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We propose in this paper a query-by-example spoken term detection (QbE-STD) method for keyword detection
from zero-resource language speech databases. The proposed method employs the phonetic posteriorgram (PPG)
trained with multiple resource-rich languages and combines multilingual PPGs for speech representation. The
keywords are detected using the dynamic time warping method. We examined three types of combination of
multiple languages such as concatenation of PPG (PPG CONC), a combination of language resources to calculate
multilingual PPG (PPG ALL), and multi-task training of PPG using multiple languages (PPG DIV). We carried
out an experiment of the QbE-STD from Kaqchikel speech. As a result, the use of PPG showed better detection
performance than the method based on the conventional speech feature (MFCC), and the use of multiple languages
gave a further improvement of detection.

KEYWORDS: spoken term detection, query by example, zero-resource language, Kaqchikel, phonetic
posteriorgram

1. Introduction

Many minority languages are currently in danger of extinction. About 4,000 to 6,000 languages are said to exist
globally, and many are expected to become extinct within this century [19]. Although it is difficult to stop a language
from disappearing, people have made many attempts to document it while their speakers are still around
[14, 15, 20, 38, 39]. In addition to textual languages, it is important to preserve spoken languages, and efforts to preserve
many languages are underway. Some of them are ambitious, such as the Human Language Project [1], which archives
all the world’s languages, while others use the developed corpora of the endangered languages [24].

It is desirable to record and catalog speech data in such databases and search the database by words. There are
several approaches to search words in speech databases. One approach is transcribing the speech database to be
searched by a speech recognizer and then the text search [7]. This method enables a quick search using text. This
method uses an accurate speech recognizer of the target language, and the development of such a recognizer requires a
large amount of language resources.

However, most minority languages do not have such a large corpus used for speech recognizer development. Such
languages are called ‘‘low-resource languages.’’ Although several studies have developed speech recognition systems
for low-resource languages [5], it is generally difficult to realize a high-precision speech recognizer without good
language resources (recorded in a clean environment and transcribed). Moreover, the endangered languages often have
no such resource at all. When language resource for developing a speech recognizer is not available, such language is
called ‘‘a zero-resource language [23].’’ We are not able to use a speech recognizer for such language. Thus, several
methods have been developed that search the speech database without transcribing the speech in the database. These
methods use speech input as the search term and search the database using signal processing methods [3, 4, 25]. The
method of searching for spoken keywords, called ‘‘Query-by-Example Spoken Term Detection (QbE-STD),’’ is
recognizer-free and can be realized regardless of the availability of language resources of the target language.

These technologies, which organize unstructured data containing unknown contents, are essential for developing new
value from the data. Although we assume that we cannot use any resource of a zero-resource language to develop a
speech recognizer, it does not necessarily mean that the amount of speech data is small. For example, if we record all
the speakers’ utterances of the language, the amount of the recorded data becomes unmanageable [26]. Therefore, we
need to develop methods to evaluate huge data of unknown contents [34]. A similar idea can be useful for image data,
not only speech data [30].

In this paper, we propose a language-independent QbE-STD method for zero-resource languages. An QbE-STD
method for an unknown language should have two properties: speaker-independent and language-independent
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detection. Conventional methods extract speaker-independent features from the speech signal, such as a vector of
posterior probabilities of phonemes (posteriorgram [11]), to remove the speaker variation from the feature. However,
posteriorgram is language-dependent. On the other hand, the signal-processing-based features, such as Mel-frequency
Cepstral Coefficients (MFCC), are independent of language, but they are affected by speakers. Thus, we combine
multiple posteriorgrams for multiple languages to obtain a feature independent of both speakers and languages.

First, the proposed method extracts posteriorgrams trained using two languages, English and Japanese, for both
speech signals in the database and the query speech. Then we apply a query speech detection algorithm based on the
continuous DP matching that calculates the similarity between the query speech and the segments in the database
speech. Finally, the parts of the database speech similar to the query speech are detected as the search result.

We assume Kaqchikel [6, 18] as the target language in this research. Kaqchikel is the Mayan language spoken in
Guatemala, with 450,000 speakers.

2. QbE-STD Using Nonlinear Matching

2.1 Overview

As described above, the proposed method uses the dynamic time warping for continuous speech, or ‘‘continuous
dynamic programming (CDP),’’ as the basic algorithm for detecting query speech from the database. Therefore, we
explain how a spoken keyword can be detected from a speech database. Detection of words from continuous speech
originated in the 1980s. At that time, this task was called ‘‘word spotting.’’ The nonlinear matching, such as Dynamic
Time Warping (DTW) between the spoken keyword and the speech in the database, was executed to perform the word
spotting [27]. In this method, the speech database and keyword speech are converted into spectrum-based feature vector
sequences such as LPC mel-cepstra or MFCC, and the DTW finds the correspondence that minimizes the accumulated
distance between feature vectors of the keyword speech and the database speech.

2.2 Detection of words using DTW

Dynamic Time Warping (DTW) is a method to find matches between the spoken input and the speech in the
database. The basic DTW matches the feature vectors of the input speech X ¼ x1; . . . ; xI and the spoken keyword input
Y ¼ y1; . . . ; yJ as follows. First, let us consider the correspondence �, which is a sequence of pairs of indices in X
and Y:

� ¼ ð�1; . . . ; �NÞ ð1Þ
�k ¼ ðik; jkÞ; 1 � ik � I; 1 � jk � J ð2Þ

�1 ¼ ð1; 1Þ; �N ¼ ðI; JÞ ð3Þ
Here, �k ¼ ðik; jkÞ is a pair of corresponding indices, i.e., xik corresponds to yjk . The indices ik and jk increase
monotonically with respect to k, i.e., ik � ikþ1 and jk � jkþ1. Then the DTW finds the correspondence with minimum
distance, as follows. Let DðX;Y;�Þ be the accumulated distance between X and Y under the correspondence �:

DðX;Y;�Þ ¼
XN
k¼1

dðxik ; yjk Þ ð4Þ

Here, dðx; yÞ is the Euclidean distance between two vectors x and y. Then we want to find the correspondence b� that
minimizes D. b� ¼ argmin

�
DðX;Y;�Þ ð5Þ

This optimization problem can be solved using dynamic programming, as follows [33].

di; j ¼
dðxi; yjÞ 1 � i � I and 1 � j � J

1 otherwise

�
ð6Þ

gði; jÞ ¼ �1 for i � 0 or j � 0 ð7Þ
gð1; 1Þ ¼ d1;1 ð8Þ

gði; jÞ ¼ di; j þmin

gði� 2; j� 1Þ þ di�1; j

gði� 1; j� 1Þ
gði� 1; j� 2Þ þ di; j�1

8><
>: ð9Þ

DðX;Y;b�Þ ¼ gðI; JÞ ð10Þ

Here, di; j is the distance matrix between the database speech X and query speech Y, and gði; jÞ is the accumulated
distance matrix in which gði; jÞ is the smallest accumulated distance at ði; jÞ. Then b� is determined as the best matching
path obtained by tracing the minimum decisions in Eq. (9).

To detect a keyword from a longer speech database, we need to apply a different approach from the DTW mentioned
above since the original DTW matches the vector sequences with almost similar lengths. This algorithm is called ‘‘the
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continuous DP matching’’ [27, 29].
Let us assume that I � J, and

Xði0; iÞ � ðxi0 ; . . . ; xiÞ ð11Þ

Then the detection score of Y from X at position i is obtained as follows.

DðX;Y; iÞ ¼ min
i0

min
�

DðXði0; iÞ;Y;�Þ ð12Þ

This score can be calculated in almost the same way as Eq. (7). The difference is that the start and endpoints of
sequence Y are not fixed to the start and endpoints of X. The score can be obtained by

DðX;Y; iÞ ¼ gði; JÞ: ð13Þ

Figure 1 shows examples of the distance matrix d, accumulated distance matrix g, and the optimum correspondence
(the DP path) � shown as the red dots. In these figures, the dark color shows a short distance. Figure 1(a) shows that
it is clear that the DP path travels along the ‘‘valley’’ of the distance matrix.

After calculating the score DðX;Y; iÞ, we find the local minima of the score and determine the minima with the
scores lower than a threshold are detected as the candidate of the terms.

Figure 2 shows an example of term detection to explain how the keywords are detected and how the speaker
variability affects the performance of QbE-STD. In this example, the spoken word ‘‘matyöx’’ (thank you) is detected
from the continuous speech in the database. Two speakers speak the same keyword: one is the same speaker as the
speech in the database, and the others are a different speaker. The red and green curves show the scores for the keyword
of the different speaker and the same speaker, respectively. The blue lines are the last points of the keywords in the
database. In this figure, we can see that the minima of the different speaker’s scores are larger than that of the same
speaker, and it is difficult to detect only the keyword positions when the speakers of the keyword and the database are
different.

As reviewed in the introduction, information of the phoneme and the speaker is involved in a spectral feature vector.
Therefore, if the speakers of the database and the keyword are different, the distance between the feature vectors
reflects not only the difference of pronunciation but also speaker variation of the speech. The difference caused by
speaker variation is often larger than that from pronunciation, which is the main cause of the keyword detection
performance degradation. Ito and Koizumi proposed a method that uses a neural network to calculate the speaker-
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(a) The distance matrix d (b) The accumulated distance matrix g

Fig. 1. The distance matrix, accumulated distance matrix and the optimum DP path.

Fig. 2. An example of term detection using DTW. The red and green lines are scores for the keywords, and the blue lines are the
end positions of the keyword.
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independent distance between the MFCC features [12], but this method is computationally expensive, and the
performance is insufficient.

3. The Keyword Detection Based on the Phonetic Posteriorgram

3.1 The posteriorgram

The problem with the QbE-STD based on spectral features was that the distance between the speech features depends
on pronunciation difference and speaker variation. Therefore, in order to reduce the influence of differences of feature
vectors induced by the speaker difference, the feature vectors are converted into the speaker-independent features, and
then the distance between the speaker-independent features is calculated.

The posteriorgram [11, 31, 37] is a speaker-independent feature representation of short-time speech. Let us assume
that a sequence of short-time (around 10 to 20 ms) speech signals (or spectral feature extracted from the signal, such as
MFCC) is given as x1; . . . ; xT . It can be classified into a phonological class ! 2 � ¼ f!1; . . . ; !Kg. The class � can
be a set of target language phonemes [11], articulatory features [31], or states of hidden Markov models (HMM) for
phoneme recognition [28]. Then a posteriorgram is a vector of posterior probabilities:

pt ¼ ðPð!1jxtÞ; . . . ;Pð!K jxtÞÞ ð14Þ

where XK
k¼1

Pð!kjxÞ ¼ 1: ð15Þ

We use the sequence of posteriorgrams p1; . . . ; pT as the feature vector sequence.
When we choose phonemes as the classes, the feature is called the phonetic posteriorgram (PPG). The probabilities

are calculated using a classifier, such as the Gaussian mixture model (GMM) [32] or the deep neural network (DNN)
[28]. Since the classification accuracy of the DNN generally outperforms that of the GMM, it is reasonable to choose
DNN as the classifier.

If we train the classifier using the speech of multiple speakers, the classifier is expected to ignore the speaker
variation, and the posteriorgram contains only linguistic variation.

The use of posteriorgram can realize the speaker-invariant feature vectors that express only phonetic variation.
However, since the posteriorgram uses phonetic information, it inevitably depends on the target language. A few
attempts have been developed to develop a multilingual QbE-STD using posteriorgram [7], such as articulatory features
[31], but it only works for languages that share the articulatory features. The difficulty of Kaqchikel is that it has glottal
plosive, and most of the major languages do not have that feature. A similar idea was proposed by Tanaka et al. [36]
that converts the speech into a language-independent phonetic symbol sequence, but it has a similar problem with the
articulatory-feature-based posteriorgram.

This section examines how the PPG for different languages works for QbE-STD. We used Japanese and English
PPGs for detecting words of Kaqchikel.

Figure 3 shows how we extract the PPGs from the input and database speech signals. First, we train phoneme
classifiers for languages with a large amount of training data. In this work, we use English and Japanese. Then the input
query and the database speech are classified frame by frame, and the outputs of the classifier, the PPGs, are used as the
feature of QbE-STD. Finally, we use MFCC and its first derivative as the input to the classifier.

3.2 Training data and model structure

We used the Japanese Newspaper Article Sentences (JNAS) [13] as the training data of the Japanese phoneme
classifier. We chose the phone-balanced 2794 sentences uttered by 127 male and 127 female speakers as the training
data (4.17 h), 286 sentences uttered by 13 male and 13 female speakers as the development data, and 286 sentences
uttered by 13 male and 13 female speakers as the evaluation data.

Fig. 3. Block diagram of the PPG extraction system.
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TIMIT [9] was used to train the English phoneme classifier. TIMIT is a phonetic corpus of native speakers of
American English who differ in gender and dialect. We used 4900 sentences uttered by 344 male and 146 female
speakers as training data (4.19 h), 400 sentences uttered by 27 male and 13 female speakers as development data, and
400 sentences uttered by 27 male and 13 female speakers as evaluation data.

On training the model, we balanced the number of samples for phonemes by repeating the small-numbered samples.
A Multilayer Perceptron (MLP) was used as the phoneme classifier. The outputs are the classes of phonemes, and the

input is a segment of the Mel-frequency cepstral coefficients (MFCC) with its first derivatives. The MFCCs were
extracted with a sampling frequency of 16 kHz, a window length of 25 msec, and a frameshift of 10 ms. In addition,
temporal derivatives of MFCCs (�MFCC) were used, too. In total, the dimension of the feature was 24. Contiguous
feature vectors are given as an input of the network. Let the feature vectors of the speech be x1; . . . ; xT . When the
segment width is 2k þ 1, we used the segment Xi ¼ xi�k; . . . ; xiþk as the input vector. The common conditions for all
languages are shown in Table 1(a). We developed four phoneme classifiers corresponding to four input frame widths
(1, 9, 15, and 17) for Japanese and English. The number of hidden layers and the number of nodes in the hidden layers
were optimized using Optuna [2]. The determined hyperparameters are listed in Table 1(b) and (c).

Figure 4 shows the frame-by-frame phoneme recognition rate. The recognition rate of the English classifier was
lower than that of the Japanese one. There could be multiple reasons of the difference of phoneme recognition rate.
Since the amount of training data is comparable, one possible reason is that English has more phonemes than Japanese.
This result is consistent with other multilingual phone recognition results [21, 35].

3.3 Conditions for word detection experiment

We compared the performance of word detection when using MFCC and Japanese/English PPGs.

Table 1. Hyperparameter setting and determined hyperparameters for PPG extraction models.

(a) Common conditions for all languages

Input frames 1, 9, 15, 17

Number of hidden layers 2 to 7

Number of hidden units 512, 1024, 2048, 4096, 8192

Optimizer Adam

Activation function ReLU

Dropout probability 0.5

(b) Determined conditions for Japanese

Input frames 1 9 15 17

Number of hidden layers 4 4 3 5

Number of hidden units 1024

Phonetic classes 36

(c) Determined conditions for English

Input frames 1 9 15 17

Number of hidden layers 4 3 3 4

Number of hidden units 1024 2048 1024 1024

Phonetic classes 46

Fig. 4. The frame-by-frame phoneme recognition rate for Japanese and English speech using different frame widths.
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In the experiments, we first checked the performance of QbE-STD when the target language was Japanese or English
and then evaluated the performance when the target language was Kaqchikel. We compared the following three
features: 12-dimension MFCC and their first derivatives, which is the same feature as PPG calculation (denoted as
MFCC), Japanese PPG (denoted as PPG JP), and English PPG (denoted as PPG EN).

For evaluation of Japanese, we used six utterances as queries, ‘‘azia’’ (Asia), ‘‘kankei’’ (relation), ‘‘senkyo’’ (election),
‘‘tyoosa’’ (survey), ‘‘nihon’’ (Japan), and ‘‘paasento’’ (percentage), uttered by speakers not included in the evaluation
database. For evaluation of English, we used six utterances as queries, ‘‘dark,’’ ‘‘greasy,’’ ‘‘suit,’’ ‘‘wash,’’ ‘‘water,’’ and
‘‘year’’ uttered by speakers not included the evaluation database. These queries were selected so that the words appear
in the database frequently and are not too short. For the evaluation data of the Kaqchikel language, we used 347
utterances of 16 dialogues of Kaqchikel language recorded in a quiet environment (about 14 min). The query utterances
were ‘‘achike,’’ ‘‘matyöx,’’ ‘‘peraj,’’ and ‘‘richin,’’ and these speakers are not included in the evaluation database.

These query utterances were spliced out of continuous speech. Therefore, we do not have silence before and after the
query speech. When the queries were converted into feature sequences, we padded the silence before and after the
query speech with white noise with small amplitude so that we could take the segment from the beginning to the end of
the original query speech. For example, when we have X ¼ x1; . . . ; xT and the segment length is 7, we added a small
white noise signal so that x�2; x�1; x0 and xTþ1; xTþ2; xTþ3 can be used.

We decided the correctness of the keyword detection on a per-utterance basis; in other words, we regarded that the
keyword detection was correct if the detected keyword was included in the utterance, regardless of the position of
detection. Thus the evaluation could be somewhat incorrect, but we think this criterion is not too incorrect because
the utterances in the database are only several seconds long.

We used the Mean Average Precision (MAP) [8, 10, 17] as the evaluation index. MAP is the average of the Average
Precision (AP) calculated for each query over all queries, and the larger the value, the more correct answers are at the
top of the detection results. Assume that we have a query q, and we detect N occurrences of the keyword in the
database, denoted as o1ðqÞ; . . . ; oNðqÞ. We assume that each occurrence has relevance score SðoiðqÞÞ (large value means
strong relevance), and arranged by the score:

Sðo1ðqÞÞ � � � � � SðoNðqÞÞ: ð16Þ

Then we use the ‘‘true’’ relevance of oi as �ðoiðqÞÞ, such that

�ðoiðqÞÞ ¼
1 if oiðqÞ is correct

0 otherwise

�
ð17Þ

In addition, let cq be the number of utterances to be detected for query q. AP and MAP are represented by the Eqs. (18)
and (20), respectively.

APðqÞ ¼
1

cq

XN
i¼1

�ðoiðqÞÞRprecðq; iÞ ð18Þ

Rprecðq; iÞ ¼
1

i

Xi
k¼1

�ðokðqÞÞ ð19Þ

MAP ¼
1

Q

XQ
q¼1

APðqÞ ð20Þ

where cq is the number of detected utterances containing the query q, Rprecðq; iÞ is the precision when utterance i

is detected in query q, and Q is the total number of queries.

3.4 Results of the word detection experiment

The results of the word detection experiments for the target languages (Japanese and English) are shown in Figs. 5(a)
and 5(b), respectively. The results show that the PPG improves the word detection accuracy compared to the MFCC
in all conditions.

Next, we show the results of the word detection experiment for Kaqchikel in Fig. 5(c). Again, it is confirmed that the
PPG improves the word detection accuracy more than the MFCC in almost all conditions.

As for the optimum number of frames, Figs. 5(a) and 5(b) suggest that 15 or 17 frames are sufficient when the
training and detection languages are the same, which is consistent with the result shown in Fig. 4. For English, longer
frame than 17 frames might give better result. However, in the language-mismatch condition (PPG EN for Japanese
utterances and PPG JP for English utterances), increasing the number of frames does not necessarily increase the
performance. We also can see this tendency in Fig. 5(c).

Figure 6 is a comparison of the best detection results for all languages and PPGs. This result confirms that
improvement is smaller when the target language and the language used to train the model are different, suggesting that
the linguistic difference between the target language and PPG significantly impacts QbE-STD performance. The reason
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for this deterioration is not clear, but possible reasons are insufficient phoneme inventory (for example, Japanese
phoneme inventory lacks some phonemes that are needed to describe English) or difference of phoneme boundary of
two languages in the feature space.

4. Combination of Posteriorgrams of Multiple Languages

4.1 Overview

From the experimental results in the previous section, we confirmed that the use of PPG improved the QbE-STD
performance and the language difference deteriorated the performance. Thus, to improve the QbE-STD performance
without using the training data of the target language, we examine using PPG of multiple languages, expecting that
the use of multiple languages compensates for the difference of phoneme inventory between the target and training
languages.

(a) Detection results for Japanese utterances

(b) Detection results for English utterances

(c) Detection results for Kaqchikel utterances

Fig. 5. Detection results (MAP) for Japanese, English and Kaqchikel utterances with different frame widths.
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We examined two methods for combining multiple languages. The first one is the concatenation-based method,
where we train two phoneme classifiers independently and concatenate the output of the classifiers to obtain
multilingual PPGs. The second one is the multilingual method, where we train a single model using training data of the
two languages.

4.2 Calculation methods of multilingual PPG

Figure 7 shows an overview of the concatenation-based method. Here, we use English and Japanese PPGs to perform
QbE-STD for Kaqchikel. First, we convert the speech in the database and the voice query into the PPGs using the
phoneme classifiers of the training languages. Then we concatenate the PPGs extracted from the phoneme classifiers
frame by frame. Therefore, one frame of the concatenated PPG has posterior probabilities of two languages, as follows.

pt ¼ ðPJPNð!1jxtÞ; . . . ;PJPNð!K jxtÞ;PENGð!1jxtÞ; . . . ;PENGð!K 0 jxtÞÞ ð21Þ

Here, PJPNð!ijxÞ and PENGð!jjxÞ are the posterior probabilities of Japanese phoneme !i and English phoneme !j,
respectively. Since these probabilities are independent, the sum of all values in this PPG becomes two.

Figure 8(a) shows PPG extraction using the multilingual method. In this method, we train the classifier to output
multilingual PPG directly. Here, we examined two training methods. First, the ‘‘ALL’’ method regards the phonemes
of different languages as different classes. Training of the ALL method is shown in Fig. 8(b). Here, we prepare the
one-hot vectors (a vector where the value of only one dimension is one, and all the others are zero) for two languages
as reference. For example, English /a/ and Japanese /a/ are trained as different phonemes in this method.

The second method, which we call the ‘‘DIV’’ method, trains phonemes of two languages independently. The
training of the DIV method is shown in Fig. 8(c). When training a phoneme of one language, we prepare a one-hot
vector for only that language as a reference, and the connections from the hidden layer to the output of another
language are not trained. Thus, the ‘‘DIV’’ method is similar to the concatenated-based method; the difference is that
the ‘‘DIV’’ method shares the hidden layers by the two languages.

4.3 Experimental conditions

The training data used in the experiment were the same as that used in the previous section.
We used a fully connected multi-layer perceptron (MLP) as a classifier. Table 2 shows the parameters of the

network. The output units correspond to 36 and 46 Japanese and English phoneme classes, respectively.
The feature vectors for PPG extraction was the 12-dimensional MFCC and their temporal derivatives, extracted

under the conditions of a sampling frequency of 16 kHz, a window length of 25 msec, and a frameshift of 10 msec.

Fig. 7. Calculation of two-language PPG with the concatenation-based method.

Fig. 6. MAP by detection experiments for three languages with optimum frame width.
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The PPG extractors used for the PPG CONC method were the same as in the previous chapter. We optimized
hyperparameters of the extractors for PPG ALL and PPG DIV. Table 2 shows the examined hyperparameters and other
conditions. The hyperparameters were decided by using Optuna [2]. Table 3 shows the optimum numbers of the hidden
layers and the hidden units.

4.4 Results

Figure 9 shows the best MAP for each evaluation data. In the figure, PPG JP and PPG EN are the results using
Japanese and English single-language PPGs, PPG CONC is the result for the concatenation-based method, and
PPG ALL and PPG DIV are the multilingual methods with ‘‘ALL’’ and ‘‘DIV’’ training.

From the Japanese and English results, it is found that the concatenation-based method gave a comparable
performance to the single-language results with the matching (Japanese–Japanese and English–English) conditions.
Among the multilingual methods, ‘‘DIV’’ training was almost as good as the concatenation-based method, but the
‘‘ALL’’ method was worse, especially detection of Japanese keywords. One possible reason for the deterioration in
PPG ALL is that this model tries to discriminate Japanese and English phonemes even if these phonemes are similar.
For example, PPG ALL is trained under the assumption that Japanese /s/ and English /s/ are different, but these
pronunciations are similar [16]. Therefore, when we observe a pronunciation that exists in both English and Japanese, it
could be classified into both English and Japanese phonemes, making the extracted PPG unstable; in other words, the

(a) Extraction of PPG by the multilingual method

(b) Training method (ALL) (c) Training method (DIV)

Fig. 8. Calculation of PPG with the multilingual method (PPG ALL and PPG DIV).

Table 2. Hyperparameter settings for training.

Language Japanese, English

Length of input frames 1, 9, 15, 17

Number of hidden layers 3, 4, 5, 6

Number of hidden units 512, 1024, 2048, 4096, 8192

Activation function ReLU

Optimizer Adam

Dropout probability 0.5

Table 3. The optimum values of the hyperparameters.

Language PPG ALL PPG DIV

Length of input frames 1 9 15 17 1 9 15 17

Number of hidden layers 3 3 3 3 3 3 3 3

Number of hidden units 1024 1024 1024 1024 2048 1024 1024 2048

Spoken Term Detection of Zero-Resource Language Using Posteriorgram of Multiple Languages 9



PPG ALL model can output different PPG for similar pronunciation. Comparing PPG CONC and PPG DIV,
PPG CONC was slightly better.

The result for Kaqchikel is consistent with that for Japanese and English. PPG CONC and PPG DIV improved the
performance compared to single-language models, and PPG CONC was slightly better than PPG DIV. We confirm that
the detection performance for Kaqchikel is comparable to the performance when using a single-language model
different from the target language (such as PPG EN for Japanese), showing that the combination of Japanese and
English is still insufficient to express phonetic variation of Kaqchikel.

4.5 On computation time and memory requirement

In the previous section, we observed the detection performance of the conventional and proposed methods. Other
aspects of evaluating QbE-STD methods are computational complexity (calculation speed) and memory consumption
[22]. In our work, we mainly focus on increasing the detection performance since the detection performance of QbE-
STD for zero-resource language is not sufficient. This section overviews the computational complexity, calculation
speed and memory complexity.

The conventional and proposed methods have two stages for detection: database preparation and query execution.
The database preparation is usually performed only once before setting up the QbE-STD system, so we do not focus on
this stage. The execution stage has two processes, feature extraction (MFCC and posteriorgram) and detection using
continuous DP matching. Most of the calculation time is for the latter process, so we focus on the calculation of the
continuous DP matching.

Let I and J be the length of the feature vector sequence of the database and the query, respectively, and suppose
we have Nd data in the database. Let D be the dimension of the feature vector. Then the computational complexity of
the continuous DP matching is OðNdIJDÞ. Since the difference between the conventional and proposed methods is the
feature vector, the calculation time depends on the dimension of the feature vector D. Table 4 shows the dimension of
feature vectors of the four methods: MFCC, PPG JP, PPG EN, and PPG CONC. As shown, the PPG CONC method
has a longer feature vector than the conventional method (MFCC); thus it is expected that PPG CONC is almost 3.4
times slower than the MFCC-based method.

To investigate the actual impact of the feature dimension on the calculation time, we measured the actual calculation
time of the QbE-STD. The experiment was conducted on a machine with Xeon E5-1650 v4 3.60GHz CPU, Ubuntu
16.04.7 LTS. The program was written in R 3.4.4 with tinyDP package�. The database was 16 utterances in Kaqchikel,

Fig. 9. Comparison of MAP with examined methods for three languages.

Table 4. Dimension of a feature vector.

Feature D

MFCC 24

PPG JP 36

PPG EN 46

PPG CONC 82

�https://github.com/akinori-ito/tinyDP
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and we used the keyword ‘‘matyöx.’’ The feature vectors were MFCC, PPG JP, PPG EN, and PPG CONC. After
measuring the time for DP matching, we analyzed the impact of dimension D and the length of database utterance I

(in 10 ms frame). Figure 10 shows the calculation time with respect to the length of the speech signal in the database.
As shown, the impact of dimension of the feature vector looks smaller as expected.

We conducted further analysis on the result. Although the computational complexity is OðNdIJDÞ, the influence of
I and D might be non-negligible for short sequence (i.e., the complexity is OðIDþ I þ DÞ). Therefore, we analyzed the
calculation time Td (s) using the least-squares method as

Td ¼ Tb þ �IDþ �I þ �D ð22Þ

where Tb is the bias and �, � and � are coefficients. The result is shown in Table 5. Here, p-value is the result of t-test
whether the coefficient is nonzero or not. The coefficient � and the bias Tb were not significant at 5% level, showing
that the effect of feature dimension alone was small. Therefore, we can exclude the term with Tb and �, and the
calculation time can be approximated as

Td ¼ 5:17	 10�7IDþ 1:41	 10�4I: ð23Þ

According to this approximation, for example, when the speech in database is 10 s long (I ¼ 1000), the estimated
calculation times for MFCC and PPG CONC are 153 and 183 ms, respectively. Therefore, although the larger feature
dimension increases the calculation time, its impact is limited.

This result implies that the calculation time of the recurrence formula [Eq. (7)] of the DP matching is comparable to
that of distance matrix [Eq. (6)]. The computational complexity of the calculation of d by Eq. (6) is OðIJDÞ, while that
of the recurrence formula Eq. (7) is OðIJÞ. Thus, the total complexity becomes OðIJðDþ constÞÞ. If D were large, the
constant would be negligible, and the computational complexity would be OðIJDÞ. The experimental result showed that
the constant is not negligible for current matching algorithm implementation and the feature dimensions.

As for the memory requirement, the proposed method, especially PPG CONC, requires more memory because its
feature has larger dimension. However, the memory size of dði; jÞ and gði; jÞ in Eqs. (6) and (7) do not depend on the
feature dimension because they only store the Euclidean distance.

Table 5. Analysis of calculation time.

Estimate Std. Error t value p-value

Tb 4:66	 10�2 6:80	 10�2 0.69 0.50

� 5:17	 10�7 2:45	 10�7 2.11 0.040

� 1:41	 10�4 1:27	 10�5 11.1 3:4	 10�16

� �1:44	 10�4 1:31	 10�3 �0:11 0.91

0.50

0.75

1.00

1.25

1.50

3000 4000 5000 6000 7000 8000
Frames (10ms/frame)

C
al

cu
la

tio
n 

T
im

e 
(s

)
method

MFCC

PPG_CONC

PPG_EN

PPG_JP

Fig. 10. Length of speech in the database and the calculation time.
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5. Conclusion

We examined the QbE-STD method for zero-resource language using the PPGs of the multiple rich-resource
languages. Here, we proposed a method that calculates PPGs of multiple languages. We examined three methods for
calculating multilingual PPGs, and the concatenation-based method gave the best performance.

From the experimental result, we can draw the following conclusions.
When we use PPG for QbE-STD of Japanese and English, single-language PPG, in both language-match and

language-mismatch conditions, improved the performance compared with MFCC. We confirmed that PPG can remove
speaker variation from the feature from this result. However, in the language-mismatch conditions, the performance of
QbE-STD deteriorates compared with the matching condition, possibly because of insufficient phoneme inventory
(some phonemes are missing) or difference of phoneme boundary in the feature space. QbE-STD for Kaqchikel using
the English or Japanese PPG was almost the same as the language-mismatch condition of English and Japanese.

When we used the multilingual PPG for Kaqchikel QbE-STD, the performance improved, which seems to be a result
of compensating insufficient phoneme inventory. When combining PPGs of two languages, treating phonemes of
different language as different units cause degradation of QbE-STD performance because treating very similar
phonemes (such as Japanese /a/ and English /a/) as different units will make the classification unstable.

Finally, it can be said that the combination of English and Japanese is still insufficient to express Kaqchikel
phonemes compared with the language-match condition of English and Japanese. Therefore, we need more languages
to express the entire space of Kaqchikel phonemes.

We consider that the performance will improve when we use more languages for training the model. Therefore, in a
future study, we will use more languages such as Chinese or Spanish to make further improvements.
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