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Abstract. A preliminary study of an approach to internal structure generation used in lattice discrete
particle models (LDPMs) [1]. The presented method used for particle generation and placement is
intended to help realistically capture the internal structure of materials. First, a method for structure
generation using LDPM is presented. Then, the method of particle generation using a Voronoi
diagram [2] is described. The last part is the optimizations on the algorithm that use Apollonius circles
to calculate the specific points of the Voronoi diagram.
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1. Introduction
The use of composite materials such as reactoplasts
is increasingly common in today’s industry. The con-
struction industry is no exception. However, other
industries such as aerospace or automotive differ in
several important ways. This mainly concerns the
degree of material curing at which these materials
begin to load. This effect has a strong influence on
the response of the material under load, especially in
combination with viscoelasticity. At the same time,
the material properties change over time.

One of the structural elements used in construction
where these materials are involved involves chemi-
cal anchors. Particle-filled polymers act as a mortar
binder layer between the anchor and the building ele-
ment to which they are attached. These mortars are
considered as homogeneous materials. But at lower
scales, they can be characterized as heterogeneous
materials [3]. In [4], is described that the modifica-
tion of conventional continuum models (phase-field
and peridynamic) is not possible without discretizing
the internal structure. For this reason we decided
to use a discrete model. Figure 1 shows the real
internal structure of such a polymer mortar. The
polymer binder that connects the grains is shown in
gray and shown in light color. It is clearly shown
that the grains are of different sizes. The failure of
these materials is mainly around the grains in the
mortar [5, 6]. Breakage through the grains occurs
mainly in high-strength concretes [1]. This allows us
to use the Lattice Discrete Particle Model (LDPM),
which creates the internal structure of the material.
It is convenient for the materials we are investigating.
The LDPM material model response is dependent on
particle distribution, and thus multiple simulations
are needed to provide credible results [7].

However, as can be seen in the Figure 1, most of
the grains are not circular. The LDPM model only
allows the generation of circular (2D) or spherical (3D)

particles. Our goal is to modify the LDPM model to
allow the generation of grains of different sizes and
shapes. Therefore, we decided to modify the particle
generation using a Voronoi diagram. The computa-
tional complexity of this model is also an important
factor. This paper focuses on the modification of the
algorithm and its subsequent optimization.

Figure 1. Detail of internal structure: Hilti HIT
RE 500.

2. LDPM structure
First of all, it is important to describe the original
method of generating the mesosctucture using the
LDPM method [1]. We are given the sample geom-
etry and the prescriptive gradation curve, i.e., the
maximum and minimum aggregate size, as input for
structure generation.

The maximum aggregate size defines the upper limit
of the gradation curve. In contrast, the minimum
aggregate size defines its lower boundary, i.e., the
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Figure 2. Delaunay triangulation result given set of
particles.

Figure 3. LDPM structure for circular particles.

diameter below which no discretized particles are gen-
erated and located. Thus, the minimum aggregate
size affects the fineness of the discrete network and
the computational cost.

The process begins with the generation of particles
on the exterior of the sample. In our case (2D), points
are first generated at the corners and then in the mid-
dle of the sides of the square. In the Figure 2 they are
shown by the blue circular points. This is followed
by particle generation on the interior of the sample.
The particles are placed from largest to smallest in
a random position to ensure that the sample contains
as many as possible. In the figure, these particles are
represented by circles of different colors. The nearest
particles are then detected using Delaunyan triangula-
tion, which results in the underlying polytopes in the
given space. They represent triangles in the plane and
tetrahedrons in space. In the Figure 2 they are shown

Figure 4. Structure of circular Voronoi particles
before composition.

with blue lines connecting the individual particles.
The following process divides the triangle into parts
that belong to the particles that form its vertices. The
centres of the sides and the centre of the triangle are
calculated, and the part of the triangle is connected
to the particle to which it belongs. The individual
segments are then combined to form the resulting
polyhedral cells (Figure 3). When all the polyhedral
particles have been formed, their interaction with each
other has to be determined through the facets formed
by the splitting of the triangles. The displacements
and rotations of these neighboring particles form the
discrete compatibility equations in terms of rigid-body
kinematics. On each facet of the cell, an inter-scale
constitutive law is formulated to simulate cohesive
fracture, compaction due to pore collapse, frictional
slip, and velocity effect. Finally, equilibrium equations
are formulated for each individual particle.

3. Voronoi structure
This article studies the potential use of Voronoi cell
tessellation [2] for the LDPM model. The Voronoi
cells are particles with a boundary representing half
the distance between the particles from which tessel-
lation occurs [8]. Boundaries in the fundamental case
are represented by lines for points in 2D and planes
for points in 3D. For different particles, the Voronoi
cells are more complex. The simplest planar particles
in the plane are circles. When the radii are equal,
the boundary is represented by a straight line. When
the radii differ, the boundary becomes curved. Con-
sidering more complex particles, such as ellipses, the
boundary complexity becomes even greater. However,
it is possible to generate a structure for particles of
any shape.

In the Figure 4 you can see the cell structure created
for the same set of particles as for the LDPM struc-
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Figure 5. Structure of circular Voronoi particles after
composition.

ture. The challenging thing about forming a structure
using Voronoi cells is that if the particles have dif-
ferent radii, or if they are not circular, the boundary
between them is formed by a curve. In the figure
you can see that in particular, the boundaries of cells
formed by particles on the perimeter of a square are
curves. Furthermore, this effect can be seen for parti-
cles that are close together. We deal with this effect
by generating more points on the boundary of the par-
ticle, thus generating a special cell. Once the entire
structure is generated, the points belonging to each
particle are merged into a complete cell that takes
into account the size and shape of the particle. The
resulting boundary is a semilinear curve. Result is
shown in the Figure 5. In this case, the particles are
represented by 50 points on the particle boundary. For
the calculation we used the Matlab software [9]. Com-
pared to the structure formed by the LDPM method,
they are smoother. Smaller particles are connected to
fewer other particles. At the same time, there are no
fragments like those seen in the upper left corner of
the picture. For the purple particle, the cell boundary
passes through the particle itself.

The Figure 6 shows a structure made up of elliptical
cells. At first glance, it is obvious that the boundaries
between the particles are much more curved due to
the complexity of the particle shape. Therefore, even
when the particles are represented by 44 points, small
fluctuations in the smoothness of the boundary can
be seen. Nevertheless, in the Figure 7 the boundaries
are as we would expect and do not contain any major
fragments.

4. Optimization of the algorithm
Such a high number of points representing each parti-
cle would greatly affect the speed of the calculation.
Therefore, we focused on how we could reduce the

Figure 6. Structure of elliptical Voronoi particles
before composition.

Figure 7. Structure of elliptical Voronoi particles
after composition.

number of points on the particle boundary while main-
taining the accuracy of the boundary. Therefore, we
decided to see what effect replacing random points
with specific points on the particle boundary. One of
these characteristic points is the point of connection
of the three cells. It is also the centre of the circle that
touches the three cells. This problem is not trivial
and is generally called the Apollonius problem or the
Apollonius circle.

f(x, y) = (x − xc)2 + (y − yc)2 = r2 (1)

(xs − xci)2 + (ys − yci)2 = (rs − siri)2 (2)

Equation (1) is general expression of circle, where
xc and yc refers to the center of the circle and r is
radius. The following Equation (2) represents the
general solution of the Apollonius circle, where si
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Figure 8. Apollonius circles connecting circular par-
ticles.

Figure 9. Optimized Voronoi structure of circular
particles before composition.

is coefficient, that determines whether the resulting
circle will be touched by the particle from the interior
or the exterior.

The result of this system of equations can be seen
in the Figure 8 for the same set of particles. The
linkages between the particles are shown in blue. The
red shows the circles between the particles as well as
the points that these circles create in contact with par-
ticle The boundaries calculated by the unoptimized
method are shown in black color. The Figure 9 shows
the Voronoi diagram before composition. At first
glance, one can see the much smaller number of cells
of which it is composed. The Figure 10 shows the
resulting structure after composition on the resulting
cells. Small fragments can be seen where the cells are
close together, or at the boundaries of the diagram
when the particles have different radii. But the result-

Figure 10. Optimized Voronoi structure of circular
particles after composition.

ing structure is formed at an average of 8 points per
particle. Even so, its accuracy is very consistent with
the unoptimized method.

We have tried a similar approach to calculate points
for ellipses. But we encountered the problem here
that the general equation of the Apollonius circle
is noticeably more complicated. With the general
equation of the ellipse:

f(x, y) =((x − xc) · cos α + (y − yc) · sin α)2

a2 +

((x − xc) · sin α − (y − yc) · cos α)2

b2 = 1,

(3)

which then has to be converted into the general equa-
tion of the conic section:

E(x, y) = ax2 + 2bxy + cy2 + 2dx + 2ey + f. (4)

Then, following the procedure defined in [10], sev-
eral parameters are calculated to form a determinant,
which for a single ellipse is defined as a polynomial of
degree 184. The resulting system of equations:

∆1(xs, ys, s) = ∆2(xs, ys, s) = ∆3(xs, ys, s) = 0. (5)

The resulting system of equations is a very chal-
lenging problem to solve. Therefore, we tried to come
up with a modification that would make the calcula-
tion possible. So we took inspiration from the circle
equation, and considered that the ellipses will grow
with one parameter until they intersect at one point.
From this assumption comes the equation together
with the system of equations:

fi(x,y, r) = ((x − xci) · cos αi + (y − yci) · sin αi)2

(ai + r)2 +

((x − xci) · sin αi − (y − yci) · cos αi)2

(bi + r)2 − 1 = 0,

(6)

f1(x, y, r) = f2(x, y, r) = f3(x, y, r) = 0. (7)
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Figure 11. Apollonius circles connecting elliptical
particles.

The result of the system of equations is a polynomial
of degree 27. It’s still not a simple solution, but it’s
easy to solve the equations numerically. The resulting
circles are shown in the Figure 11 for the same set of
particles. The Figure 12 shows the structure and is
made up of an average of 6 points per particle. The
black line shows the boundaries for particles consisting
of 44 points. The structure after composition is shown
in red in the Figure 13. There are clear fragments and
differences from the exact boundary, but the optimized
structure is very consistent even with a large saving
of points

5. Conclusion
In this paper, the procedure of structure generation
using the LDPM model is presented. It also describes
how the structure can be generated using a Voronoi
diagram. This procedure relies on the representation
of particles by points on their boundary for which
the Voronoi diagram is computed. This is followed by
a composition of particles for which the structure al-
ready corresponds to their shape. Then, a procedure is
described on how the algorithm can be optimized using
the specific representation. Preliminary results have
led us to the conclusion that the specifics are more
telling in the construction of the resulting Voronoi
diagram and can be used to save a number of points
on the particle boundary.

This procedure will be more widely used in the
future. It is mainly a matter of trying out additional
specific points, then converting the structure to 3D.
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Figure 12. Optimized Voronoi structure of elliptic
particles before composition.

Figure 13. Optimized Voronoi structure of elliptic
particles after composition.
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