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Abstract 
  

Maternal behavior during the prenatal period was associated with the offspring's well-being and, 

according to the fetal programming theory, maternal influence during the same period may extend to 

adulthood. Over the past decades, many studies investigated the maternal impact on fetal health. For 

example, previous studies investigated the effect of maternal weight and age on fetal well-being and 

birth outcomes. During the prenatal period, fetal health is largely monitored by fetal heart rate (fHR) 

measurements, hence, various research tried to understand the maternal influence on fetal 

development by studying the correlation between maternal and fetal HR. Previously, correlations 

between maternal and fetal HR were investigated by assessing the correlation between their average 

HR collected over a period of time, and by beat-by-beat coupling analysis. However, so far, there is a 

lack of knowledge regarding how maternal-fetal HR interaction or coupling is associated with fetal 

development.  

In this thesis, the existence of similarity between maternal and fetal RR interval (RRI) is discussed. To 

our knowledge, the presence of the same similarity has not been discussed in previous literature.  The 

degree of similarity was assessed by conducting a cross-correlation (CC) analysis between maternal 

and fetal RRI tachograms. Correlation analysis between the CC coefficients and fetal age revealed that 

similarity between maternal and fetal RRI is associated with fetal development. The previous analysis 

was conducted by using RRI signals that were calculated from electrocardiogram (ECG) records. The 

ECG records were collected from human and mouse subjects.  

To explore further, the association of maternal and fetal HR variability (HRV) with the CC coefficients 

was investigated and the results showed that the similarity is associated with the maternal very low 

frequency (mVLF). Because fetal RRI (fRRI) was found to be similar to that of the mother, correlation 

analysis between maternal and fetal HRV was performed in this study. The result of correlation 

analysis showed that positive correlations exist between maternal and fetal HRV. Also, an artificial 

intelligence (AI) based model was developed to predict fRRI from maternal factors that included age, 

weight, and ECG-derived features. 

In addition to the above, the similarity patterns in the spectrum autism disorder (ASD) mouse model 

were investigated and compared with that of typical development. The comparison showed that the 

CC coefficients were lower in ASD mouse model suggesting that disturbances in maternal-fetal RRI 

similarity are a feature of ASD during the prenatal period.  The findings entailed in this thesis 

emphasize the importance of maternal health on fetal development and well-being. Also, it highlights 

the potential of assessing maternal-fetal RRI similarity patterns to monitor fetal development.  
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Chapter 1: Introduction 

 

1.1 Background and motivation 

The prenatal period features a unique bond between a mother and her child. During this 

period, the maternal body undergoes several changes to provide the optimal environment for child 

growth and birth (1). The fetus depends on the mother to survive, and lack of enough nourishment 

may affect fetal growth and birth outcomes. Maternal impact on fetal health was addressed previously 

by Barker, D (2) who mentioned that the maternal intrauterine environment can influence the 

offspring after birth. For example, it is believed that maternal-related factors, such as smoking and 

undernutrition, during the prenatal period could lead to intrauterine growth restriction (IUGR) or 

preterm birth (3). Based on Barker's theory, the idea of developmental origins of health and diseases 

(DOHaD) theory was developed. The theory states that some diseases may originate as early as the 

prenatal period (4).  

The scope of investigating maternal influence on fetal health is huge as there are many factors 

to consider such as genetics, hormonal, physical, and many others. Previous literature attempted at 

understanding maternal influence on fetal healthy by using fetal heart rate (HR) and HR Variability 

(HRV) analysis and the reason for this can be summarized in two folds. First, a human fetus is 

inaccessible therefore, it is technically challenging to obtain blood samples directly from the fetus, 

especially before 18 weeks of gestation (5). Second, fetal HR and HRV are considered indicators of 

fetal growth and development (6,7), moreover, they can be measured non-invasively making them 

quick and efficient tools to assess fetal development. In addition to fetal HR and HRV, maternal HR 

and HRV were found to change during pregnancy and such changes are believed to occur to secure 

fetal growth and birth (8,9). Due to pregnancy, the mother is at risk of developing several 

complications such as preeclampsia (1,10). Therefore, simultaneous assessments of maternal and fetal 

HR can be used to monitor both maternal and fetal health.  

Previously, it was reported that fetal HR (fHR) changed in harmony with maternal HR (mHR) 

throughout the day and such changes suggest the presence of interaction between both (11,12). In 

addition, the existence of beat-by-beat coupling and synchronization between both maternal and fetal 

HRs was reported (13,14,15), but the physiological implications behind them are not known yet. In 
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addition, their importance in assessing fetal development and maternal influences on fetal growth are 

yet to be explored. 

1.2 Contribution 

We have been working on developing methods to quantify maternal-fetal HR interaction to 

get insight into its association with fetal development and growth. Here, we focused our analysis on 

analyzing the simultaneous changes exhibited in maternal and fetal RR interval (RRI) tachograms. 

Visual inspection of maternal and fetal RRI tachograms revealed the presence of similarities between 

both, hence, we opted for quantifying the degree of association between them by means of CC 

analysis. Then, we investigated the association between similarities and fetal development in humans 

and mice. In addition, we investigated how the similarities may get disturbed in autism spectrum 

disorder (ASD) in mice.  

 

1.3 Aims 

The main aims of the thesis include: 

- Highlight the presence of similarities between maternal and fetal RRI tachograms. 

- Develop a method to quantify the similarities.  

- Investigate the association of similarities with fetal development in mice and humans. 

- Investigate how similarity patterns might get affected by ASD in mice.  

 

1.4 Thesis outline 

This thesis is divided into 6 main chapters excluding chapter 1. Chapter 2 provides a brief 

review of different literature that discussed maternal influence on fetal HR and HRV. In addition, 

examples of methods that were used previously to quantify maternal-fetal HR interaction are 

mentioned in chapter 2. Chapters 3, 4, and 5 discuss results from human subjects. In chapter 3, 

similarities between maternal and fetal RRI tachograms and their association with fetal development 

are discussed. Chapter 4 addresses correlations between maternal and fetal HRV. Chapter 5 entails 

artificial intelligence (AI) based prediction of fetal RRI (fRRI) from maternal factors. Chapter 6 discusses 

similarity patterns in typical development in mice, moreover, disturbance of the same patterns in the 

ASD mouse model is discussed. Chapter 7 concludes the thesis and addresses future directions of the 

work.  
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Chapter 2: Literature Review 
 

2.1 Brief review of maternal-fetal HR relations 

The prenatal period constitutes the period in which a mother is closest to her child. The mother 

provides the essentials and resources needed for child development and growth by blood through the 

placenta. Hence, factors associated with the maternal circulatory system, such as blood pressure and 

HR, are of importance for fetal development. Because the fetus is inaccessible, assessment of fetal 

development and growth has been carried out by using non-invasive techniques. For example, a 

Doppler ultrasound or an ear trumpet can be used to listen to fetal heartbeats (16). fHR is a major 

biomarker for fetal health and well-being, hence, previous research attempted at understanding 

factors that may potentially affect fHR for a better understanding of fetal development. fHR was found 

to be associated with maternal condition and HR. For example, the maternal arterial oxygen content 

was found to affect fHR (17). The physiological pathways by which the mother exerts its influence on 

fHR are yet to be uncovered and previous studies attempted at understanding them by studying the 

association between maternal and fetal HR. The association was investigated by adopting different 

methods that involved, correlation analysis between average maternal and fetal HR and coupling 

analysis between both HRs. The followings provide a summary of some of the previous studies that 

addressed maternal and fetal HR association. 

 

Study 1 (18):  

 



Chapter 2. Literature Review                                                                                                                       5 

 

 

 

Study 2 (11): 

 

 

 

Study 3 (12):  
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Study 4 (19): 

 

 

Study 5 (20): 
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Study 6 (14): 

 

 

 

 

Study 7 (21): 
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Study 8 (22): 

 

 

 

Study 9 (23): 
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Study 10 (6): 

 

 

The previously mentioned studies (study 1 - study 10), attempted at understanding the 

relationship between maternal and fetal HRs. In some studies, an intervention was done for a better 

understanding of maternal-fetal HR coupling or association. For example, in study 6, the participants 

were asked to control their breathing to see how maternal-fetal HR coupling changes. In study 9, mice 

were injected with atropine to study the same changes. Although previous studies showed that 

coupling or synchronization occurs between maternal and fetal HRs, up until now, the correlation 

between both HRs remains ambiguous. The latter is attributed to the discrepancies among the 

previously mentioned literature regarding the presence of a correlation between maternal and fetal 

HRs. For example, in study 5, significant correlations between the average maternal and fetal HRs 

were found at certain GAs only. Also, cross-correlation (CC) analysis showed there were no time series 

correlations between both. In study 9, significant correlations between average HRs were found at 

certain maternal sleep stages only. With respect to time series correlations in study 10, they were 

found at certain maternal stages as well. Hence, based on the previous studies, the question regarding 

when do mHRs correlate or associate with fHRs remains.  

In study 6, Leeuwen et al. (14) found that synchronization epochs between maternal and fetal 

HRs were affected by maternal respiratory rates. However, in study 8, Marzbanrad et al. (22) found 

no correlation between maternal respiration and coupling strength. The discrepancies between both 

studies regarding the effect of respiratory rate could be attributed to the different methods used to 

quantify coupling. Also, Marzbanrad et al. (22) did not control respiration, rather, they used ECG-
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derived respiration in their study. The differences between both studies raise the question regarding 

which method could be reliable in assessing coupling between maternal and fetal HRs. Further, the 

fact that different time segments were used in both studies brings up further concerns regarding the 

optimal window size to estimate coupling. It is worth mentioning that the significant correlations that 

were reported between average HRs in studies # 1, 2, 3, 5, 7, and 10 entailed long-term recordings. 

Therefore, correlations between average maternal and fetal HRs over the short term remain 

ambiguous and more studies are needed to clarify this. 

In previous studies (study # 5, 6, 10), discussions regarding the cause of maternal-fetal HR 

coupling were addressed but up until now the cause remains unknown and there is a discrepancy in 

the literature about the same. For example, Leeuwen et al. (14) suggested that maternal-fetal HR 

coupling occurs due to stimulation of the fetal auditory system by maternal heart beats rhythm. 

Whereas Dipietro et al. (20) argued that maternal-fetal HR coupling occurs due to secondary processes 

that mediate both HRs.  

2.2 Brief review of the relationship between maternal condition and fetal HR or 

HRV 

In addition to studying correlations between maternal and fetal HRs, different studies 

investigated how maternal health may affect fetal HR and HRV. The following studies addressed the 

effect of maternal exercise, obesity, and blood pressure (BP) on fetal HR or HRV. 

Study 11 (24): 
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Study 12 (25): 

 

 

 

Study 13 (15): 

 

 

The results from studies 11-13 showed that maternal condition may affect fetal HR or HRV. It 

is unknown how much deviation from the norm is considered normal or abnormal as more research 

is needed to define normal ranges for fetal HR and HRV. But, generally, lower fetal HRV was associated 

with abnormality, for example, Lakhno, I. (26) found that growth-restricted fetuses had lower HRV 

compared to control (26). According to the DOHaD (4) and Barker’s theory (2), understanding changes 
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in fetal HRV relative to the maternal condition may provide a better understanding of the origin of 

diseases that are diagnosed during adulthood. The pathways in which a mother exerts her influence 

on fetal development are yet to be fully explored, and according to (study 1 - study 10), the mechanism 

by which maternal and fetal HR interacts constitutes one of those pathways. 

2.3 Conclusion 

Different studies investigated maternal-fetal HRs coupling and up until now, the correlation 

between both HRs remains ambiguous. Understanding coupling patterns can be used to understand 

why the maternal condition can affect fetal HR and HRV. Based on study 1 - study 13, major questions 

can be formulated: 

- How average maternal and fetal HR and HRV are correlated over the short term? Are they positively 

or negatively correlated? 

- What is an optimal method to quantify maternal and fetal HR coupling? 

- Why does maternal-fetal HR coupling exist? Do they have physiological implications, or do they occur 

due to fetal auditory response to maternal HRs?  

  

 

 



13 

 

 

 

Chapter 3: Maternal-fetal RRI similarity  

 

3.1 Brief overview of the chapter 

             In Chapter 2, several studies about maternal-fetal HR coupling were discussed. The methods 

by which maternal-fetal HR coupling was investigated varied among the studies and in all of them, the 

presence of some sort of coupling between maternal and fetal heartbeats was reported. Conclusions 

regarding the presence of coupling were made based on: 

- Mathematical quantification of synchronization in synchrograms composed of phase-transformed 

maternal-fetal heartbeats (e.g. study # 4, 6 & 9).  

- Mathematical quantification of synchronization between maternal and fetal RRI by using TE (e.g 

study # 8). 

- CC analysis of long recordings of time series maternal and fetal HRs (e.g. study # 5 &10). 

Although coupling analysis was performed based on previous assumptions that some sort of 

coupling exists between maternal and fetal heartbeats, there was a lack of attempts at exploring the 

possibility of finding similarities between maternal and fetal RRI over the short term. In our research, 

we performed a visual inspection of simultaneous records of maternal and fetal RRI tachograms and 

we found that there were obvious similarities between both. To understand their physiological 

implications, we quantified them based on CC analysis, then we investigated the correlation between 

the CC coefficients and GA. Also, we investigated the correlations between CC coefficients and 

maternal and fetal HRV. Figure 1 provides an illustrative summary of the methods and results 

discussed in this chapter. 
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Figure 1: Illustrative summary of chapter 3 
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3.2 Methods 

3.2.1 Data Collection  
 

The study described in this manuscript was approved by the Tohoku University Institutional 

Review Board (Approval number: 2021-1-133). A total of 406 outpatient or in-patient pregnant women 

(GA: 19-40 weeks), who visited Tohoku University Hospital, Japan, for antenatal checkups or treatment of 

pregnancy-related illnesses, were recruited during 2009-2019 for different projects that were carried out 

at Tohoku University. The women were recruited after getting their informed consent. The 406 sample 

size reflects the number of participants who were recruited from among all pregnant women who visited 

the Tohoku University Hospital. Pregnant women who were recruited were at least 20 years old and could 

read and understand the written informed consent in Japanese.  

Before recruiting the participants, an obstetrician confirmed the schedule and location of the ECG 

measurements. Then a subject who met the selection criteria, mentioned above, was approached for 

recruitment after informing her about the research details and ECG measurements. Demographic data of 

the participants were collected such as age, height, and weight. Information regarding maternal health 

and medication along with fetal weight and health were recorded. Participants were asked to remain in a 

supine position and 12 electrodes were attached to their abdominal surface to obtain simultaneous 

records of non-invasive maternal and fetal ECG records. 10 of the 12 electrodes were attached to the 

maternal abdomen to capture fECG. The other two electrodes were attached to the back and right 

thoracic position. The electrode that was attached to the back is the reference electrode and the thoracic 

electrode was used to capture maternal ECG (mECG). The signals were recorded with a 1 kHz sampling 

frequency and 16-bit resolution (27). Signals’ recordings lasted for 20-min. In this study, we analyzed data 

retrospectively. 

3.2.2 Data selection and fetal ECG (fECG) extraction 

The exclusion criteria for this study entailed: 1) fetuses who had records of medical complications 

when ECG data were collected, and 2) subjects with missing information regarding GA or fetal or maternal 

health. The total number of data that met the exclusion criteria was 211, hence, around 195 data were 

considered for analysis in this study.  

Extraction of fECG from mECG was conducted by using a MATLAB 2008b code. The code extracts 

fECG based on blind source separation with reference (BSSR) which is described in detail in (28). fECG 
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extraction was performed for at least 5-mins per subject. No particular procedures were followed to 

assess the quality of the raw abdominal signals to select a 5-min segment for fECG extraction. A signal’s 

quality was considered good if the software was able to extract clear fECG signals. Clear fECG signals made 

fetal R peak detection easy. A window size of at least 5-min was chosen mainly to accommodate for the 

very low frequency (VLF) band (0.0033 - 0.04) Hz. Due to technical limitations related to the quality of the 

raw abdominal signals, it was difficult to perform analysis on more than 5-min lengths.  

fECG extraction attempts were carried out in chronological order. Hence, fECG extractions were 

done starting from the beginning of the ECG records, if the software failed to extract fECG from the 

selected segments, extractions of the next 5-min segments were attempted. If the extraction was not 

successful in any 5-min segment, the data were excluded. As a result of the latter steps, fECG signals were 

extracted at the beginning, middle, or end of the recording. 

In the initial extraction attempts, the total number of 5-min segments (1 segment per 1 subject) 

that were extracted from the 195 subjects was 172 (age: 22-45 years old (34 ± 5.3), GA: 19-40 weeks (30 

± 6.1). Extraction of fECG from the rest of the 23 subjects was not possible due to noise (e.g maternal 

myoelectric and environmental noise). After analysis of the 172 segments, an additional 5-min segments 

were extracted to get more insights into the similarity between maternal and fetal RRI and its correlation 

with HRV. Extraction of additional segments of 5-min was possible in 158 cases (age: 22-44 years old (34 

± 5.3), GA: 19-40 weeks (30 ± 6.2)). With the second fECG extraction, the total number of 5-min segments 

extracted per subject was two in 158 subjects. The additionally extracted 5-min segments did not overlap 

with the previously extracted segments. Extraction of two segments of 5-min from all 172 subjects was 

not possible due to noise in the data, also, around three data sets had recordings of less than 10 mins.  

Around 44 pregnant women had no records of medical or obstetric complications, however, the rest of 

the subjects had at least one complication, more details are found in Appendix A.  

3.2.3 Similarity quantification with CC analysis 

- RRI and HRV calculation  

To investigate the presence of similarity between maternal and fetal RRI tachograms and further 

investigate the similarity’s association with fetal development, we calculated RRI and HRV. To obtain RRI 

tachograms from ECG, R peaks were detected by using the “findpeaks” function in MATLAB 2020b and 

the code is described in (29) and Appendix B, detected R peaks were verified visually to ensure that the 
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code detected R peaks only, an example of detected R peaks is demonstrated in Appendix C. R peaks were 

detected in maternal and fetal ECG signals which were captured at 1 kHz. The “findpeaks” function detects 

peaks based on a threshold value, here the threshold value was adjusted based on the R peak amplitudes 

that varied among subjects. The “findpeaks” provides the location of the detected peaks along with their 

amplitudes. Following R peak detections, the time difference between two successive R peaks was 

calculated to obtain RRI signals or RRI tachograms. By using RRI, maternal and fetal HRV parameters were 

calculated.  

Time and frequency-based HRV analysis was performed in MATLAB. For HRV analysis, original non-

resampled RRI data was used and abnormal sinus RRI values were corrected manually by replacing them 

with preceding or subsequent RRI values. Time-based HRV analysis entailed calculations of the average 

RRI, standard deviation (SD) of normal RRI (SDNN), and SD of HR (SDHR). Frequency-based analysis was 

done by using the Lomb-Scargle periodogram with considering the following bands:  

mECG: VLF: (0.0033 - 0.04) Hz, LF: (0.04 - 0.15) Hz, high frequency (HF): (0.15 - 0.4) Hz. 

fECG: VLF (0.0033 - 0.03) Hz, LF: (0.03 – 0.2) Hz, HF (0.2 - 2) Hz. 

mECG bands were chosen based on previously defined bands for human adults (30). Since up until now 

there are no well-defined bands for fECG, we used bands that were used for infants (31,32).  

- Similarity trend analysis 

To check for the presence of similarity epochs, the values of RRI signals were normalized by using Eq. 1: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑅𝐼 =  
𝑅𝑅𝐼−𝑚𝑒𝑎𝑛 𝑅𝑅𝐼

max(𝑅𝑅𝐼−𝑚𝑒𝑎𝑛 𝑅𝑅𝐼)
     Eq.1 

After normalization, maternal and fetal RRI tachograms were plotted together in one panel to visualize 

the similarities between maternal and fetal RRI tachograms.  

- Cross-correlation (CC) coefficient calculation 

To obtain a similarity score or a mathematical measure of the similarity, we performed CC analysis in 

MATLAB 2020b. CC analysis measures the similarity between two signals at different time lags, more 

details can be found in (33). The CC coefficients of two signals f and g are calculated by using Eq. 2. 

𝑓 ⋆ 𝑔 =  ∫ 𝑓∗(𝑡)  𝑔(𝜏 + 𝑡) 𝑑𝜏
∞

−∞
          Eq.2  

𝑓∗(𝑡) is the complex conjugate of f (t) and makes no difference if the signal is a real-valued (34). 
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Due to the difference in the range of maternal and fetal RRI values, the number of maternal RRI samples 

per 5-min segment was lower than that of the fetus. Hence, to unify the lengths of maternal and fetal RRI 

signals per 5-min segment, we resampled both at 0.5 Hz. Resampled RRI signals were calculated by taking 

the average of RRI per 2 seconds. Resampling per 2 seconds (2000 samples) yields a signal with 150 

samples for a 5-min signal (300,000 samples), 
300,000

2000
= 150. 

An example of a resampled signal is demonstrated in Figure 2, 

Appendix C provides more information about resampling. 

Resampled maternal and fetal RRI signals were then 

normalized per subject by using Eq.1.  

After resampling and normalization, the resampled RRI signals 

(with 150 samples) were divided into 15 segments to calculate 

CC. CC coefficients were calculated per 10 samples by using the 

“xcorr” function in MATLAB; CC values were calculated with a 

zero-time lag. We opted for calculating CC per 10 samples 

rather than the whole 150 samples to capture transient 

changes in the similarity. CC analysis of the whole resampled 

RRI signal (150 samples) may lead to an underestimation of the 

similarity.  Next, the overall similarity per case (5-min segment) 

was estimated by taking the average of the 15 coefficients. 

Here, we adopted four different methods to estimate the overall similarity. We used different methods 

for CC coefficient calculations because, so far, it is unknown what could be a good way to quantify 

similarity to get insights into fetal development. We calculated our four CC coefficients as follows: 

CC1: this coefficient was calculated by taking the absolute average of the 15 coefficients as given by Eq. 3 

(CC1 is not normalized). CC1 provides a rough score for the similarity, the higher the CC1 value is, the 

higher the degree of similarity between maternal and fetal RRI.  

𝐶𝐶1 =
|𝑋1+ 𝑋1……………+ 𝑋15| 

15
  Eq. 3.,     X indicates the CC coefficient of 10 samples 

CC2: this coefficient was calculated by taking the non-absolute average of the 15 coefficients as indicated 

in Eq. 4 (CC2 is not normalized). CC2 quantifies the similarity between maternal and fetal RRI by 

considering directionality (whether maternal and fetal RRIs are changing in the same or opposite 

Figure 2: Example of a resampled signal. 
(A) Original maternal and fetal RR 
interval (RRI) tachograms. (B) Resampled 
RRI tachograms. Resampling was done 
by taking the average of RRI per 2 
seconds. 
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directions). Since CC2 is a non-absolute mathematical average of 15 CC coefficients, the sign of the CC2 

value reflects the dominant similarity trend, positive or negative, within a 5-min segment.  

𝐶𝐶2 =
𝑋1+ 𝑋1……………+ 𝑋15 

15
  Eq. 4,     X indicates the CC coefficient of 10 samples 

CC3: to calculate this coefficient, the “normalized” option of the “xcorr” function was applied in MATLAB 

when the 15 coefficients were calculated. After that, the absolute average of the 15 coefficients was 

calculated by using Eq. 5. The meaning of CC3 is similar to that of CC1. 

𝐶𝐶3 =
|𝑋1+ 𝑋1……………+ 𝑋15|

15
  Eq. 5,     X indicates the CC coefficient of 10 samples 

CC4: the 15 coefficients were calculated similarly to CC3 (with the “normalized” option in MATLAB), then 

the non-absolute average of the 15 coefficients was calculated by using Eq. 6. The meaning of CC4 is 

similar to that of CC2. 

𝐶𝐶4 =
𝑋1+ 𝑋1……………+ 𝑋15

15
  Eq. 6,     X indicates the CC coefficient of 10 samples 

A summary of CC1, CC2, CC3, and CC4 calculations is provided in Appendix D, also the MATLAB code that 

was used to resample RRI signal and perform CC analysis is provided in Appendix E. We performed a brief 

comparison among our derived coefficients based on their potential linkage to fetal development. The 

linkage was assessed by performing a linear correlation analysis between the CC coefficients and GA.  

3.2.4 Data classifications based on CC1 and CC3 

To get more physiological insight into the similarity between maternal and fetal RRI, we made two groups 

by using the 2 extracted segments of 5-min (from the 158 subjects) to compare their HRV features. The 

comparison analysis was carried out twice. In the first comparison, the data were classified based on the 

CC1 coefficient (CC1-based classification (CC1BC)) and in the second comparison, data were classified 

based on the CC3 coefficient (CC3-based classification (CC3BC)). Group 2 had higher values of CC1 or CC3 

compared to group 1. The main purpose of this analysis is to see if there will be significant differences in 

HRV between the two groups due to the effect of CC1 or CC3. Figure 3 shows a summary of data extraction 

and CC classification.  

Here, we based our classification on CC1 and CC3 only because, mathematically, they provide a stronger 

measure for the overall similarity between maternal and fetal RRI compared to CC2 and CC4. In CC2 and 

CC4, similarity quantification by using CC analysis might be underestimated due to the mathematical 
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summation of negative and positive numbers. Also, data classification based on CC2 and CC4 was not done 

due to the complexity involved in the classification and interpretation of the results (more details are 

found in the discussion). 

 

Figure 3: Summary of data analysis. The flowchart provides a graphical summary of the steps that were followed to analyze the 
data. In Step 1, 5-minutes (mins) extraction of fetal electrocardiogram (fECG) was successful in 172 out of 195 subjects. In step 2, 
additional extraction of 5-min segments was successful in 158 out of the 172 subjects. Both in step 1 and step 2 cross-correlation 
(CC) and maternal and fetal heart rate variability (HRV) analyses were performed for the extracted 5-min segments. In step 3, a 
comparison of means analysis was performed to compare between group 1 and group 2 in terms of maternal and fetal HRV 
analysis. Group 2 has higher CC1 or CC3 values compared to group 1. 

 

3.2.5 Statistical analysis 

Normality tests were conducted in MALTAB 2020b by using the One sample Kolmogorov-Smirnov 

test (kstest) and the Shapiro-Wilk test (swtest)  (35).  Kstest revealed that all variables were non-normally 

distributed regardless of group. On the other hand, swtest revealed that some variables were normally 

distributed in both groups (group 1 and group 2), and others were normally distributed in one group only. 

Hence, we based our normality tests on the kstest only.  

Correlation analysis between two variables was performed by using the spearman test.  

Comparison of means was performed by using the Friedman test. 
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3.3 Demonstration of maternal-fetal RRI tachogram similarities  
 

Maternal and fetal RRI tachograms were found to exhibit positive and negative similarity trends. 

In a positive similarity trend (Figure 4 A, B, and C (A-C)), maternal and fetal RRI tachograms change in the 

same direction. In Figure 4A, it is noticeable that the LF and VLF oscillations exhibited by fRRI are similar 

to that of the maternal RRI (mRRI). In Figure 4B, fetal and maternal RRI increased in synchrony before the 

1st min, and then, they decreased but with a time lag at around the 2nd min. Similarities between maternal 

and fetal RRI tachograms were found to exhibit time lags as demonstrated in Figure 4C over the period 

2.7 – 4 min.  

In negative similarity trends, maternal and fetal RRIs change in opposing directions (Figures 4 D, 

E and F (D-F)). The upper panels in Figures 4D-F show the original normalized RRI tachograms and the 

lower panels show the same but with the maternal signal inversed. After inversing maternal RRI 

tachograms, the similarities between maternal and fetal RRI tachograms are clearer. In Figure 4D, the 

increase in fRRI at around the 1st min was accompanied with a decrease in mRRI but with a time lag, the 

latter is made clearer in the lower panel after inversing the maternal signal. Another example of a negative 

similarity trend is demonstrated in Figure 4E. In Figure 4F, RRIs are changing in opposing directions over 

the period 0 - 3.5 min, however, the trend changes to positive afterward. 

3.4 Similarities’ association with fetal development  
 

We hypothesized that the similarities between maternal and fetal RRI tachograms that were 

demonstrated in Figure 4 could be associated with fetal development. Hence, we opted for obtaining 

mathematical measures for the similarity by using CC analysis in which we obtained four coefficients, CC1, 

CC2, CC3, and CC4. The linear correlation between the four coefficients and GA was calculated to 

investigate the association of similarity with fetal development. The results of this analysis are shown in 

the upper rows of Table 1 (the correlation coefficient with GA is represented as r). For further investigation, 

we calculated the linear correlations between fHRV and GA and between maternal (mHRV) and GA. The 

mean, SD, median, and ranges of HRV parameters along with their correlations with GA are shown in Table 

1.  
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Figure 4: Demonstration of positive and negative similarity trends between maternal and fetal RR interval (RRI) tachograms. 
Figures A, B, and C (A-C) show examples of positive similarity trends in which maternal (blue) and fetal (orange) RRI tachograms 
change in the same direction. Figures D, E and F (D-F) show examples of negative similarity trends in which maternal and fetal 
RRI tachograms change in opposing directions. The upper panels in Figures D-F show the original signals while the lower panels 
show the original fetal signal with the maternal signal inversed. (A) The record belongs to a mother who had no records of medical 
complications, gestational age (GA): 20 weeks. (B) The record belongs to a mother with a record of uterine/appendix disease, GA: 
23 weeks. (C) The record belongs to a mother with a medical record of respiratory disease and uterine/appendix disease, GA: 20 
weeks. (D) The record belongs to a mother with a medical record of autoimmune disease, gestational age (GA): 39 weeks. (E) The 
record belongs to a mother who had a blood disease, GA: 33 weeks. (F) The record belongs to a mother with no records of medical 
complications, GA: 23 weeks. 
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Among the four CC coefficients, CC1 was found to have the highest significant correlation with GA 

where r = 0.40 (Table 1). At advanced GA, it was revealed that the negative similarity trend prevails, and 

this is indicated in CC2 and CC4 with r values of - 0.26 and - 0.20, respectively (Table 1).  The results of 

fHRV - GA correlation analysis showed that there was a significant increase in the associations of fetal HRV 

and RRI with GA, (Table 1). The mHRV - GA correlation analysis showed that mHRV, VLF, SDHR, and SDNN 

were significantly correlated with GA (Table 1). Also, LF was found to be significantly correlated with GA 

but with a lower r value compared to VLF, SDHR, and SDNN (Table 1). 

          Table 1: Summary of maternal and fetal HRV, CC coefficients and their correlations with GA, n=172. 

Feature 
Correlation between CC coefficients and GA 

median (min – max) (mean ± SD) r 

CC1 0.58 (0.11 – 2.5) 0.63 ± 0.32 0.40† 

CC2 - 0.023 (-1.3 – 0.80) - 0.09 ± 0.36 - 0.26† 

CC3 0.43 (0.21 – 0.71) 0.44 ± 0.10 0.19* 

CC4 - 0.012 (-0.53 – 0.49) - 0.03 ± 0.18 - 0.20† 

Feature 

Correlation between HRV and GA 

Maternal Features Fetal features 
(mean ± SD) 

 median (min-max) 
r 

(mean ± SD) 
median (min-max) 

r 

RRI (ms) 
760 ± 113 

742 (530 – 1125) 
- 0.03 

412 ± 25 
409 (354 – 512) 

0.33† 

SDNN (ms) 
35 ± 14 

31 (13 – 87) 
0.35† 

16 ± 6.9 
15 (4.0 – 36) 

0.56† 

SDHR (bpm) 
3.7 ± 1.4 

3.5 (1.5 – 8.9) 
0.39† 

5.7 ± 2.5 
5.2 (1.6 – 14) 

0.49† 

VLF (Ln) 
6.2 ± 0.76 

6.2 (4.1 – 8.2) 
0.45† 

4.5 ± 1.1 
4.6 (1.8 – 6.8) 

0.52† 

LF (Ln) 
5.1 ± 0.80 

5.1 (3.3 – 7.7) 
0.16* 

4.3 ± 0.85 
4.4 (1.4 – 6.1) 

0.53† 

HF (Ln) 
4.7 ± 1.3 

4.7 (1.1 – 7.8) 
0.10 

2.3 ± 0.81 
2.4 (-0.46 – 4.2) 

0.53† 

* P < 0.05, † P <0.005, HRV: heart rate (HR) variability, GA: gestational age, CC: cross-correlation, RRI: RR interval, SD: standard deviation, 
SDNN: SD of normal RRI, SDHR: SD of HR, bpm: beats per minute, VLF: very low-frequency power, LF: low-frequency power, HF: high-frequency 
power, r: spearman correlation coefficient. 

 

3.5 Similarities’ association with HRV  
  

We aimed at investigating how HRV is associated with the similarity  (or CC coefficients) to identify 

mechanisms or physiological pathways that could be associated with the same similarity. Hence, we 

extracted additional 5-min segments to make two groups such that one group would have a higher 

similarity score or a CC coefficient value compared to the other group. As was mentioned in the methods 

section, we made two groups based on CC1 (CC1BC) and CC3 (CC3BC) to compare group 1 and group 2.  

After classifying the data based on CC1 and CC3, the correlation analysis in (Table 1] was repeated, CC1BC 

results are shown in (Table 2). CC3BC provided similar results (see Appendix F). A comparison of group 1 
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and group 2 in the terms of the association of fHRV with GA revealed that the r values were found to be 

higher in group 2 compared to group 1 (Table 2). Also, comparison between group 1 and group 2 revealed 

that maternal LF was found to be non-significantly related to GA in group 1 (Table 2).  

We conducted comparison of means tests to compare group 1 with group 2 twice, one comparison was 

based on CC1BC and the other was based on CC3BC, the results of the comparison are shown in Table 3 

(CC1BC in Table 3 shows the same CC and HRV values as Table 2 ). The results of the comparison between 

group 1 and group 2 showed that there were no significant differences in CC2 and CC4 (Table 3). Maternal 

VLF and SDNN were found to be significantly higher in group 2 compared to group 1 in both CC1BC and 

CC3BC (Table 3). SDNN is known to be significantly correlated with VLF (36), hence, the significance 

observed in SDNN could be largely attributed to VLF. Maternal SDHR was found to be significantly higher 

in group 2 in the CC3BC.  

With respect to fHRV, generally, there were less significant differences between group 1 and group 2. In 

CC3BC, fRRI was found to be significantly lower in group 2, whereas fetal SDNN and SDHR were found to 

be significantly higher in group 2.  

Table 2: Comparison between group 1 and group 2 in terms of HRV and CC association with GA, n=158 

 Group 1 (Low CC1) Group 2 (High CC1) 

Feature 
Correlation between CC coefficients and GA 

median (min – max) (mean ± SD) r median (min – max) (mean ± SD) r 
CC1 0.43 (0.11 – 1.3) 0.47 ± 0.22 0.44† 0.67 (0.19 – 2.8) 0.72 ± 0.36 0.41† 
CC2 - 0.042 (- 0.86 – 0.81) - 0.064 ± 0.24 - 0.21†  - 0.035 (-1.8 – 1.2) - 0.10 ± 0.43 - 0.16* 
CC3 0.40 (0.21 – 0.69) 0.41 ± 0.09 0.07 0.45 (0.22 – 0.71) 0.46 ± 0.09 0.17* 
CC4 - 0.045 (- 0.45 – 0.34) - 0.044 ± 0.15 - 0.18† - 0.012 (- 0.53 – 0.49) - 0.021 ± 0.18 - 0.13 

Feature 

Correlation between HRV and GA 

Maternal Features Fetal features Maternal Features Fetal features 

(mean ± SD) 
median (min – 

max) 
r 

(mean ± SD) 
median (min – 

max) 
r 

(mean ± SD) 
median (min – 

max) 
r 

(mean ± SD) 
median (min – 

max) 
r 

RRI (ms) 762 ± 116 
761 (758 – 1125) 

- 0.04 
412 ± 26 

408 (351 – 512) 
0.38† 

763 ± 115 
763 (751 – 1107) 

- 0.02 
413 ± 24 

410 (353 – 510) 
0.40† 

SDNN (ms) 33 ± 13 
30 (10 – 87) 

0.24† 
15 ± 6.7 

14 (4.5 – 35) 
0.36† 

36 ± 17 
31 (13 – 120) 

0.29† 
16 ± 7.3 

15 (4.0 – 45) 
0.55† 

SDHR (bpm) 3.5 ± 1.4 
3.2 (1.3 – 9.2) 

0.35† 
5.5 ± 2.5 

5.0 (1.2 – 14) 
0.29† 

3.7 ± 1.6 
3.5 (1.5 – 11) 

0.33† 
5.7 ± 2.5 

5.3 (1.6 – 14) 
0.50† 

VLF (Ln) 6.1 ± 0.81 
6.1 (3.9 – 7.9) 

0.36† 
4.3 ± 1.2 

4.4 (0.86 – 6.6) 
0.30† 

6.2 ± 0.80 
6.2 (4.1 – 8.6) 

0.34† 
4.5 ± 1.1 

4.6 (2.3 – 7.2) 
0.52† 

LF (Ln) 5.1 ± 0.80 
5.2 (2.6 – 7.2) 

0.09 
4.3 ± 0.80 

4.4 (1.9 – 5.9) 
0.37† 

5.1 ± 0.81 
5.1 (3.3 – 7.7) 

0.19* 
4.3 ± 0.87 

4.3 (1.4 – 6.5) 
0.50† 

HF (Ln) 4.8 ± 1.3 
4.8 (0 – 8.0) 

0.05 
2.3 ± 0.77 

2.3 (0.67 – 4.2) 
0.49† 

4.8 ± 1.3 
4.7 (1.1 – 7.8) 

0.10 
2.2 ± 0.83 

2.3 (-0.46 – 3.9) 
0.51† 

* P < 0.05, † P <0.005, HRV: heart rate (HR) variability, GA: gestational age, CC: cross-correlation, RRI: RR interval, SD: standard deviation, 
SDNN: SD of normal RRI, SDHR: SD of HR, bpm: beats per minute, VLF: very low-frequency power, LF: low-frequency power, HF: high-frequency 
power, r: spearman correlation coefficient. (The table was made based on the CC1BC data set) 
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Table 3 shows that, as expected, there were no significant differences in CC2 and CC4 between 

group 1 and group 2. In Table 3, maternal VLF and SDNN were found to be significantly higher in group 2 

compared to group 1 in both CC1BC and CC3BC. SDNN is known to be significantly correlated with VLF 

(36), hence, the significance observed in SDNN could be largely attributed to VLF. Maternal SDHR was 

found to be significantly higher in group 2 in the CC3BC. With respect to fetal HRV, generally, there were 

less significant differences between Group 1 and Group 2. In CC3BC, fRRI was found to be significantly 

lower in Group 2, whereas fetal SDNN and SDHR were found to be significantly higher in Group 2. 

                Table 3: Comparison in means between Group 1 and Group 2 (n=158) 

 CC1BC CC3BC 

Feature 
Group 1 

 median (min – 
max) 

Group 2 
median (min – 

max) 

P - 
value 

Group 1 
median (min – max) 

Group 2 
median (min – 

max) 
P - value 

CC1 0.43 (0.11 – 1.3) 0.67 (0.19 – 2.8) P < 0.01 0.47 (0.11 – 1.3) 0.58 (0.15 – 2.8) P < 0.01 

CC2 
- 0.042 (- 0.86 – 

0.81) 
 - 0.035 (-1.8 – 

1.2) 
0.87 - 0.032 (- 0.10 – 0.81) -0.086 (-1.8 – 1.2) 

0.11 

CC3 0.40 (0.21 – 0.69) 0.45 (0.22 – 0.71) P < 0.01 0.38 (0.21 – 0.65) 0.48 (0.27 – 0.71) P < 0.01 

CC4 
- 0.045 (- 0.45 – 

0.34) 
- 0.012 (- 0.53 – 

0.49) 
1 - 0.016 (- 0.39 – 0.41) 

-0.030 (- 0.52 – 
0.49) 

0.43 

Maternal Features 

RRI (ms) 761 (758 – 1125) 763 (751 – 1107) 0.42 751 (537 – 1125) 757 (530 – 1107) 1 

SDNN (ms) 30 (10 – 87) 31 (13 – 120) 0.026 30 (10 – 76) 33 (13 – 120) 0.039 

SDHR (bpm) 3.2 (1.3 – 9.2) 3.5 (1.5 – 11) 0.17 3.2 (1.3 – 11) 3.6 (1.3 – 9.4) 0.031 

HF (Ln) 4.8 (0 – 8.0) 4.7 (1.1 – 7.8) 0.13 4.7 (0 – 7.8) 4.7 (1.1 – 8.0) 0.81 

LF (Ln) 5.2 (2.6 – 7.2) 5.1 (3.3 – 7.7) 0.17 5.0 (2.6 – 7.5) 5.1 (3.3 – 7.8) 0.69 

VLF (Ln) 6.1 (3.9 – 7.9) 6.2 (4.1 – 8.6) 0.011 6.0 (3.9 – 8.0) 6.3 (4.1 – 8.6) 0.003 

Fetal Features 

RRI (ms) 408 (351 – 512) 410 (353 – 510) 0.87 411 (358 – 512) 407 (351 – 510) 0.002 

SDNN (ms) 14 (4.5 – 35) 15 (4.0 – 45) 0.20 14 (4.0 – 45) 15 (4.5 – 36) 0.034 

SDHR (bpm) 5.0 (1.2 – 14) 5.3 (1.6 – 14) 0.94 5.0 (1.2 – 14) 5.3 (1.7 – 14) 0.002 

HF (Ln) 2.3 (0.67 – 4.2) 2.3 (-0.46 – 3.9) 0.81 2.4 (-0.46 – 4.1) 2.2 (0.46 – 4.2) 0.81 

LF (Ln) 4.4 (1.9 – 5.9) 4.3 (1.4 – 6.5) 0.87 4.3 (1.4 – 6.3)  4.4 (1.6 – 6.5) 0.52 

VLF (Ln) 4.4 (0.86 – 6.6) 4.6 (2.3 – 7.2) 0.63 4.3 (0.86 – 7.2) 4.6 (1.8 – 6.8) 0.11 
                                        CC: cross-correlation, CC1BC: CC1 based classification. CC3BC: CC3 based classification. SD: standard deviation, RRI: RR 

interval, SDNN: SD of normal RRI, SDHR: SD of heart rate, VLF: very low-frequency power, LF: low-frequency power, HF: 
high-frequency power.  

 

3.6 Discussion and physiological implications 

In this chapter, similarities between maternal and fetal RRI tachograms were demonstrated. 

Similarities were found to be associated with fetal development by means of correlation analysis between 

CC coefficients and GA (Table 1). We showed that similarities can be positive (Figure 4A-C), negative 

(Figure 4D-F) and they may occur with a time lag. We speculate that the similarities arise due to 

physiological processes regulated by the placenta such as oxygen and nutrition transfer. The presence of 

similarity suggests that coordination between the mother and her child should exist for proper perfusion 
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and exchange of blood supply through the placenta. The placenta is known to grow with GA, hence, 

regulations occurring within and affecting maternal and fetal HRs are expected to grow as well due to an 

increase in blood volume and fetal demand (37).   

Due to the limited knowledge in the field, it is difficult to fully interpret the physiological 

differences between negative and positive similarities and this needs further research, but we believe that 

they could be related to fetal behavioral states and the typical fetal development cycle. fHRV is known to 

change with fetal behavioral states and the same states were found to change throughout gestation 

(38,39). Before 32 weeks of gestation, fetal activity has been classified into two states only which are 

activity and quiescency or resting (39). In contrast, after 32 weeks of gestation, fetal activity was classified 

into four states which are: quiet sleep 1F, active sleep 2F, quiet awake 3F, and active awake 4F. In addition 

to fetal activity, negative and positive epochs could be related to the typical development cycle of fetal 

ANS. At early GA (<30 weeks), we expect the fetus to be more dependent on the mother for fHRV 

entrainment and ANS development. With fetal growth, the fetal dependency on the mother is expected 

to decrease and this may explain the increase in negative similarity epochs at advanced GA. 

  
Table 1 shows that fRRI and HRV increase with GA which indicates fetal development, our results 

are consisted with previous studies (7,40). The table shows among the mHRV features, only the maternal 

VLF, SDHR and SDNN increased significantly with GA. An increase in VLF with GA in pregnant women was 

also reported in previous studies (41,42,43). The increase in VLF with GA highlights its association with 

the regulation causing the similarity which is further confirmed by the results in Table 3 in which it is 

shown that mVLF values are significantly higher in group 2 in both CC1BC and CC3CB. The physiological 

explanation of the VLF in pregnant women received little attention in previous literature. Also, in non-

pregnant adults, VLF is considered less defined compared to HF and LF (44). The power within the VLF is 

believed to be associated with hormonal-related effects since they changed due to angiotensin-converting 

enzyme (ACE) inhibition (45,46) and thermoregulation (47,48). Similarly, we expect that the VLF in 

pregnancy could be associated with hormones critical for pregnancy-related regulations. As was 

mentioned before, the regulations are likely to be connected to the placenta.  

The placenta lacks autonomic or neuronal innervations, hence, the prefusion of blood through 

the umbilical cord is believed to be regulated by placental hormones (37).  Blood perfusion through the 

placenta and umbilical cords depends on vascular resistance and pressure (49), and the regulation that 

causes the similarity may play a role in controlling them. Identifications of exact hormones that mediate 

maternal and fetal HRs simultaneously is elusive and more research is needed. However, we expect that 
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estrogen could be related to the regulation that causes the similarity and mVLF because estrogen is known 

to be secreted by the placenta and it increases with pregnancy weeks and peak in the third trimester  (50). 

Moreover, estrogen was found to play a critical role in the downregulation of ACE and upregulation of 

ACE 2 (51,52,53), ACE 2 promotes vasodilation whereas ACE promotes vasoconstriction (54). Previously, 

it has been reported that inhibition of ACE increased VLF (45,46), hence, the increase in VLF in our study 

could be related to the increase in estrogen, upregulation of ACE 2 and decrease in ACE, but more research 

is needed to confirm this.  

 
The similarities between maternal and fetal RRI imply that abnormal changes inflicted in the 

maternal cardiovascular system may eventually be reflected in fetal HRV and development, therefore, 

studying them is potentially critical for the assessments of fetal development, and pregnancy and birth 

outcomes. Understanding the patterns associated with the similarities may help uncover the causes 

behind some of the cardiovascular diseases that are believed to be related to the maternal uterine 

environment (4). Also, the presence of regulation that causes the similarity suggests the need for 

developing clinical biomarkers based on both maternal and fetal HRs. 

 
According to the results in Table 2, it is implied that the similarities may impact evaluations of 

fetal development based on short-term fetal RRI and HRV as the r values between both groups were 

different. Also, in Table 3, there were differences in fetal RRI, SDRR, and SDHR between both groups in 

CC3BC. Table 2 shows that there were discrepancies between CC1 and CC3 in terms of differentiating fetal 

HRV parameters and RRI and this implies that different parameters are being measured by them. However, 

such differences do not negate the fact that similarities impact fetal RRI and HRV.  

It is unknown when the similarities between maternal and fetal RRI tachograms arise and a solid 

answer for this requires developing devices that can measure fHR when it starts beating. However, rough 

speculations regarding the inception of similarities between maternal and fetal RRI can be made from the 

knowledge in previous literature. Fetal heart formation starts at around the third week and then starts 

beating by the fourth week (55). Previous literature indicated that the average fHR is around 110 beats 

per minute (bpm) around the 5th week (55). After the 5th week, the average HR increases until the 11th-

12th week and then decreases again near term (55). Concerning mHR, it was found to increase with GA 

from around the 10th week (56) and this coincides with the decrease in fHR after the 11th – 12th week. 

Hence, we speculate that the similarities arise as early as the 10th week.  
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It is worth mentioning that our conclusions regarding the increase in similarity with GA, Table 1, 

were based on 5-minute segments, hence, analysis of different time segments may provide different 

results. Also, different results could be obtained if different methods were for similarity assessments. We 

collected our data in a supine position which is known to reduce HR (57,58), hence it is unknown how 

similarities along with their assessments would change with body postures. 

3.7 Limitations and Conclusion 

In this chapter, the concept of similarities between maternal and fetal RRI tachograms was 

discussed. The similarities were mathematically quantified by using CC analysis. Correlation analysis 

between CC coefficients and GA revealed that the similarities are associated with fetal development. 

Further, a comparison of means analysis revealed that similarities affect maternal and fetal HRV and they 

are specifically associated with mVLF. 

The retrospective design of the study constitutes the major limitation. Our sample consisted of 

subjects of different ages and pregnancy complications, which might have affected the correlations to 

some extent. We did not consider the time lag between maternal and fetal RRI tachograms which could 

have enriched our conclusions. Further, fetal behavioral states (38) and fetal gender (59,60) are known to 

affect fetal HRV, therefore, they might have also affected the correlations as well. However, effects 

related to pregnancy complications, age, or fetal behavior do not alter the major finding of our study, the 

presence of similarities and associations between maternal and fetal HRs and HRVs.  

 

 



29 

 

 

 

Chapter 4: Pattern-based maternal-fetal HRV correlation 
 

4.1 Brief overview of the chapter 

In chapter 3, similarities between maternal and fetal RRI tachograms which can be, sometimes, 

visually observed were discussed. Similarities were quantified by using CC and they were found to be 

associated with fetal development. Also, mVLF was found to be associated with the similarities. Therefore, 

in this chapter, the association between mVLF and fetal development is investigated by means of 

correlation analysis between fetal HRV and mVLF. The presence of similarities between maternal and fetal 

HRV suggests the need to develop biomarkers that depend on both HRV parameters to assess pregnancy 

outcomes and fetal development. In this chapter, an HRV parameter that was derived from both maternal 

and fetal HRV is discussed. The parameter was calculated from the number of R peaks per 2 seconds 

(nRpp2s). The association between the parameter and fetal development was investigated and it was 

further used to divide data into three patterns to investigate the correlations between maternal and fetal 

HRV. Figure 5 provides a summary of this chapter.  
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Figure 5: Illustrative summary of chapter 4 
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4.2 Methods 

4.2.1 Data selection and analysis 

Methods regarding data analysis and selection are similar to what has been discussed in sections 

3.2.1 and 3.2.2. In this chapter, data from the 158 subjects in which extraction of 2 segments of 5-min was 

possible is used (Table 2). HRV analysis was discussed in section 3.4. After calculating HRV per 5-min 

segment, the average was taken for the analysis in this chapter. 

4.2.2 nRpp2s calculation 

nRpp2s analysis was performed in MATLAB. A code was developed to count the number of R peaks 

occurring within a 2-second window. After that, the SD of nRpp2s (snRpp2s) was calculated to calculate 

the difference between maternal and fetal snRpp2s (dmf). dmf was calculated by subtracting fetal nRpp2s 

(fsnRp2s) from maternal nRpp2s (mnRpp2s) (mnRpp2s – fnRpp2s) with considering 4-digit numbers. 

Patterns were classified based on dmf as follows: pattern 1: dmf >= 0.05, pattern 2: - 0.05 < dmf < 0.05 

and pattern 3: dmf <= - 0.05.  

4.2.3 Statistical analysis 

Normality tests were conducted in MALTAB by using the One sample Kolmogorov-Smirnov test 

(kstest) and the Shapiro-Wilk test (swtest)  (35).  Kstest results showed that all variables were non-

normally distributed regardless of the pattern but swtest showed discrepancies among the patterns. 

Therefore, normality tests were based on kstest only. Correlation analysis between two variables was 

performed by using the spearman test.  

4.3 Demonstration of nRpp2s  

The upper panels of Figure 6 show maternal (blue) and fetal (red) RRI tachograms, and the lower 

panels of Figure 6 show examples of nRpp2s plots. In Figure 6A (lower panel), the mnRpp2s changed more 

than that of the fetus. In Figure 6B, the rate of change of maternal and fetal nRpp2s was roughly the same, 

and in Figure 6C (lower panel), the rate of change in fnRpp2s was higher than that of the mother. The rate 

of change was quantified by using snRpp2s.  
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Figure 6: Demonstration of the number of R peaks per 2 seconds (nRpp2s): The upper panels show maternal (blue) and fetal 
(red) RR interval (RRI). The lower panels show the maternal and fetal number of R peaks per 2 seconds (nRpp2s). (A) The rate of 
change in mnRpp2s (blue) is higher than fnRpp2s (red), fetal standard deviation of nRpp2s (fsnRpp2s): 0.39, maternal snRpp2s 
(msnRpp2s): 0.51, GA: 37 weeks. The figure is an example of pattern 1. (B) The rate of change in maternal and fetal nRpp2s is 
roughly similar, fsnRpp2s: 0.35 msnRpp2s: 0.309, GA: 23 weeks, pattern 2. (C) Opposite to (A), the rate of change in fnRpp2s: 0.50 
is higher than mnRpp2s: 0.37, GA: 29 weeks, pattern 3. 

 

4.4 Difference between maternal and fetal snRpp2s (dmf) 

Figure 7A shows the distribution of snRpp2s relative to RRI. The figure reveals a parabolic 

distribution in both maternal (blue) and fetal (red) snRpp2s. Compared to fsnRpp2s distribution, 

msnRpp2s distribution is larger which is expected due to the more developed maternal cardiac system. 

The difference between maternal and fetal snRRp2s was found to significantly decrease with GA in Figure 

7B. Figure 7B shows that pattern 3 occurs more often at advanced GA whereas, pattern 1 occurs at earlier 

GA.  

 

Figure 7: Demonstration of the maternal and fetal standard deviation of the number of R peaks per 2 seconds (snRpp2s) and 
their difference (dmf). (A) maternal (blue) and fetal (orange) snRpp2s show parabolic distribution with RR interval (RRI) and the 
difference between them (dmf) in (B) decreases with gestational age (GA), r is the spearman correlation coefficient. The red 
dotted lines in (B) show the threshold values, - 0.05 and 0.05, that were used to divide the data into three patterns, pattern 1: 
dmf >= 0.05, pattern 2: 0.05 < dmf < - 0.05 and pattern 3: dmf <= - 0.05. The black dotted lines show the 95% confidence interval 
of regression between the dmf and GA.  

 



Chapter 4: Pattern-based maternal-fetal HRV correlation                                                                           33 

 

4.5 Correlation between maternal and fetal HRV per pattern 

Table 4 shows the results of the correlation between maternal and fetal HRV, additionally, the 

correlations between each of the latter and GA are also provided. Among the three patterns, pattern 3 

has the highest incidence of significant correlations between maternal and fetal HRV, and between GA 

and HRV. In pattern 3, mVLF was found to be correlated with all fetal parameters except LF and RRI. 

Further, msnRpp2s was significantly correlated with all fetal parameters except RRI. Both maternal 

snRpp2s and VLF were significantly correlated with GA. With respect to fetal parameters, all of them were 

found to be significantly correlated with GA. 

Table 4: Correlation between maternal and fetal HRV per pattern 

Pattern Fetal Features mVLF msnRpp2s GA 

Pattern 1 
n = 46 

RRI 0.12 0.033 0.28 

snRpp2s 0.025 0.29* - 0.10 

SDNN 0.01 0.23 - 0.04 

HF 0.031 0.20 0.11 

LF - 0.13 0.062 0.17 

VLF 0.052 0.17 - 0.22 

GA 0.043 0.047  

 
Pattern 2 

n = 54 
 

RRI 0.35† 0.14 0.29* 

snRpp2s 0.062 0.76† 0.024 

SDNN 0.27 0.13 0.41† 

HF 0.36† 0.14 0.51† 

LF 0.20 0.17 0.32* 

VLF 0.24 0.18 0.38† 

GA 0.40† - 0.035  

Pattern 3 
n = 58 

 
 

RRI 0.21 0.16 0.39† 

snRpp2s 0.45† 0.79† 0.69† 

SDNN 0.29* 0.63† 0.59† 

HF 0.26* 0.33* 0.54† 

LF 0.22 0.50† 0.46† 

VLF 0.31† 0.61† 0.56† 

GA 0.44† 0.57†  

* P < 0.05, † P <0.005, HRV: heart rate (HR) variability, GA: gestational age, RRI: RR interval, SD: standard deviation, SDNN: SD of normal RRI, 
VLF: very low-frequency power, LF: low-frequency power, HF: high-frequency power. The values in the table indicate the spearman correlation 
coefficient (r). 

In pattern 2, except for snRpp2s, all fetal parameters were found to significantly increase with GA. 

In pattern 2, only mVLF was found to correlate significantly with GA. Compared to pattern 3, pattern 2 

has less incidence of significant correlations between maternal and fetal HRV. In pattern 2, mVLF is 

significantly correlated with fetal RRI, and HF, also, in the same pattern, msnRpp2s is significantly 

correlated with fsnRpp2. Except for the fsnRpp2s-msnRpp2s correlation, there were no significant 

correlations in pattern 1. It is worth mentioning that the values of r were found to decrease from pattern 

3 to pattern 1. 
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4.6 Discussion and physiological implications 

In this chapter, the dmf factor, which was derived from maternal and fetal HRV (Figure 7B), was 

discussed. The factor was used to divide data into three patterns to explore the association between 

maternal and fetal HRV (Table 4). In addition, associations between HRV and GA were investigated per 

pattern. Correlation analysis revealed that pattern 3 had major information regarding fetal development. 

Also, pattern 3 had the highest incidence of significant correlations between maternal and fetal HRV and 

all of them were positive. The positive correlations are consistent with what has been reported in previous 

studies (24,25,15). Leeuwen et al. (24) showed that maternal and fetal SDNN were higher in pregnant 

women (GA = 36 weeks) who exercised compared to the control group. L. Igor (25) found that both 

maternal and fetal HRV (including SDNN and VLF) were decreased in pregnant women who had mild and 

severe pre-eclampsia compared to the control group, GA= 34 - 40 weeks. H. Haliza et al. (15) found that 

fetal SDNN of obese or overweight pregnant women was reduced. Obesity was associated with reduced 

HRV (61,62), hence, the reduction in fetal SDNN could have accompanied the reduction in maternal SDNN 

due to obesity. All the previous studies confirm the positive correlations we found between maternal and 

fetal HRV. 

Table 4 shows there were discrepancies in r values among the patterns and based on such 

variations we speculate two implications. The first one could be related to the maternal-fetal RRI 

tachograms similarities. In chapter 3, we addressed that the similarities occur due to a regulation that 

mediates both. Given the latter, it could be that the impact of the regulation is lowest in pattern 1. And 

according to the results, it can be implied that such regulation had a major role in fetal HRV and ANS 

development. The second implication could be based on the development of fetal behavioral states and 

ANS activity. The incidence of pattern 3 increases with GA which coincides with fetal development as well. 

But the second implication does not justify the absence of correlations between maternal HRV and GA 

since maternal HRV is well-developed compared to the fetus. Hence, the variations among the patterns 

can be more justified by the presence of physiological processes or regulations that mediate both.  

Pattern 2 which is a transition state from early to advanced GA, had significant correlations 

between mVLF and GA and between fetal HRV and GA. However, the r values were lower than that of 

pattern 3.  Based on Table 4, it can be concluded that patterns 2 and 3 hold more value for fetal 

development assessment based on HRV or HR collected from 5-min epochs. Moreover, pattern 3 holds 

more value in terms of the evaluation of the maternal impact on fetal development. It is worth mentioning 

that there were fewer correlations between maternal HRV and fetal RRI which was expected due to the 
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presence of negative and positive similarity trends. Therefore, the association between maternal HRV 

with fetal RRI, over the short term, could be more clarified by addressing negative and positive similarity 

trends. We could not perform such analysis due to the limited number of subjects. 

The discrepancies found between the three patterns may justify the inconsistencies related to 

maternal-fetal HR coupling that was discussed in the introduction. Pattern-based analysis can provide a 

better understanding of how HRV may react to different stimuli such as respiration and exercise. 

Previously, it was addressed that HRV can be used to assess cardiovascular-related risks (63,64,65). For 

example, Hidase et al. (65) found that the VLF band was a strong predictor for cognitive heart failure (65). 

Therefore, understanding how fetal HRV changes relative to maternal HRV may provide a better 

understanding of cardiovascular complications that occur in both the mother (post-pregnancy) and the 

fetus (after birth). So far, little knowledge is available regarding the norm behind the correlations between 

maternal and fetal HRV, and more research is needed to clarify this for a better assessment of fetal health. 

Remarks on choosing 2 seconds for the analysis in chapters 3 and 4 

A 2 seconds window size was chosen for two main reasons. The first involve the maternal RRI 

range. The maximum average maternal RRI value was 1125 ms, hence, we attempted at choosing the 

lowest possible window size to capture detailed beat-by-beat variations induced simultaneously by fetal 

and maternal HRV.  The second reason involve the results related to the correlation between dmf and GA. 

We attempted calculating dmf for 1.5 and 3 seconds and the correlations with GA were 0.0787(P > 0.05) 

and 0.079 (P > 0.05), respectively. Since the correlations for 1.5 and 3 seconds were insignificant we based 

our analysis on two seconds.  

4.7 Limitations and Conclusion 

In this chapter, an HRV factor based on maternal and fetal HRV was discussed. The factor was 

found to be related to fetal development and it was used to divide data into patterns. Correlation analysis 

between maternal and fetal HRV per pattern revelated positive significant correlations exist between both 

HRV. The findings highlight the importance of maternal condition on the fetal cardiovascular system and 

development. The limitations of the study discussed in this chapter are similar to what has been discussed 

in chapter 3. 
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Chapter 5: Artificial intelligence-based model for fRRI 

prediction 

 

5.1 Brief overview of the chapter 

Given the associations that were found between maternal and fetal HR/HRV in chapters 3 and 4, 

we investigated the possibility of developing an AI model to predict fRRI from maternal factors in this 

chapter. Recently, many AI techniques have proven useful in medical applications and the scope of their 

application is considered limitless (66), for example, they have been used for the identification of 

important features to build predictive models for heart failure (67)  and systolic heart failure survival rate 

(68). Developing AI models could assist physicians in the diagnosis process which can save them time.  

In this study, we used two supervised learning techniques, support vector regression (SVR) and 

random forest (RF) to predict fRRI from maternal factors. Based on the available data in our study, we 

identified features that we speculated to be useful for fRRI prediction. Oxygen and nutrition delivery to 

the fetus is dependent on maternal respiration and blood circulation, therefore, we opted for choosing 

variables that are related to them which included RRI, HRV, R wave amplitude variability (RWAV), age, and 

weight. RRI was included in the model based on the previously mentioned correlations between maternal 

and fetal HRs. HRV, which is an indicator of ANS (30,36) activity, was found to change due to respiration 

(36). Further, RWAV was associated with respiration and stroke volume (69,70). Age (71) and weight (72) 

were included in the model because they were found to be associated with HRV. Figure 8 provides a 

summary of chapter 5. 
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Figure 8: Illustrative summary of chapter 5 
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5.2 Methods 

5.2.1 Data Selection 

The data used here included the same subjects discussed in chapters 3 and 4. From the 172 

subjects, we used data from the 158 subjects in which extractions of two segments of 5-min were possible 

(Table 2). From the 158 subjects, data from 156 subjects were used for training the model; 2 subjects were 

not used because information regarding maternal weight was missing. For further validation of the model, 

data from the remaining 14 subjects (with one segment of 5-min) was used to predict fRRI values. 

5.2.2 Heart rate variability (HRV) and R wave amplitude variability (RWAV) analysis 

The methods followed for HRV analysis were the same as what has been discussed in section 3.4, 

however, the very high frequency (VHF) band has been added here with the following range (73): (0.4 - 

0.9) Hz. Compared to HRV analysis, there is less literature concerning RWAV. In our study, we calculated 

RWAs by normalizing the RWA values. Then, a new signal was obtained from the variations exhibited in 

RWA values. The normalized RWA values were used to calculate frequency-based RWAV by using the 

same frequency bands, VLF, LF, HF, and VHF. To distinguish HRV features from that of RWAV, the term 

RW will be used to refer to RWAV features (RWVLF, RWLF, RWHF, RWVHF).  

5.2.3 Machine learning models and Shapley analysis 

MATLAB 2022a was used for developing the models and Shapley analysis. Two regression machine 

learning techniques were used for the prediction of average fRRI which are SVR and RF. SVR, which is an 

expansion from SV machine (SVM), is a non-parametric supervised learning algorithm that relies on kernel 

functions to optimize models by finding the best-fit lines with hyperplanes (74). In MATLAB, SVR utilizes 

the linear epsilon insensitive (ɛ) SVM regression to find a function f(x) that does not deviate from response 

values by more than ɛ (75). RF is a supervised learning algorithm. RF is an ensemble technique that 

optimizes models based on many aggregated bootstrap decision trees (76). For cross-validation, we used 

leave-one-out in which one data is used for testing and the rest is used for training.  

Since SVR and RF are supervised learning algorithms, features should be fed to models for training 

and testing. In our study, features that were fed to the models were calculated out of the extracted 5-min 

segments. As was described before, two segments of 5-min were obtained from 156 subjects and the 

average of features per subject was fed to the models. The total number of maternal features that were 

fed to the models was 13 which included: 1. Age, 2. Weight, 3. SDNN, 4. SDHR, 5. VLF, 6. LF, 7. HF, 8. VHF, 
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9. RWVLF, 10. RWLF, 11. RWHF, 12. RWVHF, 13. RRI. Figure 9 shows a summary of the steps that were 

followed for data analysis.  

To get an interpretation of the model, we applied Shapley analysis. Shapley analysis is stemmed 

from game theory and basically, it calculates the contribution of a feature to predicting values (77,78). In 

other words, Shapley's values can provide a general idea about the importance of a feature. Shapley 

values can be negative or positive and here we considered positive values only because we were 

interested in the absolute value regardless of the sign. Shapley values were calculated by taking the 

absolute average from the 156 subjects. 

 

 

Figure 9: Summary of data analysis. Following extraction of maternal and fetal electrocardiogram (ECG), 13 features were 
calculated per 5-minute segments. The average from the two 5-minute segments was then fed to two models, support vector 
regression (SVR) and random forest (RF). 

 

5.2.4 Model evaluation 

To evaluate model performance, Bland-Altman (BA) (79,80) and spearman correlation analyses 

were performed to compare the predicted and model-based values. Also, root mean square error (RMSE) 

and error percentages were calculated. The developed model was also tested on the 14 subjects that were 

not used in the training.  
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5.3 Results 

5.3.1 Summary of the features 

Table 5 shows the mean and SD values for the maternal features and fRRI. The first 13 features in 

the table were fed to the SVM and RF models to predict the 14th feature, fRRI.  

Table 5: Mean and SD values of maternal features and fRRI 

Feature (mean ± SD) 

RRI (ms) 763 ± 114 

SDNN (ms) 34 ± 14 

SDHR (bpm) 3.6 ± 1.3 

 VHF (ms2/Hz) 44 ± 146 

 HF (ms2/Hz) 254 ± 356 

LF (ms2/Hz) 229 ± 223 

VLF (ms2/Hz) 664 ± 565 

RWVHF (ms2/Hz) 0.016 ± 0.012 

RWHF (ms2/Hz) 0.056 ± 0.040 

RWLF (ms2/Hz) 0.019 ± 0.011 

RWVLF (ms2/Hz) 0.037 ± 0.025 

Age (years) 34 ± 5.3 

Weight (Kg) 60 ± 8.4 

fRRI (ms) 412 ± 24 
SD: standard deviation. RRI: RR interval, SDNN: SD of normal RRI, SDHR: SD of heart rate. bpm: beats per minute. VHF: very high frequency, 

HF: high frequency, LF: Low frequency. VLF: very low frequency. RWVHF: R wave very high frequency, RWHF: R wave high frequency, RWLF: R 

wave low frequency, RWVLF: R wave very low frequency. fRRI: fetal RRI. 

 

5.3.2 Comparison between SVR and RF performance 

Figure 10 shows plots of error percentages versus GA which show that error percentages did not 

change with GA in both models. Figure 11 shows the results of correlation and BA analyses for the SVR 

(Figure 11 A-B) and RF (Figure 11C-D) models. In Figure 11, it is revealed that the SVR model has higher 

accuracy compared to the RF model due to its lower RMSE and error values. Also, the value of the 

correlation coefficient (r) for the SVR model (Figure 11A) is higher than that of the RF model (Figure 11 C). 

In BA plots (Figure 11B and Figure 11D), the percentage of points that were within the limits of agreement 

was around 95%, nevertheless, the boundaries in (B) were narrower than (D) implying higher accuracy for 

the SVR model. In BA plots, it is shown that both models generally underestimate the predicted values 

and according to the mean values, it is revealed that SVR has higher accuracy due to the lower mean value 

compared to the RF model. Due to the higher accuracy of the SVR model, it was used further for Shapley 

analysis and prediction of fRRI values that were not involved in the training. 
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Figure 10: Absolute error percentage versus gestational age (GA). (A) support vector regression (SVR) model. (B) Random forest 
(RF) model.  

 

Figure 11: Bland Altman (BA) and correlation analysis. (A) shows the results of the support vector machine (SVR) model and (B) 
shows the same for the random forest (RF) model. The limits of agreement of BA plot, root mean square error (RMSE), and error 
percentage are lower in the SVR model. Also, the spearman correlation coefficient (r) value of the SVR model is higher than that 
of the RF model. The latter facts show that the SVR model was more effective in the prediction of fRRI values. 
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5.3.3 Shapley analysis 

The absolute average values of Shapley along with the 95% confidence interval are shown in 

Figure 12. In the figure, it is revealed that among the 13 features, age, HF, SDHR, and RRI had a major 

effect on fRRI predictions whereas VHF was found to have the lowest impact.  

 

Figure 12: Average Shapley values with 95% confidence interval (CI): Shapley analysis shows that age, HF, SDHR, and RRI had 
the highest impact on average fetal RR interval (fRRI) prediction whereas very high frequency (VHF) had the lowest impact. 

 

                  Table 6: SVR model prediction of fRRIs. 

Subject 
number 

 (GA (weeks)) 

Maternal 
age 

(years) 
Maternal complication 

Actual fRRI  
(ms) 

Predicted fRRI  
(ms) 

Error 
(%) 

1 (28) 43 Uterine / appendix disease 445 434 2.5 

2 (32) 43 Uterine / appendix disease 434 420 3.3 

3 (37) 30 Uterine / appendix disease 412 416 0.9 

4 (25) 39 Uterine / appendix disease 408 435 6.5 

5 (29) 35 Uterine / appendix disease 385 438 14 

6 (37) 31 
Central nervous system disease 

(CNS) 
370 388 4.9 

7 (23) 29 None 419 418 0.4 

8 (26) 30 None 383 370 3.0 

9 (29) 29 Autoimmune disease 432 422 2.2 

10 (37) 42 
CNS, Bone muscle diseases, 

Multiple sclerosis 
446 431 3.1 

11 (38) 27 Mental illness 409 429 5.0 

12 (38) 32 Mental illness 407 420 3.1 

13 (39) 45 
Respiratory disease, 

uterine/appendix disease 
502 410 18 

14 (33) 32 Psoriasis vulgaris 418 435 4.1 
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5.3.4 Model validation on test subjects 

After developing the model, we attempted to predict fRRI values from the 14 subjects that were not 

considered in training the model. The results of prediction per subject are listed in Table 6. Error 

percentages were calculated to estimate the accuracy of prediction and as the table shows, they were 

less than or equal to 5 % in general except in 3 cases (subjects # 4, 5 &13).   

5.4 Discussion 

In this study, we investigated the possibility of predicting average fRRI values from maternal 

factors by using SVR and RF models, we used both HRV and RWAV along with weight and age for the 

prediction of fRRI. We speculated that the dynamics exhibited in mRRI or RW can potentially be used for 

the prediction of fRRI. We used time and frequency-based HRV parameters for the prediction. With 

respect to RWAV, we used frequency-based parameters only because we were more interested in RWAV 

which are known to be affected by respiration (69,70). Because it is unknown which and how maternal 

HR or RW -based factors affect fRRI we used the whole frequency power spectrum and we divided them 

into the four known bands (VLF, LF, HF, and VHF) to get more perspectives on which bands are more 

predictive of fRRI. Understanding the exact bands that contribute to fRRI prediction can give more insight 

on the connection between maternal ANS and respiration with fRRI. Due to the complex correlation 

between maternal factors and fRRI, we opted for using machine learning-based techniques for the 

prediction of fRRI.  

We developed two models and a comparison analysis between SVR and RF models revealed that 

SVR outperformed RF in predicting fRRI (Figure 11). Due to the better performance of SVR, we used it 

further in Shapley analysis (Figure 12) and prediction of fRRI from the 14 subjects that were not used in 

the training (Table 6). In Figure 12, it is demonstrated that between age and weight, age had a stronger 

effect on fRRI prediction. Further, the figure shows that among the ECG-derived parameters, maternal 

RRI, SDNN, and HF had the highest impact on fRRI prediction. 

As was mentioned in the introduction, the effect of maternal HR or RRI on fHR was document on 

previous studies (11,18,21). However, the association of maternal age, HF and SDHRs with fHR is less 

documented. In previous studies (81,82), it was addressed that advanced maternal age was associated 

with preterm delivery and small for gestational age (82), but the mechanisms related to this are not fully 

understood yet. In our study, we show that maternal age has a strong impact on fRRI (Figure 12), which 

could be one of the pathways by which maternal age affects fetal development. At advanced age, there 

is a tendency for HRV to decrease and for blood pressure to increase which may lead to health 
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complications without proper management (83). As a result, fRRI is expected to get affected by age-

related changes in maternal cardiac functionality. The effect of maternal HRV on fRRI is still to be 

understood but previously it was demonstrated that maternal breathing affected maternal and fetal HR 

coupling (14). Respiration is known to affect HRV, especially the HF band (30,36), hence, the associations 

of fRRI with maternal SDHR and HR that were found in our study could be respiratory mediated, but more 

research is needed to validate this. 

Table 6 shows that the model was generally effective in predicting fRRI since the error 

percentages were less than or equal to 5% except in three cases, subjects # 4, 5 & 13. We expected to find 

deviations between the actual and predicted values because we speculate that the maternal effect on 

fRRI is partial and not dominant because fRRI is controlled by many physiological processes such as fetal 

behavioral states (38). Also, we expect that maternal complications may affect the prediction’s accuracy. 

It is worth mentioning that, due to the limited knowledge in the field, it is unknown if a particular 

measured fRRI value indicates a norm or not. Hence, training predictive models to distinguish a norm 

could assist physicians in the assessment of fetal health. Model-based prediction of fRRI from the maternal 

condition is yet to be explored and so far, it is unknown which machine-learning technique could be 

suitable for this type of application. Therefore, in this study, we opted for using two of the commonly used 

techniques for regression, SVR, and RF.   

5.5 Limitations and conclusion 

Although our results show that our SVR model was efficient enough and provided a high level of 

performance, it has several limitations. Our retrospective design constitutes a major limitation. As was 

mentioned in Methods (chapter 3), pregnant women had complications and we expect that such 

complications affected the accuracy of the model. Also, we expect that inclusion of more maternal-related 

information may enhance the model accuracy such as maternal blood pressure, respiratory rate, and 

height. Maternal height was not available for all subjects; hence, it was not included as a feature in our 

model. 

In conclusion, we demonstrated that fRRI can be predicted from maternal factors by using 

machine learning-based models. The dependency between maternal and fetal RRI that was reported in 

this chapter suggests that fetal development and health assessment can be enhanced by integrating 

maternal conditions.   
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Chapter 6: Maternal-fetal RRI similarities in mice 
 

6.1 Brief overview of the chapter 

In chapter 3, similarities between maternal and fetal RRI tachograms in human subjects were 

discussed. The similarities were found to be associated with fetal development. In this chapter, a similar 

analysis to what has been covered in chapter 3 is discussed but with data from mice. In this chapter, four 

coefficients are discussed, the previously mentioned CC3 and CC4 along with two additional coefficients 

denoted as coherence low frequency (CLF) and coherence high frequency (CHF). In this chapter, CC3 and 

CC4 are referred to as CCm1 and CCm2, respectively. Similar to what has been reported in chapter 3, the 

coefficients were found to significantly change with embryonic days (EDs). After confirming the 

association between the similarity and fetal development in mice, we opted for investigating similarity 

trends in the ASD mouse model. The model was made by injecting the mother with valproic acid (VPA) on 

ED12.5 to make the treatment group. The control group was made by injection of saline on ED12.5. 

Comparison between the control and VPA mouse in terms of CC1m, CLF, and CHF revealed differences 

between both.  Figure 13 provides an illustrative summary of the chapter.
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Figure 13: Illustrative summary of Chapter 6. 
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6.2 Method 

6.2.1 Animal handling  

The data used in this chapter were analyzed retrospectively and they were mentioned in our 

previous studies (84,85). Animal handling and experimental protocols were per the Guidelines for the Care 

of Laboratory Animals of Tohoku University Graduate School of Medicine. The protocols were approved 

by the Committee on Animal Experiments at Tohoku University, Sendai, Japan (study approval number: 

2017MdA-334). Before mating, C57BL6/J female mice (CLEA, Tokyo, Japan) were housed socially in 3-5 

groups in cages under control lightning of 12h:12h light-dark cycle. Mice had unlimited access to water 

and food. For mating, female mice (7-19 weeks of age) were housed in cages with male mice of similar 

age (1 male and 1 female mouse per cage) in the evening and then separated the next morning. To make 

the VPA model, 600 mg/kg of valproic acid sodium salt (VPA; Sigma, St. Louis, MO, USA) dissolved in saline 

solution was injected into the subcutaneous fat of the pregnant mother’s neck on ED12.5. The control 

group of mice had only saline solution injected into them at the same location.  

6.2.2 Experimental protocol 

Before collection of ECG, pregnant mice were anesthetized with subcutaneous administration of 

ketamine (Ketalar 500 mg, 100 mg/kg; Daiichi-Sankyo, Tokyo, Japan) and xylazine (Rompun 2% w/v 

solution, 10 mg/kg; Bayer, Leverkusen, Germany) and maintained under anesthetic with inhalational 

isoflurane (0.5%, 260 ml/min; Forane AbbVie Inc., Chicago, IL, United States). The depth of anesthesia was 

assessed by using a toe pinch test. The combination of isoflurane with ketamine-xylazine was used to 

ensure the maintenance of stable anesthesia during ECG measurements. We could successfully use the 

same anesthetic combinations to measure clear and stable records of fECG in our previous studies (84,86).  

The ECG recording setup is explained in detail in our previous studies (84,86,23) .  

The maternal mice were kept in a supine position and a far infrared heater was placed beside 

the maternal body to maintain a warm environment. Mice abdominal hair was removed using a hair 

removal cream (Veet, Reckitt Benckiser Group plc, Slough, England, UK). After confirming the mice were 

under anesthesia by the disappearance of movements, the abdomen was opened at the peritoneal cavity 

with fine scissors, and the uterus was exposed. The ECG was measured at a sampling rate of 1000 Hz for 

15 minutes. mECG was recorded by attaching three electrodes to the maternal body. The configuration 

of ECG placement in mice is similar to that of Lead I, II, and III in humans where two leads are attached to 

the arms and one attached to the leg for grounding. fECG was recorded by attaching two electrodes, one 

at the fetal chest and the other at the back(the ground was the maternal body), fetuses were selected 
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randomly during recording. The ECG data were recorded by a portable multi-purpose bio signal amplifier 

monitoring system (Polymate AP1532 and AP Monitor; Miyuki Giken, Tokyo, Japan).  

Fetal mouse development: 

For fetal mouse development (85), simultaneous records of mECG and fECG of 2 random fetuses 

(from the same mother) were collected at embryonic days of ED13.5, ED15.5, ED17.5, and ED18.5. The 

total number of ECG data that were considered for analysis in this study was: ED13.5: 10 mothers (20 

fetuses), ED15.5: 8 mothers (16 fetuses), ED17.5: 11 mothers (22 fetuses), ED18.5: 12 mothers (24 fetuses).  

ASD mouse model: 

For the ASD mouse model (84), simultaneous records of mECG and fECG of 2 random fetuses 

(from the same mother) were collected on ED15.5 and ED 18.5. The total number of ECG records that 

were considered for this study was: E15.5: Saline: 8 mothers (16 fetuses), VPA: 8 mothers (16 fetuses). 

E18.5: Saline: 8 mothers (16 fetuses), VPA: 7 mothers (14 fetuses). 

6.2.3 Data analysis 

All analysis was conducted in MATLAB 2022a.  The first-minute segments of ECG records were 

excluded from the analysis due to noise. ECG records were examined to find two segments of 3-minute 

epochs with no noise or consistent arrhythmia. In all mice, except for 3 cases, the 3-min epochs were 

chosen consecutively.  The two 3-min epochs were chosen from the 14 minutes of ECG recordings 

regardless of order (beginning, middle, or end of the recording). Data that did not have at least two 3-

minute epochs of clear ECG recordings were excluded from the study. Hence, the total number of data 

that was included in the analysis is summarized in Table 7. A window size of 3-min was used for analysis 

because it was the maximum window size that could be considered with no arrhythmia or noise in the 

middle in all subjects.  

            Table 7: Summary of sample size 

Mouse Group ED13.5 ED15.5 ED17.5 ED18.5 

Development 
6 mothers 

(10 fetuses) 
6 mothers 

(10 fetuses) 
10 mothers 
(17 fetuses) 

7 mothers 
(11 fetuses) 

ASD 
 
 

Saline: 8 mothers 
(13 fetuses) 

 

Saline: 5 mothers 
(7 fetuses) 

VPA: 8 mothers 
(13 fetuses) 

VPA: 5 mothers 
(7 fetuses) 

               ED: embryonic day, ASD: autism spectrum disorder, VPA: valproic acid 
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6.2.4 Measuring similarities between maternal and fetal RRI tachograms 

Maternal and fetal RRI tachograms were resampled at 2 seconds by taking the average of RRI per 

2 seconds to unify the lengths of both signals. A minimum of 2 seconds was used to accommodate for fRRI 

(the maximum average fRRI was around 928 ms). After that, the resampled signals were normalized by 

subtraction of mean values and then division by maximum values. After normalization, similarities were 

measured by using “xcorr” (for CC analysis) and “mscohere” (for magnitude-squared coherence (MSC) 

analysis) functions MATLAB2022a. “xcorr” was used for time-based similarity estimation and “mscohere” 

was used for frequency-based similarity estimation. The codes that were used for similarity estimation 

are found in Appendix E. 

To calculate similarity by using “xcorr”, the resampled normalized signal was divided into 10 

samples. After that, CC coefficients were calculated using the “normalized” option in MATLAB per 10 

samples.  The latter calculation yields a total of 9 CC coefficients per 3 minutes (180000/2000 = 90 

samples). To obtain an overall CC score or coefficient for the whole 3-min epoch, the average of the 9 CC 

coefficients was calculated. With this approach, two similarity scores were obtained, CCm1 and CCm2. 

CCm1 was calculated by taking the absolute average whereas CCm2 was calculated by taking the average 

with considering signs. 

The methods that were adopted for similarity estimation by using “mscohere” were similar to 

that of frequency HRV estimation in which the power spectrum is divided into bands. Here, we divided 

the power spectrum into two bands: LF and HF. The maximum frequency obtained from the “mscohere” 

is 0.25 Hz, so we used the following divisions: LF: [0.04 – 0.15] Hz, HF: [0.15 - 0.25] Hz. Since up until now, 

there are no well-defined bands for fetal mice to measure ANS activity, we used bands defined for humans 

(36) because the range of average fRRI in our experiment was [306 - 981] ms. Similarity estimation by 

“mscohere” was done by setting the window size to 10 and the sampling frequency to 0.5 Hz. After that, 

the power spectrum density was estimated per band. Similarity for the LF and HF bands will be denoted 

as coherence LF “CLF” & coherence HF “CHF”, respectively. Figure 14 provides a summary of ECG and 

similarity analysis. 

6.2.5 Statistical analysis 

Before performing statistical analysis, normality tests were conducted in MATLAB2022a by using 

the Shapiro-Wilk test (swtest)  (35).  For normally distributed data, correlation coefficients were calculated 

by Pearson correlation analysis, otherwise, Spearman was used. Comparison of means analysis was 
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performed with one-way ANOVA for normally distributed data and with Wilcoxon test for non-normally 

distributed data.  

 

 

Figure 14: Summary of electrocardiogram (ECG) analysis and similarity estimations. The figure provides (A) an illustrative 
summary of the protocols that were followed to analyze ECG data, (B) calculation of cross correlation (CC) coefficients, and (C) 
coherence low frequency (CLF) and coherence high frequency (CHF) calculations. 

 

6.3 Results 

6.3.1 Fetal mouse development 

- Demonstration of similarity patterns between maternal and fetal RRI tachograms in mice  

Figure 15A, B, C, and D (A-D) show plots of normalized maternal (blue) and fetal (red) RRI 

tachograms from different developmental stages. Figure 15A and B (A-B) show examples of a positive 

similarity trend whereas Figure 15C and D (C-D) show examples of a negative similarity trend. In positive 

similarity trends, maternal and fetal RRI change in the same direction whereas in negative similarity trends, 

the same change in opposing directions. The upper panels of Figure 15C-D show the original changes in 

RRI and the lower panels show the same mRRI and the inversed fRRI tachogram to clarify the negative 

similarity trend. It is noticeable in Figure 15A-D that the degree of similarity between maternal and fetal 

RRI tachograms is more obvious at late developmental stages (ED17.5 and ED18.5).  
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Figure 16 shows an example of 2 fetuses from ED17.5 which belonged to the same mother with 

different similarity trends. In all three panels (top, middle, bottom), mRRI is the same. The top panel shows 

a positive similarity trend for fetus 1. The middle and bottom panels show RRI tachograms that belonged 

to the second fetus. In the bottom panel, fRRI is inversed to clarify the negative similarity trend. Figure 16 

demonstrates that, at a given time, HRs of fetuses that belong to the same mother may correlate 

differently to maternal HR. 

 

 

Figure 15: Demonstration of maternal and fetal RR interval (RRI) similarities. All panels show resampled normalized maternal 
(blue) and fetal (red) RRI. (A) ED15.5, CCm1: 0.42, CCm2: 0.27, coherence low frequency (CLF): 0.084, coherence high frequency 
(CHF): 0.074. (B) ED18.5, CC1: 0.82, CC2: 0.67, CLF: 0.98, CHF: 0.92. (C) ED13.5, CCm1: 0.29, CCm2: - 0.18, CLF: 0.086, CHF: 0.074. 
(D) ED17.5, CCm1: 0.85, CCm2: - 0.85, CLF: 0.097, CHF: 0.088. 
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Figure 16: Example of similarity trend of two fetuses from the same mother. The figure shows resampled normalized maternal 
(blue) and fetal (red) RR interval (RRI) from embryonic day 17.5 (ED17.5). The top panel shows RRI for fetus 1 and the middle and 
bottom panels show the same for fetus 2. For fetus 1 (top panel), CCm1, CCm2, coherence low frequency (CLF) and coherence 
high frequency (CHF) values were as follows, 0.92, 0.92, 0.098 and 0.093, respectively. For fetus 2, the same latter values were 
as follows: 0.83, - 0.60, 0.098 and 0.092, respectively. 

 

- The degree of similarity between maternal and fetal RRI increases with fetal age 

Figure 17 shows the boxplots of CCm1 (A), CCm2 (B), CLF (C), and CHF (D) coefficients. In each 

plot, the value of correlation between the coefficient with EDs is shown as r. In all plots, there is an 

increasing trend in the coefficients indicating an increase in similarity with fetal development. Comparison 

of means analysis shows that there were no significant differences between any of the developmental 

stages in CCm2 (Figure 17B), on the other hand, some differences were found in the rest of the figures. In 

Figure 17A, CCm1 values at ED17.5 and ED18.5 were significantly higher than in the previous 

developmental stages. In Figure 17C, CLF values at ED13.5 were significantly lower than ED15.5, ED17.5, 

and ED18.5. In Figure 4D, CLF values at E18.5 were significantly higher than ED15.5 and ED13.5, also, CLF 

values at ED17.5 and ED15.5 were significantly higher than ED13.5.  The correlation coefficients show a 

positive significant correlation and based on the r-value of CCm2 coefficient, it is indicated that the 

probability of finding positive similarity trends increase with fetal growth.  
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Figure 17: Similarity coefficients at different developmental stages. The similarity between maternal and fetal RR interval (RRI) 
was quantified by using four coefficients: (A) CC1m(B) CCm2 (C) coherence low frequency (CLF). (D) coherence high frequency 
(CHF).  The value of correlation between the coefficient and embryonic days (EDs) is indicated as r above the plot. 

 

6.3.2 ASD mouse model  

- Similarity patterns in VPA-treated mice are disturbed 

The results in Figure 17 show that similarities are indicators of fetal development. Hence, we 

conducted a comparison of means analysis between VPA and saline groups in terms of CCm1 (Figure 18A), 

CCm2 (Figure 18B), CLF (Figure 18C), and CHF (Figure 18D). In all figures, except Figure 18B, it is shown 

that the saline coefficient values at ED15.5 are significantly higher than that of VPA. With respect to the 

comparison at ED18.5, all figures show that the saline group coefficients were found to be higher than 

that of VPA group but the differences were not significant.  
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Figure 18: Comparison between saline (sal) group and valproic acid (VPA) groups at embryonic day (ED) 15.5 and ED18.5. (A) 
CCm1 coefficient. (B) CCm2 coefficient. (C) coherence low frequency (CLF) coefficient. (D) coherence high frequency (CHF) 
coefficient. 

 

6.4 Discussion and physiological implications 

We demonstrated that changes exhibited by maternal and fetal RRI share similarities between 

them in Figure 15A-D and Figure 16. Similarities were found to follow positive trends (Figure 15A-B) or 

negative trends (Figure 15C-D). The quantity addressed here as similar is the simultaneous rate of change 

in maternal and fetal RRI. HRV is controlled by ANS and since both maternal and fetal blood circulatory 

systems and ANS are separated and work independently, the presence of similarities between both RRI 

suggests the presence of a mediator between both. The mediator functions as a means of communication 

between maternal and fetal ANS systems. The CLF and CHF results shown in Figure 15C-D indicate the 

presence of frequency entrainment between the mother and fetus, which suggests that the entrainment 

of ANS function could be important as a mediator between the mother and fetus. Figure 16 shows that at 

a particular time, fetuses belonging to the same mother may interact differently with maternal HR and 

this implies differences in mediator’s influences. Since each fetus has an independent placenta, which is 

the point of connection between the mother and its child, we expect that the effect of the mediator could 
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be modified by placental functions and/or factors such as hormones related to the placenta. The exact 

reason behind the similarity is unknown but, according to Figure 17A-D, it seems that the degree of 

similarity is associated with fetal development. The more advanced the fetal age is, the more fRRI mimics 

mRRI.  

Figure 17A-B provides CC results in the time domain and Figure 17C-D provides the same in the 

frequency domain. According to Figure 17A-B, the r-value in CCm2 (Figure 17B) was lower than that of 

CCm1 (Figure 17A), in addition, the comparison of means analysis showed that there were no differences 

between any of the developmental stages in CCm2. This implies that CCm1 is more indicative of fetal 

development compared to CCm2. Since CCm1, which was evaluated by absolute value, showed a better 

association with fetal development than CCm2, development needs to have an increased correlation 

between mother and fetus, whether positive or negative. Positive and negative correlations between 

mother and fetus may have some significance, but we cannot elaborate more about them in this study, 

and we believe that they need to be verified by other approaches. With respect to frequency-based CC 

analysis, it is revealed that both CLF and CHF were indicative of fetal development.  

Previously (85), we used HRV analysis to assess fetal ANS development in which we considered 

the LF band as an indicator of the sympathetic and parasympathetic systems activity and the HF band as 

an indicator of the parasympathetic system activity. We do not know how our CLF and CHF associate 

exactly with either maternal or fetal sympathetic or parasympathetic systems, but we speculate that they 

associate with ANS activity in general. Mathematically, MSC measures how two signals correlate or are 

similar in the frequency domain (87), and in our study, the two signals consisted of maternal and fetal RRI, 

therefore, CLF and CHF are a combined measure of maternal and fetal HF and LF. In our study, the CHF 

was more efficient compared to CLF in terms of distinguishing between developmental stages. In Figure 

17D, there was a significant difference between ED15.5 and ED18.5 whereas the same was absent in 

Figure 17C. The latter pattern was observed in our earlier study (85) in which we found that the fetal HF 

band was significantly more correlated to EDs compared to LF.  

The results from fetal development highlight this fact, an association between maternal and fetal 

RRI or ANS is a feature of the development, and disturbances in such correlation is expected to impair 

fetal development. In ASD mouse model (Figure 18A-D), it is revealed that there were significant 

differences between control and VPA groups in CCm1, CLF, and CHF values at ED15.5. As in the case of 

fetal development, CCm1 was found to be more appropriate than CCm2 in this study, because we could 

not detect any differences due to VPA administration by CCm2. At ED18.5, all four values in VPA group 
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were found to be generally lower but with no significance. The absence of significance implies that VPA 

mice could eventually achieve development, but compared to the control group, their development was 

delayed, and this could be a feature of ASD that is observed only in the fetal period.  

The main conclusion that can be highlighted from Figure 18A-D is disturbances in communication 

between maternal and fetal ANS or HRV is a feature of ASD. It is intriguing that such disturbances were 

found to be manifested in ED15.5 only which suggests that impairment in fetal neural development could 

be masked with fetal age and growth and the effect of such impairment seems to take effect after 

childbirth and growth. The findings in Figure 18A-D imply that the miscommunication that started 

between maternal and fetal HR in the intrauterine environment gets manifested as miscommunication 

between the child and his/her surroundings after birth. These results are consistent with the DOHaD and 

fetal programming theories which associate the origin of adulthood disorders with the prenatal period 

(4,2,88,89). 

Comparison between Figure 17 and Figure 18 show that CCm2 and CHF trends were consistent in 

both figures. On the other hand, CCm1 and CLF trends were different between both figures in terms of 

the difference between ED15.5 and ED18.5. In Figure 17A and Figure 18C, the differences were significant 

whereas they were not significant in Figure 17C and Figure 18A. Although it is not shown in Figure 17C, 

the p-value for the difference between ED15.5 and ED18.5 was 0.053 which is close to the significance 

level. The absence of significance between ED15.5 and ED18.5 in Figure 18A could be attributed to two 

reasons. The first is the lower sample size at ED18.5 (ASD mouse model, Figure 18) and the second reason 

could be attributed to the anesthetic effect. As was demonstrated in the methods section, 2 segments of 

3-min were selected randomly from the ECG record for analysis, and such selections were made at the 

beginning or end of the recordings. Since anesthesia is known to affect HRs in mice (90,91), the effect of 

anesthesia is expected to change along the recording. For example, the analysis of HR at the beginning of 

the recordings could be different from the end of the recordings. The effect of anesthesia is a limitation 

in our study.  

There are several limitations to our study. MSC calculation requires signals to have the same 

lengths, therefore we resampled our signals to unify lengths. As a result of resampling, information 

regarding CHF was partially lost. CC analysis was used to calculate CC2 to assess directionality in the 

similarity between maternal and fetal RRI. In Figure 17, the r value was low in In Figure 17B, also, there 

were no significant differences between any of the developmental stages in Figure 17B. In Figure 18, the 
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CC2 value was not effective in distinguishing between VPA and saline. Hence, we think that more research 

is needed to effectively estimate the directionality in maternal-fetal RRI similarity. 

Here, we analyzed the data retrospectively and the anesthesia mixture 

(ketamine/xylazine/isoflurane) that was used during ECG recordings is known to affect HR in mice (90,91). 

In humans, fetal HR and HRV are known to be affected by fetal gender and behavioral states (40,38) and 

we expect the same effect to exist in mice. Therefore, we speculate that fetal gender, behavioral states, 

and anesthesia affected CC, CLF, and CHF values in our study. Due to our retrospective design, we did not 

have further information regarding fetal gender. The lower number of subjects of saline and VPA at ED18.5 

was another limitation. 

Additional remarks on VPA-Saline differences 

In addition to the maternal-fetal RRI similarities in 

mice, a simple correlation analysis between maternal and 

fetal average RRI collected over 1-min segments was 

performed for the ED15.5 data. A total number of 56 1-min 

segments were collected from 12 saline mice and a total of 

54 of the same were collected from 13 VPA mice. The 

results of correlation analysis revealed that the linear 

correlation between maternal and fetal RRI was 

significantly positive in the saline mice group whereas the 

correlation was significantly negative in the VPA group, 

Figure 19. The details of this study are found in (92). 

 

The mechanism by which VPA affects fetal development is still unknown, hence, it is unknown 

how the VPA affects the correlation or similarities between maternal and fetal RRI. VPA is known to cause 

congenital heart defects such as arterial and ventricular septal defects and improper closure of the septum 

may mix oxygenated with deoxygenated blood, and this can eventually lead to increased flow to the lung 

and heart failure (93). Hence, due to the latter, disturbance in the interaction of fetal heart with the 

maternal heart is expected. Fetal cardiac defects caused by VPA are yet to be understood, however, 

previous literature addressed that such defects may arise due to inhibition of the histone deacetylase. 

Histone deacetylase plays a role in gene expression therefore its inhibition may lead to defects in the 

Figure 19: Comparison between saline and VPA in 
terms of fetal and maternal RRI correlation. (a) 
Maternal RRI is strongly positively correlated with 
fetal RRI in saline. (b) Maternal RRI is negatively 
correlated with fetal RRI in VPA. 



Chapter 6. Maternal-fetal RRI similarities in mice                                                                                         58 

 

formation of the heart (93). VPA is also known to cause neural tube defects and we expect that this could 

disturb maternal-fetal RRI interaction. Kristin et al. (94). demonstrated that VPA can bind to folate 

receptors in the epithelial cells of the intestine. The binding of VPA to the folate receptors may lead to 

folate deficiency in pregnant women which will eventually lead to a reduced transfer of folate through 

the placenta to the developing fetus (94).     

6.5 Use of mouse models to understand physiological processes 
 

In this chapter data from mice were used to examine the presence of similarities between 

maternal and fetal RRI. In addition, similarity patterns in the autism mouse model were investigated. 

Similar to humans, the similarity between maternal and fetal RRI in mice had positive and negative 

patterns. Furthermore, the degree of similarity increased with fetal development. However, the likeliness 

of the occurrence of negative similarity trends increased with fetal development in humans, on the other 

hand, the likeliness of the occurrence of positive similarity trends increased with fetal development in 

mice. This difference between humans and mice could be attributed to the difference in their ANS 

functionality. For example, in our earlier study (85), we found that maternal and fetal HRV parameters 

decreased with fetal development in mice. In contrast, here, we found that the same increased with fetal 

development Table 1.  

In addition to the ANS differences, differences related to 

cardiac functionality could also be related to the difference in the 

similarity patterns between humans and mice. For example, fRRI 

values are higher than that of the mother, on the other hand, the 

opposite is true in humans. Also, in our earlier studies (95,96), we 

developed models to predict the end of T-waves of ECG in mice (95) 

and humans (96). The model predicts an end of a T wave based on 

a function R(t) that was developed based on the discharging phase 

of a capacitor in an RC circuit. The model was validated with 

simultaneously recorded Doppler Ultrasound records. Based on the 

model, we found that, in humans, the end of a T-wave was 

proportional to RRI in normal subjects but the same was not 

observed in mice. In mice, the end of a T wave occurred earlier 

compared to a T end in a human fECG within an RRI, Figure 20. 

Figure 20:  Comparison between human and 
mouse fetal electrocardiogram (fECG) in 
terms of model-based estimation of an end 
of a T wave.  This figure shows that a model-
based estimation of end of a T wave occurs 
earlier in a mouse fECG compared to a 
human fECG. 



Chapter 6. Maternal-fetal RRI similarities in mice                                                                                         59 

 

Despite the differences between mice and humans, studies that entail mice can still be used to 

get an overall comprehension of the etiology of diseases. Here, we found that disturbances in the 

similarity between maternal and fetal RRI could be a feature of autism during the prenatal period. 

Nevertheless, more research with more sample size is needed. 

6.6 Conclusion and Limitation 

This chapter highlighted the presence of similarities between maternal and fetal RRI tachograms 

in mice. Similarities were quantified by using four correlation coefficients and it was found that the degree 

of similarity increased with fetal age in typical fetal mouse development. In this chapter, an investigation 

of the similarity patterns in ASD mouse model treated with VPA was conducted. A comparison of means 

analysis between VPA and saline mice showed that the correlation coefficients were generally reduced in 

VPA mice indicating a disturbance in the rhythm or regulation by which fetal and maternal HRs interact. 

Hence, it can be concluded that impairment in fetal and maternal HRs interaction could be a possible 

feature of ASD during the perinatal period. 
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Chapter 7: Conclusion 
 

7.1 Conclusion and Future Work  

In this thesis, the presence of similarity between maternal and fetal RRI tachograms in humans 

and mice was discussed. The degree of similarity was quantified by CC analysis and MSC analysis (only in 

mice) and results showed that similarity is associated with fetal development. In both humans and mice, 

two similarity patterns were identified, negative and positive. In humans, the negative similarity trends 

seemed to prevail at late fetal age, but the opposite seemed to occur in mice. It is unknown what causes 

maternal and fetal RRI to associate but it is expected that the cause is linked to the placenta. Our results 

from human subjects showed that the CC coefficients were linked to mVLF, but more research is needed 

to verify this as it is expected that different body postures may affect the similarity and ANS activity. Due 

to different body postures, different associations between maternal and fetal HRV with CC coefficients 

are expected to be found. 

With respect to mice, similarities were associated with typical development, and it was found that 

disturbances in them were linked to ASD. However, further research is needed to confirm how similarity 

patterns could change with ASD. The main challenge with analyzing mice data is the effect of anesthesia. 

For example, in Figure 15B, Figure 15D, and Figure 16, it is shown that maternal and fetal RRI tachograms 

demonstrate straight increasing lines, and such patterns were not found in human data. It is expected 

that these straight lines occur due to anesthesia. Within these straight lines, some fluctuations could hold 

more meanings related to fetal ANS functionality and development. The anesthetic effect is difficult to 

negate which compromises a great limitation. 

Studying the similarity patterns could assist in fetal development assessments. As was discussed 

in Chapter 4, the presence of similarities suggests the need to develop biomarkers depending on both HRs 

and this can potentially enhance fetal well-being and pregnancy outcomes. Further, as was addressed in 

chapter 5, AI-based models may enhance fetal health assessments. It is worth mentioning that developing 

biomarkers and AI models based on the fact that similarity exists would be meaningful after investigating 

how similarity patterns change with fetal abnormalities. All of our human data that was discussed here 
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composed of healthy fetuses, therefore, we could not compare results between healthy and abnormal 

fetuses. Also, the data was collected from human subjects composed of women with different medical 

complications. It is expected that such complications affected the results, but due to the limited 

knowledge in the field, it is unknown to what extent the results were affected.  

Here, the similarity was quantified by means of CC and MSC (in mice only) analyses, and more 

research is needed to confirm the efficiency of such analyses to quantify similarity in relation to fetal 

development. Also, the effect of window size should be investigated further. 
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Appendix A 

Supplementary Table  1: Detailed information about the participants (n=172) 

Maternal Condition Number of cases GA (weeks) Age (years) 

Normal 44 20 - 39 22 - 44 

Central nervous system (CNS) disease 11 23 - 38 22 - 40 

Essential hypertension  3 21 - 37 29 - 42 

Blood disease  4 23 - 38 27 - 41 

Thyroid disease 1 28 38 

Mental Illness 13 22 - 39 27 - 40 

Respiratory disease 9 23 - 40 27 - 38 

Gestational Diabetes 5 19 - 38 23 - 34 

Uterine/appendix disease (UAD) 19  20 - 38 29 - 43 

Autoimmune disease 10 25 - 39 29 - 36 

Heart disease 3 23 - 26 25 - 33 

Placenta previa 6 20 -36 31 - 40 

Bone and muscle system disease 2 28 & 32 33 

Kidney disease 2 28 32 

Pre-eclampsia 1 37 27 

Diabetes 1 37 32 

Psoriasis vulgaris  1 33 32 

Osler's disease 1 36 32 

Cervical weakness 1 39 30 

Blood disease & gestational diabetes 1 33 41 

Cervical weakness & gestational diabetes 1 22 41 

Kidney and respiratory diseases 1 37 32 

UAD & autoimmune disease 6 26 - 38 28 - 34 

UAD & Thyroid disease  2 32 & 39 26 & 37 

UAD & digestive system disease 1 20 41 

Thyroid and blood diseases 1 23 37 

Thyroid and autoimmune disease 1 24 30 

Autoimmune disease and placenta previa 1 37 39 

Respiratory disease and mental illness 1 20 38 

Mental illness and placenta previa 1 37 32 

UAD & Mental illness 3 20 - 38 25 - 34 

UAD & respiratory disease 2 20 & 39 38 & 45 

UAD & Bone and muscle system disease 1 23 44 

UAD & Urinary system disease 1 38 39 

CNS & Bone and muscle system disease 1 37 42 

Gestational diabetes & placenta previa 1 33 30 

UAD & gestational diabetes 1 26 34 

Respiratory disease & placenta previa 2 35 & 37 35 & 39 

UAD & essential hypertension & thyroid disease 1 38 41 

UAD & placenta previa 1 33 32 

UAD & CNS 1 23 35 

Placenta previa & cervical weakness 1 25 35 

Heart disease and thyroid disease 1 20 43 

Heart disease & respiratory disease and CNS 1 2 27 
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Appendix B 
 

%********************************************************* 
%******R Peak detection and RRI calculation codes*******************************% 
%*********************************************************** 
 
  interv=1:300000; %Specify the duration (For mice it is 180000) 
  dataf=fECG(interv); %or mECG 
  dataf=dataf./max(dataf); % To normalize the data 
 
 
%*****R peak detection******* % 
 
data2=dataf; 
cld=find(data2<0); 
data2(cld)=0; 
yf = abs(data2).^2; %Magnify the signal in order to find the R-peaks 
my=max(yf);  % Find the maximum value of R-peak 
minp=0.11*my;  % Set the minimum peak as x% of the maximum   
tm=1:length(yf); 
 
[qrspeaksf,locrf] = findpeaks(yf,tm,'MinPeakHeight',minp,... 
    'MinPeakDistance',300);  %Set minimum peak height and minimum interval values 
 
%plotting detected peaks 
figure 
plot(tm,dataf) 
hold on 
plot(locrf,sqrt(qrspeaksf),'r*') 
xlabel('milliseconds'); ylabel('Amplitude'); 
title('R Peaks') 
 
%*****RR interval calculation******* % 
 
diff_locrf=diff(locrf); %Find the intervals of RR 
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Appendix C 
 

 

 
 

 
 
 
Example of RR interval (RRI) resampling at 0.5Hz (2 seconds). (A) The figure shows the original fetal electrocardiogram (fECG) 
trace with detected R peaks (red dots). The average RRI was calculated per 2 second epoch. (B) the figure shows the resampled 
RRI.   
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Appendix D 
 

 
 
Cross-correlation (CC) calculation. The figure provides an illustrative summary of the steps that were followed to calculate CC1, 
CC2, CC3 and CC4 from resampled normalized maternal and fetal RR interval (RRI). (The figure of fetal RRI is the same as the one 
in supplementary figure 2B). 
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Appendix E 
 
 
%********************************************************* 
%******Resampling and Cross-correlation analysis************% 
%*********************************************************** 
 
 
close all; 
 clear;clc 
 
fctrs=1; 
      fetal_d=xlsread('RR_fixed',1);  %read fetal RR interval and R location  
    maternal_d=xlsread('RR_fixed',2); %read maternal RR interval and R location  
     
% %     
frr=fetal_d(:,1); mrr=maternal_d(:,1);  %assign fetal and maternal RR interval values 
to variables 
M_tHR=((maternal_d(:,2))./1000)'; %assign fetal R peak location to a variable 
F_tHR=((fetal_d(:,2))./1000)'; %assign maternal R peak location to a variable 
 
sF=single(F_tHR.*1000); sM=single(M_tHR.*1000); 
 
fs=1000; % sampling frequency 
 
%***Humans***** set up resampling parameters *********** 
Xt=2000; % resampling freqeuncy 0.5Hz 
pts=150; % Number of samples after resampling 
mxtx=300000; % original sample size for an ECG signal (5 minutes * fs) 
 
%***MICE**** set up resampling parameters ********** 
%Xt=2000; % resampling freqeuncy 0.5Hz 
%pts=90; % Number of samples after resampling 
%mxtx=180000; % original sample size for an ECG signal (5 minutes * fs) 
 
 
%% ***** Resample maternal RR interval ********% 
f1=1;  f2=Xt; 
nMrr=[]; nmt=sM; mbts=[]; 
 
for i=1:Xt:sM(end) 
        
   tm= find(sM>=f1 & sM<f2); % find R peaks within the specified window size 
 
    %+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
   % set up a condition, in case only one R peak is found within 2000 s 
   % window size, the number of R peak will be set up as 1, and the RR 
   % interval value will be set up as the difference between the current R 
   % peak and the previous one 
 
   if length(tm)>1 



Appendix E                                                                                                                                                             67 

 

   nMrr= [nMrr;nanmean(diff(sM(tm)))];  % Resampled signal 
   mbts=[mbts;length(tm)]; % number of R peaks per 2 seconds 
   else 
        
     nMrr= [nMrr;mrr(tm)]; % Resampled signal 
     mbts=[mbts;1]; % Number of R peaks per 2 seconds 
   end 
  %++++++++++++++++++++++++++++++++++++++++++++ 
 
    f1=f2; 
    f2=f2+Xt; 
end 
 
%% ***** Resample fetal RR interval ********% 
f1=1;  f2=Xt; 
nfrr=[]; nmt=sF; 
fbts=[]; 
 
for i=1:Xt:sF(end) 
      
   tm= find (sF>=f1 & sF<f2); 
 
   %+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
   % set up a condition, in case only one R peak is found within 2000 s 
   % window size, the number of R peak will be set up as 1, and the RR 
   % interval value will be set up as the difference between the current R 
   % peak and the previous one 
   
   if length(tm)>1 
 
   nfrr= [nfrr;mean(diff(sF(tm)))]; %resampled RR interval 
   fbts=[fbts;length(tm)];  %Number of R peaks per 2 minutes 
     
   else 
 
   nfrr= [nfrr;frr(tm)]; %resampled RR interval 
   fbts=[fbts;1]; %Number of R peaks per 2 minutes 
   end 
      %+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    f1=f2; 
    f2=f2+Xt; 
     
end 
 
nMrro=nMrr; nfrro=nfrr; % set the resampled signals into new variables 
 
%Normalize Resampled maternal RR interval 
nMrr=nMrr-mean(nMrr); 
nMrr=nMrr./max(abs(nMrr)); 
 
%Normalize Resampled fetal RR interval 
nfrr=nfrr-mean(nfrr); 
nfrr=nfrr./max(abs(nfrr)); 
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%++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
%******Human********% 
This condition was set up to accomodate for the signals that are 149 in lengths 
 tx=1:Xt:mxtx;tx=tx./60000; 
 if length(nMrr)<pts & length(nfrr)==pts 
    nfrr(end)=[]; tx(end)=[]; fbts(end)=[]; nfrro(end)=[]; 
 end 
 
%******Mice********% 
%This condition was set up to accomodate for the signals that are 99 in lengths 
if length(nfrr)<pts & length(nMrr)==pts 
      nMrr(end)=[]; tx(end)=[]; mbts(end)=[]; nMrro(end)=[]; 
 end 
 %++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 
 
%% *****Cross Correlation analysis******%% 
 
fp=1; ep=10; % 10 samples 
Corrm=[]; Corrm2=[]; 
 
for i=1:10:pts 
 
    cm=nMrr(fp:ep); %set the maternal 10 samples segment 
    cf=nfrr(fp:ep); %set the fetal 10 samples segment 
     
  %Cross correlation calculation (non-normalized)       
    [c,lags] = xcorr(cm,cf); Ls=find(lags==0); 
    Corrm=[Corrm;c(Ls)]; 
 
%Cross correlation calculation (normalized)    
[c2,lags2] = xcorr(cm,cf,'normalized'); Ls2=find(lags2==0); 
Corrm2=[Corrm2;c2(Ls2)]; 
 
 
  %next 10 samples 
    fp=ep+1; ep=10+ep; 
     
    %Terminate the loop at 149 in case the RR inerval signal's maximum 
    %length was 149 
    if ep==pts &length(nMrr)==pts-1 
        ep=pts-1; 
    end 
     
end 
 
%CC1 and CC2 
[mean (abs(Corrm)) mean (Corrm)] 
%CC3 and CC4 
[mean (abs(Corrm2)) mean (Corrm2)] 
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%% ***Mice ****Magnitude squared coherence analysis************* 
 
[y,x]=mscohere(nfrro,nMrro,10,[],[],pts/(3*60));  
  
% Band division 
 
Finx_LF=find(x<=0.15&x>0.04); % Low frequency 
Finx_HF=find(x<=0.25&x>0.15); % High frequency 
 
% CLF 
xLF=trapz(x(Finx_LF),y(Finx_LF));  
% CHF 
xHF=trapz(x(Finx_HF),y(Finx_HF)); 
 
% Plotting 
figure 
area(x,y,'FaceColor',[.6 .6 .6]); xlabel('Frequency (Hz)'); ylabel('(PSD (ms^2/Hz))') 
hold on; 
 
area(x(Finx_LF),(y(Finx_LF)),'FaceColor','b');  
area(x(Finx_HF),(y(Finx_HF)),'FaceColor','r');  
%legend('','LF','HF') 
ax = gca; 
ax.FontSize = 10; ax.FontWeight = 'bold'; 
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Supplementary Table  2: Comparison between group 1 and group 2 in terms of HRV and CC association with GA, n=158 

 Group 1 (Low CC3) Group 2 (High CC3) 

Feature 
Correlation between CC coefficients and GA 

median (min – max) (mean ± SD) r median (min – max) (mean ± SD) r 
CC1 0.47 (0.11 – 1.3) 0.52 ± 0.24 0.40† 0.58 (0.15 – 2.8) 0.67 ± 0.37 0.40† 
CC2 - 0.032 (- 0.10 – 0.81) - 0.064 ± 0.24 - 0.21† -0.086 (-1.8 – 1.2) - 0.12 ± 0.40 - 0.16* 
CC3 0.38 (0.21 – 0.65) 0.38 ± 0.08 0.13 0.48 (0.27 – 0.71) 0.48 ± 0.08 0.16 
CC4 - 0.016 (- 0.39 – 0.41) - 0.017 ± 0.14 - 0.23† -0.030 (- 0.52 – 0.49) -0.05 ± 0.18 - 0.11 

Feature 

Correlation between HRV and GA 

Maternal Features Fetal features Maternal Features Fetal features 

(mean ± SD) 
median (min – 

max) 
r 

(mean ± SD) 
median (min – 

max) 
r 

(mean ± SD) 
median (min – 

max) 
r 

(mean ± SD) 
median (min – 

max) 
r 

RRI (ms) 
763 ± 117 
751 (537 – 

1125) 
- 0.06 

414 ± 25 
411 (358 – 

512) 
0.42† 

762 ± 113 
757 (530 – 

1107) 
- 0.01 

411 ± 25 
407 (351 – 510) 

0.37† 

SDNN (ms) 
32 ± 13 

30 (10 – 76) 
0.20* 

15 ± 6.8 
14 (4.0 – 45) 

0.37† 
37 ± 17 

33 (13 – 120) 
0.33† 

16 ± 7.2 
15 (4.5 – 36) 

0.57† 

SDHR (bpm) 
3.4 ± 1.4 

3.2 (1.3 – 11) 
0.31† 

5.3 ± 2.4 
5.0 (1.2 – 14) 

0.32† 
3.8 ± 1.5 

3.6 (1.3 – 9.4) 
0.39† 

5.9 ± 2.6 
5.3 (1.7 – 14) 

0.52† 

VLF (Ln) 
6.0 ± 0.78 

6.0 (3.9 – 8.0) 
0.34† 

4.3 ± 1.2 
4.3 (0.86 – 

7.2) 
0.29† 

6.3 ± 0.81 
6.3 (4.1 – 8.6) 

0.37† 
4.6 ± 1.1 

4.6 (1.8 – 6.8) 
0.53† 

LF (Ln) 
5.1 ± 0.84 

5.0 (2.6 – 7.5) 
0.08 

4.3 ± 0.87 
4.3 (1.4 – 6.3) 

0.35† 
5.1 ± 0.77 

5.1 (3.3 – 7.8) 
0.19* 

4.3 ± 0.81 
4.4 (1.6 – 6.5) 

0.52† 

HF (Ln) 
4.8 ± 1.3 

4.7 (0 – 7.8) 
0.04 

2.3 ± 0.79 
2.4 (-0.46 – 

4.1) 
0.49† 

4.8 ± 1.2 
4.7 (1.1 – 8.0) 

0.11 
2.2 ± 0.79 

2.2 (0.46 – 4.2) 
0.53† 

* P < 0.05, † P <0.005, HRV: heart rate (HR) variability, GA: gestational age, CC: cross-correlation, RRI: RR interval, SD: standard deviation, 

SDNN: SD of normal RRI, SDHR: SD of HR, bpm: beats per minute, VLF: very low frequency power, LF: low frequency power, HF: high frequency 

power, r: spearman correlation coefficient. (The table was made based on CC3BC data set 
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