n. In particular,
the example play above becomes:

I 0〈m,3〉1 0m
′
10X

f
1 0X

f
0

II 0110X
f
2 1 0m

′′
1

We can check that a play in the game is in the correct form using a difference of Σ0
1-

formulas. We can check that the witnesses given by V are correct with a Π0
1-formula.

Therefore the payoff of the game described above can be written as a finite difference
of Σ0

1-formulas, uniformly in n.1

1Given n, the payoff can be described by a difference of 5n many Σ0
1-formulas. A better bound is

possible, but not necessary.
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I has no winning strategy. For a contradiction, suppose σ is a winning strategy
for I. We play two copies of the game simultaneously. Have I play σ(〈〉) in both
games. Now, II plays ‘no’ in the first game and ‘yes’ in the second game. I is going to
play both games according to σ, and II copies the moves of I on the other game. As
σ is a winning strategy for I, the run on the first game is winning for I. The the run
on the second game is essentially the same run, with the roles of verifier and refuter
exchanged. This implies II wins the second run. As I also used σ in the second run, I
wins it. This is a contradiction.

By ∀n.(Σ0
1)n-Det∗, there is a winning strategy τ for II. LetZ be the set {〈m, i〉|τ(〈m, i〉) =

1}. By Σ0
1-Induction, (Z)0 = X and (Z)i+1 = TJ((Z)i) for i < n.

Proposition 82. Over ACA0, ACA′0 implies ∀n.(Σ0
1)n-Det∗.

Proof. This proof is a generalization of Theorem 3.7 of [NMT07].

Corollary 83. ∀n.(Σ0
1)n-Det∗ is equivalent to a Π1

2 sentence.

Proof. By Propositions 81 and 82, ∀n.(Σ0
1)n-Det∗ is equivalent to ACA′0 over ACA0.

Since ACA′0 is a Π1
2-sentence, we are done.

DIFFERENCES OF Σ0
2 SETS IN CANTOR SPACE. By a theorem by Nemoto et al.

[NMT07], we do not need to explicitly consider differences of Σ0
2 sets of Cantor

space.

Theorem 84. If 1 < k ≤ ω, then (Σ0
2)k-Det and (Σ0

2)k−1-Det∗ are equivalent over RCA0.

We can adapt their proof to show:

Proposition 85. ∀n.(Σ0
2)n-Det and ∀n.(Σ0

2)n-Det∗ are equivalent over RCA0.

Proof. Every game on Cantor space can be seen as a game on Baire space by adding
a Π0

1 condition: I and II play only zeroes and ones. Therefore a game in Cantor space
which payoff is in (Σ0

2)n is still a (Σ0
2)n game in Baire space. So ∀n.(Σ0

2)n-Det implies
∀n.(Σ0

2)n-Det∗.
By Lemma 4.2 of [NMT07], if a game on Baire space has payoff A ∈ (Σ0

2)n, then
there is a game on Cantor space with payoff A∗ ∈ (Σ0

2)n+2 such that I(II) has a
winning strategy in A iff I(II) has a winning strategy in A∗. Therefore ∀n.(Σ0

2)n-Det∗

implies ∀n.(Σ0
2)n-Det.

DIFFERENCES OF Σ0
1 SETS IN BAIRE SPACE. Tanaka [Tan90] proved that (Σ0

1)n-Det is
equivalent to Π1

1-CA0 over ATR0, for all n ∈ ω. Similar to the case of finite differences
of open sets on Cantor space, where ∀n.(Σ0

1)n-Det∗ proves ACA′0, we can use the
determinacy of arbitrary finite differences of open sets in Baire space to prove
Π1

1-CA′0.

Proposition 86. Over ACA0, ∀n.(Σ0
1)n-Det implies Π1

1-CA′0.
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Proof. First note that Π1
1-CA0 is equivalent to “for all X ⊆ N and n ∈ N, the nth

iterated hyperjump HJn(X) of X exists”. The proof of this equivalence is essentially
the proof of Theorem VII.2.9 of [Sim09]. Fix a sequence of coded β-models X0 ∈
X1 ∈ · · · ∈ Xn with X ∈ X0. We can define HJ(X) arithmetically using X0 as a
parameter, so HJ(X) exists. Since X0 ∈ X1 |= ACA0. Again, we can define HJ2(X)
arithmetically using X0 and X1 as parameters. Repeating this process boundedly
many times, we can define HJn+1(X). On the other hand, suppose the hyperjumps
HJ(X), . . . ,HJn(X) exist. From HJ(X) we can define a β-model X0 3 X . By
bounded induction, given Xi and HJi+1(X), we can define Xi+1 with Xi ∈ Xi+1

and HJi(X) ∈ Xi+1. Therefore there is a sequence X0 ∈ · · · ∈ Xn with X ∈ X0.
Now, given n ∈ N andX ⊆ N, we prove the existence of the sequence 〈HJ(X), . . . ,HJn(X)〉

using ∀n.(Σ0
1)n-Det. The games we consider are similar to the ones in the proof of

Proposition 81. I starts by playing 〈m, i〉with i ≤ n, asking whether m ∈ HJi(X). II
plays 1 to answer ‘yes’ and 0 to answer ‘no’. If II play 1, then they play the role of V
(Verifier), otherwise they play the role of R (Refuter).

If i > 0, V must now play the characteristic function of HJi−1(X) and a function
f witnessing that m ∈ HJi(X). While V is playing, R may contest V’s choice of
some ξHJi−1(X)(m

′). If V stated that m′ 6∈ HJi−1(X), then the players exchange roles;
otherwise the roles stay the same. The players then proceed to discuss whether
m′ ∈ HJi−1(X). In case R never contests, V wins iff π0

1(m, f,HJi−1(X)) holds. If
i = 0, V wins iff m ∈ X .

This game can be described by a boolean combination of Π0
1-formulas. So it is

determined, ∀n.(Σ0
1)n-Det. As in Proposition 81, I cannot have a winning strategy.

Let τ be a winning strategy for II. Define Z = {〈m, i〉|τ(〈m, i〉) = 1}. Using bounded
induction on i, we can show that (Z)0 = X and (Z)i+1 = HJ(HJi(X)) for i < n. We
conclude that Π1

1-CA′0 holds.

The reverse of Proposition 86 will follow by Theorem 92.

DIFFERENCES OF Σ0
2 SETS IN BAIRE SPACE. MedSalem and Tanaka [MT07] proved

that (Σ0
2)k-Det and [Σ1

1]k-ID are equivalent over ATR0, for 0 < k < ω.

Proposition 87. Over ATR0, ∀n.(Σ0
2)n-Det implies ∀n.[Σ1

1]n-ID.

Proof. Fix k ∈ N and X ⊆ N. Suppose ∀n.(Σ0
2)n-Det is true. Let 〈Γ0, . . . ,Γk−1〉 be a

sequence of (indices of) Σ1
1-inductive operators. We show that the set Vk inductively

defined by 〈Γ0, . . . ,Γk−1〉 exists.
MedSalem and Tanaka [MT08] prove, for all n ∈ ω, that [Σ1

1]n-ID follows from
(Σ0

2)n-Det using ATR0 and induction on n. We sketch how to unfold their proof to
show that [Σ1,X

1 ]k-ID follows from (Σ0,X
2 )k3-Det. Here, Σi,X

j denotes the set of Σi
j

formulas whose only set parameter is X . Let Vi be the set inductively defined by
〈Γ0, . . . ,Γi−1〉, for i = 1, . . . k. To show the existence of the set Vk , we use the set
Vk−1 and a (Σ0

2)k game. Unfolding the definitions of Vk−1, we can show the existence
of Vk using Vk−2 and a (Σ0

2)k−1 ∧ (Σ0
2)k game. Repeatedly unfolding the Vi, we an

prove the existence of Vk using a Σ0
2 ∧ (Σ0

2)2 ∧ · · · ∧ (Σ0
2)k game. Furthermore, we

can show that the payoff of this game is (Σ0
2)k3 .

We claim that there is a set τ̃ computing winning strategies for all (Σ0
2)k3 games

with X as a parameter. Consider the following game: I chooses an index e for the
payoff of a (Σ0

2)k3 game; II answers with their choice of role in the game with index
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e; then I and II play the game with index e and whoever wins the subgame wins
the whole game. The payoff of this game has complexity (Σ0

2)2k3 . As we have
∀n.(Σ0

2)n-Det, the game above is determined. Since I cannot win, II has a winning
strategy τ̃ ; this τ̃ computes winning strategies for all (Σ0

2)k3 games.
Since we have ∀n.(Σ0

2)n-Det, we also have (Σ0
1)2-Det, and so Π1

1-CA0 is true. Let
M be a β-model including X and τ̃ . Since τ̃ ∈M, every (Σ0

2)k3 game with only X
as a parameter is determined inM. AsM |= ATR0 + Π1

∞-Ind, we use the unfolded
version of MedSalem and Tanaka’s proof above to show that the set Vk inductively
defined by 〈Γ0, . . . ,Γk−1〉 exists insideM.

Furthermore, the statement “Vk is the set inductively defined by 〈Γ0, . . . ,Γk−1〉”
is a boolean combination of Π1

1-sentences with X,Vk as the only parameters. AsM
is a β-models, if Vk is the set inductively defined by 〈Γ0, . . . ,Γk−1〉 insideM, then
Vk is also the set inductively defined by 〈Γ0, . . . ,Γk−1〉 outsideM, as we wanted to
show. Since the argument above holds for any k ∈ N, X ⊆ N and 〈Γ0, . . . ,Γk−1〉, we
have that ∀n.[Σ1

1]n-ID holds.

The reverse of Proposition 86 will follow by Theorem 96.

8.2 Sequences of coded β-models

SOME DEFINITIONS. Given e ∈ ω, define the formula ψe(i, n) stating that there are
sequences with length n of increasing coded βi-models where the last model is a
βe-submodel of the ground model N :

X ∈ Y0 ∈ · · · ∈ Yn,

Y0 ⊆βi · · · ⊆βi Yn ⊆βe N .

Here, i stands for ‘internal’ and e for ‘external’. Formally, for each e ∈ ω, we define
ψe(i, n) by

∀X∃Y0, . . . , Yn.


X ∈ Y0 ∧
Yk ∈ Yk+1 ∧
Yk |= ACA0 ∧
Yk ⊆βi Yk+1 ∧
Yn ⊆βe N .

Each ψe(i, n) is a Π1
e+2-formula. For all e ∈ ω, ψe(i, n) is downwards closed: if

ψe(i, n) holds and n′ ≤ n, i′ ≤ i, e′ ≤ e then ψe′(i′, n′) also holds.

SEQUENCES OF CODED β-MODELS AND REFLECTION. We can now show the theorem:

Theorem 88. If e ≤ i then ∀n.ψe(i, n) is equivalent to Π1
e+2-Ref(Strong Σ1

i -DC0) over
ACA0.

We divide the proof of Theorem 88 into two parts. We use reflection principles
to show of the existence of sequences of coded models of arbitrary length. All the
proofs from reflection principles in this thesis will follow the same template.

Lemma 89. Over ACA0, Π1
e+2-Ref(Strong Σ1

i -DC0) proves ∀n.ψe(i, n) when e ≤ i.
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Proof. In this proof we denote Strong Σ1
i -DC0 by Ti. We have PrTi(pψi(i, 0)q) and

PrTi(p∀n.ψi(i, n) → ψi(i, n + 1)q). So PrTi(pψi(i, n)q) holds for each n ∈ N. By
reflection, ψi(i, n) holds for any n ∈ N. Thus ∀n.ψi(i, n) holds. As ψ is downwards
closed, ∀n.ψe(i, n) holds when e ≤ i.

We now use sequences of coded models to prove reflection principles. This
direction requires a bit of work. For a contradiction, we suppose the reflection
fails. That is, there is θ(X) ∈ Σ1

e+1 such that PrStrong Σ1
i -DC0

(p∀X.θ(X)q) holds but
∀X.θ(X) is false. We define an L1 theory T with a new predicate symbol A. The
predicate A is intended to code a sequence of models. We show that ∀n.ψe(i, n)
implies T is consistent, and so T has a model M . A well-chosen submodel Mω of M
will satisfy both θ(X) and ¬θ(X), giving us a contradiction.

Lemma 90. Over Π1
e+1-CA0, ∀n.ψe(i, n) proves Π1

e+2-Ref(Strong Σ1
i -DC0) when e ≤ i.

Proof. Assume that Π1
e+2-Ref(Strong Σ1

i -DC0) is false. That is, there is an L2-formula
θ(X) ∈ Σ1

e+1 such that PrStrong Σ1
i -DC0

(p∀X.θ(X)q) holds but ∀X.θ(X) is false. There-
fore, there is X0 such that ¬θ(X0) holds.

Let L′1 be the language L1 of first-order arithmetic plus a unary predicate symbol
A. Denote the domain of an L′1 structure by M . In the definition below, Mj is
(M, {(Aj)i | i ∈M}). Define the L′1-theory T by the following axioms:

1. M is a discrete ordered semiring;

2. Mj |= ACA0 for all j ∈ N;

3. (Mj+1)0 =Mj , formally:

∀m.m ∈Mj ↔ (Mj+1)0;

4. Mj ⊆βi Mj+1 for all j ∈ N:

∀e0∀s.(∃m.m ∈ (Mj)s)→ (Mj |= π1
i (e0, (Mj)s)↔Mj+1 |= π1

i (e0, (Mj)s)),

where π1
i is a universal lightface Π1

i -formula;

5. Mj satisfies ¬θ(X0); and

6. X0 = (A0)0.

Fix a finite subtheory T ′ of T . Let j0 be the greatest index j of a coded modelMj

occurring in formulas of T ′. ψe(i, j0) implies that there is a sequence

X0 ∈ Y0 ⊆βi · · · ⊆βi Yj0 ⊆βe N

of j0 many coded models. Setting Aj = Yj for j ≤ j0 and Aj = ∅ for j > j0, we have
a model witnessing the consistency of T ′. By compactness, T is also consistent, so
there is a modelM = (M,A) of T .

Now consider the model Mω = (M, {(Aj)i | i ∈ M, j ∈ N}). Mω satisfies
Strong Σ1

i -DC0 as it is closed under taking βi models: if Y ∈Mω then Y is in some
βi-modelMj which is also inMω. SoMω is a model of θ(X0). On the other hand,
eachMj is a βi-submodel ofMω sinceMj ⊆βi Mj+1 for all j ∈ N. As ¬θ(X0) is



CHAPTER 8. DETERMINACY OF DIFFERENCES 103

Π1
e+1, it can be written as ∀Y θ′(X0, Y ) with θ′ ∈ Σ1

e. Let Y0 ∈ Mω, then there is
j ∈ N such that Y0 ∈ Mj . Since ¬θ(X0) holds inMj , θ′(X0, Y0) also holds inMj .
As e ≤ i, θ′ ∈ Σ1

e andMj ⊂βi Mω, we have that θ′(X0, Y0) also holds inMω. Since
the argument above holds for arbitrary Y0 ∈Mω, we have that ∀Y θ′(X0, Y ) holds
inMω. That is, ¬θ(X0) holds inMω. Therefore both ∀X.θ(X) and ∃X.¬θ(X) hold
inM, a contradiction.

The following two particular cases of Theorem 88 will be used later:

Corollary 91. Over ACA0,

1. ∀n.ψ1(1, n) is equivalent to Π1
3-Ref(Π1

1-CA0); and

2. ∀n.ψ1(2, n) is equivalent to Π1
3-Ref(Π1

2-CA0).

Proof. For (1), set e = 1 and i = 1. For (2), set e = 1 and i = 2.

DETERMINACY AND REFLECTION FOR Π1
1-CA0. We can get a theorem from the

corollary above:

Theorem 92. ∀n.(Σ0
1)n-Det, Π1

3-Ref(Π1
1-CA0), and Π1

1-CA′0 are pairwise equivalent over
ACA0.

Proof. By Proposition 86, ∀n.(Σ0
1)n-Det implies ∀n.ψ1(1, n). Also note that Π1

1-CA′0
and ∀n.ψ1(1, n) are equivalent. Furthermore, Π1

1-CA0 proves Σ0
1-Det and (Σ0

1)n-
Det→ (Σ0

1)n+1-Det for all n ∈ ω. So Π1
3-Ref(Π1

1-CA0) implies ∀n.(Σ0
1)n-Det.

A QUESTION. During the RIMS 2021 Proof Theory Workshop, Toshiyasu Arai asked
the following question:

Question 8. How do we characterize the existence of sequences of coded models of transfinite
length.

8.3 The Π1
2-Ref(ACA0) case

SEQUENCES OF CODED ω-MODELS. We modify the ψe to get a similar result for
ACA0. Let ψ′(n) be defined by

∀X∃Y0, . . . , Yn.


X ∈ Y0 ∧
(Yk)

′ ∈ Yk+1 ∧
Yk |= RCA0.

Lemma 93. Over ACA0, ACA′0 is equivalent to ∀n.ψ′(n).

Proof sketch. Fix X . First suppose ACA′0. Given n ∈ N, we can compute the first n
jumps of X . For k ≤ n, let Yk be the collection of sets computable from TJn(X).
Then Y0, . . . , Yn satisfy ψ(n). Now, suppose ∀n.ψ′(n) holds. We can extract TJn(X)
from Yn if Y0, . . . , Yn witness ψ′(n).

Similar to Theorem 88, we have:
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Theorem 94. Over ACA0, ∀n.ψ′(n) is equivalent to Π1
2-Ref(ACA0).

Proof. As ACA0 proves that the Turing jump of any set exists, Π1
2-Ref(ACA0) proves

ACA′0 and ∀n.ψ′(n).
Now, let θ(X) ∈ Σ1

1 be an L2-formula such that PrACA0(p∀X.θ(X)q) and there is
X0 such that ¬θ(X0) holds. Let the language L′1 be as in the proof of Lemma 90 and
define an L′1-theory T by:

1. M is a discrete ordered semiring;

2. Mj |= RCA0 for all j ∈ N;

3. Mj ⊆Mj+1 for all j ∈ N;

4. (Mj)
′ ∈Mj+1 for all j ∈ N;

5. Mj |= ¬θ(X0) for all j ∈ N; and

6. X0 = (A0)0

Again,Mj is (M, {(Aj)i | i ∈M}).
Now, ∀n.ψ′(n) supplies a model for any finite subtheory of T . By compactness,

there is a modelM = (M,A) of T . Define the coded modelMω by (M, {(Aj)i |
i ∈ M, j ∈ N}). Since Mω is closed under Turing jumps, it is a model of ACA0,
and thus Mω |= θ(X0). But by the definition of T , Mω |= ¬θ(X0). Therefore if
PrACA0(p∀X.θ(X)q) holds, so must ∀X.θ(X) do.

DETERMINACY AND REFLECTION FOR ACA0. We can then use Proposition 81 and
Corollary 83 to show:

Theorem 95. ∀n.(Σ0
1)n-Det∗, Π1

2-Ref(ACA0), and ACA′0 are pairwise equivalent over
ACA0.

Proof. By Proposition 81, ∀n.(Σ0
1)n-Det∗ and ACA′0. Now, ACA′0 and ∀n.ψ′(n) are the

same statement. So ACA′0 and Π1
2-Ref(ACA0) are equivalent by Theorem 94.

8.4 Determinacy and reflection for Π1
2-CA0

We now give a new proof of:

Theorem 96. ∀n.(Σ0
2)n-Det, Π1

3-Ref(Π1
2-CA0), and ∀n.[Σ1

1]n-ID are pairwise equivalent
over ACA0.

Proof. By Lemma 88 above and Lemmas 97 and 98 below.

FROM REFLECTION TO DETERMINACY. As above, using reflection principles to prove
∀n.(Σ0

2)n-Det is a straight proof:

Lemma 97. Over ACA0, Π1
3-Ref(Π1

2-CA0) proves ∀n.(Σ0
2)n-Det.
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Proof. Π1
2-CA0 proves Σ0

2-Det and (Σ0
2)n-Det→ (Σ0

2)n+1-Det, for all n ∈ ω. Formaliz-
ing these proofs inside ACA0, we have that PrΠ1

2-CA0
(pΣ0

2-Detq) and PrΠ1
2-CA0

(p(Σ0
2)n-Det→

(Σ0
2)n-Detq). By Σ0

1-induction, we have ∀n.PrΠ1
2-CA0

(p(Σ0
2)n-Detq). In particular, for

any n ∈ N, PrΠ1
2-CA0

(p(Σ0
2)n-Detq). So Π1

3-Ref(Π1
2-CA0) implies (Σ0

2)n-Det.

WARM-UP: [Σ1
1]3-LFP IMPLIES ψ1(2, 2). We now need to prove:

Lemma 98. Over ACA0, ∀n.[Σ1
1]n-ID proves ∀n.ψ1(2, n).

As a warm up, we show that [Σ1
1]3-LFP implies ψ1(2, 2), that is, we can use three

Σ1
1 operators Γ0,Γ1,Γ2 to define coded models M0,M1 such that:

M0 ⊆β2 M1 ⊆β N .

The full version of Lemma 98 is on the next section. As above,N is the fixed ground
model.

A first rough idea of what Γ0, Γ1 and Γ2 do is:

• Γ0 makes M0 and M1 β-submodels of the ground model.

• Γ1 makes M0 a β2-submodel of M1.

• Γ2 puts M0 inside M1 as an element.

If we can define all of these operators, we are done. The hardest operator to define
correctly is Γ2. In order to do so, we will define auxiliary sets of ‘recipes’ for making
the sets in M0 and M1, and a copy M c

0 of M0 at convenient stages. M c
0 is a technical

artifice used to guarantee M0 ∈M1.
We will have three kinds of recipes:

• Recipes for applications of comprehension will have the form 〈comp, e, j̄〉
where e is an index number and j̄ are set parameters.

• Recipes where we copy an element of M1 to M0 will have the form 〈subm, e〉
where e is the index of some set in M1 such that M1 |= ∀Z.θ((M1)e, Z), M0 6|=
∃Y ∀Zθ(Y,Z) and θ is some arithmetical formula.

• Recipes for putting M c
0 inside M1 are of the form 〈elem, e〉 where e is some

index.

Each of comp, subm and elem are arbitrarily chosen pairwise different natural num-
bers. Each recipe will be the label for the set that it constructs, i.e., the recipe ρ
instructs us how to define the set (Mi)ρ.

We now describe the recipes one application of each operator constructs:

• Γ0: if e ∈ N and s̄ is a finite sequence of elements of Mi, then 〈comp, e, s̄〉 is a
recipe for Mi.

• Γ1: if θ is an arithmetic formula with parameters Y,Z, M0 6|= ∃Y ∀Zθ(Y, Z) and
e is the least such that M1 |= ∀Zθ((M1)e, Z), then 〈subm, e〉 is a recipe for M0.
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• Γ2: if e is the least such ∃i ∈ (M0)e and ¬∃i ∈ (M c
0)e, then 〈elem, e〉 is a recipe

for M1.

These recipes will guarantee that M0 and M1 have the closures we want.
Now we describe how Γ0 follows the recipes to create our sets:

• If ρ = 〈comp, e, j̄〉 is a recipe for Mi, then n ∈ (Mi)ρ iff ϕ(e, n, (Mi)s, X), where
ϕ is a universal lightface Σ1

1-formula.

• If ρ = 〈subm, e〉 is a recipe for M0, then n ∈ (M0)ρ iff n ∈ (M1)e.

• If ρ = 〈elem, e〉 is a recipe for M1, then n ∈ (M1)ρ iff n ∈M c
0 .

We will also require that the set made by each recipe is made only once. Note that
Γ0 at the same time creates and follows recipes. Γ0 is a Σ1

1-operator.
Γ1 is a Σ1

1-operator which adds new recipes for copying members of M1 into M0.
At last, Γ2 is a Σ1

1-operator which copies the current M0 into the candidate M c
0 and

creates a recipe for copying the new M c
0 into M1. This only adds elements to the old

copy, so this is not problematic.
Let X = (M0,M

r
0 ,M

c
0 ,M1,M

r
1 ), then:

• if X is a fixed-point of Γ0, then M0 ⊆β M1 ⊆β N ;

• if X a fixed-point of Γ1, then M0 ⊆β2 M1; and

• if X is a fixed-point of Γ2, then M0 ∈M1.

∀n.[Σ1
1]n-LFP IMPLIES ∀n.ψ1(2, n). In this section we show that ∀n.[Σ1

1]n-LFP implies
∀n.ψ1(2, n). Fix A ⊆ N and n ∈ N such that n ≥ 1. We define a sequence of sets

A ∈ Y0 ∈ · · · ∈ Yn,

Y0 ⊆βi · · · ⊆βi Yn ⊆βe N .

using 2n− 1 Σ1
1-inductive operators Γ0, . . . ,Γ2n−2.

The Γi will play roles similar to Γ0, Γ1 and Γ2 above. Γ0 will guarantee all Mi is
a β-submodel of the ground model (and that all recipes are made). The Γ2i+1 will
guarantee that Mi is a β2-submodel of Mi+1. The Γ2i+2 will guarantee that Mi is an
element of Mi+1.

Write comp, subm and elem for 0, 1 and 2, respectively. A tuple ρ of natural
numbers is a recipe iff there is a natural number n and a natural number j such that

• ρ = 〈comp, e, j〉; or

• ρ = 〈subm, e〉; or

• ρ = 〈elem, e〉.

comp recipes are for closure under Π1
1-comprehension, subm recipes are for making

each model into a β2-submodel of the next model, and include recipes are for putting
a copy of each model into the next model. From now on write Mi for 3n, M r

i for
3n+ 1 and M c

i for 3n+ 2. Given a set X , we write MX
i for (X)Mi .
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The operator Γ0 creates the recipes of the form 〈comp, e, j〉, with j being the
index of some non-empty set in the respective model. Γ0 also makes all the not-
yet-made recipes. As Γ0 both creates and makes the recipes for closure under
Π1

1-comprehension, we can show that the models defined by a fixed-point of Γ0 are
coded β-models.

Formally, Γ0 is the Σ1
1-inductive operator defined by:

x ∈ Γ0(X) ⇐⇒ [x = 〈M r
i , 〈comp, e, s〉〉 ∧ ∀j < lh(s)∃m.m ∈ (MX

i )sj ] ∨

[x = 〈Mi, 〈〈comp, e, s〉,m〉〉 ∧ π1
1(e,m, (MX

i )s, A) ∧ 〈comp, e, s〉 ∈M r,X
i ] ∨

[x = 〈Mi, 〈〈subm, e〉,m〉〉 ∧ 〈e,m〉 ∈MX
i+1 ∧ 〈subm, e〉 ∈M

r,X
i ] ∨

[x = 〈Mi+1, 〈〈elem, e〉,m〉〉 ∧ 〈M c
i ,m〉 ∈ X ∧ 〈elem, e〉 ∈M

r,X
i+1

∧ ¬∃m.m ∈ (MX
i+1)〈elem,e〉],

where π1
1 is a universal lightface Π1

1-formula.

Lemma 99. If X is a fixed-point of Γ0 and i ∈ N, then MX
i is a coded β-model and

A ∈MX
i .

Proof. Suppose that X is a fixed-point of Γ0. Fix i ∈ N and A ∈MX
i . The hyperjump

ofA is HJ(A) = {〈n, e〉 | ∃f.π0
1(e, n, f,X)}, which is Π1

1 relative toA (π0
1 is a universal

lightface Π0
1-formula). So we can define a recipe ρ for HJ(A). Therefore ρ ∈M r,Γ0(X)

i

and HJ(A) ∈ MΓ0(Γ0(X))
i . But Γ0(Γ0(X)) = X , so HJ(A) ∈ MX

i . Therefore MX
i is

closed under hyperjumps, and thus is a coded β-model.
As {a | a ∈ A} is Π1

1 with parameter A, we can similarly show that A ∈MX
i .

Γ2i+1 creates recipes to copy sets to MX
i from MX

i+1, so that the former can
become a β2-submodel of the latter after one application of Γ0. If MX

i ⊆β2 MX
i+1,

Γ2i+1 does nothing.
Formally, Γ2i+1 is the Σ1

1-inductive operator defined below:

x ∈ Γ2i+1(X) ⇐⇒ x = 〈M r
i , 〈subm, e〉〉

∃e0∃s[e = µe.MX
i+1 |= π1

1(e0, (Mi+1)Xe , (Mi)
X
s )

∧MX
i 6|= ∃Y π1

1(e0, Y, (Mi)
X
s )],

where π1
1 is a universal Π1

1-formula.

Lemma 100. Let i ∈ N. If X is a fixed-point of Γ2i+1, then MX
i ⊆β2 MX

i+1.

Proof. Let X be a fixed-point of Γ2i+1 and ϕ be a Π1
2 sentence with parameters in

MX
i . If MX

i+1 |= ϕ then MX
i |= ϕ, as otherwise X would not be a fixed-point of

Γ2i+1.

Γ2i+2 checks if there is any difference between MX
i and M c,X

i , and adds a
new recipe for Mi if that is the case. Γ2i+2 simultaneously copies MX

i over M c,X
i .

After one application of Γ2i+2 and one of Γ0, we get that MX
i is an element of

M
(Γ0(Γ2i+2(X)))
i+1 .
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Formally, Γ2i+2 is the Σ1
1-inductive operator defined below:

x ∈ Γ2i+2(X) ⇐⇒ [x = 〈M r
i , 〈elem, e〉〉

∧ ∃m.〈e,m〉 ∈MX
i ∧ 〈e,m〉 6∈M

c,X
i

∧ ∀e′ < e∀m.〈e′,m〉 ∈MX
i+1 ↔ 〈e′,m〉 ∈M

c,X
i+1 ] ∨

[x = 〈M c
i ,m〉 ∧ 〈Mi,m〉 ∈ X].

Lemma 101. For any fixed-point X of Γ0, MX
i ∈M

(Γ0(Γ2i+2(X)))
i+1 .

Proof. Fix X and i ∈ N. Then either MX
i = M c,X

i or MX
i 6= M c,X

i . If MX
i = M c,X

i ,
there is a recipe 〈include, e〉 ∈M r,X

i+1 and as X is a fixed-point of Γ0, M c,X
i ∈MX

i+1. If

MX
i 6= M c,X

i , then there is e such that 〈elem, e〉 ∈M r,Γ2i+2(X)
i+1 \M r,X

i+1 . We also have

MX
i = M

c,Γ2i+2(X)
i . Therefore MX

i ∈M
Γ0(Γ2i+2(X))
i+1 .

Proof of Lemma 98. Fix k ≥ 1. Suppose ∀n.[Σ1
1]n-ID holds. In particular, [Σ1

1]2k−1-LFP
holds. Let X be a simultaneous fixed-point of the operators Γ0, . . . ,Γ2k−2 defined
above. By Lemmas 99, 100 and 101,

A ∈MX
0 ∈ · · · ∈ MX

n ,

MX
0 ⊆βi · · · ⊆βi M

X
n ⊆βe N .
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