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ABSTRACT 

To solve the problem of excessive deflection in the post-operation process of a rigid frame-
continuous girder bridge and provide a basis for the setting of its initial camber, this paper, based on 
the results of finite element analysis, uses three methods to predict and verify the deflection of a rigid 
frame-continuous girder bridge. The results show that the average deflection method can be used 
to fit the average deflection value for a relatively long period of time and predict the average 
deflection value for the next longer period of time. Both the back-propagation (BP) neural network 
model and the radial basis function (RBF) neural network model can predict deflection well, but the 
RBF neural network model has higher prediction accuracy, with a mean absolute error (MAE) of 2.55 
x10-5 m and a relative error not exceeding 1%. The prediction model established by the RBF neural 

network has higher stability, better generalization ability, and better overall prediction performance. 
The established model has some reference significance for similar engineering projects and can 
achieve the optimization of structural parameters. 
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INTRODUCTION 

Current status of research 

With the advancement of transportation and building technology, highway construction has 
expanded into hilly regions. The severe terrain characteristics, such as high mountains, deep 
ravines, and steep slopes, increase the prevalence of rigid frame-continuous girder bridges with tall 
piers and extended spans. Typically, rigid frame-continuous girder bridges are constructed using the 
cantilever-symmetrical casting method, which is influenced by a number of variables, and the 
variation of internal forces and displacements is very complex. With the increasing service life of 
rigid frame-continuous girder bridges constructed with cantilever casting, it has been discovered that 
the mid-span deflection of these bridges is generally too great, or even cracking is observed, which 
not only severely affects the use and safety of the bridges but also limits the development and 
breakthrough of this bridge type to larger spans. To ensure that the bridge can be closed normally, 
that the bridge line shape and stress meet the design specifications, and that the structure is safe, it 
is necessary to monitor and control the deformation, stress, and safety during the construction 
process, thereby accurately predicting the mid-span deflection. Currently, the most popular 
approaches for making predictions include the least-squares method, the gray system theory, the 
Kalman filtering method, the artificial neural network method, etc. Since the influencing parameters 
of the construction of rigid frame continuous girder bridges, such as volume weight of concrete, 
elastic modulus, concrete shrinkage and creep, and temperature load, are subject to random 
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variations, artificial neural networks have been rapidly developed in recent years as an integral part 
of the rapidly developing artificial intelligence. Neural networks, as a technique for nonlinear data 
modelling, may rapidly determine the functional relationship between input parameters and output 
parameters [10]. Recently, academics have become interested in the optimization of construction-
related factors using neural networks. The two most commonly employed neural networks are BP 
(back propagation) and RBF (radial basis function). The BP network is a multi-layer feedforward 
network trained using error backpropagation with an input layer, a hidden layer, and an output layer 
[11]. During backpropagation, the weights and offsets are changed continuously to bring the actual 
output of the network closer to the expected output [12]. The alteration of weights and offsets 
influences the output of the BP network; hence, the BP neural network is a "universal approximation" 
of the nonlinear mapping [13]. The RBF neural network has a similar structure to the BP neural 
network, but the input parameters are directly transferred to the hidden layer without weight 
connections, and the radial basis function is used as the neuron activation function for the hidden 
layer[14]. Non-linear is the transformation from the input layer to the hidden layer, whereas linear is 
the transformation from the hidden layer to the output layer [15]. It has the "local mapping" attribute 
since the output of the RBF network is only dependent on a few adjustment factors. In light of this 
issue, this work applies the average deflection approach for a single-factor deflection prediction 
analysis on a bridge with a rigid frame continuous girder bridge that is currently under construction. 
A rigid frame-continuous girder bridge deflection prediction model is developed utilizing a BP neural 
network and an RBF neural network. In order to optimize structural characteristics and advance 
construction control technology, the prediction results are compared and studied in order to select 
the approach with the highest prediction accuracy and greatest effect. 

Engineering overview and finite element modeling 

The background of this paper is a rigid-continuous beam bridge, which is a prestressed concrete 
semi-rigid-continuous box beam bridge with a span of (70 + 120 + 70) m and a cantilever casting 
construction method. The total length of the bridge is 1046 meters. The total width of the bridge deck 
is 11.5 meters (anti-collision guardrail). The transverse slope of the bridge deck is 1.5% in both 
directions. The design speed is 80 kilometers per hour, the vehicle load grade is highway-I standard, 
and the design safety level is one level. 

Using Midas/Civil, the finite element model of the underpinning engineering was developed. The 
model construction stage was segmented based on the engineering design documents and adjusted 
in real time based on the actual construction situation on the job site. The construction of the model 
was divided into twelve stages. 

The primary bridge consists of 127 distinct nodes and 122 simplified units. The pier beams are 
simulated by beam elements, with rigid connections between the 18-foot main beam and the main 
pier and elastic connections between the 19-foot seat beam and the main beam. The section and 
material parameters are selected based on the bridge's design document and modified based on 
field measurements. Given that the bridge is cast using the cantilever method, the bracket is 
simulated using node general support (only compression); the corresponding finite element model 
is depicted in Figure 1.  
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Fig. 1 – Graph of the Finite Element Model 

METHODS 

Analysis of single-factor deflection prediction 

In this section, the measured deflection values at the 1/4L position of the second span of Pier 
18, based on the engineering dependency, from late August 2022 to early January 2023, are 
selected. The deflection data is then fitted and predicted using the least squares method. Divide 
each month into two periods (every 15 days is one period), calculate the average measured 
deflection value of the two periods, create a new sample point, fit the sample of the first five months 
(1~10 periods) using the least squares method, and use the sample of the sixth month (11~12 
periods) to predict deflection. The average mean value of deflection (AMVOD), the minimum value 
of deflection (mVOD) and the maximum value of deflection (MVOD) are shown in Table 1. The line 
graph of the measured average deflection is depicted in Figure 2.  

Using Matlab software and the principle of least squares [16], the relationship between the 
average value of the mid-span deflection f (mm) and the time (period) can be fitted by a third-order 
polynomial. 

𝑓 = 0.00929𝑡3 − 0.1725 𝑡2 + 0.01547 𝑡 − 1.186                  (1) 

Where 𝑓 is the Average deflection and 𝑡 represents The number of periods. Each month is 
divided into two halves, one each in the first and second halves. Figure 3 depicts the deflection's 
fitting curve. The fitting curve is close to the average value of the measured deflection between the 
measured deflection minimum curve and the measured deflection maximum curve, and it has a high 
degree of fitting.  
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Tab. 1 - Measured average deflection table 

Numbers Time AMVOD/m mVOD/m MVOD/m 

1 Aug.16th-30th -1.36 x10-3 1.06 x10-3 -3.78 x10-3 

2 Sept.1st-15th -1.735 x10-3 0.74 x10-3 -4.21 x10-3 

3 Sept.16th-30th -2.43 x10-3 0.32 x10-3 -5.18 x10-3 

4 Oct.1st-15th -3.27 x10-3 -0.52 x10-3 -6.02 x10-3 

5 Oct.16th-30th -4.465 x10-3 -1.82 x10-3 -7.11 x10-3 

6 Nov.1st-15th -5.13 x10-3 -2.87 x10-3 -7.39 x10-3 

7 Nov.16th-30th -5.92 x10-3 -3.31 x10-3 -8.53 x10-3 

8 Dec.1st-15th -7.885 x10-3 -5.81 x10-3 -9.96 x10-3 

9 Dec.16th-30th -8.335 x10-3 -6.32 x10-3 -1.035 x10-2 

10 Jan.1st-15th -8.925 x10-3 -6.47 x10-3 -1.138 x10-2 

11 Jan.16th-30th -9.18 x10-3 -7.47 x10-3 -1.089 x10-2 

12 Feb.1st-15th -9.97 x10-3 -7.93 x10-3 -1.201 x10-2 

 

Fig. 2 – The line graph of the measured average deflection 

 

Fig. 3 – Diagram of the deflection fitting curve 
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Table 2 depicts the relative error between the measured average deflection and the fitted value 
for the first five months, i.e. the first through tenth period. 

Tab. 2 - Relative error fitting deflection 

Numbers Measured Value/m Predicted Value/m Relative Error/% 

1 -1.360 x10-3 -1.334 x10-3 1.91 

2 -1.735 x10-3 -1.771 x10-3 2.07 

3 -2.430 x10-3 -2.441 x10-3 0.45 

4 -3.270 x10-3 -3.290 x10-3 0.61 

5 -4.465 x10-3 -4.260 x10-3 4.59 

6 -5.130 x10-3 -5.297 x10-3 3.26 

7 -5.920 x10-3 -6.344 x10-3 7.16 

8 -7.885 x10-3 -7.346 x10-3 6.84 

9 -8.335 x10-3 -8.247 x10-3 1.06 

10 -8.925 x10-3 -8.991 x10-3 0.74 

The predicted deflection values for the sixth month, i.e. the 11th and 12th periods, are -9.523 
x10-3 m and -9.787 x10-3 m, which are close to the measured values of -9.180 x10-3 m and -9.970 x10-

3 m, indicating that the prediction model is accurate. The relative error between measured and 
predicted values is displayed in Table 3. 

Tab. 3 - Prediction relative error of deflection 

Numbers Measured Value/m Predicted Value/m Relative Error/% 

11 -9.180 x10-3 -9.523 x10-3 3.74 

12 -9.970 x10-3 -9.787 x10-3 1.84 

The above calculation demonstrates that the average deflection method can be used to fit the 
average deflection value over a longer time period and predict the average deflection value over the 
next longer time period. 

Analysis of multi-factor deflection prediction 

Experimental program 

In order to ensure that the experiment is effective and to examine the influence of elastic 
modulus, volume weight of concrete, concrete shrinkage strain, and temperature load on deflection, 
elastic modulus (EM), volume weight of concrete (VWOC), material age (MG), and minimum 
temperature (MT) are used as input variables. Based on the calculation results of the Midas/Civil 
finite element model. The EM is set to 3.53x104MPa~3.57x104MPa; the VWOC is 
23KN/m3~27KN/m3; the MG is 5~9 days; and the MT is -51℃~-55℃. The four factors and five levels 
are coded according to Table 4. During the construction process, the tensioning of prestressed 
tendons exerts an upward force on the beam segment, causing it to lift. As time progresses, the 
deflection of the beam segment also gradually increases. In this study, the deflection of the beam 
segment after the prestressing of segment 12 of Pier 18, measured using Midas/Civil software, was 
used as the evaluation criterion. Based on the data in Table 4, a single-factor control variable method 
was employed to investigate the influence of parameters on the deflection of the main beam. Twenty 
sets of experiments were designed as training samples, as shown in Table 5. Twenty sets of 
experiments were designed as training samples. As shown in Table 6, eight sets of experiments are 
designed as test verification based on the experiment's general principle. The experimental flowchart 
is depicted in Figure 4. 
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Tab. 4 - Structure parameter factor coding level table 

Numbers EM/MPa VWOC/(KN/m3) MG/days MT/℃ 

1 3.53x104 23 5 -51 

2 3.54x104 24 6 -52 

3 3.55x104 25 7 -53 

4 3.56x104 26 8 -54 

5 3.57x104 27 9 -55 

Tab. 5 - Training samples 

Numbers EM/MPa VWOC/(KN/m3) MG/days MT/℃ Deflection/m 

1 3.53x104 23 9 -55 2.8730 x10-2 

2 3.54x104 23 9 -55 2.8660 x10-2 

3 3.55x104 23 9 -55 2.8600 x10-2 

4 3.56x104 23 9 -55 2.8530 x10-2 

5 3.57x104 23 9 -55 2.8472 x10-2 

6 3.57x104 23 9 -55 2.8472 x10-2 

7 3.57x104 24 9 -55 2.6929 x10-2 

8 3.57x104 25 9 -55 2.5387 x10-2 

9 3.57x104 26 9 -55 2.3844 x10-2 

10 3.57x104 27 9 -55 2.2302 x10-2 

11 3.57x104 23 5 -55 2.8474 x10-2 

12 3.57x104 23 6 -55 2.8474 x10-2 

13 3.57x104 23 7 -55 2.8473 x10-2 

14 3.57x104 23 8 -55 2.8473 x10-2 

15 3.57x104 23 9 -55 2.8472 x10-2 

16 3.57x104 23 9 -51 2.9199 x10-2 

17 3.57x104 23 9 -52 2.9017 x10-2 

18 3.57x104 23 9 -53 2.8835 x10-2 

19 3.57x104 23 9 -54 2.8654 x10-2 

20 3.57x104 23 9 -55 2.8472 x10-2 

Tab. 6 - Testing samples 

Numbers EM/MPa VWOC/(KN/m3) MG/days MT/℃ Deflection/m 

1 3.55x104 24 9 -55 2.7049 x10-2 

2 3.55x104 24 5 -55 2.7051 x10-2 

3 3.55x104 25 7 -55 2.5500 x10-2 

4 3.55x104 25 9 -55 2.5499 x10-2 

5 3.55x104 26 5 -55 2.3952 x10-2 

6 3.55x104 26 7 -55 2.3951 x10-2 

7 3.55x104 27 5 -55 2.2402 x10-2 

8 3.55x104 27 7 -55 2.2401 x10-2 
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Fig. 4 – Experimental flowchart 

BP neural network model construction 

A three-layer BP neural network is used to establish a prediction model, with elastic modulus (EM), 
volume weight of concrete (VWOC), material age (MG), and minimum temperature (MT) as input 
variables and deflection value as output. Therefore, the constructed neural network model has 4 
nodes in the input layer and 1 node in the output layer. The BP neural network is a multi-layer feed-
forward network trained by error backpropagation, which consists of an input layer, a hidden layer, 
and an output layer. By continuously modifying the weights and offsets, the actual output of the 
network is closer to the desired output. The model operation feeds back the output results to the 
output layer through backpropagation of the input variables (EM, VWOC, MG, MT) so as to obtain 
the output result, that is, the deflection prediction value, and the number of nodes in the hidden layer 
is also One of the key factors affecting the BP neural network model is that if there are too many 
nodes in the hidden layer, it will increase the network training time, and it is easy to overfit during the 
training process. If the number of nodes in the hidden layer is small, the neuron training is insufficient 
and cannot achieve. The intended target of the network. In this study, the mean square value of the 
error is aimed at, and the optimal number of neurons in the hidden layer is mainly obtained through 
trial and error. After repeated training, when the number of nodes in the hidden layer is 4, the mean 
square value of the error is the smallest, and the prediction performance of the BP neural network is 
the best. Using 28 sets of experimental data samples for analysis, the data were normalized so that 
the model sample data fell between [0, 1], and the function used was following:  

𝑥𝑖 =  (𝑥 − 𝑚𝑖𝑛(𝑥𝑖))/(𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖))      (2) 
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Where he normalized data is 𝑥𝑖, where 𝑚𝑖𝑛(𝑥𝑖) and 𝑚𝑎𝑥(𝑥𝑖) are, respectively, the smallest 
and largest numbers in the data. The training samples from the experimental data are used to 
construct the prediction model, while the test samples are used to evaluate the model's 
generalization ability. The hidden layer transfers functions "tansig" and "purelin" are selected, and 
the training function "trainlm" is selected. Using the newff function, a neural network model is created. 
Maximum training time is 400 seconds, target mean square error is 0.001, and learning rate is 0.05. 
The model is trained and validated to obtain prediction results. 

RBF neural network model construction 

The RBF neural network is similar to the BP neural network in structure, but it uses radial basis 
functions as activation functions for the hidden layer neurons. The input parameters are directly 
mapped to the hidden layer without requiring weight connections. The output of the RBF network is 
only dependent on a subset of adjustable parameters, making it possess the characteristic of "local 
mapping". Using an RBF neural network to normalize 28 sets of data and then develop a prediction 
model, the number of input and output nodes is the same as that of the BP neural network, but the 
number of hidden layer nodes achieved a better approximation effect with 20 neurons. Build a neural 
network model using the "newrbe" function. In the RBF neural network model, the expanding 
coefficient has a significant impact on the RBF model's prediction accuracy. After multiple trials, it is 
set to 1, the mean square error target is set to 0.001, and experimental data is trained and evaluated. 

RESULTS 

To validate the prediction performance of BP and RBF neural network models, the fitting degree 
of the two network models was compared, and the fitting regression of the sample values and the 
model training output values on the training samples and test samples was obtained, as depicted in 
Figure 5. The fitting correlation coefficients for the two network models are all up to 0.99, indicating 
a high degree of fit to the training samples. When the normalized sample value equals the training 
value of the model, that is, when the fitting line Y=T, the fitting correlation coefficient (R) value is 1. 
The greater the correlation between the actual output and the expected output, the closer the R 
value is to 1. On the test sample, the BP neural network model's fitting correlation coefficient is 
0.97507, and the predicted output deviates from the target output. The RBF neural network model 
has an appropriate correlation coefficient of 0.9991. Based on the preceding analysis, it is clear that 
both network models have good prediction capabilities, but the RBF neural network outperforms the 
other in terms of prediction accuracy for the input sample. 

  

(a) Training samples of BP network (b) Testing samples of BP network 
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(c) Training samples of RBF network (d) Testing samples of RBF network 

Fig. 5 – The prediction and fitting curves of BP and RBF neural network models' 
performance 

To further validate the prediction performance, the BP and RBF neural network models were 
developed to predict the deflection, and the normalized output values of the deflection on training 
samples and test samples were obtained, as depicted in Figure 6. For the training samples, the 
predicted values of the BP and RBF constructed network models are essentially consistent with the 
actual values, and both neural network models do an excellent job of approximating the samples. 
Although there is a certain amount of error when comparing the test samples to the predicted 
samples, the overall prediction effect is good, and the predicted deflection falls within the acceptable 
error range. As shown in the figure, the BP neural network has a higher prediction accuracy only in 
the seventh group of test samples, and the prediction result is superior to that of the RBF neural 
network but inferior to that of the RBF neural network in the other groups of test samples. The root 
mean square error (RMSE) of the RBF neural network is significantly smaller than that of the BP 
neural network, indicating that the RBF neural network has a smaller deviation between the predicted 
value and the actual value. 

 

(a) Training samples of BP network 
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(b) Testing samples of BP network 

 

(c) Training samples of RBF network 

 

(d) Testing samples of RBF network 

Fig. 6 The deflection prediction curves of the BP and RBF neural networks 
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By comparing the deflection values of the Midas/Civil finite element model with the measured 
values on site after the completion of the pouring and post-tensioning of pier segment 12 in pier 18, 
as shown in Table 7, it can be concluded that the model has good predictive capability.  

Tab. 7 - Comparison table of model values and measured values 

Construction phase 
Deflection values of 

the model/m 

Measured deflection 

values/m 
Error/m Relative error/% 

Completion of 

pouring for pier 

segment 12 of pier 

18. 

3.464 x10-2 3.500 x10-2 3.600 x10-4 1.03% 

Completion of post-

tensioning for pier 

segment 12 of pier 

18. 

2.551 x10-2 2.670 x10-2 1.190 x10-3 4.45% 

The prediction error of the neural network model reveals the model's precision. To more 
intuitively illustrate the difference between the predicted value and the actual value in the test 
sample, the original quantity scale of the data is restored using the inverse normalization function, 
and the prediction error and relative error of the two network prediction models are computed. 

𝐸𝑟𝑟𝑜𝑟 =  𝑅𝑖 −  𝑃𝑖                                        (3) 

                       𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = (𝑅𝑖 −  𝑃𝑖)/ 𝑅𝑖                                 (4) 

Where 𝑅𝑖 is the true value; 𝑃𝑖 is the predicted value. 

According to Figure 7, The prediction error of the BP neural network model varies from 4 x10-5 
m to 4.5 x10-4 m, with a maximum error of 4.1 x10-4 m and a maximum relative error of 1.6%; the 
prediction error of the RBF neural network model extends from 2 x10-5 m to 2.5 x10-4 m, with a 
maximum error of 2.3 x10-4 m and a maximum relative error of 1%. In the third round of test samples, 
both BP and RBF neural networks exhibit higher mistakes. For other groups of test data, RBF neural 
networks have prediction errors ranging between 2 x10-5 m to 2 x10-4 m, and their prediction 
performance is clearly superior to that of BP neural networks. Compared to the BP model, the RBF 
model provides greater prediction accuracy and greater stability. 

 

(a) Prediction error 
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(b) Relative error 

Fig. 7 - Error analysis of BP and RBF neural networks 

The accuracy of the prediction model is measured using the mean absolute error (MAE) by 
comparing the predicted values to the actual values. The MAE of the BP model for the training 
sample is 2.117 x10-4 m, while the MAE for the test sample is 6.551 x10-4 m; the MAE of the RBF 
model for the training sample is 1.6x10-17 m, and the MAE for the test sample is 2.55 x10-5 m; both 
models demonstrate excellent prediction performance. The average absolute error of the RBF model 
on training and test samples is less than that of the BP model, and the RBF model has a smaller 
deviation between training and test samples, indicating that the RBF neural network model has 
superior generalization ability and prediction effect. 

CONCLUSION 

This research examines the effect of elastic modulus, volume weight of concrete, material age, 
and temperature load on the deflection of a rigid frame-continuous beam bridge, using measured 
values from the building site to fit the deflection curve with the average deflection technique. Four 
major parameters constitute input variables, while deflection is an output variable. Using MATLAB, 
the BP and RBF neural network methods are implemented to predict the deflection of the rigid frame-
continuous beam bridge, and the following conclusions are drawn. 
(1)   Based on the principle of least squares and using the average deflection method, fit the 
deflection curve function at 1/4L of Pier 18 of the supporting structure from late August 2022 to early 

January 2023, 𝑓 = 0.00929𝑡3 − 0.1725 𝑡2 + 0.01547 𝑡 − 1.186 , based on the Least qquares 
Principle, and its accuracy was confirmed. The Average Deflection Method can be used to fit and 
predict the average deflection value over a longer time period and the average deflection value over 
the next longer time period. 
(2)   The prediction models established by the RBF neural network and the BP neural network 
have a high fitting correlation coefficient under the same conditions, and both neural networks can 
accurately predict the deflection values under various influencing parameters, providing a basis for 
the selection of influencing parameters. 
(3)   Comparing the prediction models of RBF neural network and BP neural network reveals 
that RBF neural network is more stable; the average absolute error of training samples is 1.6x10-17 
m, whereas the average absolute error of test samples is 2.55 x10-5 m; the generalization ability of 
the model is superior; the training is more stable; and the prediction effect is superior. 
(4)   Comparing the prediction models of the RBF neural network and the BP neural network, it 
was discovered that the prediction error of the RBF neural network model ranged from 2 x10-5 m to 
2.5 x10-4 m, with a maximum error of 2.3 x10-4 m and a relative error that did not exceed 1%. Clearly, 
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the prediction performance was superior to that of the BP neural network. Compared to the BP 
model, the RBF model has greater prediction accuracy and greater stability. 
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