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Using pre‑selected variants from large‑scale 
whole‑genome sequence data for single‑step 
genomic predictions in pigs
Sungbong Jang1*   , Roger Ros‑Freixedes2, John M. Hickey3, Ching‑Yi Chen4, Justin Holl4, William O. Herring4, 
Ignacy Misztal1 and Daniela Lourenco1 

Abstract 

Background  Whole-genome sequence (WGS) data harbor causative variants that may not be present in standard 
single nucleotide polymorphism (SNP) chip data. The objective of this study was to investigate the impact of using 
preselected variants from WGS for single-step genomic predictions in maternal and terminal pig lines with up to 1.8k 
sequenced and 104k sequence imputed animals per line.

Methods  Two maternal and four terminal lines were investigated for eight and seven traits, respectively. The number 
of sequenced animals ranged from 1365 to 1491 for the maternal lines and 381 to 1865 for the terminal lines. Impu‑
tation to sequence occurred within each line for 66k to 76k animals for the maternal lines and 29k to 104k animals 
for the terminal lines. Two preselected SNP sets were generated based on a genome-wide association study (GWAS). 
Top40k included the SNPs with the lowest p-value in each of the 40k genomic windows, and ChipPlusSign included 
significant variants integrated into the porcine SNP chip used for routine genotyping. We compared the performance 
of single-step genomic predictions between using preselected SNP sets assuming equal or different variances 
and the standard porcine SNP chip.

Results  In the maternal lines, ChipPlusSign and Top40k showed an average increase in accuracy of 0.6 and 4.9%, 
respectively, compared to the regular porcine SNP chip. The greatest increase was obtained with Top40k, particularly 
for fertility traits, for which the initial accuracy based on the standard SNP chip was low. However, in the terminal lines, 
Top40k resulted in an average loss of accuracy of 1%. ChipPlusSign provided a positive, although small, gain in accu‑
racy (0.9%). Assigning different variances for the SNPs slightly improved accuracies when using variances obtained 
from BayesR. However, increases were inconsistent across the lines and traits.

Conclusions  The benefit of using sequence data depends on the line, the size of the genotyped population, 
and how the WGS variants are preselected. When WGS data are available on hundreds of thousands of animals, using 
sequence data presents an advantage but this remains limited in pigs.

*Correspondence:
Sungbong Jang
jsbng8615@gmail.com
Full list of author information is available at the end of the article

Background
Using single nucleotide polymorphism (SNP) chip data 
for genomic prediction relies on the linkage disequi-
librium (LD) between SNPs and causative variants [1]. 
Because of the initial high cost of SNP genotyping, most 
of the SNP chips used in livestock are still limited to 
less than 100k SNPs, which could restrict the informa-
tion available for genomic predictions. Whole-genome 
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sequence (WGS) data harbor millions of variants, pos-
sibly including causative variants that primarily affect 
the traits of interest but are not present on regular SNP 
chips. With the decreasing sequencing costs, the avail-
ability of WGS data for some agricultural species is 
increasing. Whether such data can help increase the 
accuracy of genomic predictions beyond that already 
achieved by SNP chips is still questionable since mar-
ginal or no gains were reported by several studies [2–5]. 
Specifically, in pigs, Zhang et al. [6] showed that the 80k 
SNP chip outperformed the 650k SNP chip and WGS 
data for genomic predictions of average daily feed intake 
and backfat traits. In contrast, Song et al. [7] reported a 
marginal gain in prediction accuracy when WGS data 
were used. The absence of benefits reported in those 
studies could be due to the small number of sequenced 
animals (maximum of 289 animals), poor imputation 
accuracy, the statistical methods used, and to sequenced 
SNPs being redundant with those already included on the 
standard chip data. The largest study on genomic predic-
tion using WGS data in pigs, conducted by Ros-Freixedes 
et  al. [8], examined nearly 400k pigs from seven lines 
with imputed WGS data. Compared to the use of regular 
SNP chips, they found small improvements in prediction 
accuracy, averaging at 0.025, for eight common complex 
traits. These results highlighted the need for large data-
sets and for optimized pipelines to exploit WGS data.

Imputation is an inevitable step when working with 
WGS data because sequencing many individuals is still 
not feasible. Currently, the most efficient approach is 
to sequence a subset of the animals in a population 
and impute the sequence data to other animals that are 
already genotyped with SNP arrays [9]. Using all vari-
ants from WGS data may not benefit genomic predic-
tions since they may not all be causative or in high LD 
with the causative variants [10]. Hence, preselection of 
variants helps narrow down the WGS data to the sig-
nificant ones only. Previous studies have explored several 
methods to identify significant or causative variants for 
genomic prediction, such as genome-wide association 
studies (GWAS) [3], SNP functional annotation [11], and 
gene expression [12]. Among these approaches, GWAS 
has been commonly used to preselect WGS variants in 
pig populations [6–8].

Fragomeni et  al. [13] used simulated sequence data 
and, on the one hand, demonstrated that the prediction 
accuracy could be optimized once the position of all 
causative variants and the percentage of additive variance 
they explain are known. On the other hand, the same 
authors reported that the accuracy is inversely related 
to the distance between the causative variants and the 
neighboring SNPs if only the neighboring SNPs are iden-
tified. Although it is theoretically plausible to enhance 

prediction accuracy by using causative variants for 
genomic prediction, the use of real data has only shown 
small or no improvements from genomic prediction [2, 
14, 15]. Gualdrón-Duarte et al. [14] indicated an increase 
in prediction accuracy of up to seven points for carcass 
traits when using single-step genomic best linear unbi-
ased prediction (ssGBLUP) with BayesR SNP weights 
on several known causative variants from real beef cat-
tle data. However, no improvements were observed with 
non-linear weights [2, 16]. Liu et  al. [15] also observed 
non-significant benefits from weighted ssGBLUP (Wss-
GBLUP) in dairy cattle, where the weighted matrix was 
constructed from a Bayesian whole-genome regression 
model (i.e., BayesN).

Using simulated sequence data, Jang et al. [17] investi-
gated the dimensionality of the genomic information [18] 
to assess the number of genotyped animals required to 
optimize the percentage of variant discoveries in GWAS. 
They showed that using a number of genotyped animals 
that is equal to the number of eigenvalues that explain 
98% of the variance of the genomic relationship matrix 
is sufficient to capture causative variants in populations 
with a larger effective size (Ne = 200). In contrast, popu-
lations with a small effective size (Ne = 20) require more 
genotyped animals. Although Ne plays a role, discovering 
causative variants remains difficult if the genotyped ani-
mals have a limited number of progeny with records.

In pigs, the Ne of typical commercial breeding popu-
lations ranges from 30 to 50 and the dimensionality of 
the genomic information or the number of independent 
chromosome segments (Me) that segregate in a popula-
tion ranges from 4000 to 6000 [19]. Based on Jang et al. 
[17], using a sample size of 7000 for GWAS in a popu-
lation with a Ne of 20 allowed the detection of causative 
variants that explain 20% of the additive genetic variance. 
Moreover, larger sample sizes resulted in better pre-
diction accuracies with variants selected from GWAS. 
Recently, Ros-Freixedes et al. [8] and Ros-Freixedes et al. 
[20] proposed an approach to generate accurate imputed 
WGS data for hundreds of thousands of pigs across 
multiple lines and assessed the suitability of WGS vari-
ants that were preselected using GWAS-based methods 
for genomic prediction using BayesR [21, 22]. However, 
BayesR only considers data from genotyped animals. In 
most livestock populations, only a small fraction of the 
phenotyped animals is genotyped. In such a situation, 
single-step methods (i.e., ssGBLUP [23–25] or ssSNP-
BLUP [26]) are advantageous because they also incorpo-
rate information on non-genotyped individuals into the 
analysis. In addition, most breeding programs currently 
use single-step methods [23, 27–29]. Therefore, in this 
study we investigated the impact of using preselected 
variants from WGS data for genomic prediction with 
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ssGBLUP in maternal and terminal pig lines, with up to 
1800 sequenced and 104,000 imputed sequenced animals 
per line. We explored different sets of preselected vari-
ants and the changes in accuracy when using ssGBLUP 
and WssGBLUP with BayesR SNP variances as weights.

Methods
Data
Datasets provided by the Pig Improvement Company 
(PIC; Hendersonville, TN) comprised two maternal 
lines (ML1 and ML2) and four terminal lines (TL1, 
TL2, TL3, and TL4) with diverse genetic backgrounds, 
for which the breeds of origin were Landrace and Large 
White for the maternal lines, and Duroc, Hampshire, 
and Large White for the terminal lines. For the mater-
nal lines, we analyzed average daily feed intake (ADFI), 
average daily gain (ADG), backfat thickness (BF), loin 
depth (LDP), total number of piglets born (TNB), num-
ber of stillborn (NSB), return to oestrus seven days after 
weaning (RET), and litter weaning weight (WWT). For 
the terminal lines, we analyzed ADFI in the purebreds, 
and ADG, BF, and LDP in both purebreds and cross-
breds (ADGX, BFX, and LDPX). The total number of 
animals in the pedigree and records for each trait are 
in Table 1.

Some traits were jointly analyzed in multi-trait mod-
els for genomic prediction. For the maternal lines, two-
trait models were considered for ADG and ADFI (ADFI 
model), ADG, and BF (GROWTH model), ADG and LDP 
(LOIN model), and TNB and NSB (REPROD model), but 
single-trait models were used for RET (RET model) and 
WWT (WWT model). For the terminal lines, the ADFI 
model used for the maternal lines was also applied, but 
four-trait models were used for the GROWTH (ADG, BF, 
ADGX, and BFX) and the LOIN (ADG, LDP, ADGX, and 
LDPX) models.

Pigs were initially genotyped with either the GGP-Por-
cine LD BeadChip or the HD BeadChip (GeneSeek, Lin-
coln, NE) and then were imputed up to 50k. In each line, 
we filtered out SNPs that were monomorphic, with a call 
rate lower than 0.90, a minor allele frequency lower than 
0.01, and a difference between observed and expected 
genotype frequencies greater than 0.15. We also removed 
the individuals with more than 10% missing genotypes. 
Table  2 shows the number of genotyped animals and 
SNPs by line after quality control.

Whole‑genome sequencing and imputation
The WGS data used in this study were generated by 
Ros-Freixedes et  al. [8] and Ros-Freixedes et  al. [20]. In 

Table 1  Number of records and animals in the pedigree

ADFI: average daily feed intake; ADG: average daily gain; BF: backfat thickness; LDP: loin depth; TNB: total number of piglets born; NSB: number of stillborn; RET: 
return to oestrus seven days after weaning; WWT: litter weaning weight; ADGX: ADG recorded in crossbred; BFX: BF recorded in crossbreds; LDPX: LDP recorded in 
crossbreds; ML1: maternal line 1; ML2: maternal line 2; TL1: terminal line 1; TL2: terminal line 2; TL3: terminal line 3; TL4: terminal line 4

Line ADFI ADG BF LDP TNB NSB RET WWT​ Pedigree

ML1 35k 1.06M 820k 604k 1.08M 1.13M 0.86M 34k 3.75M

ML2 34k 1.52M 936k 631k 5.11M 5.28M 4.10M 29k 9.18M

ADFI ADG BF ADGX BFX LDP LDPX Pedigree

TL1 35k 356k 339k 150k 149k 305k 148k 1.13M

TL2 40k 298k 295k 158k 156k 294k 156k 0.84M

TL3 16k 233k 226k 155k 153k 212k 152k 1.30M

TL4 64k 937k 859k 299k 247k 753k 243k 3.14M

Table 2  Number of genotyped individuals, SNPs, sequenced, and imputed sequenced animals in the two maternal and four terminal 
lines

ML1: maternal line 1; ML2: maternal line 2; TL1: terminal line 1; TL2: terminal line2; TL3: terminal line 3; TL4: terminal line 4; Chip: 50k chip data

Line Number of genotyped 
individuals

Number of SNPs (chip) Number of sequenced 
individuals

Number of imputed 
sequenced individuals

ML1 76,227 40,592 1366 76,230

ML2 66,608 42,746 1491 66,608

TL1 60,467 35,786 731 60,474

TL2 41,572 40,311 760 41,573

TL3 29,328 39,999 381 29,330

TL4 104,644 43,032 1856 104,661
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summary, a low-coverage sequencing strategy was fol-
lowed by joint calling, phasing, and imputation of the 
WGS genotypes using the ‘hybrid peeling’ method imple-
mented in AlphaPeel [30]. Table 2 shows the number of 
individuals sequenced and imputed to sequence for each 
line. The ‘hybrid peeling’ method used genotypes from 
both marker arrays (GGP-Porcine LD and HD) and the 
WGS data that are available across the complete multi-
generational pedigrees. Imputation was carried out sep-
arately for each line. Individuals were predicted to have 
a low imputation accuracy if they or their grandpar-
ents were not genotyped with a marker array or if they 
were less connected (based on the sum of coefficients of 
pedigree relationships) to the rest of the population, as 
described in Ros-Freixedes et al. [20], and were excluded 
[20]. The number of imputed individuals that remained 
for each line after quality control is in Table 2. Based on 
the imputation accuracy of 284 pigs that had both WGS 
(high coverage) and marker array data, these individuals 
were predicted to have an average dosage correlation of 
0.97 (median: 0.98), defined as the individual-wise cor-
relation between true and imputed genotypes [20]. All 
SNPs with a minor allele frequency lower than 0.023 
were removed since their estimated dosage correlations 
were less than 0.90 [20]. After imputation, genotypes (i.e., 
0/1/2) were called for all individuals, including those that 
were directly sequenced.

Training and test sets
Before the GWAS, all animals with WGS data were 
separated into training and test sets, as defined in Ros-
Freixedes et al. [8]. Test sets were generated by extracting 
entire litters from the last generation of the pedigree and 
only considering litters with a minimum of five full sibs. 
All remaining WGS individuals were considered as train-
ing sets. The training sets were filtered by excluding indi-
viduals whose relationship coefficient with individuals in 
the test sets was equal to or greater than 0.5. This ensured 
that the improvement in prediction accuracy was not 
solely attributed to the close relatedness between indi-
viduals in the training and test sets but to the informa-
tion gained from the WGS data. This approach was also 
intended to mimic a practical pig breeding scheme where 
selection candidates available in a selection nucleus at a 
specific time are evaluated [8]. The same training set was 
used for GWAS and genomic predictions in each line. 
Previous studies reported reduced prediction accuracy 
and bias of genomic estimated breeding value (GEBV) 
when using the same dataset for GWAS and genomic 
prediction [31, 32]. However, Ros-Freixedes et  al. [8] 
conducted a study using the same data as ours and they 

found no systematic changes in accuracy and dispersion 
after splitting the training set into two exclusive subsets, 
one for GWAS and one for genomic prediction.

Pre‑selected SNP panels
Two different pre-selected SNP panels were created based 
on the WGS data for genomic prediction, as described in 
Ros-Freixedes et al. [8]: (1) Top40k and (2) ChipPlusSign. 
Top40k refers to a set of variants with the lowest p-values, 
identified through GWAS in each consecutive non-over-
lapping 55-kb window across the genome, where each 
window was of equal size. Notably, these variants were 
not necessarily below the significance threshold but were 
selected based on their p-values and location within each 
window. ChipPlusSign combined the 50k chip data (Chip) 
and significant variants (p ≤ 10–6), based on a significance 
threshold of 0.05 that accounts for multiple-testing using 
the Bonferroni correction. We assumed that the markers 
from the Chip (~ 40k) were independent. When multi-
ple significant variants were within a 55-kb window, only 
the variant with the lowest p-value was selected. We used 
a univariate linear mixed model for single-SNP GWAS 
within each trait and line through the FastLMM soft-
ware [33], by including only the genotyped individuals 
from the training set. Population structure was accounted 
for by the genomic relationship matrix ( G ). More details 
about the GWAS are reported by Ros-Freixedes et al. [8]. 
Genomic predictions with the two sets were compared 
against prediction based on the Chip (Table 2). We com-
bined each pre-selected variant set for the traits included 
in each model if the scenarios used multi-trait models. For 
example, the pre-selected variants for ADFI and for ADG 
were combined for the ADFI model and used for genomic 
prediction. As WGS information was available only on 
purebred animals, no GWAS variants were selected for 
ADGX, BFX, and LDPX. All the combinations of selected 
variants for each model are described in Additional file 1: 
Table S1. After constructing all the pre-selected SNP pan-
els, a quality control step was applied to remove SNPs with 
a difference between observed and expected genotype fre-
quencies greater than 0.15 and to exclude individuals with 
parent-progeny Mendelian conflicts. Additional file  1: 
Tables S2 and S3 show the numbers of animals and SNPs 
for all pre-selected SNP panels after quality control for the 
maternal and terminal lines. Because the number of ani-
mals available for each preselected SNP panel (Top40k and 
ChipPlusSign) and Chip was different after quality con-
trol, the training and test sets contained only animals that 
passed quality control for all SNP panels (see Additional 
file 1: Table S4). This step guaranteed a fair comparison of 
genomic predictions between scenarios (Table 3).
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Genomic prediction
Single-trait, two-trait, or four-trait models were used for 
genomic prediction, depending on the traits. Here, only the 
four-trait GROWTH model (ADG, BF, ADGX, and BFX) 
of terminal lines is described:

where y is the vector of phenotypes; X is an incidence 
matrix for fixed effects (contemporary group as a cross-
classified effect for all traits, off-test weight and carcass 
weight as a covariate only for BF and BFX, respectively) 
contained in b ; W is an incidence matrix for the random, 
diagonal litter effect contained in c ( c ∼ MVN(0, I⊗ L0
)); Z is an incidence matrix for the random additive 
genetic effect contained in u ( u ∼ MVN(0,H⊗ �0)); 
and e ( e ∼ MVN(0, I⊗ R0 )) is a vector of residual effects. 
Matrices L0 , � 0, and R0 are as follows:

where σ 2
l  is the litter variance, σ 2

a  is the additive genetic 
variance, σ 2

e  is the residual variance, and other terms in 
the off-diagonals are the covariances between the traits 

y = Xb+Wc+ Zu + e,

L0 =











σ 2
lADG

σlADG,lBF 0 0

σlBF ,lADG σ 2
lBF

0 0

0 0 σ 2
lADGX

σlADGX ,lBFX
0 0 σlBFX ,lADGX σ 2

lBFX











,

�0 =









σ 2
aADG

σaADG,aBF σaADG,aADGX σaADG,aBFX

σaBF ,aADG σ 2
aBF

σaBF ,aADGX σaBF ,aBFX
σaADGX ,aADG σaADGX ,aBF σ 2

aADGX
σaADGX ,aBFX

σaBFX ,aADG σaBFX ,aBF σaBFX ,aADGX σ 2
aBFX









,

R0 =









σ 2
eADG

σeADG,eBF 0 0

σeBF ,eADG σ 2
eBF

0 0

0 0 σ 2
eADGX

σeADGX ,eBFX
0 0 σeBFX ,eADGX σ 2

eBFX









,

(i.e., σlADG,lBF is the litter covariance between ADG and 
BF). I is an identity matrix and H is the realized rela-
tionship matrix that combines pedigree and genomic 
relationships in ssGBLUP. The genomic prediction was 
performed with both ssGBLUP and WssGBLUP using the 
BLUPF90 family of programs [34], which used the inverse 
of H ( H−1 ) as follows [24]:

where G−1 is the inverse of the genomic relationship 
matrix, A−1 and A−1

22  are the inverses of the pedigree 
relationship matrices for all and genotyped individuals, 
respectively. The G matrix was created using the first 
method of VanRaden [16]:

where M is a matrix of genotypes centered for current 
allele frequencies, pj is the minor allele frequency of SNP 
j , and D is the diagonal matrix of SNP weights. All the 
SNPs were presumed to have homogeneous weights in 
ssGBLUP, meaning that D is an identity matrix ( I ). To 
ensure compatibility between G and A22 and circum-
vent singularity issues, G was tuned (scaled mean diago-
nal values of G to mean diagonal values of A22 and mean 
off-diagonals of G to mean off-diagonals of A22 ) and then 
blended with 5% of A22 . In WssGBLUP, different weights 
are assigned for each SNP; therefore, D is no longer I.

The algorithm for proven and young (APY) was 
applied to obtain G−1 while avoiding direct inversion of 
G [35] for lines with more than 50k genotyped animals, 
i.e., ML1, ML2, TL1, and TL4. Lines TL2 and TL3 used 
direct inversion of G . To ensure reliable estimation of 
the genomic estimated breeding values (GEBV), the 
number of core animals corresponded to the number of 
eigenvalues that explained 98% of the total variation in G 

H−1
= A−1

+

[

0 0

0 G−1
− A−1

22

]

,

G =
MDM

′

2
∑

pj(1− pj)
,

Table 3  Number of animals with genomic information that were retained after quality control and used in the analyses with all the 
SNPs panels

For maternal lines ML1 and ML2; ADFI: two-trait ADFI model (ADG and ADFI); GROWTH: two-trait GROWTH model (ADG and BF); LOIN: two-trait LOIN model (ADG and 
LDP); REPROD: two-trait REPROD model (TNB and NSB); RET: single-trait RET model (RET); WWT: single-trait WWT model (WWT)

For terminal lines TL1, TL2, TL3, and TL4; ADFI: two-trait GROWTH model (ADG and ADFI); GROWTH: four-trait GROWTH model (ADG, BF, ADGX, and BFX); LOIN: four-
trait LOIN model (ADG, LDP, ADGX, and LDPX)

Line ADFI GROWTH LOIN REPROD RET WWT​

ML1 74,148 74,153 74,152 73,919 73,891 74,058

ML2 64,654 64,655 64,659 64,599 64,653 63,456

TL1 56,423 56,424 56,422 – – –

TL2 38,477 38,475 38,477 – – –

TL3 27,671 27,671 27,671 – – –

TL4 102,586 102,590 102,588 – – –
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constructed using regular chip data [18]. Based on this 
criterion, the number of core animals randomly selected 
in each line was: 4200, 5400, 3400, and 5500 for ML1, 
ML2, TL1, and TL4, respectively.

For WssGBLUP, we calculated SNP variances from 
BayesR [21] and assigned those as weights for SNPs in an 
iterative manner. BayesR samples SNP effects from a mix-
ture of four normal distributions with mean zero and var-
iances equal to 0, 0.0001 ×σ 2

a  , 0.001 ×σ 2
a  , and 0.01 ×σ 2

a  . 
Each iteration in BayesR stored individual SNP variances, 
and posterior SNP variance was calculated as the average 
variance across all the iterations. Then, the weights were 
re-scaled to make the trace of D equal to the number of 
SNPs. More details about BayesR weighting are described 
in Gualdrón-Duarte et al. [14]. This approach was exclu-
sively implemented on the four largest lines, namely 
ML1, ML2, TL1, and TL4, for the growth-related traits 
(ADFI, ADG, BF, and LDP), using the Top40k and Chip-
PlusSign data to ascertain the potential benefits when the 
lines had a large number of genotyped pigs.

Validation
The accuracy of genomic prediction was calculated by 
correlating GEBV with deregressed EBV (dEBV) for the 
animals in the test sets (i.e., genotyped animals), where 
dEBV were derived without genomic information using 
the method of VanRaden et al. [36]. Inflation or deflation 
levels were assessed as the slope (b1) of the regression of 
dEBV on GEBV. Estimates of b1 smaller than 1 indicated 
inflation of GEBV and estimates greater than 1 indi-
cated deflation. Animals without dEBV, due to the lack 
of phenotypes, were removed from the test sets. There-
fore, each model had different numbers of test animals. 

The number of test animals for each model in all lines are 
summarized in Additional file 1: Table S4. As only a sin-
gle test set was used for each trait in each line, standard 
errors (SE) were computed through bootstrapping with a 
1000 bootstrap replicates [37].

Results
Genomic prediction accuracy of maternal lines using 
ssGBLUP
Figure  1 shows the changes in prediction accuracy (%) 
when using ChipPlusSign and Top40k compared to Chip 
for the two maternal lines. All results for prediction 
accuracy and changes relative to Chip (%) are summa-
rized in Additional file 1: Tables S5 and S6, respectively. 
Using ChipPlusSign and Top40k led to greater accuracy 
than using Chip for many traits (Fig.  1). Compared to 
Chip, using ChipPlusSign resulted in a maximum gain 
of 1.6% for ADG in ML1 and of 1.5% for NSB in ML2, 
and in a loss of − 0.3% and − 0.7% for WWT in ML1 and 
ML2, respectively, and the mean accuracy across all eight 
traits decreased as the number of genotyped animals 
decreased from ML1 (76,227) to ML2 (66.608), although 
gain in percentage was very small (0.8 to 0.5%). When 
the number of animals with WGS data decreased from 
ML1 to ML2, using Top40k resulted in an average gain 
of 5.5 and 4.3% for ML1 and ML2, respectively. Using 
Top40k, the gain was largest for RET in ML1 (34.8%) 
and ML2 (22.9%), whereas the loss was largest for WWT 
in ML1 (− 5.2%) and ADFI in ML2 (− 4.3%). Gains in 
accuracy were greater with Top40k than with Chip-
PlusSign. Therefore, pre-selection of variants based on 
GWAS (ChipPlusSign and Top40k) improved prediction 

(a) ChipPlusSign                                                                 (b) Top40k

Fig. 1  Changes in accuracy (%) for ChipPlusSign (a) and Top40k (b) compared to Chip in maternal lines. Each circle represents accuracy changes 
in each trait, whereas diamonds indicate the mean accuracy change across all traits in each line; error bars indicate the standard deviation 
across the traits
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accuracy for most traits in maternal lines, although the 
gains remained small to modest.

Genomic prediction accuracy of terminal lines using 
ssGBLUP
For the four terminal lines, the changes in prediction 
accuracy (%) of ChipPlusSign and Top40k compared to 
Chip are described in Fig.  2. All results for prediction 
accuracy and changes (%) when using Chip are summa-
rized in Additional file 1: Tables S7 and S8. ChipPlusSign 
showed a consistent gain in accuracy for all traits and in 
all lines, except for LDPX in TL2 (− 5.3%) and for LDPX 
in TL3 (− 0.5%). The results obtained with ChipPlusSign 
showed a decreasing trend as the number of genotyped 
animals decreased, both in the terminal and maternal 
lines. In the terminal lines, the number of genotyped ani-
mals decreased from TL4 (104,644), TL1 (60,467), TL2 
(41,572), to TL3 (29,328). The average gain for all seven 
traits was 1.0, 0.6, 0.4, and 1.5% in TL1, TL2, TL3, and 
TL4, respectively, and the maximum gain was 1.3% for 
TL1-BF, 2.3% for TL2-ADGX, 0.9% for TL3-ADFI, and 
2.6% for TL4-ADGX. In contrast to results obtained with 
ChipPlusSign, those found with Top40k were not con-
sistent among traits and lines. Although in TL3 and TL4, 
gains in accuracy were observed for most traits, except 
for ADFI in TL4 (− 0.5%), in TL1 and TL2, a loss of accu-
racy was observed for many traits (i.e., for six traits in 
TL1 and four traits in TL2). On average, TL3 showed the 
second greatest gain in accuracy for all seven traits (2.4%), 
with the smallest number of genotyped animals among 

all terminal lines. In contrast, although TL1 was the sec-
ond largest genotyped line, it showed the largest loss of 
accuracy (− 6.3% on average). Changes in accuracy for 
TL1, TL2, and TL4 were − 6.3%, − 3.3%, and 3.3%, respec-
tively, meaning that the number of genotyped animals 
(i.e., TL4 (104,644) > TL1 (60,467) > TL2 (41,572) > TL3 
(29,328)) did not affect the gain with Top40k for termi-
nal lines. However, the largest genotyped line (TL4) still 
showed the greatest average gain (3.3%). The maximum 
gains were 1.6% (BFX), 16.2% (ADGX), 3.7% (LDP), and 
7.9% (ADGX) in TL1, TL2, TL3, and TL4, respectively. 
For both ChipPlusSign and Top40k, the largest standard 
deviation in changes of prediction accuracy (%) among 
all traits was observed in TL2, i.e. 2.7 and 18.4, respec-
tively, which indicates that, in TL2, changes in accuracy 
depend highly on the traits. Overall, when ChipPlus-
Sign was used, a significant but limited improvement in 
accuracy was found for most traits in the terminal lines 
(maximum 2.6% for ADGX in TL4). Results for Top40k 
showed a decrease in accuracy for most traits in TL1 and 
TL2, whereas accuracy increased for almost all traits in 
TL3 and TL4.

Inflation/deflation of GEBV
Figure 3 shows the average estimates of b1 for all geno-
typed maternal (a) and terminal lines (b) scenarios. 
Estimates for each genotype scenario were averaged 
across all traits for each line. All other estimates for b1 
in the maternal and terminal lines are summarized in 
Additional file 1: Tables S9 and S10, respectively. In the 

(a) ChipPlusSign (b) Top40k

Fig. 2  Changes in accuracy (%) for ChipPlusSign (a) and Top40k (b) compared to Chip in terminal lines. Each circle represents accuracy changes 
in each trait, whereas diamonds indicate the mean accuracy change across all traits in each line; error bars indicate the standard deviation 
across the traits
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maternal lines, when the number of genotyped animals 
decreased (ML1 to ML2), b1 approached 1.0 (0.68 in ML1 
and 0.81 in ML2). More specifically, all genotyping panels 
resulted in a smaller inflation of GEBV in ML2 than in 
ML1. Results for Chip, ChipPlusSign, and Top40k were 
similar within each line.

Compared to the results for the maternal lines, those 
for the terminal lines were inconsistent among traits and 
lines. Overall, all terminal lines showed inflated GEBV 
for all traits and genotyping panels. On average, the best 
result was obtained in TL3 (0.75), followed by TL4, TL1, 
and TL2 (0.70, 0.68, and 0.68, respectively). Chip, Chip-
PlusSign, and Top40k yielded similar results in TL3 and 
TL4, but in TL1 and TL2, Top40k showed either less 
inflation (+ 0.05) or more inflation (− 0.13), respectively, 
compared to Chip and ChipPlusSign.

Genomic prediction using WssGBLUP
WssGBLUP using BayesR weights was only applied in the 
four largest lines (ML1, ML2, TL1, and TL4) for growth-
related traits (ADFI, ADG, BF, and LDP) with Top40k and 
ChipPlusSign. The results for prediction accuracy and b1 
are in Table  4 and Additional file  1: Table  S11, respec-
tively. ML1 showed no gain in accuracy when apply-
ing WssGBLUP. Using Top40k and ChipPlusSign with 
WssGBLUP in ML2 resulted in a 0.02 increase in accu-
racy in BF compared to ssGBLUP. However, a reduction 
of -0.09 in LDP accuracy was obtained when using the 
Top40k and ChipPlusSign. Results for TL1 also showed 
no improvement in accuracy. The greatest gains (~ 0.06) 
were observed in TL4 when applying WssGBLUP com-
pared to ssGBLUP. Although there was no gain in accu-
racy for ADFI, for ADG, BF, and LDP gains in accuracy 
of 0.06, 0.03, and 0.04, respectively, were observed when 

WssGBLUP was used with Top40k. Similarly, ADG, BF, 
and LDP showed gains in accuracy of 0.03, 0.02, and 0.04, 
respectively, when ChipPlusSign was used with BayesR 
weights. Overall, WssGBLUP and regular ssGBLUP 

(a) Maternal lines        (b) Terminal lines

Fig. 3  Average b1 values across traits for all the genotype scenarios in maternal and terminal lines. Diamond shape indicated the overall mean of b1 
values for all traits and genotype panels in each line

Table 4  Prediction accuracy of WssGBLUP compared to ssGBLUP

ML1: maternal line 1; ML2: maternal line 2; TL1: terminal line 1; TL4: terminal 
line4; ADFI: average daily feed intake; ADG: average daily gain; BF: backfat 
thickness; LDP: loin depth; Top40k: top40k preselected genotype panel; 
Top40k weighted: top40k using BayesR weighting; ChipPlusSign: ChipPlusSign 
preselected genotype panel; ChipPlusSign weighted: ChipPlusSign using BayesR 
weighting

Standard errors are in parenthesis

Line Description ADFI ADG BF LDP

ML1 Top40k 0.37 (0.01) 0.49 (0.01) 0.51 (0.01) 0.53 (0.01)

Top40k weighted 0.37 (0.01) 0.49 (0.01) 0.51 (0.01) 0.53 (0.01)

ChipPlusSign 0.37 (0.01) 0.47 (0.01) 0.51 (0.01) 0.52 (0.01)

ChipPlusSign 
weighted

0.37 (0.01) 0.47 (0.01) 0.51 (0.01) 0.51 (0.01)

ML2 Top40k 0.36 (0.01) 0.61 (0.01) 0.64 (0.01) 0.62 (0.01)

Top40k weighted 0.35 (0.01) 0.62 (0.01) 0.66 (0.01) 0.53 (0.01)

ChipPlusSign 0.37 (0.01) 0.61 (0.01) 0.63 (0.01) 0.62 (0.01)

ChipPlusSign 
weighted

0.37 (0.01) 0.62 (0.01) 0.65 (0.01) 0.53 (0.01)

TL1 Top40k 0.34 (0.01) 0.45 (0.01) 0.59 (0.01) 0.56 (0.01)

Top40k weighted 0.34 (0.01) 0.45 (0.01) 0.59 (0.01) 0.55 (0.01)

ChipPlusSign 0.36 0.01) 0.49 (0.01) 0.61 (0.02) 0.60 (0.01)

ChipPlusSign 
weighted

0.36 (0.01) 0.50 (0.01) 0.60 (0.02) 0.60 (0.01)

TL4 Top40k 0.39 (0.01) 0.51 (0.01) 0.60 (0.01) 0.59 (0.01)

Top40k weighted 0.39 (0.01) 0.57 (0.01) 0.63 (0.01) 0.63 (0.01)

ChipPlusSign 0.40 (0.01) 0.51 (0.01) 0.60 (0.01) 0.57 (0.01)

ChipPlusSign 
weighted

0.40 (0.01) 0.54 (0.01) 0.62 (0.01) 0.61 (0.01)
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showed similar b1 estimates, except for a few scenarios 
(see Additional file 1: Table S11).

Discussion
The current study investigated the impact of using large-
scale WGS data for genomic prediction through ssGB-
LUP and WssGBLUP in maternal and terminal pig lines. 
This is the first study that applies ssGBLUP to large-scale 
WGS pig datasets, with up to 1.8k sequenced and 104k 
imputed sequenced animals per line. We used two sets of 
preselected WGS variants to compare the performance of 
genomic predictions to that of the regular SNP chip. Our 
results show that preselected variants can outperform 
the regular SNP chip in genomic prediction. However, 
this advantage is not consistent across the lines and traits 
examined, and the improvement achieved was relatively 
limited, as previously reported for the same data using 
a BayesR approach [8]. In addition, we observed that 
WssGBLUP using posterior variances from the BayesR 
as SNP weights has the potential to improve prediction 
accuracy, especially for the largest genotyped popula-
tions. In this Discussion section, we address three points: 
(1) the impact of the method used for preselecting WGS 
variants on genomic prediction, (2) the use of WGS data 
for genomic prediction in pigs, and (3) the comparison of 
weighted with non-weighted ssGBLUP.

Impact of the method used for preselecting WGS variants 
on genomic prediction
Theoretically, using WGS data can improve genomic pre-
dictions because they cover the entire genome, and thus 
it is assumed that they include the causative variants. As 
a result, genomic prediction using WGS data does not 
rely on the LD between SNPs and causative variants but 
can directly use the causative variants [38]. Thus, using 
WGS data in genomic prediction is expected to increase 
accuracy because the variants present in the data can 
explain a larger proportion of the genetic variance than 
the SNPs on the genotyping chip. However, several stud-
ies have reported that using all variants included in WGS 
data did not improve prediction accuracies [6, 7, 10]. A 
plausible reason is that WGS data include many redun-
dant SNPs. Since WGS data have millions of SNPs across 
the entire genome, neighboring SNPs are probably in 
strong LD with causative variants or with other SNPs 
located in specific genomic blocks. This suggests that 
many SNPs are correlated and provide redundant infor-
mation. Therefore, fitting all SNPs from WGS data into 
the prediction model could lead to biased GEBV (i.e., dis-
persion bias measured by the slope of the regression of 
dEBV on GEBV). To avoid bias, many studies have inves-
tigated the potential benefit of preselecting variants that 
have been shown to be significantly associated with the 

trait for genomic prediction [2–4]. Thus, in the current 
study, two different preselected genotype panels, Chip-
PlusSign and Top40k, were designed and compared to 
the regular chip data for genomic prediction. These pan-
els were constructed following different assumptions, as 
in Ros-Freixedes et  al. [8]. For ChipPlusSign, significant 
variants (p ≤ 10–6) based on GWAS were added to the 
regular SNP chip with an expectation of better predic-
tion accuracy if the significant SNPs had large effects or 
were causative and were not present on the regular SNP 
chip. Incorporating preselected, significant SNPs into the 
regular SNP chip has been investigated in many studies 
with WGS data [3, 13, 39]. Top40k was created to mimic 
the number of SNPs in the regular medium-density SNP 
chips used for routine genomic evaluation in many live-
stock (e.g., pigs, cattle, and chickens). Similar to most 
regular SNP chips that contain evenly spaced SNPs, 
Top40k also consisted of 40k SNPs from WGS that had 
the lowest p-value (i.e., from GWAS) in each of 40k con-
secutive non-overlapping 55-kb window. Therefore, we 
expected gains in prediction accuracy if those preselected 
40k SNPs from WGS data were more informative and 
explained a larger proportion of genetic variation than 
the SNPs on the regular chip. In this study, the Top40k 
sets in the multi-trait models (ADFI, GROWTH, and 
LOIN) were combined, generating about 80k SNPs (see 
Additional file  1: Tables S2 and S3), which differs from 
the study of Ros-Freixedes et al. [8], who used the same 
datasets but only with single-trait models.

Among the preselected genotyping sets, ChipPlus-
Sign showed small to moderate gains in accuracy for 
many traits in the maternal and terminal lines. This panel 
also showed the most consistent results across lines and 
traits, with gains in accuracy observed in most cases, 
but within a limited range (from 0.1 to 2.6%). ChipPlus-
Sign also showed greater robustness in the performance 
of genomic prediction than Top40k when the genomic 
prediction was performed using BayesR on the same data 
[8].

Several studies have been conducted to investigate 
genomic prediction by adding preselected variants to 
the regular chip data using real or simulated datasets 
[2, 3, 17, 39]. In US Holstein cattle, VanRaden et  al. [3] 
investigated the reliability of GEBV for 33 traits when 
preselected SNPs (N = 16k) from WGS data were added 
to a 60k SNP chip. They reported an increase in reliabil-
ity (= squared accuracy) of up to a 4.8 percentage point 
(15.35%), with an average increase of 2.7 points (9.15%) 
compared to the reliability obtained with the 60k SNP 
chip. However, when Fragomeni et  al. [2] investigated 
the performance of ssGBLUP using the same preselected 
variants set as used by VanRaden et al. [3], almost no gain 
in reliability (0.92%) was observed, although reliabilities 
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were greater than obtained by VanRaden et  al. [3]. One 
major difference between these two studies was the mul-
tistep method used for genomic prediction by VanRaden 
et  al. [3] and ssGBLUP by Fragomeni et  al. [2]. With 
ssGBLUP, all information from genotyped and non-gen-
otyped animals was combined, which represented a mas-
sive amount of data. In such a scenario, gains in reliability 
are less likely if the selected variants are redundant, not 
truly causative, or have a small effect on the trait of inter-
est. Our results agree with those of Fragomeni et al. [2], 
especially our results obtained with ChipPlusSign.

In a simulation study, Jang et  al. [17] investigated the 
dimensionality of genomic information for variant selec-
tion and genomic prediction with WGS data. Their 
results showed that for populations with a small Ne the 
maximum gain in accuracy ranged from 0.86 to 1.98% 
when either significant variants or hundreds of vari-
ants with a large effect size that were preselected from 
GWAS were added to a 50k SNP chip. In their scenario, 
they simulated a Ne of 20, which is close to the Ne in 
pig populations (32–48) [19] although the Ne of real pig 
data seemed to be greater than 20 due to the variation 
between the populations.

In our study, the results obtained with Top40k 
depended highly on the trait and line. Top40k showed the 
greatest gain in accuracy for RET across all maternal lines 
(22.9 to 34.8%) but relatively marginal gains or losses 
for the other traits. In the terminal lines, the results for 
Top40k fluctuated more among lines, with increases or 
decreases in accuracy. The large improvement observed 
for reproduction or fertility traits in the maternal lines 
might be due to the nature of these traits and the lack 
of informative SNPs for these traits on the regular SNP 
chip. For example, the lack of informative SNPs for fertil-
ity traits led to a recent change in the SNP chip for beef 
cattle evaluations (https://​www.​angus.​org/​AGI/​global/​
Angus​GS.​pdf ). In addition, heritabilities for RET were 
lower than for other traits. Consequently, this trait had 
the lowest prediction accuracies (0.14 in ML1 and 0.20 in 
ML2 with Chip) among the other traits in the maternal 
lines. Thus, genomic prediction using preselected geno-
type data is expected to lead to greater improvements in 
accuracy if the SNPs on the regular chip do not explain 
a large proportion of the genetic variance. Therefore, we 
speculated that there would be more informative SNPs 
in Top40k for RET, which are not included in the regu-
lar SNP chip. Likewise, the small differences in accuracy 
observed between Chip and Top40k were likely to result 
from variants on these chips capturing similar propor-
tions of genetic variance and having similar LD patterns 
across the genome. Although we observed inconsist-
ent results between the terminal lines using Top40k, 
ADGX showed the highest gain (16.2% in TL2), which 

was recorded in the crossbred animals. ADGX was inves-
tigated in the GROWTH model along with three corre-
lated traits (ADG, BF, and BFX), and Top40k was created 
based on GWAS for ADG and BF, individually, after 
which each Top40k was combined for genomic predic-
tion. Thus, this result shows the potential benefits for 
improving genomic prediction of traits recorded in cross-
bred animals if many phenotypes are available for both 
purebreds and crossbreds. However, crossbred traits were 
not directly used for preselecting variants because WGS 
information was available only on purebred animals.

The marginal gains in accuracy that were observed 
for most traits when using ChipPlusSign and Top40k 
raised a question about the amount of information that 
has been used for preselecting the variants and perform-
ing genomic predictions. Examining the dimensionality 
of the genomic information can help assess the number 
of genotyped animals needed to maximize the percent-
age of variant discoveries in GWAS and gains in predic-
tion accuracy [17]. According to Jang et al. [17], using a 
number of genotyped animals that is equal to the num-
ber of eigenvalues that explain 98% of the variance of G 
is sufficient to capture the most informative variants in 
the populations with a large effective size (Ne = 200). 
However, only a small proportion of the causative vari-
ants were discovered for highly polygenic traits and their 
study showed that populations with a smaller effective 
size (Ne = 20) required much more data to capture the 
causative variants. For example, when 30k genotyped ani-
mals were used in GWAS for highly polygenic traits, only 
three causative variants that explained 3.9% of the genetic 
variance were identified. In addition, adding preselected 
variants to regular chip data yielded a maximum gain in 
accuracy of nearly 2% for the scenarios with Ne = 20. In 
the current study, the number of WGS animals used for 
GWAS ranged from 29 to 104k, which is the largest WGS 
data used for GWAS in pigs by far. However, fine-map-
ping the causative variants was still challenging and the 
benefits for genomic predictions were limited [8]. Since 
commercial pig breeding populations have small Ne and 
most of the traits are highly polygenic, to capture the 
most informative variants, it is necessary to have a very 
large number of WGS animals (i.e., 30k) with many prog-
eny records [17].

In an initial series of analyses (results not shown), we 
used only significant variants (TopSign) for genomic pre-
diction, and found no benefit compared to Chip. In fact, 
we observed a loss in accuracy for most traits and lines. 
Depending on the line and trait, the number of variants 
in TopSign ranged from 6 to 1705. Fragomeni et al. [13] 
reported that the maximum accuracy of genomic predic-
tions could be obtained when the true causative variants 
were identified with their exact substitution effects (i.e., 

https://www.angus.org/AGI/global/AngusGS.pdf
https://www.angus.org/AGI/global/AngusGS.pdf
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true effects of variants), position in the genome, and the 
proportion of genetic variance explained by each vari-
ant. Therefore, our results revealed that the variants in 
TopSign might not be truly causative, resulting in the use 
of these variants to underperform the regular SNP chip. 
Based on this, the small gains in accuracy observed with 
ChipPlusSign and Top40k could be due to an increase in 
the number of SNPs in these panels (e.g., the number of 
SNPs on Chip, ChipPlusSign, and Top40k in ML1 was 
40,592, 41,364, and 80,308) rather than to the signifi-
cance of the preselected SNPs. In a simulation study that 
mimicked a population with a small Ne, Jang et  al. [17] 
demonstrated that adding a few hundred to thousands of 
SNPs to the regular chip data resulted only in marginal 
improvements in prediction accuracy, although they 
explained a significant proportion of the genetic variance.

Using WGS data for genomic prediction in pigs
With the decrease in sequencing costs, the use of WGS 
data for genomic prediction in livestock (e.g., sheep, beef 
cattle, dairy cattle, and pigs) is more affordable than in 
the past. Several studies have reported marginal or no 
benefits of using WGS for genomic prediction in sheep, 
beef, and dairy cattle [2, 3, 11, 12, 39]. Compared to 
other livestock species, in pigs, there is a scarcity of stud-
ies focused on the use of WGS data for genomic predic-
tion. Moreover, those studies have primarily used smaller 
datasets [6, 7], with the number of imputed sequenced 
pigs being less than 7k. As the number of variants in 
WGS increases, more samples are required to resolve 
the well-known issue of ‘ N << p ’, where N  is the sam-
ple size, and p is the number of variants. If sample size is 
not large enough, estimating SNP effects and identifying 
causative SNPs could be difficult, especially for the popu-
lations with small Ne and highly polygenic traits.

In the current study, the number of sequenced ani-
mals ranged from ~ 380 to 1.8k across lines, which rep-
resented nearly 2% of the population in each line [8]. 
However, depending on the line, the WGS information 
was imputed for 29k to 104k animals. Applying large-
scale WGS data to preselect variants through GWAS and 
using those variants for genomic prediction showed lim-
ited improvement in our study and in Ros-Freixedes et al. 
[8], similar to previous studies that used a small number 
of animals with WGS [6, 7]. Increasing the sample size 
could enhance the power to detect causative variants and 
improve genomic predictions [38, 40]. However, com-
mercial pig breeding populations are highly structured 
and have a small Ne. Therefore, increasing only the sam-
ple size might not help improve the performance of both 
variant selection and genomic prediction. Jang et al. [17] 

reported that using animals with greater EBV accuracy 
(i.e., with more progeny phenotypes) helped to better 
identify the causative variants compared to using animals 
that had lower EBV accuracy. Therefore, selecting high-
accuracy animals and using them as a variant discovery 
set could be a possible strategy. In addition, a smaller 
Ne implies a lower Me, which means that the number of 
SNPs on the 50k chip is likely sufficient to represent the 
chromosome segments in the populations to cover the 
entire genome. Theoretically, the ideal number of SNPs 
on chip panels can be calculated as 12 × Me [41]. In com-
mercial pig breeding populations, Me ranges from ~ 4k 
to 6k [19], meaning that the number of SNPs genotyped 
should range from 48 to 72k; therefore, a 50k chip may 
be sufficient. This could explain why limited gains are 
obtained when using WGS data in pigs. Therefore, the 
ultimate goal of using WGS data for genomic prediction 
is to design a customized SNP chip that consists of the 
already-known SNPs in commercial chip data and those 
discovered as significant for economically important 
traits. Here, transcriptomic and functional information 
could help identify important, non-redundant SNPs [42].

Another possible reason for the limited benefit of using 
WGS data could be the imputation accuracy [20, 43]. 
The ideal situation to use WGS data is to sequence all 
the animals in the population without imputation from 
low-density genotype to the sequence level. However, 
as sequencing the entire population is still not feasible, 
imputation is inevitable when dealing with WGS data. 
Because the reference data for imputation consisted of a 
limited number of sequenced animals, sequencing more 
animals and using more robust statistical tools to impute 
alleles accurately are required.

Comparison of weighted and non‑weighted ssGBLUP
The current study performed genomic prediction using 
ssGBLUP for the following reasons: it can consider multi-
trait models and virtually any mixed linear model used 
for genomic evaluation (e.g., maternal effects) [23]. The 
study on the same data used here by Ros-Freixedes [8] 
applied a simplified single-trait model through BayesR. 
Furthermore, ssGBLUP is a widely recognized method 
for routine genomic evaluation in various livestock spe-
cies. This is due to its ability to use all available data from 
genotyped and non-genotyped individuals [23, 27–29]. A 
major assumption of GBLUP-based methods is that the 
markers have homogeneous variance, which is a reason-
able approximation for most livestock traits due to their 
highly polygenic nature [24, 27]. However, biologically, 
this assumption does not hold because not all markers in 
the genome explain the same proportion of variance [44]. 
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Therefore, assigning heterogeneous variance per marker 
for genomic prediction has been investigated in several 
studies [14, 45, 46]. Weighting SNPs in ssGBLUP was ini-
tially proposed by Wang et al. [46] by assigning unequal 
SNP variances based on the square of the SNP effect esti-
mates weighted by their allele frequencies. However, this 
method resulted in reductions in accuracy of genomic 
predictions and extra biases over iterations due to the 
extreme values that were obtained for SNP variances, 
especially for polygenic traits [47, 48].

Following the increased accuracy reported by 
Gualdrón-Duarte et  al. [14], we used the posterior SNP 
variances from BayesR as SNP weights. In BayesR, SNP 
effects are sampled from a mixture of four normal dis-
tributions with mean zero and variances equivalent to 
the following classes: 0, 0.0001 σ 2

g  , 0.001 σ 2
g  , and 0.01 

σ 2
g  [22], which we expected to lead to a better weighting 

matrix, i.e., closer to weighting based on the true vari-
ance of each SNP. Our results showed that WssGBLUP 
outperformed ssGBLUP for ADG, BF, and LDP in TL4 
for both Top40k and ChipPlusSign by up to 0.06 in pre-
diction accuracy, although the gains were still marginal. 
However, the results of WssGBLUP for the other traits in 
ML1, ML2, and TL1 were similar to those of ssGBLUP. 
We expected almost no gain with WssGBLUP, especially 
for the largest genotyped population (TL4), since the 
SNP effects were likely dominated by a large amount of 
data in the single-step system, meaning that the impact 
of the prior is less critical. However, we observed poten-
tial room for improvement in predictions when using the 
posterior variance of BayesR, even with a large amount of 
data. In other words, although the volume of data could 
overwhelm the a priori assumption for SNP effects, we 
can still observe the benefits if the variances used as SNP 
weights are sufficiently accurate.

Conclusions
Preselection of significant variants from WGS data and their 
use in genomic prediction can help to improve genomic pre-
dictions in maternal and terminal pig lines with tens of thou-
sands of sequenced/imputed animals. However, limited gains 
are noted even in large populations. Improvements may be 
observed when significant variants for some traits are not 
already represented by the SNPs present on the commercial 
SNP chips and with that, traits that have a limited accuracy 
may experience extra gains. Weighting SNPs using BayesR 
variances slightly improved prediction accuracies. The per-
formance of genomic predictions using preselected variant 
sets depends highly on the population structure, number of 
genotyped animals, and method used to select the variants.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12711-​023-​00831-0.

Additional file 1: Table S1. Combination of selected variants for each 
model. ADFI: average daily feed intake; ADG: average daily gain; BF: 
backfat thickness; LDP: loin depth; TNB: total number of piglets born; NSB: 
number of stillborn; RET: return to oestrus seven days after weaning; WWT: 
litter weaning weight; Top40k: Top40k preselected genotype panel; Chip‑
PlusSign: ChipPlusSign preselected genotype panel. Table S2. Number of 
animals and SNPs for the pre-selected SNP panels in the maternal lines. 
ML1: maternal line 1; ML2: maternal line 2; Top40k: Top40k preselected 
genotype panel; *ChipPlusSign: ChipPlusSign preselected genotype 
panel. Table S3. Number of animals and SNPs for the pre-selected SNP 
panels in the terminal lines. TL1: terminal line 1; TL2: terminal line 2; TL3: 
terminal line 3; TL4: terminal line 4; Top40k: Top40k preselected genotype 
panel; ChipPlusSign: ChipPlusSign preselected genotype panel. Table S4. 
Number of training and test animals for each model in the two maternal 
and four terminal lines. ADFI: average daily feed intake; ADG: average daily 
gain; BF: backfat thickness; LDP: loin depth; TNB: total number of piglets 
born; NSB: number of stillborn; RET: return to oestrus seven days after 
weaning; WWT: litter weaning weight; ADGX: ADG recorded in crossbred; 
BFX: BF recorded in crossbred; LDPX: LDP recorded in crossbred. Table S5. 
Prediction accuracy of the maternal lines using ssGBLUP. ML1: maternal 
line 1; ML2: maternal line 2; ADFI: average daily feed intake; ADG: average 
daily gain; BF: backfat thickness; LDP: loin depth; TNB: total number of pig‑
lets born; NSB: number of stillborn; RET: return to oestrus seven days after 
weaning; WWT: litter weaning weight; standard errors are presented in 
parenthesis. Table S6. Accuracy gain and reduction (%) compared to Chip 
data in the maternal lines. ML1: maternal line 1; ML2: maternal line 2; ADFI: 
average daily feed intake; ADG: average daily gain; BF: backfat thickness; 
LDP: loin depth; TNB: total number of piglets born; NSB: number of still‑
born; RET: return to oestrus seven days after weaning; WWT: litter weaning 
weight. Table S7. Prediction accuracy of the terminal lines using ssGBLUP. 
TL1: terminal line 1; TL2: terminal line 2; TL3: terminal line 3; TL4: terminal 
line 4; ADFI: average daily feed intake; ADG: average daily gain; BF: backfat 
thickness; LDP: loin depth; ADGX: ADG recorded in crossbred; BFX: BF 
recorded in crossbred; LDPX: LDP recorded in crossbred; standard errors 
are presented in parenthesis. Table S8. Accuracy gain and reduction 
(%) compared to Chip data in the terminal lines. TL1: terminal line 1; TL2: 
terminal line 2; TL3: terminal line 3; TL4: terminal line 4; ADFI: average daily 
feed intake; ADG: average daily gain; BF: backfat thickness; LDP: loin depth; 
ADGX: ADG recorded in crossbred; BFX: BF recorded in crossbred; LDPX: 
LDP recorded in crossbred. Table S9. Slope (b1) of the regression of dEBV 
on GEBV for the maternal lines using ssGBLUP. ML1: maternal line 1; ML2: 
maternal line 2; ADFI: average daily feed intake; ADG: average daily gain; 
BF: backfat thickness; LDP: loin depth; TNB: total number of piglets born; 
NSB: number of stillborn; RET: return to oestrus seven days after weaning; 
WWT: litter weaning weight; Standard errors are presented in parenthesis. 
Table S10. Slope (b1) of the regression of dEBV on GEBV for the terminal 
lines using ssGBLUP. TL1: terminal line 1; TL2: terminal line 2; TL3: terminal 
line 3; TL4: terminal line 4; ADFI: average daily feed intake; ADG: average 
daily gain; BF: backfat thickness; LDP: loin depth; ADGX: ADG recorded in 
crossbred; BFX: BF recorded in crossbred; LDPX: LDP recorded in crossbred; 
Standard errors are presented in parenthesis. Table S11. Slope (b1) of the 
regression of dEBV on GEBV for WssGBLUP compared to ssGBLUP. ML1: 
maternal line 1; ML2: maternal line 2; TL1: terminal line 1; TL4: terminal 
line 4; ADFI: average daily feed intake; ADG: average daily gain; BF: backfat 
thickness; LDP: loin depth; Top40k: top40k preselected genotype panel; 
Top40k weighted: top40k using BayesR weighting; ChipPlusSign: ChipPlus‑
Sign preselected genotype panel; ChipPlusSign weighted: ChipPlusSign 
using BayesR weighting; Standard errors are presented in parenthesis
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