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Part I

The Singular Limit of Competition-diffusion Systems

Arising in Population Dynamics as

the Reaction Coefficient Tends to Infinity
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Chapter 1

Introduction

During the last 30 years, mathematical models have progressively earned their recognition in the field of ecology.
Though still not as used and trusted as in other scientific fields (Sagoff [39], DeAngelis et al. [11]), they have been
applied with success in biological invasion (Shigesada [40], Lewis [33]), endangered species conservation (Williams
[45], Kingsland [30]), and many other problems. From the old models of Malthus (1789) and Verhulst (1838)
describing the possible growth of a single homogeneous species, to the models proposed nowadays, huge progresses
have been made. During this lecture, we will present some results when looking at two spatially heterogeneous species
competing for resources, in the limit when this competition tends to infinity. In this chapter we introduce the
competition-diffusion system which we will be working with.

1.1 Competition systems in population dynamics

For a given species, there are two kinds of competition. The first comes from the individuals of the species itself
competing against each other, whether because of a lack of space or food. Such a competition is called intraspecific
competition. One way to model it, called the logistic effect, is to have a growth rate that decreases with the increase of
the population size. The simplest model with a logistic effect is (with dimensionless variables):

ut ¼ rð1� uðtÞÞuðtÞ; ð1:1Þ

with r > 0 the intrinsic growth rate, and uðtÞ is the density of the population depending on the time t (see Iannelli and
Pugliese [27], chapter 1). The function f ðuÞ :¼ rð1� uÞu is called the logistic growth function, and its graph is
represented on Fig. 1.1, while Fig. 1.2 shows the evolution of the solution u.

The second kind of competition, called interspecific competition, is the competition between different species. Given
two species u and v, we will model their interaction following mass-action laws: kuðtÞvðtÞ and �kuðtÞvðtÞ where k and �
are positive coefficients. Those simple hypotheses to model those two types of competition give a system called a
Lotka–Volterra competition system which has been extensively studied (see [37, Chapter 3]):

ut ¼ r1ð1� uÞu� kuv;

vt ¼ r2ð1� vÞv� �kuv:

�
ð1:2Þ

One can show that when k is large enough compared to r1 and r2, system ð1.2Þ admits two stable equilibrium
ðu; vÞ ¼ ð0; 1Þ and ðu; vÞ ¼ ð1; 0Þ, and two unstable equilibrium ðu; vÞ ¼ ð0; 0Þ and ðu; vÞ ¼ ðu�; v�Þ with u�; v� 2 ð0; 1Þ.
Starting from an initial data ðu0; v0Þ 2 ð0; 1Þ2 n fðu�; v�Þg, the solution ðuðtÞ; vðtÞÞ of the Lotka–Volterra competition
system may converge in long time to ð0; 1Þ or ð1; 0Þ. Which species becomes extinct depends on the parameter through
the separatrix, and on the initial values. See Fig. 1.3 for a phase plane of a bistable case.

1.2 Competition-diffusion systems in population dynamics

Our previous model does not take into account the movement of species in space. Among the many models proposed
so far, reaction-diffusion equations are used to study the spatial segregation of competing species that move by
diffusion. Consider a competing system consisting of n species living in a habitat � � RN (N � 1). We denote by
uiðx; tÞ (i ¼ 1; 2; . . . ; n) their population densities at position x 2 � and time t � 0. The time evolution of uiðx; tÞ
(i ¼ 1; 2; . . . ; n) is described by the system

Fig. 1.1. Logistic growth function. Positive for u < 1, negative for u > 1.

4 HILHORST, SALIN, SCHNEIDER and GAO



uit ¼ di�ui þ ri � aiui �
Xn
j¼1

bijuj

 !
ui ði ¼ 1; 2; . . . ; nÞ x 2 �; t > 0; ð1:3Þ

where di are the diffusion rates, ri the intrinsic growth rates, ai the intraspecific competition rates, i.e. the competition
between members of the same species ui, and bij the rates of interspecific competition, i.e. the competition between
members of the different species ui and uj. All rates are positive constants. We assume that � is bounded. We first
impose zero flux boundary conditions on the boundary @�,

Fig. 1.3. Phase plane of a bistable case for an ODE competition model, with f ðsÞ ¼ r1sð1� sÞ, gðsÞ ¼ r2sð1� sÞ, r1 ¼ r2 ¼ 1,
� ¼ 2. In a), k ¼ 2, while in b), k ¼ 20. The basins of attraction illustrate how the system will evolve through time, and which
steady states it will reach as t!1. Depending on the initial values uð0Þ and vð0Þ, the solution pair can be located in either of
the two basins. This means that the steady state reached as t!1 depends on the initial values.

Fig. 1.2. Logistic population growth as a function of time. Note how the population tends towards a stable equilibrium.
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@ui

@�
¼ 0; ði ¼ 1; 2; . . . ; nÞ x 2 @�; t > 0; ð1:4Þ

where � is the normal unit vector to @�. Later in the lecture notes, we will also consider the case of inhomogeneous
Dirichlet boundary conditions. The initial conditions are given by

uið0; xÞ ¼ u0iðxÞ � 0 ði ¼ 1; 2; . . . ; nÞ x 2 �: ð1:5Þ

The large time behavior of the solutions of the problem ð1.3Þ–ð1.5Þ has been widely analyzed in order to understand the
spatio-temporal segregation of competing species. We first underline the special case where all the diffusion rates di are
large compared to the other parameters. In this situation, the diffusion processes are dominant and it is therefore easy to
find that any (non-negative) solution of the problem ð1.3Þ–ð1.5Þ tends to be spatially homogeneous when t!1
(Conway et al. [7]). In other words, the asymptotic behavior of the solutions of the problem ð1.3Þ–ð1.5Þ is qualitatively
the same as that of the system without diffusion corresponding to ð1.3Þ,

dvi

dt
¼ ri � aivi �

Xn
j¼1

bijvj

 !
vi ði ¼ 1; 2; . . . ; nÞ t > 0: ð1:6Þ

Thus we know that in this case ð1.3Þ does not present any spatial segregation for the competing species. Note that ð1.6Þ
presents a temporal segregation, depending on the values of the parameters ri, ai and bij. We will not study this
phenomenon here, but refer for example to an article by Mimura [36]. Our main interest for ð1.3Þ–ð1.5Þ concerns the
case where at least one of the diffusion coefficients di is not necessarily large from the point of view of the spatial
segregation of competing species. In order to analyze this case, we discuss the simplest case of ð1.3Þ with n ¼ 2,
namely

u1t ¼ d1�u1 þ ðr1 � a1u1 � b1u2Þu1; x 2 �, t > 0,

u2t ¼ d2�u2 þ ðr2 � a2u2 � b2u1Þu2; x 2 �, t > 0,

�
ð1:7Þ

with boundary conditions

@u1

@�
¼ 0;

@u2

@�
¼ 0; x 2 @�; t > 0: ð1:8Þ

Let us first note that the stable attractor of ð1.7Þ, ð1.8Þ only consists in equilibrium solutions (Hirsch [25], Matano and
Mimura [35]). Thus, for the study of the asymptotic behavior of the solutions of ð1.7Þ, ð1.8Þ we only have to pay
attention to the existence and the stability of the equilibrium solutions. Along the same lines, Kishimoto & Weinberger
[31] showed that if � is convex, then any spatially inhomogeneous equilibrium solution — when it exists — is unstable.
If we assume that two species are strongly in competition, that is to say if the rate of interspecific competition is
stronger than the intraspecific one, so that we require that

a1

b2

<
r1

r2
<

b1

a2

; ð1:9Þ

then we find that the only stable equilibrium solutions of ð1.7Þ, ð1.8Þ are given by ðu1; u2Þ ¼ ðr1=a1; 0Þ and
ðu1; u2Þ ¼ ð0; r2=a2Þ. In ecological terms, this implies that the two competing species can never coexist under strong
competition. This is called Gause’s competitive exclusion. On the other hand, if the domain � is not convex, the
structure of equilibrium solutions is complicated, depending on the form of � [14]. In fact, if � takes a suitable two-
dimensional dumbbell shape, there exist spatially inhomogeneous stable equilibrium solutions which exhibit spatial
segregation in the sense that u1 and u2 take values close to ðr1=a1; 0Þ in one subregion and close to ð0; r2=a2Þ in the
other. Thus the results above inform us about the asymptotic behavior of the solutions. However, from the point of view
of ecological applications, it is more interesting to know the transient behavior of solutions. For this we consider the
situation where the diffusion rates d1 and d2 are small enough or all the other rates ri, ai and bi are large enough and
satisfy ð1.9Þ. We rewrite ð1.7Þ as

u1t ¼ "2�u1 þ ðr1 � a1u1 � b1u2Þu1; x 2 �, t > 0,

u2t ¼ d"2�u2 þ ðr2 � a2u2 � b2u1Þu2; x 2 �, t > 0,

�
ð1:10Þ

where " is a small parameter. If the competing species are distributed according to ð1.10Þ it is natural to define the
subregions �1ðtÞ ¼ fx 2 � : ðu1; u2Þðx; tÞ � ðr1=a1; 0Þg and �2ðtÞ ¼ fx 2 � : ðu1; u2Þðx; tÞ � ð0; r2=a2Þg. In order to
study the dynamics of segregation between u1 and u2, we take the limit " # 0 in ð1.10Þ so that the internal layers that
exist for small values of " > 0 become proper interfaces, say �ðtÞ, which is the boundary between the two regions �1ðtÞ
and �2ðtÞ. Using singular limit analysis, Ei and Yanagida [15] derived the following evolution equation to describe the
motion of the interface �ðtÞ,

V ¼ "LðdÞðN � 1Þ�þ c; ð1:11Þ

where V is the normal velocity of the interface, � its mean curvature, LðdÞ a positive constant depending on d such that
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Lð1Þ ¼ 1 and c the speed of the traveling wave solution ðu1; u2Þ of the one-dimensional system corresponding to ð1.7Þ
with d1 ¼ 1 and d2 ¼ d, namely

u1t ¼ u1xx þ ðr1 � a1u1 � b1u2Þu1; x 2 R, t > 0,

u2t ¼ du2xx þ ðr2 � b2u1 � a2u2Þu2; x 2 R, t > 0,

�
ð1:12Þ

with the conditions at infinity

ðu1; u2Þð�1; tÞ ¼
r1

a1

; 0

� �
et ðu1; u2Þð1; tÞ ¼ 0;

r2

a2

� �
: ð1:13Þ

Kan-on [28] proved that the speed of the traveling wave solution of the problem ð1.12Þ, ð1.13Þ is unique for fixed values
of the rates ri, ai and bi (i ¼ 1:2). In particular, if a1 is a free parameter and the other parameters are fixed and satisfy
the inequalities ð1.9Þ, then there exists a unique constant a� > 0 such that c ¼ 0 if a1 ¼ a�, c > 0 if a1 > a�, and c < 0

if a1 < a�. For the special case where c ¼ 0, ð1.11Þ becomes the equation of motion by mean curvature, which has been
studied analytically and numerically. The interface �ðtÞ obtained from ð1.11Þ provides information on the dynamics of
spatial segregation between the two competing species.

This result clearly shows the similarity between this class of problems and the Allen–Cahn equation first studied by
Keller, Sternberg and Rubinstein [29], where the boundary interface moves along its mean curvature. In the second part
of this course, we will formally derive the limit problem for the Allen–Cahn equation.

In the first part of this course, we consider a situation different from the one obtained above, namely the case where
only the interspecific competition rates b1 and b2 are very large. To study this situation, it is convenient to rewrite ð1.7Þ
as

u1t ¼ d1�u1 þ r1ð1� u1Þu1 � bu1u2; x 2 �, t > 0,

u2t ¼ d2�u2 þ r2ð1� u2Þu2 � �bu1u2; x 2 �, t > 0,

�
ð1:14Þ

where b and � are positive constants. We assume that b is the only parameter that is large and that all other parameters
are of order Oð1Þ. The coefficient � > 0 is the competition ratio between the two species u1 and u2. If � > 1, then u1

has a competitive advantage over u2, while if � < 1, the situation is reversed.
We will take b as a free parameter and keep the other parameters d1, d2, r1, r2 and � fixed. For values of b which are

neither large nor small, we show numerically that u1 and u2 exhibit spatial segregation with a fairly large overlapping
zone. As the value of b increases, the overlapping area becomes narrower. Thus, taking the limit b!1, we can
expect that u1 and u2 have disjoint supports (habitats) with a single common curve, which separates the habitats of the
two competing species.

One of the purposes of these notes is to derive the limiting system of ð1.7Þ as b!1, which is called the spatial
segregation limit, to describe the time evolution of the supports of u1 and u2. In chapter 2 we will consider the
homogeneous Neumann boundary condition and in chapter 3 we will consider the inhomogeneous Dirichlet boundary
condition. As will be proved, the limit system can be described by a free boundary problem which is a two-phase
Stefan-type problem with reaction terms.

Let �ðtÞ be the interface which separates the two subregions

�1ðtÞ ¼ fx 2 � : u1ðx; tÞ > 0; u2ðx; tÞ ¼ 0g

and

�2ðtÞ ¼ fx 2 � : u1ðx; tÞ ¼ 0; u2ðx; tÞ > 0g:

Then u1 and u2 satisfy

u1t ¼ d1�u1 þ r1ð1� u1Þu1; x 2 �1ðtÞ, t > 0

u2t ¼ d2�u2 þ r2ð1� u2Þu2 x 2 �2ðtÞ, t > 0

@u1

@�
¼ 0;

@u2

@�
¼ 0; x 2 @�, t > 0.

8>><
>>: ð1:15Þ

On the interface,

u1 ¼ 0; u2 ¼ 0; x 2 �ðtÞ for t > 0; ð1:16Þ

and

0 ¼ ��d1

@u1

@�
ðx; tÞ � d2

@u2

@�
ðx; tÞ x 2 �ðtÞ for t > 0; ð1:17Þ

where � is the normal vector to �ðtÞ. The initial conditions are given by

uiðx; 0Þ ¼ ui0ðxÞ; x 2 �1ð0Þ ði ¼ 1; 2Þ; ð1:18Þ

and are such that their support is separated by the line
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�ð0Þ ¼ �0: ð1:19Þ
The problem is to find the functions ðu1ðx; tÞ; u2ðx; tÞÞ and �ðtÞ which satisfy ð1.15Þ–ð1.19Þ. If this problem can be
solved, the interface �ðtÞ determines the segregation patterns between the two strongly competing species. Note that the
system ð1.15Þ–ð1.19Þ is quite similar to the standard two-phase Stefan problem, except for the two following points: (i)
the partial differential equations in ð1.15Þ for u1 and u2 are not heat equations, but logistic growth equations which are
well known in theoretical ecology; (ii) the interface equation ð1.17Þ is such that the latent heat coefficient is equal to
zero. The coefficient � of the interspecific competition between u1 and u2 is contained in ð1.17Þ. These notes extend a
similar study due to Evans [18] in the case of a slightly simpler system without growth terms, which he considers with
more restrictive assumptions on the initial data. Let us also mention the results of Dancer and Du [9] on the limiting
behavior of equilibrium solutions in higher space dimensions. For a study of the limit free boundary problem without
growth terms, we refer to Cannon and Hill [5] and to a paper by Tonegawa [44] which proves regularity properties of
the solution and the interface. We will finally show that our method of analyzing the spatial segregation limit can be
applied to some three-component competition-diffusion systems, where the latent heat coefficient is strictly positive.
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Chapter 2

Spatial Segregation Limit of a Competition-diffusion System with Neumann Boundary
Conditions

In this chapter, we study the competition-diffusion system ð1.14Þ introduced in Chapter 1, with Neumann boundary
conditions, in the limit where the interspecific competition tends to infinity. More precisely, let � be a bounded domain
of class C1 in RN , T > 0 be an arbitrary positive time, and consider the following competition-diffusion system:

ut ¼ d1 �uþ f ðuÞ � kuv in �� ð0;T �,
vt ¼ d2 �vþ gðvÞ � �kuv in �� ð0;T �,
u� ¼ 0; v� ¼ 0 on @�� ð0; T �,
uð	; 0Þ ¼ uk0; vð	; 0Þ ¼ vk0 on �,

8>>>><
>>>>:

ðPkÞ

where f ðsÞ ¼ �1sð1� sÞ, gðsÞ ¼ �2sð1� sÞ, k, �, d1, d2, �1, �2 are all positive constants, and uk0; v
k
0 2 Cð�Þ with

0 
 uk0; v
k
0 
 1. k is a positive free parameter. We assume moreover that there exist u0; v0 2 Cð�Þ such that uk0 ! u0

and vk0! v0 uniformly on Cð�Þ. We wish to investigate the behavior of the solution pair ðuk; vkÞ as k tends to infinity.
By a solution of problem (Pk) we mean a pair of functions ðuk; vkÞ such that uk; vk 2 CðQT Þ \ C2;1ð�� ½�; T �Þ for all

� 2 ð0; T Þ, where QT :¼ �� ð0;T Þ. This chapter is based upon the articles [10] and [23].

2.1 A priori bounds and relative compactness

We start by proving a priori bounds on the solutions and their derivatives, which will be uniform with respect to the
parameter k. This will enable us to use compactness arguments to obtain the convergence of the solutions as k tends to
infinity, as well as to study the properties of the limit. We start with a priori bounds on uk and vk by applying the
comparison principle.

Proposition 2.1. Let k > 0, and ðuk; vkÞ be a solution of (Pk). Then 0 
 uk 
 1 and 0 
 vk 
 1 in QT , where QT :¼
�� ð0;T Þ.

Proof. Define

L1ðukÞ :¼ ukt � d1 �uk � f ðukÞ þ kukvk;

L2ðvkÞ :¼ vkt � d2 �vk � gðvkÞ þ �kukvk:
Since Lið0Þ ¼ 0, and Lið1Þ � 0 for i ¼ 1; 2, the assertion follows from the comparison principle. �

As a corollary, we deduce the existence and uniqueness of the solution.

Proposition 2.2. For any initial condition uk0; v
k
0 2 Cð�Þ with 0 
 uk0; v

k
0 
 1, there exists a unique solution ðuk; vkÞ of

(Pk) with uk; vk 2 CðQT Þ \ C2;1ð�� ½�; T �Þ for all � 2 ð0; T Þ.

Proof. The result follows from Proposition 2.1 and [34, Proposition 7.3.2 p. 277]. �

Next, we obtain a bound on the interspecific competition terms, which will turn out to be useful to study the
properties of the limit of the solutions ðuk; vkÞ for large values of k.

Proposition 2.3. Define l0 :¼ max
s2½0;1�

f ðsÞ. Then for all k � 1Z T

0

Z
�

ukvk 

j�j
k
ðl0T þ 1Þ:

Proof. Integrating the equation in (Pk) for uk over QT :¼ �� ð0;T Þ yieldsZ T

0

Z
�

ukt ¼ d1

Z T

0

Z
�

�uk þ
Z T

0

Z
�

f ðukÞ � k

Z T

0

Z
�

ukvk:

By Fubini’s theorem
R T
0

R
�
ukt ¼

R
�

R T
0
ukt so by applying the fundamental theorem of calculus and then Green first

equation on
R
�

�uk, we obtain:

k

Z T

0

Z
�

ukvk ¼ d1

Z T

0

Z
@�

uk� þ
Z T

0

Z
�

f ðukÞ �
Z

�

ukð	;T Þ þ
Z

�

uk0:

First remark that the homogeneous Neumann boundary condition implies that
R
@� uk� ¼ 0. Moreover, since 0 
 uk 
 1

and by definition of l0, we have
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Z T

0

Z
�

f ðukÞ 
 T j�jl0;

�
Z

�

ukð	;T Þ 
 0;Z
�

uk0 
 j�j:

Therefore, Z T

0

Z
�

ukvk 

j�j
k
ðl0T þ 1Þ:

This completes the proof. �

Next, we want to obtain bounds on the sequences (uk) and (vk) in the function space L2ð0; T;H1ð�ÞÞ which we will
use to obtain relative compactness. Remark that by Proposition 2.1 we already know that the sequences (uk) and (vk)
are bounded in L2ð0; T; L2ð�ÞÞ, so it only remains to prove that the sequences (ruk) and (rvk) are also bounded in
L2ð0;T ; L2ð�ÞÞ. This is given by the following proposition.

Proposition 2.4. There exists a positive constant C, which does not depend on k, such that for all k � 1,Z T

0

Z
�

jrukj2 
 C;Z T

0

Z
�

jrvkj2 
 C:

Proof. We multiply the first equation in (Pk) by uk and integrate it on �. This yieldsZ
�

ukukt ¼ d1

Z
�

uk�uk þ
Z

�

ukf ðukÞ � k

Z
�

ðukÞ2vk:

On the one hand, ukukt ¼ 1
2
@tðukÞ2, and as uk and ukt are bounded in ðx; tÞ (recall that uk is C1 in time), and � is bounded,

we obtain
R
�
ukukt ¼ 1

2

R
�
@tðukÞ2 ¼ 1

2
d
dt

R
�
ðukÞ2. On the other hand, using Green’s formula and the Neumann boundary

condition, we get
R
�
uk�uk ¼ �

R
�
jrukj2. Finally, Proposition 2.1 gives us directlyZ

�

ukf ðukÞ 
 l0j�j;

�k
Z

�

ðukÞ2vk 
 0:

Therefore,

d1

Z
�

jrukj2 
 l0j�j �
1

2

d

dt

Z
�

ðukÞ2;

which we integrate in time to obtain,

d1

Z T

0

Z
�

jrukj2 
 l0j�jT �
1

2

Z
�

ðukð	; T ÞÞ2 þ
1

2

Z
�

ðuk0Þ
2


 l0j�jT þ
1

2

Z
�

ðuk0Þ
2:

This completes the proof of the estimate on ruk. The estimate on rvk can be proved similarly using the equation for vk

in (Pk). �

Using the previous propositions, we proved that the sequences (uk) and (vk) are bounded in L2ð0;T;H1ð�ÞÞ. As
L2ð0;T ;H1ð�ÞÞ is a separable Hilbert space, this is sufficient to have weak convergence along a subsequence (see
[3, Theorem 3.18 p. 69]). Weak convergence is enough to pass to the limit in the linear term in a weak form of equation
(Pk), as continuous linear operator are weakly continuous (see [3]). However, the nonlinear terms are not weakly
continuous, and to deal with them, we will need strong convergence in L1ðQT Þ. To this end, we introduce the new
variable wk :¼ uk � 1

� v
k, in order to eliminate the product term. It satisfies

wk
t ¼ d1�uk �

d2

�
�vk þ f ðukÞ �

1

�
gðvkÞ in QT ð2:1Þ

together with the homogeneous Neumann boundary condition

wk
� ¼ 0 on ST :¼ @�� ð0;T Þ:

The sequence (wk) is bounded in L2ð0;T ;H1ð�ÞÞ, which represents estimates for wk and its spatial derivatives. In order
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to apply a compact embedding result that will be given later, the only thing missing is an estimate on the time
derivative. We prove thus the following proposition:

Proposition 2.5. The family (wk
t ) is bounded in L2ð0;T ;H1ð�Þ0Þ, uniformly with respect to k.

Proof. Multiplying the equation for wk in (Pk) by � 2 L2ð0;T ;H1ð�ÞÞ and integrating it on QT ¼ �� ð0;T Þ, we obtain
after integrating by partsZ T

0

hwk
t ; �i ¼ �d1

Z T

0

Z
�

ruk 	 r�þ
d2

�

Z T

0

Z
�

rvk 	 r�þ
Z T

0

Z
�

f ðukÞ �
1

�
gðvkÞ

� �
�

where h	; 	i is the duality product between H1ð�Þ and H1ð�Þ0. The right-hand side is clearly integrable and continuous
over � 2 L2ð0; T;H1ð�ÞÞ by Propositions 2.1 and 2.4. Therefore wk

t 2 L2ð0; T;H1ð�Þ0Þ. Moreover, using similarly the
Proposition 2.1 and 2.4, as well as the Cauchy–Schwarz inequality, we haveZ T

0

hwk
t ; �i

����
���� 
 Mk�kL2ð0;T;H1ð�ÞÞ; 8� 2 L2ð0;T ;H1ð�ÞÞ;

where M is a positive constant independent of k or �. This means that

kwk
t kL2ð0;T ;H1ð�Þ0Þ 
 M;

which completes the proof. �

We are now ready to apply the following compactness embedding that can be found in [42, Theorem 2.1 p. 271].

Theorem 2.6. Let X0;X;X1 be three Banach spaces such that X0 � X � X1, where the injections are continuous. Let
T > 0 be a fixed number, and let �0; �1 be two finite numbers such that �0; �1 > 1. We consider the space

Y ¼ f� 2 L�0 ð0; T;X0Þ; �t 2 L�1ð0;T ;X1Þg;
where the derivative should be understood in a weak sense. The space Y is endowed with the norm

k�kY ¼ k�kL�0 ð0;T;X0Þ þ k�tkL�1 ð0;T;X1Þ:

It is obvious that Y � L�0ð0;T ;X0Þ, with continuous injection. If moreover
. Xi is reflexive, i ¼ 0; 1,
. The injection X0 ! X is compact,

then the injection Y � L�0ð0;T ;XÞ is compact.

Theorem 2.7. There exist subsequences of (uk) and (vk), which we denote again by (uk) and (vk), functions
�u; �v 2 L2ð0; T;H1ð�ÞÞ such that 0 
 u; v 
 1, and a function w 2 L2ð0; T; L2ð�ÞÞ ¼ L2ðQT Þ such that

(i) uk * u and vk * v weakly in L2ð0;T ;H1ð�ÞÞ,
(ii) wk ! w strongly in L2ðQT Þ as k!1 and almost everywhere in QT ,

(iii) ukvk ! 0 strongly in L1ðQT Þ as k!1 and almost everywhere in QT .

Proof. We apply Theorem 2.6 with X0 ¼ H1ð�Þ, X ¼ L2ð�Þ, X1 ¼ H1ð�Þ0, and �0 ¼ �1 ¼ 2. Clearly, X0 and X1 are
reflexive, and it is also standard that the inclusion H1ð�Þ � L2ð�Þ is compact (see [3, Theorem 9.16 p. 285]), so the
conclusion of the theorem applies. As by the Proposition 2.5, (wk) is bounded in Y, and since we already established
(uk) and (vk) are bounded in L2ð0; T;H1ð�ÞÞ, there exists subsequences of (uk) and (vk), which we denote again (uk) and
(vk), functions �u; �v 2 L2ð0;T ;H1ð�ÞÞ such that 0 
 u; v 
 1, and a function w 2 L2ð0;T ;L2ð�ÞÞ ¼ L2ðQT Þ such that

uk * u and vk * v weakly in L2ð0;T ;H1ð�ÞÞ

and

wk ! w strongly in L2ðQT Þ as k!1:

We can moreover assume that the convergence of (wk) holds also almost everywhere, since convergence in an Lp space
implies convergence almost everywhere along some subsequence (Theorem 4.9 in [3]). Furthermore, it also follows
from Proposition 2.3 that

ukvk ! 0 as k!1 in L1ðQT Þ and a.e. in QT :

This completes the proof. �

2.2 Characterization of the limit functions

Next we want to study the limit functions u and v. We start by relating them to w.

Proposition 2.8. The subsequences uk and vk are such that

uk ! wþ ¼ maxð0;wÞ and vk ! �w� ¼ ��minð0;wÞ as k!1
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in L1ðQT Þ and a.e. in QT . As a consequence

u ¼ wþ and v ¼ �w� so that w ¼ u�
v

�
:

Proof. Let ðx; tÞ 2 QT be such that

wkðx; tÞ ¼ uk �
vk

�

� �
ðx; tÞ ! wðx; tÞ and ðukvkÞðx; tÞ ! 0 as k!1:

We distinguish three cases according to the sign of w.
1. We first consider the case that wðx; tÞ > 0. Then there exists a positive constant k0 such that

ukðx; tÞ �
wðx; tÞ

2
> 0 for all k � k0;

which implies that

vkðx; tÞ ! 0 and ukðx; tÞ ! wðx; tÞ ¼ wþðx; tÞ as k!1:

2. Next we consider the case wðx; tÞ < 0. Then there exists a positive constant k1 such that

vkðx; tÞ � �
�

2
wðx; tÞ > 0 for all k � k1;

so that

ukðx; tÞ ! 0 and vkðx; tÞ ! ��wðx; tÞ ¼ �w�ðx; tÞ as k!1:

3. Finally we consider the case where wðx; tÞ ¼ 0. If a subsequence of ukðx; tÞ, which we denote again by ukðx; tÞ, is
such that ukðx; tÞ ! �1 > 0, then vkðx; tÞ ! 0, so that ukðx; tÞ � 1

� v
kðx; tÞ ! �1 which contradicts the fact that

wðx; tÞ ¼ 0. Similarly it is impossible to have that vkðx; tÞ ! �2 > 0. Hence

ukðx; tÞ ! 0 and vkðx; tÞ ! 0 as k!1:

The convergence in L1ðQT Þ follows from the boundedness of uk and vk and the dominated convergence theorem. �

Note that this proposition implies that u and v have disjoint supports, see an illustration on Fig. 2.1. We now obtain a
weak form satisfied by the limit functions ðu; vÞ.

Proposition 2.9. The limit functions ðu; vÞ are such thatZ T

0

Z
�

u�
1

�
v

� �
’t � r d1u�

d2

�
v

� �
r’þ f ðuÞ �

1

�
gðvÞ

� �
’

� �
¼
Z

�

u0 �
v0

�

� �
’ð	; 0Þ ð2:2Þ

for all functions ’ 2 F T :¼ f 2 C1ðQT Þ;  ð	;T Þ ¼ 0g.

Proof. Let ’ 2 F T . Multiplying the equation (2.1) on wk by ’ and integrating by parts (both in time and space), we
obtain the identity

�
Z T

0

Z
�

uk �
1

�
vk

� �
’t þ

Z
�

uk0 �
vk0
�

� �
’ð	; 0Þ þ

Z T

0

Z
�

r d1u
k �

d2

�
vk

� �
	 r’

�
Z T

0

Z
�

f ðukÞ �
1

�
gðvkÞ

� �
’ ¼ 0:

The second term converges to
R
�
ðu0 � v0

� Þ’ð	; 0Þ by assumption on the family (uk0) and (vk0). Moreover, as

Fig. 2.1. Illustration of the supports of the limit functions u and v, at time (a) t ¼ 0 and (b) t > 0 a given time before the
equilibrium. Here u has a competitive advantage on v.
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uk ! u; and vk ! v a.e. in QT as k!1;
and jukj; jvkj 
 1 for all k � 1, it follows by the dominated convergence theorem thatZ T

0

Z
�

uk �
1

�
vk

� �
’t !

Z T

0

Z
�

u�
1

�
v

� �
’t as k!1;

Z T

0

Z
�

f ðukÞ �
1

�
gðvkÞ

� �
’!

Z T

0

Z
�

f ðuÞ �
1

�
gðvÞ

� �
’ as k!1:

Finally, as

uk * u and vk * v weakly in L2ð0;T ;H1ð�ÞÞ as k!1;

we have that Z T

0

Z
�

r d1u
k �

d2

�
vk

� �
r’!

Z T

0

Z
�

r d1u�
d2

�
v

� �
r’ as k!1:

This ends the proof of the proposition. �

In terms of w, the previous proposition suggests that w is a solution of the following problem:

wt ¼ r 	 ðdðwÞrwÞ þ hðwÞ in QT ,

w� ¼ 0 on @�� ð0;T �,

wðx; 0Þ ¼ w0ðxÞ :¼ u0ðxÞ �
v0ðxÞ
�

; x 2 �,

8>><
>>: ðPÞ

where

dðsÞ ¼
d1 if s > 0,

d2 if s < 0,

�
and

hðsÞ ¼
f ðsÞ if s > 0,

gð��sÞ if s < 0.

�
Note that this problem only admits a weak solution since d is not continuous. Next, we present a possible definition of a
weak solution of Problem (P).

Definition 2.1. A function w is a weak solution of problem (P) on ½0; T � if

w 2 L1ð�� ð0; T ÞÞ \ L2ð0;T ;H1ð�ÞÞ \ Cð½0; T �; L2ð�ÞÞ;
and for all ’ 2 F T :¼ f 2 C1ðQT Þ;  ð	;T Þ ¼ 0gZ T

0

Z
�

fw’t � dðwÞrðwÞrð’Þ þ hðwÞ’g ¼
Z

�

w0’ð	; 0Þ:

Theorem 2.10. The function w is a weak solution of problem (P).

Proof. We already know that w 2 L1ð�� ð0;T ÞÞ, and that w 2 L2ð0;T ;H1ð�ÞÞ. Since also wt 2 L2ð0;T ;H1ð�Þ0Þ, it
follows from a standard regularity result that w 2 Cð½0; T �; L2ð�ÞÞ (see [42], Lemma 1.2 p. 260). Now observe that, by
Proposition 2.8,

d1ru�
d2

�
rv ¼ dðwÞrw;

f ðuÞ �
1

�
gðvÞ ¼ hðwÞ:

Therefore this is a straightforward consequence of Proposition 2.9 that for all function ’ 2 F T ,Z T

0

Z
�

fw’t � dðwÞrw 	 r’þ hðwÞ’g ¼
Z

�

w0’ð	; 0Þ:

This completes the proof. �

From this, we know that problem (P) has at least one weak solution. The following theorem gives uniqueness along
with a more precise regularity result.

Theorem 2.11. Problem (P) has exactly one weak solution w, and w is Hölder continuous: w 2 C�;�=2ð�� ½0;1ÞÞ
for all � 2 ð0; 1Þ.
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Proof. The proof of uniqueness is similar to that of Aronson, Crandall and Peletier. The regularity of w follows from
DiBenedetto ([13], Theorems 1.1 and 1.3 p. 41 and 43). �

2.3 A strong form of the limit free boundary problem

Proposition 2.8 shows that �u and �v have disjoint supports, separated by a moving boundary which is the level set
fw ¼ 0g. So far we have shown a weak form of the limit problem where the moving boundary does not explicitly
appear. We will now show a strong formulation of the free boundary problem, with explicit interface conditions, under
a few additional regularity assumptions. However, before doing so, let us slightly rewrite the weak form of problem
(P). Let us introduce DðsÞ :¼ d1s

þ � d2s
� where sþ ¼ maxðs; 0Þ and s� ¼ �minðs; 0Þ. Since D0ðsÞ ¼ dðsÞ, we have

rðDðwÞÞ ¼ dðwÞrw, and thus (P) becomes:

wt ¼ �DðwÞ þ hðwÞ in QT ,

w� ¼ 0 on @�� ð0; T �,

wðx; 0Þ ¼ w0ðxÞ :¼ u0ðxÞ �
v0ðxÞ
�

x 2 �.

8>><
>>: ðPÞ

Theorem 2.12. Assume that, at each time t 2 ½0;T �, there exists a closed hypersurface �ðtÞ and two subdomains
�uðtÞ;�vðtÞ such that

� ¼ �uðtÞ [�vðtÞ; �ðtÞ ¼ �uðtÞ \�vðtÞ; �vðtÞ �� �;

wð	; tÞ > 0 on �uðtÞ wð	; tÞ < 0 on �vðtÞ:
Assume furthermore that t 7! �ðtÞ is smooth enough and that ðu; vÞ :¼ ðwþ; �w�Þ are smooth up to �ðtÞ. Then the

functions u and v satisfy the problem

ut ¼ d1�uþ f ðuÞ in Qu :¼
[

t2½0;T �
f�uðtÞ � ftgg,

vt ¼ d2�vþ gðvÞ in Qv :¼
[

t2½0;T �
f�vðtÞ � ftgg,

u ¼ v ¼ 0 on � :¼
[

t2½0;T �
f�ðtÞ � ftgg,

d1un ¼ �
d2

�
vn on �,

u� ¼ 0 on @�� ½0;T �,

uð	; 0Þ ¼ u0 �
v0

�

� �þ
; vð	; 0Þ ¼ � u0 �

v0

�

� ��
in �,

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ðPÞ

where n denotes the inward pointing normal of the set �v (see Fig. 2.2 for an illustration of the problem with � � R2).

Proof. Recall that w satisfies Problem (P) in the sense of Definition 2.1:Z T

0

Z
�

fw’t � dðwÞrwr’þ hðwÞ’g ¼
Z

�

w0’ð	; 0Þ 8’ 2 F T ;

Fig. 2.2. Illustration of the free boundary problem’s subdomains.
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where F T :¼ f 2 C1ðQT Þ;  ð	;T Þ ¼ 0g. We are going to perform integration by parts, in space and time, on the
supports of u and v, respectively, which is possible because u and v are assumed to be smooth on Qu and Qv

respectively. Let us begin with the integration by parts in space. Let ’ 2 F T . We take the convention that the normal to
@�u is outward while the normal to @�v is inward (see Fig. 2.3): n ¼ nu ¼ �nv. ThenZZ

Qu

ru 	 r’ ¼ �
ZZ

Qu

�u’þ
Z T

0

Z
�ðtÞ
@nu’þ

Z T

0

Z
@�

@nu’;ZZ
Qv

rv 	 r’ ¼ �
ZZ

Qv

�v’�
Z T

0

Z
�ðtÞ
@nv’;

where we took into account our convention for the normal, and the fact that �vðtÞ �� �. ThusZ T

0

Z
�

f�dðwÞrwr’g ¼
ZZ

Qu

d1ð�uÞ’�
ZZ

Qv

d2

�
ð�vÞ’

�
Z T

0

Z
@�

d1ð@nuÞ’�
Z T

0

Z
�ðtÞ

d2

�
@nvþ d1@nu

� �
’:

Now, let us turn to the integration by parts in time. It requires careful attention because the boundaries of the domains
�uðtÞ and �vðtÞ depend on time. We have

d

dt

Z
�uðtÞ

u’ ¼
Z

�uðtÞ
ð@tu’þ u@t’Þ þ

Z
�ðtÞ

u’Vn;

where Vn denotes the speed of propagation of the boundary t 7! �ðtÞ. Following our convention on the normal, we
decide that when �uðtÞ increases, then Vn is nonnegative. Remembering that u ¼ 0 on �, we deduce that

d

dt

Z
�uðtÞ

u’ ¼
Z

�uðtÞ
ð@tu’þ u@t’Þ:

Integrating it in time, and recalling that ’ð	;T Þ ¼ 0, we get

Fig. 2.3. Numerical simulation of the system (Pk) with �1 ¼ �2 ¼ 1, � ¼ 2, d1 ¼ d2 ¼ 1, � ¼ ð�1; 1Þ, u0ðxÞ ¼ e�6ðx�0:5Þ2 ,
v0ðxÞ ¼ e�6ðxþ0:5Þ2 , for (a) k ¼ 100, (b) k ¼ 1;000, and (c) k ¼ 10;000 at time t ¼ 0:02, t ¼ 0:05, and t ¼ 0:1.
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ZZ
Q

w@t’ ¼ �
ZZ

Qu

@tu’þ
1

�

ZZ
Qv

@tv’þ
Z

�

uð	; 0Þ �
vð	; 0Þ
�

� �
’ð	; 0Þ:

In the same way, we obtain

d

dt

Z
�vðtÞ

v’ ¼
Z

�vðtÞ
ð@tv’þ v@t’Þ:

Therefore, the computations yield

�
ZZ

Qu

ð@tu� d1�u� f ðuÞÞ’þ
1

�

ZZ
Qv

ð@tv� d2�v� gðvÞÞ’þ
Z

�

uð	; 0Þ �
vð	; 0Þ
�

� �
’ð	; 0Þ

�
Z T

0

Z
@�

d1ð@nuÞ’�
Z T

0

Z
�ðtÞ

d2

�
@nvþ d1@nu

� �
’ ¼

Z
�

w0’ð	; 0Þ;

for all ’ 2 F T :¼ f 2 C1ðQT Þ;  ð	; T Þ ¼ 0g. Using test functions ’ with suitable supports, namely ’ 2 C10 ðQuÞ and
’ 2 C10 ðQvÞ, we obtain

@tu ¼ d1�uþ f ðuÞ in Qu;

@tv ¼
d2

�
�vþ gðvÞ in Qv:

We then deduce that Z T

0

Z
�ðtÞ

d2

�
@nvþ d1@nu

� �
’ ¼ 0 8’ 2 C10 ðQT Þ;

which implies that

d2

�
@nvþ d1@nu ¼ 0 on �:

Then we deduce that Z T

0

Z
@�

d1ð@nuÞ’ ¼ 0 for all ’ 2 F T such that ’ð	; 0Þ ¼ 0;

which implies that

@nu ¼ 0 on @�:

Finally, we have Z
�

uð	; 0Þ �
vð	; 0Þ
�

� �
’ð	; 0Þ ¼

Z
�

w0’ð	; 0Þ 8’ 2 F T ;

which implies that

uð	; 0Þ �
vð	; 0Þ
�
¼ w0:

As a consequence,

uð	; 0Þ ¼ u0 �
v0

�

� �þ
¼ u0; vð	; 0Þ ¼ � u0 �

v0

�

� ��
¼ v0:

This completes the proof of the theorem. �

2.4 Concentration of the term kukvk

So far we have completely characterized the limit ðu; vÞ of ðuk; vkÞ as k!1. We showed that the two populations
segregate as k tends to infinity. We now focus on the singular limit of the interspecific term kukvk as k tends to infinity.
From proposition 2.3, we have

k

ZZ
QT

ukvk 
 CðT Þ:

Therefore, the family (kukvk) is bounded in L1ðQT Þ. Thus, there exists a Radon measure � on QT such that kukvk * �
as k!1 in the sense of the weak-* convergence of measures, along some subsequence that we still denote by kukvk.
We recall that the space of Radon measures on QT is the dual space of the space of continuous functions over QT . We
only compute � in the case that the limit problem can be written in a strong form with a smooth interface. More
precisely, we prove the following result.
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Theorem 2.13. There exists a measure � over QT such that

kukvk * �; in the sense of measures:

If the interface � is smooth, then � is localized on � and is given by

�ðx; tÞ ¼
1

1þ �
½d1@nuþ d2@nv�ðx; tÞ��ðtÞ:

Proof. We define �k ¼ kukvk, and take  2 C10 ðQT Þ. Multiplying by  the equations for uk and vk in (Pk) and
integrating by parts we obtain ZZ

QT

�k ¼
ZZ

QT

ðuk@t þ d1u
k� þ f ðukÞ Þ

¼
1

�

ZZ
QT

ðvk@t þ d2v
k� þ gðvkÞ Þ:

Therefore, letting k going to infinity, and using the convergence almost everywhere of uk and vk, and the dominated
convergence theorem, we obtain ZZ

QT

� ¼
ZZ

QT

ðu@t þ d1u� þ f ðuÞ Þ;

�

ZZ
QT

� ¼
ZZ

QT

ðv@t þ d2v� þ gðvÞ Þ:

Applying Theorem 3.12, and integrating by parts, we haveZZ
QT

ðu@t þ d1u� þ f ðuÞ Þ ¼ �
Z
Qu

ð@tu � d1ð�uÞ � f ðuÞ Þ þ d1

Z
�

ðð@nuÞ Þ

¼ d1

Z
�

ðð@nuÞ Þ:

Similarly, ZZ
QT

ðv@t þ d1v� þ gðvÞ Þ ¼ �
Z
Qu

ð@tv � d2ð�vÞ � gðvÞ Þ þ d2

Z
�

ðð@nvÞ Þ

¼ d2

Z
�

ðð@nvÞ Þ:

This yields

ð1þ �Þ
ZZ

QT

� ¼
Z

�

ðd1@nuþ d2@nvÞ ;

which concludes the proof. �

2.5 Illustration and interpretation of the results

Figures 2.3 and 2.4 give numerical examples for increasing values of k for the system

ut ¼ d1 �uþ f ðuÞ � kuv in �� ð0;T �,
vt ¼ d2 �vþ gðvÞ � �kuv in �� ð0;T �,
u� ¼ 0; v� ¼ 0 on @�� ð0; T �,
uð	; 0Þ ¼ uk0; vð	; 0Þ ¼ vk0 on �,

8>>>><
>>>>:

ðPkÞ

with the initial values

u0ðx; yÞ ¼ e�6ðx�0:5Þ2

v0ðx; yÞ ¼ e�6ðxþ0:5Þ2

(

for space dimension 1 and

u0ðx; yÞ ¼ e�6ðxþ0:5Þ2�6ðyþ0:5Þ2

v0ðx; yÞ ¼ e�6ðx�0:5Þ2�6ðy�0:5Þ2

(

for space dimension 2 respectively. The simulations in this section and the rest of the manuscript have been obtained
using the finite element tools from Wolfram Mathematica 12.3 (see Appedix A for listings and details on meshes used).
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As has been proved previously, and can be seen in Figs. 2.3.c and 2.4.c, in the singular limit system, both species
have disjoint support. Even in the case of supp u0ðxÞ \ supp v0ðxÞ 6¼ ;, after an infinitesimally small amount of time �t
has passed, then supp uðx; �tÞ \ supp vðx; �tÞ ¼ ;. See Fig. 2.5 for an example of this nearly instantaneous process. To
understand why, we need to take into consideration that with k really large, there are two time-frames at play (see [38]).
In the fast time frame, the system is akin to a Lotka–Volterra sytem. Indeed, since k � 1, we have, for �t � 1, and u; v
not too small,

ut � f ðuÞ � kuv

vt � gðvÞ � �kuv

�
ð2:3Þ

from t ¼ 0 to a time �t when, on the whole space, either u or v reaches 0. When k is large enough, this system is
bistable: it admits two stable equilibria ðu�; v�Þ ¼ ð1; 0Þ and ðu�; v�Þ ¼ ð0; 1Þ. Which solution becomes extinct depends

Fig. 2.4. Numerical simulation of the system (Pk) with �1 ¼ �2 ¼ 1, � ¼ 2, d1 ¼ d2 ¼ 1, � ¼ ð�1; 1Þ2, u0ðx; yÞ ¼
e�6ð0:5þxÞ2�6ð0:5þyÞ2 , v0ðx; yÞ ¼ e�6ð�0:5þxÞ2�6ð�0:5þyÞ2 , for (a) k ¼ 100, (b) k ¼ 1;000, and (c) k ¼ 10;000. The choice of the
value 0.006 as a delimiting value to show the presence of the species is empiric. It is only the one we found best to illustrate the
phenomenon here with the parameters we chose. The graphs in (a.1), (b.1) and (c.1) show a 3D spreading of the species in �,
with the z-axis the population density, in case of the initial values being a Gaussian distribution on opposite corners, and with
Neumann boundary conditions. The graphs in (a.2), (b.2) and (c.2) show a numerical approximation of the support of each
species. Since � > 1, u has a competitive advantage which is translated by its dominance in space after some time. We see that
when k tends to1, the supports become disjoint, though the nature of the competition, or the time taken to dominate in space
does not change.
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on the initial data (see Fig. 1.3). Because of this effect, when k tends to1, the supports of each species become disjoint
as soon as t > 0. In the Fig. 2.4, u0 and v0 are symmetrical, and as predicted, we observe that the species u out-
competes the species v. However, an example with v0 more than twice the value of u0 gives an opposite result, see
Fig. 2.6.

Fig. 2.5. Numerical simulation of the system with k ¼ 100;000, �1 ¼ �2 ¼ 1, � ¼ 2, d1 ¼ d2 ¼ 1, � ¼ ð�1; 1Þ2. (a) shows the
spreading of the species in a rectangular space when starting with partially overlapping Gaussian distribution. (b) shows the
support of each species. Though it starts with supp u0ðxÞ \ supp v0ðxÞ 6¼ ;, these supports become disjoint instantly after the start
of the process.

Fig. 2.6. Numerical simulation of the system with k ¼ 10000, �1 ¼ �2 ¼ 1, � ¼ 2, d1 ¼ d2 ¼ 1, � ¼ ð�1; 1Þ2, u0ðx; yÞ ¼
e�6ð0:5þxÞ2�6ð0:5þyÞ2 , v0ðx; yÞ ¼ 2:5� e�6ð�0:5þxÞ2�6ð�0:5þyÞ2 . Since � ¼ 2, each u counts double in the competition with v so u has a
competitive advantage. However, it is supplanted by the advantage of v having more than twice the initial values of u.
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Chapter 3

Spatial Segregation Limit of a Competition-diffusion System with Dirichlet Boundary

Conditions

In this chapter, we study the same diffusion-competition system, but now equipped with inhomogeneous Dirichlet
boundary conditions. Let � be a bounded domain of RN with a smooth boundary @�, T a strictly positive time. We
consider the following problem

ut ¼ d1 �uþ f ðuÞ � kuv in �� ð0;T �,
vt ¼ d2 �vþ gðvÞ � �kuv in �� ð0;T �,
u ¼ mk

1 on @�� ð0; T �,
v ¼ mk

2 on @�� ð0; T �,
uð	; 0Þ ¼ uk0; vð	; 0Þ ¼ vk0 on �.

8>>>>>><
>>>>>>:

ðPkÞ

We assume the following:
. f and g are continuously differentiable functions on ½0;1Þ such that f ð0Þ ¼ gð0Þ ¼ 0 and f ðsÞ < 0, gðsÞ < 0 for all

s > 1.
. mk

1;m
k
2 2 C2;1ð�� RþÞ, 0 
 mk

1;m
k
2 
 1 and mk

1 * m1, mk
2 * m2 weakly in L2ð@�� ð0;T ÞÞ for all T > 0 as

k!1.
. The initial data uk0 and vk0 are defined by

uk0ðxÞ ¼ mk
1ðx; 0Þ; vk0ðxÞ ¼ mk

2ðx; 0Þ for x 2 �

and uk0 * u0, vk0 * v0 weakly in L2ð�Þ as k!1.
By a solution of Problem (Pk) we mean a pair ðuk; vkÞ such that uk; vk 2 CðQT Þ \ C2;1ð�� ð0; T �Þ and satisfy pointwise
the partial differential equations as well as the boundary and initial conditions in Problem (Pk). Throughout this part,
we fix the pair of solutions ðuk; vkÞ, and we define the parabolic domain QT :¼ �� ð0;T Þ. This chapter is based upon
the article [8].

3.1 A priori bounds and relative compactness

To begin with, the comparison principle gives us again bounds on the values of uk and vk:

Proposition 3.1. For all k � 1, 0 
 uk 
 1 and 0 
 vk 
 1 in QT .

The existence and uniqueness of such a solution ðuk; vkÞ of Problem (Pk) follows again from Proposition 7.3.2 p. 277
of Lunardi [34] for Uk :¼ uk � mk

1 and Vk :¼ vk � mk
2.

Following the approach of the previous part, the next step would be to obtain a bound on the interspecific
competition term. However, the same computation fails, because the boundary term appearing during the integration by
part does not cancel with Dirichlet boundary conditions. Integrating the equation for uk on QT yields

k

ZZ
QT

ukvk ¼ d1

Z T

0

Z
@�

uk� þ
ZZ

QT

f ðukÞ þ
Z

�

uk0 �
Z

�

ukð	;T Þ;

where we have not yet obtained an a priori estimate for the first term on the right-hand side, and it could even blow up
as k tends to infinity. To cope with this difficulty, we are going to obtain a slightly weaker estimate, by multiplying with
a test function vanishing on the boundary before performing the integration by parts. It will provide useful information
only in subdomains ! of � such that ! �� �. Let thus ’ 2 Cð�Þ \ C1ð�Þ such that ’ ¼ 0 on @� and ’ > 0 in �. For
example, one can take ’ as the first eigenfunction of the operator �� in � with the homogeneous Dirichlet condition,
namely the function ’ such that k’kH1

0
ð�Þ ¼ 1 satisfying,

��’ ¼ 	’ in �,

’ ¼ 0 on @�,

�
with 	 > 0 and ’ > 0 in � (see Theorem 9.31 p. 311 in [3] for the existence of such a function). Then we prove the
following result:

Proposition 3.2. There exists a constant C1 independent of k such thatZZ
QT

ukvk’ 

C1

k
:

Proof. Integrating the equation for uk after multiplication by ’ yields
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k

ZZ
QT

ukvk’ ¼ d1

Z T

0

Z
@�

fuk�’� uk’�g þ d1

ZZ
QT

uk�’

þ
ZZ

QT

f ðukÞ’þ
Z

�

uk0’ð	; 0Þ �
Z

�

ukð	; T Þ’ð	;T Þ:

Now using that ’ ¼ 0 on @�, ’� is bounded on @�, and that uk; vk have values in ½0; 1�, we obtain the desired result.
�

As in Chapter 1, we now prove uniform estimates for jrukj and jrvkj.

Proposition 3.3. There exists a positive constant C2 independent of k such thatZZ
QT

jrukj2’;
ZZ

QT

jrvkj2’ 
 C2:

Proof. We multiply the parabolic equation for uk by uk’ and integrate by parts. This gives

1

2

d

dt

Z
�

ðukÞ2’þ d1

Z
�

jrukj2’þ d1

Z
�

ukruk 	 r’

¼
Z

�

f ðukÞuk’� k

Z
�

ðukÞ2vk’;

where we used that rðuk’Þ ¼ ’ruk þ ukr’, and that ’ ¼ 0 on the boundary. Integrating it in time, and integrating by
parts the last term of the left-hand side we find

1

2

Z
�

ðukÞ2ð	;T Þ’ð	;T Þ þ d1

ZZ
QT

jrukj2’



1

2

Z
�

ðuk0Þ
2’ð	; 0Þ � d1

Z T

0

Z
@�

ðukÞ2’� þ d1

ZZ
QT

ðukÞ2�’þ
ZZ

QT

f ðukÞuk’:

Using again that 0 
 uk; vk 
 1, and that ’� is bounded on @�, we obtain the result. �

So far we have obtained L1ðQT Þ estimates for uk and vk, and L2
locðQT Þ estimates for jrukj and jrvkj. This is not

sufficient to pass to the limit as k tends to infinity in the nonlinear terms and in the time-derivative term. In the first
chapter we coped with this problem by finding estimates on the time derivative of the solution pair and using a
compactness embedding to obtain strong L2 convergence. Now, we obtain strong L2-convergence by a different
approach. We apply the Fréchet–Kolmogorov Theorem, as stated in the book of Brezis [3], Corollary 4.26 p. 74.

Theorem 3.4. Let F be a bounded subset of LpðQT Þ with 1 
 p <1. Suppose that
. for any " and any subset ! �� QT , there exists a positive constant �ð< distð!; @QT ÞÞ such that

k f ðxþ �; tÞ � f ðx; tÞkLpð!Þ þ k f ðx; t þ 
Þ � f ðx; tÞkLpð!Þ < "

for all �, 
, and f 2 F satisfying j�j þ j
j < �,.
. for any " > 0, there exists ! �� QT such that

k fkLpðQTn!Þ < "

for all f 2 F .
Then F is relatively compact in LpðQT Þ.

The Fréchet–Kolmogorov theorem is written in a way that all the variables are involved in a similar way. However,
we deal with a parabolic system so that it is handy to separately derive estimates for differences of space and time
translates, first the space translates and then the time translates.

Theorem 3.5. The sequences fukg and fvkg are relatively compact in L2ðQT Þ.

Proof. To verify the first hypothesis of the Fréchet–Kolmogorov theorem it is sufficient to consider subsets of QT of the
form �r � ½0; T � 
�, where 
 2 ð0;T �, and

�r :¼ fx 2 �jBðx; 2rÞ � �g;

for r > 0, and where Bðx; rÞ denotes the ball in RN with center x and radius r. Indeed, if ! �� QT , the continuous
function ðx; tÞ 2 ! 7! distðx; @�Þ achieves a positive minimum on !, and thus ! will be included in �r � ð0; T Þ for r
small enough. Reasoning similarly on time, ! will be included in a domain of the form �� ½
;T � 
� for 
 small
enough. Thus we deduce that ! � �r � ½
;T � 
� for r and 
 small enough. We define in addition
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�0r :¼
[
x2�r

Bðx; rÞ:

We start with the estimates on the space translates. We show that for all r > 0, there exists a positive constant C3 such
that Z T

0

Z
�r

ðukðxþ �; tÞ � ukðx; tÞÞ2 
 C3j�j2;

Z T

0

Z
�r

ðvkðxþ �; tÞ � vkðx; tÞÞ2 
 C3j�j2;

for all � 2 RN such that j�j 
 r, which will imply the desired result. For the proof of these inequalities, we use the
estimates on jrukj ffiffiffi’p and jrvkj ffiffiffi’p in L2ðQT Þ, as well as the Cauchy–Schwartz inequality:Z T

0

Z
�r

ðukðxþ �; tÞ � ukðx; tÞÞ2 dx dt ¼
Z T

0

Z
�r

Z 1

0

rukðxþ ��; tÞ 	 � d�
� �2

dx dt


 j�j2
Z 1

0

Z T

0

Z
�r

jrukðxþ ��; tÞj2 dx dt d�


 j�j2
Z T

0

Z
�0r

jrukðx; tÞj2 dx dt



j�j2

inf
y2�0r

’ðyÞ

Z T

0

Z
�0r

jrukðx; tÞj2’ðxÞ dx dt


 C3j�j2:

The estimates on the space translates of vk can be shown similarly. Next we turn to the estimates on the time translates.
We prove that for each r > 0, there exists a positive constant C4 such thatZ T�


0

Z
�r

ðukðx; t þ 
Þ � ukðx; tÞÞ2 dx dt 
 C4
;

Z T�


0

Z
�r

ðvkðx; t þ 
Þ � vkðx; tÞÞ2 dx dt 
 C4
;

for all 
 2 ð0;T Þ. We take � 2 C10 ð�0rÞ such that 0 
 �ðxÞ 
 1 in �0r and � ¼ 1 on �r, and we show that for all

 2 ð0;T Þ Z T�


0

Z
�0r

ðukðx; t þ 
Þ � ukðx; tÞÞ2�ðxÞ dx dt 
 C4
;

Z T�


0

Z
�0r

ðvkðx; t þ 
Þ � vkðx; tÞÞ2�ðxÞ dx dt 
 C4
:

We perform the computations for uk, the estimates for vk being proved similarly. We haveZ T�


0

Z
�0r

ðukðx; t þ 
Þ � ukðx; tÞÞ2�ðxÞ dx dt

¼
Z T�


0

Z
�0r

ðukðx; t þ 
Þ � ukðx; tÞÞ
Z tþ


t

uks ðx; sÞ ds
� �

�ðxÞ dx dt

¼
Z T�


0

Z
�0r

ðukðx; t þ 
Þ � ukðx; tÞÞ
Z 


0

ukt ðx; t þ sÞ ds
� �

�ðxÞ dx dt

¼ I1 þ I2 þ I3;

where I1, I2 and I3 are obtained when replacing ukt in (
R 

0
ukt ðx; t þ sÞ ds) by the equality from (Pk):

ukt ¼ d1 �uk þ f ðukÞ � kukvk:

So we have

I1 :¼
Z 


0

Z T�


0

Z
�0r

ðukðx; t þ 
Þ � ukðx; tÞÞd1�ukðx; t þ sÞ�ðxÞ dx dt ds;
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I2 :¼
Z 


0

Z T�


0

Z
�0r

ðukðx; t þ 
Þ � ukðx; tÞÞf ðukðx; t þ sÞÞ�ðxÞ dx dt ds;

I3 :¼ �
Z 


0

Z T�


0

Z
�0r

ðukðx; t þ 
Þ � ukðx; tÞÞðkukvkÞðx; t þ sÞ�ðxÞ dx dt ds:

The estimate on I1 follows from the estimate on jrukj2. Indeed, since � vanishes on @�0r, we have

I1 ¼ �d1

Z 


0

Z T�


0

Z
�0r

rðukðx; t þ 
Þ � ukðx; tÞÞ 	 rukðx; t þ sÞ�ðxÞ dx dt ds

� d1

Z 


0

Z T�


0

Z
�0r

ðukðx; t þ 
Þ � ukðx; tÞÞrukðx; t þ sÞ 	 r�ðxÞ dx dt ds:

The first term of I1 can be bounded using Cauchy–Schwartz inequality and the fact that, by definition, � is bounded:

d1

Z 


0

Z T�


0

Z
�0r

rðukðx; t þ 
Þ � ukðx; tÞÞ 	 rukðx; t þ sÞ�ðxÞ dx dt ds

�����
�����


 2jd1jk�k1
Z 


0

Z T

0

Z
�0r

jrukðx; tÞj2 dx dt

 !1=2 Z T�


0

Z
�0r

jrukðx; t þ sÞ�ðxÞj2 dx dt

 !1=2

ds


 2jd1jk�k1

Z T

0

Z
�0r

jrukðx; tÞj2 dx dt:

As for the second term of I1, we just use that r� is bounded on �0r and 0 
 uk 
 1. Finally we introduce ’ the same
way we did previously.

jI1j 
 C5


Z T

0

Z
�0r

jrukðx; tÞj2 dx dt þ C6


Z T

0

Z
�0r

jrukðx; tÞj dx dt



C5


inf
y2�0r

’ðyÞ

Z T

0

Z
�0r

jrukðx; tÞj2’ðxÞ dx dt

þ
C7



inf
y2�0r

’ðyÞ
�1

2

Z T

0

Z
�0r

jrukðx; tÞj2’ðxÞ dx dt

 !1
2


 C8
:

The estimates on the terms I2 comes easily from the fact that uk; vk take their values in ½0; 1�, and that on the term I3
from the bound on the interspecific competition term:

jI2j 
 C9
;

jI3j 

C10


inf
y2�0r

’ðyÞ

Z T

0

Z
�0r

kukvk’ 
 C11
:

This completes the proof of the estimates for differences of time translates of uk. The estimate for the function vk

follows in a similar way.
The proof of the second hypothesis of the Fréchet–Kolmogorov theorem easily follows from Proposition 3.1. Indeed,

since fukg and fvkg are bounded by 1, for any " > 0 fixed, there exists r0 > 0 and 
0 > 0 such that for 0 
 r 
 r0 and
0 
 
 
 
0 Z T

T�


Z
�

ðukÞ2;
Z T

0

Z
�n�r

ðukÞ2 
 ";

along with similar inequalities for vk.
We are thus able to apply the Fréchet–Kolmogorov theorem and we deduce that fukg and fvkg are relatively compact

in L2ðQT Þ. �

We can now state the following convergence result.

Corollary 3.6. There exist subsequences fukng, fvkng, functions u 2 L1ðQT Þ and v 2 L1ðQT Þ such that

ukn ! u; vkn ! v strongly in L2ðQT Þ and a.e. in QT ;

as kn!1.
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3.2 Charaterization of the limit problem

As with the Neumann boundary conditions we have the following result.

Proposition 3.7. uv ¼ 0 a.e. in QT .

Proof. The proof is simpler than in the case of the Neumann conditions because we already know the strong
convergence of (ukn) and (vkn ). Indeed, recall thatZZ

QT

uknvkn’ 

C1

kn
�!
n!1

0:

Since (ukn) and (vkn ) strongly converge in L2ðQT Þ we can pass to the limit in the left-hand side and deduce thatZZ
QT

uv’ ¼ 0:

Now since, ukn ; vkn � 0 and they converge almost everywhere to u and v, we deduce that u; v � 0 almost everywhere.
As by assumption ’ is also strictly positive in the interior of QT it yields

uv ¼ 0 a.e. in QT :

This completes the proof. �

Next we set wk :¼ uk � vk

� , and w :¼ u� v
�. We deduce from the convergence results above that

wkn ! w strongly in L2ðQT Þ and a.e. in QT

as kn!1 and furthermore that

u ¼ wþ; and v ¼ �w�;

where sþ ¼ maxfs; 0g and s� ¼ maxf�s; 0g.
We will now prove that w is the unique weak solution of a limiting free boundary problem in the same way as in the

previous chapter but with Dirichlet boundary conditions.

Proposition 3.8. The function pair ðu; vÞ defined above is such that

�
ZZ

QT

u�
v

�

� �
 t �

Z
�

u0 �
v0

�

� �
 ð	; 0Þ ¼ �

Z T

0

Z
@�

d1m1 �
d2m2

�

� �
 �

þ
ZZ

QT

d1u�
d2v

�

� �
� þ f ðuÞ �

gðvÞ
�

� �
 

� � ð3:1Þ

for all  2 F T where

F T :¼ f 2 C2;1ðQT Þ j  ðx;T Þ ¼ 0 in � and  ¼ 0 on @�� ½0;T �g:

Proof. We take the difference of the partial differential equations for uk and vk=�, multiply by  2 F T and integrate by
parts in time and space, which yields

�
ZZ

QT

uk �
vk

�

� �
 t �

Z
�

uk0 �
vk0
�

� �
 ð	; 0Þ ¼ �

Z T

0

Z
@�

d1m
k
1 �

d2m
k
2

�

� �
 �

þ
ZZ

QT

d1u
k �

d2v
k

�

� �
4 þ f ðukÞ �

gðvkÞ
�

� �
 

� �
:

We can then pass to the limit as kn!1 in all the terms by using the dominated convergence theorem (as
0 
 uk; vk 
 1). This yields the desired result. �

We rewrite this equation in terms of w, and of the following quantities

dðsÞ :¼
d1 if s > 0,

d2 if s < 0,

�

DðsÞ :¼
d1s if s � 0,

d2s if s < 0,

�

hðsÞ :¼
f ðsÞ if s > 0,

�
gð��sÞ
�

if s < 0.

8<
:

Thus the equation for w reads,
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ðPÞ

wt ¼ �DðwÞ þ hðwÞ in QT ,

DðwÞ ¼ d1m1 �
d2m2

�
on @�� ð0; T Þ,

wðx; 0Þ ¼ u0ðxÞ �
v0ðxÞ
�

in �.

8>>>><
>>>>:

Definition 3.1. A function w is a weak solution of Problem (P) if it satisfies:
. w 2 L1ð�� ð0; T ÞÞ,
.
RR

QT
ðw t þDðwÞ4 þ hðwÞ Þ ¼

R T
0

R
@�ðd1m1 � d2m2

� Þ � �
R
�
w0 ð	; 0Þ for all T > 0 and  2 FT .

Theorem 3.9. The function w defined above is a weak solution of problem (P).

Proof. This follows from ð3.1Þ and from the definitions of w, D and h. �

3.3 Numerical example

As can be seen in Fig. 3.1, just as in the previous chapter with Neumann boundary conditions and as it has just been
proved in this case, when k!1, the supports of the species become disjoint. The difference in this case is that when
the system reaches its steady state (when t!1), both species coexist. Here it can be explained by the Dirichlet
conditions acting as sources for each species. Indeed, in this system, we took the following Dirichlet conditions:

uðx;�1; tÞ ¼ �0:5� xþ 0:5; uð�1; y; tÞ ¼ �0:5� yþ 0:5,

uðx; 1; tÞ ¼ uð1; y; tÞ ¼ 0:

vðx; 1; tÞ ¼ 0:5� xþ 0:5; vð1; y; tÞ ¼ 0:5� yþ 0:5,

vðx;�1; tÞ ¼ vð�1; y; tÞ ¼ 0:

8>>>>><
>>>>>:

ð3:2Þ

It means that we force the species u to exist on the boundaries x ¼ �1, y ¼ �1, and the species v to exist on the
boundaries x ¼ 1, y ¼ 1. Furthermore, as we explained in the previous chapter with Neumann boundaries, though u has
a competitive advantage, it can be offset by a larger ‘‘initial value’’ for the species v at the space where the species
interact. Since the Dirichlet boundaries act as source for each species in their respective corner, the further one species
invades the other initial territory, the greater this ‘‘initial value’’ will be. At some point, the competitive advantage of u
is not enough, and it cannot over-compete the species v.

3.4 Uniqueness of the weak solution of the limit problem

The goal of this part is to show the uniqueness of weak solution of problem (P). Our proof relies on the following
proposition.

Proposition 3.10. Let w1 and w2 be two solutions of Problem (P) with initial data w0;1 and w0;2 respectively. ThenZZ
QT

jw1ðx; tÞ �w2ðx; tÞj dx dt


 T

Z
�

jw0;1ðxÞ � w0;2ðxÞj dxþ
ZZ

QT

ðT � tÞjhðw1Þ � hðw2Þj dx dt:

The proof of this result is based on properties of the solution of the adjoint problem

 t þ �ðx; tÞ� ¼ ðx; tÞ; ðx; tÞ 2 QT ,

 ¼ 0 on @�� ð0;T Þ,
 ðx; T Þ ¼ 0; x 2 �.

8<
: ðAÞ

We first show the following lemma.

Lemma 3.11. Let T > 0,  2 C10 ðQT Þ be such that jj 
 1 and let � 2 C1ðQT Þ be such that there exists a positive
constant �� with

�ðx; tÞ � �� > 0 in QT :

Then there exists a unique solution  2 C2;1ðQT Þ of Problem (A). It satisfies

j j 
 T � t in QT

and ZZ
QT

ð� Þ2 

T j�j
�2
�
:
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Proof. Note that problem (A) is a backward parabolic equation, along with a final condition at the time T . We first
rewrite the equation as a classical forward (in time) problem by a change of variable, 
 ¼ T � t, �ðx; tÞ ¼ �ðx; 
Þ,
ðx; tÞ ¼ ðx; 
Þ and  ðx; tÞ ¼  ðx; 
Þ. Then

 
 ¼ � t; � ¼ 4 

and  satisfies the forward (in time) problem

 
 ¼ �ðx; 
Þ4 � ðx; 
Þ; ðx; 
Þ 2 QT ,

 ¼ 0 on @�� ð0;T Þ,
 ðx; 0Þ ¼ 0; x 2 �.

8><
>: ðF Þ

The existence and uniqueness of the classical solution of this problem can be found in classical literature. For example,

Fig. 3.1. Numerical simulations of the system with �1 ¼ �2 ¼ 1, � ¼ 2, d1 ¼ d2 ¼ 1, � ¼ ð�1; 1Þ2, u0ðx; yÞ ¼ e�6ð0:5þxÞ2�6ð0:5þyÞ2 ,
v0ðx; yÞ ¼ e�6ð�0:5þxÞ2�6ð�0:5þyÞ2 . For (a) k ¼ 100, (b) k ¼ 1;000, and (c) k ¼ 10;000. The graphs in (a.1), (b.1) and (c.1) show a
3D spreading of the species in �, with the z-axis the population density, in case of the initial values being a Gaussian distribution
on opposite sides. The boundary conditions are non-homogeneous Dirichlet boundary conditions, see (3.2). The graphs in (a.2),
(b.2) and (c.2) show a numerical approximation of the support of each species. Since � > 1, u has a competitive advantage
which is translated by the dominance of its support after some time. We see that when k tends to 1, the supports become
disjoint, though the nature of the competition, or the time needed for the support of u to extend does not change.
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it follows from the book [32] that problem (F ) has a unique classical solution  , which in turn yields a unique classical
solution of the adjoint problem (A).

The first estimate of the lemma follows from the maximum principle. Indeed, since jj 
 1, the functions 
 and �

are upper and lower solutions of problem (F ). Thus

�
 
  
 
 in QT

or equivalently

�ðT � tÞ 
  
 T � t in QT :

We now turn to the estimate on � . We multiply the parabolic equation in problem (A) by � and integrate by
parts on QT . So, ZZ

QT

f t� þ ð� Þ2�g ¼
ZZ

QT

� 

which implies that

�
ZZ

QT

ðr Þt 	 r þ
ZZ

QT

ð� Þ2� ¼
ZZ

QT

� :

Here we have used that  t ¼ 0 on @�� ð0; T Þ. Thus

1

2

Z
�

jr ð	; 0Þj2 �
1

2

Z
�

jr ð	;T Þj2 þ
ZZ

QT

ð4 Þ2� 

ZZ

QT

� :

As  ð	;T Þ  0, also r ð	;T Þ  0, and we deduce thatZZ
QT

ð4 Þ2� 

ZZ

QT

� :

We claim that it implies the desired estimate. Indeed, using Young’s inequalityZZ
QT

ð4 Þ2� 

ZZ

QT

� 



��

2

ZZ
QT

ð4 Þ2 þ
1

2��

ZZ
QT

2



1

2

ZZ
QT

ð4 Þ2� þ
1

2��

ZZ
QT

2:

Therefore

1

2

ZZ
QT

ð4 Þ2� 

1

2��

ZZ
QT

2



T j�j
2��

;

where we have used that jj 
 1 for the last inequality. HenceZZ
QT

ð4 Þ2 

1

��

ZZ
QT

ð4 Þ2� 

T j�j
�2
�
:

This completes the proof. �

The next step is to prove the inequality for the difference of w1 and w2.

Proof of Proposition 3.10. Let w1 and w2 be two solutions of problem (P) with initial data w0;1 and w0;2 respectively.
Set ~w :¼ w1 �w2, ~w0 :¼ w0;1 �w0;2, z :¼ hðw1Þ � hðw2Þ and define for all ðx; tÞ 2 QT

qðx; tÞ :¼
Dðw1ðx; tÞÞ �Dðw2ðx; tÞÞ

w1ðx; tÞ � w2ðx; tÞ
if w1ðx; tÞ 6¼ w2ðx; tÞ,

minfd1; d2g otherwise.

8<
:

Note that it easily follows from the definition of D that

minfd1; d2g 
 qðx; tÞ 
 maxfd1; d2g in QT :

The definition of a weak solution for problem (P) yields, for all  2 F T ,ZZ
QT

f ~wð t þ q� Þ þ z g dx dt ¼ �
Z

�

~w0 ðx; 0Þ dx:
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Lemma 3.11 allows us to replace  t þ q� by any function  2 C10 ðQT Þ such that jj 
 1, while ensuring j j 

T � t. Choosing a suitable function  would then yield the result. However, we are not quite able to apply Lemma 3.11,
since q is not smooth enough. Yet using mollifiers, one can find a smooth sequence qn converging to q in, say, L2ðQT Þ
and verifying the same bounds as q:

kqn � qkL2ðQT Þ 

1

n
;

minfd1; d2g 
 qnðx; tÞ 
 maxfd1; d2g in QT

(extend q to minfd1; d2g outside QT and then use mollifiers, the convergence in L2ðQT Þ is a classical result that can be
found in the fourth chapter of [3], while the bounds on qn come easily from the fact that the integral of a mollifier is
one). Then fix  2 C10 ðQT Þ with jj 
 1 and let  n be the solution of problem (A) with the function � replaced by qn
(with �� ¼ minðd1; d2Þ then). Setting  ¼  n in the equation for  givesZZ

QT

½ ~wfð nÞt þ q� ng þ z n� dx dt ¼ �
Z

�

~w0 nðx; 0Þ dx;

and hence since

ð nÞt þ qnðx; tÞ4 n ¼ ðx; tÞ;
we have ZZ

QT

~wfðq� qnÞ� n þ g dx dt
����

���� 

ZZ

QT

jz nj dx dt þ
Z

�

j ~w0 nðx; 0Þj dx



ZZ

QT

ðT � tÞjzj dx dt þ T

Z
�

j ~w0j dx:

Next we show that the first term on the left-hand-side of the inequality above vanishes as n!1. Indeed, using
Cauchy-Schwartz inequality,ZZ

QT

j ~wj jqðx; tÞ � qnðx; tÞj j� nj dx dt


 ðkw1kL1ðQT Þ þ kw2kL1ðQT ÞÞ
ZZ

QT

ðq� qnÞ2 dx dt
� �1=2 ZZ

QT

ð� nÞ2 dx dt
� �1=2



C11T

1=2j�j1=2

nminfd1; d2g
:

Letting n!1 we obtain ZZ
QT

~w dx dt

����
���� 


ZZ
QT

ðT � tÞjzj dx dt þ T

Z
�

j ~w0j dx

for each  2 C10 ðQT Þ with jj 
 1. Take as functions  the elements of a subsequence fmg, (m 2 N) such that fmg
converges to signð ~wÞ in L1ðQT Þ as m!1. Letting m!1 yieldsZZ

QT

j ~wj dx dt 

ZZ

QT

ðT � tÞjzj dx dt þ T

Z
�

j ~w0j dx;

which completes the proof. �

With the aid of Lemma 3.10 in hand, we are now ready to prove the uniqueness of the weak solution of problem (P).

Corollary 3.12. There exists at most one weak solution w of Problem (P). The function w belongs to C�;�=2ðQT Þ for
all � 2 ð0; 1Þ.

Proof. First, the Hölder continuity of weak solutions of problem (P) in QT follows from [13, Theorem 1.1, p. 41].
Suppose then that w1 and w2 are two weak solutions of problem (P) with initial data w0;1 ¼ w0;2 and let M > 0 be

such that jwij 
 M (i ¼ 1; 2). Since h is locally Lipschitz continuous on R, there exists a constant L such that

jhðw1Þ � hðw2Þj 
 Ljw1 �w2j in QT :

Applying the inequality above with QT replaced by �� ðt0; t0 þ 
Þ with t0 2 ½0; T Þ and 
 2 ð0; T � t0� (we can reduce
to this case because as w1 and w2 are continuous we can show that they are solutions of problem (P) over ½t0; T � with
initial conditions at time t0) gives
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Z t0þ


t0

Z
�

jw1 � w2j dx dt


 

Z

�

jw1ðx; t0Þ �w2ðx; t0Þj dxþ
Z t0þ


t0

Z
�

ðt0 þ 
 � tÞjhðw1Þ � hðw2Þj dx dt


 

Z

�

jw1ðx; t0Þ �w2ðx; t0Þj dxþ 
L
Z t0þ


t0

Z
�

jw1 �w2j dx dt;

and thus

ð1� 
LÞ
Z t0þ


t0

Z
�

jw1 �w2j dx dt 
 

Z

�

jw1ðx; t0Þ �w2ðx; t0Þj dx:

It follows that, for all 
 
 minf1=ð2LÞ;T � t0g, we haveZ t0þ


t0

Z
�

jw1 �w2j dx dt 
 2


Z
�

jw1ðx; t0Þ � w2ðx; t0Þj dx:

Let then

t0 :¼ supft 2 ½0;T � j w1ðx; sÞ ¼ w2ðx; sÞ for 0 
 s 
 t, x 2 �g

and assume that t0 < T . Then by continuity of w1 and w2, w1ð	; t0Þ ¼ w2ð	; t0Þ so that by the inequality above

w1 ¼ w2 on �� ðt0; t0 þ 
Þ


 2 ½0;minf1=ð2LÞ;T � t0g�, which contradicts the definition of t0. Therefore problem (P) has at most one weak
solution w. �
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Chapter 4

Link with a Stefan Problem

In the Chapter 2, we showed that the strong form of the limit problem with Neumann boundary conditions is:

ut ¼ d1�uþ f ðuÞ in Qu :¼
[

t2½0;T �
f�uðtÞ � ftgg,

vt ¼ d2�vþ gðvÞ in Qv :¼
[

t2½0;T �
f�vðtÞ � ftgg,

u ¼ v ¼ 0 on � :¼
[

t2½0;T �
f�ðtÞ � ftgg,

d1un ¼ �
d2

�
vn on �,

u� ¼ 0 on @�� ½0;T �,
uðx; 0Þ ¼ u0ðxÞ; vðx; 0Þ ¼ v0ðxÞ for x 2 �,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ðPÞ

where n denotes the inward pointing normal of the set �v (see Fig. 2.2), and � the outward pointing normal of �. We
will see in this chapter its relationship with a Stefan problem, and show how to transform the initial problem (Pk) so
that the limit problem (P) includes a positive latent heat coefficient.

4.1 The Stefan condition

A Stefan problem is a problem where the diffusion equation is posed in a domain bounded by a free boundary, which
is determined by an extra boundary condition (Fowler [20]). Historically, it was introduced to study the freezing of
water. We suppose that there is no heat convection, only conduction. In this situation, we need to keep in mind 2
distinct phenomena.

. The first one is that the evolution of the temperature in the water is assumed to follow the heat conduction law (or
Fourier’s law). It states that the local heat flux density is proportional to the gradient of temperature. This gives
birth to the standard heat equation. However, it is only valid until the water reaches 0 �C.

. At 0 �C, a change of phase occurs. The energy released from this point on by the water does not bring the
temperature further down, but instead changes its state from liquid to ice; this energy is called the latent heat (of
solidification in this case). See Fig. 4.1.

. Once the ice has formed, then Fourier’s law is valid once again in it, albeit with different heat conductivity.
Assuming that the assumptions above are still valid, we suppose that a body of water at temperature Tl is suddenly

subjected to a surface temperature T0 < 0 �C, with 0 �C the freezing temperature. We also suppose that the temperature
only depends on the depth z and the time t. Then at time t > 0, we can expect a frozen region 0 < z < sðtÞ and an liquid
region sðtÞ < z < L, where the free boundary sðtÞ is a function of time. A model to describe this situation is given by

Fig. 4.1. Phase change and latent heat graph.
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Tt ¼ �1Tzz; 0 < z < sðtÞ, 0 < t 
 T

Tð0; tÞ ¼ �jT0j; 0 < t 
 T

TðsðtÞ; tÞ ¼ 0; 0 < t 
 T

Tt ¼ �2Tzz; sðtÞ < z < L, 0 < t 
 T

TzðL; tÞ ¼ 0; 0 < t 
 T

Tðz; 0Þ ¼ Tl; 0 
 z 
 L

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

where �1 > 0, �2 > 0 are the mass diffusivities in water and in ice, respectively, T > 0, and a Neumann boundary
condition is set at z ¼ L (it is thermally insulated). Finally, what happens at the free boundary is that there is a
discontinuity in the local heat flux density between qðs�Þ ¼ �k1

@T
@z js� and qðsþÞ ¼ �k2

@T
@z jsþ , due to the latent heat

(L, per unit mass) removed when the water freezes at z ¼ s. Hence we add the energy balance condition:

�L
ds

dt
¼ � k1

@T

@z

����
s�
� k2

@T

@z

����
sþ

� �
; ð4:1Þ

which is called the Stefan condition. It is a condition that directly translates into the description of the speed of the free
boundary. For a full solution of this problem we refer to Fowler [20].

In Problem (P), there is no Stefan condition on the moving boundary, or more precisely, the latent heat equivalent in
this model is equal to zero.

4.2 The limit boundary problem with a positive latent heat

If our problem had a positive latent heat, then Problem (P) would be:

ut ¼ d1�uþ f ðuÞ in Qu :¼
[

t2½0;T �
f�uðtÞ � ftgg,

vt ¼ d2�vþ gðvÞ in Qv :¼
[

t2½0;T �
f�vðtÞ � ftgg,

u ¼ v ¼ 0 on � :¼
[

t2½0;T �
f�ðtÞ � ftgg,

	Vn ¼ �d1un �
d2

�
vn on �

u� ¼ 0 on @�� ½0;T �
uðx; 0Þ ¼ u0ðxÞ; vðx; 0Þ ¼ v0ðxÞ for x 2 �,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ðP 0Þ

with 	 > 0 and Vn the normal velocity of displacement of the interface. Our question is: can we modify problem (Pk)
into a reaction diffusion system (P 0k) such that the limit of the solution of (P 0k) is the solution of (P 0)?

4.2.1 An example of such a reaction diffusion system

In the article of Hilhorst et al. [21] we can find a first example:
In the half-strip ST ¼ fðx; tÞ : 0 < x <1; 0 < t < Tg we consider the following reaction-diffusion system

ut ¼ uxx � kFðu; vÞ; in ST ,

vt ¼ �kFðu; vÞ; in ST ,

uð0; tÞ ¼ u0 > 0; t > 0,

uðx; 0Þ ¼ 0; vðx; 0Þ ¼ v0 > 0; x > 0,

8>>><
>>>:

ð4:2Þ

where the function F is smooth enough and non-decreasing in u and v.
The corresponding limit problem is the simplest one-dimensional one-phase Stefan problem, similar to the one given

in the previous example,

ut ¼ uxx; t > 0, 0 < x < sðtÞ,
uð0; tÞ ¼ u0; t > 0,

uðsðtÞ; tÞ ¼ 0; t > 0,

ds

dt
¼ �

1

v0

uxðsðtÞ; tÞ; t > 0,

sð0Þ ¼ 0;

uðx; 0Þ ¼ 0; x > 0.

8>>>>>>>>>><
>>>>>>>>>>:
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As k!1, the solution ðuk; vkÞ of the problem (4.2) converges to ðu; 0Þ in the set ft > 0; 0 < x < sðtÞg and to ð0; v0Þ
in the set ft > 0; sðtÞ < xg.

In this one dimensional example, the equivalent of the latent heat is v0, and ds=dt corresponds to the normal velocity
of displacement of the interface Vn.

4.2.2 The new system coupled with an ODE

From the one-dimensional example given by system ð4.2Þ comes the idea to couple an ODE with a PDE system, to
approximate a Stefan problem with positive latent heat. We consider the system

ut ¼ d1�uþ f ðuÞ �
s1uv

"
�
	s1ð1� wÞu

"
; x 2 �, t > 0,

vt ¼ d2�vþ gðvÞ �
s2uv

"
�
	s2wv

"
; x 2 �, t > 0,

wt ¼
ð1� wÞu

"
�

wv

"
; x 2 �, t > 0,

u� ¼ v� ¼ 0; x 2 @�, t > 0,

uðx; 0Þ ¼ u"0ðxÞ; x 2 �,

vðx; 0Þ ¼ v"0ðxÞ; x 2 �,

wðx; 0Þ ¼ w"0ðxÞ; x 2 �,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð4:3Þ

where � denotes the outward normal vector to @�, and s1, s2, 	 and " are positive constants. We note that in the case
where 	 ¼ 0 (no latent heat), we lose the coupling with w, and we recover the previously studied system (with s1 ¼ 1,
s2 ¼ � and 1=" ¼ k). This new system is thus a perturbation of the previous 2 component system.

Here the initial data depends on ". We further make the following hypotheses:

u"0; v
"
0 2 Cð�Þ; w"0 2 L

1ð�Þ

0 
 u"0; v
"
0;w

"
0 
 1; in �

u"0 * u0; v
"
0 * v0; w

"
0 * w0; weakly in L2ð�Þ as "! 0;

for some functions u0; v0;w0 2 L1ð�Þ.

4.3 A priori bounds and relative compactness

By a solution of Problem (4.3) in QT (T > 0) we mean a triplet of functions ðu; v;wÞ 2 Cð½0; T �;Cð�Þ � Cð�Þ �
L1ð�ÞÞ such that

u; v 2 C1ðð0;T �;Cð�ÞÞ \ Cðð0; T �;W2;pð�ÞÞ; w 2 C1ð½0;T �; L1ð�ÞÞ

for each p 2 ð1;1Þ and such that ðu; v;wÞ satisfies Problem (4.3).

Lemma 4.1. There exists a positive number T ¼ Tðku"0kCð�Þ; kv
"
0kCð�Þ; kw

"
0kL1ð�ÞÞ such that (4.3) possesses a unique

solution ðu"; v";w"Þ in QT .

A proof can be found in Hilhorst et al. [22].

Lemma 4.2. Let ðu"0; v"0;w"0Þ be a solution of (4.3) in QT . Then

0 
 u"ðx; tÞ; v"ðx; tÞ;w"ðx; tÞ 
 1

for ðx; tÞ 2 QT .

Proof. We deduce from the maximum principle that u"; v" � 0. Let now x 2 � be such that w"0ðxÞ is defined. If
w"ðx; tÞ ¼ 0 at a time t ¼ t, then w"t ðx; tÞ ¼ uðx; tÞ=" � 0. The condition w"0ðxÞ � 0 implies that w"ðx; tÞ � 0 for all
t > 0. A similar argument implies that 0 
 w"ðx; tÞ 
 1 for all t > 0. Finally, a second application of the maximum
principle yields u"; v" 
 1. �

Lemma 4.3. For any positive number T , there exist positive constants Ci (i ¼ 1; . . . 5) independent of " and 	 such
that ZZ

QT

ðs1 þ s2Þu"v" 
 C1";ZZ
QT

	s1ð1� w"Þu" 
 C2";ZZ
QT

	s2w
"v" 
 C3";
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ZZ
QT

d1jru"j2 
 C4;ZZ
QT

d2jrv"j2 
 C5:

Proof. As we did in the previous chapters, integrating the equation for u" in QT yieldsZZ
QT

s1u
"v"

"
þ
	s1ð1� w"Þu"

"

� �
¼
Z

�

ðu"0ð	Þ � u"ð	; T ÞÞ þ
ZZ

QT

f ðu"Þ 
 ð�þ TMf Þj�j;

which implies the first and second estimate. The third one can be shown similarly by integrating the equation of v".
Next we multiply the equation of u" by u" and integrate by parts on �. This yields

1

2

d

dt

Z
�

ðu"Þ2 þ d1

Z
�

jru"j2 þ
Z

�

s1ðu"Þ2v"

"
þ
	s1ð1� w"Þðu"Þ2

"

� �

 j�j�Mf :

Hence we can integrate on ð0;T Þ to deduce the fourth estimate. The last one can be proved similarly. �

Lemma 4.4. Let T be any positive number and set

�� :¼ fx 2 �jxþ r� 2 � for 0 
 r 
 1g

with � 2 RN . Then there exists positive constants C6 and C7 such thatZ T

0

Z
��

ðu"ðxþ �; tÞ � u"ðx; tÞÞ2 dx dt 

C4

d1

j�j2;

Z T

0

Z
��

ðv"ðxþ �; tÞ � v"ðx; tÞÞ2 dx dt 

C5

d2

j�j2;

Z T�


0

Z
�

ðu"ðx; t þ 
Þ � u"ðx; tÞÞ2 dx dt 
 C6
;

Z T�


0

Z
�

ðu"ðx; t þ 
Þ � u"ðx; tÞÞ2 dx dt 
 C7
:

Proof. The first and second inequalities follow immediately from the estimates for jru"j2 and jrv"j2. Indeed, we have:Z T

0

Z
��

ðu"ðxþ �; tÞ � u"ðx; tÞÞ2 dx dt ¼
Z T

0

Z
��

Z 1

0

ru"ðxþ r�; tÞ 	 � dr
� �2

dx dt



C4

d1

j�j2:

The second can be shown similarly. For the last two inequalities, we have:Z T�


0

Z
�

ðu"ðx; t þ 
Þ � u"ðx; tÞÞ2 dx dt

¼
Z T�


0

Z
�

ðu"ðx; t þ 
Þ � u"ðx; tÞÞ
Z 


0

u"t ðx; t þ rÞ dr dx dt

¼
Z T�


0

Z
�

ðu"ðx; t þ 
Þ � u"ðx; tÞÞ
Z 


0

�
d1�u"ðx; t þ rÞ þ f ðu"ðx; t þ rÞÞ

�
s1u

"ðx; t þ rÞv"ðx; t þ rÞ þ 	s1ð1�w"ðx; t þ rÞÞu"ðx; t þ rÞ
"

�
dr dx dt:

For an upper bound of the first term, we haveZ T�


0

Z
�

ðu"ðx; t þ 
Þ � u"ðx; tÞÞ
Z 


0

d1�u"ðx; t þ rÞ dr dx dt
����

����
¼ d1

Z 


0

Z T�


0

Z
�

ðru"ðx; t þ 
Þ � ru"ðx; tÞÞ 	 ru"ðx; t þ rÞ dx dt dr
����

����

 2d1


Z T

0

Z
�

jru"ðx; tÞj2 dx dt


 2C4
:
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Similarly, Z T�


0

Z
�

ðu"ðx; t þ 
Þ � u"ðx; tÞÞ
Z 


0

f ðu"ðx; t þ rÞÞ dr dx dt
����

���� 
 2MfT j�j
:

Finally, we have Z T�


0

Z
�

�
ju"ðx; t þ 
Þ � u"ðx; tÞj

Z 


0

s1u
"ðx; t þ rÞv"ðx; t þ rÞ þ 	s1ð1� w"ðx; t þ rÞÞu"ðx; t þ rÞ

"
dr

�
dx dt


 2


Z T

0

Z
�

s1u
"ðx; tÞv"ðx; tÞ þ 	s1ð1�w"ðx; tÞÞu"ðx; tÞ

"
dx dt


 2ðC1 þ C2Þ
:

In the end, we have shown thatZ T�


0

Z
�

ðu"ðx; t þ 
Þ � u"ðx; tÞÞ2 dx dt 
 ð2C4 þMfT j�j þ C1 þ C2Þ
:

Similarly, we can prove the estimateZ T�


0

Z
�

ðv"ðx; t þ 
Þ � v"ðx; tÞÞ2 dx dt 
 ð2C5 þMgTj�j þ C1 þ C3Þ
;

which concludes the proof. �

We deduce from the previous estimates that the families fu"g and fv"g are bounded in L2ð0;T ;H1ð�ÞÞ and the family
fw"g is bounded in L1ðQT Þ. Furthermore, it follows from the Riesz–Fréchet–Kolmogorov theorem that the families
fu"g and fv"g are relatively compact in L2ðQT Þ.

4.4 Characterization of the limit problem

4.4.1 Convergence to a weak form of the limit problem

With the previous results, we know that there exist subsequences fu"ng, fv"ng and fw"ng as well as functions
u�; v� 2 L2ð0; T;H1ð�ÞÞ and w� 2 L2ðQT Þ such that

u"n ! u�; v"n ! v�

strongly in L2ðQT Þ, weakly in L2ð0;T ;H1ð�ÞÞ and a.e. in QT , and

w"n * w� weakly in L2ðQT Þ as "n! 0:

Moreover,

0 
 u�; v�;w� 
 1 a.e. on QT :

Hence we deduce from the first three estimates of Lemma 4.3 that

u�v� ¼ ð1�w�Þu� ¼ w�v� ¼ 0 a.e. on QT : ð4:4Þ

Lemma 4.5. Let T be an arbitrary positive number. The triplet of functions ðu�; v�;w�Þ defined above satisfyZZ
QT

u�

s1
�

v�

s2
þ 	w�

� �
�t �r

d1u
�

s1
�

d2v
�

s2

� �
	 r� þ

f ðu�Þ
s1
�

gðv�Þ
s2

� �
�

� �

¼ �
Z

�

u0

s1
�

v0

s2
þ 	w0

� �
�ð	; 0Þ ð4:5Þ

for all functions � 2 C1ðQT Þ satisfying �ðx;T Þ ¼ 0.
Proof. We deduce from the reaction-diffusion system (4.3) for ðu"; v";w"Þ that

u"

s1
�

v"

s2
þ 	w"

� �
t

¼
d1�u"

s1
�

d2�v"

s2
þ

f ðu"Þ
s1
�

gðv"Þ
s2

:

Multiplying that by a test function � 2 C1ðQT Þ with �ð	; T Þ ¼ 0 and integrating by parts, we obtain the identity,
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ZZ
QT

�
u"

s1
�

v"

s2
þ 	w"

� �
�t þr

d1u
"

s1
�

d2v
"

s2

� �
	 r�

� �

¼
ZZ

QT

f ðu"Þ
s1
�

gðv"Þ
s2

� �
� þ

Z
�

u"0
s1
�

v"0
s2
þ 	w"0

� �
�ð	; 0Þ:

Letting " ¼ "n! 0 yields the result. �

Let us now set

Z� :¼
u�

s1
�

v�

s2
þ 	w�:

We will show that Z� satisfies a weak form corresponding to the following parabolic boundary value problem:

Zt ¼ �Dð�ðZÞÞ þ hð�ðZÞÞ; x 2 �, 0 < t 
 T ,

@Dð�ðZÞÞ
@�

¼ 0; x 2 @�, 0 < t 
 T ,

Zðx; 0Þ ¼ Z0ðxÞ; x 2 �,

8>><
>>: ð4:6Þ

where

DðrÞ :¼
d1r for r � 0,

d2r for r < 0,

�

�ðrÞ :¼
r � 	 for r > 	 ,

0 for 0 
 r 
 	 ,

r for r < 0,

8><
>:

hðrÞ :¼

f ðs1rÞ
s1

for r � 0,

�
gð�s2rÞ

s2
for r < 0.

8>><
>>:

The function � is used to model the phase change, as can be seen by comparing the Figs. 4.1 and 4.2.
Let us now define the Heaviside function

HðrÞ :¼
1 for r > 0,

½0; 1� for r ¼ 0,

0 for r < 0.

8><
>:

rþ :¼ maxfr; 0g; r� :¼ �minfr; 0g:

Lemma 4.6. If w 2 HðzÞ, then �ðzþ 	wÞ ¼ z. In particular, the limit functions u�, v� and w� satisfy

u� ¼ s1�ðZ�Þþ; v� ¼ s2�ðZ�Þ�; and w� ¼
Z� � �ðZ�Þ

	
; ð4:7Þ

where

Z� :¼
u�

s1
�

v�

s2
þ 	w�: ð4:8Þ

Proof. The first claim of this lemma follows from the definition of � and H. We deduce that

Fig. 4.2. Graph of the function �ðrÞ.
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w� 2 H
u�

s1
�

v�

s2

� �
from the equalities (4.4). Hence we have

�ðZ�Þ ¼
u�

s1
�

v�

s2
;

which implies the result. �

Definition 4.1. A function Z 2 L1ðQT Þ is a weak solution of the problem (4.6) with an initial datum Z0 2 L1ð�Þ if

Dð�ðZÞÞ 2 L2ð0;T;H1ð�ÞÞ
and ZZ

QT

Z�t þ
Z

�

Z0�ð	; 0Þ ¼
ZZ

QT

frDð�ðZÞÞ 	 r� � hð�ðZÞÞ�g ð4:9Þ

for all functions � 2 C1ðQT Þ satisfying �ð	;T Þ ¼ 0.

If Z is a weak solution of the problem (4.6), then �ðZÞ is continuous on �� ½�;T � for each � 2 ð0;T �.

Lemma 4.7. The function Z� defined by (4.8) is a weak solution of the problem (4.6) with an initial datum Z0 ¼
u0=s1 � v0=s2 þ 	w0.

Proof. It follows from the Lemma 4.2 that Z� 2 L1ðQT Þ. We observe that (4.7) implies

Dð�ðZ�ÞÞ ¼
d1u
�

s1
�

d2v
�

s2
:

In particular, Dð�ðZ�ÞÞ 2 L2ð0;T ;H1ð�ÞÞ holds true by Lemma 4.3. We also notice that

hð�ðZ�ÞÞ ¼
f ðu�Þ
s1
�

gðv�Þ
s2

:

Therefore (4.5) can be rewritten as (4.9) with Z ¼ Z� and Z0 ¼ u0=s1 � v0=s2 þ 	w0. This completes the proof. �

Theorem 4.8. The function Z� defined by (4.8) is the unique weak solution of the problem (4.6) with an initial datum
Z0 ¼ u0=s1 � v0=s2 þ 	w0. As "! 0,

u"! u�; v"! v� strongly in L2ðQT Þ and weakly in L2ð0;T ;H1ð�ÞÞ;
w" * w� weakly in L2ðQT Þ:

The proof for the uniqueness addressed in this theorem can be found in Hilhorst et al. [24].

4.4.2 The strong form of the limit problem

We set

�þðtÞ :¼ fx 2 � j �ðZðx; tÞÞ > 0g;
��ðtÞ :¼ fx 2 � j �ðZðx; tÞÞ < 0g;
�ðtÞ :¼ �nð�þðtÞ [��ðtÞÞ;

8<
: ð4:10Þ

for t 2 ½0; T �, and also use the notation

�þ :¼
[

0
t
T
�þðtÞ � ftg;

�� :¼
[

0
t
T
��ðtÞ � ftg;

� :¼
[

0
t
T
�ðtÞ � ftg:

8>>>>>><
>>>>>>:

ð4:11Þ

We can regard �þðtÞ and ��ðtÞ to symbolize two distinct phases, and �ðtÞ represents a phase boundary (or an interface)
at time t.

Theorem 4.9. Let Z be the unique weak solution of the problem (4.6) with initial datum Z0 and let ��ðtÞ and �ðtÞ be
the sets defined by (4.10). Suppose that (each component of) �ðtÞ is a smooth, closed and orientable hypersurface
satisfying �ðtÞ \ @� ¼ ; for all t 2 ½0;T �. Let n be the unit normal vector on �ðtÞ oriented from �þðtÞ to ��ðtÞ. Also,
assume that �ðtÞ smoothly moves with a velocity Vn in the direction of n and that the functions

u :¼ s1�ðZÞþ; and v :¼ s2�ðZÞ�
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are smooth on �þ and �� respectively. Then ð�; u; vÞ satisfies

ut ¼ d1�uþ f ðuÞ in �þðtÞ,
vt ¼ d2�vþ gðvÞ in ��ðtÞ,

	Vn ¼ �
d1

s1
un �

d2

s2
vn on �ðtÞ,

u ¼ 0; v ¼ 0 on �ðtÞ,
u� ¼ 0; v� ¼ 0 on @�,

8>>>>>>>><
>>>>>>>>:

ð4:12Þ

for t 2 ð0; T � and

�ð0Þ ¼ fx 2 � j �ðZ0ðxÞÞ ¼ 0g;
uðx; 0Þ ¼ s1ð�ðZ0ðxÞÞÞþ; vðx; 0Þ ¼ s2ð�ðZ0ðxÞÞÞ�; x 2 �:

�
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Part II

The Singular Limit of an Allen–Cahn Equation

with Linear or Nonlinear Diffusion
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Chapter 5

Singular Limit of the Allen–Cahn Equation with Linear or Nonlinear Diffusion

5.1 Singular limit of the Allen–Cahn equation with linear diffusion

The Allen–Cahn equation

ut ¼ �uþ
1

"2
f ðuÞ; ðx; tÞ 2 D� Rþ

was introduced to understand the phase separation phenomena which appear in the construction of polycrystalline
materials. Here, u stands for the order parameter which describes the state of the material, �f is the derivative of a
double-well potential with two distinct local minima �þ and �� at two different phases, and the parameter " > 0

corresponds to the interface width in the phase separation process. When " > 0 is small, it is expected that u converges
to either of the two states u ¼ �þ and u ¼ ��. Thus, the limit "! 0 creates a steep interface dividing two phases; this
is a phase separation phenomenon and the limiting interface is known to evolve according to mean curvature flow
[2, 5]. More precisely, the problem which we study is given by

ut ¼ �uþ
1

"2
f ðuÞ; ðx; tÞ 2 D� Rþ,

@u

@�
¼ 0; ðx; tÞ 2 @D� Rþ,

uðx; 0Þ ¼ u0ðxÞ; x 2 D.

8>>>><
>>>>:

ðP"Þ

In this model, f is the growth function, and it is bistable. In other words, the ODE

du

dt
¼ f ðuÞ

has two stable equilibria, �� and �þ, as well as one unstable equilibrium �, with �� < � < �þ. For example,
f ðuÞ ¼ u� u3 with �� ¼ �1, � ¼ 0 and �þ ¼ 1. When this equation is used to model a mixture undergoing phase
separation, then �� and �þ are the two different phases.

5.1.1 Rough idea of how this system evolves

Since "� 1, for a given x 2 �, by changing the time-frame to 
 ¼ t="2, we can approximate the Allen–Cahn
equation with the solution of the ODE

û
ðx; 
Þ ¼ f ðûðx; 
ÞÞ

Since f is bistable, depending on the initial condition ûðx; 0Þ, ûðx; 
Þ ! �� or �þ when 
!1 (except if ûðx; 0Þ ¼ �,
then ûðx; 
Þ ¼ �, for all 
 > 0). See Figs. 5.1 and 5.2 for an example. Hence, a solution u" of the problem (P") has a
very steep transition zone between fu"g � �� and fu"g � �þ.

The singular limit of the solution u" as " tends to zero is known (see for example Allen and Cahn [2]). u" converges
to the function ~uðx; tÞ where ~uðtÞ ¼ �þ inside the space delimited by the interface �t, and ~uðtÞ ¼ 0 outside �t. We also
know that this interface moves according to the law:

Vn ¼ �ðN � 1Þ� on �t ð5:1Þ

Fig. 5.1. Bistable growth function. The green arrows show the evolution of uð
Þ in the case of u
 ¼ f ðuÞ.

Lecture Notes on the Singular Limit of Reaction-diffusion Systems 39



on some time interval ½0;T��, where Vn is the normal velocity of the interface �t, � its mean curvature, and n is the unit
normal vector.

5.1.2 Formal derivation of the limit problem

The main reference for this part is the paper of Alfaro, Hilhorst and Matano [1]. We suppose that the following
hypotheses are satisfied:

. D is a smooth bounded domain in RN ,

. f 2 C2ðRÞ has three zeros f ð��Þ ¼ f ð�þÞ ¼ f ð�Þ ¼ 0 where �� < � < �þ, and f 0ð��Þ < 0; f 0ð�þÞ < 0; f 0ð�Þ > 0,

.
R �þ
��

f ðsÞds ¼ 0,
. �0 is an hypersurface of class C4þ�, for some 0 < � < 1,
. u0 2 C2ðDÞ, and ru0ðxÞ 	 nðxÞ 6¼ 0 if x 2 �0,
. u0 > � in Dþ0 , and u0 < � in D�0 ,

where D�0 denotes the region enclosed by �0, Dþ0 the region enclosed between @D and �0, and n is the outward normal

Fig. 5.2. u0ðxÞ and uð
; xÞ for a given 
 � 1 when its growth is approximated by u
 ’ u� u3. The transition region is called the
interface.

Fig. 5.3. Numerical simulations of the Allen–Cahn system in space dimension 2. The z-axis represents the density of the population
u at a given time written above, and at the coordinates ðx; yÞ 2 D ¼ ½�2; 2� � ½�2; 2�. We have taken Neumann boundary
conditions, and chosen u0ðx; yÞ ¼ e�x

2�y2

for the initial condition, while the reaction function is defined by f ðuÞ ¼
uð1� uÞðu� 0:5Þ, " ¼ 0:01. The graphs show the evolution of the species according to the Allen–Cahn equation. We can clearly
see the interface, moving towards the center before disappearing.
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vector to D�0 . Let also D�t denotes the region enclosed by the interface �t, and Dþt :¼ D n D�t . See Fig. 5.6.
Let dðx; tÞ be the signed distance function to �t defined by

dðx; tÞ :¼ distðx;�tÞ for x 2 Dþt

�distðx;�tÞ for x 2 D�t

(

Fig. 5.4. Numerical simulations of the Allen–Cahn system in space dimension 2. The space domain is D ¼ ½�1; 1� � ½�1; 1�. We
have taken Neumann boundary conditions, and chosen a non-convex domain D1 such that u0ðx; yÞ ¼ 0:9 if ðx; yÞ 2 D1 and
u0ðx; yÞ ¼ �0:9, otherwise for the initial condition, while the reaction function is defined by f ðuÞ ¼ u� u3, " ¼ 0:01. The graphs
show the evolution of the species according to the Allen–Cahn equation at t ¼ 10�6; 0:007; 0:021. We can see the non-convex
domain becomes convex and then disappears.

Fig. 5.5. Numerical simulations of the Allen–Cahn system in space dimension 1. We have taken Neumann boundary conditions,
u0ðxÞ ¼ e�x

2

for the initial condition, and f ðuÞ ¼ uð1� uÞðu� 0:5Þ. The graphs show the evolution of the species according to
the Allen–Cahn equation.

Fig. 5.6. Interface in the limit problem.
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We look for an approximate solution in the form

u"ðx; tÞ ¼ U0ðx; t; zÞ þ "U1ðx; t; zÞ þ 	 	 	
near �t, where z ¼ d

" .
To this purpose we apply the method of matched asymptotic expansions; namely we substitute this expression into (P")
and chose U0;U1 accordingly. A first calculation gives

�u" ¼ �U0 þ
1

"
U0z�d þ

1

"2
U0zzðrdÞ2

þ "�U1 þ U1z�d þ
1

"
U1zzðrdÞ2 þ . . . ;

u"t ¼ U0t þ
1

"
U0zdt þ "U1t þ U1zdt þ . . .

After substitution into (P"), we collect the "�2 terms, which yields the equation

U0zz þ f ðU0Þ ¼ 0;

where U0 is the unique solution of the problem

U0zz þ f ðU0Þ ¼ 0;

U0ð�1Þ ¼ ��; U0ð0Þ ¼ �; U0ð1Þ ¼ �þ:

�
ð5:2Þ

We note that Z þ1
�1

U0zzU0zdzþ
Z þ1
�1

f ðU0ÞU0zdz ¼ 0

implies Z þ1
�1

f ðU0ÞU0zdz ¼
Z �þ

��

f ðsÞds ¼ 0

To achieve that result, remark that Z þ1
�1

U0zzU0zdz ¼
ðU0zÞ2

2

� �z¼þ1
z¼�1

;

and when z ¼ �1, U0ðzÞ reaches stable steady states so that U0zð�1Þ ¼ 0. Thus there cannot exist a solution U0

unless
R �þ
��

f ðsÞds ¼ 0. Moreover one can prove the following results:

Lemma 5.1. There exist positive constants C and 	 such that

0 < �þ � U0ðzÞ 
 Ce�	jzj for z � 0;

0 < U0ðzÞ � �� 
 Ce�	jzj for z 
 0:

In addition, U0 is a strictly increasing function and, for j ¼ 1; 2,

jDjU0ðzÞj 
 Ce�	jzj for z 2 R: ð5:3Þ

Next, we consider the collection of "�1 terms in the asymptotic expansion. This yields the problem

U1zz þ f 0ðU0ÞU1 ¼ U0zðdt ��dÞ;
U1ðx; t; 0Þ ¼ 0; U1 2 L1ðRÞ:

�
ð5:4Þ

Now consider the more general problem

 zz þ f 0ðU0Þ ¼ AðzÞ;
 ¼ 0 when z ¼ 0;  2 L1ðRÞ;

�
ð5:5Þ

and multiply the ODE by U0z. This givesZ þ1
�1

 zzU0zdzþ
Z þ1
�1

f 0ðU0Þ U0zdz ¼
Z þ1
�1

AðzÞU0zdz;

and an integration by parts yields

�
Z þ1
�1

 zðU0zz þ f ðU0ÞÞdz ¼
Z þ1
�1

AðzÞU0zdz ¼ 0;

which implies the solvability condition
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ðdt ��dÞðx; tÞ
Z þ1
�1

U0
2
z dz ¼ 0;

or else

dtðx; tÞ ¼ �dðx; tÞ:

It is known that dt ¼ �Vn on the interface �t, and �d is equal to ðN � 1Þ� where � is the mean curvature of �t. Thus
we obtain the interface motion equation on �t

Vn ¼ �ðN � 1Þ�: ð5:6Þ

5.1.3 Other resources

For more results on the deterministic Allen–Cahn equation with linear diffusion, see the papers:
. Bronsard, Kohn [4]: Deterministic, arbitrary space dimension in spherical symetry.
. De Mottoni, Schatzman [12]: Arbitrary space dimension, matched asymptotic expansions.
. Xinfu Chen [6]: Using comparison principle, sub-super solutions.
. Evans, Soner and Souganidis [19]: Convergence to viscosity solutions on an arbitrary time interval.

5.2 The limit of the Allen–Cahn equation with nonlinear diffusion

ðP"Þ

ut ¼ �’ðuÞ þ
1

"2
f ðuÞ; ðx; tÞ 2 D� Rþ,

@’ðuÞ
@�
¼ 0; ðx; tÞ 2 @D� Rþ,

uðx; 0Þ ¼ u0ðxÞ; x 2 D.

8>>>><
>>>>:

ð5:7Þ

In the case that the nonlinear diffusion term in the parabolic equation of (5.7) is degenerate, for instance if ’0ð0Þ ¼ 0, no
rigorous propagation of interface result in arbitrary space dimension has been proved. However, we can prove these
results in the case that this partial differential equation is uniformly parabolic, namely if ’0 � C’ > 0 andR �þ
��
’0ðsÞ f ðsÞds ¼ 0. We are expecting phase separation as in the linear case, since we can approximate the system just

as before:

ut ¼ �’ðuÞ þ
1

"2
f ðuÞ

’
1

"2
f ðuÞ;

in the generation of the interface time interval.
We will not present here a rigorous proof of the propagation of interface. However, we will formally show that the

limit problem is given by

Vn ¼ �	0ðN � 1Þ� on �t;

�tjt¼0 ¼ �0;

�
ðP0Þ

with the same notations as before, Vn the normal velocity of �t, and � the mean curvature at each point of �t,

	0 ¼
R �þ
��
’0ðuÞ

ffiffiffiffiffiffiffiffiffiffi
WðuÞ
p

duR �þ
��

ffiffiffiffiffiffiffiffiffiffi
WðuÞ
p

du
; ð5:8Þ

and the potential W is defined by

WðuÞ ¼
Z �þ

u

f ðsÞ’0ðsÞds: ð5:9Þ

For complete proofs, we refer to [16].
We suppose similar hypotheses as in the linear case, with some more added because of the presence of the function

’:
. D is a smooth bounded domain in RN ,
. f 2 C2ðRÞ has three zeros f ð��Þ ¼ f ð�þÞ ¼ f ð�Þ ¼ 0 where ��< � < �þ, and f 0ð��Þ < 0; f 0ð�þÞ < 0; f 0ð�Þ > 0,
. ’ 2 C4ðRÞ, ’0 � C’ > 0 and

R �þ
��
’0ðsÞ f ðsÞds ¼ 0,

. �0 is a C4þ�, 0 < � < 1, u0 > � in Dþ0 , u0 < � in D�0 , where D�0 denotes the region enclosed by �0, Dþ0 the region
enclosed between @D and �0,

. u0 2 C2ðDÞ, ru0ðxÞ 	 nðxÞ 6¼ 0 if x 2 �0, u0 > � in Dþ0 , u0 < � in D�0 ,
where D�0 , Dþ0 , D�t , Dþt , n and the distance function d ¼ dðx; tÞ are defined similarly as in the linear case.
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5.2.1 Formal derivation of the limit problem

We are looking for an approximate solution in the form

u"ðx; tÞ ¼ U0ðx; t; zÞ þ "U1ðx; t; zÞ þ 	 	 	

near �t, where z ¼ d=".
Once again we apply the method of matched asymptotic expansions which yields the equation

’ðU0Þzz þ f ðU0Þ ¼ 0;

where U0 is the unique solution of the problem

ð’ðU0ÞÞzz þ f ðU0Þ ¼ 0;

U0ð�1Þ ¼ ��; U0ð0Þ ¼ �; U0ð1Þ ¼ �þ:

�
ð5:10Þ

To understand this more clearly, we set

gðuÞ :¼ f ð’�1ðuÞÞ;

where ’�1 is the inverse function of ’ and define V0ðzÞ :¼ ’ðU0ðzÞÞ. Substituting V0 into equation (5.10) yields

V0zz þ gðV0Þ ¼ 0;

V0ð�1Þ ¼ ’ð�þÞ; V0ð0Þ ¼ ’ð�Þ; V0ð1Þ ¼ ’ð��Þ:

�
ð5:11Þ

Next, we consider the collection of "�1 terms in the asymptotic expansion. This yields the following problem

ð’0ðU0ÞU1Þzz þ f 0ðU0ÞU1 ¼ U0zdt � ð’ðU0ÞÞz�d;

U1ðx; t; 0Þ ¼ 0; ’0ðU0ÞU1 2 L1ðRÞ:

�
ð5:12Þ

To justify the existence of the solution of (5.12) we perform the change of unknown function V1 ¼ ’0ðU0ÞU1, which
yields the problem

V1zz þ g0ðV0ÞV1 ¼
V0z

’0ð’�1ðV0ÞÞ
dt � V0z�d;

V1ðx; t; 0Þ ¼ 0; V1 2 L1ðRÞ:

8<
: ð5:13Þ

There exists a solution V1 provided that Z
R

1

’0ð’�1ðV0ÞÞ
dt ��d

� �
V2

0z ¼ 0:

Substituting V0 ¼ ’ðU0Þ and V0z ¼ ’0ðU0ÞU0z yields

dt ¼
R
R
V2

0zR
R

V2
0z

’0ð’�1ðV0ÞÞ

�d ¼
R
R
ð’0ðU0ÞU0zÞ2R
R
’0ðU0ÞU2

0z

�d:

It is known that dt ¼ �Vn on the interface �t, and �d is equal to ðN � 1Þ� where � is the mean curvature of �t. Thus we
obtain the interface motion equation on �t

Vn ¼ �ðN � 1Þ	0�: ð5:14Þ

Fig. 5.7. Expected phase separation with interface of width Oð"Þ.
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We multiply the equation ð5.2Þ by ’ðU0Þz and then integrate from �1 to z to deduce that

	0 ¼
R �þ
��
’0ðuÞ

ffiffiffiffiffiffiffiffiffiffi
WðuÞ
p

duR �þ
��

ffiffiffiffiffiffiffiffiffiffi
WðuÞ
p

du
; ð5:15Þ

where the potential W is defined by

WðuÞ ¼
Z �þ

u

f ðsÞ’0ðsÞds: ð5:16Þ

If ’ðsÞ ¼ s, then 	0 ¼ 1 so that we recover the usual mean curvature equation.

5.2.2 Generation and propagation of interface

We use the notations

� ¼ f 0ð�Þ; t" ¼ ��1"2jln "j; 0 :¼ minð�� ��; �þ � �Þ: ð5:17Þ

Let D�t denotes the region enclosed by the interface �t, D
þ
t :¼ D n D�t .

Theorem 5.2. (i) For any given 0 <  < 0 there exist "0 > 0 and C > 0 such that for all " 2 ð0; "0Þ and for all
t 2 ½t"; T �

u" 2
½�� � ; �þ þ � for x 2 D,

½�� � ; �� þ � if x 2 D�t nNC"ð�tÞ,
½�þ � ; �þ þ � if x 2 Dþt nNC"ð�tÞ,

8><
>: ð5:18Þ

where N rð�tÞ :¼ fx 2 D; distðx;�tÞ < rg denotes the r-neighborhood of �t.
(ii) Let � > 1. Then the solution u" of the problem with nonlinear diffusion (P") satisfies

lim
"!0

sup
�t"
t
T ; x2D

u"ðx; tÞ � U0

d"ðx; tÞ
"

� �����
���� ¼ 0; ð5:19Þ

where U0 is the standing wave solution defined above and d" denotes the signed distance function associated with
�"t :¼ fx 2 D : u"ðx; tÞ ¼ �g:

d"ðx; tÞ ¼
distðx;�"t Þ if x 2 D";þt ,

�distðx;�"t Þ if x 2 D";�t ,

�

where D";�t denotes the region enclosed by �"t and D";þt denotes the region enclosed between @D and �"t .

This result extends a similar result by Alfaro and Matano which they obtained in the case of linear diffusion.
Next we extend the comparison theorem to our present case of nonlinear diffusion, which will help prove the

generation of the interface.

Theorem 5.3 (Comparison Theorem). Let v 2 C2;1ðD� RþÞ satisfy

vt � �’ðvÞ þ
1

"2
f ðvÞ in D� Rþ,

@’ðvÞ
@�
¼ 0 in @D� Rþ,

vðx; 0Þ � u0ðxÞ for x 2 D.

8>>>><
>>>>:

ðPÞ

Then, v is a super-solution of Problem (P") and we have

vðx; tÞ � u"ðx; tÞ; ðx; tÞ 2 D� Rþ:

If v satisfies the opposite inequalities in Problem (P), then v is a sub-solution of Problem (P") and we have

vðx; tÞ 
 u"ðx; tÞ; ðx; tÞ 2 D� Rþ:

Proof. Consider the inequality satisfied for the difference of a super-solution v and a solution u". Apply the maximum
principle to the function w :¼ v� u" to see that it is positive. �

In these lecture notes, we sketch the generation of interface proof but do not prove the propagation of interface
property.

Theorem 5.4 (Generation of interface). Let  > 0 be arbitrary. There exists M0 > 0 and "0 > 0 such that, for all
x 2 D and " 2 ð0; "0Þ,

�� �  
 u"ðx; t"Þ 
 �þ þ ;

and

Lecture Notes on the Singular Limit of Reaction-diffusion Systems 45



if u0ðxÞ � �þM0" then u"ðx; t"Þ � �þ � ;
if u0ðxÞ 
 ��M0" then u"ðx; t"Þ 
 �� þ :

Idea of the proof:
Neglecting the diffusion term, we have

�ut ¼
1

"2
f ð �uÞ

�uðx; 0Þ ¼ u0ðxÞ

8<
:

whose solution can be given as

�uðx; tÞ ¼ Y
t

"2
; u0ðxÞ

� �
where Yð
; �Þ is the solution of the initial value problem for the ordinary differential equation

Y
ð
; �Þ ¼ f ðYð
; �ÞÞ for 
 > 0

Yð0; �Þ ¼ �:

�
ð5:20Þ

Here � ranges over the interval ð�2C0; 2C0Þ, with C0 ¼ ku0kC2ðDÞ.
Lemma 5.5. Let  2 ð0; 0Þ be arbitrary. Then, there exists a positive constant CY ¼ CY ðÞ such that the following
holds:

1. There exists a positive constant � such that for all 
 > 0 and all � 2 ð�2C0; 2C0Þ, e��
 
 Y�ð
; �Þ 
 CYe
�
.

2. For all 
 > 0 and all � 2 ð�2C0; 2C0Þ,
Y��ð
; �Þ
Y�ð
; �Þ

����
���� 
 CY ðe�
 � 1Þ:

3. There exists a positive constants "0 such that, for all " 2 ð0; "0Þ,
(a) for all � 2 ð�2C0; 2C0Þ

�� �  
 Yð��1jln "j; �Þ 
 �þ þ ; ð5:21Þ

(b) if � � �þ CY", then

Yð��1jln "j; �Þ � �þ � ; ð5:22Þ

(c) if � 
 �� CY", then

Yð��1jln "j; �Þ 
 �� þ :

We now construct sub- and super-solutions for the proof of the generation of interface Theorem 5.4. For simplicity,
we first consider the case where

@u0

@�
¼ 0 on @D: ð5:23Þ

In this case, we define sub- and super-solution by

w�" ðx; tÞ ¼ Y
t

"2
; u0ðxÞ � "2C2ðe�t="

2

� 1Þ
� �

for some positive constant C2. In the general case, where (5.23) does not necessarily hold, we need to modify w�" near
the boundary @D. To prove that these are sub- and super-solutions, we define the operator L by

Lu :¼ ut ��’ðuÞ �
1

"2
f ðuÞ:

Lemma 5.6. Assume (5.23). Then, there exist positive constants "0 and C2;C2 independent of " such that, for all
" 2 ð0; "0Þ, w�" satisfies

Lðw�" Þ < �C2e
��t
"2 < C2e

��t
"2 < Lðwþ" Þ in D� ½0; t"�

@w�"
@�
¼
@wþ"
@�
¼ 0 on @D� ½0; t"�.

8><
>: ð5:24Þ

Proof. We set

PðtÞ :¼ "2C2ðe�t="
2

� 1Þ:
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We only prove that wþ" is the desired super-solution; the case for w�" can be treated in a similar way. The assumption
(5.23) implies

@w�"
@�
¼ 0 on @D� Rþ:

Then, direct computation with 
 ¼ t="2 gives

Lðwþ" Þ ¼
1

"2
Y
 þ P0ðtÞY� �

�
’00ðwþ" Þjru0j2ðY�Þ2 þ ’0ðwþ" Þ�u0Y�

þ ’0ðwþ" Þjru0j2Y�� þ
1

"2
f ðYÞ

�
;

so that

Lðwþ" Þ ¼
1

"2
ðY
 � f ðYÞÞ

þ Y� P0ðtÞ � ’00ðwþ" Þjru0j2Y� þ ’0ðwþ" Þ�u0 þ ’0ðwþ" Þjru0j2
Y��

Y�

� �� �
:

By the definition of Y , the first term on the right-hand-side vanishes. By choosing "0 sufficiently small, for 0 
 t 
 t",
we have

PðtÞ 
 Pðt"Þ ¼ "2C2ðe�t
"="2 � 1Þ 
 "2C2ð"�1 � 1Þ < C0:

Hence, ju0 þ PðtÞj < 2C0. Also using the bounds on u0 and its derivatives and the bounds on ’ and its derivatives, we
deduce that

Lwþ" � Y�ðC2�e
�t="2 � ðC2

0C1CYe
�t="2 þ C0C1 þ C2

0C1CY ðe�t="
2

� 1ÞÞÞ

¼ Y�ððC2�� C2
0C1CY � C2

0C1CY Þe�t="
2

þ C2
0C1CY � C0C1Þ:

Hence, we deduce that for C2 large enough, we can find a positive constant C2 independent of " such that

Lwþ" � C2e
��t="2 :

Thus, by the comparison principle, wþ" is a super-solution for Problem (P"). �

In the end we have

w�" ðx; tÞ 
 u"ðx; tÞ 
 wþ" ðx; tÞ in D� ½O; t"� ð5:25Þ

with

w�" ðx; tÞ ¼ Y
t

"2
; u0ðxÞ � "2C2ðe�t="

2

� 1Þ
� �

:

Now, recalling that t" ¼ 1
� "

2jln "j, so that � t"

"2 ¼ jln "j, we deduce that

w�" ðx; t
"Þ ¼ Y

1

�
ln

1

"

� �
; u0ðxÞ � C2ðð"� "2ÞÞ

� �
:

So, for "0 small enough, by replacing t by t" in 5.25 we obtain

�2C0 
 u�0 ðxÞ � C2ðð"� "2ÞÞ 
 2C0 in D:

Hence, the first part of the Theorem 5.4 is given by (5.25) and (5.21). For the second part, we take M0 large enough so
that M0"� C2ðð"� "2ÞÞ � CY". Then, for any x 2 D such that u�0 ðxÞ � �þ CY", we have

u�0 ðxÞ � C2ðð"� "2ÞÞ � �þM0"� C2ðð"� "2ÞÞ � �þ CY":

Combining this with (5.25) and (5.22), we deduce that

u"ðx; t"Þ � �þ � ; 8x 2 D with u�0 ðxÞ � �M0":

This yields the first inequality, and the second can be proved in a similar way. This concludes the proof of Theorem 5.4.
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Appendix A: Code for the Numerical Simulations

All numerical simulations have been coded with Wolfram Mathematica 12.3. An example of code is given below; its
purpose is to generate the basic components of the Fig. 2.4.

Listing A.1: Parameters

1 mu1 = 1

2 mu2 = 1

3 T = 7.5

4 L = 1

5 k = 10

6 a = 2

7 d1 = 1

8 d2 = 1

Listing A.2: Necessary functions

1 f1[u ] := mu1*(1 � u) u

2 f2[v ] := mu2*(1 � v) v

3 iniCondi2D1[x , y ] := (E^(�(x + (L/2))^2 � (y + (L/2))^2))^2

4 iniCondi2D2[x , y ] := (E^(�(x � (L/2))^2 � (y � (L/2))^2))^2

Listing A.3: System and conditions

1 eqn = {

2 D[u[x, y, t], t] ==

3 d1*D[u[x, y, t], {x, 2}] + d1*D[u[x, y, t], {y, 2}] + f1[u[x, y, t]] � k*u[x, y, t]*v[x, y, t],

4 D[v[x, y, t], t] ==

5 d2*D[v[x, y, t], {x, 2}] + d2*D[v[x, y, t], {y, 2}] + f2[v[x, y, t]] � a *k*u[x, y, t]*v[x, y, t],

6 u[x, y, 0] == iniCondi2D1[x, y],

7 v[x, y, 0] == iniCondi2D2[x, y]

8 }

If needed, we can create a finer mesh at the regions where more spatial resolution is needed. The following code was
used for Fig. 2.4:

Listing A.4: Creation of a mesh 1

1 mesh = DiscretizeRegion[Rectangle[{�L, �L}, {L, L}],

2 MeshRefinementFunction –>

3 Function[{vertices, area},

4 Block[{x, y}, {x, y} = Mean[vertices];

5 If[(y > �x), area > 0.002, area > 0.01]]]]

whereas this one was used for the Fig. 5.3

Listing A.5: Creation of a mesh 2

1 mesh = DiscretizeRegion[Rectangle[{�L, �L}, {L, L}],

2 MeshRefinementFunction –>

3 Function[{vertices, area},

4 Block[{x, y}, {x, y} = Mean[vertices];

5 If[(x < �L + L/20 || x > L � L/20 || y > L � L/20 ||

6 y < �L + L/20 || (x^{2} + y^{2} < L/2)),

7 area > 0.001, area > 0.01]]]]

Listing A.6: Computing the solution

1 sol2 = NDSolveValue[eqn2, {u, v}, {t, 0, 1}, {x, y} n[Element] mesh,

2 Method –> {"PDEDiscretization’’ –> "FiniteElement"}]
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Listing A.7: Showing the graph

1 time = 0

2 Plot3D[{sol2 [[2]][x, y, time],

3 sol2 [[1]][x, y, time]}, {x, y} n[Element] mesh, PlotRange –> All]

4 RegionPlot[{sol2 [[1]][x, y, time] > 0.01,

5 sol2 [[2]][x, y, time] > 0.01}, {x, y} n[Element] mesh,

6 PlotRange –> {{�L � 0.05, L + 0.05}, {�L � 0.05, L + 0.05}}]

Fig. A	1. Mesh used for the numerical simulation in Fig. 2.4.

Fig. A	2. Mesh used for the numerical simulation in Fig. 5.3.
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Appendix B: Definitions, Notation and Tools in Functional Analysis

B.1 Sobolev spaces

(See also Evans [17] chapter 5)

Definition B.1. Assume u; v 2 L1
locð�Þ, where � is a subset of RN , and let � be a multi-index. Then v is the �-th order

weak partial derivative of u

v ¼ D�u ¼
@j�ju

@x�11 . . . @x�NN
;

if for all test functions ’ 2 C1c ð�Þ: Z
U

uD�’dx ¼ ð�1Þj�j
Z
U

v’dx:

If this weak derivative exists, it is unique.

Definition B.2 (Sobolev Space). Let 1 
 p 
 1. The space

Wk;pð�Þ
consists of all functions u 2 Lpð�Þ such that for each multi-index � with j�j 
 k, D�u exists in a weak sense and
belongs to Lpð�Þ.

Definition B.3. For u 2 Wk;pð�Þ, we define its norm as:

kukWk; p :¼
X
j�j
k

Z
U

jD�ujpdx

 !1=p

ð1 
 p <1Þ:

Wk;pð�Þ is a Banach space with this norm. When p ¼ 2, we write Wk;2ð�Þ ¼ Hkð�Þ. The space Hkð�Þ is a Hilbert
Space with:

Definition B.4. For u; v 2 Hkð�Þ, we define the inner product as:

ðu; vÞHk :¼
X
j�j
k
ðD�u;D�vÞL2

and the previously defined norm is the induced norm.

The dual of Hkð�Þ is denoted by Hkð�Þ0.

B.2 Bochner spaces

(See also Evans [17] chapter 5)
In these lecture notes, we work on equations with functions depending on space and time, with various smoothness.

Consider X a real Banach space with norm k:kX , and introduce the following spaces:

Definition B.5. The space

Lpð0;T ;XÞ
consists of all strongly measurable functions u : ½0;T � ! X with

kukLpð0;T ;XÞ :¼
Z T

0

kuðtÞkpXdt
� �1=p

<1 ð for 1 
 p <1Þ:

The space

Cð½0; T �;XÞ
consists of all continuous functions u : ½0;T � ! X with

kukCð½0;T �;XÞ :¼ max
0
t
T

kuðtÞkX <1:

Proposition B.1. Let H be a Hilbert space. Then the space

L2ð0;T ;HÞ
is a Hilbert Space, with inner product
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ðu; vÞL2ð0;T;HÞ :¼
Z T

0

ðuðtÞ; vðtÞÞHdt:

Proposition B.2. Let E be a Banach space. If we denote ðL2ð0; T;EÞÞ0 the dual space of L2ð0;T ;EÞ, then

ðL2ð0;T ;EÞÞ0 ¼ L2ð0;T ;E0Þ:

See the comments in [3] Chapter 4 and Hytonen et al. [26], Proposition 1.3.3. for a proof.

B.3 Comparison principle for semi-linear parabolic equations

(See also Evans [17] chapter 7)
In this paper, the systems studied are reaction diffusion systems. Just like the heat equation, they belong to the family

of second-order parabolic partial differential equations.
For u : �� Rþ ! R with T > 0, we consider a semi-linear operator of the form

SðuÞ ¼ ut �
Xn
i; j¼1

aijðx; tÞuxixj þ Fðx; t; u;ruÞ

with given functions aij ¼ a ji (i; j ¼ 1; . . . ; n) bounded, and the non-linear term F is C1 jointly in all of its arguments.

Definition B.6. S is called uniformly parabolic if there exists a constant � such that

Xn
i; j¼1

aijðx; tÞ�i�j � �j�j2

for all ðx; tÞ 2 �� ð0;T �, � 2 Rn.

Theorem B.3 (comparison principle). Suppose that S is uniformly parabolic.
If u; v 2 Cð�� ½0;1ÞÞ \ C2;1ð�� ð0;1ÞÞ satisfy

SðvÞ 
 SðuÞ in �� ð0;1Þ; and v � u in ð�� f0gÞ [ ð@�� ð0;1ÞÞ

or

SðvÞ 
 SðuÞ in �� ð0;1Þ; v � u in ð�� f0gÞ and
@v=@n � @u=@n in ð@�� ð0;1ÞÞ;

then

v � u in �� ð0;1Þ:

For this theorem, see for example the paper from Testa [43] Theorem 2.1. In these lectures, we sometimes call this
theorem the comparison principle, since it is an extension of it.

B.4 Weak solution

Given a PDE of order k, a solution that is at least k times continuously differentiable is called a classical solution.
This allows all the partial derivatives expressed in the PDE to exist and be continuous. On the other hand, there also
exist functions which verify a PDE statement, are continuous, but not with enough smoothness to be classical solutions.
These solutions are called weak solutions. For example, uðx; tÞ ¼ jx� tj verifies

@u

@t
þ
@u

@x
¼ 0; ðB:1Þ

but is not differentiable in x ¼ t. u is a weak solution of (B.1).
To define weak solutions, the differential equation has to be rewritten in a weak formulation, in which none of the

derivatives of the solution appears. There is no unique way to define a weak formulation, it depends on the problem, but
let us present an often used methodology. Let us consider the case of the parabolic equation:

SðuÞ ¼ f in �� ð0;T �
u ¼ 0 in @�� ½0;T �
u ¼ g in �� f0g,

8<
: ðB:2Þ

with S uniformly parabolic, T > 0, f 2 L2ð�� ð0; T �Þ, g 2 L2ð�Þ. Let us now assume that u solving this system is
a classical solution: u 2 C2;1ð�� ð0;T �ÞÞ \ Cð�� ½0;T �Þ, and let ’ 2 C2;1ð�� ½0; T �Þ be an arbitrary test function
which vanishes on @�� ½0; T �. We will multiply by ’ and integrate the PDE.
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Z
�

Z T

0

ut’�
Xn
i; j¼1

aijuxixj’þ Fðx; t; u;ruÞ’ dxdt ¼
Z

�

Z T

0

f’ dxdt:

We first make the time derivative of u disappear with an integration by part of the first term:Z
�

Z T

0

ut’ dxdt ¼ �
Z

�

Z T

0

u’t dxdt þ
Z

�

uðx;T Þ’ðx; T Þ � uðx; 0Þ’ðx; 0Þ dx:

The same technique applied to the second order differential terms of SðuÞ, with the boundary terms vanishing due to ’,
gives

�
Z

�

Z T

0

Xn
i; j¼1

aijuxixj’ dxdt ¼
Z

�

Z T

0

Xn
i; j¼1

aijuxi’xj dxdt:

The weak form of this PDE is then:Z
�

Z T

0

Xn
i; j¼1

aijuxi’xj þ Fðx; t; u;ruÞ’� u’t dxdt

þ
Z

�

uðx; T Þ’ðx;T Þ � uðx; 0Þ’ðx; 0Þ dx

¼
Z

�

Z T

0

f’ dxdt in �� ð0; T �; ðB:3Þ

with as before

u ¼ 0 in @�� ½0; T �
u ¼ g in �� f0g.

�
ðB:4Þ

From there, we say that a function that verifies (B.3) and (B.4) for any function test ’ is a weak solution of the PDE
problem (B.2).
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