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In this paper, we study a phenomenological model for pattern formation in electroconvection, and the effect of
noise on the pattern. As such model we consider an anistropic Swift–Hohenberg equation adding an additive noise.
We prove the existence of a global solution of that equation on the two dimensional torus. In addition, inserting a
scaling parameter, we consider the equation on a large domain near its change of stability. We observe numerically
that, under the appropriate scaling, its solutions can be approximated by a periodic wave, which is modulated by
the solutions to a stochastic Ginzburg–Landau equation.
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1. Introduction

The Swift–Hohenberg equation is a celebrated toy model for the convective instability in the Rayleigh–Bénard
convection [13]. This equation has played an important role not only in the model of pattern formation in thermal
convection, but also in the study of different fields including electroconvection, economics, biology, sociology, optics,
etc. (see [9]).

The one-dimensional Swift–Hohenberg equation is given by

@tu ¼ �ð1þ @2xÞ
2uþ �u� u3; t � 0; x 2 R; ð1:1Þ

where � 2 R is called the stress parameter. The linear part is clearly analyzed using Fourier transform. The ansatz

uðt; xÞ ¼ e�ðkÞtþikx;

where k 2 R is the wave number, yields �ðkÞ ¼ �ð1� k2Þ2 þ �. If � > 0, then unstable modes around k ¼ �1 exist
and thus, in this case the convection and the pattern formation occur. Now let � ¼ "2 > 0. We expect that the solution
can be described by the ansatz

uðt; xÞ ¼ "AðT ;XÞeix þ c:c:; X ¼ "x; T ¼ "2t;

where c.c. means the complex conjugate. Substituting it into the above equation, and comparing the coefficients of
" jeikxð j; k 2 ZÞ, we see that the so-called residual is minimized if AðT ;XÞ fulfills

@TA ¼ 4@2XAþ A� 3jAj2A: ð1:2Þ

Indeed, it is known that if " > 0 is taken to be small enough, uðt; xÞ � ðAðT ;XÞeix þ c:c:Þ becomes smaller in a suitable
sense (see [14]).

We are interested in adding noise in this formulation. For the stochastic equation, it is shown in [2] that the solution u

of the one dimensional stochastic Swift–Hohenberg equation;

@tu ¼ �ð1þ @2xÞ
2 þ �"2u� u3 þ "

3
2 _�"; t � 0; ð1:3Þ

where � > 0, and _�" is the real valued space-time white noise, can be approximated by using the solution A of the
stochastic Ginzburg–Landau equation:

@TA ¼ 4@2XAþ �A� 3AjAj2 þ _�; X ¼ "x; T ¼ "2t
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where _� is a complex valued noise. The approximation is given by

uðt; xÞ ’ "Að"2t; "xÞeix þ c:c:

This result is proved on the whole space R, there is also a result by [3] on the one-dimensional torus. To our best
knowledge, this approximation in the stochastic case is known only in one dimension, the results in more than two
dimensions are not known. The main problem in the stochastic case in the dimension more than two is that the solution
of the stochastic Ginzburg–Landau equation has a priori a negative regularity, thus we need to use a renormalization to
make sense to the nonlinearity (see for example [10]), whereas the Swift–Hohenberg equation has good regularity and
we do not need to use a renormalization. Rather, the linear part of Swift–Hohenberg equation can define the Wick
products of Ornstein–Uhlenbeck process in a certain scale of ". We would address this issue in the sequel paper. In the
deterministic case, such approximation for more general forms of equation is already known in two dimensions, see for
e.g. [11].

In this paper we thus consider a two-dimensional stochastic Swift–Hohenberg equation on the torus given by

@tu ¼ �ð1þ @2xÞ
2uþ @2yuþ u� u3 þ _�; ðx; yÞ 2 T2,

uð0Þ ¼ u0;

�
ð1:4Þ

where _� is the real-valued space-time white noise. This equation is a phenomenological model for pattern formation in
electroconvection, in the sense that the spectral surface is similar to the modeling of the electroconvection proposed in
[12]. In this paper, as the first step, we prove the existence of a solution of this equation (1.4).

By the result of the approximation of the deterministic equation and the approximation result of [2], we can expect
that the two-dimensional stochastic Swift–Hohenberg equation (1.4) also can be approximated by the two-dimensional
complex stochastic Ginzburg–Landau equation. We may see by formal computations that the solutions of

@tu ¼ �ð1þ @2xÞ
2uþ @2yuþ "

2u� u3 þ " _�"

defined on the domain ½�L="; L="� � ½�L="; L="� (L > 0) with periodic boundary condition would be approximated by
the solution A of

@TA ¼ 4@2XAþ @
2
YAþ A� 3jAj2Aþ _�;

on the domain ½�L;L� � ½�L;L�, through the ansatz

uðt; x; yÞ ¼ "Að"2t; "x; "yÞeix þ c:c:

We try to see whether this would be observed or not by numerical simulations.
The organization of this paper is as follows. In Sect. 2, we prepare the notation necessary for discussing the

subsequent sections, and we state our main theorem. In Sect. 3, we investigate the regularity of the solution of the linear
equation of the two-dimensional stochastic Swift–Hohenberg equation using the Kolmogorov test. Section 4 is
dedicated to prove the existence of the solutions of equation (1.4) using the regularity of the solutions of the linear
equation obtained in Sect. 3. We use the compactness method and obtain the solution as the limit of finite dimensional
Galerkin approximation and its energy uniform estimates. Lastly, we will present the numerical simulations in Sect. 5.

2. Preliminaries and Main Results

2.1 Notation

In this section, we define the notation for our discussion.
(i) Our results will concern the periodic functions in R2 and for a fixed L > 0 we shall take the fundamental period

in each variable to be 2L. That is, a function f on R2 is said to be periodic if f ðxþ 2LkÞ ¼ f ðxÞ for all x ¼
ðx; yÞ 2 R2 and k ¼ ðk; lÞ 2 Z2. For the analysis, a natural option would be to base the definition of the Sobolev
spaces on discrete Fourier series, and those are adapted to the ‘‘torus,’’ namely we regard the periodic functions
as functions on the space R2=ðð2LÞZÞ2 which we will call the torus and denote by T2. We identify T2 with the
cube ½�L;LÞ2.

(ii) Let �2 ¼ 1
ð2LÞ2 m2, where m2 is two-dimensional Lebesgue measure. Then, by the identification above, �2 induces

a measure on T2, but we denote it by the same �2 with an abuse of notation. For all p 2 ½1;1�, LpðT2Þ denotes
thus Lpð½�L;L�2Þ with this Lebesgue measure �2.

(iii) For measurable complex-valued functions f ; g 2 L2ðT2Þ, the L2ðT2Þ inner-product is denoted by

ð f ; gÞ :¼
Z
T

2

f ðxÞgðxÞd�2 ¼
Z
½�L;L�2

f ðxÞgðxÞd�2:

(iv) For " 2 ½0; 1�, we set L" ¼ �ð1þ @2xÞ
2 þ @2y þ "2 and �k;l;" ¼ �fð1� ð�LÞ

2k2Þ2 þ ð�
L
Þ2l2 � "2g for k; l 2 Z, which

are eigenvalues of L". The dependence of the operator L" on " is not essential for the existence of solutions,
thus for the sake of simplicity we set " ¼ 1, but we use " for the purpose of numerical simulations in Sect. 5.

(v) Let fek;lðx; yÞgk;l2Z be the eigenfunctions corresponding to �k;l;0, which will simply be denoted by �k;l, i.e.,

82 FUKUIZUMI, GAO, SCHNEIDER and TAKAHASHI



L0ek;l ¼ �k;lek;l; ek;lðx; yÞ ¼
1

2L
e
�i�ðk;lÞ

L
�ðx;yÞ

and which constitute a complete orthogonal basis in L2ðT2Þ.
(vi) For s 2 R and 1 	 p < þ1, we denote by Ws;pðT2Þ the space of f 2 S0 satisfying

k f kW s; pðT2Þ :¼ kð1�L0Þ
s
2 fkLpðT2Þ:

(vii) For 1 	 p < þ1, and T > 0, and a Banach space B with the norm k � kB, we denote by Lpð0;T ;BÞ the B-valued
measurable function g on ½0;T � such that Z T

0

kgðtÞkpBdt <1:

For � 2 ð0; 1Þ, we denote by W�;pð0; T;BÞ the subset of Lpð0;T ;BÞ function g such that

kgkW �; pð0;T;BÞ :¼
Z T

0

kgðtÞkpBdt þ
Z T

0

Z T

0

kgðtÞ � gðsÞkpB
jt � sj1þ�p

dsdt

� �1
p

<1:

(viii) We denote by Cð½0; T �;BÞ the B-valued functions that are continuous on ½0; T �. And for � > 0, C�ð½0; T �;BÞ
denotes the set of B-valued �-Hölder functions f such that

sup
t;s2½0;T �;t 6¼s

k f ðtÞ � f ðsÞkB
jt � sj�

<1:

(ix) If f and g are two quantities, we use f . g to denote the statement that f 	 Cg for some constant C > 0. When
this constant C depends on some parameters a1; . . . . . . ; ak, we use f .a1;...;ak

g to enlighten this dependence on
the parameters.

Let f�k;lgk;l2Z be a series of independent Brownian motions on a probability space ð�;F ;PÞ. For ðx; yÞ 2
T

2; t 2 ½0; T �, a L2ðT2Þ cylindrical Wiener process � is written by

�ðt; x; yÞ ¼
X
k;l2Z

�k;lðtÞek;lðx; yÞ:

We will see later in Sect. 5 that the "-scaled Wiener process is defined as

�"ðx; y; tÞ ¼
1

2L

X
k;l2Z

�k;lð"2tÞe
�"i�ðk;lÞ

L
�ðx;yÞ:

Here we note the propositions which will be useful later.

Proposition 1 (Compact embedding 1). Let B0 
 B 
 B1 be Banach spaces, B0 and B1 reflexive, with compact
embedding of B0 in B. Let p 2 ð1;1Þ and � 2 ð0; 1Þ be given. Let X be the space

X ¼ Lpð0;T ;B0Þ \W�;pð0;T ;B1Þ:
Then the embedding of X in Lpð0;T;BÞ is compact.

Proof. See Lemma 2.1 in [6]. �

Proposition 2 (Compact embedding 2). If B1 
 ~B are two Banach spaces with compact embedding, and the real
number � 2 ð0; 1Þ, p > 1 satisfy

�p > 1

then the space W�;pð0;T ;B1Þ is compactly embedded into Cð½0;T �; ~BÞ.

Proof. See Theorem 2.2 in [6]. �

Proposition 3 (Gyöngy–Krylov criterion). Let ðXnÞn2N be a sequence of random variables from a probability space
ð�;F ;PÞ to a complete separable metric space ðE; dÞ. Assume that, for every pair of subsequences ðn1ðkÞ; n2ðkÞÞ, with
n1ðkÞ � n2ðkÞ for every k 2 N, there is a subsequence ðkðhÞÞh2N such that the random variables ðXn1ðkðhÞÞ;Xn2ðkðhÞÞÞ from
ð�;F ;PÞ to ðE � E; d � dÞ converge in law to a measure 	 on E � E such that 	ðDÞ ¼ 	ðfðx; yÞ 2 E � E; x ¼ ygÞ ¼ 1.
Then there exists a random variable X from ð�;F ;PÞ to ðE; dÞ such that Xn converges to X in probability.

Proof. See Lemma 9 in [5], and [7]. �

2.2 Main theorem

First of all we set " ¼ 1 and we establish the existence of a solution of the stochastic Swift–Hohenberg equation:
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@tu ¼ L1u� u3 þ _�; on ½0;T � � T2,

uð0Þ ¼ u0; on T2.

�
ð2:1Þ

To find a solution of (2.1), we use the decomposition v ¼ u� Z with Z satisfying

@tZ ¼ L1Z þ _�; on ½0; T � � T2,

Zð0Þ ¼ 0; on T2.

�
ð2:2Þ

Then v satisfies the following equation formally.

@tv ¼ L1v� ðvþ ZÞ3; on ½0;T � � T2,

vð0Þ ¼ u0; on T2.

�
ð2:3Þ

This equation is a random PDE. We can thus solve the equation (2.3) as a deterministic PDE. As a result, we can get the
solution of (2.1).

Our main results are as follows.

Theorem 1. Let T > 0 be fixed. Let p � 1, s 2 ½0; 1
8
Þ, and � 2 ð0; 1

8
� sÞ. The solution Z of (2.2) has a modification in

C�ð½0; T �;Ws;pðT2ÞÞ. Moreover, there exists a positive constant Mp;T ;L such that

E sup
t2½0;T �

kZðtÞkLpðT2Þ

� �
	 Mp;T ;L:

Theorem 2. Let u0 2 L2ðT2Þ, and � > 0. There exists a unique stochastic process v on ð�;F ;PÞ satisfying (1.4) in
the following weak sense, i.e., for w 2 W1þ�;2, t 2 ½0;T �,

ðvt;wÞ ¼ ðu0;wÞ þ
Z t

0

ðvs;L1wÞds�
Z t

0

ððvs þ ZsÞ3;wÞds; ð2:4Þ

and v takes values in L1ð0; T; L2ðT2ÞÞ \ L3ð0; T; L4Þ \ Cð½0;T �;W�ð1þ�Þ;2Þ \ L2ð0;T ;W1��;2Þ almost surely.

Theorem 1 is proved by using the Kolmogorov test, where convergence properties of the Gamma function are
helpful in the computation. Theorem 2 is proved by using a Galerkin approximation as in [1]. Note that Lp energy
estimates seem not available, thus we do not use the fixed point argument. First we consider a finite dimensional
nonlinear equation. We get an energy estimate and properties of Z allow us to obtain a probabilistically uniform
estimate with respect to the dimension. The Prohorov Theorem and the Skorohod Theorem imply the existence of a
limit taking a subsequence on another probability space. Moreover, the Gyöngy–Krylov criterion can make the
convergence on another probability space into the convergence on the original space regarding Xn as the subsequence
converging to some probability measure weakly. This convergence constructs a solution of the infinite dimensional
system.

3. Regularity of the Solution of the Stochastic Linear Equation

3.1 Regularity of Z

In this section, we investigate the regularity of Z by using the Kolmogorov test. We may write Z as a mild solution.

ZðtÞ ¼
Z t

0

eðt�sÞL1d�ðsÞ ¼
X
k;l

Z t

0

eðt�sÞ�k;l;1ek;lðx; yÞd�k;lðsÞ: ð3:1Þ

Proposition 4. Let T > 0 be fixed. Let p � 1, and 0 	 
 < 1
8
. Then Z has a modification which is �-Hölder

continuous on ½0;T � with values in W
;pðT2Þ for � 2 ð0; 1
8
� 
Þ.

Proof. Let ðx; yÞ 2 T2 and 
 � 0. For t > s, t; s 2 ½0;T �, we first calculate

Eðjð1�L0Þ


2ðZðtÞ � ZðsÞÞj2Þ

¼ E
X
k;l2Z

1�
�

L
k

� �2
 !2

þ
�

L
l

� �2

þ 1

0
@

1
A



ðZðt; x; yÞ � Zðs; x; yÞ; ek;lÞ2

¼
X
k;l

E

Z s

0

1�
�

L
k

� �2
 !2

þ
�

L
l

� �2

þ 1

0
@

1
A



ðeðt�uÞ�k;l;1 � eðs�uÞ�k;l;1 Þd�k;lðuÞ

������
������
2
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þ
X
k;l

E

Z t

s

1�
�

L
k

� �2
 !2

þ
�

L
l

� �2

þ 1

0
@

1
A



eðt�uÞ�k;l;1d�k;lðuÞ

������
������
2

	
X
k;l

Z s

0

1�
�

L
k

� �2
 !2

þ
�

L
l

� �2

þ 1

0
@

1
A

2


ðeðt�uÞ�k;l;1 � eðs�uÞ�k;l;1Þ2du

þ
X
k;l

Z t

s

1�
�

L
k

� �2
 !2

þ
�

L
l

� �2

þ 1

0
@

1
A

2


e2ðt�uÞ�k;l;1du

¼ I1 þ I2;

where we have used the Itô isometry of the stochastic integral. First, we estimate I2 dividing into I2;�0 and I2;<0 with

I2;�0 ¼
X
l2Z;

k:1�k2�0

Z t

s

1�
�

L
k

� �2
 !2

þ
�

L
l

� �2

þ 1

0
@

1
A

2


e2ðt�uÞ�k;l;1du;

I2;<0 ¼
X
l2Z;

k:1�k2<0

Z t

s

1�
�

L
k

� �2
 !2

þ
�

L
l

� �2

þ 1

0
@

1
A

2


e2ðt�uÞ�k;l;1du:

Recall �k;l;1 ¼ �fð1� ð�L kÞ
2Þ2 þ ð�

L
lÞ2 � 1g. Note that if k 2 Z satisfies 1� k2 � 0, then k ¼ 0;�1 thus ð1� ð�

L
kÞ2Þ2 	

1. Therefore,

I2;�0 	
X
l2Z;

k:1�k2�0

Z t

s

�

L
l

� �2

þ 2

 !2


e2ðt�uÞ�k;l;1du

	
4L

�

Z t

s

Z þ1
0

Z 1

0

ð2þ y2Þ2
e�ðt�uÞfð1�ð
�
L
Þ2x2Þ2þy2�1gdxdydu

	
4L

�

Z t

s

Z þ1
0

ð2þ y2Þ2
e�ðt�uÞðy
2�1Þdydu

¼
4L

�

Z t

s

eðt�uÞ
Z þ1

0

ð2þ y2Þ2
e�ðt�uÞy
2

dydu

Here, the use of the change of variable ðt � uÞy2 ¼ z � 0 allows us to estimateZ þ1
0

ð2þ y2Þ2
e�ðt�uÞy
2

dy .


Z þ1
0

e�ðt�uÞy
2

dyþ
Z þ1

0

y4
e�ðt�uÞy
2

dy

¼ Cð
Þðt � uÞ�
1
2 þ C0ð
Þðt � uÞ�2
�1

2� 2
 þ
1

2

� �
if 2
 þ 1

2
> 0, where �ð�Þ is the Gamma function, and

� 2
 þ
1

2

� �
¼
Z þ1

0

z2
�
1
2e�zdz:

Hence,

I2;�0 .
;L

Z t

s

eðt�uÞððt � uÞ�
1
2 þ ðt � uÞ�2
�1

2Þdu .
;T ;L ðt � sÞ�2
þ1
2 ;

if 
 2 ½0; 1
4
Þ. Next we estimate I2;<0. The condition is k2 > 1, but thanks to the symmetry, we first focus on the integralZ 1

�
L

ð1� x2Þ4
e�2ðt�uÞð1�x2Þ2dx: ð3:2Þ

Let x2 � 1 ¼ z, and we get1

ð3:2Þ 	
Z 1

1

ð1� x2Þ4
e�2ðt�uÞð1�x2Þ2dx .


Z 1
0

z4
�
1
2e�2ðt�uÞz2 1

2ðzþ 1Þ
1
2

dz:

1considering two cases: �
L
< 1 and x > 1, or �

L
� 1 or x > 1. The former case is impossible in (3.2).
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Moreover we change the variable 2ðt � uÞz2 ¼ w � 0 which leads to the above RHS:

.


Z 1
0

w
1
2
ð4
�1

2
Þ

ðt � uÞ
1
2
ð4
�1

2
Þ

e�w

w
1
2ðt � uÞ

1
2

dw

.
 ðt � uÞ�
1
4
�2
;

where we have again used the convergence of the Gamma function if 2
 þ 1
4
> 0. Therefore, by symmetry,

I2;<0 ¼
X
l2Z;

k:1�k2<0

Z t

s

1�
�

L
k

� �2
 !2

þ
�

L
l

� �2

þ 1

0
@

1
A

2


e2ðt�uÞ�k;l;1du

.L

Z t

s

Z þ1
0

Z þ1
�
L

ðð1� x2Þ2 þ y2 þ 1Þ2
e�2ðt�uÞfð1�x2Þ2þy2�1gdxdydu

.
;L

Z t

s

Z þ1
0

Z þ1
�
L

ð1� x2Þ4
e�2ðt�uÞfð1�x2Þ2þy2�1gdxdydu

þ
Z t

s

Z þ1
0

Z þ1
�
L

ðy2
 þ 1Þe�2ðt�uÞfð1�x2Þ2þy2�1gdxdydu

.
;L

Z t

s

e2ðt�uÞðt � uÞ�
1
4
�2


Z þ1
0

e�2ðt�uÞy2

dydu

þ
Z t

s

e2ðt�uÞ
Z þ1

0

Z þ1
1

ðy2
 þ 1Þe�2ðt�uÞfð1�x2Þ2þy2gdxdydu

.
;T ;L

Z t

s

ðt � uÞ�
3
4
�2
duþ

Z t

s

ðt � uÞ�
1
4fðt � uÞ�

1
2 þ ðt � uÞ�

1
2
�
gdu .T ;
;L ðt � sÞ

1
4
�2


if 
 < 1
8

which implies, I2 .
;T ;L ðt � sÞ
1
4
�2
 if 
 < 1

8
. Now we estimate I1. For � 2 ð0; 1Þ, a similar calculation as above

yields, using the �-Hölder regularity of the exp function,

I1 .

Z s

0

Z
R

2

ðt � sÞ2� 1�
�

L
x

� �2
 !2

þ
�

L
y

� �2

þ 1

0
@

1
A

2�þ2


e�ðs�uÞfð1�ð
�
L
xÞ2Þ2þð�

L
yÞ2�1gdxdydu

.�;
 ðt � sÞ2�
Z s

0

Z
R

2

ðt � sÞ2� 1�
�

L
x

� �2
 !4ð�þ
Þ

þ
�

L
y

� �4ð�þ
Þ

þ 1

0
@

1
Ae�ðs�uÞfð1�ð

�
L
xÞ2Þ2þð�

L
yÞ2�1gdxdydu

.�;
;T ;L ðt � sÞ2�
Z s

0

ðs� uÞ�
3
4
�2��2
du:

The right hand side is finite if 1
8
> 
 þ �. Hence, for m 2 N, we obtain

Eðjð1�L0Þ


2ðZðtÞ � ZðsÞÞj2mÞ 	 Cðm; �; 
; T Þjt � sjminð2�;1

4
�2
Þ�2m:

Therefore, for m 2 N and 1 	 p 	 2m, by the Minkowski inequality,

Eðkð1�L0Þ


2ðZðtÞ � ZðsÞÞk2m

LpðT2ÞÞ
1

2m 	 Cðm; �; 
; T Þjt � sj� :

Set 
 ¼ 0. We conclude by the Kolmogorov test that Z has a modification in C�ð½0; T �;W
;pðT2ÞÞ for any � < 1
8

and
p � 1. In particular,

E sup
t2½0;T �

kZðtÞkLpðT2Þ

� �
	 Mp;T ;L;

for some Mp;T ;L > 0. More generally, if 
 2 ð0; 1
8
Þ, Z has a modification in C�ð½0;T �;W
;pðT2ÞÞ for p � 1, and � <

1
8
� 
. �

4. Existence of the Solution

In this section, we construct a solution of (2.3) using a compactness argument.

4.1 Approximation

We want to construct the solution of (2.3) by a Faedo Galerkin approximation. For f 2 L2ðT2Þ, and n 2 N,

�n : L2ðT2Þ ! �nL
2ðT2Þ

is defined by

86 FUKUIZUMI, GAO, SCHNEIDER and TAKAHASHI



�n f ¼
X
jkjþjlj	n

ðek;l; f Þek;l; ð4:1Þ

where �nL
2ðT2Þ denotes the subspace of L2ðT2Þ such that the �n f can be represented by linear combinations of ek;l

with jkj þ jlj 	 n. Obviously, �n f ! f in L2ðT2Þ. Our goal is to find the solution of (2.3). It is defined by

ðvðtÞ � u0;wÞ ¼
Z t

0

ðvð�Þ;L1wÞd� �
Z t

0

ððvð�Þ þ Zð�ÞÞ3;wÞd�; P� a:s: ð4:2Þ

for w 2 W1þ�;2. To do so we use the finite dimensional solution vn which solves

@tvnðtÞ ¼ L1vnðtÞ ��nð�nvnðtÞ þ�nZðtÞÞ3;
vnð0Þ ¼ �nu0:

�
ð4:3Þ

This solution is smooth enough to obtain the following energy estimate. Multiplying the equation (4.3) by vn, and using
periodic boundary condition, we get:

1

2

d

dt
kvnk2L2 ¼ �2

Z
T

2

vn@
2
xvndxdy

�
Z
T

2

vn@
4
xvndxdyþ

Z
T

2

vn@
2
yvdxdy�

Z
T

2

vnðvn þ�nZÞ3dxdy:

The second term is estimated as:Z
T

2

vn@
2
xvndxdy 	

Z
T

2

v2
n

22
dxdyþ

Z
T

2

2ð@2xvnÞ
2

2
dxdy; ð > 0Þ;

and the fourth term may be written as, by integration by parts,Z
T

2

vn@
4
xvndxdy ¼ �

Z
T

2

ð@xvnÞð@3xvnÞdxdy ¼
Z
T

2

ð@2xvnÞ
2dxdy ¼ k@2xvnk

2
L2 ;

and Z
T

2

vnðvn þ�nZÞ3dxdy 	 �
1

2
kvnk4L4 þ Ck�nZk4L4 ;

where we have used Young’s inequality. Then for any  2 ð0; 1Þ,

�2

Z
T

2

vn@
2
xvndxdy�

Z
T

2

vn@
4
xvndxdyþ

Z
T

2

vn@
2
yvndxdy�

Z
T

2

vnðvn þ�nZÞ3dxdy

<
1

2
kvnk2L2 þ ð2 � 1Þk@2xvnk

2
L2 � k@yvnk2L2 �

1

2
kvnk4L4 þ Ck�nZk4L4 :

Therefore, we have,

d

dt
kvnk2L2 þ k@2xvnk

2
L2 þ k@yvnk2L2 þ kvnk4L4 	 CðÞðkvnk2L2 þ k�nZk4L4 Þ;

which reads in other word, by the definition of the space W1;2, taking for example  ¼ 1
2
,

d

dt
kvnk2L2 þ kvnk2W1;2 þ kvnk4L4 < Cðkvnk2L2 þ k�nZk4L4Þ: ð4:4Þ

Thus, by integrating on ½0; t� with t 	 T ,

kvnk2L2 þ
Z t

0

kvnðsÞk2W1;2dsþ
Z t

0

kvnðsÞk4L4ds

	 C

Z t

0

ðkvnðsÞk2L2 þ k�nZk4L4Þdsþ k�nu0k2L2 : ð4:5Þ

Therefore, by the Gronwall inequality, we have

kvnk2L2ðtÞ 	 CeCT k�nu0k2L2 þ
Z T

0

k�nZk4L4 ðsÞds
� �

: ð4:6Þ

On the other hand, a similar proof as in Proposition 2 infers that Ek�nZk4L4 	 CT where CT is independent of n. This
implies that

Ekvnk2L2 	 Cð"Þk�nu0k2L2e
CT þ C

Z T

0

Ek�nZk4L4ds

	 CðT Þk�nu0k2L2 þ CðT Þ: ð4:7Þ
Thus, by (4.5)
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E

Z T

0

kvnk2W1;2dsþ
Z T

0

kvnk4L4ds

� �
	 CðT ; k�nu0kL2Þ: ð4:8Þ

The fact k�nu0kL2 	 ku0kL2 implies that fvngn is bounded (independently of n) in

L2ð�; L2ð0;T ;W1;2ÞÞ \ L4ð�; L4ð0; T; L4ðT2ÞÞÞ:

Now for any w 2 W1;2, noting that L1 ¼ 2� ð1�L0Þ,
d

dt
vnðtÞ;w

� �����
���� 	 jðvnðtÞ;L1wÞj þ jððvn þ�nZÞ3;�nwÞj

	 kvnðtÞkW1;2kwkW1;2 þ kðvn þ�nZÞ3k
L

4
3
k�nwkL4

	 CðkvnðtÞkW1;2kwkW1;2 þ ðkvnk3L4 þ k�nZk3L4ÞkwkW1;2 Þ:

Therefore,

d

dt
vnðtÞ

����
����
W�1;2

	 CðkvnðtÞkW1;2 þ kvnk3L4 þ k�nZk3L4Þ:

The uniform estimates of (4.8) and k�nZk4L4 in n imply

E

Z T

0

d

dt
vnðtÞ

����
����

4
3

W�1;2

dt 	 CðT ; ku0kL2Þ; ð4:9Þ

which concludes that fvng is bounded in L
4
3ð�;W1;4

3ð0;T ;W�1;2ÞÞ. Let us now consider m > 0. We multiply both sides
of (4.4) by kvnk2m�2

L2 ,

1

m

d

dt
kvnk2mL2 þ kvnk2W1;2kvnk2m�2

L2 	 Cðkvnk2mL2 þ k�nZk4L4kvnk2m�2
L2 Þ: ð4:10Þ

Applying the interpolation inequality:

kvnk
W

2
3
;2
	 kvnk1=3L2 kvnk2=3W1;2

and choosing m ¼ 3 in (4.10), we want to show that fvng is bounded in L3ð�; L3ð0;T ;W
2
3
;2ÞÞ.

We integrate (4.10) in time, and we get

1

3
kvnk6L2 þ 3

Z T

0

kvnk12

W
2
3
;2

	
1

3
kv0k6L2 þ C

Z T

0

ðkvnk6L2 þ k�nZk4L4kvnk4L2Þ

	
1

3
kv0k6L2 þ C

Z T

0

kvnk6L2 þ C

Z T

0

k�nZk12
L4 :

We take the expectation and the use of the Gronwall inequality which implies that

Eðkvnk6L2 Þ . ku0k6L2 þ E
Z T

0

k�nZk12
L4

� �

. ku0k6L2 þ
Z
T

2

Eðj�nZj12Þ4dxdy
� �3

:

Here we have used the Minkowski inequality, and that the integrand of the second term in the RHS may be bounded by
CT as in the proof of Proposition 4. Therefore, we obtain

E

Z T

0

kvnk3
W

2
3
;2
ds

� �
	 CðT ; ku0kL2Þ:

We remark that embedding L3ð0;T ;W
2
3
;2Þ \W1;4

3ð0;T ;W�1;2Þ 
 L3ð0;T ; L4Þ is compact, and L2ð0;T ;W1;2Þ \
W1;4

3ð0;T ;W�1;2Þ 
 L2ð0; T;W1��;2Þ is compact for any � > 0 by Proposition 1. On the other hand the embedding
W1;4

3ð0;T ;W�1;2Þ 
 Cð½0;T �;W�ð1þ�Þ;2Þ is compact for any � > 0 by Proposition 2. Meanwhile, as in the proof of
Proposition 4, f�nZg is bounded in C�0ð½0;T �;W s;pÞ for 0 	 s < 1

8
, �0 <

1
8
� s, p � 1. The embedding

Cð½0;T �;W
1
16
;4Þ \ C�0ð½0;T �;W�;4ðT2ÞÞ 
 Cð½0;T �;L4Þ is thus compact for any  > 0. We thus conclude that the

sequence fðvn;�nZÞgn is tight in L3ð0;T ; L4Þ \ Cð½0; T �;W�ð1þ�Þ;2Þ \ L2ð0;T ;W1��;2Þ � Cð½0; T �; L4Þ for any � > 0.

4.2 Existence of the solution

By Prohorov Theorem, the tightness of ðvn;�nZÞ implies that the existence of subsequence ðvnðkÞ;�nðkÞZÞ and some
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probability measure 	 such that

ðvnðkÞ;�nðkÞZÞ ! 	 weakly as k!1:

Moreover by Skorohod Theorem, there exists a probability space ð�0;F 0;P0Þ and random variables fXnðkÞ;ZnðkÞgk, and
ðX;ZÞ such that

LawðvnðkÞ;�nðkÞZÞ ¼ LawðXnðkÞ; ZnðkÞÞ for k � 1; LawðX;ZÞ ¼ 	;
lim
k!1
ðXnðkÞ;ZnðkÞÞ ¼ ðX;ZÞ; in

L3ð0;T ; L4Þ \ Cð½0;T �;W�ð1þ�Þ;2 \ L2ð0;T ;W1��;2Þ � Cð½0;T �;L4Þ; P
0 � a:s:

The equivalence of probability laws leads that for w 2 W1þ�;2 and t 2 ½0; T �,

ðXnðkÞðtÞ � unðkÞð0Þ;wÞ ¼
Z t

0

ðXnðkÞð�Þ;L1wÞd� �
Z t

0

ð�nðkÞðXnðkÞ þ ZnðkÞÞ3ð�Þ;wÞd� ð4:11Þ

P
0-almost surely. We prove that X is a solution of (2.3) on ð�0;F 0;P0Þ. For t 2 ½0; T �,

jðXnðkÞðtÞ � XðtÞ;wÞj 	 kXnðkÞ � XkCð½0;T �;W�ð1þ�Þ;2ÞkwkW1þ�;2 ! 0

as k!1. The LHS of (4.11) converges to ðXðtÞ � u0;wÞ. Next we observe the convergence of the second term on the
RHS: Z t

0

ðXnðkÞð�Þ � Xð�Þ;L1wÞd�
����

���� 	
Z t

0

ðXnðkÞð�Þ � Xð�Þ; ð2� ð1�L0ÞÞwÞd�

	
Z T

0

kXnðkÞð�Þ � Xð�ÞkW�1��;2k2wkW1þ�;2d�

þ
Z T

0

kXnðkÞð�Þ � Xð�ÞkW1��;2kwkW1þ�;2d�

! 0;

as k!1. The convergence of the third term on the RHS can be shown as follows;Z t

0

jð�nðkÞðXnðkÞð�Þ þ ZnðkÞð�ÞÞ3;wÞ � ððXð�Þ þ Zð�ÞÞ3;wÞjd�

	
Z t

0

jððXnðkÞð�Þ þ ZnðkÞð�ÞÞ3;�nðkÞw�wÞjd�

þ
Z t

0

jððXnðkÞð�Þ þ ZnðkÞð�ÞÞ3 � ðXð�Þ þ Zð�ÞÞ3;wÞjd�

¼ I þ J:

First, we estimate I.

I 	 C

Z T

0

kðXnðkÞ þ ZnðkÞÞ3k
L

4
3
k�nðkÞw�wkL4d�

	 C

Z T

0

ðkXnðkÞð�Þk3L4 þ kZnðkÞð�Þk3L4Þk�nðkÞw� wkL4d�

	 C

Z T

0

ðkXnðkÞð�Þk3L4 þ kZnðkÞð�Þk34Þk�nðkÞw� wkW1þ�;2d�

! 0

as k!1, for any � > 0, where we have used the Sobolev embedding in the third inequality. Next we will see the
convergence of J.

J ¼
Z t

0

jððXnðkÞð�Þ þ ZnðkÞð�ÞÞ3 � ðXð�Þ þ Zð�ÞÞ3;wÞjd�

	 C

Z t

0

jððXnðkÞð�Þ � Xð�ÞÞðjXnðkÞð�Þj2 þ jXð�Þj2 þ jZnðkÞð�Þj2 þ jZð�Þj2Þ; jwjÞjd�

þ C

Z t

0

jððZnðkÞð�Þ � Zð�ÞÞðjXnðkÞð�Þj2 þ jXð�Þj2 þ jZnðkÞð�Þj2 þ jZð�Þj2Þ; jwjÞjd�:

¼ J1 þ J2:

Considering the first term J1 we have;
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J1 	
Z T

0

kXnðkÞð�Þ � Xð�ÞkL4 ðkXnðkÞð�Þk2L4 þ kXð�Þk2L4 þ kZnðkÞð�Þk2L4 þ kZð�Þk2L4Þd�

� kwkL4

	 C

Z T

0

kXnðkÞð�Þ � Xð�Þk3L4d�

� �1
3

�
Z T

0

ðkXnðkÞð�Þk3L4 þ kXð�Þk3L4 þ kZnðkÞð�Þk3L4 þ kZð�Þk3L4 Þd�
� �2

3

kwkL4

The second integral is finite and the convergence XnðkÞ ! X in L3ð0;T; L4Þ gives the convergence of J1. Furthermore,
similarly as above, we estimate

J2 	
Z T

0

kZnðkÞð�Þ � Zð�ÞkL4ðkXnðkÞð�Þk2L4 þ kXð�Þk2L4 þ kZnðkÞð�Þk2L4 þ kZð�Þk2L4 Þd�

� kwkL4

	 C

Z T

0

kZnðkÞð�Þ � Zð�Þk3L4d�

� �1
3

Z T

0

ðkXnðkÞð�Þk3L4 þ kXð�Þk3L4 þ kZnðkÞð�Þk3L4 þ kZð�Þk3L4 Þd�
� �2

3

�kwkL4

and use ZnðkÞ ! Z in L3ð0; T ; L4Þ. Therefore, we conclude, as k!1,

ðXðtÞ � uð0Þ;wÞ ¼
Z t

0

ðXð�Þ;L1wÞd� �
Z t

0

ððXð�Þ þ Zð�ÞÞ3;wÞd�: P
0 � a:s: ð4:12Þ

We have proved the existence of the solution on ð�0;F 0;P0Þ. To obtain the solution on the original space ð�;F ;PÞ,
we use the Gyöngy–Krylov criterion. Regarding Xn of Proposition 3 as ðvnðkÞ;�nðkÞZÞ, we know that arbitrary
subsequence of ðvnðkÞ;�nðkÞZÞ converges to 	 in law. It is thus sufficient to prove that for any " > 0 (see the details in
Sect. 4.4.2 of [5]),

lim
h!1

Pðkðvn1ðkðhÞÞ;�n1ðkðhÞÞÞ � ðvn2ðkðhÞÞ;�n2ðkðhÞÞÞÞkO > "Þ ¼ 0;

with

O :¼ L3ð0;T ; L4Þ \ Cð½0;T �;W�ð1þ�Þ;2Þ \ L2ð0; T;W1��;2Þ � Cð½0;T �; L4Þ:

This follows from the equivalence of probability laws between ðXnðkÞ;ZnðkÞÞ and ðvnðkÞ;�nðkÞZÞ, and convergence

lim
k!1
ðXnðkÞ;ZnðkÞÞ ¼ ðX;ZÞ; in

L3ð0; T; L4Þ \ Cð½0;T �;W�ð1þ�Þ;2Þ \ L2ð0;T ;W1��;2Þ � Cð0; T; L4Þ; P
0 � a:s:

Therefore there exists a random variable ðV ; ZÞ such that ðvnðkÞ;�nðkÞZÞ ! ðV ;ZÞ in L3ð0;T ;L4Þ \ Cð½0; T �;
W�ð1þ�Þ;2Þ \ L2ð0;T ;W1��;2Þ � Cð0; T; L4Þ in probability. Note that by taking a subsequence fvnðkðlÞÞg, the convergence
in probability becomes P-a.s. convergence. Similarly to the above discussion, we get

ðVðtÞ � uð0Þ;wÞ ¼
Z t

0

ðVðuÞ;L1wÞdu�
Z t

0

ððVðuÞ þ ZðuÞÞ3;wÞdu: P� a:s: ð4:13Þ

Thus we have proved the existence of the solution on ð�;F ;PÞ.
Recall that we proved vnðkÞ ! V in L3ð0;T; L4Þ \ Cð½0;T �;W�ð1þ�Þ;2Þ \ L2ð0;T ;W1��;2Þ, P almost surely. Also,

sup
n2N
E sup

t2½0;T �
kvnðtÞk2L2

� �
	 CðT ; ku0kL2Þ: ð4:14Þ

This inequality comes from (4.7). The inequality (4.14) implies that fvnðkÞg is weak star compact in L2ð�; L1ð0;T ; L2ÞÞ.
Thus there exist a subsequence (denoted by the same letter) and a limit v� such that vnðkÞ ! v� weak star in
L2ð�; L1ð0;T ; L2ÞÞ. On the other hand, vnðkðlÞÞ ! V in L3ð0;T ; L4Þ \ Cð½0; T �;W�ð1þ�Þ;2Þ \ L2ð0;T ;W1��;2Þ P-almost
surely. In particular, vnðkðlÞÞ ! V weak star in L3ð0;T ; L4Þ \ Cð½0;T �;W�ð1þ�Þ;2Þ \ L2ð0; T;W1��;2Þ almost surely. We
know

v� 2 L1ð0;T ; L2Þ 
 L3ð0; T; L4Þ \ Cð½0;T �;W�ð1þ�Þ;2Þ \ L2ð0;T ;W1��;2Þ;

almost surely. The uniquness of weak star limit implies

v� ¼ V :

90 FUKUIZUMI, GAO, SCHNEIDER and TAKAHASHI



Therefore,

V 2 L3ð0;T ; L4Þ \ Cð½0; T �;W�ð1þ�Þ;2Þ \ L2ð0;T ;W1��;2Þ \ L1ð0;T : L2Þ;

P-almost surely. Finally we show the pathwise uniqueness of solutions following the idea in [2]. Consider two solution
v1; v2 2 L1ð0;T; L2Þ, and set d ¼ v1 � v2. Then d satisfies

@td ¼ L1d � fðv1 þ ZÞ3 � ðv2 þ ZÞ3g;

and

1

2
@tkdk2L2 ¼ ð@td; dÞ ¼ ðL1d; dÞ �

Z
T

2

dfd3 þ 3d2ðv2 þ ZÞ þ 3dðv2 þ ZÞ2gdx: ð4:15Þ

Note that

�3

Z
T

2

d3ðv2 þ ZÞdx 	
Z
T

2

d4 þ
9

4
d2ðv2 þ ZÞ2

� �
dx;

and

ðL1d; dÞ ¼ 2kdk2L2 � kð1�L0Þ
1
2dk2L2

¼ 2kdk2L2 � kdk2W1;2 :

Thus,

ð4:15Þ 	 2þ
9

4
sup

t2½0;T �
ðkv2k2L2 þ kZk2L2Þ

� �
kdk2L2 ;

which implies d ¼ 0 in L2 after an application of the Gronwall inequality. This completes the proof of Theorem 2. �

5. Numerical Simulation

In this section, we present some simulations in space dimension 2. The idea is to first perform simulations for the
equation of A and convert them to u by the Ansatz, and at the same time, to perform direct simulations for the Swift–
Hohenberg equation on u. We expect that with the proposed definitions of the noise term and the scaling, the patterns
obtained by the two methods will be similar one to the other. And as informal observations, we perform simulations to
compare the results in both the deterministic and stochastic case.

Equation of A

We recall the equation of AðX;Y ;T Þ in the deterministic case

@TA ¼ 4@2XAþ @
2
YAþ A� 3jAj2A; ð5:1Þ

in the space domain ½�L;L� � ½�L; L� and time interval ½0;TA�. As A is complex-valued, we suppose A ¼ AR þ iAI ,
where R stands for real and I stands for imaginary. And we separate the real part and the imaginary part of the equation
into the following system

@TA
R ¼ 4@2XA

R þ @2YA
R þ AR � 3jðARÞ2 þ ðAIÞ2jAR;

@TA
I ¼ 4@2XA

I þ @2YA
I þ AI � 3jðARÞ2 þ ðAIÞ2jAI ;

(
ð5:2Þ

with initial conditions and periodic boundary conditions for both AR and AI .

Convert A to u by the Ansatz

Once we obtain the numerical solution of A, we convert it to u by applying the following Ansatz

uðx; y; tÞ ¼ "Að"x; "y; "2tÞeix þ "Að"x; "y; "2tÞe�ix ð5:3Þ

where x ¼ X=", y ¼ Y=", t ¼ T="2 and A ¼ AR � iAI . A direct computation yields

uðx; y; tÞ ¼ 2"ðARð"x; "y; "2tÞ � cosðxÞ � AIð"x; "y; "2tÞ � sinðxÞÞ: ð5:4Þ

Anisotropic Swift–Hohenberg equation

The anisotropic Swift–Hohenberg equation that we consider is as follows

@tu ¼ �ð1þ @2xÞ
2uþ @2yuþ "

2u� u3: ð5:5Þ

In order to perform simulations, we decompose the equation into the system
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@tu ¼ �uþ @2x	þ @
2
yuþ "

2u� u3

	 ¼ �@2xu� 2u

(
ð5:6Þ

with initial condition for u and periodic boundary condition for both u and 	.

Form of the stochastic term

In order to consider the corresponding stochastic equations of ð5.1Þ and ð5.5Þ, we present the stochastic term. We first
define the stochastic term for A, which is

�ðX; Y ;T Þ ¼ CL

X
k2Z2

�kðT Þe
�i�k
L
�X: ð5:7Þ

More precisely, we have the space domain ½�L;L� � ½�L; L� and CL ¼ 1=ð2LÞ, k ¼ kR þ ikI , X ¼ ðX; YÞ and �k ¼
�RðkR;kI Þ þ i�IðkR;kI Þ, where �RðkR;kI Þ and �IðkR;kI Þ are independent real-valued Brownian motions. The corresponding stochastic
equation of ð5.1Þ is given by

@TA ¼ 4@2XAþ @
2
YAþ A� 3jAj2Aþ _�; ð5:8Þ

with

_�ðX; Y ;T Þ ¼ CL

X
k2Z2

_�kðT Þe
�i�k
L
�X: ð5:9Þ

Since �ðX;Y ;T Þ is complex-valued, we suppose �ðX;Y ;T Þ ¼ �RðX;Y ;T Þ þ i�IðX;Y ;T Þ. A computation yields

�R ¼
X
kR2Z
kI2Z

�RðkR;kI ÞðT Þ cos
�ðkRX þ kIYÞ

L

� �
� �IðkR;kI ÞðT Þ sin

�ðkRX þ kIYÞ
L

� �� 	

�I ¼
X
kR2Z
kI2Z

�RðkR;kI ÞðT Þ sin
�ðkRX þ kIYÞ

L

� �
þ �IðkR;kI ÞðT Þ cos

�ðkRX þ kIYÞ
L

� �� 	
:

8>>>>>>><
>>>>>>>:

ð5:10Þ

And the corresponding stochastic system of ð5.2Þ is given by

@TA
R ¼ 4@2XA

R þ @2YA
R þ AR � 3jðARÞ2 þ ðAIÞ2jAR þ _�R

@TA
I ¼ 4@2XA

I þ @2YA
I þ AI � 3jðARÞ2 þ ðAIÞ2jAI þ _�I :

(
ð5:11Þ

Next, we present the stochastic term for the equation of u, after some computation, we define

�"ðx; y; tÞ ¼ CL

X
k2Z2

�kð"2tÞe
�i�k
L=" �x; ð5:12Þ

where x ¼ ðx; yÞ 2 ½�L="; L="� � ½�L="; L="� with x ¼ X=", y ¼ Y=" and t ¼ T="2. We suppose that ��k ¼ �k and as
a result,

�"ðx; y; tÞ

¼ 2CL

X
kR2Z
kI2Zþ

�RðkR;kI Þð"
2tÞ cos

�ðkRxþ kIyÞ
L="

� �
þ �IðkR;kI Þð"

2tÞ sin
�ðkRxþ kIyÞ

L="

� �� �
ð5:13Þ

and we remark that "�" is real-valued. The stochastic system corresponds to ð5.6Þ is given by

@tu ¼ �uþ @2x	þ @
2
yuþ "

2u� u3 þ " � _�"
	 ¼ �@2xu� 2u:

(
ð5:14Þ

5.1 Space and time discretizations

We mainly present the numerical settings of A and the settings for u are defined correspondingly. We discretize the
space domain ½�L;L� � ½�L; L� into a NX � NY uniform mesh, so that �X ¼ 2L=NX and �Y ¼ 2L=NY . We define
p 2 f0; 1; 2; . . . ;NX � 1g and q 2 f0; 1; 2; . . . ;NY � 1g, two indices in direction X and Y respectively. The control
volume ðp; qÞ is the volume whose barycenter satisfies

Xp;q ¼ ððpþ 0:5Þ ��X; ðqþ 0:5Þ ��YÞ:

And we apply uniform time discretization, that is we fix the time step �T and define Tn ¼ n�T for all n ¼
0; 1; 2; . . . . If we consider NT time steps, the total time interval is [NT�1

n¼0 ½n�T ; ðnþ 1Þ�T Þ.
The discrete solutions of AR and of AI are denoted by fARn

p;qg and fAIn

p;qg over control volume ðp; qÞ in time interval
½Tn;Tnþ1Þ respectively.
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In the discretization of the space derivative, we will need the values of ARn
�1;q, A

Rn
NX ;q

, ARn
p;�1 and ARn

p;NY
, because of

the periodic boundary condition, we set

ARn

�1;q :¼ ARn

NX�1;q for all q 2 f0; 1; 2; . . . ;NY � 1g

ARn

NX ;q
:¼ ARn

0;q for all q 2 f0; 1; 2; . . . ;NY � 1g
ð5:15Þ

and

ARn

p;�1 :¼ ARn

p;NY�1 for all p 2 f0; 1; 2; . . . ;NX � 1g;

ARn

p;NY
:¼ ARn

p;0 for all p 2 f0; 1; 2; . . . ;NX � 1g;
ð5:16Þ

we have the same conditions for fAIn
p;qg. For the approximation of u, we apply corresponding settings with notations

�x, �y and �t, Nt and the discrete solution is denoted by funp;qg.

5.2 Discretization of the noise term

Suppose � is a Brownian motion, for the numerical simulations, we approximate _� by

_�ðtÞ �
�ðt þ�tÞ � �ðtÞ

�t
;

where �ðt þ�tÞ � �ðtÞ � N ð0;�tÞ is a Gaussian random variable with mean value 0 and variance �t.
We discretize the noise term ð5.9Þ as follows

_�ðX; Y ; T Þ � CL

X
kR2f�mR;...;0;...;mRg
kI2f�mI;...;0;...;mIg

�kðT þ�T Þ � �kðT Þ
�T

e
�i�k
L
�X ð5:17Þ

such that
_�RðX;Y ;T Þ

� CL

X
kR2f�mR ;...;0;...;mRg
kI2f�mI;...;0;...;mIg

"
�RðkR;kI ÞðT þ�T Þ � �RðkR;kI ÞðT Þ

�T
cos

�ðkRX þ kIYÞ
L

� �

�
�IðkR;kI ÞðT þ�T Þ � �IðkR;kI ÞðT Þ

�T
sin

�ðkRX þ kIYÞ
L

� �#
ð5:18Þ

and
_�IðX; Y ; T Þ

� CL

X
kR2f�mR ;...;0;...;mRg
kI2f�mI ;...;0;...;mIg

"
�RðkR;kI ÞðT þ�T Þ � �RðkR;kI ÞðT Þ

�T
sin

�ðkRX þ kIYÞ
L

� �

þ
�IðkR;kI ÞðT þ�T Þ � �IðkR;kI ÞðT Þ

�T
cos

�ðkRX þ kIYÞ
L

� �#
ð5:19Þ

where �RðkR;kI ÞðT þ�T Þ � �RðkR;kI ÞðT Þ and �IðkR;kI ÞðT þ�T Þ � �IðkR;kI Þ � N ð0;�T Þ. The mR and mI are the truncation
numbers. We denote this approximation of _�ðX; Y ; T Þ by � such that _�RðX;Y ;T Þ is approximated by �R and _�IðX;Y ;T Þ
by �I . In view of ð5.13Þ, the discretization of the noise term ð5.12Þ is as follows

_�"ðx; y; tÞ

� 2CL

X
kR2f�mR ;...;0;...;mRg

kI2f0;...;mIg

"
�RðkR;kI Þð"

2ðt þ�tÞÞ � �RðkR;kI Þð"
2tÞ

�t
cos

�ðkRxþ kIyÞ
L="

� �

þ
�IðkR;kI Þð"

2ðt þ�tÞÞ � �IðkR;kI Þð"
2tÞ

�t
sin

�ðkRxþ kIyÞ
L="

� �#
ð5:20Þ

where �kR ð"2ðt þ�tÞÞ � �kR ð"2tÞ and �kI ð"2ðt þ�tÞÞ � �kI ð"2tÞ � N ð0; "2�tÞ. We denote this approximation term by
�".

We present in the following directly the numerical scheme for the stochastic case. For the deterministic case, we
perform the simulation by omitting the stochastic term.

5.3 Numerical schemes

We apply the finite difference scheme and first present the scheme for A of the system ð5.11Þ
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ARnþ1
p;q � ARn

p;q

�T
¼ 4d2

XA
Rnþ1

p;q þ d2
YA

Rn

p;q þ ARnþ1

p;q � 3jðARn

p;qÞ
2 þ ðAIn

p;qÞ
2jARn

p;q þ�R

AInþ1
p;q � AIn

p;q

�T
¼ 4d2

XA
Inþ1

p;q þ d2
YA

In

p;q þ AInþ1

p;q � 3jðARn

p;qÞ
2 þ ðAIn

p;qÞ
2jAIn

p;q þ�I ;

8>>><
>>>:

ð5:21Þ

where d2
X and d2

Y are discrete operators such that

d2
XA

Rnþ1

p;q ¼
ARnþ1

p�1;q þ ARnþ1
pþ1;q � 2ARnþ1

p;q

ð�XÞ2
and d2

YA
Rn

p;q ¼
ARn

p;q�1 þ ARn
p;qþ1 � 2ARn

p;q

ð�YÞ2
;

for all p 2 f0; 1; 2; . . . ;NX � 1g and q 2 f0; 1; 2; . . . ;NY � 1g. We refer to ð5.15Þ and ð5.16Þ for the periodic boundary
condition. For n ¼ 0; 1; 2; . . . ;NT � 1, knowing the values of ðARn

p;q;A
In

p;qÞ, we compute the values of ðARnþ1
p;q ;A

Inþ1
p;q Þ, for

all p 2 f0; 1; 2; . . . ;NX � 1g and q 2 f0; 1; 2; . . . ;NY � 1g.
And we implement the following numerical scheme for the Swift–Hohenberg equation in the form of system ð5.14Þ.

unþ1
p;q � unp;q

�t
¼ �unþ1

p;q þ d2
x	

nþ1
p;q þ d2

yu
n
p;q þ "

2unp;q � ðu
n
p;qÞ

3 þ "�"

	nþ1
p;q ¼ �d

2
xu

nþ1
p;q � unþ1

p;q � unp;q;

8><
>: ð5:22Þ

with corresponding definitions of d2
x and d2

y and the periodic boundary conditions. For n ¼ 0; 1; 2; . . . ;Nt � 1, knowing
the values of ðunp;q; 	n

p;qÞ, we compute the values of ðunþ1
p;q ; 	

nþ1
p;q Þ, for all p 2 f0; 1; 2; . . . ;Nx � 1g and q 2

f0; 1; 2; . . . ;Ny � 1g.

5.4 Numerical settings

In the simulations, " is the parameter to connect A and u, so we first fix the value of ". And we perform simulations
for A with the following settings.
Numerical settings for A

. The space domain to be ½�L; L� � ½�L;L� with L ¼ �=2;

. we discretize the space into 100� 100 uniform square;

. we fix the time step �t ¼ 0:0001;

. we set the initial condition ARðX;Y ; 0Þ ¼ AR
0 ðX;YÞ and AI ¼ AI

0ðX; YÞ;
. we perform simulations of A and convert the numerical results to u by the Ansatz.

We perform simulations of u by ð5.22Þ with the following settings.
Numerical settings for u

. The space domain to be ½�L="; L="� � ½�L="; L="� with L ¼ �=2;

. we discretize the space into 100� 100 uniform square;

. we choose time step �t ¼ 0:001;

. we compute the initial condition for u based on the initial condition of AR and AI by the Ansatz ð5.3Þ, which yields

u0ðx; yÞ ¼ 2�ðARð"x; "y; 0Þ � cosðxÞ � AIð"x; "y; 0Þ � sinðxÞÞ; ð5:23Þ

. we perform simulations for u.

5.5 Results and observations

We set " ¼ 0:25 and perform numerical simulations for AI and AR with the initial conditions

AR
0 ðX;YÞ ¼

1 if Y 2 ð�L; 0Þ
0 otherwise

�
ð5:24Þ

and

AI
0ðX; YÞ ¼

0 if Y 2 ð�L; 0Þ
1 otherwise.

�
ð5:25Þ

The result is as follows.

94 FUKUIZUMI, GAO, SCHNEIDER and TAKAHASHI



Deterministic case

We convert the numerical results from A to u.

Then we perform directly the simulation for u and compare it to the simulation results of u convert by A which are
presented in Fig. 3.

Fig. 1. Solution for AR at time T ¼ 0, 0.1 and 0.2.

Fig. 2. Solution for AI at time T ¼ 0, 0.1 and 0.2.

Fig. 3. u at time t ¼ 0, 0:1="2 and 0:2="2 converted by the Ansatz from A of time T ¼ 0, 0.1 and 0.2.
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Stochastic case

We set the truncation numbers mR ¼ 10 and mI ¼ 10. We first present the simulations results of AR and AI .

We convert the numerical results from A to u.

Fig. 4. u by direct simulation at time t ¼ 0, 0:1="2 and 0:2="2.

Fig. 6. Solution for AI at time T ¼ 0, 0.1 and 0.2.

Fig. 5. Solution for AR at time T ¼ 0, 0.1 and 0.2.
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Then we perform direct simulation for u and compare it to the simulation results of u convert by A which are
presented in Fig. 7.
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