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SUMMARY

Designing a targeted screening library of bioactive small molecules is a chal-
lenging task since most compounds modulate their effects through multiple pro-
tein targets with varying degrees of potency and selectivity.We implemented an-
alytic procedures for designing anticancer compound libraries adjusted for
library size, cellular activity, chemical diversity and availability, and target selec-
tivity. The resulting compound collections cover a wide range of protein targets
and biological pathways implicated in various cancers, making themwidely appli-
cable to precision oncology. We characterized the compound and target spaces
of the virtual libraries, in comparison with a minimal screening library of 1,211
compounds for targeting 1,386 anticancer proteins. In a pilot screening study,
we identified patient-specific vulnerabilities by imaging glioma stem cells
from patients with glioblastoma (GBM), using a physical library of 789 com-
pounds that cover 1,320 of the anticancer targets. The cell survival profiling re-
vealed highly heterogeneous phenotypic responses across the patients and
GBM subtypes.

INTRODUCTION

In the past ten years, there have been encouraging advances in the treatment and consequently, the sur-

vival rates, for many cancers. This progress has largely been driven by increased molecular understanding

and classification of distinct cancer subtypes, the development of novel therapeutics focusing on targets

associated with specific disease subtypes, and advances in both the type and range of therapeutic mole-

cules available for the treatment of patients. When considering molecules that have been approved or

advanced in clinical trials, there are successful examples of targeted chemotherapeutics,1 small interfering

RNAs,2 monoclonal antibodies,3 microRNAs,4 and virotherapy,5 among other drug classes. These develop-

ments are very encouraging considering the complexity of human cancers and the difficulty in developing

effective treatments for advanced disease. However, small-molecule chemotherapeutics still makeup the

vast majority of approved drugs available to oncologists treating cancers.6–8 In the case of glioblastoma

(GBM) brain tumors, small-molecule chemotherapeutics are currently the only approved treatment modal-

ities beyond surgery and radiation9 and represent the most fertile ground for future innovation of new ther-

apeutics to address the current challenges inherent in treating brain tumors. These challenges include

(i) breaching the blood-brain barrier to effectively deliver therapeutics to the tumor, (ii) developing combi-

natorial treatments to systematically target redundant signaling pathways and tumor vulnerabilities

inherent in brain tumors which typically exhibit wide intra- and inter-tumor heterogeneity, and (iii) selec-

tively targeting GBM stem cells, which have been shown to be the main source for cancer recurrence in

GBM.10

Traditional drug development often employs high-throughput drug screening of large collections of

diverse small-molecule libraries against a nominated therapeutic target to identify chemical starting

points (hit compounds) for further optimization. This process has been relatively successful at the indus-

trial level, but it tends to become less successful at the academic level, due to the prohibitive infrastruc-

tural costs required to develop and prosecute large-scale screens,11 as well as the cost to develop hit

compounds to viable leads and sequentially to an investigational drug candidate. Instead, many aca-

demic target discovery facilities have focused on developing more physiologically relevant phenotypic
iScience 26, 107209, July 21, 2023 ª 2023 The Author(s).
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assays, which better recapitulate disease biology,12,13 and screening of smaller, more focused libraries of

small compounds, such as collections developed and curated for drug repurposing,14–16 probes for

target discovery,6,17,18 or pharmacologically active targeted compound sets for specific target clas-

ses.7,19,20 This focused approach has the advantage of providing a better understanding of the molecular

basis of the disease, while simultaneously exploiting existing therapeutics and compounds with known

safety profiles, along with probes that possess drug-like properties and compounds with known protein

targets. In complex diseases of unmet therapeutic need, where target biology is still poorly understood

or where disease heterogeneity indicates multiple target pathways that contribute to disease progres-

sion (as exemplified by GBM), phenotypic screening of target-annotated compound libraries in relevant

patient-derived cell models may provide a valuable strategy for empirical identification of druggable tar-

gets or drug combinations. By circumventing major pitfalls, such as poor selectivity, cellular activity, and

biological or target space diversity, these targeted libraries have great potential to accelerate the drug

discovery process.

Here, we describe the construction of a comprehensive anticancer target-annotated compound library,

designed to interrogate a wide range of potential cancer targets in phenotypic screening. The library

design is approached as a multi-objective optimization (MOP) problem, where the aim is to maximize

the cancer target coverage, while guaranteeing compounds’ cellular potency and selectivity, and mini-

mize the number of compounds arrayed into the final screening library. To do this, we used two

target-based design strategies. First, we searched for small molecules against the druggable cancer tar-

gets among approved and investigational compounds (AICs) identified from the literature, drug data-

bases, and existing oncology collections. Second, to expand the target-annotated compound library,

we surveyed several pan-cancer studies to identify anticancer compound-target pairs and then expanded

the chemical space around those novel targets by identifying additional bioactive compound probes

through database queries. Importantly, cancer-mutated proteins, nearest neighbors, and influencer tar-

gets were further investigated for potential small-compound interactors, which generated a large in silico

probe set collection. Finally, we refined the probe set collection by applying several filters, with adjust-

able activity and similarity thresholds, and removed redundant structures and compounds which could

not be readily sourced at the time of library curation, to yield a sufficiently diverse, focused, and

target-annotated compound library for phenotypic screening purposes, named the Comprehensive

anti-Cancer small-Compound Library, or C3L. In the pilot application of C3L to cell survival profiling of

patient-derived GBM stem cell models, we discovered widely heterogeneous patient-specific vulnerabil-

ities and target pathway activities. All the compound libraries and their target and compound annota-

tions, as well as the pilot screening data, are freely available as data spreadsheets and through an inter-

active web platform (www.c3lexplorer.com).
RESULTS

Identifying and curating small-molecule inhibitors of cancer-associated targets

Our first design objective was to define a comprehensive list of protein targets associated with the devel-

opment and progression of cancers to form the basis of the anticancer small-molecule library. We first

defined a list of proteins known to be implicated in cancers using The Human Protein Atlas21 and nominal

targets of pan-cancer studies from the PharmacoDB,22 leading to the target space of 946 oncoproteins

(Figure 1A; see STAR Methods for details). We then expanded the target space by using additional pan-

cancer studies linked back to cancer-related targets to define the full set of 1,655 proteins or other can-

cer-associated gene products. Our target space was designed to span a wide range of protein families,

cellular functions, and cancer phenotypes, and it covers all the categories of ‘‘hallmarks of cancer’’23,24

(Figure 1B).

After defining the comprehensive list of cancer-associated targets, our next objective was to identify and

curate a small-molecule collection of compounds targeting these proteins. Since the compounds ranged

from investigational and experimental probe compounds (EPCs) to approved drugs, we took a systematic

approach to defining each source, through sorting the compounds targeting the cancer-associated tar-

gets, ranking the compounds for activity, diversity, and availability, and finally, producing a sortable and

searchable database of the screening library along with its target and other annotations. The screening li-

brary construction started from >300,000 small molecules and ended up with 1,211 optimized for physical

library size, cellular activity, chemical diversity, and target selectivity, leading to 150-fold decrease in com-

pound space, yet still covering 84% of the cancer-associated targets.
2 iScience 26, 107209, July 21, 2023
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Figure 1. Target-based pipeline for designing of the three experimental probe compound (EPC) sets (Theoretical,

Large-scale, and Screening set)

(A) Four target-based compound collections were defined: (i) the pan-cancer collection includes compounds and their

annotated targets from various pan-cancer studies; (ii) the extended compound space consists of additional compounds

that have off-target activity against the annotated targets based on bioactivity data from public drug/target repositories

such as ChEMBL,25 Drug Target Commons (DTC),26 and DrugBank;27 (iii) the mutant target space compounds have

activity against the mutant variants of the annotated targets extracted from the COSMIC database;28 (iv) the extended

target space includes compounds with activity against cancer-related targets established through a nearest neighbor

approach.29

(B) The targets of the compounds in the theoretical set cover all the hallmarks of cancer. Note: each target protein may

belong to multiple hallmarks explaining why they do not add up to 1,655.

(C) The filtering criteria for designing the large-scale and physical screening sets. See STAR Methods for the step-by-step

procedures for the construction of the various probe set collections.
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Target-based approach: EPC collection

Using the target-based design, we extracted compound-target interactions manually from public data-

bases, leading to chemical probes and investigational compounds in three nested subsets of gradually

decreasing sizes; (i) the theoretical set is an in silico set curated from established target-compound pairs

covering the expanded target space of 1,655 cancer-associated proteins, (ii) the large-scale set is a broader

screening collection of filtered compounds covering the same target space as theoretical set, and (iii) the

screening set is the final set of most potent probes arrayed into the physical library. The screening set is the

smallest subset due to the limitations in compound commercial availability for screening purposes. Fig-

ure 1C shows a schematic diagram of the construction of these three target-based compound sets, with

their compound and target numbers.

The theoretical set contains 336,758 unique compounds from four probe sets for pan-cancer target space,

pan-cancer collection with extended compound space, mutant target space, and mutant target collection

with extended target space. The large-scale set contains a subset of 2,288 compounds from the theoretical

set, filtered to reduce the number of molecules in the library while still covering the same target space, using

both the activity and similarity filtering procedures with pre-defined cutoff values (see Figure S4 for the filtering

parameters used in this study, but the cutoff parameters are freely adjustable for other studies and library con-

structions). The large-scale set was based on both the on- and off-target profiles of the 2,282 small-molecule
iScience 26, 107209, July 21, 2023 3
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compounds, which could be used in larger-scale screenings campaigns in academic or industrial projects

(Table S1).

The screening set contains a smaller number (1,211) of compounds that aremore easily purchasable and used

for screening applications, thus making the probe set suitable for routine exploration of oncology-associated

biological target space in complex phenotypic assays and identification of potential candidates for further

drug development. This probe subset was obtained by subjecting the theoretical set to three filtering proced-

ures (see Figure 1C). These filtering procedures involved (i) global target-agnostic activity filtering to remove

13,335 non-active probes, (ii) selecting the most potent compounds for each target to reduce the library to

2,331 compounds, and (iii) filtering by the availability of the compounds, which reduced the library size by

52%, while the target coverage remained at 86%and the target activity distributionswere relatively unchanged

(p > 0.05; Kolmogorov-Smirnov [K-S] test; Figure S1).

Drug-based approach: AIC collection

As expected from the target-based approach (i.e., identifying established potent small molecules for

respective targets), EPC collections included mostly compounds that are currently in preclinical stages

(Figure 2A). We next compared EPC collection with an additional set of small molecules that are currently

approved for clinical use, also including anticancer compounds in various clinical development stages that

might be candidates for drug repurposing applications. This compound-based design strategy led to a

complementary AIC collection, named AIC collection, manually curated from several public compound

sources and clinical trials. The AIC collection was further subjected to removal of duplicate molecules

and similarity searches using the extended connectivity fingerprint (ECFP4/6) and molecular ACCess sys-

tem (MACCS) fingerprints, where Dice similarity for ECFP4/6 and Tanimoto similarity for MACCS keys

with cutoff of R 0.99 were used to identify and remove structurally highly similar compounds (e.g., doxo-

rubicin and epirubicin).

The AIC collection consisted of 546 unique compounds, out of which 74 (14%) are labeled as standard che-

motherapeutics (Figure S2). Most of the molecularly targeted compounds in AIC collections are kinase in-

hibitors (50%), but the collection also includes various other drug classes, such as immunomodulatory

agents (3.7%) and metabolic modifiers (2.9%). As expected, the AIC compounds contain a large number

of approved drugs (40.1%), and the compounds in this collection only partly overlapped with those of

the EPC collections (64% with EPC and 27% with screening set; Upset plot in Figure 2A). However, even

if the total number of compounds is rather different in the collections, the AIC and EPC collections cover

the same anatomical and therapeutic classes (ATCs), and the proportions of ATCs in the screening set were

somewhere in between the AIC and EPC collections (Figure 2B).

To further compare the target-based EPC and compound-based AIC collections to a functional genomics-

based approach to construct an anticancer compound library, we identified potent inhibitors of the 628 pri-

ority targets extracted from the CRISPR-Cas9 screens of the DepMap project,30 using a similar procedure

to the one implemented for the EPC collection (see STAR Methods). The priority target compound (PTC)

collection of 38,747 compounds includedmainly preclinical compounds (Figure 2A), with a large number of

compounds overlapping with the EPC collection (99%). The four compound collections had a core set of 85

common compounds shared by all the sets (Figure 2A, upset plot). Strikingly, PTC collection covers only

113 out of the 628 priority targets (18%), indicating that most of the loss-of-function screen targets are

not currently druggable. The EPC screening set has more approved compounds (102, 8.4%), compared

to the PTC collection (69, 0.2%).

Characterization of the compound and target spaces of the probe collections

After comparing the EPC collections to the approved/investigational and priority target collections, we

next analyzed the compound and target spaces of the three EPC collections, designed using the target-

based procedures and selected parameter values for filtering. The target distributions of the three probe

collections remained relatively similar, whereas the screening set showed reduced numbers of multi-target

compounds by its design (Figure 3A, upper panel). However, the median number of targets per compound

was one for each probe collection, indicating that the sets include relatively selective compounds. For most

of the targets, the screening set contains only a single potent compound, again per its design principles,

whereas in the theoretical and large-scale sets the median number of compounds per target was 42 and 2,

respectively (Figure 3A, lower panel).
4 iScience 26, 107209, July 21, 2023



Figure 2. Compound spaces of the target-based and compound-based collections

(A) Clinical development phases of the compound collections: target-based approach - experimental probe compound

(EPC) collection, compound-based approach - approved and investigational compound (AIC) collection, and CRISPR9-

based approach - priority target compound (PTC) collection (compounds targeting the 628 priority targets from the

DepMap project). The clinical development phase was extracted from ChEMBL.25 Numbers in parentheses indicate the

number of compounds in each category. The upset diagram shows the size of the intersections between the compound

sets. The sets that are part of an intersection are filled in, and when only a single set is filled in, that indicates the number of

compounds in that set.

(B) The distribution of compounds in the collections in terms of the anatomical therapeutic chemical (ATC) classes, which

distinguishes the organ or system on which the compounds act and their therapeutic, pharmacological, and chemical

properties.
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Figure 3. Target spaces of the compound collections

(A) The number of targets per compound reported in drug databases (upper panel) and the number of compounds per

target (lower panel) in the three compound collections. The dashed line indicates the median. The x axis and y axis are

log10-scaled in each panel, while the numbers present the non-logged counts (note the different scales between the

panels). The counts are based on the target activity threshold of%1000nM (see Figure S7 for the other activity thresholds).

(B) The distribution of target classes of compounds in the screening set and theoretical/large-scale sets (that contain the

same set of targets). The numbers next to the bars indicate the percentage of targets in the two collections of different

sizes. The target classification of proteins was extracted from ChEMBL.25

(C) The number of targets associated with cancer types in the theoretical/large-scale, screening set and in the physical

compound set that was tested in the patient-derived GBM stem cells in an imaging-based assay. The numbers above the

bars indicate the percentage of targets in the two collections of different sizes. The disease associations were extracted

from OpenTargets,31 with overall association score >0.5 (https://www.opentargets.org/).

(D) Kinase families covered by the targets in the probe sets. The kinases colored in purple indicate the targets present only

in the theoretical/large-scale sets, but not in the screening set, while the light-green targets are covered by all the three

collections. KinMap32 web-tool was used for the creation of the illustration, reproduced courtesy of Cell Signaling

Technology, Inc. (www.cellsignal.com).
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The target class distribution of the screening set is similar to that of the larger probe collections of the theo-

retical and large-scale sets (K-S test, p = 0.19; Figure 3B). This indicates that the compound filtering did not

miss any target class. As expected, targeted inhibitors of kinases and other enzymes are the most frequent,

but there are also other well-covered target classes, such as membrane receptors, epigenetic regulators,
6 iScience 26, 107209, July 21, 2023
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and ion channels (Figure 3B). When zooming into kinases, the screening set covers all the major kinase fam-

ilies, and only 3 of the kinase targets present in the theoretical/large-scale sets are missed in the smaller

screening set (Figure 3D). Importantly, the compound sets cover similar proportions of targets implicated

in multiple types of cancers (K-S test, p = 1.0), with breast and lung cancers having the largest numbers of

targeted compounds followed by glioma (Figure 3C).

The target distribution across cancer types remained very similar in the constructed physical library, which

included 325 of the screening set compounds, and was used here in the pilot screening study on patient-

derived GBM stem cells (assay compounds, Figure 3C), described in the next section. At the time of the

curation, 325 compounds from the optimized library were sourced first from collaborators and then from

multiple commercial providers. The remaining 886 compounds could not be sourced as they were not avail-

able from any vendor, were prohibitively expensive, or the lead time for acquisition of the compound was

excessive. In these cases, we selected themost potent and selective inhibitor instead, yielding a completed

C3L of 789 small molecules, covering 1,320 protein targets and 79% of the cancer-associated targets.

Identification of compound responses across GBM subtypes in primary patient cells

In a pilot screening application to identify therapeutic vulnerabilities in GBM, we carried out phenotypic

profiling of patient-derived stem cell lines from 6 GBM patients covering the three GBM subtypes:33 clas-

sical (n = 2), proneural (n = 2), and mesenchymal (n = 2). The imaging-based compound testing assay quan-

tifies the phenotypic effects of each compound by tracking cell proliferation or survival in response to the

789 compounds in the C3L physical library, each tested with 4 concentrations (see STAR Methods for de-

tails). These compounds and their 1,320 anticancer targets cover 27% and 79% of the compound and target

spaces of the screening set, respectively. In this pilot screening study, we used a single phenotypic readout

for further analysis: the survival fraction and its Z score, calculated based on nuclei counts in treated, un-

treated, and negative control DMSO samples (Figure 4A). The lower these readouts are, the more effective

is the compound in the sense that fewer cancer cells survived the tested treatment.

We developed a data-driven method to define an activity threshold separately for each patient and dose,

based on mixture modeling and parameter estimation (Figure 4B, see STAR Methods for details). Using a

cutoff of 0.01 percentile of the background distribution, we identified as strong hits those compounds with

responses under the data-driven activity thresholds across all the 4 concentrations. When using either the

survival fraction or Z score at 0.01 percentile, we identified 10 strong response compounds from the

screening set that cover multiple target classes. The benefit of such a data-driven threshold is that it pro-

vides an objective way to select patient-specific compounds that show strong activity at various concentra-

tion levels since it is estimated from the distribution of the measurements. Notably, the activity thresholds

varied between the patients and dose levels, supporting the need for data-driven approach (Figure 4B).

To summarize the activity of a compound across the 4 tested concentrations, we calculated the area under

the dose-response curve (AUC) for each compound-patient pair using the survival fraction as the response

readout (Figure 4C, upper panel). The patient-specific response profiles showed a relatively large variability

between the cell lines, even from the same GBM subtype, and the compound response profiles did not

cluster according to the GBM subtypes (Figure 4C, middle panel). This supports the notion that GBM is

a heterogeneous disease, also in terms of phenotypic responses to compound treatment, hence requiring

patient-specific treatment approaches. The identified 10 strong hits included 3 antineoplastic and immu-

nomodulating agents, such as approved multiple myeloma treatments bortezomib and carfilzomib, which

showed an overall high potency in all the 6 GBM patient-derived cell models (Figure 4C, bottom panel).

Screening hits identify patient-specific vulnerabilities and target pathway activities in GBM

When investigating the 10 strong hit compounds across the concentration levels and patient samples, one

can see an expected dose-response relationships, where higher concentrations lead to increased re-

sponses of the compounds (Figure 5A). However, the compounds have differing activity profiles both within

and between the GBM subtypes. For instance, dinaciclib, an investigational compound that inhibits cyclin-

dependent kinases (CDKs), showed high activity in multiple patients already at lower concentrations

(30nM), except for one proneural subtype patient. The broad efficacy of dinaciclib was shown recently

also in 2D and 3D GBMmodels and in long-term culture experiments.34 In contrast, another broadly active

kinase inhibitor dasatinib induced more mixed responses across the GBM subtypes, in contrast to earlier

studies that have reported that patients with the mesenchymal subtype show more sensitivity to dasatinib
iScience 26, 107209, July 21, 2023 7



Figure 4. Cell survival profiling and data analysis

(A) The imaging-based workflow to quantify patient-specific phenotypic features (see STAR Methods for details).

(B) Examples of survival fraction distributions across 4 concentration levels of two patient-derived cell lines from two GBM subtypes: E34 (proneural) and E57

(mesenchymal). Lower values of survival fraction indicate higher compound activity. The green dashed line indicates the data-driven activity threshold for

classifying a compound as a strong hit at the particular concentration level, when using the activity cutoff of 0.01 percentile of the background distribution. A

total of 10 compounds with responses under the activity thresholds across all the 4 concentrations were identified as strong hits and were selected for further

analysis.

(C) Calculation of the area under the dose-response curve (AUC). Lower AUC values indicate higher activity of the compound. Two heatmaps of the AUC for

all the 325 compounds from the screening set (upper heatmap) and for the 10 strong hits (lower heatmap, corresponding to the lowermost cluster of the full

dendrogram) across 6 glioblastoma patient primary samples. The sample colors indicate the GBM subtypes, and the compound colors mark the clinical

phase and ATC classes.
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compared to proneural and classical subtypes.35 Notably, nicotinamide phosphoribosyltransferase

(NMPRTase) inhibitor daporinad demonstrated highly selective response in a single patient of classical

subtype, while the other patients had much lower responses to daporinad at all concentrations (Figure 5A).

Pathway analyses among the protein targets of strong hit compounds demonstrated that these com-

pounds modulate multiple cellular pathways, including immune system, signal transduction, neuronal
8 iScience 26, 107209, July 21, 2023



Figure 5. Analysis of the top hits from the patient screening

(A) Radial plots of the 10 strong hit compounds and their survival fractions across the 4 concentration levels and 6 glioblastoma patient samples. Responses

closer to the outer circle indicate lower survival fraction and therefore higher response. The inner gray circle marks the data-driven activity threshold of 0.01

percentile for the particular concentration level.

(B) Reactome target pathway activities related to the 10 strong hit compounds.

(C) The top 25 Reactome target pathways ranked by their false discovery rate (FDR). *Pathway enrichment also identified based on the KEGG pathways.
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system, cell cycle, and cellular responses to stimuli (Figure 5B). There are also less-pronounced pathway

activities that originate from more selective responses; for instance, daporinad triggers autophagy.

More detailed pathway enrichment results from both Reactome and Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) highlight PI3K/Akt/mitogen-activated protein kinase (MAPK) signaling as one of the top-en-

riched pathways (Figure 5C), which is important in GBM as �40% of GBM patients have phosphatase and

TENsin homolog (PTEN) alterations (in our panel, 4 out of 6 [66.6%] of the patient-derived cells had PTEN

alteration), as well as frequent neurofibromatosis type 1 (NF1) loss (E57 cells) or alterations to the epidermal

growth factor receptor (EGFR) receptor (amplification in 4 out of 6 patient-derived cells; missense mutation

in the E31 cells). To enable others to explore these data and freely set other data-driven thresholds for the

compound selection, we have implemented a web application (www.c3lexplorer.com) that allows the users

to interactively explore the signaling and other pathways targeted by the selected compounds for addi-

tional analyses and hypothesis generation.

DISCUSSION

Phenotypic screening provides a systematic approach to identify novel small molecules as promising

future therapeutics, especially when focusing on realistic disease models and relevant target land-

scapes.36 In this work, we developed various analytical procedures for the construction of targeted anti-

cancer compound libraries, designed to interrogate a wide range of potential cancer-related targets for

phenotypic screening. We started the systematic library construction from more than 300,000 molecules,

by compiling comprehensive chemical, activity, and target information, and ended up with a physical

screening set of 1,211 molecules with pre-defined cellular activity, biological and chemical diversity,

target selectivity, and compound availability. This reduced the compound space by 150-fold, whereas
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the remaining compounds in the screening set still covered 84% of the target space of 1,655 cancer-re-

lated proteins. The remaining 16% represent targets that need further development due to a lack of

either enough specific and potent chemical probes (2%) or compound availability for sale (14% at the

time of library curation).

We applied the C3L design principles to imaging-based phenotypic profiling of glioma stem cells from

GBMpatients, using a pilot library of 789 compounds, and identified patient-specific compound responses

and target pathway activities. We anticipate these systematic library-design principles and the resulting

broadly annotated small-molecule libraries will prove useful for the community in various phenotypic

screening experiments in GBM and other cancers. We have made the compound libraries and their

annotations available in the form of open-access data sheets (https://github.com/PaschalisAthan/C3L)

and implemented a web platform that enables others to interactively explore the screening library and cor-

responding compound-target interaction networks, as well as screening data and pathway activities using

user-defined activity thresholds and other filtering criteria (www.c3lexplorer.com). This enables the com-

munity to access these data and make further analyses, e.g., drug class-specific responses or for identifying

combinatorial treatments to target multiple pathway redundancies and patient-specific intra-tumor vulner-

abilities that are urgently needed for treating patients with GBM.37

In the field of precision oncology, there have been several efforts to systematically catalog all of the genes

implicated in cancer,38,39 and several in-house, commercial, and governmental libraries of AICs targeting

many of the most heavily investigated proteins are readily available.14,15,40,41,41–46 However, even though

these commercial or in-house libraries have been well-utilized in many anticancer screens and drug repur-

posing studies,16,17,47,48 there is a need for a comprehensive, target-annotated, anticancer library opti-

mized for selectivity and diversity against all known oncology targets. There are well-annotated libraries

for specific classes or applications, such as for kinase inhibitors,49 metabolic modifiers,20 and drug repur-

posing,50 but what is lacking is a comprehensive and high-quality probe library that provides a starting

point for various anticancer screening applications. Despite the emergence of new treatment modalities,

such as monoclonal antibodies, molecularly targeted small molecules are, and will most likely remain, the

most prolific anticancer therapeutics for the foreseeable future that are also applicable in advanced stages

of the disease, for instance, after tumor has progressed towardmetastatic disease and when the cancer has

become chemo- or radiotherapy resistant.6–8

The development and implementation of well-curated and comprehensive screening libraries are ex-

pected to facilitate the identification of novel anticancer drug targets, drug combinations, synthetic-lethal

interactions, and therapeutic targets to overcome cancer resistance that goes beyond the recurrently

mutated genes.51 To enable cross-comparisons, we have carefully annotated our libraries with multiple

compound IDs for molecules and target annotations; these include unique ChEMBL ID that makes it

easy to extract additional information of the compounds, compound generic name of the active ingredient,

chemical abstracts service (CAS) registry number for sourcing the compounds from potential vendors, and

simplified molecular input line entry system (SMILES) for describing the structure of chemical species for

further chemical analyses. We have also carefully annotated the active on/off-target space of the com-

pounds using multiple databases, such as ChEMBL, DrugBank, and DrugTargetCommons, using both

gene accession and gene symbol of the target proteins. Such annotations make it easy for others to further

characterize the chemical and target spaces of the compound libraries, as well as compare with the existing

and emerging libraries to allow for comparative analyses of their shared and unique chemical and target

spaces for future library developments and screening applications.

We formulated the compound library construction as an MOP problem, where the aim is to simultaneously

maximize the anticancer target diversity and compound potency (or selectivity), while minimizing the num-

ber and cost of the compounds in the physical screening set. This is important because a targeted library

enables a more thorough evaluation of the anticancer potential in advanced, physiologically relevant can-

cer models, such as multiple genetically distinct patient-derived cell panels. With such a focused yet

diverse-enough library, comprehensive screening paradigms including drug combinations, sequencing,

and scheduling can be more easily incorporated into a primary phenotypic screening pipeline, achievable

by many academic screening facilities.52 In the present work, we used fast and heuristic procedures to

select the compounds with a pre-defined potency against the selected targets that presented with suffi-

cient structural dissimilarity, as implemented in several filtering procedures. Even though our results
10 iScience 26, 107209, July 21, 2023
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show that the current heuristic approach leads to the desired results from the compound screening point of

view, other approximated or exact solutions to the MOP problem could further decrease the size of the

screening set, while guaranteeing sufficient potency and selectivity of the compounds against the dis-

ease-related and other targets.53

Designing an optimal compound library of small molecules is challenged by the compound promiscuity;

that is, many compounds may modulate their effects through multiple protein targets with various de-

grees of potency in a given context. For instance, kinase inhibitors are notorious for their target promis-

cuity and wide polypharmacological effects across various target classes beyond kinase families.54 The

wider target selectivity of many compounds remains still uncharted,54,55 and therefore the phenotype-

driving targets of many compounds are currently still unknown in many cellular contexts or disease

applications. Compared to other compound libraries that focus more on compound selectivity, C3L

was designed based on dual objectives: (i) to identify compounds that are effective against GBM or other

cancers (either individually or in combination) and (ii) C3L function as a target-identifying or hypothesis-

generating library for follow-up studies. In the first application, target specificity is not as important as

compound efficacy. In the second application, specificity is more important but not a necessary condition

for hypothesis generation. Systematic study of cross-reactivity of the compounds will be needed to

further investigate the target selectivity of the molecules in the current screening set across various

target classes and cell contexts, beyond the rather limited data for target activity currently available in

public databases.
Limitations of the study

We highlight below some potential caveats of the present work and how the library design could be further

improved in the future studies. In addition to the potency and selectivity, chemical similarity of the com-

pounds is another important feature of library design, especially if the aim is to have a collection of not

too similar small molecules that target the cancer-related proteins of interest. In addition, further pheno-

typic and clinical characterization of the compounds, as implemented in Drug Repurposing Hub50 and

ChemicalChecker,56 could aid several drug discovery tasks, including target identification, mechanism of

action (MoA) classification, and library characterization. Integrated analysis of chemical, molecular target,

cell-based profiling, and clinical information could also be useful to provide a relevance ranking of the tar-

gets and compounds in a library, once the disease application is defined, hence adding one further dimen-

sion to the MOP problem. Additional filtering steps to aid the eventual screening applications include, for

instance, removal of interference compounds, finding on-target compounds with diverse scaffold profiles,

and exclusion of compounds with known adverse off-target activities. The relatively small size of the phys-

ical screening library used in the pilot screen may miss some relevant compounds and targets in GBM. To

investigate and improve the relevance of the hits, follow-up phenotypic screens with full morphological cell

painting profiling are warranted.

The commercial availability of the compounds was a limiting factor that reduced the physical library size

significantly. Inclusion of synthesizable compounds from the theoretical set can further increase the diverse

and coverage of the screening set in the future versions. Even though screening of compounds with over-

lapping primary targets increases the cost, having multiple compounds with overlapping primary targets

may become beneficial in specific applications, e.g., for validating the screening hits from high-throughput

screens, target deconvolution of the phenotypic responses, or for discovering target activity differences

when screening at multiple concentrations. The future applications in phenotypic screening, either in es-

tablished cell lines or patient-derived cell models, will define the usefulness of any compound collections

and libraries and the cost-benefit trade-off of compound libraries with various sizes and target overlaps.We

expect that the herein presented comprehensive libraries with curated target information and the pilot

screening data in patient-derived cells will provide new opportunities for many exciting drug discovery ap-

plications in GBM and other cancers, including novel target identifications, target deconvolution, drug re-

positioning, and drug combination prediction and testing.57 Follow-up studies of the screening hits may

lead to the identification of chemical starting points, new target-directed drug discovery programs, or

approval of new therapeutics for GBM and other cancers.
SUPPORTING CITATIONS
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Futreal, P.A., and Stratton, M.R.
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SignaLink v2 Fazekas, D., Koltai, M., Türei, D., Módos, D., Pálfy, M.,
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Reactome Gillespie, M., Jassal, B., Stephan, R., Milacic, M.,

Rothfels, K., Senff-Ribeiro, A., Griss, J., Sevilla, C.,

Matthews, L., Gong, C., et al.

https://reactome.org/

HPRD Keshava Prasad, T.S., Goel, R., Kandasamy, K.,

Keerthikumar, S., Kumar, S., Mathivanan, S.,

Telikicherla, D., Raju, R., Shafreen, B.,

Venugopal, A., et al.

https://www.hprd.org/

DIP Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K.,

Bowie, J.U., and Eisenberg, D.

https://dip.doe-mbi.ucla.edu/dip/

Main.cgi

IntAct Orchard, S., Ammari, M., Aranda, B., Breuza, L.,

Briganti, L., Broackes-Carter, F., Campbell, N.H.,

Chavali, G., Chen, C., del-Toro, N.,

https://www.ebi.ac.uk/intact/home

BioGrid Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L.,

Breitkreutz, A., and Tyers, M.

https://thebiogrid.org/

ZINC15 Irwin, J.J., and Shoichet, B.K. https://zinc15.docking.org/

KEGG Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-

Watanabe, M., and Tanabe, M.

https://www.genome.jp/kegg/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Tero Aittokallio (tero.aittokallio@helsinki.fi).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data has been deposited at Zenodo (https://zenodo.org/record/7945379), and assay annotations are

available at GitHub (https://github.com/PaschalisAthan/C3L).

d This paper does not report original code.

d Data exploration and visualization web-platform: http://www.c3lexplorer.com/.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Glioma stem cells obtained from the Glioma Cellular Genetics Resource (GCGR, Edinburgh, gcgr.org.uk)

are unique, patient derived cell lines – hence no reference sequence is available after STR typing. Classi-

fication of these cell lines was performed at the DKFZ (German Cancer Research Centre in the Helmholtz

Association), Heidelberg University Hospital (see Table S2).
Tissue culture/cell maintenance

Materials Required (see Table S3).

Cell maintenance-thawing cells

When ready the vial should be quickly thawed in a 37�C water bath. The thawed aliquot should be dispered

into 10ml of cold wash media and centrifuge for 3 minutes at 1.5K rpm. One should aspirate as much su-

pernatant as possible and re-suspend in complete media (8ml, containing EGF and FGF) and laminin

(10ug/ml) and transfer to a T25 flask. Then, incubate overnight at 37�C and 5% CO2. Once the cells

have adhered to the plastic, fresh complete media, containing EGF, FGF, and laminin (10ug/ml for E57,

4ug/ml for other cell lines) is added. Take note that it may take a few days to recover. Do not allow to

become approximately >80% confluent. Usually the flask will need to be split into a T75 after 48 hours

post thaw. Lastly, do not split more than 1:5. The usual ratio is 1:2 or 1:3.
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Cell maintenance - Passaging cells

For the cell passaging procedure, the media should be removed and washed with 15ml PBS. This is

followed by aspirating PBS and adding 1ml accutase in order to coat the bottom of each flask. To ensure

complete coverage the flask should be rocked. Then, incubation follows for 3-4 mins at 37�C and 5% CO2.

Then, 9ml of wash media is added, and the contents are transferred to 15ml conical tube, appropriate for

centrifuge (for 3 mins at 1.5 rpm). The supernatant is then aspirated and the pellet is resuspended in 10ml

complete media, EGF, FGF and Laminin (4ug/mL) in a T75 flask. The final volume of media is 15ml and 45ug

laminin (150ug laminin for E57 cells), but the split can be done as preferred. We note that one should not

split more than 1:6 (usually 1:3 a few days before plating) and not allow the split to become (approximately)

>80% confluent. Yield is approximately 3x06 cells per T75 flask and viability is usually 80-90%. We also note

that doubling time is approximately 24 (E57) to 60 (other lines) hours. Cells tend to form spheroids when

becoming too confluent and indicates they should be split. Spheroids can be recovered and will re-adhere.

Also, even if cells do not need to be passaged, fresh media should be refreshed after 4 days to encourage

healthy growth. Lastly, cells grow faster with prolonged culture. For this reason, passage should exceed 30

and the lowest passage should be used for screening.

Cell maintenance - Freezing cells

The freezing media consists of wash media and 10% DMSO. Cells should be detached as described above,

counted and resuspended in freezing media at approximately 1-5-2x106 cells per ml, and 1ml for thawing

into a T25 flask. Then the cells should be transferred to a specialised freezing chamber and freeze overnight

at -80�C, and as soon as possible to liquid nitrogen storage.
384-well plating/dosing

Materials/Equipment Required (see Table S4).

384-Well plate pre-coating with laminin

For the pre-coating of the wells, we start first by preparing a diluted solution of laminin (10ug/ml) in

complete media. Then a ViaFill dispenser is prepared under sterile conditions, and is followed by adding

solution of 20ug/well and incubating at 37�C and 5% CO2 for a minimum of 2 hours. Then 25uL of cell sus-

pension (without aspiration) is added at 500-1500 cells/well.

384-Well plate seeding

Cell suspensions should be prepared as described above, followed by pelleting cells and resuspending

those in wash media. The cells are then counted. A ViaFill dispenser is prepared under sterile conditions,

and the cell suspension is prepared in complete media (without laminin), seeding at 1000 cells/25ul (E3,

E21, E31, E34), 500 cells/25ul (E57) and 1500 cells/25ul (E28), and adding 25ul per well, resulting in a final

volume of 45ul (�4ug/ml laminin). Incubation for 30 min at RT is followed, and then plates are transferred to

an incubator at 37�C and 5% CO2, and are incubated overnight prior to dosing with the library. We noted

that for positive control, Staurosporine (1uM) is used for cell death and all wells have final DMSO concen-

tration of 0.1% (w/w).

384-Well plate library dilution and dosing

Library plates were supplied as assay ready microplates (10mM stock in DMSO, 150nL per well, Ebner

Group, Oxford). The plates were initially diluted in completemedia (50uL/well, 30uM, 1%DMSO (v/v)) using

a ViaFill liquid dispenser. The plates were transferred to a BioMek Liquid handling Robot and then serially

diluted 1:10 to 3uM, 300nM, 30nM, 1% DMSO (v/v)). Staurosporine (10uM) was added to column 1 of each

compound plate. Finally, 5uL of each diluted compound was transferred to the cell plates (1: 10 dilution,

final volume 50uL, 0.1% DMSO (v/v) in all wells including ‘untreated controls’, final compound concentra-

tions 3000, 300, 30, 3nM. The plates were incubated at 37�C and 5% CO2 for 72 hrs.
384-Well plate fix/stain/acquisition

Materials/Equipment Required (see Table S5).
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Fixation

First the plates are removed from the incubator and are allowed to cool for approximately 10 minutes. A

fresh solution of 8% formaldehyde in PBS is prepared. An equivalent volume of fixative is added and incu-

bated at RT for 30 minutes. Then, the entire well is aspirated and washed 3 times with PBS (see Table S6).

Permeabilisation

For the permeabilization, the plates are washed 2 times with PBST, incubated in PBST at RT for 20 minutes

(minimum) and then aspirated (see Table S7).

Hoechst staining

For the staining, the plates are washed 3 times in PBS. Then Hoeschst is added in PBS (1:5000) and then

incubated for 30 min in RT in dark. Following that, the plates are washed 3 times with PBS and Hoechst

and are sealed and stored at 4�C. Nuclei counts are carried out via built in software module (Molecular De-

vices), followed by a preliminary univariate analysis using TIBCO Spotfire Analyst, normalized to DMSO

wells/plate (see Table S8).
Appendix A

For aspirating and dispensing settings, please see Table S9.
METHOD DETAILS

Approved and investigational compound (AIC) collection

We manually selected and curated compounds in the AIC collection based on various sources (Table S10).

The compounds’ IDs (from PubChem58 and ChEMBL25) and their structural description (canonical SMILES)

were retrieved using PostgreSQL.59 One compound (TAK-530) was found to have neither a compound ID

nor a canonical SMILES, and it was therefore removed. The search for approved and investigational com-

pounds for GBM was carried out manually by searching the clinical trials database (https://www.

clinicaltrials.gov/), and the availability of these compounds was later determined by crosschecking the

compound in SelleckChem (https://www.selleckchem.com/) and PubChem (https://pubchem.ncbi.nlm.

nih.gov/). The ECFP4/6 and MACC fingerprint descriptors of compounds were enumerated using

the RDKit60 chemoinformatics module in Python 3.7.61 Dice similarity for ECP4/6 and Tanimoto for

MACCS fingerprints with cutoff of R 0.99 was used to identify and remove highly similar compounds62

(e.g., doxorubicin and epirubicin, with the first compound being removed). The resulting AIC collection

consists of a total of 546 unique compounds, available in GitHub (https://github.com/PaschalisAthan/C3L).
Experimental probe compound (EPC) collection

For the EPC collection, compound-target pairs were extracted manually from pan-cancer studies using

public databases (PharmacoDB22 and The Human Protein Atlas21). The wild type and mutant variants of

the targets, along with the first neighbors and influencers of other cancer-related targets,29 were later

used to search for additional compounds that demonstrated sufficient target activity using

PostgreSQL59 (see the below subsections for details). Next, several compound filtering procedures were

applied to generate the three EPC collections (theoretical, large-scale and screening set) using RDKit,60

where the filtering procedures involved checking the structural similarity between the compounds, and

Python scripts for additional processing, such as adding extra annotations for the targets or the com-

pounds (Figure S3). The full list of cancer-associated protein targets and their probe compounds can be

found at https://github.com/PaschalisAthan/C3L.

Pan-cancer probe collection (PS1)

This collection of probe compounds focuses on targets and compounds implicated in various types of

cancers. To construct this collection, several comprehensive large-scale pan-cancer studies were analyzed

(see Table S11). A set of 946 unique targets and 1525 compounds were curated from the pan-cancer studies

using the nominal targets from the PharmacoDB database,22 and The Human Protein Atlas database.21 Af-

ter removing redundant compounds, a total of 851 unique compounds remained that covered the target

space of 946 unique proteins.
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Extending the compound space (PS2)

To further extend the compound space, the annotated primary targets from the pan-cancer studies were

queried across publicly available compound bioactivity repositories.25–27 To include also potential off-tar-

gets of the compounds, we used a relatively liberal activity threshold of % 1000 nM for multi-dose bioac-

tivity (IC50, EC50, Ki or Kd) to identify the compounds having cellular activity against these targets. In case of

multiple entries corresponding to the same compound-target interaction, the median bioactivity value was

recorded, similar to a previous study.65 This curation procedure resulted in 141,087 unique compounds

against 441 targets (Table S12).

Collection for the mutant target space (PS3)

In addition to investigating the wild type targets implicated in various cancer types, we also identified com-

pounds with cellular activity against their correspondingmutant variants. Themutation information of the anno-

tated targets of Section Pan-cancer probe collection (PS1) were retrieved from the COSMIC Database.28 We

used various types of variants:

� Substitution - missense

� Substitution - coding silent

� Complex - compound substitution

� Insertion - in frame

� Complex - deletion in frame

� Substitution - nonsense

� Deletion - in frame

We queried these mutant targets across the existing data repositories ChEMBL25 and DTC,26 and the cor-

responding compounds were compiled using the criteria similar to those described above. The resulting

mutant collection consists of 944 unique compounds targeting 293 unique mutant targets (Table S13).

Extending the target space (PS4)

To further extend the target space, we queried public repositories for cancer-related targets, their first neigh-

bors and influencers in four cancer types with high mortality rate (colon, breast, hepatocellular, and non-small

cell lung cancer). Such extended ‘‘targets’’ are suggested to influence cancer pathogenesis and therefore to

increase the drug target space for anticancer therapies.29 Here, a target was considered as a cancer-related

gene, when the corresponding protein was either mutated or had a differential expression in cancer. A first

neighbour of cancer-related protein was defined as a protein that is directly and physically interacting with

a cancer-related protein in human interactome or signalling networks,29 according to the databases

SignaLink v2,66 Reactome,67 HPRD,68 DIP,69 IntAct,70 BioGrid,71 or in a cancer signalling network.72 An influ-

encer protein was defined as a protein that has a direct interaction to one of the first neighbours. After

combining these three subsets, an overlap analysis with the cancer-related targets was performed to identify

a total of 1115 unique targets. The non-overlapping targets were queried in ChEMBL25 and DTC26 to find a

total of 208 653 potent compounds following the same procedure as in the previous sections (Table S14).
Reducing the number of compounds

The full theoretical EPC probe set consists of a total of 336 758 compounds against 1655 unique protein

targets (Figure 1). We next reduced the number of compounds to a more manageable size and constructed

a compound library that is more attractive to academic screening projects using several filtering proced-

ures, each with freely adjustable cut-off parameters that determine the stringency of the compound

filtering process. Figure S4 summarizes the filtering steps and the specific filtering parameters we set in

this study to produce the large-scale probe set.

Target-specific activity filtering

The first compound filtering technique was to apply a target-specific activity threshold to reduce the num-

ber of compounds from the theoretical set with the following steps:
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1. All the activity values were log10-transformed.

2. Repeat for each target:

2.1. Target’s bioactivity distribution (IC50, EC50, Ki or Kd readouts) was normalized to zero mean and

unit variance (z-score normalization).

2.2. A threshold was selected such that 80% of the target’s activities (80% percentile) remain within

that threshold (see an example in Table S15).

2.3. Compounds with activities higher than the selected threshold were removed (i.e. these show

less potency toward the particular target).

Compound structural similarity filtering

The next compound filtering step was to find the similarity threshold above which two compounds were

considered sufficiently similar. This procedure was based on the assumption that similar compounds are

expected to have similar activity distributions. The cut-off value for the Tanimoto similarity was identified

with the Akaike Information Criterion, which is an estimator for the degree of information that is lost when

using a candidate model, where smaller values indicate low information loss.73 More specifically, the

following procedure was used for defining the similarity cut-off:

1. A portion (here, 10%) of the total number of compounds was chosen for the similarity cut-off estima-

tion to reduce compound space and computation time.

2. Each compound’s Dice similarity for ECFP4/6 and Tanimoto coefficient for MACCS fingerprints was

computed with the rest of the selected compounds.

3. A coefficient threshold was varied from 0.1 to 0.99 (with 0.01 step size), and for each threshold:
3.1. Compounds that had similarity value equal or greater than the particular threshold were

identified.

3.2. The similarity distributions of those compounds were compared using the Kolmogorov-Smirnov

(K-S) test.

3.3. The Akaike Information Criterion (AIC) value was calculated based on the K-S test statistic

values.

4. The optimal similarity threshold was selected based on the smallest AIC value (see Figure S5 for an

example).

5. Steps 1-4 were repeated three times using three different random seeds.

Global activity filtering

The first step when reducing the size of the physical screening library was to apply an activity threshold

similar to that described above, but instead of being target-specific, here the same activity threshold

was used across all the targets (i.e., target-agnostic, global filtering). Since two of the theoretical sets

are already small in size (PS1 and PS3), the global activity filtering was implemented on the two larger sub-

sets only (PS2 and PS4). More specifically, the procedure followed the steps:

1. The profile of quantitative bioactivity values for each target were recorded when creating the theo-

retical probe set (see Section 2.1 for details).

2. The bioactivity values were log10-transformed and normalized to zero mean.

3. The target with the highest activity standard deviation was identified.

4. An activity threshold was selected such that 95% of the bioactivities of the targets from step 3 are

within the selected threshold (see Figure S6).

5. The selected activity threshold was applied to all the targets to remove the compounds with bioac-

tivities larger than the selected threshold.
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Reducing the compound space

The second step in the physical screening library size reduction was to pick only a single compound for each

target, with the aim to come up with the smallest number of most potent compounds that cover the same

target space. More specifically, the compound that had the lowest bioactivity value among the multi-dose

activity types (IC50, EC50, Ki, Kd) was selected for the particular target, since that compound is assumed to

have the highest binding potency against the target. The different activity types were treated equally in this

process due to sparsity of bioactivity readout data.

Compound availability filtering

The final step for designing the physical screening library was to include only those compounds that are

available for sale from at least one vendor using the information from ZINC15.74 More specifically, if a

particular compound was not available for sale, at the time of library curation, then the next most potent

compound that is available for sale replaced the original one in the screening library. Even though this

step reduced the number of compounds in the final screening library by 52% of the original size, the targets’

coverage remained at 86% of the original target space (see Table S16). Furthermore, the target activity dis-

tributions remained relatively unchanged (Figure S1), and the differences originated mainly from the few of

the most potent compounds.

Cell survival profiling of glioblastoma patient cells

We performed high-throughput screening of the GBM patient glioma stem cells with an image based,

nuclei staining technique. In this pilot application of the C3L design principles, the cell-based assay was

performed using 789 compounds in the physical library, which included 325 of the screening set com-

pounds (27%). The rest of the screening set compounds were not timely available at the time of library cu-

ration, or they were prohibitively expensive to purchase from any vendor. To compensate for this, we

sourced additional 464 theoretical set compounds, which were selected to maximize the target space.

In total, the pilot physical library covered 1320 out of the 1655 targets (80%) of the screening set. In this pilot

screening study, we sourced the compounds first through collaborators, and then from commercial pro-

viders, by focusing on the most potent compounds against as many of the 1655 protein targets for compre-

hensive cell-based testing.

Patient samples and cell-based assay

The 789 compounds were tested on 6 patient-derived GBM stem cell models from Glioma Cellular Ge-

netics Resource (http://gcgr.org.uk), with 2 patients from each molecular subtype of GBM that are charac-

terized by differences in gene expression and genetic alterations:33 classical (n=2), proneural (n=2), and

mesenchymal (n=2). The protocol comprises of the following steps13 (see Figure 4A):

1. Cells were seeded (500-1500 cells/well) onto pre-coated laminin (10 ug/mL) 384-well plates (Greiner

Bio-One microclear plates, 781091) using an INTEGRA VIAFILL dispenser. Final laminin concentra-

tion was 4ug/mL.

2. The cells were incubated overnight at 37�C, 5% CO2.

3. Assay ready compound plates were serially diluted in media using a Biomek liquid handling robot

(Beckman). The final concentrations used included 3-30-300-3000nM with DMSO (0.1% w/w) as

negative control and staurosporine (1uM) as positive control (for cell death). All wells had a final

DMSO concentration of 0.1% (w/w).

4. The cells were incubated for 72 hours.

5. Cells were fixed in situ with formaldehyde and then permeabilized with TX-100 (0.01% w/w in PBS.

Between steps, plates were washed using a BioTek plate washer (Agilent).

6. Nuclei staining (Hoechst 33342, 2ug/mL in PBS, 20 minutes, room temp).

7. Plates were washed and sealed with aluminium microplate seals (StarSeal, Starlab Group).

8. Image acquisition using ImageXpress Micro Confocal High-Content Imaging System (Molecular

Devices).

9. Image analysis and quantification using MetaXpress Software (Molecular Devices, v. 6.7.2.290),

analysis module ’Count Nuclei’.
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10. Data processing and univariate analysis using TIBCO Spotfire Analyst (PerkinElmer, version

10.10.3.17), normalized to DMSO wells.

Survival fraction, Z score and AUC calculation

While there are multiple imaging features, such as shape and granularity, that can be quantified for each

cellular compartment (nuclei, cytoplasm, etc), here we used only one feature for further analysis: the survival

fraction and its z-score (see Figure 4A) from staining the nucleus with Hoechst 33342. The survival fraction is

calculated by dividing the nuclei count of the treated sample by the nuclei count of the untreated control

sample (DMSO 0.1% (v/v)), and the z-score is the number of standard deviations from themean survival frac-

tion normalized to DMSO. The lower the survival fraction or the z-score the more effective is the compound

in the sense that fewer cancer cells survived the treatment or that the survival score is lower than the mean

survival score of the negative controls, respectively. To summarize the activity of a compound across the 4

tested concentrations, we calculated the area under the dose-response curve (AUC) using trapezoidal rule

in NumPy75 for each compound-patient pair using the survival fraction as the response readout (see

Figure 4C).

Data-driven activity threshold definition

To set an activity threshold for strong hits based on the nuclei count measurements, we applied a mixture

modelling76 on the survival fraction distributions, separately for each concentration and patient (but

combining all the GBM subtypes due to the small number of samples in each subtype, n=2). As expected

for molecularly-targeted compounds, most of the responses appear around 1 in terms of survival fraction

(see Figure 4B). To identify extreme compound responses falling outside of these background distribu-

tions, we estimated a mixture model with two Gaussian components, one component for the background

responses (centered around 1 after parameter estimation), and the other distribution for the extreme re-

sponses (parameters freely estimated from the patient-specific survival fraction data). To identify com-

pound responses far enough from the background distribution, we chose a cut-off of 0.01 percentile of

the background distribution as the activity threshold to classify a compound as a strong hit (green dotted

lines in Figure 4B). In comparison to a fixed threshold based on SF levels, or their z-scores, such data-driven

activity threshold ensures that the hit selection does not only depend on the full distribution of the mea-

surements, but the activity threshold is also patient- and concentration-specific, and therefore takes into

account potential cell growth and dose-response differences. Finally, the compounds with responses un-

der the activity thresholds across all the 4 concentrations were classified as strong hits for further analyses.

Pathway analyses and web-based data platform

The target annotations available in C3L were used tomap the strong hit compounds tomolecular pathways

and cellular processes. We used Reactome pathway tool67 and KEGG pathways77 (through ShinyGO tool78)

to explore the pathways that are modulated by the strong hits using the pre-selected activity cut-off of 0.01

percentile of the background distribution (see the section Data-driven activity threshold definition above).

We have also implemented an interactive web-application (www.c3lexplorer.com) that enables users to

freely set various compound selection criteria, including data-driven activity threshold for the active com-

pound selection, and then interactively explore drug-target interactions and pathways targeted by the

selected compounds for additional analyses and hypothesis generation.
QUANTIFICATION AND STATISTICAL ANALYSIS

In the section Compound availability filtering, Kolmogorov-Smirnov test was used in Python to test whether

there was any difference on the distribution of the compound-target activities before and after replacing

the unavailable compounds in the screening set. A significance value of p<0.05 was considered to indicate

a statistically significant difference.
ADDITIONAL RESOURCES

Data exploration and visualization web-platform: http://www.c3lexplorer.com/.
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