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The quantum long-range extended Ising model possesses several striking features which cannot be observed
in the corresponding short-range model. We report that the pattern obtained from the entanglement between any
two arbitrary sites of the long-range model can be mimicked by the model having a finite range of interactions
provided the interaction strength is moderate. On the other hand, we illustrate that when the interactions are
strong, the entanglement distribution in the long-range model does not match the class of a model with a few
interactions. We also show that the monogamy score of entanglement is in good agreement with the behavior of
pairwise entanglement. Specifically, it saturates when the entanglement in the finite-range Hamiltonian behaves
similarly to the long-range model, while it decays algebraically otherwise.

DOI: 10.1103/PhysRevA.106.052425

I. INTRODUCTION

Quantum systems with long-range (LR) interactions, natu-
rally emerging in numerous experiments in atomic, molecular,
and optical physics [1–18], have attracted a great deal of
interest in the past decade. Moreover, these systems are of-
ten known to possess rich and striking properties which are
not typically observed in the models having short-range (SR)
interactions. Examples of features include fast spreading of
correlations [13,19–22], breakdown of the Mermin-Wagner-
Hohenberg theorem [23–25], violation of the area law
[26–29], and fast state transfer [30], to name a few. Tremen-
dous advancements in setups such as cold atoms in optical
lattices, ion traps, and superconducting circuits facilitate
quantum control at an unprecedented level, thereby making
the simulation of such long-range systems a reality with rea-
sonable system size [18,31–33] and opening up the possibility
of practical verification of these interesting characteristics.

Despite the overwhelming progress in different experimen-
tal techniques, the current generation of quantum hardware
is not yet scalable. They are far from perfect due to the
limited number of controllable qubits and lack of quantum
error correction, which are collectively referred to as noisy
intermediate-scale quantum (NISQ) hardware [34]. Therefore,
it is of utmost importance to the current generation of NISQ
hardware to use the fewest possible gates so that the noise can
be minimal. Quantum variational algorithms like the quantum
approximate optimization algorithm (QAOA) [35] have been
proven to be an efficient tool to simulate many-body systems
[15,17,36–39] which are also suitable for NISQ hardware
[40–44]. However, to simulate an end-to-end connected LR
system (cf. [45], in which LR systems are also simulated via
the QAOA), if we use only a single two-qubit gate per inter-
action, we require at least O(N!) two-qubit gates for an N-site
system, which again needs to be optimized over multiple iter-
ations. In gate-based quantum hardware, the two-qubit gates

in general introduce more noise in the system than the single-
qubit ones and have an overall low fidelity [46]. Therefore,
an exponential use of two-qubit gates can make the overall
simulation too noisy to obtain any meaningful result. In this
work, we try to circumvent this problem by approximating
a LR Hamiltonian with a finite number of pairing interac-
tions, keeping the overall behavior of two-qubit entanglement
behavior intact, which in turn results in an exponential-to-
polynomial reduction of the usage of two-qubit gates.

In a LR model, the two-body interaction potential decays
algebraically with their relative distance, typically like 1/rα ,
where r is the relative distance between the two bodies and the
exponent α controls the strength of the interaction. For such
a system of spatial dimension D, the interactions are strong
when 0 � α � D, while those with α > D + 1 are called
weak. The weak LR interactions effectively behave like the
SR ones, where the correlations have an exponential tail, ex-
cept at the critical point, where the correlations are algebraic.
On the other hand, when α < D + 1, the correlations always
have an algebraic tail regardless of the critical points. This
is clearly a very distinctive feature of a true LR Hamiltonian,
having counterintuitive characteristics. From the point of view
of quantum correlations, although information-theoretic mea-
sures [47,48] may show long-range order [49–52], measures
from the entanglement-separability paradigm are typically
short range when α > D + 1. In this work, we concentrate
on the regime when α < D + 1, where classical correlations
always have an algebraic tail, irrespective of the critical point.

Typically, in a SR model, entanglement follows the area
law when the ground state is gapped and has a finite range of
interactions [28]. Indeed, entanglement entropy in the ground
state of a one-dimensional gapped system saturates to a con-
stant value in the thermodynamic limit as an implication
of the area law [53], while the same grows logarithmically
if the system is a gapless one [54,55]. On the other hand,
in the presence of long-range interactions, these results are
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not valid anymore and entanglement can grow logarithmically
even away from the critical point [22,56]. In fact, under certain
special circumstances, LR interactions allow sublogarithmic
growth of entanglement entropy [21,57–59] or even as a vol-
ume law [60], which is a clear violation of the area law.
Long-range systems, where area law is not valid, should in
principle not be efficiently simulable with numerical tools like
tensor networks [61]. However, it has been shown that existing
numerical tools such as matrix product states [26,29,62–69]
can produce a good match with the exact results. This may be
attributed to the analysis of the distribution of entanglement,
which can be mimicked with long- but not infinite-range in-
teractions. We show that this is indeed true in the intermediate
regime 1 < α < 2 as far as the two-qubit entanglement is
concerned.

Besides entanglement entropy, the two-site entanglement
between arbitrary pairs of spins is directly related to appli-
cations such as secure quantum communication and quantum
internet, involving multiple parties. Since many-body quan-
tum systems are often considered to be promising premises
to generate multipartite entangled states, a long-range Hamil-
tonian can be more useful than the SR ones. In this article,
we, therefore, investigate the two-qubit entanglement between
different lattice sites over the entire spin chain. Note that,
unlike classical correlations, an algebraic decay of two-site
entanglement with distance is restricted by the monogamy of
entanglement [70–72]. In this work, we address the following
questions: Can a ground state of an end-to-end fully connected
LR Hamiltonian be efficiently simulated by a finite number of
pairing interactions? If so, how many neighbors are required
to mimic the same behavior of entanglement in the ground
state and how does that number vary with the exponent α i.e.,
the strength of the interaction?

These questions are especially relevant when we wish to
create a link between the different hardware platforms which
are presently available. For example, in an ion-trap simula-
tor, simulation of SR spin models is challenging, while the
models realized are typically long range with a high enough
exponent, thereby possessing vanishing long-range behaviors
[11,12]. On the other hand, in a gate-based simulator with
superconducting qubits, e.g., in IBM, Google, and Rigetti,
simulation of a LR model is problematic since the simulation
becomes extremely noisy due to the exponential use of two-
qubit gates. Therefore, it would be tremendously helpful if we
could simulate the entanglement content of an end-to-end LR
model with a system having fewer neighbor interactions so
that the corresponding Hamiltonian can act as a representative
between the two simulators.

In this paper, by choosing a family of LR models in one
dimension which can be solved analytically, we show that at
the quasilocal regime having moderate interaction strength,
we can reproduce nearly the same pattern for two-qubit en-
tanglement of the ground state with a model possessing a
few finite-neighbor interactions. In particular, when 1 < α <

2, where classical correlations are known to have an alge-
braic decay, pairwise entanglement is mostly short range and
can be mimicked by a finite-neighbor Hamiltonian. We also
illustrate that the number of neighboring interactions can
be further reduced if we allow stronger interaction strength
in the few-neighbor Hamiltonian compared to the target

Hamiltonian with end-to-end connection. However, in the
nonlocal regime α < 1, we observe that entanglement can also
have an algebraic tail Er ≈ 1/rα and therefore one requires
a pairing interaction of the order of the size of the system
(approximately equal to N) to reproduce nearly the same
entanglement pattern as the true LR model. We supplement
our results by analyzing the monogamy of entanglement in
the ground state and argue that in the regime where the
monogamy score tends to a saturation with the increase in
range of interactions, a finite-neighbor interaction can be a
good representative of the true LR model for mimicking the
trends of pairwise entanglement.

The paper is organized as follows. In Sec. II we introduce
a family of Hamiltonians that we deal with and include a brief
summary of the diagonalization procedure to make the paper
self-contained. The critical points are discussed in Sec. III.
Section IV includes a short summary of the evaluation process
for correlations which are required to compute entanglement.
In Sec. V we manifest scenarios where a finite range of
interactions is enough to produce the pattern of two-qubit
entanglement in the fully connected LR models. Section VI
reports the change in the behavior of entanglement depending
on the phases. In Sec. VI B we investigate the monogamy
score of entanglement in these systems and argue that the
trends of monogamy can also indicate whether a few inter-
actions can mimic entanglement patterns of the LR models.
We summarize in Sec. VII.

II. FAMILY OF LONG-RANGE MODELS

We introduce the model Hamiltonian under consideration
and briefly describe the diagonalization procedure. We con-
sider an Ising-type model with long-range interacting terms.
Variations of these models have already been studied in re-
cent literature [73–75] and were shown to have contrasting
properties compared to the SR models. The LR Hamiltonian
of N sites reads

H =
N∑

n=1

[
h′

2
σ z

n +
Z∑

r=1

J ′
rσ

x
n

n+r−1∏
i=n+1

σ z
i σ x

n+r

]
, (1)

with open boundary conditions, where σα (α = x, y, x) are
the Pauli matrices. Here h is the transverse magnetic field
and J ′

r = J
A

1
rα is the interaction strength depending on the

distance r between the sites, with the exponent α the tuning
parameter, which dictates the interaction strengths between
different spins, and A a constant. We set h′/J = h, J ′

r/J = Jr .
When α ∼ 0, the model behaves like the LR Ising model,
which is similar to the Lipkin-Meshkov-Glick (LMG) model
[76,77], while for α > 2, the model increasingly resembles
the nearest-neighbor Ising model [78–80] with increasing α

values and therefore falls within the universality class of
the quantum transverse Ising model. The value of Z sets
the number of pairwise interactions per site in the lattice,
which is also called the coordination number. For example,
with Z = 1, we get the nearest-neighbor (NN) Ising model,
while Z = 2 represents the next-nearest-neighbor extended
Ising model, and the true LR extended Ising model occurs
with Z = N − 1. Any intermediate values of Z correspond to
the few-neighbor extended Ising models. We expect to reveal
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contrasting entanglement patterns in two distinct regions: (i)
α < 1, which we call the nonlocal regime, and (ii) 1 < α < 2,
referred to as the quasilocal regime. We compare the results
with the local regime (α > 2) results which belongs to the SR
Ising universality class.

In this model, we notice that pairwise interaction terms
between i and j have the form σ x

i σ z
i+1 · · · σ z

j−1σ
x
j instead of

σ x
i σ x

j , which allows the Hamiltonian to be treated analytically.
However, within the truncated Jordan-Wigner (JW) approx-
imation [81], both models are the same. The constant in Jr

which can be considered as normalization is A = ∑Z
r=1 r−α ,

which fixes the ferromagnetic critical point at h = 2. For a fi-
nite LR system of size N , A evaluates to H (α)

N−1, the generalized
harmonic number, which in the thermodynamic limit becomes
the Riemann zeta function ζ (α). For any of the few-neighbor
extended Ising models A = H (α)

Z .

A. Few-neighbor extended Ising model

We investigate the behavior of entanglement in models
with several few-neighbor pairwise interactions instead of
studying entanglement properties of the LR model. Specifi-
cally, except Z = 1 (NN Ising) or Z = N − 1 (true LR), we
study all other Z values, thereby dealing with Z-neighbor
extended Ising models. As we will show, after a certain Z
value, quantum correlations can mimic the behavior obtained
for the LR model.

B. Long-range extended Ising model

For any finite-size system, end-to-end connection is con-
sidered when Z = N − 1 and therefore we call the same the
true long-range extended Ising model or simply the LR ex-
tended Ising model. In the thermodynamic limit, i.e., N → ∞,
the LR Hamiltonian can only be normalized when α > 1 so
that

∑
r Jr = 1. In this case, the Hamiltonian takes the form

H =
∞∑

n=1

[
h

2
σ z

n + 1

ζ (α)

∞∑
r=1

1

rα
σ x

n

n+r−1∏
i=n+1

σ z
i σ x

n+r

]
, (2)

where the normalization is given by A = ζ (α), the Riemann
zeta function. For 0 < α � 1, the normalization does not ex-
ist in the thermodynamic limit and hence we must restrict
ourselves to a finite-size systems in order to maintain the nor-
malization. Derivatives of this Hamiltonian have already been
studied [73–75,80–84] in the literature. Note that the pres-
ence of σ z-string operators in the pairwise interaction term
makes the model different from the LR Ising model. Within
the truncated Jordan-Wigner approach [81], where, after the
Jordan-Wigner transformation, we truncate the fermionic op-
erator up to quadratic order, the LR Ising model reduces to the
LR extended Ising model and can be treated analytically. In
general, the truncation approximation becomes better deep in
the disordered phase where it satisfies 〈σ z

i 〉 = 1 − 2c†
i ci ≈ 1.

C. Diagonalization

Let us now illustrate the procedure by which a Z-neighbor
extended Ising model can be diagonalized analytically. Due
to the specific nature of the pairwise interaction in the
long-range interaction terms of the Hamiltonian, these fam-

ilies of Hamiltonian can be mapped to quadratic free-fermion
models which can be solved analytically. Here we limit our-
selves to the +1-parity subspace of the Hilbert space [85–87];
note that H commutes with the parity operator P = ∏N

n=1 σ z
n .

The first step in the diagonalization is to apply the Jordan-
Wigner transformation, given by

σ x
n = −(cn + c†

n )
∏
m<n

(1 − 2c†
mcm), (3)

σ y
n = i(cn − c†

n )
∏
m<n

(1 − 2c†
mcm), (4)

σ z
n = 1 − 2c†

ncn, (5)

where fermionic operators cn satisfy {cm, c†
n} = δmn and

{cm, cn} = {c†
m, c†

n} = 0. For periodic boundary conditions,
the Hamiltonian H becomes [85]

H = P+ H+ P+ + P− H− P−, (6)

where P± = 1
2 [1 ± P] are projectors on subspaces with even

(+) and odd (−) parity,

P =
N∏

n=1

σ z
n =

N∏
n=1

(1 − 2c†
ncn), (7)

and H± are the corresponding reduced Hamiltonians. Al-
though the spin Hamiltonian is periodic, after the JW
transformation, the cn in H− satisfy periodic boundary con-
ditions, i.e., cN+1 = c1, while the cn in H+ are antiperiodic,
i.e., cN+1 = −c1.

When dealing with the periodic Hamiltonian in the thermo-
dynamic limit, we constrain ourselves to the positive-parity
subspace and the Hamiltonian in Eq. (2) reads

H+ =
∑

n

h

2
(1 − 2c†

ncn)

+
∑
n,r

Jr[(c†
ncn+r − cnc†

n+r ) + (c†
nc†

n+r − cncn+r )], (8)

with the antiperiodic boundary condition cN+r = −cr ∀ r.
The antiperiodic boundary condition corresponds to the
case where the total number of quasiparticles is even, i.e.,∑N

n=1 c†
ncn = s is even, so that

∏N
n=1(1 − 2c†

ncn) = (−1)s.
In the thermodynamic limit, the translationally invariant

H+ is diagonalized by a Fourier transform followed by a
Bogoliubov transformation [87–89]. The Fourier transform
applicable for the antiperiodic boundary condition is given by

cn = e−iπ/4

√
N

∑
k

ckeikn, (9)

where the pseudomomentum takes half-integer values

k = ±1

2

2π

N
, . . . ,±N − 1

2

2π

N
. (10)

In the case of even parity P = ∏N
n=1 σ z

n , the fermionic
creation (annihilation) operators satisfy antiperiodic boundary
conditions. Using the Fourier transformation given in Eq. (9),
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(b)

(a)

FIG. 1. Dispersion relation to prove criticality: ωk (ordinate) vs
k (abscissa) at the critical point h1

c = 2 for (a) α = 0.5 and h = 2 and
(b) α = 1.5 and h = 2 in the (a) quasilocal and (b) nonlocal regimes.
Different lines indicate different values of Z . The inset indicates the
dependence of k on the velocity of the quasiparticles for the LR
model and a few-neighbor model. Here N = 256 (throughout the
paper, we consider N = 256 unless stated otherwise). Both axes are
dimensionless.

we can rewrite the Hamiltonian as.

H+ = 2
∑
k>0

(
h

2
− Re(J̃k )

)
(c†

kck + c†
−kc−k )

+ Im(J̃k )(c†
kc†

−k + c−kck ) − g, (11)

where J̃k = ∑Z
r=1 Jreikr is the Fourier transform of Jr . There-

fore, we have J̃k = 1
H (α)
Z

∑Z
n=1

xn

nα .

The stationary Bogoliubov–de Gennes equations are

ωk

(
Uk

Vk

)
= 2

[
σ z

(
h

2
− Re(J̃k )

)
+ σ xIm(J̃k )

](
Uk

Vk

)
, (12)

with eigenfrequencies

ωk = 2

√(
h

2
− Re(J̃k )

)2

+ Im(J̃k )2, (13)

where Re(J̃k ) = ∑Z
r=1 Jr cos kr and Im(J̃k ) = ∑Z

r=1 Jr sin kr
(see Fig. 1). Here (Uk,Vk ) and (−Vk,Uk ) are the correspond-
ing eigenvectors. We can now define a new quasiparticle

γk = Ukck + V−kc−kk†, (14)

which finally brings the Hamiltonian to its diagonal from

H+ = E0 +
∑

k

ωkγ
†
k γk, (15)

where E0 = − 1
2

∑N
i=1 ωi.

Let us briefly discuss here the diagonalization procedure of
the finite-size Hamiltonian of both few-neighbor and true LR
Hamiltonians with open boundary conditions. We first rewrite
the Hamiltonian in Eq. (8) as

H =
N−1∑
r=1

N∑
i, j=1

(c†
i Ai jc j + c†

i Bi jc
†
j + H.c.), (16)

where Ai j and Bi j are the i jth elements of symmetric and an-
tisymmetric matrices, respectively, having dimension N × N ,
given by

Ai j = −hδi j + Jrδi+r, j + Jrδi, j+r,

Bi j = (Jrδi+r, j − Jrδi, j+r ). (17)

Here, for the finite case, we consider open boundary con-
ditions because otherwise the effective maximum distance
between two lattice sites becomes N/2 instead of N . We
diagonalize the Hamiltonian in Eq. (16) with linear transfor-
mations, which take care of both the Fourier and Bogoliubov
transformations at the same step and are given by

μk =
N−1∑
i=0

(dkici + ekic
†
i ),

μ
†
k =

N−1∑
i=0

(dkic
†
i + ekici ), (18)

where k = 0, 1, 2, . . . , N − 1 and dki, eki ∈ R to be found
numerically such that the Hamiltonian becomes diagonal
H = ∑

k ξkμ
†
kμk + const. Since μk obeys the fermionic an-

ticommutation relations {μk, μk′ } = δk,k′ , we can also write
Eq. (8) in terms of μk such that the coupled equations

(A + B)φT
k = ξkψ

T
k ,

(A − B)ψT
k = ξkφ

T
k (19)

hold. The coefficients are then found by solving the linear
matrix equations

(A + B)(A − B)ψT
k = ξ 2

k ψT
k ,

(A − B)(A + B)φT
k = ξ 2

k φT
k , (20)

where ψk and φk are φki = dki + eki and ψki = dki − eki.
When ξk �= 0, we first evaluate φT

k from Eq. (20) and then
ψT

k is obtained from Eq. (19), while for ξk = 0 it is possible
to compute both ψT

k and φT
k by solving Eq. (20) where their

relative sign remains arbitrary.

III. CRITICAL POINTS OF A FEW-NEIGHBOR
EXTENDED ISING MODEL

We now determine the quantum phase transitions for the
family of LR Hamiltonians [56,73–75]. Such an analysis also
helps us identify critical points and obtain the dispersion re-
lation for the few-neighbor extended Ising model. The critical
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point of the true LR model in the thermodynamic limit can be
found easily from Eq. (13) where the gap closes (ωk = 0) at
h1

c = 2 and k = 0 ∀α > 1. However, for α < 1, h1
c = 2 does

not remain a critical point in the thermodynamic limit (since
the normalization A = ∑

r Jr fails). However, for finite-size
systems, we can always have the normalization and therefore
h1

c = 2 continues to be a quantum critical point. The other
critical point corresponding to k = π is located at

h2
c = 2

ζ (α)

∑
r

(−1)r

rα
= 2(21−α − 1), (21)

which continues to exist even at the thermodynamic limit
irrespective of the value of α.

Let us now concentrate on the critical point of the Z-
neighbor extended Ising model. By analyzing the vanishing
ωk , i.e., the points where the gap vanishes, the critical point
corresponding to k = 0 is again at h1

c = 2, while the critical
point with k = π gets shifted to

h2
c = 2

H (α)
Z

Z∑
r=1

(−1)r

rα
, (22)

which, interestingly, depends on α. Therefore, in sharp con-
trast to the short-range Ising model, few-neighbor Ising
models are not symmetric against mirror inversion. In this pa-
per, we mostly use h1

c = 2 as a point of comparison since it is
the critical point for all the models including the SR Ising, the
Z-neighbor extended Ising, and the true LR models. Unlike
critical points, the phase diagrams of the SR and LR models
match, as shown in Fig. 2. The region between h1

c and h2
c

belongs to the ordered phase, while the rest of the region is in
the disordered phase. In the extreme limit of a high magnetic
field, the system would be polarized in the z direction, which
clearly specifies the disordered (paramagnetic) phases. Note
here that, unlike the transverse Ising model, the critical points
as well as the phases are not symmetric across h = 0.

Let us now move to the finite system, which also leads to
the energy dispersion from Eq. (13), for both the LR and the
Z-neighbor extended Ising models. As it can be readily seen
from the plot of the spectrum in Fig. 1, near k = 0, ωk ∼ kα−1

when 1 < α < 2 for the true LR model. However, dispersion
of the Z-neighbor extended Ising model is like the Ising one,
ωk ∼ k when k ≈ 0 for all Z � 20, which will be the main
focus of this work. It implies that, in principle, only the true
LR case supports the instantaneous information transfer since
the fastest excited quasiparticle has infinite propagation veloc-
ity vg = dωk/dk ∼ kα−2 → ∞, when k → 0 for 1 < α < 2.
Therefore, this result gives us the intuition that features of the
ground state in the LR model can be distinct from those of the
ground state of the few-neighbor Hamiltonian. This indicates
that different patterns for bipartite entanglement between two
sites of these two classes may emerge. However, we will
show that it is still possible that the behavior of two-qubit
entanglement of the true LR model will match that of the
few-neighbor Hamiltonian. The appearance of such similar
characteristics is possibly due to the fact that, in practice, the
maximum velocity of the fastest quasiparticle is not infinity
and it is bounded by the generalized Lieb-Robinson bound
[90–94].

(a)

(b)

FIG. 2. Dispersion relation to find the critical point: eigenfre-
quency ωk (vertical axis) vs h (horizontal axis) at k = π for (a) α =
0.5 and (b) α = 1.5 in the (a) nonlocal and (b) quasilocal regimes.
The value of h for which ωk becomes zero is the critical point h2

c , in
good agreement with Eq. (22). Different lines correspond to different
values of Z . Both axes are dimensionless.

In the regime when α < 1, h1
c = 2 is still a critical point

in the finite-size system of the LR model and the dispersion
looks like a δ function for the LR case (see Fig. 1). However,
for the few-neighbor model, it is still an Ising-like dispersion
but with different prefactors. This should also indicate that
the true LR case is very different from the few-neighbor
Hamiltonian.

IV. OUTLINE FOR COMPUTING CORRELATIONS

From the diagonalization discussed in the preceding sec-
tion, we are now ready to compute both classical and quantum
correlations, in particular, two-qubit entanglement between
two arbitrary lattice sites. Before studying the behavior of
quantum correlation, let us describe the formalism used for
computation.

A. Classical correlation

To compute bipartite reduced density matrices between any
two sites i and j, we require evaluation of magnetizations
and long-range classical correlators. Suppose the ground state
of the system is |℘0〉. The magnetizations at the site i are
defined as

mα
i = 〈℘0|σα

i |℘0〉, (23)

with α = x, y, z, while the correlation functions (correlators)
between spins i and j can be represented as

Cαβ
i j = 〈℘0|σα

i σ
β
j |℘0〉, (24)
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where α, β = x, y, z. Since we are dealing with the ground
state of a Hermitian Hamiltonian, the magnetization in the y
direction my and correlators Cxy, Cyx, Cyz, and Czy vanish. To
compute other correlators, let us define two operators

Ai = c†
i + ci, Bi = c†

i − ci, (25)

and by using Jordan-Wigner transformations, magnetizations
and classical correlators (CCs) can be written in terms of Ai

and Bi as

mz
i = −〈℘0|AiBi|℘0〉, (26)

Cxx
i j = 〈℘0|BiAi+1Bi+1 · · ·B j−1A j |℘0〉, (27)

Cyy
i j = (−1)( j−i)〈℘0|AiBi+1Ai+1 · · ·A j−1B j |℘0〉, (28)

and

Czz
i j = 〈℘0|AiBiA jB j |℘0〉. (29)

Here the magnetization mx and the correlation functions Cxz

and Czx vanish by means of Wick’s theorem since these quanti-
ties involve an odd number of fermionic operators. To evaluate
the rest of the correlators, we contract pairwise the product of
operators again via Wick’s theorem. Since the aforementioned
operators Ai and Bi obey anticommutation relations, only
certain pairs give nontrivial values. Precisely,

〈AiA j〉 =
∑

k

φkiφk j = δi j, (30)

〈BiB j〉 = −
∑

k

ψkiψk j = −δi j, (31)

and

〈BiA j〉 = −〈A jBi〉 = −
∑

k

ψkiφk j = −(ψT φ)i j = Gi j (32)

are the pairs that finally contribute to the expectation values.
Here G is the correlation matrix which can be obtained from
ψ and φ. In terms of G, the nonzero diagonal correlation
functions read

Cxx
i j =

∣∣∣∣∣∣
Gi,i+1 Gi,i+2 · · · Gi, j

...

G j−1,i+1 · · · · · · G j−1, j

∣∣∣∣∣∣, (33)

Cyy
i j =

∣∣∣∣∣∣
Gi+1,i Gi+1,i+1 · · · Gi+1, j−1

...

G j,i · · · · · · G j, j−1

∣∣∣∣∣∣, (34)

and

Czz
i j = (GiiG j j − G jiGi j ). (35)

By solving Eqs. (17) and (18), we can compute magnetization
and all the CCs.

B. Quantum correlation

We are interested in investigating the trends of pairwise
entanglement between two lattice sites i and j in the ground
state of the Hamiltonian. From the nonvanishing transverse
magnetization and classical correlators, the two-party reduced

density matrix obtained from the ground state becomes

ρi j = 1

4

[
Ii ⊗ I j + mz

i σ
z
i ⊗ I j + Ii ⊗ mz

jσ
z
j

+
∑

α=x,y,z

Cαα
i j σα

i ⊗ σα
j

]
. (36)

We can immediately determine any quantum correlation mea-
sure, especially an entanglement measure which is a nonlinear
function of mz and Cαα . In this work, we compute logarith-
mic negativity [95,96] for investigation. Apart from bipartite
entanglement, we are also interested in examining the distri-
bution of entanglement of the ground state among different
sites, quantified via monogamy of entanglement [70–72].

V. GROUND-STATE ENTANGLEMENT
IN LR AND FEW-NEIGHBOR MODELS

Long-range models are known to have rich characteristics
which are typically not present in the nearest-neighbor model.
Hence the LR or a few-neighbor model requires a careful anal-
ysis from the scratch. For example, even without the absence
of scale invariance at a quantum critical point, the classical
correlations of a LR model are allowed to have an infinite
correlation length, thereby spreading over the entire system
[74,80,84].

On the other hand, quantum correlation, especially en-
tanglement, is known to be fragile compared to classical
correlations and cannot be shared arbitrarily between different
parts of the systems due to the monogamy property [70]. This
in turn should restrict entanglement from having an algebraic
scaling or an infinite entanglement length.

Until recently, most of the studies on entanglement have
been restricted to one-dimensional nearest-neighbor quantum
spin models. The primary reason behind such investigation is
the existence of a method by which one can compute several
features analytically both for finite system size and in the
thermodynamic limit. Moreover, with the advent of tensor
networks in the past decade, a variety of numerical techniques
have been developed which make LR models tractable with
good enough accuracy [26,29,62–69]. For example, the en-
tanglement area law typically holds for SR systems in one
dimension [53–55], which is not guaranteed in LR systems,
although the success of tensor-network-based numerical tech-
niques in quasilocal regimes of the LR systems suggests that
at least in those regimes the area law is not strongly violated.

The twin restrictions of entanglement area law and
monogamy of entanglement hinder the spreading of entangle-
ment in true LR systems. In a quantum network, LR systems
are typically used as the underlying architecture, although
preparing a true LR model can be immensely costly as well
as difficult in some physically realizable systems due to the
increases of noise in the system. Hence the question arises
whether it is worth developing such a LR system which
leads to a reasonable spread (distribution) of entanglement. In
general, in a digital quantum computer, e.g., quantum approx-
imate optimization algorithm, simulation on superconducting
circuits, as mentioned before, we require O(N!) two-qubit
gates to implement a true LR system of system size N . The
question that we address here is the following: Can one
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achieve the same distribution of entanglement using only a
few two-qubit gates? Therefore, one could significantly re-
duce the noise if an exponential-to-algebraic reduction of
two-qubit gates can be achieved. In fact, such intuition has
already been implemented in the chimera setup in the D-wave
quantum annealing computers [97] to mimic the LMG model
(α = 0 case) [76] with a limited number of interacting qubits.

In the Hamiltonian considered here, we have two tuning
parameter that can control the long-range interactions of the
model. The first one is the exponent α; if we move from
α = ∞ to α = 0, we continuously go from the nearest-
neighbor Ising to the end-to-end connected LMG model
where all pairs of interaction have the same strength, inde-
pendent of the distance between the pair of spins. Note that,
except when α = ∞, the number of two-qubit gates required
in all other cases is the same (exponential with N). The other
parameter that we can regulate to achieve the same control is
to manually increase the number of pairing interactions from
2 to ∞ in the thermodynamic limit. For a finite system of
size N , when Z = 1, we get the NN Ising model, while when
Z = N − 1, we have the end-to-end extended Ising model
with open boundary conditions. The first question that we
answer here is whether for the same algebraically decaying
interaction (α is the same in both models) it is possible to
mimic the behavior of two-qubit entanglement of the fully
connected model with a few interactions.

Mimicking the true LR model with α > 1. To answer the
above question, we first study the pattern of two-qubit entan-
glement as a function of the distance for different values of
Z . When α > 1, we find the answer to be affirmative. In other
words, in classes of quasilocal models, two-qubit entangle-
ment of a finite-range system indeed behaves like the true LR
model. Specifically, entanglement between two arbitrary sites
i and j, denoted by Er , with r = |i − j| the distance between
sites i and j (as depicted in Fig. 3), decreases with the increase
of r and finally vanishes at r = rc, above which Er is zero even
for the true LR model. If we now compare Er obtained from
the model with Z � N , we find that indeed Er → 0 as r → rc

when Z � Zc, thereby simulating the equivalent feature of
the LR model by a Zc-neighbor extended Ising model. With
a decreasing value of α, rc increases for the LR model. We
observe that the number of required pairing interactions (Zc)
also increases. After a careful numerical search, we conclude
that Z < O(101) when 1 < α < 2, i.e., the quasilocal regime.

No resemblance of the Z-neighbor model to the LR model
having α < 1. If we move towards the deep nonlocal regime
(α � 0.6 for N = 256), entanglement becomes long range
with an algebraic scaling roughly as Er ≈ r−β , where β � α

and therefore rc ∼ O(N ). To mimic the long-range entan-
glement, the minimum number of finite-range interactions
(Zc) approaches O(N ). This implies that the entanglement
Er of the LR model can no longer be simulated by a fi-
nite number of interactions. We show in Fig. 3(a) that no
Z �= N − 1 is sufficient to mimic the entanglement in the LR
model. On the other hand, close to the transition between
quasi- and nonlocal regimes, Er vanishes at some finite rc �=
N − 1, which implies that the model can be mimicked by
finite Zc ≈ O(rc), even when α < 1. However, Zc is higher
in this situation compared to the Zc observed in the quasilocal
regime.

(a)

(b)

FIG. 3. Entanglement pattern in (a) the nonlocal regime for
α = 0.5 and (b) the quasilocal regime for α = 1.5: variation of
Er (ordinate) as a function of r (abscissa). Different symbols
represent different coordination number Z . Note that Z = 255
indicates the fully connected model. Here h = 2.5. In (b) the
variation of Er with r follows the law governed by rβ , where
β = {−0.37,−0.43, −0.46, −0.48, −0.53}, such that β ≈ α

for the corresponding Z = {5, 10, 15, 20, 255}. Both axes are
dimensionless.

Up to now, when comparing the different classes of mod-
els, we always chose the same value of α for all the considered
Z values. At this point, let us ask another reasonable question:
Can we further reduce Zc if we can also tune the value of α

for the finite-neighbor Hamiltonian? We observe that the value
of Z has a monotonic relationship with α, i.e., the trends of
entanglement of a true LR model with exponent α can have
remarkable resemblance to a fewer pairing interactions (i.e.,
Z < Zc) having exponent α′ < α (see Fig. 4).

In Fig. 3 we choose the magnetic field as h = 2.5, which
belongs to the disordered phase. In the following section we
report the behavior of entanglement in the different phases of
both the LR and the few-neighbor models.

VI. ENTANGLEMENT IN DIFFERENT PHASES
OF THE MODELS

We will now investigate the effects of the magnetic field on
the pairwise entanglement, thereby changing the phases of the
system along with the change of interaction strength and num-
ber of interacting pairs. In general, in the disordered phase, the
value of entanglement decreases with the increase of h, i.e.,
when we move deep into the disordered phase. However, due
to the monogamy property of entanglement, such a decreasing
pairwise entanglement also has some beneficial role in the sys-
tem. Specifically, the spread of entanglement, i.e., the number
of nonvanishing pairwise entanglements between two sites i
and j, increases with the increase of h. However, at h → ∞,
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FIG. 4. Entanglement trends of a fully connected model, mim-
icking a few-neighbor model. Two-qubit entanglement Er (y axis) is
plotted vs the variation of r (x axis) for different values of (Z, h, α).
For a given r value, equal values of entanglement for different sets of
values are observed, which demonstrates that a few-neighbor model
can mimic the entanglement of the ground state in the LR model
efficiently by adjusting the system parameters accordingly. Both axes
are dimensionless.

the ground state is a fully separable state and therefore both
bipartite and multipartite entanglements vanish, which also
implies that individual terms in the monogamy score also go
to zero, thereby leading to a vanishing monogamy score. This
suggests that there is a tradeoff between the pairwise entan-
glement and the distribution of entanglement in the system.

The contrasting entanglement spread over pairs of distant
neighbors that we will report now in different phases of
the system can only be seen in the true LR model, not in
the Z-neighbor extended model. Hence we concentrate on
the patterns of entanglement in the disordered and the or-
dered phases of the true LR system, i.e., the model having
Z = N − 1. As discussed in Sec. III, the quantum phase
transition point, which is common to both the LR and the
Z-neighbor systems, is at h1

c = 2. Using the same analogy
known for the SR Ising model [98], at the two extremum
points at h = 0 and h = ∞, the ground states are product and
therefore entanglement vanishes at both points. Usually, as we
move from the deep disordered phase at h = ∞ towards the
critical point at h1

c = 2, we expect that the pairwise entangle-
ment increases as shown in Fig. 5.

Let us first concentrate on the nonlocal regime, i.e., α < 1.
In the disordered phase, i.e., when h is high enough, bipartite
entanglement between different neighbors Er first decreases
and then saturates with the variation of r (see Fig. 5). If
we move towards the critical point h1

c = 2, the pairwise
entanglement content for a given r increases. Surprisingly,
entanglement between distant pairs also increases with the
increase of r, resulting in a U-shaped entanglement pattern
as a function of r. In general, it is expected that the bipartite
entanglement between spins decreases when the distance be-
tween spins r increases. However, such an intuition does not
hold for α < 1, e.g., we observe that Er increases with r after
a certain r value in both ordered and disordered phases.

The U-shaped behavior of entanglement can be explained
in terms of the boundary effect of the spin chain. We charac-
terize the effect of the boundary by considering the leftmost
spin as the nodal spin and calculate the entanglement between
the nodal spin and the spin at a distance r from the nodal

(b)

(a)

FIG. 5. Effects of phases on entanglement. Two-qubit entangle-
ment Er (ordinate) is plotted against r (abscissa) in (a) the nonlocal
regime for α = 0.2 and (b)the quasilocal regime for α = 1.5. Solid,
dashed, and dotted lines correspond to different values of h. The
model is fully connected, i.e., Z = N − 1. Counterintuitively, for
α < 1 [in (a)], pairwise entanglement is higher for spins separated
by a longer distance r compared to that between nearby sites. Both
axes are dimensionless.

spin. Now, as we increase r, the number of neighbors with
comparatively strong interaction strength (when α > 0) in-
creases until the middle of the spin and thereafter decreases as
the non-nodal spin approaches the rightmost spin. Therefore,
the spin pair (1, N

2 ) has more strongly interacting neighbors
than the spin pair (i, N ) at the boundary. By virtue of the
monogamy constraint, it is therefore expected that the (1, N

2 )
pair would have less entanglement as it has more strongly
interacting neighbors compared to the (i, N ) pair.

Here the boundary effect plays a positive role on both sides,
as opposed to spins situated in the middle. Unlike the bound-
ary spins, for the spins which are situated in the middle of the
chain, the entanglement is restricted by the monogamy con-
straint in such a way that the amounts of entanglement shared
on either side have to be equal, i.e., E N

2 , N
2 +i = E N

2 , N
2 −i ∀ i ∈

{1, N
2 − 1}. This effect can be attributed to the higher en-

tanglement behavior at the right boundary. Another positive
effect contributing to the generation of more entanglement
is the large number of σz operators present in between the
nodal spin and the spins that are situated at the extreme right.
Such an effect is absent in the left boundary; thus the amount
of entanglement is less than at the right boundary, although
higher compared to the middle spins. Also, in the presence of a
smaller magnetic-field strength h, the effect of the interaction
is more prominent.
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FIG. 6. Entanglement in the thermodynamic limit: entanglement
between first and fifth spins E4 (ordinate) with respect to the system
size N (abscissa). Here α = 1.5 is chosen in the quasilocal regime
and h = 2.5. Both axes are dimensionless.

Notice, however, that such a behavior is not universal for
α < 1 and it depends on N . In particular, with the increase
of N , the value of α for which such a distant neighbor
entanglement is created also changes. As it has already been
argued in the previous section, the model cannot be simulated
with a finite range of the interacting model. This is in sharp
contrast with the previous results [22,75,99,100] and cannot
simply be explained by the violation of the entanglement area
law. However, crossing the critical point h1

c = 2, if one moves
towards the product state at h = 0, the value of entanglement
reduces further, which is illustrated by the red solid line
(h = 0.5) in Fig. 5(a). The U-shaped pattern, however, still
persists in the ordered phase.

Let us now deal with the quasilocal regime (1 < α < 2).
Entanglement is always short range here and vanishes after
a certain r. Therefore, entanglement in this regime has the
typical expected behavior, i.e., entanglement decays with r
when α > 1. In most cases, for any r > O(101), Er becomes
zero and therefore no U-shaped pattern is observed in the
quasilocal regime. The other features across different phases
of the LR model remain the same. Specifically, deep in the
ordered phase, i.e., in the neighborhood of h = 0, entangle-
ment decreases and at the same time becomes short range.
For example, for h = 0.5 we observe that the entanglement
survives only up to the next-nearest-neighbor even though we
are dealing with a fully connected LR model [as depicted
in Fig. 5(b)]. On the other hand, with the increase of h,
especially, in the vicinity of h1

c = 2, the value of pairwise
entanglement is substantial and it survives for certain but low
values of r.

Scaling. It is interesting to determine whether the results
described also hold with the increase of system size. We find
that the results remain valid with the increase of N . Although
the entanglement value decreases with N , the decrement
slows down as N increases and Er saturates when N > 103

(see Fig. 6). It manifests that the trend of entanglement length
for moderate values of N mimics the entanglement behavior
that can be expected in the thermodynamic limit.

A. Quasilocal vs nonlocal regime: Entanglement behavior

To make the comparison between entanglements in
quasilocal and nonlocal regimes, we consider different Er for
both α > 1 and α < 1. Depending on the tuning parameter
α which dictates the strength of interactions between neigh-

(a)

(b)

FIG. 7. Functional dependence of Er on r in the nonlocal regime
and disordered phase. Variation of Er (vertical axis) is plotted vs r
(horizontal axis) for different values of α in a fully connected model
i.e., Z = N − 1, in (a) the ordered phase of the system for h = 1.5
and (b) the disordered phase of the system for h = 2.9, both depicting
the same features. The solid lines are the numerical fits for the corre-
sponding α values. For small range of r, entanglement scales as r−β ,
where β ≈ α in both phases except near the transition regime α ∼ 1,
where entanglement is short ranged. In particular, the numerical
fits are (a) {r−0.28, r−0.49, r−0.68} and (b) {r−0.22, r−0.42, r−0.62, r−0.92}.
Both axes are dimensionless.

bors, we determine contrasting behavior in entanglement.
In particular, in the local regime, unlike classical correla-
tions, entanglement is always short range in both the phases.
Therefore, entanglement in the LR model can always be mim-
icked with only interactions between a few neighbors. On the
other hand, different behavior emerges in the nonlocal regime,
i.e., when α < 1.

When α ≈ 1, i.e., when the system is at the crossover be-
tween the quasilocal and nonlocal regimes, entanglement still
remains short range, i.e., only a few Er remain nonvanishing.
As we move towards the deep nonlocal regime, entanglement
becomes fully connected and U shaped, i.e., nonmonotonic
with r in both the disordered and ordered phases. Although
with the further reduction of the α value towards the LMG
model with uniform interaction strength [77], the U-shaped
pattern of Er with r gets flattened, the counterintuitive non-
monotonic behavior of entanglement with r is more prominent
in the ordered phase compared to the disordered phase. More
importantly, the entanglement in the disordered phase has an
algebraic tail with increasing r if we neglect the few farthest
spins (the part after it becomes minimum). To be precise, in
the disordered phase, i.e., when α < 1, Er scales as ∼1/rα ∀α

where Er is decreasing with increasing r (see Fig. 7).
In the nonlocal regime of the LR model, it is possible to

have end-to-end connected entanglement and hence a nat-
ural question to address is to determine the distribution of
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(a)

(b)

FIG. 8. Monogamy score as an indicator for the distribution of
entanglement: monogamy score δC2 (ordinate) vs Z (abscissa). Dif-
ferent lines indicate different values of h in (a) the nonlocal regime
for α = 0.5 and (b) the quasilocal regime for α = 1.5. Both axes are
dimensionless.

entanglement between different pairs. For example, if the
ground state possesses an end-to-end entanglement but with
a vanishing value, the entanglement may not be so useful for
a multiparty quantum information processing task. Therefore,
we now look for scenarios where the monogamy bound is
saturated, which can be though of an optimal spread of en-
tanglement for a given quantum information protocols.

B. Contrasting characteristics of monogamy scores
in different phases of the model

To capture the spread of entanglement among the pairs, we
examine the entanglement monogamy score. We are interested
in the scenario where δC2 = 0, i.e., C2

1,rest = ∑N
i=2 C2

1i.
As we have seen before, entanglement is short range in

the quasilocal regime and therefore we can expect that the
monogamy score will be far from vanishing. However, in the
nonlocal regime, entanglement is long range and can pro-
vide a bound on the distribution of the entanglement at the
thermodynamic limit. For example, near α ≈ 0, i.e., for the
LMG model, pairwise entanglement is mostly flat with r in
the disordered phase.

In general, we expect that the value of entanglement should
decrease as we go deep into the discorded phase. However, we
also expect that entanglement gets well distributed throughout
the spin chain in this phase, as depicted in Fig. 8. In particular,
the monogamy score decreases as one increases h, thereby
moving towards the disordered phase. If we compare the same
with Fig. 5, we notice that the value of entanglement also
decreases in the disordered phase.

(b)

(a)

FIG. 9. Monogamy score with coordination number: δC2 (vertical
axis) vs Z (horizontal axis) for (a) h = 1.5 and (b) h = 2.5, i.e.,
two different phases of the system.. Different kinds of lines represent
different values of α. Both axes are dimensionless.

On the other hand, in the quasilocal regime Fig. 8(b),
i.e., when 1 < α < 2, the monogamy score does not have an
algebraic tail but instead saturates to a constant value with the
increase of Z , although overall pattern of δC2 across different
phases remains the same. The saturation of the monogamy
score indicates that such LR models can be simulated with
a model having finite-neighbor interactions. However, it is
difficult to numerically evaluate the optimal Zc from the
monogamy score which can mimic the true LR model, since
there is no sharp change in the pattern of the monogamy score.

To monitor the dependence of the monogamy score on the
phases along with the α, we consider three different regimes
of α and two different values of h, belonging to ordered and
disordered phases. When α > 2, i.e., in the Ising universality
class, the monogamy score is flat (blue dot-dashed line in
Fig. 9) with increasing Z , which implies that the overall
behavior of entanglement is similar to the SR model and
therefore Zc ∼ O(1) should be enough to mimic the true LR
model. In the intermediate quasilocal regime, i.e., 1 < α < 2,
we find that the monogamy score decays with the increase of
Z , although its inclination changes to a shallow decay and
ultimately becomes flat with Z . It is in good agreement with
the previous finding that Zc ∼ O(101) is enough to mimic the
fully connected LR model. However, as α < 1 (except for the
transition from quasilocal to nonlocal regimes), δC2 has an
algebraic tail, which illustrates that there is no Zc �= N − 1
which can behave similarly to the true LR system.

In summary, we point out that the monogamy score is a
good indicator of entanglement distribution in the system.
The saturation of the monogamy score for a finite Z , which
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happens only when α > 1, indicates the similar result that
the fully connected model can be simulated only with a few
pairing interactions.

VII. CONCLUSION

Among available physically realizable systems, long-range
interactions arise naturally in some systems such as trapped
ions, while there exist systems in which realizing LR models
is costly. From both theoretical and experimental points of
view, simulating the LR model is an important task to under-
stand many exotic properties responsible for counterintuitive
phenomena which are typically absent in the corresponding
short-range models.

In this work, we showed that to examine the behavior
of entanglement between any pairs in the ground state, it is
not necessary to consider a fully connected model. In par-
ticular, we demonstrated that a model having few-neighbor
connections is sufficient to faithfully mimic the behavior of
entanglement in the ground state of a fully connected model.
However, we showed that such resemblance is not ubiqui-
tous; it depends on the falloff rates of interactions, denoted
by α. Specifically, patterns of two-party entanglement of the
LR model match with the model of a few interactions only
when 1 < α < 2, which we call the quasilocal regime. Coun-
terintuitively, when α < 1, we observed that entanglement
between the spins that are separated by a longer distance is
higher than those pairs that are spatially closer to each other.
Moreover, in this model, we reported that in the quasilocal
regime, as the amount of external magnetic field increases, the
amount of entanglement between spins decreases, although
the range of entanglement is strikingly increasing. Consid-
ering monogamy of entanglement, we illustrated that in the
quasilocal regime, the monogamy score for entanglement sat-
urates with the range of interactions, thereby demonstrating
that a few interactions is enough to mimic entanglement in
the LR system. On the other hand, the monogamy score of the
LR system whose entanglement cannot be reproduced by a
few interactions vanishes with the range of interactions, which
is in good agreement with the results obtained for pairwise
entanglement.
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APPENDIX A: LOGARITHMIC NEGATIVITY

Logarithmic negativity [95,96] is an entanglement measure
that originates from the partial transposition criterion [102]. It
is a necessary and sufficient condition for quantifying entan-
glement for arbitrary two-qubit states. For any two-qubit state
ρAB, logarithmic negativity E can be defined as

E (ρAB) = log2[2N (ρAB) + 1],

where N is the negativity defined as

N (ρAB) =
∥∥ρ

TA
AB

∥∥
1 − 1

2
.

Here ‖ρ‖1 is the trace-norm of the matrix ρ defined as ‖ρ‖1 =
tr
√

ρ†ρ and TA is the partial transpose of ρAB with respect
to A.

APPENDIX B: CONCURRENCE

Concurrence [103] quantifies the amount of entanglement
present in an arbitrary two-qubit state. Given a two-qubit
density matrix ρAB, the concurrence is defined as

C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4}, (B1)

where the λi are the eigenvalues of the Hermitian matrix, with
R = √√

ρρ̃
√

ρ satisfying the order λ1 � λ2 � λ3 � λ4. Here
ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), with ρ∗ the complex conjugate of
ρ in the computational basis.

APPENDIX C: MONOGAMY SCORE

The monogamy score quantifies the distribution of the
entanglement among N parties of a quantum state ρ12,...,N .
Monogamy of entanglement states that if entanglement be-
tween two parties is maximum, they cannot share any amount
of entanglement with other parties. To find the tradeoff re-
lations between entanglement content among parties, we use
concurrence Ci j between spins i and j as a bipartite entangle-
ment measure. By considering the first spin as the node and
calculating the entanglement shared between the first spin and
rest of the system, denoted by C(ρ1,rest ), we can define the
monogamy score as

δC2 = C2(ρ1,rest ) −
N∑

i=2

C2(ρ1i ), (C1)

where C2(ρ1i ) denotes the concurrence between the first and
any arbitrary site i. Note that C2(ρ1,rest ) � log2 d1, where d1 is
the dimension of the first spin, which is unity for a two-qubit
case. Similarly, C2(ρ1i ) � 1. It was shown that for an arbitrary
N-party state [70,71], δC2 � 0.
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