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ABSTRACT: Azole anions are highly competent in the activation of weak acyl
donors, but, unlike neutral (aprotic) Lewis bases, are not yet widely applied as
acylation catalysts. Using a combination of in situ and stopped-flow 1H/19F NMR
spectroscopy, kinetics, isotopic labeling, 1H DOSY, and electronic structure
calculations, we have investigated azole-catalyzed aminolysis of p-fluorophenyl
acetate. The global kinetics have been elucidated under four sets of conditions,
and the key elementary steps underpinning catalysis deconvoluted using a range of
intermediates and transition state probes. While all evidence points to an
overarching mechanism involving n−π* catalysis via N-acylated azole
intermediates, a diverse array of kinetic regimes emerges from this framework.
Even seemingly minor changes to the solvent, auxiliary base, or azole catalyst can elicit profound changes in the temporal evolution,
thermal sensitivity, and progressive inhibition of catalysis. These observations can only be rationalized by taking a holistic view of the
mechanism and a set of limiting regimes for the kinetics. Overall, the analysis of 18 azole catalysts spanning nearly 10 orders of
magnitude in acidity highlights the pitfall of pursuing ever more nucleophilic catalysts without regard for catalyst speciation.

1. INTRODUCTION
Acyl group transfers can be efficiently accelerated by Lewis base
n−π* catalysis.1 In these reactions, the base acts as a nucleophile
toward the acyl donor and then as a nucleofuge from a
hyperreactive2 acylated intermediate, Scheme 1A. High catalytic
activity is essential for efficient enantioselective acylation unless
the background reaction can be actively impeded, e.g., by redox.3

While numerous catalysts have been designed for enantiose-
lective acylation,1b,3h,4 most are neutral, aprotic, nitrogen-
centered π-conjugated Lewis bases, in which the “catalophor-
e”4b,5 is an amidine,5c,6 isothiourea,5c,7 N-alkylated imidazole,8

or N′,N′-dialkylaminopyridine5a,8d,9 (e.g., DMAP10a and
PPY10b), Scheme 1B. However, a pre-occupation with
enantioselectivity has long overshadowed the development of
the underlying activity of these catalysts.5b Indeed, even the
most recent examples employ the same class of acyl donors that
were used with DMAP itself, i.e., acid anhydrides and acyl
halides.10 Acylative catalysis using less reactive donors is largely
absent with aprotic Lewis bases, yet the successful realization of
this may be key to solving a range of issues. For example, the use
of a weaker acyl donor could suppress the competing
background racemic reaction that undermines the enantiose-
lective acylation of unprotected primary amines.11

Major advances have been made by Zipse,10c,d,12a−e

Mayr,12d−f Namba,10e Dyker,10f and Han,12g,h through inves-
tigation of the features that control the nucleophilicity of the
aminopyridine core of DMAP, and then tuning this by
annulation,10c,12b,d ionization,10d and conjugation.12c

Initially, these modifications resulted in substantial improve-
ments in catalytic activity;12d however, the development of ever
more nucleophilic aminopyridines did not.10c,12f This phenom-

enon was ascribed to the formation of overstabilized acylated
intermediates, but compelling evidence for either a fundamental
switch in catalyst speciation, or loss of hyperreactivity,2 has
proved elusive. Other aprotic catalysts13 including amino-
pyridine N-oxides,13f−j pyridazines,13k amidines and isothiour-
eas,1b,4b,5b,c,7a,13j as well as those based on (quasi)-anionic
catalophores,14 including betaines,14a ion-paired fluoride,14b,c

tropolonate anions,14d and pyridinyl amides,10d Scheme 1C,
have also been developed, but none have elicited transformative
activity. Indeed, other than the work of Birman,15a vide inf ra, the
challenge of activating weak acyl donors using simple organic
catalysts has been almost completely unmet.

2. RESULTS AND DISCUSSION
2.1. Azole-Catalyzed Acylation. In 2009, Birman reported

that the 1,2,4-triazole anion, generated in situ or added as a pre-
formed salt, is a potent catalyst for the aminolysis and
transesterification of unactivated carboxylic esters.15a Various
other azoles were also active, albeit less so than the 1,2,4-triazole,
whereas a range of other protic catalysts (e.g., HOBt) and
aprotic Lewis bases (e.g., DMAP, NMI), proved essentially
inactive under the same conditions. However, attempts to apply
the 1,2,4-triazole anion core as a “promising activator”5b in
enantioselective catalysis3h,15b,c have apparently been without
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success. Intrigued by this, and by the primary kinetic data in
Birman’s original report,15a we investigated the mechanism of
azole-catalyzed acylation in a systematic and quantitative
manner.
Herein, we report the outcome of this study, including the

results of in situ monitoring by conventional and variable-ratio
stopped-flow (VR-SF) 1H/19F NMR spectroscopy,16 numerical
and graphical kinetic analyses, synthesis and reactivity of
intermediates, activation parameters (Δ‡H, Δ‡S), DOSY
analysis, 12,13C and 14,15N kinetic isotope effects (KIEs), and
electronic structure calculations. Our results confirm, both by
kinetic implication17 and by in situ spectroscopic detection, the
general intermediacy of N-acylated azoles under Birman’s
conditions,15a and rationalize, inter alia, (i) the effect of the
solvent on the kinetics; (ii) the significance of the auxiliary base;
and (iii) the previously intractable relationship between catalytic
activity and azole acidity.5b,15a

2.2. Preliminary Investigations. We began with single-
point analyses (1H/19F NMR spectroscopy) of the aminolysis of
various carboxylic esters under Birman’s conditions.15a The
reaction of p-fluorophenyl acetate (p-F-PhOAc, 1) with p-
fluorobenzy l amine (p -F-BnNH2, 2) , us ing 1 ,8-
diazabicyclo(5.4.0)undec-7-ene (DBU, 3) as auxiliary base
and 1,2,4-triazole (4aH; 10mol %) as the catalyst, inMeCN at 20
°C was prime for detailed study. Birman’s data on isosteric
substrates (PhOAc, BnNH2)

15a allowed cross-validation, and
the structure of 1 was amenable to isotopic labeling and
substituent modification, vide inf ra. Background hydrolysis and
aminolysis of 1 in the absence of either catalyst (4aH) or DBU
(3) was negligible over the timescale of the catalyzed reaction.

Exploratory in situ 19F NMR monitoring experiments
conducted under more dilute conditions confirmed that, as
reported by Birman,15a the aminolysis in MeCN is initially rapid
but soon slows. For example, with 10 mol % 4aH as a catalyst,
Figure 1A, 25% conversion of 1 was achieved within 60 s, while

50% conversion required 470 s. For practical reasons, the in situ
monitoring was generally terminated prior to full conversion
(<70%), but subsequent end-point analysis confirmed near-
quantitative conversion of 1 and 2 to amide 5 and phenol 6H.
Provided that modest precautions were taken to exclude
adventitious moisture, see Section S3.1 in the Supporting
Information (SI), the reaction profiles were highly reproducible:
between runs, stock solutions, and batches of 1, 2, and 3, and by
NMR method (1H NMR in MeCN-d3 versus 19F NMR in
MeCN), the latter discounting any significant solvent kinetic
isotope effect.
The analysis in MeCN established several salient features.

The products (5 and 6H) form concurrently throughout the
reaction, without any detectable accumulation of discrete
intermediate species, and the total concentrations of 1,2,4-
triazole ([4aH]T) and DBU ([3]T) remain invariant. In the
absence of DBU (3), i.e., just using 10 mol % 4aH, there is no
detectable aminolysis over the same period.
Exchanging 4aH (10 mol %) for tetra-n-butylammonium

1,2,4-triazolate [4a][nBu4N] (10 mol %) has no discernible
impact on the kinetics, Figure 1B. Catalysis by triazolate

Scheme 1. Generic Anionic Lewis Base n−π*-Catalyzed
Acylation Satisfying Kemp’s Criterion (A),2 and Selected
Neutral (B) and Anionic (C) Catalophores

Figure 1. Exploratory 19F NMR spectroscopic monitoring of the
reaction of 1 (0.10 M) with 2 (0.10 M), using 1-fluoronaphthalene
(0.050 M) as internal standard. Conditions: (A) DBU (3, 0.10 M) and
4aH (10mol %) inMeCN. (B) 3 (0.10M) and 4aH versus [4a][nBu4N]
(10 mol %) in MeCN. (C) 3 (0.10 M) versus 3 (0.10 M) and
[4a][nBu4N] (10 mol %) versus [4a][nBu4N] (10 mol %) in MeCN.
(D) 4aH versus [4a][nBu4N] (10 mol %) in tetrahydrofuran (THF).

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.3c06258
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/suppl/10.1021/jacs.3c06258/suppl_file/ja3c06258_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.3c06258?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c06258?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c06258?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c06258?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c06258?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c06258?fig=fig1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c06258?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


[4a][nBu4N] (10 mol %) in the absence of DBU (3) is initially
rapid, liberating stoichiometric (10 mol %) of 5 and 6, but is
followed by a progressively inhibited evolution for the remainder
of the reaction, Figure 1C. In the absence of triazole, with just
DBU 3 (100 mol %), the aminolysis is very slow indeed.
2.3. Identification of Kinetic Regimes I-IV. Further in situ

19F NMR monitoring revealed many nuances. For example,
changing the solvent from MeCN to THF (Figure 1D) resulted
in distinctly lower-order kinetics and slower initial rates of
aminolysis, again with 5 and 6 liberated in parallel. Using the
triazolate [4a][nBu4N] instead of the azole 4aH restored the
high-order kinetic behavior. Changing the pre-catalyst from
triazole 4aH to pyrazole 4bH, in addition to affording lower-order
kinetics and slower initial rates, resulted in an asynchronous
product evolution with 5 lagging behind 6 throughout the
course of monitoring, vide inf ra.
Further evaluation established four distinct regimes (I−IV,

Figure 2) for analysis. Regimes I and II involve catalysis by
triazole 4aH, and differ only by solvent (MeCN, I, versus THF,
II). Regime III uses pyrazole 4bH as catalyst, and regime IV uses
triazolate [4a][nBu4N] but without auxiliary base, 3. Both II and
IV are in MeCN. The global kinetics under regimes I to IV were
then studied in detail using conventional in situ 1H/19F NMR
spectroscopy,16 see Section S3.8 in the Supporting Information.
Empirical rate equations for regimes I and II were explored by
graphical methods,18 with the kinetic order of each component
discerned by systematically varying its initial concentration, with
all others remaining constant. Numerical methods16 were
required for analysis of the kinetics under regimes III and IV.
2.4. Kinetics under Regime I. The rate of 1,2,4-triazole

(4aH) catalyzed aminolysis in MeCNwas cleanly first order with
respect to the acyl donor [1] and the total catalyst [4a]T, and
approximately first order (0.9−1.0) in the amine [2]. Exogenous
amide 5 had no discernible influence upon the rate of aminolysis.
However, assessing the temporal concentration of DBU [3]
(pKaH(MeCN) = 24.3)19 proved difficult because of the
progressive liberation of phenol 6H (pKa(MeCN) ≈ 27.2),
and the complexities associated with acid-base equilibria in
aprotic organic media. In accordance with the work of
Coetzee,20a Kolthoff,20b Chmurzynski,20c and, more recently,
Leito,20d−g 1H/19F NMR titrations (MeCN/MeCN-d3, 20 °C)
of phenol 6H with DBU (3), indicated that up to∼0.5 equiv. of 3
deprotonates ∼0.5 equiv 6H, but there is no significant further

deprotonation detected beyond this point. Much stronger
organic bases, such as the phosphazene superbase Et-P2(dma)5
(pKaH(MeCN) = 32.9), were required to liberate the free
phenoxide, 6−. Internally calibrated and referenced16 diffusion-
ordered 1H NMR spectroscopy (DOSY) confirmed the
formation of a highly stable first-order homoconjugate, {6-
6H}‑,21 from excess 3 and 6H (0.050 M, MeCN), see Section S5
in the Supporting Information for full discussion.
Nonlinear regression of the 19FNMR isotherm to a telescoped

equilibrium model, Scheme 2, afforded a phenomenological

equilibrium constant of K′HC,T = 745 M−1, see Section S6.4 in
the Supporting Information for a full discussion. Approximating
the concentration of free DBU (3) at low to moderate
conversions as [3] ≈ [3]0 − [6]T/2 (eq 1) in turn revealed a
clear first-order dependence of the aminolysis kinetics on the
auxiliary base, [3]. An approximately inverse first-order
dependence on the total concentration of liberated p-
fluorophenol [6H]T was then elucidated by full normalization,
Figure 3, see Section S3.8.2 in the Supporting Information.

[ ] [ ] [ ]
3 3

6
2

; for Regimes I and III0
T

(1)

2.5. Kinetics under Regime II. 1,2,4-Triazole (4aH)
catalyzed aminolysis in THF (regime II) proceeded with
distinctly different kinetics (Figure 4) to regime I. While first-
order dependencies on the acyl donor [1] and catalyst [4a]T
were still observed, the initial rate (v0) of aminolysis was
approximately independent of amine [2]0, and only moderately

Figure 2. Four distinct kinetic regimes in the azole-catalyzed aminolysis of 1with 2. Ar = p-F-C6H4. Each regime was explored systematically by varying
the initial concentration of single components relative to reference conditions shown (I, II, III: [1]0 = [2]0 = [3]0 = 0.10 M, [4a/bH]0 = 0.010 M; IV:
[1]0 = [2]0 = 0.10 M, [4a][nBu4N]0 = 0.010 M, 10 mol %) using in situ 1H (III) or 19F (I, II, IV) NMR spectroscopy in MeCN (I, IV), MeCN-d3 (III),
or THF (II), with 1-fluoronaphthalene (0.050 M; 19F NMR) or 1,3,5-trimethoxybenzene (0.033 M; 1H NMR) as internal integration standards.

Scheme 2. Acid−Base Equilibrium Models for 3 and 6H
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dependent upon DBU [3]0. With 2 in excess over 1 (i.e., [1]0/
[2]0 < 1), aminolysis followed a cleanly pseudo-first-order
evolution (v ≈ k′obs[1]) throughout the full course of
monitoring. In contrast, when 2 was limiting (i.e., [1]0/[2]0 >
1), systematic deviations in the graphical analysis arose from
fractional orders in 2 (ca 0.1−0.2) at high conversions (see
Figure 4B). Initial rate analysis of the effect of DBU 3, indicated
a fractional order: v0 ∝ [3]0x, where x ≈ 0.4−0.5. Graphical
normalization of the full reaction profile, assuming [3] ≈ [3]0 −
[6]T/2 (vide supra), afforded analogous partial orders.22

Temporal concentrations of the ionized catalyst 4a{DBUH+}
and DBU 3 under regime II were not amenable to direct
measurement, or to simple analytical approximation. Instead
they were estimated by numerical methods simulations using
K1:1(4aH), K1:1(6H), [4aH]0, and [6]T. This then enabled full
graphical normalization for regime II, provided that [1]0/[2]0 <
1, Figure 4, see Section S3.8.3 in the Supporting Information.
Titrations of 6H (0.050 M) with 3 in THF suggested

negligible homoconjugation with the isotherm satisfactorily
simulated by a simple associative (1:1) equilibrium model
(K1:1(6H) = 237 M−1, Scheme 2). Analogous isotherms were
obtained in the titration of 4aH (0.050 M) with 3 in THF-d8 (20
°C), with nonlinear regression affordingK1:1(4aH) = 42M−1, see
Section S6.4 in the Supporting Information. The approximately
zero-order dependence on [2] (when [1]0/[2]0 < 1) and
apparent absence of product inhibition by phenol 6H distinguish
the kinetics from regime I, and collectively account for the
starkly different reaction profiles in MeCN (regime I) versus
THF (regime II) under otherwise identical conditions.15a

2.6. Kinetic under Regimes III and IV. Systematic analysis
of regimes III and IV revealed yet further kinetic intricacies.

Aminolysis under regime III inMeCN evolved with approximate
first-order dependencies on both the pyrazole catalyst 4bH, and
the auxiliary base ([3]≈ [3]0 − [6]T/2), with complex fractional
orders in both [1] and [2], and no significant product inhibition
by 6H, see Section S3.8.4 in the Supporting Information.
Catalysis by pre-formed 1,2,4-triazolate [4a][nBu4N] in the

absence of DBU (regime IV), proceeded with first-order
dependencies on [1] and [2] and product inhibition by 6H,
However, in contrast to regimes I, II and III, which all employ
DBU 3 as an auxiliary base, regime IV proceeded with second-
order dependence on total azole [4a]T, see Section S3.8.5 in the
Supporting Information. For both regime III and regime IV, the
global normalization of the kinetic profiles proved intractable
due to nuanced fractional orders in substrate (regime III), and
complex product inhibition (regime IV) by liberated 6H.

23

Detailed analysis was however achieved by consideration of
steady-state kinetic approximations and application of numerical
methods, vide inf ra.
2.7. Steady-State Approximation and Limiting Con-

ditions for Regimes I, II, and III. The diversity in the general
kinetic behaviors outlined in Sections 2.2−2.5 might initially
suggest the existence of multiple mechanisms for the aminolysis.
However, regimes I−III which all employ an auxiliary base, DBU
3, can be reconciled using a single overarching Lewis base n−π*
catalysis mechanism, Figure 5, in which the evolution of amide 5
is described by the steady-state approximation shown in eq 2.
Several simplifications to eq 2 can be made by considering
limiting regimes. For example, if N-acylated intermediate, 4Ac
does not significantly accumulate, as found in Regimes I and II,
then the steady-state evolution of amide 5 simplifies to eq 3. For

Figure 3. Fully normalized product (5) evolution profiles (A−D)
obtained by in situ 19F NMR monitoring of the reaction of 1 with 2,
catalyzed by 4aH in MeCN at 20 °C with DBU (3) as an auxiliary base
(Regime I).Within the concentration ranges analyzed, when [6]T > 0.01
M, d[5]/dt ≈ kobs(I)[1][2][3][4a]T/[6]T, where [3] ≈ [3]0 − [6]T/2,
and kobs(I) ≈ 0.74 M−2 s−1.

Figure 4. Fully normalized product (5) evolution profiles (A, C, D)
obtained by in situ 19F NMR monitoring of the reaction of 1 with 2,
catalyzed by 4aH in THF at 20 °C with DBU (3) as an auxiliary base
(regime II). See text for a discussion of the non-normalization when [2]
is varied (graph B), and the determination of [4a{DBUH}]t. Within the
concentration ranges analyzed, when [1]0 < [2]0, then d[5]/dt ≈
kobs(II)[1]([4a][nBu4N]), where kobs(II) ≈ 0.09 M−1 s−1.
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sufficiently acidic azoles (KPT) and when the N-acylated
intermediate is in rapid pre-equilibrium (K1), the steady-state
evolution of amide 5 further reduces (eq 4) to a form analogous
to the empirical rate law of regime I.24

[ ] [ ][ ][ ] [ ]
+ [ ] [ ] + [ ][ ] + [ ][ ]{ }t

K k k
K k k K k

5 1 2 3 4
3 6 2 3 1 3

d
d (1 )( )DBUH

PT 1 2
2

T

PT 1 2 PT 1

(2)

[ ][ ][ ] [ ]
+ [ ] [ ] + [ ][ ]

[ ][ ] [ ][ ] [ ] [ ]
{ }

K k k
K k k

k K k

1 2 3 4
3 6 2 3

2 3 1 3 4 4

(1 )( )

(when ; i. e. 0.1 )
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Alternatively, for less acidic azoles (KPT) where the N-acylated
intermediate is efficiently trapped by aminolysis (k2), the steady-
state evolution of amide 5 reduces to a different form (eq 5),
analogous to the empirical rate law of regime II. Apparent
fractional orders in [1] and [2], observed under regime III, are
only consistent with the mechanism in Figure 5, if the
corresponding N-acylated intermediate, 4bAc, accumulates
significantly during turnover. With less acidic azoles (KPT),
this leads to eq 6.

In eqs 2, 3, 4, and 6, the concentration of the phenolate salt,
[6{DBUH}], is dictated by the overall concentration of liberated
phenol, [6]T = [1]0 − [1], the relative acidities of 3H

+ and 6H
(KLG), and the tendency of 6H to undergo homoconjugation
(KHC). For simplicity, the phenolates [6{DBUH}] and {6-
6H}{DBUH}, were evaluated as ion-paired species, eq 7. Analytical
or numerical solutions to cubic eq 8 allow estimation of the
phenomenological equilibrium constants KLG and KHC by 19F
NMR titration of 6H with DBU (3); see model 6 in Section S6.3
in the Supporting Information for a full discussion.
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2.8. Analysis of Acyl Intermediates (4Ac).Quantitative 1H
and 19F NMRmonitoring of the aminolysis of 1 under regime III
(catalysis by 4bH in MeCN, Figure 6A) revealed that an
intermediate N-acylated species 4bAc, Figure 6B, (δH (MeCN)
CH3CO = 2.67 ppm) is generated in situ at steady state from 1 +
4bH, together with a trace of acetate anion. The identity of 4bAc
was confirmed by independent synthesis, see Section S2.4 in the
Supporting Information. Under standard conditions, conven-
tional in situ 1H NMR monitoring, Figure 6C, was just able to
capture the onset of steady state, with 4bAc attaining a maximal
fractional population of fAc = [4bAc]/[4b]0 ≈ 53% after around
160 s and then slowly decaying thereafter, Figure 6D.
Modulating [3]0 (0.025−0.10 M) under otherwise standard

conditions had no significant effect on fAc (max) other than the
time taken to reach steady state. With 1H NMR spectroscopic
analysis providing both the temporal evolutions of [1], [2], and
[5], Figure 6C, and the catalyst speciation ([4bAc]/[4b]T),
Figure 6D, a full complement of kinetic data were acquired
under regime III by varying [1]0, [2]0, [3]0 and [4bH]0. With
standard graphical analysis intractable due to the significant
accumulation of 4bAc, the resulting data were globally fitted to a
telescoped kinetic model, Figure 6B. Satisfactory correlations
were obtained across a total of 15 data sets, with the model
capturing the kinetic significance of all key components, as well
as independent values for k′1, k′−1 and k2; see Section S3.8.4 in
the Supporting Information for the full sets of fitted data.
Stoichiometric aminolysis of 1:1 4aAc + α-[D3]-4aAc, and 4aH-

catalyzed (10 mol %) aminolysis of 1:1 1 + α-[D3]-1 (0.05: 0.05
M), both gave 5 + α-[D3]-5 with negligible H/D exchange.
Thus, the enolization of 4aAc by DBU (3) is kinetically
insignificant under the standard catalytic conditions, and neither
aminolysis step proceed via ketene (CH2�CO) elimination
from 1 or 4aAc.

25

2.9. Role of the Auxiliary Base. Previous assessments of
the role of the auxiliary base, DBU 3, in azole-catalyzed
acylations focused solely on the deprotonation (KPT) of 4H.

5b,15a

In contrast, the overarching mechanism shown in Figure 5
includes two additional roles for DBU: homoconjugation of
liberated phenol 6H (KLG;KHC) and catalysis of the aminolysis of
4Ac (k2). To probe the latter in more detail, the reaction of
independently synthesizedN-acetyl pyrazole 4bAc (0.10M)with
amine 2 (0.10M) was analyzed using VR-SF-19F NMR (MeCN,
20 °C) across a series of DBU concentrations (3, 0.02−0.10M),
Figure 7A; see Section S3.8.6 in the Supporting Information.

Figure 5. Model employed for derivation of steady-state approx-
imations for product (5) evolution from 1 and 2 in terms of their
concentrations, plus the total catalyst [4]T, free DBU [3], and
phenolate salt [6{DBUH}]. The latter depends on the total concentration
of phenol(ate) [6]T, the acidity of 6H (KLG), and the propensity for
homoconjugation (KHC).
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Component-specific and subsequent global graphical normal-
ization of the resulting kinetic data confirmed a formal
termolecular rate law of the form kobs[4bAc][2][3], and thus
an explicit role for the auxiliary base (3) in the aminolysis of the
N-acyl intermediates (4Ac) under catalytic conditions. The
termolecular rate law, kobs[4bAc][2][3], does not distinguish
whether DBU accelerates aminolysis of 4bAc by acting as general
Brønsted base, or by the generation of a second, more reactive,
N-acetylated intermediate, [DBU-3Ac]+. An identical set of VR-
SF-19F NMR analyses of the stoichiometric aminolysis of 4bAc
by amine 2, but replacing DBU 3 with 3,3,6,9,9-pentamethyl-
2,10-diazabicyclo[4.4.0]dec-1-ene (PMDBD, 7), evolved with
formal termolecular kinetics, but at an approximately five-fold
greater rate (Figure 7B). PMDBD (7) is less basic
(pKaH(MeCN) = 22.6) and significantly more sterically
hindered than DBU 3 (pKaH(MeCN) = 24.3), features that in
the absence of other factors, are expected to attenuate the
aminolysis of 4bAc, by either mechanism. However, unlike DBU
3, the PMDBD (7) can engage in tautomeric (bifunctional)

catalysis involving simultaneous donation (NH) and acceptance
(N) of a proton. This phenomenon can reasonably account for
the greater efficiency of PMDBD 7, relative to DBU 3, in
catalyzing the aminolysis of 4bAc, and suggests both proceed via
Brønsted base effects, rather than Lewis base n−π* catalysis.
In contrast to the stoichiometric reactions, the 4bH-catalyzed

acylation of amine 2 using PMDBD 7 as auxiliary base
proceeded marginally slower than with DBU 3 (Figure 7C)
and with a very much lower steady-state population of the acyl
intermediate 4bAc (Figure 7D). Overall, this is the combined
outcome of more efficient consumption of 4bAc by amine 2 and
its much less efficient regeneration from 1. The latter is likely
due to the lower basicity of PMDBD 7 and/or attenuation of the
nucleophilicity of the pyrazolate anion toward 1 by charge-
reinforced hydrogen bonding in the azolate 4b{PMDBDH}.
2.10. Comparison of Activation Parameters under

Regimes I, II, and III. If the kinetics of regimes I−III are
interpreted as limiting manifestations of the mechanism in
Figure 5, then catalysis proceeds via two overarching sequential
aminolyses: ester 1 by azolate [4]− to form acyl intermediate 4Ac,
and then 4Ac by amine 2 to form amide 5. The global kinetics
indicate that the rate-determining transition state of regime I
(4aH in MeCN) is the second aminolysis, while for regime II
(4aH in THF) it is the first. Conversely, regime III (4bH in

Figure 6. (A) Regime III (4bH-catalysis in MeCN) initiated with
different initial concentrations of 1, 2, 3, and 4bH. (B) Model employed
for holistic numerical methods fitting of data. (C) Example temporal
concentration profile of [1], [2], [5], and [6]T obtained by VR-SF-1H
NMR, MeCN-d3, 20 °C; [1]0, [2]0, [3]0 = 0.10 M; [4bH]0, 10 mol %.
Solid lines are the profiles predicted using the holistic numerical
methods fitting from all 15 runs. (D) Temporal concentration profiles
of [4bAc] and [4bH] and fitting, from the same run as (C).

Figure 7. (A) Fully normalized kinetic profiles (VR-SF-19F NMR) for
the stoichiometric aminolysis of N-acetyl pyrazole 4bAc with 2 at
variable initial concentrations of auxiliary DBU 3 (0.02−0.10 M) in
MeCN (20 °C); (B) Comparison of fully normalized kinetic profiles for
the aminolysis of 4bAc and 2 with either 3 or PMDBD (3,3,6,9,9-
pentamethyl-2,10-diazabicyclo[4.4.0]dec-1-ene) 7 (0.10 M). (C)
Comparison of amide (5) evolution under regime III (4bH, 10 mol
%; 1H NMR, MeCN-d3, 20 °C) with either 3 or 7 as the auxiliary base.
(D) Catalyst speciation ([4bAc]/[4bH]0) from the same run as (C). F2
is the fractional conversion (%) of amine 2, i.e., ([2]0-[2]t)/0.01[2]0.
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MeCN) is kinetically nuanced, with (at least) two energetically
near-degenerate transition states exerting collective control over
the rate of product formation: one leading to intermediate 4bAc,
the other to its consumption.
Comparison of activation parameters for the aminolysis steps

across the three regimes allowed further testing of these
conclusions. Catalysis under regime III, in which theN-acylated
intermediate 4bAc could be detected by 1H NMR spectroscopy,
provided the benchmark for these comparisons. Two
independent rate coefficients (k′1, k2) were determined by
simultaneous numerical methods fitting of temporal concen-
tration data for [1], [2], [5], and [4bAc], obtained by VT-SF-1H
NMR, to the telescoped kinetic model shown in Figure 6B.26

Activation parameters for regime III (Table 1, entry 1) were
estimated from standard reciprocal temperature plots. The
activation parameters were also corroborated in stoichiometric
experiments that generated (Table 1, entry 2) and consumed
(entries 3 and 4) intermediate 4bAc, see Section S3.8.7 in the
Supporting Information. The difference in activation parameters
for aminolysis of 4bAc catalyzed by auxiliary base 3 versus 7
(entries 3 versus 4) suggests that the relative stabilization of the
rate-determining transition state with 7 is almost exclusively
enthalpic in origin, a key hallmark of tautomeric catalysis.27

The rate of aminolysis of intermediate 4bAc is nearly
temperature-independent, in the range studied, see Section
S3.8.7 in the Supporting Information. As evident from the
comparison of the activation parameters in Table 1, entries 1−4,
increasing the reaction temperature for the catalytic process
results in a higher speciation of the N-acyl intermediate 4bAc,
Figure 8A, but only a very modest increase in the rate of amide
(5) formation Figure 8B. Although both aminolyses (k′1, Figure
8C, and k2, Figure 8D) are formally termolecular, the opposing
differentials in activation enthalpy and entropy suggest they
proceed by microscopically distinct mechanisms.
Activation parameters were then estimated for 4aH-catalyzed

aminolysis under Regimes I and II. Since the N-acyl
intermediate 4aAc does not detectably accumulate during
turnover under either regime, a single phenomenological rate
coefficient was determined (k(I), k(II)) at each temperature using
eqs 4 and 5. There is a lower enthalpic and larger entropic barrier
to overall turnover in regime I (MeCN, Table 1 entries 5 and 6)
compared to regime II (THF, entry 7), resulting in a significantly
lower temperature dependence of the turnover rate under
regime I, see Section S3.8.7 in the Supporting Information.

Direct quantitative comparison of activation parameters for
the two individual aminolysis steps of regime III (Table 1,
entries 1−3) with regimes I and II is precluded by differences in
ground state (III/I)28 and solvent (III/II). Nonetheless, the
overall activation parameters for turnover rate-limiting gen-
eration of the acyl intermediate (regime II) are similar to those
of the first aminolysis (k′1) in regime III (entries 1 and 7) and
analogously, the activation parameters for regime I, in which acyl
intermediate consumption is turnover rate-limiting, are similar
to the second aminolysis (k2) in regime III (entries 1 and 5).

Table 1. Activation Parameters (Δ‡H/kJ mol−1; Δ‡S/J K−1mol−1) for Regimes I, II, and IIIa

entry regime/solv./T components Δ‡H′1 (Δ‡H(I)) Δ‡S′1 (Δ‡S(I)) Δ‡H′2 (Δ‡H(II)) Δ‡S′2 (Δ‡S(II))

1b III/MeCN/10−40 °C 1, 2, 3, 4bH (cat.) 19 −178 4 −233
2c III/MeCN/10−40 °C 1, 3, 4bH (stoich.) 23 −164 − −
3d III/MeCN/10−40 °C 2, 3, 4bAc (stoich.) − − 3 −237
4d III/MeCN/10−40 °C 2, 7, 4bAc (stoich.) − − 0 −233
5e I/MeCN/20−50°C 1, 2, 3, 4aH (cat.) −f −f (10)f (−214)f

6g I/MeCN/10−40 °C 2, 4aAc (stoich.)
h − − −2 −219

7i II/THF/20−40 °C 1, 2, 3, 4aH (cat.) (23)f (−189)f −f −f
aActivation parameters estimated from standard plots of ln(k/T) versus (1/T) using rate coefficients (k′1, k2, k(I), k(II)) extracted from kinetic data
obtained by VR-SF-1H NMR, under catalytic (cat.) and stoichiometric (stoich.) conditions; see Section S3.8.7 in the Supporting Information.
b[1]0, [2]0, [3]0 = 0.10 M, [4bH]0, 0.01 M, k′1, k2, by numerical fitting. c[1]0, [3]0 = 0.10 M, [4bH]0 = 0.020 M, k′1 by graphical normalization.
d[4bAc]0, [2]0, [3,7]0 = 0.10 M, k2 by graphical normalization. e[1]0, [2]0, [3]0 = 0.10 M, [4aH]0 = 0.01 M. fAcyl intermediate does not accumulate:
the activation parameters are based on a single phenomenological rate coefficient, k(I) or k(II), by graphical normalization. g[2]0, [4aAc]0 = 0.1 M;
autocatalytic in 4aH, v = kobs[4aAc][2][4aH].

hReaction complete in under 0.2 s in the presence of 3, 0.1 M. i[1]0, [2]0, [3]0 = 0.10 M, [4aH]0 =
0.005 M, graphically normalized at low conversion (<20%) to enable the approximations [4a{DBUH}] ≈ [4aH]0 and v ≈ k(II)[1][4aH]0.

Figure 8. VT-SF-1H NMR analysis of the aminolysis under regime III
([1]0, [2]0, [3]0 = 0.10M; [4bH]0 = 0.02M) 20mol %;MeCN, 10 to 40
°C; k′1(T) and k′2(T) were determined at each temperature by
numerical methods fitting of the profiles of [1], [2], [5], and [4bAc] to
the kinetic model in Figure 6B. (A) Acyl-speciation of catalyst. (B)
Temporal evolution of amide 5. (C) Eyring analysis of k′1(T) (k′1° =
k′1.c°2; c° = 1 M). (D) Eyring analysis of k2(T) (k2° = k2.c°2; c° = 1 M).
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We attempted to refine the comparison of Regimes I and III
by determining the kinetics of the stoichiometric aminolysis of
independently synthesized 4aAc with 2 and auxiliary base DBU
(3) in MeCN. However, the reaction was too rapid to monitor
by VR-SF-19F NMR.29 Nonetheless, in the absence DBU (3),
the aminolysis slowed sufficiently to permit the acquisition of
variable-temperature kinetic data, see Section S3.8.7 in the
Supporting Information. The evolution of 5 under these
auxiliary base-free conditions was found to be of first order in
4aAc and in 2, with an additional and dominant first-order
autocatalytic dependence on 4aH.

30 The first-order autocatalysis
by 4aH (pKa(MeCN) 9.4) instead of a second-order dependence
on the far more basic amine 2 (pKaH(MeCN) = 16.9) suggests
tautomeric catalysis27 by 4aH. The rate of this formally
termolecular process was temperature-independent in the
range studied (10−40 °C) with a weakly negative enthalpic
barrier and a substantial negative entropic contribution to the
free energy of activation, Table 1, entry 6.
Overall, the general correspondence between Δ‡H(II)/Δ‡S(II)

(THF, II, entry 7) and Δ‡H′1/Δ‡S′1 (MeCN, III, entry 1), and
between Δ‡H(II)/Δ‡S(II) (MeCN, I, entry 5) and Δ‡H′2/Δ‡S′2
(MeCN, III, entry 1) suggests that the structures of the rate-
determining transition states traversed in the generation and
consumption of 4Ac are similar in all three regimes,31 despite
differences in catalyst structure (4a/4b) and solvent ionizing
strength (MeCN/THF). This conclusion is supported by the
similar Hammett reaction constants (ρ(I) = −0.50, MeCN; ρ(II)

= −0.34, THF) for commitment of the amine substrate (2) in
the second stage (k2) of regimes I and II, as determined by the
intermolecular competition of a series of p-substituted benzyl-
amines, see Section S4.1 in the Supporting Information.
2.11. Structure−Activity Relationships. A key point

noted in Birman’s original report,15a and in a subsequent
review,5b was the apparent absence of a tractable relationship
between the azole acidity (pKa, DMSO) and the catalytic
efficiency, based on the first half-life of the acyl donor
(PhOAc).15a

Of a wide range of azoles tested, by far the most efficient was
1,2,4-triazole 4aH, which in the presence of the auxilliary base
DBU (3) was concluded to generate the triazolate [4a]− as the
active species. 1,2,4-Triazole 4aH remains the most effective
simple Lewis base catalyst reported to date for the direct
aminolysis and transesterification of weakly activated es-
ters.5b,15a,b To better understand the mechanistic origins of
these observations, we tested a series of azoles (4a-rH; Figure 9)
that were selected to provide acidities spanning nearly 10 orders
of magnitude. Eight 4-aryl-substituted pyrazoles were synthe-
sized by Suzuki−Miyaura arylation of unprotected or N-benzyl
protected 4-bromopyrazole,32 see Section S2.2 in the Support-
ing Information, the remaining 10 azoles were obtained from
commercial sources. Thermodynamic acidities of azoles 4a-rH
pKa(MeCN) = 22.1−31.2 were determined using the
experimental acidity of imidazole (pKa(MeCN)= 29.1)20g,33 as
an anchor and parameters determined from the linear regression
of computed (KS-DFT/DLPNO-CCSD(T)) and experimental
acidities for seven substituted indoles (pKa(MeCN) = 23.6−
32.6, RMSE = 0.30),20g covering a comparable range of acidities,
see Section S7.3 in the Supporting Information.
The efficiency of each of the 18 azole catalysts (4aH to 4rH)

was then compared by aminolysis of ester 1 monitored in situ by
either 1H NMR (MeCN-d3) or 19F NMR (MeCN) under
identical conditions Figure 10. In Figure 10A, the red data points
are the first half-life of 1 (log10 t1/2[1], y-axis) as a function of

azole acidity, pKa(MeCN), x-axis. The half-lives range from 18 h
to 1.7 min. Qualitative comparison is also provided by the subset
of five azole catalyst activities reported by Birman,15a see yellow
data points, albeit for the reaction of isopropylamine with
PhOAc in CDCl3 with DBU (3). The catalytic activity increases
as the azole acidity is raised from benzotriazole 4cH
(pKa(MeCN) = 22.2) reaching a maximum in the range (25 <
pKa(MeCN) < 28).
The trend then inverts, with the catalytic activity reducing as

the azole acidity is further raised, to reach 4-methylpyrazole 4rH
(pKa(MeCN) = 31.2). Thus, under the conditions employed in
this work, 4-iodopyrazole 4hH (pKa(MeCN) = 27.0; t1/2 ≈ 1.7
min) not 1,2,4-triazole 4aH (pKa(MeCN) = 24.6; t1/2 ≈ 8min) is
the most efficient catalyst. To investigate why the most efficient
catalysis is observed for azoles of intermediate acidity (25 <
pKa(MeCN) < 28), the temporal concentration profiles for each

Figure 9. Classification (α/β) of the 18 azoles compared as aminolysis
catalysts, see Figure 10, based on pKa(MeCN). Values in parentheses
are experimental or calculated thermodynamic acidities, pKa(MeCN).
Values in brackets are the first half-life of 1 (t1/2[1], min), conditions as
Figure 10, see Section S3.8.8 in the Supporting Information. For class β
azoles, the N-acetylated intermediate 4Ac accumulates sufficiently to be
detected by in situ 1HNMR spectroscopy during turnover. Half-lives for
catalysis by 4cH, 4dH, and 4rH determined by numerical methods fitting
and extrapolation to [1]/[1]0 = 0.5.
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catalyst (Figure 10B−D) were analyzed in more detail. In
qualitative terms, two classes of kinetic profile were apparent
across the full series of azoles, with the transition occurring at
pKa(MeCN) ≈ 26. For class α azoles (pKa(MeCN) < 25; 4aH,
4cH, 4dH, 4eH, Figure 9) the amide (5) evolution profiles are
characterized by a substantial initial rate with progressive
inhibition by co-evolved 6H. For these class α azoles, the
acetylated intermediate 4Ac was not detected at any point during
the in situ NMR spectroscopic monitoring, and 5 and 6H are
liberated in concert.
In contrast, for class β azoles (pKa(MeCN) > 25; 4bH; 4fH−

4rH, Figure 9) there is no significant inhibition by co-evolved 6H
and theN-acetylated intermediates (4Ac) accumulate sufficiently
to be quantified by in situ 1H NMR spectroscopy (Figure 10C).
This then allows kinetic deconvolution of the catalysis by class β
azoles and construction of multiple structure−activity relation-
ships, Figure 11A−D. Rate and equilibrium coefficients for each
class β azole were determined by numerical fitting of the
temporal concentration profiles of 1, 2, and 5 to the telescoped
kinetic model, see Section S3.8.7 in the Supporting Information.
For azoles of intermediate acidity (4fH−4jH; pKa(MeCN) =
25.9−28.2), independent values for k′1 and k′−1 could not be
obtained by this method. Instead, values for K′1 and k2 were

obtained by imposing the assumption of a rapid pre-equilibrium.
For weakly acidic azoles (4kH−4rH; pKa(MeCN) > 28.2),
however, numerical fitting led to independent values for k′1, k′−1,
and k2. Imposing constraints of either a rapid pre-equilibrium
(k′−1 ≫ k2) or irreversibility (k′−1 ≪ k2) for these azoles led to
significantly poorer fits, suggesting that all three processes are
kinetically significant.
Linear correlations (R2 > 0.91) between the stability of theN-

acyl intermediate, log10(K′1), and the Brønsted acidity of the
azole, pKa(MeCN), reveals two subsets of the class β azoles,
Figure 11B. Pyrazoles 4bH, 4fH, and 4rH, and imidazole 4lH all
have systematically smaller equilibrium constants, K′1, than
pyrazoles of comparable acidity that bear a π-donating
substituent at the 4-position. This effect is analogous, albeit
smaller, to the impact of π-donating substituents in acetic
anhydride hydrolysis catalyzed by 4-substituted pyridines, and
likely reflects resonance stabilization of the N-acyl intermedia-
te.34a Partitioning the class β azoles into the two subsets aids in
the interpretation of the correlation between azole acidity,
pKa(MeCN), and the kinetics of aminolysis of the N-acetylated
intermediate, log10(k2). For azoles with π-donating substituents,
the correlation displays a distinct curvature, with limiting slopes
of approximately −1.0 and −0.2 at the least (4qH) and most
acidic (4gH) ends of the scale, respectively, Figure 11C.
Jencks analyzed the kinetics of general base-catalyzed

aminolyses ofN-acetyl imidazole 4lAc and 1-acetyl-1,2,4-triazole
4aAc, in buffered aqueous solution.34b,c In both reactions, there
were inflections in correlations between log10(kcat) and the
Brønsted basicity of the general base catalyst, with the slope

Figure 10. Kinetics of aminolysis ([1]0, [2]0, [3]0 = 0.10 M) catalyzed
by azoles (4H; 10 mol % at 20 °C) analyzed by in situ 1H or 19F NMR
spectroscopy, in MeCN-d3 or MeCN, respectively. (A) Empirical
catalytic efficiency, as quantified by the first half-life of 1 (t1/2[1], min),
compared to azole acidity, pKa(MeCN). Red data points this work;
yellow are data reported by Birman15a for an analogous system (PhOAc,
iPrNH2, DBU, azole; CDCl3); triangular data points denote azoles
included in both studies. (B) Example amide evolution profiles using
azoles pKa(MeCN) ≤ 27.7. (C) Catalyst speciation profiles [4Ac]/
[4H]0 versus fractional conversion, F2, of 2 for selected azoles
pKa(MeCN) ≥27.7. (D) Selected amide evolution profiles using azoles
pKa(MeCN) ≥27.7.

Figure 11. Structure−reactivity relationships between acidity
(pKa(MeCN)) and key kinetic parameters for the aminolysis of 1
with 2 + 3 in MeCN-d3 (20 °C) catalyzed by class β azoles 10 mol %
(pKa(MeCN) > 25). Correlations shown are of k2 (A),K′1 (B), k2 for 4-
substituted pyrazoles with π-donating substituents (C), and k′1 (D).
Parameters were determined by numerical fitting of kinetic profiles of 1,
2, and 5 in each run to the telescoped kinetic model in Figure 6, with
homoconjugation of 6H assumed to be unaffected by azole identity; see
Section S3.8.7 in the Supporting Information for full details. Red
circles: 4-substituted pyrazoles with π-donating substituents (4gH−
4kH; 4mH−4qH). Blue triangles: pyrazoles without π-donating
substituents (4bH, 4fH, 4rH). Yellow diamond: imidazole (4lH).
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tending toward +1.0 for the weakest bases and plateauing at
about +0.2 for the strongest. The inflections were interpreted as
arising from changes in the identity of the rate-determining
transition state. It was proposed that elimination, or concerted
deprotonation-elimination of a tetrahedral anion, was rate-
determining for the weakest bases, whereas diffusive encounters
between a tetrahedral zwitterion and the general base catalyst
were rate-limiting for the strongest bases.
An inverted but otherwise analogous switch in the kinetic

regime may underpin the data in Figure 11C. The limiting slope
of −1.0 for N-acetylated adducts derived from weakly acidic
azoles (e.g., 4bH) would then correspond to fully rate-
determining azolate expulsion from a tetrahedral anion, or to
concerted deprotonation-elimination from the preceding
tetrahedral zwitterion (4T‑ZW, Scheme 3).

In either case, the near-unity correlation requires a well-
advanced (product-like) rate-determining transition state with
significant C−Nazole cleavage. The rate-determining transition
state for azoles of lower pKa(MeCN), where the lifetime of the
tetrahedral zwitterion 4T‑ZW in MeCN would be expected to be
considerably shorter than the timescale for diffusion, is less clear.
Within the mechanistic framework outlined by Jencks,34 the
limiting slope of approximately −0.2 may arise from rate-
determining mass transport, or proton transfer, or a nuanced
regime in which these processes are competitive with
elimination. Moreover, the data do not preclude for example
pre-associative addition, of {2··3} to 4Ac, being rate-determining,
Scheme 3.
Overall, the empirical relationship in Figure 10A is readily

rationalized by changes in the catalyst speciation that arise from
the modulation of the acidity of the azole. The deprotonation of
highly acidic azoles (left-hand end of x-axis in Figure 10A)
affords weakly Lewis-basic azolate anions. These generate low
concentrations of highly reactive N-acetylated intermediate 4Ac,
with the dominant catalyst speciation being the azolate anion,
and the catalytic efficiency low. Reducing the acidity of the azole
stabilizes theN-acylated intermediate, increasing its steady-state
population, and for azoles of intermediate acidity (central
section of x-axis in Figure 10A) the highest catalytic efficiency is
attained. As the acidity of the azole is further reduced (right-

hand end of x-axis in Figure 10A) so is the catalytic efficiency
due to increased off-cycle speciation as 4H and the reduced
reactivity of the on-cycle intermediate 4Ac.
2.12. Structural Insight from Heavy Atom KIEs. To add

structural texture to the relationships in Figure 11, selected
heavy-atom kinetic isotope effects (KIEs) in the 4aH- and 4bH-
catalyzed aminolysis of 1 with 2 and 3 in MeCN (regimes I and
III), were measured by intermolecular competition. These
azoles were chosen because their catalytic kinetics were well
characterized and because the difference in their acidities
(ΔpKa(MeCN) = 5.5) is such that the rate-determining
transition states for the aminolysis of the corresponding N-
acetylated adducts were expected, on the basis of Figure 11, to
differ significantly in structure.
The carbonyl 12C/13C KIE for regime I was determined by in

situ 1H NMR spectroscopic analysis of a mixture of [13CO]-1/
[13CH3]-1 under standard conditions,35 see Section S4.2 in the
Supporting Information. The relative isotope effect 12/13kCO ≈
k13CH3/k13CO = 1.041(2) was extracted by nonlinear regression
of the isotopomer ratio36 R = [13CO-1]/[13CH3−1]. The amine
14N/15N KIE was determined by in situ 19F NMR spectroscopic
analysis of [15N]-2/meta-deuterated 2 ([Ar-d1]-2).

37 The
relative inverse isotope effect k14N/k15N = 0.979(5) was extracted
by nonlinear regression of the isotopomer ratio R, and then
normalized for the independently determined aryl 1H/2H KIE,
see Section S4.3 in the Supporting Information.
The closely balanced rates of formation (k′1), phenolysis

(k′−1), and aminolysis (k2) of 4bAc under regime III result in a
weighted and thus conversion-dependent 12C/13C KIE.
Consequently, only the 14N/15N KIE was measured for catalysis
by pyrazole 4bH under regime III, affording a normalized value
of 14/15kNH2 = 0.976(3). The direct determination of KIEs from
the stoichiometric aminolyses of 4aAc and 4bAc proved
impractical due to their high reactivity.
To the best of our knowledge, heavy-atom KIEs for acyl

transfer have only been determined in protic media.38 and we
thus evaluated theoretical 14/15kN and 12/13kC KIEs for a broad
range of saddle-point structures, see Section S7.2 in the
Supporting Information. For catalysis by 4aH, these were
initially located on the PBE0+GD3BJ/6−311+G(d,p)/
IEFPCM(MeCN) surface. Theoretical KIEs were then
computed for each relative to [13CO-1]/[13CH3-1] and [15N]-
2/2, using the Bigeleisen-Mayer equation (T = 293.15 K; 20
°C), linearly scaled harmonic frequencies (λzpve = 0.98), and
Bell’s one-dimensional quantum-mechanical tunneling correc-
tion.39 Equilibrium isotope effects for zwitterion generation
(4aT‑ZW; analogous to 4b-T‑ZW in Scheme 3) were computed
analogously, without tunneling correction. For all saddle-point
structures both KIEs were computed using a further seven KS-
DFT methodologies, spanning different basis sets (6-31+G-
(d,p), 6-311++G(2d,p), cc-pVTZ, def2-TZVP), solvation
models (SMD(MeCN)), and exchange−correlation functionals
(ωB97X-D, M06-2X).40 The full set of results from these
calculations are shown in Section S7.2 in the Supporting
Information. Analogous saddle-point structures (plus the
tetrahedral zwitterion intermediate 4bT‑ZW) for 4bH-catalyzed
aminolysis (SI) were obtained on the PBE0+GD3BJ/6-
311+G(d,p)/IEFPCM(MeCN) surface alone, and theoretical
14N/15N KIEs calculated in the standard manner (see SI).
All of the conventional transition statemodels located for 4aH-

catalyzed aminolysis afforded theoretical KIEs that were
essentially invariant across the eight methods, allowing a
nuanced evaluation. The average KIEs, with the uncertainty in

Scheme 3. Selected Rate-Determining Transition States
(RDTS) Considered for 4b-Catalyzed Aminolysis
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each KIE estimated from the corresponding standard deviation,
were compared with the experiment. While some individual
transition state models provide a good description of either the
12C/13C or the 14N/15N KIE measured under regime I (catalysis
by 4aH), no single

41 transition state provided a description fully
consistent with both, see Section S7.2 in the Supporting
Information.
Nonetheless, the calculations identified that: (i) the large

inverse 14N/15N KIE (14/15kNH2 = 0.979(5)) rules out transition
states in which the C−N (amine) bond is not already fully
formed, suggesting azole elimination and/or proton transfer is
rate-determining; and (ii) the large normal 12C/13C KIE
(12/13kCO = 1.041(2)) suggests there is C−N (azole) bond
cleavage in the rate-determining transition state, albeit without
defining the extent of this. These features are captured in
Schramm-type42 analyses of a continuum of constrained
transition state models emulating amine attack (TSCAA-a, Figure
12A) and azolate expulsion (TSCAE-a, Figure 12B), both with
accompanying concerted proton transfer. Of these, only the
concerted, general base-catalyzed decomposition of 4aT‑ZW by
DBU (3), i.e., TSCAE-a Figure 12B, afforded a range of models
giving KIEs in agreement with experimental values determined
under regime I.
For regime III, the slightly more inverse amine KIE (14/15kNH2

= 0.976(3)) and lower nucleofugacity of the azolate
(pKa(MeCN), 4bH = 30.1) suggests that proton transfer from
the zwitterion (4aT‑ZW) toDBU (3) is complete, and elimination
may proceed via anO-coordinated tetrahedral anion, see Section
S7.2 in the Supporting Information for further discussion.

3. CONCLUSIONS
The aminolysis of p-fluorophenyl acetate 1 by p-fluorobenzyl
amine 2, with DBU (3) as an auxiliary base, has been used to
explore the kinetics and mechanism of acyl transfer catalysis by
protic azoles (4H).

3h,5b,15 In situ and variable-ratio stopped-flow
1H and 19F NMR spectroscopy provided compelling data for
anionic Lewis base n−π* catalysis via N-acylated azole
intermediates (4Ac). While all evidence points to a single
overarching mechanism, Figure 5, a strikingly diverse array of
limiting kinetic regimes emerges from remarkably similar

conditions. Indeed, the identity of the auxiliary base, the solvent,
and the azole, all strongly influence the evolution of catalysis.
Three limiting regimes (I, II, III) have been identified for

catalysis by protic azoles (4H), Figure 5. The regimes are
distinguished not only by their kinetics but also by their very
different sensitivities to changes in reaction temperature. This
feature arises from the steps that generate and then consume the
N-acylated azole intermediate (4Ac) proceeding via microscopi-
cally, but not necessarily kinetically, distinct mechanisms. The
diversity of the kinetics of azole-catalyzed aminolysis has
previously resulted in several mechanistic aspects remaining
ambiguous or being overlooked altogether. A number of these
features have been identified and can now be rationalized.
First, distinct changes in the reaction profile between different

solvents do not necessarily solely reflect differences in the extent
of product inhibition. These changes can also arise from catalysis
involving different rate-determining transition states, see for
example regimes I (MeCN) and II (THF), eqs 4 and 5. Second,
a sufficiently strong auxiliary base, e.g., DBU (3) is required for
turnover, and it serves two roles. It ionizes the protic azole pre-
catalyst (4H)

15a and promotes the aminolysis of the N-acylated
azole intermediate (4Ac) by general Brønsted base catalysis.
Although increasing base strength will not necessarily lead to an
increase in catalytic efficiency, bifunctional bases, e.g., PMDBD
(3,3,6,9,9-pentamethyl-2,10-diazabicyclo[4.4.0]dec-1-ene, 7),
can accelerate the aminolysis of 4Ac by tautomeric catalysis,
leading to significant changes in catalyst speciation, Figure 7D.
Thirdly, under otherwise constant conditions, there is a
qualitatively parabolic relationship between azole acidity and
empirical catalytic activity, Figure 10A. This is a natural
consequence of the approximate correlation between Lewis
and Brønsted basicity across a comparable series of azolate
anions, and associated changes in catalyst speciation. However,
when only sparsely sampled (see e.g., the yellow symbols in
Figure 10A) the underlying relationship between azole pKa and
catalytic efficiency is intractable.15a Similar bell−curve relation-
ships have been suggested for N,N-dialkylaminopyridine
catalysts in the acylation of alcohols by carboxylic acid
anhydrides,10c albeit without explicit evidence for a fundamental

Figure 12. KIEs (14/15kNH2; 13/12kCO) calculated by Schramm-type analysis of (A) amine attack (TSCAA-a) versus (B) azolate expulsion (TSCAE-a) for
catalysis by 4a in MeCN (regime I, Figure 2). The shaded bands indicate the experimental KIE values within ranges of estimated errors (14/15kNH2 =
0.979(5)) and 12/13kCO = 1.041(2). See Section S7.2 in the Supporting Information for the KIEs (14/15kNH2; 13/12kCO) calculated for eight other
transition states involving 4a and 4b, plus EIEs (14/15KNH2; 13/12KCO) for the generation of zwitterions 4aT‑ZW and 4bT‑ZW.
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shift in catalyst speciation, or for the expected onset of kinetic
saturation in the acyl donor.
The general features noted above lead to important practical

implications for the development of azole anion Lewis base
n−π* catalysis. A simple but fundamental point is that no single
azole catalyst will be optimal for acyl group transfer in general:
the position of themaximum activity (lowest log10 t1/2) in Figure
10A will vary with the nature of both the acyl donor and acyl
acceptor, as well as the auxiliary base. For the direct aminolysis of
weakly activated esters such as acetate (1) studied herein, the
analysis has identified that 4-iodo-pyrazole 4hH (Figure 9) is
around five times more active than 1,2,4-triazole 4aH, the
previously most effective simple Lewis base catalyst.5b,15a,b

Moreover, apparently minor changes in catalyst acidity,
auxiliary base structure, and the reaction medium can induce
significant changes in catalyst speciation, kinetic regime, and
susceptibility to product inhibition. This is significant because
common empirical measures of catalytic activity may not be
directly comparable, between systems, or at different con-
versions. The two key steps in azole-catalyzed aminolysis are the
formation and then consumption of theN-acyl intermediate 4Ac.
These steps have significantly different activation parameters,
Figure 8, Table 1, and thus, depending upon the kinetic regime,
the efficiency of catalytic acyl transfer may be quite sensitive to
temperature, or not at all. Consequently, the best optimization
strategy for outcompeting unselective uncatalyzed background
reactions may differ from azole to azole, from solvent to solvent,
and from base to base.
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