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Stochastic quantisation of Yang–Mills

Ilya Chevyrev ∗

Abstract

We review two works [CCHS20, CCHS22] which study the stochastic quantisation equations
of Yang–Mills on two and three dimensional Euclidean space with finite volume. The main
result of these works is that one can renormalise the 2D and 3D stochastic Yang–Mills heat
flow so that the dynamic becomes gauge covariant in law. Furthermore, there is a natural ‘state
space’ of distributional 1-forms S to which gauge equivalence ∼ extends and such that the
renormalised stochastic Yang–Mills heat flow projects to a Markov process on the quotient
space of gauge orbits S/∼. In this review, we give unified statements of the main results of
these works, highlight differences in the methods, and point out a number of open problems.
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1 Introduction

1.1 Yang–Mills theory

Yang–Mills (YM) theory plays an important role in the description of force-carrying particles in
the Standard model. An important unsolved problem in mathematics is to show that YM theory on
Minkowski space-time can be rigorously quantised. We refer to [JW06] for a description of this
problem, together with the surveys [Cha19, LS17] for related literature and problems.

A basic ingredient in YM theory is a compact Lie group G, called the structure group, with Lie
algebra g. Passing to Euclidean space and working in an arbitrary dimension d, one can reformulate
the problem as trying to make sense of the YM probability measure on the space of g-valued 1-forms
A = (A1, . . . , A4) : Rd → gd

µ(DA) = Z−1 exp(−S(A))DA ,

where DA on the right-hand side is a formal Lebesgue measure, Z is a normalisation constant, and
S(A) is the YM action

S(A) =

∫
Rd

|F (A)|2 .

Above, F (A) is the curvature 2-form of A given by Fij(A) = ∂iAj − ∂jAi + [Ai, Aj ], and we
equip g with an Ad-invariant inner product ⟨·, ·⟩ and norm | · |.

Remark 1.1 Without loss of generality, we can take G ⊂ U(N) and g ⊂ u(N) for some N ≥ 1.
In this case, the adjoint action is AdgA = gAg−1 and a possible choice for the inner product is
⟨X,Y ⟩ = −Tr(XY ), and one can rewrite |F (A)|2 = −1

2

∑d
i,j=1Tr(Fij(A)2).

The case d = 4 corresponds to physical space-time, but the task of constructing the probability
measure µ makes sense for arbitrary dimension, and even for a manifold M in place of Rd. The
g-valued 1-forms in this case become connections on a principal G-bundle P → M , and one aims
to define the probability measure µ on the space of connections on P .

The cases d = 2, 3 are considered substantially simpler than d = 4 as they correspond to
super-renormalisable theories in quantum field theory (vs. renormalisable for d = 4 and non-
renormalisable for d ≥ 5). In the remainder of the article, we will focus on these dimensions and
further restrict to finite volume replacing Rd by the torus Td = Rd/Zd. The underlying principal
bundle P is always assumed trivial and we keep in mind that all geometric objects (connections,
curvature forms, etc.) can be written in coordinates (g-valued 1-forms, 2-forms, etc.) once we fix a
global section of P which identifies it with Td ×G. The space of connections is an affine space,
with the difference of two connections being a 1-form.

An important postulate in the physics of YM theory (and gauge theories more generally) is that
all physical quantities should be invariant under the action of the gauge group, i.e. the automorphism
group of P . Since P is trivial, the gauge group consists of functions g : Td → G. These gauge
transformation change the global section we use to identify P ≃ Td ×G and act on 1-forms by

A 7→ Ag def
= AdgA− (dg)g−1 .
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One can view Ag either as a new connection, gauge equivalent to A, or simply as the same connection
A written in a new coordinate system.

We write A ∼ B if there exists g such that Ag = B and write [A] = {B : B ∼ A} for the
gauge orbit of A. In light of the above, the natural space on which to define the probability measure
µ is not the space of 1-forms, but rather the quotient space O of all gauge orbits. The space O is a
non-linear space if G is non-Abelian, which makes non-trivial even the construction of the state
space on which the YM measure µ should be defined.

A number of works have made contributions to a precise definition of this measure. The
most successful case is dimension d = 2, which includes R2 and compact orientable surfaces.
The key feature which makes 2D YM special is its exact solvability, which allows one to write
down an explicit formula for the joint distribution of Wilson loop observables; this property was
observed in the physics literature by Migdal [Mig75] and later developed in mathematics; see
e.g. [GKS89, Dri89, Fin91, Sen97, Lév03, Lév06, Che19].

In the Abelian case G = U(1) on Rd one can make sense of the measure µ for d = 3 [Gro83] and
d = 4 [Dri87]. For any structure group G, a form of ultraviolet stability on Td was demonstrated for
d = 4 using a continuum regularisation in [MRS93] and for d = 3, 4 using a renormalisation group
approach on the lattice in a series of works by Balaban [Bal85, Bal87, Bal89] (see also [Fed86]).
However, a construction of the 3D YM measure and a description of its gauge-invariant observables,
even on T3, remains open.

1.2 Stochastic quantisation

Another approach to the construction of the YM measure was recently initiated in [CCHS20,
CCHS22], which is based on stochastic quantisation (see also [She21] which treats scalar QED
on T2). The basic idea behind this approach is to view the measure µ as the invariant measure
of a Langevin dynamic. By studying this dynamic, one can try to determine properties and
even give constructions of µ. The method was put forward in the context of gauge theories
by Parisi–Wu [PW81], and has recently been applied to the construction of scalar theories, see
e.g [MW20, HS22b, GH21, AK20].

The Langevin dynamic associated to the YM measure is

∂tA = −d∗AF (A) + ξ , (1.1)

where d∗A is the adjoint of the covariant derivative dA and ξ is a white noise built over L2-space of
g-valued 1-forms.

We point out right away that a difficulty in solving (1.1), even in the absence of noise, is that
the equation ∂tA = −d∗AF (A) is not parabolic. This is a well-known feature of YM theory and is
connected with the infinite-dimensional nature of the gauge group: the YM equations d∗AF (A) = 0
are not elliptic and admit infinitely many solutions since, if A is a solution, then so is every element
of the gauge orbit [A].

Fortunately, it is possible to bypass this issue by adding a gauge-breaking term to the right-hand
side of (1.1) which is tangent to the orbit [A] atA and which renders the equation parabolic. This ‘trick’
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was used by Zwanziger [Zwa81] and Donaldson [Don85] in YM theory (see also [BHST87, Sad87]),
and by DeTurck [DeT83] in the context of Ricci flow. The tangent space of [A] at A is precisely
the set of all dAω =

∑d
i=1(∂i + [Ai, ·])ω dxi where ω is a g-valued function. A natural choice for

the additional term is −dA d∗A, where d∗A = −
∑d

i=1 ∂iAi. Therefore, making sense of (1.1) is
equivalent to making sense of the parabolic equation

∂tA = −d∗AF (A)− dA d∗A+ ξ , (1.2)

which is the equation we consider henceforth. In coordinates, (1.2) reads

∂tAi = ∆Ai + [Aj , 2∂jAi − ∂iAj + [Aj , Ai]] + ξi , i = 1, . . . , d , (1.3)

where ξ1, . . . , ξd are i.i.d. g-valued white noises. Here and below, there is an implicit summation
over j = 1, . . . , d.

1.2.1 Gauge covariance

The reason why (1.3) is natural is that it is (formally) gauge invariant in law. To see this, it is
convenient to work in coordinate-free notation and, for the moment, make an distinction between
connections and 1-forms. Consider a (for now smooth) time-dependent connection A and gauge
transformation g. Then B

def
= Ag satisfies

∂tB = Adg(∂tA)− dB[(∂tg)g
−1] .

Let Z denote the canonical flat connection associated with our choice of global section, i.e. the
connection associated with the 1-form 0. Consider a time-dependent 1-form ξ and suppose that A
solves (1.3), which, recalling that the space of connections is affine, we now write a

∂tA = −d∗AF (A)− dA d∗A(A− Z) + ξ .

Observe the covariance properties

Adg(A− Z) = Ag − Zg , Adg(dAω) = dAg(Adgω) , Adg[F (A)] = F (Ag) ,

from which it follows that B solves

∂tB = −d∗BF (B)− dB d∗B(B − Zg) + Adgξ − dB[(∂tg)g
−1] .

To bring B into a form similar to A, it thus natural to take g which solves

(∂tg)g
−1 = d∗B(Z

g − Z) .

In this case, the equation for B becomes

∂tB = −d∗BF (B)− dB d∗B(B − Z) + Adgξ ,

4



which is almost the same as the equation for A, except that ξ is replaced by Adgξ.
If we now assume ξ is a white noise, and that the equations above make sense with global in

time solutions, then Adgξ is equal in law to ξ by Itô isometry. This formal argument suggests there
is a coupling between two solutions A,B to (1.3) started from gauge equivalent initial conditions
such that A(t) ∼ B(t) for all t ≥ 0. In particular, the law of the projected process [A] on gauge
orbits is equal to that of [B]. The projected process on gauge orbits is therefore well-defined and
Markov, and its invariant probability measure is a natural candidate for the YM measure.

1.3 Main results

The basic objective of the works [CCHS20] and [CCHS22] is to make rigorous the above formal
argument in the case of Td for d = 2 and d = 3 respectively. In particular, they aim to define
a natural Markov process on gauge orbits associated to the YM Langevin dynamic (1.3). In this
subsection, we give unified statements of the main results in [CCHS20, CCHS22]. We will go into
more detail and discuss the differences in proofs in Sections 2 and 3. We also discuss in detail these
results in the simple case that G = U(1) in Section 1.4.

Remark 1.2 In [CCHS22], the more general Yang–Mills–Higgs theory is considered. To simplify
our discussion, we restrict here the results of [CCHS22] to pure YM theory.

One of the main difficulties in solving (1.3) is that, unless G is Abelian, this equation is non-linear
and singular. To simplify notation and highlight the nature of the non-linearities, we will henceforth
write (1.2) and (1.3) as

∂tA = ∆A+A∂A+A3 + ξ . (1.4)

It is well-known that white noise on R ×Td can be realised as a random distribution in C−1− d
2
−κ,

the Hölder–Besov space with parabolic scaling, for arbitrary κ > 0. Furthermore, this regularity is
optimal, at least in the scale of Besov spaces. By Schauder estimates, we therefore expect that A is in
C1− d

2
−κ (and no better), but this renders the non-linear terms A∂A and A3 analytically ill-defined

once d ≥ 2 because 1− d
2 − κ < 0. (We recall here that the bilinear map (f, g) 7→ fg defined for

smooth functions extends to Cα × Cβ if and only if α+ β > 0.)
A number of solution theories, including regularity structures [Hai14] and paracontrolled

calculus [GIP15] (see also [OW19, Kup16]), have been developed in the last decade which allow
one to make sense of such equations. They key condition which must be satisfied is subcriticality,
which happens if and only if d < 4 and which parallels the notion of super-renormalisability in QFT.
Subcriticality implies that the solution A to (1.4) should be a perturbation of the stochastic heat
equation (SHE)

∂tΨ = ∆Ψ+ ξ ,

which has the Gaussian free field (GFF) as an invariant measure. The solution theory which [CCHS20,
CCHS22] use and build on is the theory of regularity structures.

Recall that A represents a geometric object (a principal G-connection). On the other hand,
the solution A to (1.4) at positive times is expected to be a distribution of the same regularity as
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the GFF. Therefore, a first natural question is whether there exists a state space S large enough to
support the GFF while small enough so that gauge equivalence extends to S . One of the main results
of [CCHS20, CCHS22] gives an answer to this question, which can be informally stated as follows.

Theorem 1.3 There exists a metric space (S,Σ) of g-valued distributional 1-forms on Td, d = 2, 3,
which contains all smooth 1-forms and to which gauge equivalence ∼ extends in a canonical way.
Furthermore, S contains distributions of the same regularity as the GFF on Td.

The constructions of S in [CCHS20] and in [CCHS22] are rather different. In [CCHS20], S
(therein denoted by Ω1

α) is a Banach space defined through line integrals, and gauge equivalence
is determined by an action of a gauge group. In [CCHS22], S is a non-linear metric space of
distributions defined in terms of the effect of the heat flow; gauge equivalence is extended using a
gauge-covariant regularising operator (the deterministic YM flow). We describe these constructions
further in Sections 2.1 and 3.1.

Remark 1.4 A naive construction of S would be to take Cη for η = 1− d
2 − κ and quotient by the

action of the gauge group Cη+1(Td, G) ∩ C−η+κ(Td, G), so that AdgA ∈ Cη and (dg)g−1 ∈ Cη

are well-defined. Such a construction ends up lacking most of the nice properties we discuss in
Sections 2.1 and 3.1.

Remark 1.5 While Theorem 1.3 makes it seems like the 2D and 3D cases are on an equal footing,
we actually know much more about S in 2D than in 3D, e.g. the space of orbits S/∼ in 2D comes
with a natural complete metric, and is thus Polish, while we only know that S/∼ is completely
Hausdorff (and separable) in 3D.

We now turn to the question of solving (1.4). A natural approach is to replace ξ by a smooth
approximation ξε and let the mollification parameter ε ↓ 0. The hope then is that the corresponding
solutions A converge. Unfortunately, this is not in general the case and the SPDE requires
renormalisation for convergence to take place. The following result ensures that renormalised
solutions to (1.4) exist, at least up to a potential finite time blow-up.

A mollifier is a smooth compactly supported function χ : R × Rd → R such that
∫
χ = 1 and

which is spatially symmetric and invariant under flipping coordinates xi 7→ −xi for i = 1, . . . , d.
Denoting χε(t, x) = ε−2−dχ(ε−2t, ε−1x) and ∗ for space-time convolution, we define ξε = χε ∗ ξ.
Furthermore, define

LG(g, g) = {X ∈ L(g, g) : XAdg = AdgX for all g ∈ G} .

Theorem 1.6 For every mollifier χ, there exists a family of operators {Cε
bphz}ε∈(0,1) ⊂ LG(g, g)

such that, for any C̊ ∈ L(g, g) and initial condition A(0) ∈ S, the solution to the PDE

∂tA = ∆A+A∂A+A3 + ξε + (Cε
bphz + C̊)A , (SYM)

converges in probability in C(R+,S ⊔ { }) as ε ↓ 0. The limit as ε ↓ 0 furthermore does not
depend on χ.

6



Definition 1.7 We call the ε ↓ 0 limit of A as in Theorem 1.6 the solution to (SYM) driven by ξ
with bare mass C̊.

The bare mass C̊ is used to parametrise the space of all ‘reasonable’ solutions and is a free
parameter at this stage. We will see below (Theorems 1.11 and 1.14) that there does exist a unique
choice for C̊ which select a distinguished element of this solution space.

Remark 1.8 The operators Cε
bphz are called the BPHZ constants and are given by (in principle

explicit) integrals involving χ and an arbitrary large scale truncation K of the heat kernel. While the
solution to (SYM) in Definition 1.7 is independent of χ, it does in general depend on the choice of
K used to define Cε

bphz.

Remark 1.9 The point is a cemetery state and is added to S to handle the possibility of finite time
blow-up. Some care is needed to properly define C(R+,S ⊔ { }) and the metric that one equips it
with. This is done in [CCHS20, Sec. 1.5.1], where, for a general metric space E, a metric space Esol

of continuous paths with values in E ⊔ { } is defined in which two paths are close if they track each
other until the point when they become large. Our notation C(R+,S ⊔ { }) here really means Ssol.

Remark 1.10 It turns out that in 2D, due to a cancellation in renormalisation constants, Cε
bphz

converges to a finite value as ε ↓ 0; see Theorem 2.5. Therefore, Theorem 1.6 in 2D remains true if
Cε

bphz + C̊ replaced by any fixed C ∈ L(g, g), which is the formulation of [CCHS20, Thm. 2.4]. No
such cancellation occurs in 3D and Cε

bphz diverges at order ε−1.

We now discuss the way in which solutions to (SYM) are gauge covariant in the sense described
in Section 1.2.1. Remark that, by inserting the counterterm (Cε

bphz + C̊)A we are seemingly breaking
the desired gauge covariance property discussed in Section 1.2.1 (in the notation of that section,
(Cε

bphz+C̊)A should be written (Cε
bphz+C̊)(A−Z)). However, the formal argument in Section 1.2.1

also breaks if we replace ξ by ξε because Itô isometry is not true for the latter.
A surprising fact is that, if one chooses C̊ carefully, then the broken gauge covariance (due to

the counterterm (Cε
bphz + C̊)A) compensates in the ε ↓ 0 limit for the broken Itô isometry (due to

the mollified noise ξε), and one obtain a solution to (SYM) which is gauge covariant in law.
It is not entirely trivial to make this statement precise, essentially because we do not know

if (SYM) (with any bare mass) has global in time solutions. In particular, we do not know how to
rule out that solutions to (SYM) with different gauge equivalent initial conditions a ∼ b blow up at
different times, and this makes it unclear in what sense we can expect the projected process [A] on
gauge orbits to be Markov.

To address this issue, it is natural to look for a type of process which solves (SYM) on disjoint
intervals [ςj−1, ςj) and at time ςj jumps to a new representative of the gauge orbit [limt↑ςj A(t)].
This should happen in such a way that A does not blow up unless the entire orbit [A] ‘blows up’.
This class of processes is defined through generative probability measures in [CCHS20, CCHS22].

We say that a probability measure µ on the space of càdlàg functions D(R+,S ⊔ { }) is
generative with bare mass C̊ and initial condition a ∈ S if there exists a white noise ξ and a random
variable A with law µ such that
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(i) A(0) = a almost surely,
(ii) there exists a sequence of stopping times ς0 = 0 ≤ ς1 ≤ ς2 < . . . such that A solves (SYM)

driven by ξ with bare mass C̊ on each interval [ςj , ςj+1),
(iii) for every j ≥ 0, A(ςj+1) ∼ limt↑ςj+1

A(t), and
(iv) limj→∞ ςj = T ∗ def

= inf{t ≥ 0 : A(t) = } and, on the event T ∗ < ∞,1

lim
t↑T ∗

inf
B∼A(t)

Σ(B, 0) = ∞ . (1.5)

The point of this definition is to give a sufficiently general and natural way in which (SYM)
can be restarted along gauge orbits. The following result from [CCHS20, CCHS22] ensures the
existence of a canonical Markov process associated to (SYM) on the quotient space of gauge orbits
O

def
= S/∼ provided the bare mass is chosen in a precise way.

Theorem 1.11 (a) For every a ∈ S and C̊ ∈ L(g, g), there exists a generative probability
measure µ with bare mass C̊ and initial condition a.

(b) There exists Č ∈ LG(g, g) with the following properties. For all a ∼ b ∈ S, if µ, ν are
generative probability measures with initial conditions a, b respectively and bare mass Č,
then the pushforward measures π∗µ and π∗ν are equal. In particular, the probability measure
Px = π∗µ, where µ is generative with bare mass Č and initial condition a ∈ x ∈ O, depends
only on x. Finally, {Px}x∈O are the transition functions of a time homogenous, continuous
Markov process on O ⊔ { }.

Remark 1.12 Theorem 1.11(b) makes no claims about the uniqueness of Č, but we conjecture that
Č is indeed unique (which is not difficult to prove in the Abelian case, see Section 1.4).

Finally, we mention a result in [CCHS20, CCHS22] which crucial for the proof of Theorem 1.11(b)
and which makes precise the coupling argument outlined in Section 1.2.1. This result makes a
stronger statement about the constant Č for which uniqueness does hold. It can also be seen as a
version of the Slavnov–Taylor identities for renormalisation schemes that preserve gauge symmetries.

Suppose that A solves (SYM) and, recalling that ∆A + A∂A + A3 + CA is shorthand for
−d∗AF (A)− dA d∗A(A− Z) + C(A− Z), suppose that (B, g) solves

∂tB = −d∗BF (B)− dB d∗B(B − Z) + Adgξ
ε + (Cε

bphz + C̊)(B − Zg) ,
(∂tg)g

−1 = d∗B(Z
g − Z) ,

(1.6)

where the initial condition of B is B(0) = A(0)g(0). Then, the same computation as in Section 1.2.1
(see also [CCHS20, Sec. 2.2]) shows that Ag = B. In coordinates, (1.6) is written as

∂tB = ∆B +B∂B +B3 +Adgξ
ε + (Cε

bphz + C̊)(B + (dg)g−1) ,
(∂tg)g

−1 = ∂j((∂jg)g
−1) + [Bj , (∂jg)g

−1] .
(1.7)

1In 3D, one needs to work with a slightly stronger metric Σ̄ in (1.5), see Section 3.3.
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It is now natural to compare (1.7) to

∂tĀ = ∆Ā+ Ā∂Ā+ Ā3 + χε ∗ (Adḡξ) + (Cε
bphz + C̊)Ā ,

(∂tḡ)ḡ
−1 = ∂j((∂j ḡ)ḡ

−1) + [Āj , (∂j ḡ)ḡ
−1] ,

ḡ(0) = g(0) , Ā(0) = B(0) .

(1.8)

Remark that χε ∗ (Adḡξ) is equal in law to ξε, and thus Ā is equal in law to the solution of (SYM)
with initial condition B(0), provided we take χ non-anticipative in the following sense.

Definition 1.13 A mollifier χ is called non-anticipative if it has support in (−∞, 0)× Rd.

What we would therefore like to show is that, for a special choice of C̊, the solutions to (1.7)
and (1.8) converge as ε ↓ 0 to the same limit. The identity Ag = B, which survives in the limit,
would provide a coupling between (SYM) with initial condition A(0) and initial condition A(0)g(0)

under which the two solutions are gauge equivalent, at least locally in time. It turns out that the
following more general result is true.

Theorem 1.14 There exists a unique Č ∈ LG(g, g) such that for all non-anticipative mollifiers χ,
all C̊ ∈ L(g, g), and all initial conditions (B(0), g(0)) ∈ S × Cϱ(Td, G), ϱ ∈ (12 , 1), the solution
(B, g) to (1.7) converges as ε ↓ 0 in probability to the same limit as the solution to

∂tĀ = ∆Ā+ Ā∂Ā+ Ā3 + χε ∗ (Adḡξ) + (Cε
bphz + C̊)Ā+ (C̊ − Č)(dḡ)ḡ−1 ,

(∂tḡ)ḡ
−1 = ∂j((∂j ḡ)ḡ

−1) + [Āj , (∂j ḡ)ḡ
−1] ,

ḡ(0) = g(0) , Ā(0) = B(0) .

(1.9)

Furthermore, the solution to (SYM) with bare mass Č is independent of χ and of the choice of Cε
bphz.

It follows from Theorem 1.14 that the solutions to (1.7) and (1.8) indeed converge to the same
limit as ε ↓ 0 provided we choose C̊ = Č. The operator Č in Theorem 1.14 is exactly the operator
appearing in Theorem 1.11(b); in 2D, we can give an explicit expression for Č, see (2.13).

Remark 1.15 The value of Č in Theorem 1.14 is determined uniquely after we fix a choice for Cε
bphz.

However, recall from Remark 1.8 that Cε
bphz are not unique or canonical — they are determined by χ

and an arbitrary truncation of the heat kernel (see, e.g. Theorem 2.5). The final part of Theorem 1.14
states that the solution of (SYM) with bare mass Č is independent of χ and this choice of truncation.

1.4 Abelian case

We end this section by discussing the above results in the Abelian case, i.e. G = U(1) and g = R.
We consider here d ≥ 1 arbitrary. We will see in this case that

• the constant in Theorem 1.11(b) is Č = 0 and is unique,
• if Td is replaced by Rd, then uniqueness of Č fails (Remark 1.16),
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• (SYM) with bare mass Č = 0 has global in time solutions but no invariant probability measure
(Remark 1.17)

In the Abelian case, the non-linearities A∂A and A3 as well as the constants Cε
bphz vanish.

Equation (SYM) with bare mass C̊ therefore becomes linear in A and converges as ε ↓ 0 to the
solution of the SHE with a mass term

∂tA = ∆A+ C̊A+ ξ . (1.10)

Treating 1-forms on Td as periodic functions (or distributions) on Rd modulo Zd, it is easy to see
that A ∼ B if and only if A = B + dω for some ω : Rd → R such that eiω is periodic where
i =

√
−1. The tangent space of every gauge orbit is therefore {dω : ω : Td → iR}.

Since Adg is now the identity, it is clear that a possible value for Č in Theorems 1.11 and 1.14
is Č = 0. This is because, if B(0) = A(0) + dω(0) and A,B solve (1.10) with C̊ = 0, then
B = A+ dω for all times where ω solves ∂tω = ∆ω.

Furthermore, Č = 0 is the only possible value for Č. Indeed, consider the two gauge
equivalent initial conditions A(0)

def
= 0 and B(0) = (B1(0), . . . , Bd(0))

def
= (2π, 0, . . . , 0), and

suppose that A,B solve (1.10) with C̊ ̸= 0. Then B(t) = etC̊B(0) + A(t), where we used that
B(0) is constant on Td. Consider now the gauge-invariant observable is I[A] def

= ei
∫
Td A1 . Then∫

Td B1(t) = etC̊2π +
∫
Td A1(t), and thus

EI[A(t)] = exp(ietC̊2π)EI[B(t)] ̸= EI[B(t)]

for all t > 0 sufficiently small since C̊ ̸= 0. This show that A and B cannot be gauge equivalent in
law, and thus Č = 0 is the only possible value in Theorem 1.11(b).

Remark 1.16 The above argument relies on the fact that Td is not simply connected: we exploited
that (dg)g−1, which appears in (1.9), is not tangent to gauge orbits in general (it is tangent if and
only if g = eiω for some ω : Td → R). If Td is replaced by Rd, then (dg)g−1 is tangent to gauge
orbits since we can always write g = eiω for some ω : Rd → R. Therefore, on Rd in the Abelian
case, there is no uniqueness of Č. Explicitly, working on Rd, suppose A solves (1.10) and consider
B as in (1.7) where B(0) = A(0)g(0) but now g satisfies

d[(∂tg)g
−1] = −d(d∗[(dg)g−1]) + C̊(dg)g−1 ,

i.e. g = eiω where ω solves ∂tω = ∆ω + C̊ω. Then B(t) = A(t)g(t) = A(t)− dω(t) for all t ≥ 0
and B solves the same equation (1.10) as A for any C̊ ∈ R.

Remark 1.17 Clearly (1.10) with C̊ = 0 does not have an invariant probability measure because∫
Td Ai evolves like a Brownian motion. In fact, any gauge equivalent generalisation of (SYM) of

the form ∂tA = ∆A + ξ + dω, where ω is adapted, will lack an invariant probability measure
because the spatial mean is unaffected by dω. But we do obtain an invariant probability measure for
the projected process [A] because any 1-form is gauge equivalent to another 1-form B such that∫
Td B1, . . . ,

∫
Td Bd ∈ [−π, π). This remark shows that the Markov process from Theorem 1.11

can have an invariant probability measure while (SYM) with bare mass Č does not.
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2 Two dimensions

We describe in this section the main results in [CCHS20], i.e. the results of Section 1.3 in 2D.

2.1 State space

The definition of the state space S (denoted by Ω1
α in [CCHS20]) is motivated by the desire to define

holonomies, and thus Wilson loops, for every element A ∈ S. The construction is a refinement of
that introduced in [Che19]. Let X = T2 ×B1/4, where B1/4 = {v ∈ R2 : |v| ≤ 1

4}. We think of
X as the collection of straight line segments ℓ = (x, v) in T2 of length at most |ℓ| def

= |v| < 1
4 . (The

starting point of ℓ is x.)
For α ∈ [0, 1] and a smooth 1-form A ∈ C∞(T2, g2), define the norm

|A|α-gr = sup
ℓ

|A(ℓ)|
|ℓ|α

,

where the supremum is taken over all ℓ ∈ X with |ℓ| > 0 and where we define the line integral

A(ℓ)
def
=

∫ 1

0
A(x+ vt)v dt =

∫ 1

0

2∑
i=1

Ai(x+ vt)vi dt . (2.1)

We furthermore define the strengthened norm

|A|α = |A|α-gr + sup
P

|A(∂P )|
|P |α/2

,

where the supremum is over all oriented triangles P = (ℓ1, ℓ2, ℓ3) with ℓi ∈ X and area |P | > 0,
and A(∂P )

def
=

∑3
i=1A(ℓi). We can now define the state space studied in [CCHS20].

Definition 2.1 The Banach space (S, | · |α) is defined as the completion of smooth g-valued 1-forms
under | · |α for some α ∈ (23 , 1).

The metric Σ in Theorem 1.3 is then the usual metric Σ(A,B) = |A−B|α.

Remark 2.2 To motivate these norms, consider A = (A1, A2) a pair of i.i.d. GFFs. A simple
calculation shows that, for all α < 1, E|A(ℓ)|2 ≲ |ℓ|2α. Furthermore, it follows from Stokes’
theorem and the fact that dA is a white noise, that A(∂P ) =

∫
P dA and hence E|A(∂P )|2 = |P |. A

Kolmogorov argument then implies that the GFF has a modification with |A|α < ∞ almost surely.

To extend gauge equivalent to S , let G0,α denote the closure of smooth functions in Cα(T2, G).
One can show that the group action (A, g) 7→ Ag, defined for smooth 1-forms and gauge transforma-
tions, extends to a locally Lipschitz map S ×G0,α → S , see [CCHS20, Thm. 3.27, Cor. 3.36]. We
then extend gauge equivalence ∼ to S by

A ∼ B ⇔ Ag = B for some g ∈ G0,α .

With these definitions, S has the following desirable properties (see [CCHS20, Thm. 2.1]).
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• For every ℓ = (x, v) ∈ X and A ∈ S , one has |ℓA|Cα ≤ |ℓ|α|A|α-gr, where ℓA : [0, 1] → g is
the path ℓA(t) =

∫ t
0 A(x+ sv)v ds. The holonomy hol(A, ℓ) ∈ G defined by hol(A, ℓ) = y1

where y solves the ODE
dyt = yt dℓA(t) , y0 = 1 ,

is therefore well-defined by Young integration [You36, Lyo94, FH20].
More generally, hol(A, γ) is well-defined for any γ ∈ C1,β([0, 1],T2) where β ∈ ( 2α − 1, 1],
and the map (A, γ) 7→ hol(A, γ) is Hölder continuous. In particular classical Wilson loop
observables are well-defined with good stability properties. The relation ∼ can be expressed
entirely in terms of holonomies.

Remark 2.3 Since hol(A, γ) is independent of the parametrisation of γ, it is natural to also
measure the regularity of γ in a parametrisation independent way. Such a notion of regularity
is introduced in [CCHS20, Sec. 3.2] which interpolates between C1 and C2 (akin to how
p-variation is a parametrisation invariant interpolation between C0 and C1).

• One has the embeddings
Cα/2 ↪→ S ↪→ Ω1

α-gr ↪→ Cα−1 ,

where Ω1
α-gr is the completion of smooth functions under | · |α. (Only the last of these is

non-trivial, see [Che19, Prop. 3.21].) These embeddings are furthermore optimal in the sense
that α/2 in Cα/2 cannot be decreased and α − 1 in Cα−1 cannot be increased. Remark
also that |A|1-gr ≍ |A|L∞ , while S, since α < 1, contains distributions which cannot be
represented by functions, such as the GFF.

• There exists a complete metric D on the quotient space of gauge orbits O = S/∼ which
induces the quotient topology. To define D, we first define a new (but topologically equivalent)
metric k on S by shrinking the usual metric Σ(·, ·) = | · − · |α in such a way that the diameter
of every R-sphere SR

def
= {A ∈ S : |A|α = R} goes to zero as R → ∞, but the distance

between Sr and SR for large r ≤ R is of order R
r − 1, so in particular goes to ∞ as R → ∞.

Then D is defined as the Hausdorff distance associated to the metric k on S.

Remark 2.4 The space S strengthens the definition of a Banach space Sax introduced in [Che19];
Sax is defined in a similar way but with X taken as the set of axis-parallel line segments. The
main result of [Che19] is that, if G is simply connected, then there exists a (non-unique) probability
measure on Sax such that the holonomies along all axis-parallel curves agree in distribution with
those of the YM measure onT2 defined in [Sen97, Lév03]. The proof of this result uses a gauge-fixed
lattice approximation, which explains the restriction to axis-parallel lines.

2.2 Local solutions

It turns out that in 2D we can sharpen the statement of Theorem 1.6 as follows.
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Theorem 2.5 For every C̊ ∈ L(g, g), mollifier χ, and initial condition A(0) ∈ S, the solution to

∂tA = ∆A+A∂A+A3 + (λCε
sym + C̊)A+ ξε , (2.2)

converges in probability in C(R+,S ⊔ { }) as ε ↓ 0. The constant Cε
sym converges to a finite limit

as ε ↓ 0 and is defined by

Cε
sym = 4Ĉε − C̄ε , Ĉε =

∫
∂jK

ε(∂jK ∗Kε) , C̄ε =

∫
(Kε)2 .

Here K : R × R2 \ {0} → R is any spatially symmetric even function which vanishes for negative
times, has bounded support, and is equal to the heat kernel (∂t −∆)−1 in a neighbourhood of the
origin. We write Kε = χε ∗K and ∂j is any spatial derivative, j = 1, 2. The operator λ ∈ LG(g, g)
is the Casimir element of g in the adjoint representation.

The ε ↓ 0 limit of A, which solves (SYM) with bare mass C̊, depends on K and C̊ but not on χ.

Remark 2.6 If g is simple (which one can assume without loss of generality, see [CCHS20,
Remark 2.8]), then λ < 0 is just a scalar.

Recall from Remark 1.10 that the convergence of Cε
bphz

def
= λCε

sym to a finite limit is special to
dimension 2 and is due to a cancellation between the diverging constants 4Ĉε and C̄ε.

We briefly describe the ingredients in the proof of Theorem 2.5, which is based on the
theory of regularity structures. We only mention the overall strategy behind this theory, and refer
to [Hai16, CW17, FH20] for an introduction and more details. To solve an SPDE such as (1.4), one
constructs a sufficiently large ‘regularity structure’ and lifts the equation to a space of ‘modelled
distributions’ with values in the regularity structure. This construction, first introduced in [Hai14],
is done at a high level of generality in [BHZ19]. One then constructs a finite number of stochastic
objects from the noise called a ‘model’ – these objects are essentially renormalisations of functions of
the form (2.3)-(2.4) below, the existence of which follows from [CH16]. The point of the construction
is that the products A∂A,A3 and convolution with the heat kernel become stable operations on
modelled distributions, and one can solve a fixed point problem for the ‘lifted’ equation. Finally,
one maps the resulting modelled distribution to a distribution on R ×T2 via the ‘reconstruction
operator’ and identifies it with a solution to a classical renormalised PDE, at least for ε > 0. This
final step is carried out systematically in [BCCH21]. All these operations are done in a way that is
stable as ε ↓ 0, thereby showing the desired convergence.

One of the contributions of [CCHS20] is to develop a framework in which the algebraic results
from [BHZ19, BCCH21] can be transferred to a setting in which the noise and solution are vector-
valued. The articles [BHZ19, BCCH21] provided a general method to compute the renormalised
form of a system of scalar SPDEs, which in principle does apply to (1.4) by writing it as a system of
d× dim(g) scalar-valued equations. However, such a procedure is cumbersome and unnatural; it is
more desirable to find a framework that preserves the vector-valued nature of the noise and solution,
which is the purpose of [CCHS20, Sec. 5].
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The main idea behind the extension in [CCHS20] is to define a category of ‘symmetric sets’ and
a functor between this category and the category of vector spaces. This construction allows one to
canonically associate partially symmetrised tensor products of vector spaces to combinatorial rooted
trees which commonly appear in regularity structures. One of the main outcomes is a procedure to
compute the renormalised form of equations like (1.4) without resorting to special coordinates.

In working out the renormalised equation (2.2), it is easy to deduce by power-counting and
symmetry arguments that the only non-vanishing counterterms arise from the three trees

, , and . (2.3)

Before renormalisation, these trees correspond respectively to the three functions

[K ∗ (∂jK ∗ ξ)] · (∂jK ∗ ξ) , (K ∗ ξ) · [∂jK ∗ (∂jK ∗ ξ)] , and (K ∗ ξ)2 . (2.4)

A computation shows that the final counterterm is precisely λCε
symA as defined in Theorem 2.5

(see [CCHS20, Lem. 6.9]).
It follows from the general theory of regularity structures that (2.2), for any C̊ ∈ L(g, g),

converges locally in time in Cα−1. To improve this to convergence in C(R+,S ⊔ { }), one
decomposes the solution A into A = Ψ + B where Ψ solves the SHE ∂tΨ = ∆Ψ + ξ with
initial condition Ψ(0) = A(0) and B is in C1−κ for ay κ > 0. One can then show by hand that
Ψ ∈ C(R+,S) (see [CCHS20, Sec. 4]), which, together with the embeddings Cα/2 ↪→ S ↪→ Cα−1,
shows that A converges to a maximal solution with values in S.

2.3 Gauge covariance

Recall that Theorems 1.14 and 1.14 imply a form of gauge covariance for (SYM). The 2D version
of Theorem 1.11 is proven in [CCHS20, Sec. 7]. Theorem 1.11(a) is a relatively straightforward
consequence of Theorem 2.5. One defines the random variable A by solving (SYM) until first time
that |A(t)|α ≥ 2 + infB∼A(t) |B|α, at which point one uses a measurable selection S : O → S to
jump to a new small representative B of the gauge orbit [A(t)] for which |B|α < 1+ infa∈[A(t)] |a|α.
These jump times define the increasing sequence of stopping times {ςj}j≥0 in item (ii). Items (i)-(iv)
all follow readily from the construction.

The proof of Theorem 1.11(b), which is the main statement of Theorem 1.11, requires more
work. The idea is to use Theorem 1.14, which we admit for now, to couple the solutions to (SYM)
with bare mass Č and initial conditions a ∼ b. Specifically, let ν be a generative probability measure
with bare mass Č and initial condition b ∈ S, and consider any a ∼ b. Letting B and ξ̄ denote the
random variable and white noise respectively corresponding to ν, it follows from Theorem 1.14
that, on the same probability space, there exist a càdlàg process A defined as above with (SYM)
driven by ξ

def
= Adg−1 ξ̄ and bare mass Č in such a way that B = Ag. Here g is càdlàg with values

in G0,α ⊔ { } and jump times contained in those of A and B, and solves (1.7) in between these
jump times, see Figure 1. This shows that the pushforward of ν to the orbit space O is equal to the
pushforward of the law of A from the proof of Theorem 1.11(a), which proves Theorem 1.11(b).
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A(0)

A

A(τ2)

B(0) = A(0)g(0)

B

B(τ1)

g(s)

g(t)

Figure 1: Two random variables A,B associated to generative probability measures µ, ν respectively.
The set of jump times {τ1, τ2, . . .} is the union of the sets of stopping times {ς1, ς2, . . .} and
{σ1, σ2, . . .} associated to µ, ν. Grey lines indicate gauge orbits. There is a coupling such that
Ag = B for a time-dependent gauge transformation g. In between the jump times, A and B
solve (SYM) with bare mass Č driven by ξ and ξ̄ = Adgξ respectively.

Remark 2.7 A crucial fact used in the above construction is that the solution g to (1.7) does not
blow up before B or A def

= Bg−1 does. This is due to the elementary but important property of S that

|g|Cα ≲ 1 + |A|α-gr + |Ag|α-gr , (2.5)

which in turn follows from the facts that, for any curve γxy with γxy(0) = x to γxy(1) = y,

g(y) = hol(Ag, γxy)
−1g(x)hol(A, γxy) , (2.6)

and that, if γxy is the shortest such curve, then the distance of the holonomy hol(A, γxy) ∈ G from
the identity in G is of order |x− y|α|A|α-gr by Young ODE theory (see [CCHS20, Sec. 3.5]).

The proof of Theorem 1.11(b) therefore boils down to that of Theorem 1.14, which is the main
content of [CCHS20, Sec. 7]. The proof of Theorem 1.14 proceeds by taking a non-anticipative
mollifier χ and considering the two systems

∂tB = ∆B +B∂B +B3 +Adgξ
ε + C̊1B + C̊2(dg)g

−1 ,
(∂tg)g

−1 = ∂j((∂jg)g
−1) + [Bj , (∂jg)g

−1] ,
(2.7)

and

∂tĀ = ∆Ā+ Ā∂Ā+ Ā3 + χε ∗ (Adḡξ) + C̊1Ā+ C̊2(dḡ)ḡ
−1 ,

(∂tḡ)ḡ
−1 = ∂j((∂j ḡ)ḡ

−1) + [Āj , (∂j ḡ)ḡ
−1] ,

(2.8)

where C̊1, C̊2 ∈ L(g, g) are new arbitrary bare masses. These two systems represent the unrenor-
malised versions of (1.7) and (1.9) respectively with an extra free parameter (the bare mass C̊2).
(In [CCHS20] one actually writes the above systems using new variablesU = Adg and h = (dg)g−1,
which assists in computing the desired renormalised equations.)
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Remark 2.8 Well-posedness for the systems (2.7)-(2.8) as ε ↓ 0 is generally standard. However, a
subtlety arises from the multiplicative noise term Adgξ which is in C−2−κ and leads to problems
in posing a suitable fixed point problem (−2 is the threshold regularity at which one cannot
extend uniquely a distribution from R+ × Rd to R × Rd). This issue is handled by decomposing
g = Pg(0) + ĝ, where Pg(0) is the harmonic extension of g(0) to positive times. Then ĝ vanishes
at t = 0, which makes the product Adĝξ better behaved, while the product AdPg(0)ξ is shown to be
a well-defined distribution in C−2−κ(R × Rd) using stochastic estimates.

To show that some renormalised forms of (2.7) and (2.8) converge to the same limit as ε ↓ 0, the
strategy taken in [CCHS20] is to introduce ε-dependent norms on the underlying regularity structure.
The idea behind these norms is that they allow one to lift the basic estimate

|f − χε ∗ f |Cℓ ≲ εθ|f |Cℓ+θ

to the level of modelled distributions. It is then possible to show that the modelled distributions
which solve the systems (2.7) and (2.8) are, for small times, at distance of order εθ for some θ > 0
sufficiently small. By continuity of the reconstruction operator, it follows that some renormalised
forms of (2.7) and (2.8) converge to the same limit as ε ↓ 0.

We next identify the renormalised forms of (2.7) and (2.8). We drop for the moment the
assumption that χ is non-anticipative since this step can be done without it. It follows from a direct
computation using the algebraic theory developed in [BCCH21] and [CCHS20, Sec. 5] that the
renormalised equations are

∂tB = ∆B +B∂B +B3 + (λCε
sym + C̊1)B +Adg(ξ

ε) + (λC̃ε + C̊2)(dg)g
−1 (2.9)

and

∂tĀ = −∆Ā+ Ā∂Ā+ Ā3 + (λCε
sym + C̊1)Ā+ χε ∗ (Adgξ) + (λC̃0,ε + C̊2)(dḡ)ḡ

−1 (2.10)

where
C̃ε =

∫
χε(K ∗Kε) , C̃0,ε = lim

δ↓0

∫
χδ(K ∗ χδ ∗Kε) = (K ∗Kε)(0) ,

and Cε
sym is the same constant appearing in Theorem 2.5. The components g and ḡ do not require

renormalisation and solve the same equations as in (2.7) and (2.8).
The values of C̃ε and C̃0,ε are respectively the BPHZ constants associated with the two trees

and , (2.11)

which correspond, before renormalisation, to the two functions

ξε · (K ∗K ∗ ξε) and ξ · (K ∗Kε ∗ ξ) .

Remark 2.9 To derive and solve the equation for Ā, one substitutes ξ by ξδ and takes the limit
δ ↓ 0 with ε > 0 fixed; this ensures that all objects are smooth for ε, δ > 0. This also explains the
definition of C̃0,ε as a limit in δ ↓ 0.
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To summarise, for any C̊1, C̊2 ∈ L(g, g) and any mollifier χ, the solutions B and Ā to (2.9)
and (2.10) respectively converge to the same limit as ε ↓ 0 over a short random time interval (the
argument in [CCHS20] that (B, g) and (Ā, ḡ) converge as maximal solutions uses non-anticipativity
of χ).

To make the identification with the equations in Theorem 1.14, we take C̊1 = C̊. We then set
C̊2 = λCε

sym + C̊ − λC̃ε, so that λC̃ε + C̊2 = λCε
sym + C̊. Finally, we want to find C (playing the

role of Č) so that λC̃0,ε + C̊2 matches C̊1 − C, at least up to o(1) as ε ↓ 0. This desired operator is

C = lim
ε↓0

λ(C̃ε − Cε
sym − C̃0,ε) . (2.12)

We have now argued that the solutions B and Ā as in Theorem 1.14 with Č = C converge to the
same limit over a short time interval as ε ↓ 0 for any mollifier χ.

Next, we claim that if χ is non-anticipative, then C is independent of χ. Indeed, C̃0,ε = 0 for
non-anticipative χ. Furthermore, it follows from the identity (∂t −∆)K = δ +Q, where δ is the
Dirac delta and Q is smooth and supported away from the origin, and a computation with integration
by parts (see [CCHS20, Lem. 6.9]), that C in this case is equal to

Č = lim
ε↓0

λ(C̃ε − Cε
sym) = lim

ε↓0
λ
(
−
∫
(K ∗Kε)(Q ∗ χε)−

∫
(Q ∗Kε)Kε

)
. (2.13)

Since Q is supported away from the origin, the final limit is independent of χ.
To conclude the proof of Theorem 1.14, it remains to show that (SYM) with bare mass Č

defined by (2.13) is independent of χ and of K. Remark that χ can now be any mollifier, not
necessarily non-anticipative. Independence of χ follows from the final part of Theorem 2.5 since Č is
independent of χ. Independence of K follows from the fact that limε↓0(λC

ε
sym + Č) = limε↓0 λC̃

ε,
which does not depend on the choice of K since K is always equal to the heat kernel near the origin.

Remark 2.10 The final mass renormalisation one takes in (SYM) to obtain gauge covariance in 2D
is therefore

lim
ε↓0

(λCε
sym + Č) = lim

ε↓0
λC̃ε = lim

ε↓0
λ

∫
χε(K ∗ χε ∗K) , (2.14)

which is the constant ‘C̄’ appearing in [CCHS20, Thm. 2.9].

Remark 2.11 The existence of Č with the above properties may appear as a bit of a miracle. Indeed,
the fact that C̃ε and C̃0,ε converge to finite limits is easy to see because, if G is the heat kernel,
then (G ∗G)(t, ·) = tG(t, ·), which is a bounded function in 2D. On the other hand, the fact that
Cε

sym converges to a finite limit, and thus that Č exists, is not a priori obvious because it relies on a
cancellation between diverging BPHZ constants 4Ĉε and C̄ε in Theorem 2.5. The fact that Č is
furthermore independent of χ relies on a cancellation between C̃ε and Cε

sym, and that (SYM) with
bare mass Č is independent of K relies on the expression of C̃ε.

These cancellations, convergences, and independencies are shown in [CCHS20] using explicit
computations. We will see in Section 3.3 that there is another argument which allows us to see the
existence of Č by instead exploiting symmetries of the equation.
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3 Three dimensions

We now discuss the main results of [CCHS22], which deals with the 3D theory.

3.1 State space

The idea of defining a state space of connections in terms of line integrals no longer works in 3D
because already the GFFA is too singular to be restricted to lines. To see this, recall that the correlation
function of A in 3D behaves like C(x, y) ≍ 1

|x−y| for x, y close (vs. C(x, y) ≍ − log |x− y| in 2D).
Therefore, for ℓ = (x, v),

E|A(ℓ)|2 =
∫ 1

0
dt

∫ 1

0
ds|ℓ|2C(x+ tv, x+ sv) ≍

∫ 1

0
dt

∫ 1

0
ds

|ℓ|2

|t− s|
= ∞ .

This strongly suggests it is hopeless to find a state space for 3D quantum Yang-Mills such that
holonomies are well-defined as we did in 2D.

The construction of the state space S in [CCHS22] proceeds in two steps. The first step is
to define a space I of initial conditions for a gauge-covariant regularising operator. Abstractly,
we will find a metric space of distributional 1-forms (I,Θ) and a family of operators {Ft}t>0,
Ft : I → C∞, such that

(a) for smooth A,B,
A ∼ B ⇔ Ft(A) ∼ Ft(B) for some t > 0 , (3.1)

(b) Ft : I → C∞ is continuous for every t > 0.
If we can find such I and {Ft}t>0, then we can extend gauge equivalence ∼ to I by using (3.1) as a
definition. Finally, we want I to be sufficiently large to contain distributions as rough as the GFF.

Our concrete choice for Ft(a) is the solution A(t) to the deterministic YM flow (with DeTurck
term)2

∂tA = −d∗AF (A)− dA d∗A = ∆A+A∂A+A3 , A(0) = a . (3.2)

This choice is natural because we ultimately want to start (SYM), the stochastic version of (3.2),
from initial data as rough as the GFF, which is at least as hard as solving (3.2).

Remark 3.1 The fact that (a) above holds for F was likely already known in the literature, but a
complete proof is given [CCHS22, Sec. 2.2] based on analytic continuation.

The second step in the construction of S is to augment I with an additional norm which ensures
that a form of the bound (2.5) holds. This turns out to be critical in several places of the construction
for the Markov process in Theorem 1.11(b).

2To avoid arguing that (3.2) has global in time solutions, the definition of Ft in [CCHS22] is restricted to short
intervals t ∈ (0, T ) – see Proposition 3.4 below – and items (a) and (b) should also be understood locally in time. To
simplify the exposition, we ignore this detail here.
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We mention that the idea to use the YM flow to define a suitable space of distributional 1-forms
was already suggested in [CG13] (see also [NN06, Lüs10, FHK+12, DDPR13] for related ideas
in physics). We also point out that another state space which bears close similarity to I was
independently defined in [CC21a, CC21b] and was shown to support the GFF.

3.1.1 The first half

Before defining I, we briefly illustrate why classical Hölder–Besov spaces Cη are not suitable for
our purposes. The standard strategy to solve (3.2) is to rewrite the equation in mild formulation

A(t) = Mt(A)
def
= Pta+

∫ t

0
Pt−s[A(s)∂A(s) +A(s)3] ds ,

where Pt = et∆ is the heat flow, and show that the map M : A 7→ M(A) is a contraction on a ball
in a suitable Banach space. This Banach space should at least contain M(0) = Pa and M(Pa)
(restricted to a short time interval), which are the first and second Picard iterates respectively.
However, for generic a ∈ Cη, the best we can do to handle the product Pt−s[Psa · ∂Psa] in M(Pa)
is to estimate for t > s > 0

|Psa|L∞ ≲ s
η
2 |a|Cη , |∂Psa|L∞ ≲ s

η
2
− 1

2 |a|Cη (3.3)

⇒ |Psa · ∂Psa|L∞ ≲ sη−
1
2 |a|Cη . (3.4)

We now recall that the GFF takes values in Cη for any η < −1
2 (and not for η = −1

2 ). Therefore,
trying to estimate the term

∫ t
0 Pt−s[Psa · ∂Psa] ds in the 2nd Picard iterate leads to a non-integrable

singularity
∫ t
0 s

η− 1
2 ds = ∞. The above estimates are, in general, sharp, which suggests that one

cannot start the YM flow (3.2) from initial data in Cη with η < −1
2 (and even in C−1/2).

To circumvent this issue and motivate the definition of I, remark that the GFF a is a highly
non-generic element of Cη and Psa · ∂Psa behaves better than the naive bound (3.4) would suggest.
Indeed, a 2nd moment estimate shows that for any β ∈ (−1, 0) and δ > 1 + β

2 , almost surely
uniformly in s ∈ (0, 1)

|Psa · ∂Psa|Cβ ≲ s−δ . (3.5)

(The way to guess the bound (3.5) is to use the estimates |Psa|Cβ/2 ≲ s−
1
4
−κ−β

4 and |∂Psa|Cβ/2 ≲

s−
3
4
−κ−β

4 for any κ > 0, and then pretend that multiplication is a bounded operator Cβ/2×Cβ/2 →
Cβ – this is clearly false since β < 0, but ends up working for (Psa, ∂Psa) due to probabilistic
cancellations.)

Since we can take δ < 1 in (3.5) (vs. −η + 1
2 > 1 in (3.4)), this improved regularity ends up

being enough to show that every Picard iterate of M is well-defined when a is the GFF. It is therefore
natural to make the following definition.

Definition 3.2 For η < −1
2 , β < 0, and δ ∈ (1 + β

2 , 1), let I be the completion of smooth 1-forms
under the metric

Θ(A,B)
def
= |A−B|Cη + sup

t∈(0,1)
tδ|PtA · ∂PtA− PtB · ∂PtB|Cβ .
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Remark 3.3 The space I can be identified with a subset of C0,η def
= C∞Cη

because the map
Cη ∋ A 7→ P·A · ∂P·A ∈ C∞((0, 1), Cβ) has a closed graph.

A standard argument with Young’s product theorem and estimates of the type (3.3) shows that
the YM flow extends to I in the following sense.

Proposition 3.4 For every ball B in (I,Θ) centred at 0, there exists T > 0 such that for all
t ∈ (0, T ), the YM flow (3.2) extends to a continuous function Ft : B → C∞ (which is Lipschitz for
any norm on C∞).

We can therefore extend gauge equivalence ∼ to I by using (3.1) as a definition.

3.1.2 The second half

We now refine the space I in order to obtain control on gauge transformations of the type (2.5),
which proves crucial in the construction of the Markov process on gauge orbits associated to (SYM).

Definition 3.5 For α ∈ (0, 12) and θ > 0, define the norm ||| · |||α,θ on smooth 1-forms

|||A|||α,θ
def
= sup

t∈(0,1)
sup
|ℓ|<tθ

|(PtA)(ℓ)|
|ℓ|α

,

where the second supremum is over all line segments ℓ = (x, v) ∈ T3 × {v ∈ R3 : |v| < 1
4} with

|ℓ| def
= |v| < tθ, and (PtA)(ℓ) is the line integral of PtA along ℓ defined analogously to (2.1). Define

further the metric
Σ(A,B) = Θ(A,B) + |||A−B|||α,θ ,

and let S by the completion of smooth 1-forms under Σ.

To motivate the norm ||| · |||α,θ, recall that the estimate (2.5) relies on the identity (2.6), which in
turn requires that line integrals and holonomies of A are well-defined. But we saw that the GFF A
cannot even be restricted to lines!

The idea above is to consider, instead of A, the heat flow regularisation {PtA}t∈(0,1). A quick
computation shows that, uniformly in 0 <

√
t < |ℓ| < 1

4 ,

E|(PtA)(ℓ)|2 ≍ |ℓ| log(|ℓ|t−1)

(with even better bounds for |ℓ| ≤
√
t). Therefore, as expected, E|(PtA)(ℓ)|2 blows up for fixed ℓ as

t ↓ 0, but rather slowly. Furthermore, restricting to short length scales, say |ℓ| < tθ for any θ > 0,

E|(PtA)(ℓ)|2 ≲ −|ℓ| log |ℓ|

uniformly in t ∈ (0, 1) and |ℓ| < tθ. Combined with a Kolmogorov argument, this shows that
|||A|||α,θ < ∞ almost surely. The restriction to α < 1

2 is natural because the GFF in 3D has 1
2 less

regularity than in 2D (e.g. C−κ−1/2 in 3D vs. C−κ in 2D for Hölder–Besov regularity), and we saw
that |A|α-gr < ∞ for α < 1 for the GFF A in 2D.
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Remark 3.6 The metric space S can be identified with a subset of I ⊂ C0,η and comes with the
parameters (η, β, δ, α, θ), the possible range of which is given in [CCHS22, Sec. 5]; (S,Σ) is the
space appearing in Theorem 1.3 for d = 3.

With these definitions, one can show that the group of sufficiently smooth gauge transformations
acts continuously on S . Namely, there exists ϱ ∈ (12 , 1) such that (A, g) 7→ Ag extends continuously
to a map S ×Gϱ → S where

Gϱ def
= Cϱ(T3, G) .

Furthermore, this action preserves ∼ defined by (3.1), i.e. A ∼ Ag for all (A, g) ∈ S ×Gϱ.
We can now state [CCHS22, Thm. 2.39], which is one of the main results of [CCHS22, Sec. 2]

and the motivation behind the norm ||| · |||α,θ.

Theorem 3.7 There exist constants C, q > 0 and ν ∈ (0, 12) such that, for all g ∈ Gϱ and A ∈ S,

|g|Cν ≤ C(1 + Σ(A, 0) + Σ(Ag, 0))q .

The proof of Theorem 3.7 relies on two estimates: (i) the estimate (2.5) used in the 2D case
(which of course holds in arbitrary dimension), and (ii) a ‘backwards estimate’ which controls the
initial condition of a parabolic PDE in terms of its behaviour for positive times (see [CCHS22,
Lem. 2.46(b)]) – this estimate is applied to the harmonic flow-type PDE solved by h for which
h(0) = g and Ft(A)h(t) = Ft(A

g) for all t > 0. Theorem 3.7 is then obtained by suitably
interpolating between estimates (i) and (ii).

Remark 3.8 One can show that mollifications of the SHE converge in probability in the space
C(R+,S) (see [CCHS22, Cor. 3.14]). In particular, the SHE admits a modification with sample
paths in C(R+,S).

Remark 3.9 Unlike in 2D, the action of Gϱ on S is not transitive over the orbits and it is unclear
if ∼, or some variant of it, is determined by the action of a group. This lack of a gauge group is
responsible for the gap in our understanding of the quotient space S/∼ in 3D vs. 2D, see Remark 1.5.

3.2 Local solutions

We next explain how one proves Theorem 1.6 in 3D, which is done in [CCHS22, Sec. 5]. We do not
restate the result here like we did in Section 2.2 since we can’t make it substantially more precise.

Though primarily using the theory of regularity structures as before, there are two main additional
challenges on top of the 2D case. The first is purely algebraic and concerns showing that the
renormalisation counterterms are of the form Cε

bphzA. The difficulty is that there are dozens of trees
which potentially contribute to renormalisation (vs. just 9 trees in 2D, see [CCHS20, Sec. 6.2.3]).

By power counting, one can deduce that the renormalisation is linear in A. To argue that one
sees precisely Cε

bphz ∈ LG(g, g) requires a systematic approach to symmetry arguments, which is
developed in [CCHS22, Sec. 4] and which could of independent interest in other contexts.
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To give an example of how this works, we argue that the renormalisation is ‘block diagonal’,
i.e. if the counterterm cAj appears in the Ai equation for j ̸= i then c = 0. Indeed, if we flip the
coordinate xi 7→ −xi and thus ∂i 7→ −∂i, together with Ai 7→ −Ai and ξεi 7→ −ξεi , while keeping
all terms with indexes j ̸= i the same, it is immediate that all the terms in the Ai equation (1.3) flip
sign. Using the symmetry of the noise ξεi

law
= −ξεi and invariance under the flip xi 7→ −xi of the

kernel K used to define Cε
bphz, one can show that renormalised equation must possess the same

symmetry, namely all terms in the renormalised Ai equation must flip sign. Since we kept Aj the
same, this shows that any factor cAj in the renormalised Ai equation must have c = 0.

The way one argues that the same Cε
bphz appears for all i ∈ {1, 2, 3} and that Cε

bphz ∈ LG(g, g) is
similar: one exploits symmetry under reflections xi ↔ xj and ξεi

law
= ξεj for the former, and symmetry

under constant gauge transformations Ai 7→ AdgAi and ξi
law
= Adgξ

ε
i where g ∈ G for the latter.

The second challenge is analytic and comes from the singularity of the initial condition in C− 1
2
−κ

for κ > 0 (this was already encountered in 2D in a more mild form, see Remark 2.8). This singularity
means, for example, that PA(0)∂Ψ is ill-defined for generic distributions Ψ ∈ C− 1

2
−κ(R ×T3)

and A(0) ∈ C− 1
2
−κ(T3). Similar to the discussion in Section 3.1.1, this type of product appears in

the Picard iteration used to solve (SYM). As in Remark 2.8, this issue is addressed by decomposing
A = PA(0) + Ψ + Â, where Ψ solves the SHE ∂tΨ = ∆Ψ+ ξε, and solving for the ‘remainder’
Â. One then shows with separate stochastic bounds that PA(0)∂Ψ and Ψ∂PA(0) converge in
C−2−κ(R ×T3) as ε ↓ 0.

A closely related issue not present in 2D is that of restarting the equation at some positive
time τ > 0 to obtain maximal solutions. This is because, for ε > 0, A(τ) and ξε↾[τ,∞) see each
other on a time interval of order ε2. Since the regularities of A(τ) and ∂Ψ add up to < −2, this
breaks the argument used to show that PA(0)∂Ψ and Ψ∂PA(0) converge as ε ↓ 0 when A(0) is
independent of ξ. To restart the equation, one instead leverages that A(τ) for τ > 0 is not a generic
element of S but takes the form A(τ) = Ψ(τ) +R(τ) where R(τ) ∈ C−κ(T3). Since Ψ is defined
globally in time, this decomposition allows one to restart the equation using the ‘generalised Da
Prato–Debussche trick’ from [BCCH21].

3.3 Gauge covariance

Finally, we describe the proof of Theorem 1.11 in 3D. The proof of Theorem 1.11(a) is similar to its 2D
counterpart. The only appreciable difference is that the measurable selection S : O → S is replaced
by a Borel map S : S → S which preserves gauge orbits and such that Σ̄(S(X)) ≤ 2 infY∼X Σ̄(Y )
whenever the right-hand side is finite. Here Σ̄ ≥ Σ is defined analogously to Σ but with a stronger
set of parameters (η, β, δ, α, θ). This complication is due to a lack of any nice known properties of
O = S/∼ in 3D (e.g. Polishness), see Remarks 1.5 and 3.9, and we instead leverage compactness of
the embedding (S̄, Σ̄) ↪→ (S,Σ).

The proof of Theorem 1.11(b) is where we start to see a difference with the 2D case. First,
admitting for now Theorem 1.14, we aim to prove that solutions to (SYM) with bare mass Č and
gauge equivalent initial conditions can be suitably coupled. Namely, one has the following result.
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Lemma 3.10 (Coupling) Suppose A solves (SYM) with bare mass Č and initial condition a. Then,
for any b ∼ a, there exists on the same probability space a white noise ξ̄ and a process (B, g) such
that g(t) ∈ G

3
2
−κ and A(t)g(t) = B(t) for all t > 0 (before blow-up of A,B) and such that B

solves (SYM) driven by ξ̄ with bare mass Č.

If ag(0) = b for some g(0) ∈ Gϱ for ϱ > 1
2 as in Section 3.1.2, then this result follows almost

immediately from Theorem 1.14. However, unlike the 2D case, it is now possible b ∼ a but no g(0)
exists such that ag(0) = b, which leads to trouble in applying Theorem 1.14 – we effectively have no
initial condition for g in the PDE (1.7).

To circumvent the issue, we regularise a and b using the YM flow Ft, so that Ft(a)
gt = Ft(b)

for all t sufficiently small and some smooth gt. Then Ft(a) → a and Ft(b) → b in S as t ↓ 0, which
in particular implies that limsupt↓0 |gt|Cν < ∞ for some ν ∈ (0, 12) due to Theorem 3.7. Therefore,
there exists g(0) ∈ Gν such that gt → g(0) in Gν/2 along a subsequence. We can then rewrite the
equation for g in (1.7) in terms of A = Bg−1 , namely

g−1∂tg = ∂j(g
−1∂jg) + [Aj , g

−1∂jg] , (3.6)

and show that the system for (A, g), where A solves (SYM), is well-posed for any initial condition
in S ×Gν (vs. S ×Gϱ with ϱ > 1

2 for (1.7) due to the multiplicative noise Adgξ). One can then
use continuity of (A, g) with respect to initial conditions, the fact that g takes values in G

3
2
−κ for

positive times, and the joint continuity of the group action G
3
2
−κ × S → S, to prove Lemma 3.10.

The g in Lemma 3.10 solves precisely (3.6) with initial condition g(0).
With Lemma 3.10 in hand, together with the fact that g in its statement cannot blow up before

Σ(A, 0) + Σ(B, 0) blows up (again due to Theorem 3.7), it is relatively straightforward to prove
Theorem 1.11(b) like we did in the 2D case. See in particular the discussion around Figure 1.

It remains to prove Theorem 1.14 to complete the above argument. Fix henceforth a non-
anticipative mollifier χ. Like in Section 2.3, it is natural consider the systems (2.7) and (2.8),
and show that their renormalised versions converge to the same limit. To do this, we show that
the equations for g and ḡ, which are now singular, do not require renormalisation, and that the
renormalised equations for B and Ā are of exactly the same form as in Section 2.3, namely

∂tB = ∆B +B∂B +B3 +Adgξ
ε + (Cε

bphz + C̊1)B + (C̃ε + C̊2)(dg)g
−1 , (3.7)

and

∂tĀ = ∆Ā+ Ā∂Ā+ Ā3 + χε ∗ (Adḡξ) + (Cε
bphz + C̊1)Ā+ (C̃0,ε + C̊2)(dḡ)ḡ

−1 . (3.8)

The constants C̃ε, C̃0,ε are respectively called Cε
Gauge, C

0,ε
Gauge in [CCHS22], and correspond to

λC̃ε, λC0,ε in Section 2.3; Cε
bphz is the BPHZ constant in Theorem 1.6 and corresponds to λCε

sym in
Section 2.

Both of these facts are again proven by introducing the new variables h = (dg)g−1 and U = Adg
and writing the corresponding equations for h, U . This time, instead of a direction computation with
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just two trees as in (2.11), a more complicated strategy relying on power counting and symmetry
arguments is necessary. The main insight which helps with this argument is that the trees appearing
in ‘lifted’ B and Ā equations are obtained by attaching (or grafting) the trees appearing in the U
equation onto the trees appearing in the (SYM) equation (see [CCHS22, Sec. 6.2.1]).

The analytic theory for the B and Ā equations is somewhat more involved than what we saw
in Sections 2.3 and 3.2, but the general strategy is the same: we decompose the solution into the
initial condition, globally defined singular terms, and a better behaved remainder, and solve for the
last of these. Restarting these equations, specifically the equation for Ā, is also not straightforward
because, unlike in Section 3.2, we are outside the scope of the generalised Da Prato–Debussche
trick of [BCCH21] since the multiplicative noise means that the most singular part of the solution
is not just the SHE. Therefore, an entirely separate fixed point problem needs to be written for the
restarted equation (see [CCHS22, Sec. 6.6]) which leverages that the new initial condition comes
from a modelled distribution defined for earlier times. The proof that B and Ā converge to the same
limit uses the same ε-dependent norms on regularity structures introduced in [CCHS20].

To conclude the proof of Theorem 1.14, it suffices like in Section 2.3 to show that

Č
def
= lim

ε↓0
(C̃ε − Cε

bphz − C̃0,ε) exists and is independent of non-anticipate χ. (3.9)

The difficulty compared to 2D is that we have no explicit formulae for the constants on the right-hand
side. Instead, the argument in [CCHS22] proceeds in two steps.

First, one shows that

limsup
ε↓0

|C̃ε − Cε
bphz| < ∞ and limsup

ε↓0
|C̃0,ε| < ∞ . (3.10)

Arguing by contradiction, suppose that

|C̃ε − Cε
bphz| → ∞ (3.11)

along a subsequence of ε ↓ 0. The idea, inspired by [BGHZ21], is to introduce a parameter σε ∈ R
in front of the noise which we take to zero as ε ↓ 0 in a precise way.

Letting C̃ε
σ, C

ε
bphz,σ, etc. denote the renormalisation constants associated to the noise σξ, it is

not difficult to see that these constants depend polynomially on σ and converge to zero as σ ↓ 0.
Therefore, by assumption (3.11), we can send σε ↓ 0 as ε ↓ 0 in such a way that, after passing to
another subsequence, we can find Ĉ ̸= 0 such that

Ĉε def
= Cε

bphz,σε − C̃ε
σε → Ĉ .

Now we consider the equation for B with bare masses C̊1 = 0 and C̊2 = Ĉε, that is,

∂tB = ∆B +B∂B +B3 + Cε
bphz,σεB + σεAdgξ

ε + (C̃ε
σε + Ĉε)(dg)g−1 .

Remark that C̃ε
σε + Ĉε = Cε

bphz,σε by definition, and thus B = Ag pathwise where A solves (SYM)
with bare mass zero, i.e.

∂tA = ∆A+A∂A+A3 + Cε
bphz,σεA+ σεξε .
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Since σε ↓ 0, A converges as ε ↓ 0 to solution of the deterministic YM flow (with DeTurck term)

∂tA = ∆A+A∂A+A3 (3.12)

with the same initial condition. Furthermore, because Ĉε → Ĉ, we can use joint continuity in the
bare mass and the noise to see that B converges as ε ↓ 0 to the solution of

∂tB = ∆B +B∂B +B3 + Ĉ(dg)g−1 . (3.13)

On the other hand, the equality Ag = B is preserved under the ε ↓ 0 limit, where g solves (1.7), but
this implies by the calculation in Section 1.2.1 with ξ ≡ 0 that B should also solve

∂tB = ∆B +B∂B +B3 . (3.14)

This is clearly a contradiction because, for any Ĉ ̸= 0, we can find initial conditions (B(0), g(0))
for which the solutions to (3.13) and (3.14) are different.

The argument that limsupε↓0 |C̃0,ε| < ∞ is similar. Namely, if |C̃0,ε| → ∞ along a subsequence,
then we can find σε ↓ 0 such that C̃0,ε

σε → Ĉ ̸= 0 along another subsequence. Now we consider

∂Ā = ∆Ā+ Ā∂Ā+ Ā3 + (Cε
bphz,σε + C̊1)Ā+ (C̃0,ε

σε + C̊2)(dḡ)ḡ
−1 + χε ∗ (Adḡσεξ)

with bare masses C̊1 = 0 and C̊2 = −C̃0,ε
σε . With this choice, the term (dg)g−1 vanishes and the

solution is, by Itô isometry (which requires χ non-anticipative), equal in law to the solution of

∂Ã = ∆Ã+ Ã∂Ã+ Ã3 + Cε
bphz,σεÃ+ σεξε .

But now, since σε ↓ 0, Ã converges in law again to the solution of the deterministic YM flow (3.12),
while Ā converges to the solution of

∂Ā = ∆Ā+ Ā∂Ā+ Ā3 − Ĉ(dḡ)ḡ−1 ,

which are not equal for generic initial conditions, bringing us to a contradiction.

Remark 3.11 The bounds (3.10) are actually used in the short time analysis of (3.7)-(3.8) since they
allow us to relate B and Ā to a simpler equation with additive noise through the above mechanism (B
is related through pathwise gauge transformations, Ā is related through equality in law, see [CCHS22,
Sec. 6.6]).

To finish the proof of (3.9), we need to show that

lim
ε↓0

Cε
bphz − C̃ε exists and is independent of the non-anticipative mollifier χ , (3.15)

and similarly for C̃0,ε. Arguing again by contradiction, suppose we have two subsequences ε ↓ 0
along which Cε

bphz − C̃ε converges to distinct limits Ĉ1 and Ĉ2. We then consider the B equation
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with bare masses C̊1 = 0 and C̊2 = Cε
bphz − C̃ε. With this choice, B = Ag for all ε > 0 where A

solves (SYM) with zero bare mass and g solves (3.6). Since the limit of (A, g) is the same along
the two subsequences, it follows that the limit of B along the two subsequence is also the same
almost surely. However, it is possible to show that the limiting bare mass constants Ĉ1 and Ĉ2 can be
recovered from the ε ↓ 0 limit of (B, g), see [CCHS22, Appendix D], which leads to a contradiction
since we assumed Ĉ1 ̸= Ĉ2. The same argument shows that the limit in (3.15) is independent of χ
because the solution (A, g) to (SYM) and (3.6) is independent of χ.

Finally, to prove that limε↓0 C̃
0,ε exists and is independent of the non-anticipative mollifier χ,

one argues in a similar way except, as earlier, we appeal to equality with (SYM) in law and use
instead that two limiting solutions (Ā, ḡ) with different bare masses cannot be equal in law.

Remark 3.12 These final statements mimic exactly what we saw in Section 2.3 where C̃0,ε = 0 for
non-anticipative χ and limε↓0(C̃

ε − Cε
bphz) is given by (2.13). By analogy, (3.15) should hold for

any mollifier, not necessarily non-anticipative, but this is not necessarily the case for limε↓0 C̃
0,ε.

Furthermore, as in 2D, we expect that limε↓0 C̃
0,ε = 0 for non-anticipative χ.

4 Open problems

We close with several open problems which we believe to be of interest.

• Does the Markov process on gauge orbits in Theorem 1.11 possess a unique invariant
measure? Existence of the invariant measure should imply uniqueness due to the strong Feller
property [HM18] and full support theorem for SPDEs [HS22a]. Furthermore, the invariant
measure for d = 2 is expected to be the YM measure associated to the trivial principal
G-bundle on T2 constructed in [Sen97, Lév03, Lév06]. For d = 3, this would provide the
first construction of the YM measure in 3D, even in finite volume.

• Can the analysis in [CCHS20, CCHS22] be extended to infinite volume Td ⇝ Rd? This is
non-trivial even for d = 2, although the YM measure on R2 is arguably simpler [Dri89].

• Can one extend these results beyond the case that the underlying principal bundle P → Td is
trivial? For non-trivial principal bundles, one can no longer write connections as globally
defined 1-forms, which complicates the solution theory.

• For d = 3, can one modify the construction of the state space S in Section 3.1 so that the
gauge equivalence ∼ is determined by a gauge group or a similar structure? This would yield
a notion of gauge equivalence conceptually closer to the classical gauge orbit space and would
carry a number of technical advantages (see Remarks 1.5 and 3.9 and the start of Section 3.3).

• Taking G to be one of the classical groups, e.g. G = U(N), what is the behaviour of
the dynamic as N → ∞? In 2D, the associated YM measure is known to converge to a
deterministic object called the master field [Lév17, DN20, DL22b, DL22a], which is governed
by the Makeenko–Migdal equations [MM79]; see [Lév20] for a survey. No such result is
rigorously known in 3D (the measure at finite N has not been constructed). It would be
interesting if one can use stochastic quantisation to recover some of the known results in 2D
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and obtain new results in 3D; see [SSZ22] where the Langevin dynamic is used to derive the
finite N master loop equation on the lattice.
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